1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 * Copyright 2022 Garrett D'Amore
27 * Copyright 2023 RackTop Systems, Inc.
28 */
29
30 #include <mdb/mdb_param.h>
31 #include <mdb/mdb_modapi.h>
32 #include <mdb/mdb_ks.h>
33 #include <mdb/mdb_ctf.h>
34
35 #include <sys/types.h>
36 #include <sys/thread.h>
37 #include <sys/session.h>
38 #include <sys/user.h>
39 #include <sys/proc.h>
40 #include <sys/var.h>
41 #include <sys/t_lock.h>
42 #include <sys/callo.h>
43 #include <sys/priocntl.h>
44 #include <sys/class.h>
45 #include <sys/regset.h>
46 #include <sys/stack.h>
47 #include <sys/cpuvar.h>
48 #include <sys/vnode.h>
49 #include <sys/vfs.h>
50 #include <sys/flock_impl.h>
51 #include <sys/kmem_impl.h>
52 #include <sys/vmem_impl.h>
53 #include <sys/kstat.h>
54 #include <sys/dditypes.h>
55 #include <sys/ddi_impldefs.h>
56 #include <sys/sysmacros.h>
57 #include <sys/sysconf.h>
58 #include <sys/task.h>
59 #include <sys/project.h>
60 #include <sys/errorq_impl.h>
61 #include <sys/cred_impl.h>
62 #include <sys/zone.h>
63 #include <sys/panic.h>
64 #include <regex.h>
65 #include <sys/port_impl.h>
66 #include <sys/contract/process_impl.h>
67
68 #include "avl.h"
69 #include "bio.h"
70 #include "bitset.h"
71 #include "combined.h"
72 #include "contract.h"
73 #include "cpupart_mdb.h"
74 #include "cred.h"
75 #include "ctxop.h"
76 #include "cyclic.h"
77 #include "damap.h"
78 #include "ddi_periodic.h"
79 #include "devinfo.h"
80 #include "dnlc.h"
81 #include "findstack.h"
82 #include "fm.h"
83 #include "gcore.h"
84 #include "group.h"
85 #include "irm.h"
86 #include "kgrep.h"
87 #include "kmem.h"
88 #include "ldi.h"
89 #include "leaky.h"
90 #include "lgrp.h"
91 #include "list.h"
92 #include "log.h"
93 #include "mdi.h"
94 #include "memory.h"
95 #include "modhash.h"
96 #include "ndievents.h"
97 #include "net.h"
98 #include "netstack.h"
99 #include "nvpair.h"
100 #include "pci.h"
101 #include "pg.h"
102 #include "rctl.h"
103 #include "sobj.h"
104 #include "streams.h"
105 #include "sysevent.h"
106 #include "taskq.h"
107 #include "thread.h"
108 #include "tsd.h"
109 #include "tsol.h"
110 #include "typegraph.h"
111 #include "vfs.h"
112 #include "zone.h"
113 #include "hotplug.h"
114
115 /*
116 * Surely this is defined somewhere...
117 */
118 #define NINTR 16
119
120 #define KILOS 10
121 #define MEGS 20
122 #define GIGS 30
123
124 #ifndef STACK_BIAS
125 #define STACK_BIAS 0
126 #endif
127
128 static char
pstat2ch(uchar_t state)129 pstat2ch(uchar_t state)
130 {
131 switch (state) {
132 case SSLEEP: return ('S');
133 case SRUN: return ('R');
134 case SZOMB: return ('Z');
135 case SIDL: return ('I');
136 case SONPROC: return ('O');
137 case SSTOP: return ('T');
138 case SWAIT: return ('W');
139 default: return ('?');
140 }
141 }
142
143 #define PS_PRTTHREADS 0x1
144 #define PS_PRTLWPS 0x2
145 #define PS_PSARGS 0x4
146 #define PS_TASKS 0x8
147 #define PS_PROJECTS 0x10
148 #define PS_ZONES 0x20
149 #define PS_SERVICES 0x40
150
151 static int
ps_threadprint(uintptr_t addr,const void * data,void * private)152 ps_threadprint(uintptr_t addr, const void *data, void *private)
153 {
154 const kthread_t *t = (const kthread_t *)data;
155 uint_t prt_flags = *((uint_t *)private);
156
157 static const mdb_bitmask_t t_state_bits[] = {
158 { "TS_FREE", UINT_MAX, TS_FREE },
159 { "TS_SLEEP", TS_SLEEP, TS_SLEEP },
160 { "TS_RUN", TS_RUN, TS_RUN },
161 { "TS_ONPROC", TS_ONPROC, TS_ONPROC },
162 { "TS_ZOMB", TS_ZOMB, TS_ZOMB },
163 { "TS_STOPPED", TS_STOPPED, TS_STOPPED },
164 { "TS_WAIT", TS_WAIT, TS_WAIT },
165 { NULL, 0, 0 }
166 };
167
168 if (prt_flags & PS_PRTTHREADS)
169 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits);
170
171 if (prt_flags & PS_PRTLWPS) {
172 char desc[128] = "";
173
174 (void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc));
175
176 mdb_printf("\tL %?a ID: %s\n", t->t_lwp, desc);
177 }
178
179 return (WALK_NEXT);
180 }
181
182 typedef struct mdb_pflags_proc {
183 struct pid *p_pidp;
184 ushort_t p_pidflag;
185 uint_t p_proc_flag;
186 uint_t p_flag;
187 } mdb_pflags_proc_t;
188
189 static int
pflags(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)190 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
191 {
192 mdb_pflags_proc_t pr;
193 struct pid pid;
194
195 static const mdb_bitmask_t p_flag_bits[] = {
196 { "SSYS", SSYS, SSYS },
197 { "SEXITING", SEXITING, SEXITING },
198 { "SITBUSY", SITBUSY, SITBUSY },
199 { "SFORKING", SFORKING, SFORKING },
200 { "SWATCHOK", SWATCHOK, SWATCHOK },
201 { "SKILLED", SKILLED, SKILLED },
202 { "SSCONT", SSCONT, SSCONT },
203 { "SZONETOP", SZONETOP, SZONETOP },
204 { "SEXTKILLED", SEXTKILLED, SEXTKILLED },
205 { "SUGID", SUGID, SUGID },
206 { "SEXECED", SEXECED, SEXECED },
207 { "SJCTL", SJCTL, SJCTL },
208 { "SNOWAIT", SNOWAIT, SNOWAIT },
209 { "SVFORK", SVFORK, SVFORK },
210 { "SVFWAIT", SVFWAIT, SVFWAIT },
211 { "SEXITLWPS", SEXITLWPS, SEXITLWPS },
212 { "SHOLDFORK", SHOLDFORK, SHOLDFORK },
213 { "SHOLDFORK1", SHOLDFORK1, SHOLDFORK1 },
214 { "SCOREDUMP", SCOREDUMP, SCOREDUMP },
215 { "SMSACCT", SMSACCT, SMSACCT },
216 { "SLWPWRAP", SLWPWRAP, SLWPWRAP },
217 { "SAUTOLPG", SAUTOLPG, SAUTOLPG },
218 { "SNOCD", SNOCD, SNOCD },
219 { "SHOLDWATCH", SHOLDWATCH, SHOLDWATCH },
220 { "SMSFORK", SMSFORK, SMSFORK },
221 { "SDOCORE", SDOCORE, SDOCORE },
222 { NULL, 0, 0 }
223 };
224
225 static const mdb_bitmask_t p_pidflag_bits[] = {
226 { "CLDPEND", CLDPEND, CLDPEND },
227 { "CLDCONT", CLDCONT, CLDCONT },
228 { "CLDNOSIGCHLD", CLDNOSIGCHLD, CLDNOSIGCHLD },
229 { "CLDWAITPID", CLDWAITPID, CLDWAITPID },
230 { NULL, 0, 0 }
231 };
232
233 static const mdb_bitmask_t p_proc_flag_bits[] = {
234 { "P_PR_TRACE", P_PR_TRACE, P_PR_TRACE },
235 { "P_PR_PTRACE", P_PR_PTRACE, P_PR_PTRACE },
236 { "P_PR_FORK", P_PR_FORK, P_PR_FORK },
237 { "P_PR_LOCK", P_PR_LOCK, P_PR_LOCK },
238 { "P_PR_ASYNC", P_PR_ASYNC, P_PR_ASYNC },
239 { "P_PR_EXEC", P_PR_EXEC, P_PR_EXEC },
240 { "P_PR_BPTADJ", P_PR_BPTADJ, P_PR_BPTADJ },
241 { "P_PR_RUNLCL", P_PR_RUNLCL, P_PR_RUNLCL },
242 { "P_PR_KILLCL", P_PR_KILLCL, P_PR_KILLCL },
243 { NULL, 0, 0 }
244 };
245
246 if (!(flags & DCMD_ADDRSPEC)) {
247 if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) {
248 mdb_warn("can't walk 'proc'");
249 return (DCMD_ERR);
250 }
251 return (DCMD_OK);
252 }
253
254 if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 ||
255 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) {
256 mdb_warn("cannot read proc_t or pid");
257 return (DCMD_ERR);
258 }
259
260 mdb_printf("%p [pid %d]:\n", addr, pid.pid_id);
261 mdb_printf("\tp_flag: %08x <%b>\n", pr.p_flag, pr.p_flag,
262 p_flag_bits);
263 mdb_printf("\tp_pidflag: %08x <%b>\n", pr.p_pidflag, pr.p_pidflag,
264 p_pidflag_bits);
265 mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag,
266 p_proc_flag_bits);
267
268 return (DCMD_OK);
269 }
270
271 typedef struct mdb_ps_proc {
272 char p_stat;
273 struct pid *p_pidp;
274 struct pid *p_pgidp;
275 struct cred *p_cred;
276 struct sess *p_sessp;
277 struct task *p_task;
278 struct zone *p_zone;
279 struct cont_process *p_ct_process;
280 pid_t p_ppid;
281 uint_t p_flag;
282 struct {
283 char u_comm[MAXCOMLEN + 1];
284 char u_psargs[PSARGSZ];
285 } p_user;
286 } mdb_ps_proc_t;
287
288 /*
289 * A reasonable enough limit. Note that we purposefully let this column over-run
290 * if needed.
291 */
292 #define FMRI_LEN (128)
293
294 int
ps(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)295 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
296 {
297 uint_t prt_flags = 0;
298 mdb_ps_proc_t pr;
299 struct pid pid, pgid, sid;
300 sess_t session;
301 cred_t cred;
302 task_t tk;
303 kproject_t pj;
304 zone_t zn;
305 struct cont_process cp;
306 char fmri[FMRI_LEN] = "";
307
308 if (!(flags & DCMD_ADDRSPEC)) {
309 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
310 mdb_warn("can't walk 'proc'");
311 return (DCMD_ERR);
312 }
313 return (DCMD_OK);
314 }
315
316 if (mdb_getopts(argc, argv,
317 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
318 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
319 's', MDB_OPT_SETBITS, PS_SERVICES, &prt_flags,
320 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
321 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
322 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
323 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
324 return (DCMD_USAGE);
325
326 if (DCMD_HDRSPEC(flags)) {
327 mdb_printf("%<u>%-1s %-6s %-6s %-6s %-6s ",
328 "S", "PID", "PPID", "PGID", "SID");
329 if (prt_flags & PS_TASKS)
330 mdb_printf("%-5s ", "TASK");
331 if (prt_flags & PS_PROJECTS)
332 mdb_printf("%-5s ", "PROJ");
333 if (prt_flags & PS_ZONES)
334 mdb_printf("%-5s ", "ZONE");
335 if (prt_flags & PS_SERVICES)
336 mdb_printf("%-40s ", "SERVICE");
337 mdb_printf("%-6s %-10s %-?s %-s%</u>\n",
338 "UID", "FLAGS", "ADDR", "NAME");
339 }
340
341 if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1)
342 return (DCMD_ERR);
343
344 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
345 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
346 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
347 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
348 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
349 if (prt_flags & (PS_TASKS | PS_PROJECTS))
350 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
351 if (prt_flags & PS_PROJECTS)
352 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
353 if (prt_flags & PS_ZONES)
354 mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone);
355 if ((prt_flags & PS_SERVICES) && pr.p_ct_process != NULL) {
356 mdb_vread(&cp, sizeof (cp), (uintptr_t)pr.p_ct_process);
357
358 if (mdb_read_refstr((uintptr_t)cp.conp_svc_fmri, fmri,
359 sizeof (fmri)) <= 0)
360 (void) strlcpy(fmri, "?", sizeof (fmri));
361
362 /* Strip any standard prefix and suffix. */
363 if (strncmp(fmri, "svc:/", sizeof ("svc:/") - 1) == 0) {
364 char *i = fmri;
365 char *j = fmri + sizeof ("svc:/") - 1;
366 for (; *j != '\0'; i++, j++) {
367 if (strcmp(j, ":default") == 0)
368 break;
369 *i = *j;
370 }
371
372 *i = '\0';
373 }
374 }
375
376 mdb_printf("%-c %-6d %-6d %-6d %-6d ",
377 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
378 sid.pid_id);
379 if (prt_flags & PS_TASKS)
380 mdb_printf("%-5d ", tk.tk_tkid);
381 if (prt_flags & PS_PROJECTS)
382 mdb_printf("%-5d ", pj.kpj_id);
383 if (prt_flags & PS_ZONES)
384 mdb_printf("%-5d ", zn.zone_id);
385 if (prt_flags & PS_SERVICES)
386 mdb_printf("%-40s ", fmri);
387 mdb_printf("%-6d 0x%08x %0?p %-s\n",
388 cred.cr_uid, pr.p_flag, addr,
389 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
390
391 if (prt_flags & ~PS_PSARGS)
392 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
393
394 return (DCMD_OK);
395 }
396
397 static void
ps_help(void)398 ps_help(void)
399 {
400 mdb_printf("Display processes.\n\n"
401 "Options:\n"
402 " -f\tDisplay command arguments\n"
403 " -l\tDisplay LWPs\n"
404 " -T\tDisplay tasks\n"
405 " -P\tDisplay projects\n"
406 " -s\tDisplay SMF FMRI\n"
407 " -z\tDisplay zones\n"
408 " -t\tDisplay threads\n\n");
409
410 mdb_printf("The resulting output is a table of the processes on the "
411 "system. The\n"
412 "columns in the output consist of a combination of the "
413 "following fields:\n\n");
414 mdb_printf("S\tProcess state. Possible states are:\n"
415 "\tS\tSleeping (SSLEEP)\n"
416 "\tR\tRunnable (SRUN)\n"
417 "\tZ\tZombie (SZOMB)\n"
418 "\tI\tIdle (SIDL)\n"
419 "\tO\tOn Cpu (SONPROC)\n"
420 "\tT\tStopped (SSTOP)\n"
421 "\tW\tWaiting (SWAIT)\n");
422
423 mdb_printf("PID\tProcess id.\n");
424 mdb_printf("PPID\tParent process id.\n");
425 mdb_printf("PGID\tProcess group id.\n");
426 mdb_printf("SID\tProcess id of the session leader.\n");
427 mdb_printf("TASK\tThe task id of the process.\n");
428 mdb_printf("PROJ\tThe project id of the process.\n");
429 mdb_printf("ZONE\tThe zone id of the process.\n");
430 mdb_printf("SERVICE The SMF service FMRI of the process.\n");
431 mdb_printf("UID\tThe user id of the process.\n");
432 mdb_printf("FLAGS\tThe process flags (see ::pflags).\n");
433 mdb_printf("ADDR\tThe kernel address of the proc_t structure of the "
434 "process\n");
435 mdb_printf("NAME\tThe name (p_user.u_comm field) of the process. If "
436 "the -f flag\n"
437 "\tis specified, the arguments of the process are displayed.\n");
438 }
439
440 #define PG_NEWEST 0x0001
441 #define PG_OLDEST 0x0002
442 #define PG_PIPE_OUT 0x0004
443 #define PG_EXACT_MATCH 0x0008
444
445 typedef struct pgrep_data {
446 uint_t pg_flags;
447 uint_t pg_psflags;
448 uintptr_t pg_xaddr;
449 hrtime_t pg_xstart;
450 const char *pg_pat;
451 #ifndef _KMDB
452 regex_t pg_reg;
453 #endif
454 } pgrep_data_t;
455
456 typedef struct mdb_pgrep_proc {
457 struct {
458 timestruc_t u_start;
459 char u_comm[MAXCOMLEN + 1];
460 } p_user;
461 } mdb_pgrep_proc_t;
462
463 /*ARGSUSED*/
464 static int
pgrep_cb(uintptr_t addr,const void * ignored,void * data)465 pgrep_cb(uintptr_t addr, const void *ignored, void *data)
466 {
467 mdb_pgrep_proc_t p;
468 pgrep_data_t *pgp = data;
469 #ifndef _KMDB
470 regmatch_t pmatch;
471 #endif
472
473 if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1)
474 return (WALK_ERR);
475
476 /*
477 * kmdb doesn't have access to the reg* functions, so we fall back
478 * to strstr/strcmp.
479 */
480 #ifdef _KMDB
481 if ((pgp->pg_flags & PG_EXACT_MATCH) ?
482 (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) :
483 (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL))
484 return (WALK_NEXT);
485 #else
486 if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0)
487 return (WALK_NEXT);
488
489 if ((pgp->pg_flags & PG_EXACT_MATCH) &&
490 (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0'))
491 return (WALK_NEXT);
492 #endif
493
494 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
495 hrtime_t start;
496
497 start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC +
498 p.p_user.u_start.tv_nsec;
499
500 if (pgp->pg_flags & PG_NEWEST) {
501 if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) {
502 pgp->pg_xaddr = addr;
503 pgp->pg_xstart = start;
504 }
505 } else {
506 if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) {
507 pgp->pg_xaddr = addr;
508 pgp->pg_xstart = start;
509 }
510 }
511
512 } else if (pgp->pg_flags & PG_PIPE_OUT) {
513 mdb_printf("%p\n", addr);
514
515 } else {
516 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
517 mdb_warn("can't invoke 'ps'");
518 return (WALK_DONE);
519 }
520 pgp->pg_psflags &= ~DCMD_LOOPFIRST;
521 }
522
523 return (WALK_NEXT);
524 }
525
526 /*ARGSUSED*/
527 int
pgrep(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)528 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
529 {
530 pgrep_data_t pg;
531 int i;
532 #ifndef _KMDB
533 int err;
534 #endif
535
536 if (flags & DCMD_ADDRSPEC)
537 return (DCMD_USAGE);
538
539 pg.pg_flags = 0;
540 pg.pg_xaddr = 0;
541
542 i = mdb_getopts(argc, argv,
543 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
544 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
545 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
546 NULL);
547
548 argc -= i;
549 argv += i;
550
551 if (argc != 1)
552 return (DCMD_USAGE);
553
554 /*
555 * -n and -o are mutually exclusive.
556 */
557 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
558 return (DCMD_USAGE);
559
560 if (argv->a_type != MDB_TYPE_STRING)
561 return (DCMD_USAGE);
562
563 if (flags & DCMD_PIPE_OUT)
564 pg.pg_flags |= PG_PIPE_OUT;
565
566 pg.pg_pat = argv->a_un.a_str;
567 if (DCMD_HDRSPEC(flags))
568 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
569 else
570 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
571
572 #ifndef _KMDB
573 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
574 size_t nbytes;
575 char *buf;
576
577 nbytes = regerror(err, &pg.pg_reg, NULL, 0);
578 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
579 (void) regerror(err, &pg.pg_reg, buf, nbytes);
580 mdb_warn("%s\n", buf);
581
582 return (DCMD_ERR);
583 }
584 #endif
585
586 if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
587 mdb_warn("can't walk 'proc'");
588 return (DCMD_ERR);
589 }
590
591 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
592 if (pg.pg_flags & PG_PIPE_OUT) {
593 mdb_printf("%p\n", pg.pg_xaddr);
594 } else {
595 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
596 0, NULL) != 0) {
597 mdb_warn("can't invoke 'ps'");
598 return (DCMD_ERR);
599 }
600 }
601 }
602
603 return (DCMD_OK);
604 }
605
606 int
task(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)607 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
608 {
609 task_t tk;
610 kproject_t pj;
611
612 if (!(flags & DCMD_ADDRSPEC)) {
613 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
614 mdb_warn("can't walk task_cache");
615 return (DCMD_ERR);
616 }
617 return (DCMD_OK);
618 }
619 if (DCMD_HDRSPEC(flags)) {
620 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
621 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
622 }
623 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
624 mdb_warn("can't read task_t structure at %p", addr);
625 return (DCMD_ERR);
626 }
627 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
628 mdb_warn("can't read project_t structure at %p", addr);
629 return (DCMD_ERR);
630 }
631 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
632 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
633 tk.tk_flags);
634 return (DCMD_OK);
635 }
636
637 int
project(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)638 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
639 {
640 kproject_t pj;
641
642 if (!(flags & DCMD_ADDRSPEC)) {
643 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
644 mdb_warn("can't walk projects");
645 return (DCMD_ERR);
646 }
647 return (DCMD_OK);
648 }
649 if (DCMD_HDRSPEC(flags)) {
650 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
651 "ADDR", "PROJID", "ZONEID", "REFCNT");
652 }
653 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
654 mdb_warn("can't read kproject_t structure at %p", addr);
655 return (DCMD_ERR);
656 }
657 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
658 pj.kpj_count);
659 return (DCMD_OK);
660 }
661
662 /* walk callouts themselves, either by list or id hash. */
663 int
callout_walk_init(mdb_walk_state_t * wsp)664 callout_walk_init(mdb_walk_state_t *wsp)
665 {
666 if (wsp->walk_addr == 0) {
667 mdb_warn("callout doesn't support global walk");
668 return (WALK_ERR);
669 }
670 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
671 return (WALK_NEXT);
672 }
673
674 #define CALLOUT_WALK_BYLIST 0
675 #define CALLOUT_WALK_BYID 1
676
677 /* the walker arg switches between walking by list (0) and walking by id (1). */
678 int
callout_walk_step(mdb_walk_state_t * wsp)679 callout_walk_step(mdb_walk_state_t *wsp)
680 {
681 int retval;
682
683 if (wsp->walk_addr == 0) {
684 return (WALK_DONE);
685 }
686 if (mdb_vread(wsp->walk_data, sizeof (callout_t),
687 wsp->walk_addr) == -1) {
688 mdb_warn("failed to read callout at %p", wsp->walk_addr);
689 return (WALK_DONE);
690 }
691 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
692 wsp->walk_cbdata);
693
694 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
695 wsp->walk_addr =
696 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
697 } else {
698 wsp->walk_addr =
699 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
700 }
701
702 return (retval);
703 }
704
705 void
callout_walk_fini(mdb_walk_state_t * wsp)706 callout_walk_fini(mdb_walk_state_t *wsp)
707 {
708 mdb_free(wsp->walk_data, sizeof (callout_t));
709 }
710
711 /*
712 * walker for callout lists. This is different from hashes and callouts.
713 * Thankfully, it's also simpler.
714 */
715 int
callout_list_walk_init(mdb_walk_state_t * wsp)716 callout_list_walk_init(mdb_walk_state_t *wsp)
717 {
718 if (wsp->walk_addr == 0) {
719 mdb_warn("callout list doesn't support global walk");
720 return (WALK_ERR);
721 }
722 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
723 return (WALK_NEXT);
724 }
725
726 int
callout_list_walk_step(mdb_walk_state_t * wsp)727 callout_list_walk_step(mdb_walk_state_t *wsp)
728 {
729 int retval;
730
731 if (wsp->walk_addr == 0) {
732 return (WALK_DONE);
733 }
734 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
735 wsp->walk_addr) != sizeof (callout_list_t)) {
736 mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
737 return (WALK_ERR);
738 }
739 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
740 wsp->walk_cbdata);
741
742 wsp->walk_addr = (uintptr_t)
743 (((callout_list_t *)wsp->walk_data)->cl_next);
744
745 return (retval);
746 }
747
748 void
callout_list_walk_fini(mdb_walk_state_t * wsp)749 callout_list_walk_fini(mdb_walk_state_t *wsp)
750 {
751 mdb_free(wsp->walk_data, sizeof (callout_list_t));
752 }
753
754 /* routines/structs to walk callout table(s) */
755 typedef struct cot_data {
756 callout_table_t *ct0;
757 callout_table_t ct;
758 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
759 callout_hash_t cot_clhash[CALLOUT_BUCKETS];
760 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
761 int cotndx;
762 int cotsize;
763 } cot_data_t;
764
765 int
callout_table_walk_init(mdb_walk_state_t * wsp)766 callout_table_walk_init(mdb_walk_state_t *wsp)
767 {
768 int max_ncpus;
769 cot_data_t *cot_walk_data;
770
771 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
772
773 if (wsp->walk_addr == 0) {
774 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
775 mdb_warn("failed to read 'callout_table'");
776 return (WALK_ERR);
777 }
778 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
779 mdb_warn("failed to get callout_table array size");
780 return (WALK_ERR);
781 }
782 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
783 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
784 } else {
785 /* not a global walk */
786 cot_walk_data->cotsize = 1;
787 }
788
789 cot_walk_data->cotndx = 0;
790 wsp->walk_data = cot_walk_data;
791
792 return (WALK_NEXT);
793 }
794
795 int
callout_table_walk_step(mdb_walk_state_t * wsp)796 callout_table_walk_step(mdb_walk_state_t *wsp)
797 {
798 int retval;
799 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
800 size_t size;
801
802 if (cotwd->cotndx >= cotwd->cotsize) {
803 return (WALK_DONE);
804 }
805 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
806 wsp->walk_addr) != sizeof (callout_table_t)) {
807 mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
808 return (WALK_ERR);
809 }
810
811 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
812 if (cotwd->ct.ct_idhash != NULL) {
813 if (mdb_vread(cotwd->cot_idhash, size,
814 (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
815 mdb_warn("failed to read id_hash at %p",
816 cotwd->ct.ct_idhash);
817 return (WALK_ERR);
818 }
819 }
820 if (cotwd->ct.ct_clhash != NULL) {
821 if (mdb_vread(&(cotwd->cot_clhash), size,
822 (uintptr_t)cotwd->ct.ct_clhash) == -1) {
823 mdb_warn("failed to read cl_hash at %p",
824 cotwd->ct.ct_clhash);
825 return (WALK_ERR);
826 }
827 }
828 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
829 if (cotwd->ct.ct_kstat_data != NULL) {
830 if (mdb_vread(&(cotwd->ct_kstat_data), size,
831 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
832 mdb_warn("failed to read kstats at %p",
833 cotwd->ct.ct_kstat_data);
834 return (WALK_ERR);
835 }
836 }
837 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
838 wsp->walk_cbdata);
839
840 cotwd->cotndx++;
841 if (cotwd->cotndx >= cotwd->cotsize) {
842 return (WALK_DONE);
843 }
844 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
845 sizeof (callout_table_t));
846
847 return (retval);
848 }
849
850 void
callout_table_walk_fini(mdb_walk_state_t * wsp)851 callout_table_walk_fini(mdb_walk_state_t *wsp)
852 {
853 mdb_free(wsp->walk_data, sizeof (cot_data_t));
854 }
855
856 static const char *co_typenames[] = { "R", "N" };
857
858 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK)
859
860 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS)
861
862 /* callout flags, in no particular order */
863 #define COF_REAL 0x00000001
864 #define COF_NORM 0x00000002
865 #define COF_LONG 0x00000004
866 #define COF_SHORT 0x00000008
867 #define COF_EMPTY 0x00000010
868 #define COF_TIME 0x00000020
869 #define COF_BEFORE 0x00000040
870 #define COF_AFTER 0x00000080
871 #define COF_SEQID 0x00000100
872 #define COF_FUNC 0x00000200
873 #define COF_ADDR 0x00000400
874 #define COF_EXEC 0x00000800
875 #define COF_HIRES 0x00001000
876 #define COF_ABS 0x00002000
877 #define COF_TABLE 0x00004000
878 #define COF_BYIDH 0x00008000
879 #define COF_FREE 0x00010000
880 #define COF_LIST 0x00020000
881 #define COF_EXPREL 0x00040000
882 #define COF_HDR 0x00080000
883 #define COF_VERBOSE 0x00100000
884 #define COF_LONGLIST 0x00200000
885 #define COF_THDR 0x00400000
886 #define COF_LHDR 0x00800000
887 #define COF_CHDR 0x01000000
888 #define COF_PARAM 0x02000000
889 #define COF_DECODE 0x04000000
890 #define COF_HEAP 0x08000000
891 #define COF_QUEUE 0x10000000
892
893 /* show real and normal, short and long, expired and unexpired. */
894 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
895
896 #define COF_LIST_FLAGS \
897 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
898
899 /* private callout data for callback functions */
900 typedef struct callout_data {
901 uint_t flags; /* COF_* */
902 cpu_t *cpu; /* cpu pointer if given */
903 int seqid; /* cpu seqid, or -1 */
904 hrtime_t time; /* expiration time value */
905 hrtime_t atime; /* expiration before value */
906 hrtime_t btime; /* expiration after value */
907 uintptr_t funcaddr; /* function address or NULL */
908 uintptr_t param; /* parameter to function or NULL */
909 hrtime_t now; /* current system time */
910 int nsec_per_tick; /* for conversions */
911 ulong_t ctbits; /* for decoding xid */
912 callout_table_t *co_table; /* top of callout table array */
913 int ndx; /* table index. */
914 int bucket; /* which list/id bucket are we in */
915 hrtime_t exp; /* expire time */
916 int list_flags; /* copy of cl_flags */
917 } callout_data_t;
918
919 /* this callback does the actual callback itself (finally). */
920 /*ARGSUSED*/
921 static int
callouts_cb(uintptr_t addr,const void * data,void * priv)922 callouts_cb(uintptr_t addr, const void *data, void *priv)
923 {
924 callout_data_t *coargs = (callout_data_t *)priv;
925 callout_t *co = (callout_t *)data;
926 int tableid, list_flags;
927 callout_id_t coid;
928
929 if ((coargs == NULL) || (co == NULL)) {
930 return (WALK_ERR);
931 }
932
933 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) {
934 /*
935 * The callout must have been reallocated. No point in
936 * walking any more.
937 */
938 return (WALK_DONE);
939 }
940 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) {
941 /*
942 * The callout must have been freed. No point in
943 * walking any more.
944 */
945 return (WALK_DONE);
946 }
947 if ((coargs->flags & COF_FUNC) &&
948 (coargs->funcaddr != (uintptr_t)co->c_func)) {
949 return (WALK_NEXT);
950 }
951 if ((coargs->flags & COF_PARAM) &&
952 (coargs->param != (uintptr_t)co->c_arg)) {
953 return (WALK_NEXT);
954 }
955 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
956 return (WALK_NEXT);
957 }
958 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
959 return (WALK_NEXT);
960 }
961 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
962 return (WALK_NEXT);
963 }
964 /* it is possible we don't have the exp time or flags */
965 if (coargs->flags & COF_BYIDH) {
966 if (!(coargs->flags & COF_FREE)) {
967 /* we have to fetch the expire time ourselves. */
968 if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
969 (uintptr_t)co->c_list + offsetof(callout_list_t,
970 cl_expiration)) == -1) {
971 mdb_warn("failed to read expiration "
972 "time from %p", co->c_list);
973 coargs->exp = 0;
974 }
975 /* and flags. */
976 if (mdb_vread(&coargs->list_flags, sizeof (int),
977 (uintptr_t)co->c_list + offsetof(callout_list_t,
978 cl_flags)) == -1) {
979 mdb_warn("failed to read list flags"
980 "from %p", co->c_list);
981 coargs->list_flags = 0;
982 }
983 } else {
984 /* free callouts can't use list pointer. */
985 coargs->exp = 0;
986 coargs->list_flags = 0;
987 }
988 if (coargs->exp != 0) {
989 if ((coargs->flags & COF_TIME) &&
990 (coargs->exp != coargs->time)) {
991 return (WALK_NEXT);
992 }
993 if ((coargs->flags & COF_BEFORE) &&
994 (coargs->exp > coargs->btime)) {
995 return (WALK_NEXT);
996 }
997 if ((coargs->flags & COF_AFTER) &&
998 (coargs->exp < coargs->atime)) {
999 return (WALK_NEXT);
1000 }
1001 }
1002 /* tricky part, since both HIRES and ABS can be set */
1003 list_flags = coargs->list_flags;
1004 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
1005 /* both flags are set, only skip "regular" ones */
1006 if (! (list_flags & COF_LIST_FLAGS)) {
1007 return (WALK_NEXT);
1008 }
1009 } else {
1010 /* individual flags, or no flags */
1011 if ((coargs->flags & COF_HIRES) &&
1012 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
1013 return (WALK_NEXT);
1014 }
1015 if ((coargs->flags & COF_ABS) &&
1016 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
1017 return (WALK_NEXT);
1018 }
1019 }
1020 /*
1021 * We do the checks for COF_HEAP and COF_QUEUE here only if we
1022 * are traversing BYIDH. If the traversal is by callout list,
1023 * we do this check in callout_list_cb() to be more
1024 * efficient.
1025 */
1026 if ((coargs->flags & COF_HEAP) &&
1027 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
1028 return (WALK_NEXT);
1029 }
1030
1031 if ((coargs->flags & COF_QUEUE) &&
1032 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
1033 return (WALK_NEXT);
1034 }
1035 }
1036
1037 #define callout_table_mask ((1 << coargs->ctbits) - 1)
1038 tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
1039 #undef callout_table_mask
1040 coid = CO_PLAIN_ID(co->c_xid);
1041
1042 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
1043 /*
1044 * We need to print the headers. If walking by id, then
1045 * the list header isn't printed, so we must include
1046 * that info here.
1047 */
1048 if (!(coargs->flags & COF_VERBOSE)) {
1049 mdb_printf("%<u>%3s %-1s %-14s %</u>",
1050 "SEQ", "T", "EXP");
1051 } else if (coargs->flags & COF_BYIDH) {
1052 mdb_printf("%<u>%-14s %</u>", "EXP");
1053 }
1054 mdb_printf("%<u>%-4s %-?s %-20s%</u>",
1055 "XHAL", "XID", "FUNC(ARG)");
1056 if (coargs->flags & COF_LONGLIST) {
1057 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
1058 "PREVID", "NEXTID", "PREVL", "NEXTL");
1059 mdb_printf("%<u> %-?s %-4s %-?s%</u>",
1060 "DONE", "UTOS", "THREAD");
1061 }
1062 mdb_printf("\n");
1063 coargs->flags &= ~COF_CHDR;
1064 coargs->flags |= (COF_THDR | COF_LHDR);
1065 }
1066
1067 if (!(coargs->flags & COF_ADDR)) {
1068 if (!(coargs->flags & COF_VERBOSE)) {
1069 mdb_printf("%-3d %1s %-14llx ",
1070 TABLE_TO_SEQID(tableid),
1071 co_typenames[tableid & CALLOUT_TYPE_MASK],
1072 (coargs->flags & COF_EXPREL) ?
1073 coargs->exp - coargs->now : coargs->exp);
1074 } else if (coargs->flags & COF_BYIDH) {
1075 mdb_printf("%-14x ",
1076 (coargs->flags & COF_EXPREL) ?
1077 coargs->exp - coargs->now : coargs->exp);
1078 }
1079 list_flags = coargs->list_flags;
1080 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
1081 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
1082 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
1083 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
1084 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
1085 (long long)coid, co->c_func, co->c_arg);
1086 if (coargs->flags & COF_LONGLIST) {
1087 mdb_printf(" %-?p %-?p %-?p %-?p",
1088 co->c_idprev, co->c_idnext, co->c_clprev,
1089 co->c_clnext);
1090 mdb_printf(" %-?p %-4d %-0?p",
1091 co->c_done, co->c_waiting, co->c_executor);
1092 }
1093 } else {
1094 /* address only */
1095 mdb_printf("%-0p", addr);
1096 }
1097 mdb_printf("\n");
1098 return (WALK_NEXT);
1099 }
1100
1101 /* this callback is for callout list handling. idhash is done by callout_t_cb */
1102 /*ARGSUSED*/
1103 static int
callout_list_cb(uintptr_t addr,const void * data,void * priv)1104 callout_list_cb(uintptr_t addr, const void *data, void *priv)
1105 {
1106 callout_data_t *coargs = (callout_data_t *)priv;
1107 callout_list_t *cl = (callout_list_t *)data;
1108 callout_t *coptr;
1109 int list_flags;
1110
1111 if ((coargs == NULL) || (cl == NULL)) {
1112 return (WALK_ERR);
1113 }
1114
1115 coargs->exp = cl->cl_expiration;
1116 coargs->list_flags = cl->cl_flags;
1117 if ((coargs->flags & COF_FREE) &&
1118 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1119 /*
1120 * The callout list must have been reallocated. No point in
1121 * walking any more.
1122 */
1123 return (WALK_DONE);
1124 }
1125 if (!(coargs->flags & COF_FREE) &&
1126 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1127 /*
1128 * The callout list must have been freed. No point in
1129 * walking any more.
1130 */
1131 return (WALK_DONE);
1132 }
1133 if ((coargs->flags & COF_TIME) &&
1134 (cl->cl_expiration != coargs->time)) {
1135 return (WALK_NEXT);
1136 }
1137 if ((coargs->flags & COF_BEFORE) &&
1138 (cl->cl_expiration > coargs->btime)) {
1139 return (WALK_NEXT);
1140 }
1141 if ((coargs->flags & COF_AFTER) &&
1142 (cl->cl_expiration < coargs->atime)) {
1143 return (WALK_NEXT);
1144 }
1145 if (!(coargs->flags & COF_EMPTY) &&
1146 (cl->cl_callouts.ch_head == NULL)) {
1147 return (WALK_NEXT);
1148 }
1149 /* FOUR cases, each different, !A!B, !AB, A!B, AB */
1150 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
1151 /* both flags are set, only skip "regular" ones */
1152 if (! (cl->cl_flags & COF_LIST_FLAGS)) {
1153 return (WALK_NEXT);
1154 }
1155 } else {
1156 if ((coargs->flags & COF_HIRES) &&
1157 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
1158 return (WALK_NEXT);
1159 }
1160 if ((coargs->flags & COF_ABS) &&
1161 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
1162 return (WALK_NEXT);
1163 }
1164 }
1165
1166 if ((coargs->flags & COF_HEAP) &&
1167 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
1168 return (WALK_NEXT);
1169 }
1170
1171 if ((coargs->flags & COF_QUEUE) &&
1172 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
1173 return (WALK_NEXT);
1174 }
1175
1176 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
1177 (coargs->flags & (COF_LIST | COF_VERBOSE))) {
1178 if (!(coargs->flags & COF_VERBOSE)) {
1179 /* don't be redundant again */
1180 mdb_printf("%<u>SEQ T %</u>");
1181 }
1182 mdb_printf("%<u>EXP HA BUCKET "
1183 "CALLOUTS %</u>");
1184
1185 if (coargs->flags & COF_LONGLIST) {
1186 mdb_printf("%<u> %-?s %-?s%</u>",
1187 "PREV", "NEXT");
1188 }
1189 mdb_printf("\n");
1190 coargs->flags &= ~COF_LHDR;
1191 coargs->flags |= (COF_THDR | COF_CHDR);
1192 }
1193 if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
1194 if (!(coargs->flags & COF_ADDR)) {
1195 if (!(coargs->flags & COF_VERBOSE)) {
1196 mdb_printf("%3d %1s ",
1197 TABLE_TO_SEQID(coargs->ndx),
1198 co_typenames[coargs->ndx &
1199 CALLOUT_TYPE_MASK]);
1200 }
1201
1202 list_flags = coargs->list_flags;
1203 mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
1204 (coargs->flags & COF_EXPREL) ?
1205 coargs->exp - coargs->now : coargs->exp,
1206 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
1207 "H" : " ",
1208 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
1209 "A" : " ",
1210 coargs->bucket, cl->cl_callouts.ch_head);
1211
1212 if (coargs->flags & COF_LONGLIST) {
1213 mdb_printf(" %-?p %-?p",
1214 cl->cl_prev, cl->cl_next);
1215 }
1216 } else {
1217 /* address only */
1218 mdb_printf("%-0p", addr);
1219 }
1220 mdb_printf("\n");
1221 if (coargs->flags & COF_LIST) {
1222 return (WALK_NEXT);
1223 }
1224 }
1225 /* yet another layer as we walk the actual callouts via list. */
1226 if (cl->cl_callouts.ch_head == NULL) {
1227 return (WALK_NEXT);
1228 }
1229 /* free list structures do not have valid callouts off of them. */
1230 if (coargs->flags & COF_FREE) {
1231 return (WALK_NEXT);
1232 }
1233 coptr = (callout_t *)cl->cl_callouts.ch_head;
1234
1235 if (coargs->flags & COF_VERBOSE) {
1236 mdb_inc_indent(4);
1237 }
1238 /*
1239 * walk callouts using yet another callback routine.
1240 * we use callouts_bytime because id hash is handled via
1241 * the callout_t_cb callback.
1242 */
1243 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1244 (uintptr_t)coptr) == -1) {
1245 mdb_warn("cannot walk callouts at %p", coptr);
1246 return (WALK_ERR);
1247 }
1248 if (coargs->flags & COF_VERBOSE) {
1249 mdb_dec_indent(4);
1250 }
1251
1252 return (WALK_NEXT);
1253 }
1254
1255 /* this callback handles the details of callout table walking. */
1256 static int
callout_t_cb(uintptr_t addr,const void * data,void * priv)1257 callout_t_cb(uintptr_t addr, const void *data, void *priv)
1258 {
1259 callout_data_t *coargs = (callout_data_t *)priv;
1260 cot_data_t *cotwd = (cot_data_t *)data;
1261 callout_table_t *ct = &(cotwd->ct);
1262 int index, seqid, cotype;
1263 int i;
1264 callout_list_t *clptr;
1265 callout_t *coptr;
1266
1267 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1268 return (WALK_ERR);
1269 }
1270
1271 index = ((char *)addr - (char *)coargs->co_table) /
1272 sizeof (callout_table_t);
1273 cotype = index & CALLOUT_TYPE_MASK;
1274 seqid = TABLE_TO_SEQID(index);
1275
1276 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1277 return (WALK_NEXT);
1278 }
1279
1280 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1281 return (WALK_NEXT);
1282 }
1283
1284 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1285 return (WALK_NEXT);
1286 }
1287
1288 if (!(coargs->flags & COF_EMPTY) && (
1289 (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) {
1290 return (WALK_NEXT);
1291 }
1292
1293 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1294 (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1295 /* print table hdr */
1296 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1297 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1298 coargs->flags &= ~COF_THDR;
1299 coargs->flags |= (COF_LHDR | COF_CHDR);
1300 if (coargs->flags & COF_LONGLIST) {
1301 /* more info! */
1302 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s"
1303 " %-?s %-?s %-?s%</u>",
1304 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE",
1305 "PEND", "FREE", "LOCK");
1306 }
1307 mdb_printf("\n");
1308 }
1309 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1310 if (!(coargs->flags & COF_ADDR)) {
1311 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1312 seqid, co_typenames[cotype],
1313 ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1314 ct->ct_heap);
1315 if (coargs->flags & COF_LONGLIST) {
1316 /* more info! */
1317 mdb_printf(" %-7d %-7d %-?p %-?p %-?p"
1318 " %-?lld %-?lld %-?p",
1319 ct->ct_heap_num, ct->ct_heap_max,
1320 ct->ct_taskq, ct->ct_expired.ch_head,
1321 ct->ct_queue.ch_head,
1322 cotwd->ct_timeouts_pending,
1323 cotwd->ct_allocations -
1324 cotwd->ct_timeouts_pending,
1325 ct->ct_mutex);
1326 }
1327 } else {
1328 /* address only */
1329 mdb_printf("%-0?p", addr);
1330 }
1331 mdb_printf("\n");
1332 if (coargs->flags & COF_TABLE) {
1333 return (WALK_NEXT);
1334 }
1335 }
1336
1337 coargs->ndx = index;
1338 if (coargs->flags & COF_VERBOSE) {
1339 mdb_inc_indent(4);
1340 }
1341 /* keep digging. */
1342 if (!(coargs->flags & COF_BYIDH)) {
1343 /* walk the list hash table */
1344 if (coargs->flags & COF_FREE) {
1345 clptr = ct->ct_lfree;
1346 coargs->bucket = 0;
1347 if (clptr == NULL) {
1348 return (WALK_NEXT);
1349 }
1350 if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1351 (uintptr_t)clptr) == -1) {
1352 mdb_warn("cannot walk callout free list at %p",
1353 clptr);
1354 return (WALK_ERR);
1355 }
1356 } else {
1357 /* first print the expired list. */
1358 clptr = (callout_list_t *)ct->ct_expired.ch_head;
1359 if (clptr != NULL) {
1360 coargs->bucket = -1;
1361 if (mdb_pwalk("callout_list", callout_list_cb,
1362 coargs, (uintptr_t)clptr) == -1) {
1363 mdb_warn("cannot walk callout_list"
1364 " at %p", clptr);
1365 return (WALK_ERR);
1366 }
1367 }
1368 /* then, print the callout queue */
1369 clptr = (callout_list_t *)ct->ct_queue.ch_head;
1370 if (clptr != NULL) {
1371 coargs->bucket = -1;
1372 if (mdb_pwalk("callout_list", callout_list_cb,
1373 coargs, (uintptr_t)clptr) == -1) {
1374 mdb_warn("cannot walk callout_list"
1375 " at %p", clptr);
1376 return (WALK_ERR);
1377 }
1378 }
1379 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1380 if (ct->ct_clhash == NULL) {
1381 /* nothing to do */
1382 break;
1383 }
1384 if (cotwd->cot_clhash[i].ch_head == NULL) {
1385 continue;
1386 }
1387 clptr = (callout_list_t *)
1388 cotwd->cot_clhash[i].ch_head;
1389 coargs->bucket = i;
1390 /* walk list with callback routine. */
1391 if (mdb_pwalk("callout_list", callout_list_cb,
1392 coargs, (uintptr_t)clptr) == -1) {
1393 mdb_warn("cannot walk callout_list"
1394 " at %p", clptr);
1395 return (WALK_ERR);
1396 }
1397 }
1398 }
1399 } else {
1400 /* walk the id hash table. */
1401 if (coargs->flags & COF_FREE) {
1402 coptr = ct->ct_free;
1403 coargs->bucket = 0;
1404 if (coptr == NULL) {
1405 return (WALK_NEXT);
1406 }
1407 if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1408 (uintptr_t)coptr) == -1) {
1409 mdb_warn("cannot walk callout id free list"
1410 " at %p", coptr);
1411 return (WALK_ERR);
1412 }
1413 } else {
1414 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1415 if (ct->ct_idhash == NULL) {
1416 break;
1417 }
1418 coptr = (callout_t *)
1419 cotwd->cot_idhash[i].ch_head;
1420 if (coptr == NULL) {
1421 continue;
1422 }
1423 coargs->bucket = i;
1424
1425 /*
1426 * walk callouts directly by id. For id
1427 * chain, the callout list is just a header,
1428 * so there's no need to walk it.
1429 */
1430 if (mdb_pwalk("callouts_byid", callouts_cb,
1431 coargs, (uintptr_t)coptr) == -1) {
1432 mdb_warn("cannot walk callouts at %p",
1433 coptr);
1434 return (WALK_ERR);
1435 }
1436 }
1437 }
1438 }
1439 if (coargs->flags & COF_VERBOSE) {
1440 mdb_dec_indent(4);
1441 }
1442 return (WALK_NEXT);
1443 }
1444
1445 /*
1446 * initialize some common info for both callout dcmds.
1447 */
1448 int
callout_common_init(callout_data_t * coargs)1449 callout_common_init(callout_data_t *coargs)
1450 {
1451 /* we need a couple of things */
1452 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1453 mdb_warn("failed to read 'callout_table'");
1454 return (DCMD_ERR);
1455 }
1456 /* need to get now in nsecs. Approximate with hrtime vars */
1457 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1458 sizeof (hrtime_t)) {
1459 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1460 "hrtime_base") != sizeof (hrtime_t)) {
1461 mdb_warn("Could not determine current system time");
1462 return (DCMD_ERR);
1463 }
1464 }
1465
1466 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1467 mdb_warn("failed to read 'callout_table_bits'");
1468 return (DCMD_ERR);
1469 }
1470 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1471 mdb_warn("failed to read 'nsec_per_tick'");
1472 return (DCMD_ERR);
1473 }
1474 return (DCMD_OK);
1475 }
1476
1477 /*
1478 * dcmd to print callouts. Optional addr limits to specific table.
1479 * Parses lots of options that get passed to callbacks for walkers.
1480 * Has it's own help function.
1481 */
1482 /*ARGSUSED*/
1483 int
callout(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1484 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1485 {
1486 callout_data_t coargs;
1487 /* getopts doesn't help much with stuff like this */
1488 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1489 char *funcname = NULL;
1490 char *paramstr = NULL;
1491 uintptr_t Stmp, Ctmp; /* for getopt. */
1492 int retval;
1493
1494 coargs.flags = COF_DEFAULT;
1495 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1496 coargs.seqid = -1;
1497
1498 if (mdb_getopts(argc, argv,
1499 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1500 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1501 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1502 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1503 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1504 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1505 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1506 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1507 'd', MDB_OPT_SETBITS, 1, &dflag,
1508 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1509 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1510 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1511 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1512 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1513 'k', MDB_OPT_SETBITS, 1, &kflag,
1514 'f', MDB_OPT_STR, &funcname,
1515 'p', MDB_OPT_STR, ¶mstr,
1516 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1517 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1518 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1519 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1520 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1521 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1522 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1523 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags,
1524 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags,
1525 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1526 NULL) != argc) {
1527 return (DCMD_USAGE);
1528 }
1529
1530 /* initialize from kernel variables */
1531 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1532 return (retval);
1533 }
1534
1535 /* do some option post-processing */
1536 if (kflag) {
1537 coargs.time *= coargs.nsec_per_tick;
1538 coargs.atime *= coargs.nsec_per_tick;
1539 coargs.btime *= coargs.nsec_per_tick;
1540 }
1541
1542 if (dflag) {
1543 coargs.time += coargs.now;
1544 coargs.atime += coargs.now;
1545 coargs.btime += coargs.now;
1546 }
1547 if (Sflag) {
1548 if (flags & DCMD_ADDRSPEC) {
1549 mdb_printf("-S option conflicts with explicit"
1550 " address\n");
1551 return (DCMD_USAGE);
1552 }
1553 coargs.flags |= COF_SEQID;
1554 coargs.seqid = (int)Stmp;
1555 }
1556 if (Cflag) {
1557 if (flags & DCMD_ADDRSPEC) {
1558 mdb_printf("-C option conflicts with explicit"
1559 " address\n");
1560 return (DCMD_USAGE);
1561 }
1562 if (coargs.flags & COF_SEQID) {
1563 mdb_printf("-C and -S are mutually exclusive\n");
1564 return (DCMD_USAGE);
1565 }
1566 coargs.cpu = (cpu_t *)Ctmp;
1567 if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1568 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1569 mdb_warn("failed to read cpu_t at %p", Ctmp);
1570 return (DCMD_ERR);
1571 }
1572 coargs.flags |= COF_SEQID;
1573 }
1574 /* avoid null outputs. */
1575 if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1576 coargs.flags |= COF_REAL | COF_NORM;
1577 }
1578 if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1579 coargs.flags |= COF_LONG | COF_SHORT;
1580 }
1581 if (tflag) {
1582 if (aflag || bflag) {
1583 mdb_printf("-t and -a|b are mutually exclusive\n");
1584 return (DCMD_USAGE);
1585 }
1586 coargs.flags |= COF_TIME;
1587 }
1588 if (aflag) {
1589 coargs.flags |= COF_AFTER;
1590 }
1591 if (bflag) {
1592 coargs.flags |= COF_BEFORE;
1593 }
1594 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1595 mdb_printf("value for -a must be earlier than the value"
1596 " for -b.\n");
1597 return (DCMD_USAGE);
1598 }
1599
1600 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) {
1601 mdb_printf("-H and -Q are mutually exclusive\n");
1602 return (DCMD_USAGE);
1603 }
1604
1605 if (funcname != NULL) {
1606 GElf_Sym sym;
1607
1608 if (mdb_lookup_by_name(funcname, &sym) != 0) {
1609 coargs.funcaddr = mdb_strtoull(funcname);
1610 } else {
1611 coargs.funcaddr = sym.st_value;
1612 }
1613 coargs.flags |= COF_FUNC;
1614 }
1615
1616 if (paramstr != NULL) {
1617 GElf_Sym sym;
1618
1619 if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1620 coargs.param = mdb_strtoull(paramstr);
1621 } else {
1622 coargs.param = sym.st_value;
1623 }
1624 coargs.flags |= COF_PARAM;
1625 }
1626
1627 if (!(flags & DCMD_ADDRSPEC)) {
1628 /* don't pass "dot" if no addr. */
1629 addr = 0;
1630 }
1631 if (addr != 0) {
1632 /*
1633 * a callout table was specified. Ignore -r|n option
1634 * to avoid null output.
1635 */
1636 coargs.flags |= (COF_REAL | COF_NORM);
1637 }
1638
1639 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1640 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1641 }
1642 if (coargs.flags & COF_FREE) {
1643 coargs.flags |= COF_EMPTY;
1644 /* -F = free callouts, -FL = free lists */
1645 if (!(coargs.flags & COF_LIST)) {
1646 coargs.flags |= COF_BYIDH;
1647 }
1648 }
1649
1650 /* walk table, using specialized callback routine. */
1651 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1652 mdb_warn("cannot walk callout_table");
1653 return (DCMD_ERR);
1654 }
1655 return (DCMD_OK);
1656 }
1657
1658
1659 /*
1660 * Given an extended callout id, dump its information.
1661 */
1662 /*ARGSUSED*/
1663 int
calloutid(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1664 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1665 {
1666 callout_data_t coargs;
1667 callout_table_t *ctptr;
1668 callout_table_t ct;
1669 callout_id_t coid;
1670 callout_t *coptr;
1671 int tableid;
1672 callout_id_t xid;
1673 ulong_t idhash;
1674 int i, retval;
1675 const mdb_arg_t *arg;
1676 size_t size;
1677 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1678
1679 coargs.flags = COF_DEFAULT | COF_BYIDH;
1680 i = mdb_getopts(argc, argv,
1681 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1682 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1683 NULL);
1684 argc -= i;
1685 argv += i;
1686
1687 if (argc != 1) {
1688 return (DCMD_USAGE);
1689 }
1690 arg = &argv[0];
1691
1692 if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1693 xid = arg->a_un.a_val;
1694 } else {
1695 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1696 }
1697
1698 if (DCMD_HDRSPEC(flags)) {
1699 coargs.flags |= COF_CHDR;
1700 }
1701
1702
1703 /* initialize from kernel variables */
1704 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1705 return (retval);
1706 }
1707
1708 /* we must massage the environment so that the macros will play nice */
1709 #define callout_table_mask ((1 << coargs.ctbits) - 1)
1710 #define callout_table_bits coargs.ctbits
1711 #define nsec_per_tick coargs.nsec_per_tick
1712 tableid = CALLOUT_ID_TO_TABLE(xid);
1713 idhash = CALLOUT_IDHASH(xid);
1714 #undef callouts_table_bits
1715 #undef callout_table_mask
1716 #undef nsec_per_tick
1717 coid = CO_PLAIN_ID(xid);
1718
1719 if (flags & DCMD_ADDRSPEC) {
1720 mdb_printf("calloutid does not accept explicit address.\n");
1721 return (DCMD_USAGE);
1722 }
1723
1724 if (coargs.flags & COF_DECODE) {
1725 if (DCMD_HDRSPEC(flags)) {
1726 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1727 "SEQ", "T", "XL", "XID", "IDHASH");
1728 }
1729 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1730 TABLE_TO_SEQID(tableid),
1731 co_typenames[tableid & CALLOUT_TYPE_MASK],
1732 (xid & CALLOUT_EXECUTING) ? "X" : " ",
1733 (xid & CALLOUT_LONGTERM) ? "L" : " ",
1734 (long long)coid, idhash);
1735 return (DCMD_OK);
1736 }
1737
1738 /* get our table. Note this relies on the types being correct */
1739 ctptr = coargs.co_table + tableid;
1740 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1741 mdb_warn("failed to read callout_table at %p", ctptr);
1742 return (DCMD_ERR);
1743 }
1744 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1745 if (ct.ct_idhash != NULL) {
1746 if (mdb_vread(&(cot_idhash), size,
1747 (uintptr_t)ct.ct_idhash) == -1) {
1748 mdb_warn("failed to read id_hash at %p",
1749 ct.ct_idhash);
1750 return (WALK_ERR);
1751 }
1752 }
1753
1754 /* callout at beginning of hash chain */
1755 if (ct.ct_idhash == NULL) {
1756 mdb_printf("id hash chain for this xid is empty\n");
1757 return (DCMD_ERR);
1758 }
1759 coptr = (callout_t *)cot_idhash[idhash].ch_head;
1760 if (coptr == NULL) {
1761 mdb_printf("id hash chain for this xid is empty\n");
1762 return (DCMD_ERR);
1763 }
1764
1765 coargs.ndx = tableid;
1766 coargs.bucket = idhash;
1767
1768 /* use the walker, luke */
1769 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1770 (uintptr_t)coptr) == -1) {
1771 mdb_warn("cannot walk callouts at %p", coptr);
1772 return (WALK_ERR);
1773 }
1774
1775 return (DCMD_OK);
1776 }
1777
1778 void
callout_help(void)1779 callout_help(void)
1780 {
1781 mdb_printf("callout: display callouts.\n"
1782 "Given a callout table address, display callouts from table.\n"
1783 "Without an address, display callouts from all tables.\n"
1784 "options:\n"
1785 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1786 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1787 " -x : limit display to callouts which are executing\n"
1788 " -h : limit display to callouts based on hrestime\n"
1789 " -B : limit display to callouts based on absolute time\n"
1790 " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1791 " (a)fter time,\n or (b)efore time. Use -a and -b together "
1792 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n"
1793 " -d : interpret time option to -t|a|b as delta from current time\n"
1794 " -k : use ticks instead of nanoseconds as arguments to"
1795 " -t|a|b. Note that\n ticks are less accurate and may not"
1796 " match other tick times (ie: lbolt).\n"
1797 " -D : display exiration time as delta from current time\n"
1798 " -S seqid : limit display to callouts for this cpu sequence id\n"
1799 " -C addr : limit display to callouts for this cpu pointer\n"
1800 " -f name|addr : limit display to callouts with this function\n"
1801 " -p name|addr : limit display to callouts functions with this"
1802 " parameter\n"
1803 " -T : display the callout table itself, instead of callouts\n"
1804 " -L : display callout lists instead of callouts\n"
1805 " -E : with -T or L, display empty data structures.\n"
1806 " -i : traverse callouts by id hash instead of list hash\n"
1807 " -F : walk free callout list (free list with -i) instead\n"
1808 " -v : display more info for each item\n"
1809 " -V : show details of each level of info as it is traversed\n"
1810 " -H : limit display to callouts in the callout heap\n"
1811 " -Q : limit display to callouts in the callout queue\n"
1812 " -A : show only addresses. Useful for pipelines.\n");
1813 }
1814
1815 void
calloutid_help(void)1816 calloutid_help(void)
1817 {
1818 mdb_printf("calloutid: display callout by id.\n"
1819 "Given an extended callout id, display the callout infomation.\n"
1820 "options:\n"
1821 " -d : do not dereference callout, just decode the id.\n"
1822 " -v : verbose display more info about the callout\n");
1823 }
1824
1825 /*ARGSUSED*/
1826 int
class(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1827 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1828 {
1829 long num_classes, i;
1830 sclass_t *class_tbl;
1831 GElf_Sym g_sclass;
1832 char class_name[PC_CLNMSZ];
1833 size_t tbl_size;
1834
1835 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1836 mdb_warn("failed to find symbol sclass\n");
1837 return (DCMD_ERR);
1838 }
1839
1840 tbl_size = (size_t)g_sclass.st_size;
1841 num_classes = tbl_size / (sizeof (sclass_t));
1842 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1843
1844 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1845 mdb_warn("failed to read sclass");
1846 return (DCMD_ERR);
1847 }
1848
1849 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1850 "INIT FCN", "CLASS FCN");
1851
1852 for (i = 0; i < num_classes; i++) {
1853 if (mdb_vread(class_name, sizeof (class_name),
1854 (uintptr_t)class_tbl[i].cl_name) == -1)
1855 (void) strcpy(class_name, "???");
1856
1857 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1858 class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1859 }
1860
1861 return (DCMD_OK);
1862 }
1863
1864 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */
1865
1866 int
vnode2path(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1867 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1868 {
1869 uintptr_t rootdir;
1870 vnode_t vn;
1871 char buf[MAXPATHLEN];
1872
1873 uint_t opt_F = FALSE;
1874
1875 if (mdb_getopts(argc, argv,
1876 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1877 return (DCMD_USAGE);
1878
1879 if (!(flags & DCMD_ADDRSPEC)) {
1880 mdb_warn("expected explicit vnode_t address before ::\n");
1881 return (DCMD_USAGE);
1882 }
1883
1884 if (mdb_readvar(&rootdir, "rootdir") == -1) {
1885 mdb_warn("failed to read rootdir");
1886 return (DCMD_ERR);
1887 }
1888
1889 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1890 return (DCMD_ERR);
1891
1892 if (*buf == '\0') {
1893 mdb_printf("??\n");
1894 return (DCMD_OK);
1895 }
1896
1897 mdb_printf("%s", buf);
1898 if (opt_F && buf[strlen(buf)-1] != '/' &&
1899 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1900 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1901 mdb_printf("\n");
1902
1903 return (DCMD_OK);
1904 }
1905
1906 int
ld_walk_init(mdb_walk_state_t * wsp)1907 ld_walk_init(mdb_walk_state_t *wsp)
1908 {
1909 wsp->walk_data = (void *)wsp->walk_addr;
1910 return (WALK_NEXT);
1911 }
1912
1913 int
ld_walk_step(mdb_walk_state_t * wsp)1914 ld_walk_step(mdb_walk_state_t *wsp)
1915 {
1916 int status;
1917 lock_descriptor_t ld;
1918
1919 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1920 mdb_warn("couldn't read lock_descriptor_t at %p\n",
1921 wsp->walk_addr);
1922 return (WALK_ERR);
1923 }
1924
1925 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1926 if (status == WALK_ERR)
1927 return (WALK_ERR);
1928
1929 wsp->walk_addr = (uintptr_t)ld.l_next;
1930 if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1931 return (WALK_DONE);
1932
1933 return (status);
1934 }
1935
1936 int
lg_walk_init(mdb_walk_state_t * wsp)1937 lg_walk_init(mdb_walk_state_t *wsp)
1938 {
1939 GElf_Sym sym;
1940
1941 if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1942 mdb_warn("failed to find symbol 'lock_graph'\n");
1943 return (WALK_ERR);
1944 }
1945
1946 wsp->walk_addr = (uintptr_t)sym.st_value;
1947 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1948
1949 return (WALK_NEXT);
1950 }
1951
1952 typedef struct lg_walk_data {
1953 uintptr_t startaddr;
1954 mdb_walk_cb_t callback;
1955 void *data;
1956 } lg_walk_data_t;
1957
1958 /*
1959 * We can't use ::walk lock_descriptor directly, because the head of each graph
1960 * is really a dummy lock. Rather than trying to dynamically determine if this
1961 * is a dummy node or not, we just filter out the initial element of the
1962 * list.
1963 */
1964 static int
lg_walk_cb(uintptr_t addr,const void * data,void * priv)1965 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1966 {
1967 lg_walk_data_t *lw = priv;
1968
1969 if (addr != lw->startaddr)
1970 return (lw->callback(addr, data, lw->data));
1971
1972 return (WALK_NEXT);
1973 }
1974
1975 int
lg_walk_step(mdb_walk_state_t * wsp)1976 lg_walk_step(mdb_walk_state_t *wsp)
1977 {
1978 graph_t *graph;
1979 lg_walk_data_t lw;
1980
1981 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1982 return (WALK_DONE);
1983
1984 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1985 mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1986 return (WALK_ERR);
1987 }
1988
1989 wsp->walk_addr += sizeof (graph);
1990
1991 if (graph == NULL)
1992 return (WALK_NEXT);
1993
1994 lw.callback = wsp->walk_callback;
1995 lw.data = wsp->walk_cbdata;
1996
1997 lw.startaddr = (uintptr_t)&(graph->active_locks);
1998 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1999 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
2000 return (WALK_ERR);
2001 }
2002
2003 lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
2004 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
2005 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
2006 return (WALK_ERR);
2007 }
2008
2009 return (WALK_NEXT);
2010 }
2011
2012 /*
2013 * The space available for the path corresponding to the locked vnode depends
2014 * on whether we are printing 32- or 64-bit addresses.
2015 */
2016 #ifdef _LP64
2017 #define LM_VNPATHLEN 20
2018 #else
2019 #define LM_VNPATHLEN 30
2020 #endif
2021
2022 typedef struct mdb_lminfo_proc {
2023 struct {
2024 char u_comm[MAXCOMLEN + 1];
2025 } p_user;
2026 } mdb_lminfo_proc_t;
2027
2028 /*ARGSUSED*/
2029 static int
lminfo_cb(uintptr_t addr,const void * data,void * priv)2030 lminfo_cb(uintptr_t addr, const void *data, void *priv)
2031 {
2032 const lock_descriptor_t *ld = data;
2033 char buf[LM_VNPATHLEN];
2034 mdb_lminfo_proc_t p;
2035 uintptr_t paddr = 0;
2036
2037 if (ld->l_flock.l_pid != 0)
2038 paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL);
2039
2040 if (paddr != 0)
2041 mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0);
2042
2043 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
2044 addr, ld->l_type == F_RDLCK ? "RD" :
2045 ld->l_type == F_WRLCK ? "WR" : "??",
2046 ld->l_state, ld->l_flock.l_pid,
2047 ld->l_flock.l_pid == 0 ? "<kernel>" :
2048 paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode);
2049
2050 mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
2051 sizeof (buf));
2052 mdb_printf("%s\n", buf);
2053
2054 return (WALK_NEXT);
2055 }
2056
2057 /*ARGSUSED*/
2058 int
lminfo(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2059 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2060 {
2061 if (DCMD_HDRSPEC(flags))
2062 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
2063 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
2064
2065 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0));
2066 }
2067
2068 typedef struct mdb_whereopen {
2069 uint_t mwo_flags;
2070 uintptr_t mwo_target;
2071 boolean_t mwo_found;
2072 } mdb_whereopen_t;
2073
2074 /*ARGSUSED*/
2075 int
whereopen_fwalk(uintptr_t addr,const void * farg,void * arg)2076 whereopen_fwalk(uintptr_t addr, const void *farg, void *arg)
2077 {
2078 const struct file *f = farg;
2079 mdb_whereopen_t *mwo = arg;
2080
2081 if ((uintptr_t)f->f_vnode == mwo->mwo_target) {
2082 if ((mwo->mwo_flags & DCMD_PIPE_OUT) == 0 &&
2083 !mwo->mwo_found) {
2084 mdb_printf("file %p\n", addr);
2085 }
2086 mwo->mwo_found = B_TRUE;
2087 }
2088
2089 return (WALK_NEXT);
2090 }
2091
2092 /*ARGSUSED*/
2093 int
whereopen_pwalk(uintptr_t addr,const void * ignored,void * arg)2094 whereopen_pwalk(uintptr_t addr, const void *ignored, void *arg)
2095 {
2096 mdb_whereopen_t *mwo = arg;
2097
2098 mwo->mwo_found = B_FALSE;
2099 if (mdb_pwalk("file", whereopen_fwalk, mwo, addr) == -1) {
2100 mdb_warn("couldn't file walk proc %p", addr);
2101 return (WALK_ERR);
2102 }
2103
2104 if (mwo->mwo_found) {
2105 mdb_printf("%p\n", addr);
2106 }
2107
2108 return (WALK_NEXT);
2109 }
2110
2111 /*ARGSUSED*/
2112 int
whereopen(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2113 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2114 {
2115 mdb_whereopen_t mwo;
2116
2117 if (!(flags & DCMD_ADDRSPEC) || addr == 0)
2118 return (DCMD_USAGE);
2119
2120 mwo.mwo_flags = flags;
2121 mwo.mwo_target = addr;
2122 mwo.mwo_found = B_FALSE;
2123
2124 if (mdb_walk("proc", whereopen_pwalk, &mwo) == -1) {
2125 mdb_warn("can't proc walk");
2126 return (DCMD_ERR);
2127 }
2128
2129 return (DCMD_OK);
2130 }
2131
2132 typedef struct datafmt {
2133 char *hdr1;
2134 char *hdr2;
2135 char *dashes;
2136 char *fmt;
2137 } datafmt_t;
2138
2139 static datafmt_t kmemfmt[] = {
2140 { "cache ", "name ",
2141 "-------------------------", "%-25s " },
2142 { " buf", " size", "------", "%6u " },
2143 { " buf", "in use", "------", "%6u " },
2144 { " buf", " total", "------", "%6u " },
2145 { " memory", " in use", "----------", "%10lu%c " },
2146 { " alloc", " succeed", "---------", "%9u " },
2147 { "alloc", " fail", "-----", "%5u " },
2148 { NULL, NULL, NULL, NULL }
2149 };
2150
2151 static datafmt_t vmemfmt[] = {
2152 { "vmem ", "name ",
2153 "-------------------------", "%-*s " },
2154 { " memory", " in use", "----------", "%9llu%c " },
2155 { " memory", " total", "-----------", "%10llu%c " },
2156 { " memory", " import", "----------", "%9llu%c " },
2157 { " alloc", " succeed", "---------", "%9llu " },
2158 { "alloc", " fail", "-----", "%5llu " },
2159 { NULL, NULL, NULL, NULL }
2160 };
2161
2162 /*ARGSUSED*/
2163 static int
kmastat_cpu_avail(uintptr_t addr,const kmem_cpu_cache_t * ccp,int * avail)2164 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
2165 {
2166 short rounds, prounds;
2167
2168 if (KMEM_DUMPCC(ccp)) {
2169 rounds = ccp->cc_dump_rounds;
2170 prounds = ccp->cc_dump_prounds;
2171 } else {
2172 rounds = ccp->cc_rounds;
2173 prounds = ccp->cc_prounds;
2174 }
2175 if (rounds > 0)
2176 *avail += rounds;
2177 if (prounds > 0)
2178 *avail += prounds;
2179
2180 return (WALK_NEXT);
2181 }
2182
2183 /*ARGSUSED*/
2184 static int
kmastat_cpu_alloc(uintptr_t addr,const kmem_cpu_cache_t * ccp,int * alloc)2185 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
2186 {
2187 *alloc += ccp->cc_alloc;
2188
2189 return (WALK_NEXT);
2190 }
2191
2192 /*ARGSUSED*/
2193 static int
kmastat_slab_avail(uintptr_t addr,const kmem_slab_t * sp,int * avail)2194 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
2195 {
2196 *avail += sp->slab_chunks - sp->slab_refcnt;
2197
2198 return (WALK_NEXT);
2199 }
2200
2201 typedef struct kmastat_vmem {
2202 uintptr_t kv_addr;
2203 struct kmastat_vmem *kv_next;
2204 size_t kv_meminuse;
2205 int kv_alloc;
2206 int kv_fail;
2207 } kmastat_vmem_t;
2208
2209 typedef struct kmastat_args {
2210 kmastat_vmem_t **ka_kvpp;
2211 uint_t ka_shift;
2212 } kmastat_args_t;
2213
2214 static int
kmastat_cache(uintptr_t addr,const kmem_cache_t * cp,kmastat_args_t * kap)2215 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
2216 {
2217 kmastat_vmem_t **kvpp = kap->ka_kvpp;
2218 kmastat_vmem_t *kv;
2219 datafmt_t *dfp = kmemfmt;
2220 int magsize;
2221
2222 int avail, alloc, total;
2223 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
2224 cp->cache_slabsize;
2225
2226 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
2227 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
2228 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
2229
2230 magsize = kmem_get_magsize(cp);
2231
2232 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
2233 avail = cp->cache_full.ml_total * magsize;
2234 total = cp->cache_buftotal;
2235
2236 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
2237 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
2238 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2239
2240 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) {
2241 if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2242 goto out;
2243 }
2244
2245 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2246 kv->kv_next = *kvpp;
2247 kv->kv_addr = (uintptr_t)cp->cache_arena;
2248 *kvpp = kv;
2249 out:
2250 kv->kv_meminuse += meminuse;
2251 kv->kv_alloc += alloc;
2252 kv->kv_fail += cp->cache_alloc_fail;
2253
2254 mdb_printf((dfp++)->fmt, cp->cache_name);
2255 mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2256 mdb_printf((dfp++)->fmt, total - avail);
2257 mdb_printf((dfp++)->fmt, total);
2258 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2259 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2260 kap->ka_shift == KILOS ? 'K' : 'B');
2261 mdb_printf((dfp++)->fmt, alloc);
2262 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2263 mdb_printf("\n");
2264
2265 return (WALK_NEXT);
2266 }
2267
2268 static int
kmastat_vmem_totals(uintptr_t addr,const vmem_t * v,kmastat_args_t * kap)2269 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2270 {
2271 kmastat_vmem_t *kv = *kap->ka_kvpp;
2272 size_t len;
2273
2274 while (kv != NULL && kv->kv_addr != addr)
2275 kv = kv->kv_next;
2276
2277 if (kv == NULL || kv->kv_alloc == 0)
2278 return (WALK_NEXT);
2279
2280 len = MIN(17, strlen(v->vm_name));
2281
2282 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name,
2283 17 - len, "", "", "", "",
2284 kv->kv_meminuse >> kap->ka_shift,
2285 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2286 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2287
2288 return (WALK_NEXT);
2289 }
2290
2291 /*ARGSUSED*/
2292 static int
kmastat_vmem(uintptr_t addr,const vmem_t * v,const uint_t * shiftp)2293 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2294 {
2295 datafmt_t *dfp = vmemfmt;
2296 const vmem_kstat_t *vkp = &v->vm_kstat;
2297 uintptr_t paddr;
2298 vmem_t parent;
2299 int ident = 0;
2300
2301 for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) {
2302 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2303 mdb_warn("couldn't trace %p's ancestry", addr);
2304 ident = 0;
2305 break;
2306 }
2307 paddr = (uintptr_t)parent.vm_source;
2308 }
2309
2310 mdb_printf("%*s", ident, "");
2311 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2312 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2313 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2314 *shiftp == KILOS ? 'K' : 'B');
2315 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2316 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2317 *shiftp == KILOS ? 'K' : 'B');
2318 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2319 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2320 *shiftp == KILOS ? 'K' : 'B');
2321 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2322 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2323
2324 mdb_printf("\n");
2325
2326 return (WALK_NEXT);
2327 }
2328
2329 /*ARGSUSED*/
2330 int
kmastat(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2331 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2332 {
2333 kmastat_vmem_t *kv = NULL;
2334 datafmt_t *dfp;
2335 kmastat_args_t ka;
2336
2337 ka.ka_shift = 0;
2338 if (mdb_getopts(argc, argv,
2339 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2340 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2341 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2342 return (DCMD_USAGE);
2343
2344 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2345 mdb_printf("%s ", dfp->hdr1);
2346 mdb_printf("\n");
2347
2348 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2349 mdb_printf("%s ", dfp->hdr2);
2350 mdb_printf("\n");
2351
2352 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2353 mdb_printf("%s ", dfp->dashes);
2354 mdb_printf("\n");
2355
2356 ka.ka_kvpp = &kv;
2357 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2358 mdb_warn("can't walk 'kmem_cache'");
2359 return (DCMD_ERR);
2360 }
2361
2362 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2363 mdb_printf("%s ", dfp->dashes);
2364 mdb_printf("\n");
2365
2366 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2367 mdb_warn("can't walk 'vmem'");
2368 return (DCMD_ERR);
2369 }
2370
2371 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2372 mdb_printf("%s ", dfp->dashes);
2373 mdb_printf("\n");
2374
2375 mdb_printf("\n");
2376
2377 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2378 mdb_printf("%s ", dfp->hdr1);
2379 mdb_printf("\n");
2380
2381 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2382 mdb_printf("%s ", dfp->hdr2);
2383 mdb_printf("\n");
2384
2385 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2386 mdb_printf("%s ", dfp->dashes);
2387 mdb_printf("\n");
2388
2389 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2390 mdb_warn("can't walk 'vmem'");
2391 return (DCMD_ERR);
2392 }
2393
2394 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2395 mdb_printf("%s ", dfp->dashes);
2396 mdb_printf("\n");
2397 return (DCMD_OK);
2398 }
2399
2400 /*
2401 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made
2402 * up of a set of 'struct seg's. We could just scan each seg en masse, but
2403 * unfortunately, a few of the segs are both large and sparse, so we could
2404 * spend quite a bit of time scanning VAs which have no backing pages.
2405 *
2406 * So for the few very sparse segs, we skip the segment itself, and scan
2407 * the allocated vmem_segs in the vmem arena which manages that part of kas.
2408 * Currently, we do this for:
2409 *
2410 * SEG VMEM ARENA
2411 * kvseg heap_arena
2412 * kvseg32 heap32_arena
2413 * kvseg_core heap_core_arena
2414 *
2415 * In addition, we skip the segkpm segment in its entirety, since it is very
2416 * sparse, and contains no new kernel data.
2417 */
2418 typedef struct kgrep_walk_data {
2419 kgrep_cb_func *kg_cb;
2420 void *kg_cbdata;
2421 uintptr_t kg_kvseg;
2422 uintptr_t kg_kvseg32;
2423 uintptr_t kg_kvseg_core;
2424 uintptr_t kg_segkpm;
2425 uintptr_t kg_heap_lp_base;
2426 uintptr_t kg_heap_lp_end;
2427 } kgrep_walk_data_t;
2428
2429 static int
kgrep_walk_seg(uintptr_t addr,const struct seg * seg,kgrep_walk_data_t * kg)2430 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2431 {
2432 uintptr_t base = (uintptr_t)seg->s_base;
2433
2434 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2435 addr == kg->kg_kvseg_core)
2436 return (WALK_NEXT);
2437
2438 if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2439 return (WALK_NEXT);
2440
2441 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2442 }
2443
2444 /*ARGSUSED*/
2445 static int
kgrep_walk_vseg(uintptr_t addr,const vmem_seg_t * seg,kgrep_walk_data_t * kg)2446 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2447 {
2448 /*
2449 * skip large page heap address range - it is scanned by walking
2450 * allocated vmem_segs in the heap_lp_arena
2451 */
2452 if (seg->vs_start == kg->kg_heap_lp_base &&
2453 seg->vs_end == kg->kg_heap_lp_end)
2454 return (WALK_NEXT);
2455
2456 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2457 }
2458
2459 /*ARGSUSED*/
2460 static int
kgrep_xwalk_vseg(uintptr_t addr,const vmem_seg_t * seg,kgrep_walk_data_t * kg)2461 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2462 {
2463 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2464 }
2465
2466 static int
kgrep_walk_vmem(uintptr_t addr,const vmem_t * vmem,kgrep_walk_data_t * kg)2467 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2468 {
2469 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2470
2471 if (strcmp(vmem->vm_name, "heap") != 0 &&
2472 strcmp(vmem->vm_name, "heap32") != 0 &&
2473 strcmp(vmem->vm_name, "heap_core") != 0 &&
2474 strcmp(vmem->vm_name, "heap_lp") != 0)
2475 return (WALK_NEXT);
2476
2477 if (strcmp(vmem->vm_name, "heap_lp") == 0)
2478 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2479
2480 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2481 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2482 return (WALK_ERR);
2483 }
2484
2485 return (WALK_NEXT);
2486 }
2487
2488 int
kgrep_subr(kgrep_cb_func * cb,void * cbdata)2489 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2490 {
2491 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2492 kgrep_walk_data_t kg;
2493
2494 if (mdb_get_state() == MDB_STATE_RUNNING) {
2495 mdb_warn("kgrep can only be run on a system "
2496 "dump or under kmdb; see dumpadm(8)\n");
2497 return (DCMD_ERR);
2498 }
2499
2500 if (mdb_lookup_by_name("kas", &kas) == -1) {
2501 mdb_warn("failed to locate 'kas' symbol\n");
2502 return (DCMD_ERR);
2503 }
2504
2505 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2506 mdb_warn("failed to locate 'kvseg' symbol\n");
2507 return (DCMD_ERR);
2508 }
2509
2510 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2511 mdb_warn("failed to locate 'kvseg32' symbol\n");
2512 return (DCMD_ERR);
2513 }
2514
2515 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2516 mdb_warn("failed to locate 'kvseg_core' symbol\n");
2517 return (DCMD_ERR);
2518 }
2519
2520 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2521 mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2522 return (DCMD_ERR);
2523 }
2524
2525 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2526 mdb_warn("failed to read 'heap_lp_base'\n");
2527 return (DCMD_ERR);
2528 }
2529
2530 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2531 mdb_warn("failed to read 'heap_lp_end'\n");
2532 return (DCMD_ERR);
2533 }
2534
2535 kg.kg_cb = cb;
2536 kg.kg_cbdata = cbdata;
2537 kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2538 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2539 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2540 kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2541
2542 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2543 &kg, kas.st_value) == -1) {
2544 mdb_warn("failed to walk kas segments");
2545 return (DCMD_ERR);
2546 }
2547
2548 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2549 mdb_warn("failed to walk heap/heap32 vmem arenas");
2550 return (DCMD_ERR);
2551 }
2552
2553 return (DCMD_OK);
2554 }
2555
2556 size_t
kgrep_subr_pagesize(void)2557 kgrep_subr_pagesize(void)
2558 {
2559 return (PAGESIZE);
2560 }
2561
2562 typedef struct file_walk_data {
2563 struct uf_entry *fw_flist;
2564 int fw_flistsz;
2565 int fw_ndx;
2566 int fw_nofiles;
2567 } file_walk_data_t;
2568
2569 typedef struct mdb_file_proc {
2570 struct {
2571 struct {
2572 int fi_nfiles;
2573 uf_entry_t *volatile fi_list;
2574 } u_finfo;
2575 } p_user;
2576 } mdb_file_proc_t;
2577
2578 int
file_walk_init(mdb_walk_state_t * wsp)2579 file_walk_init(mdb_walk_state_t *wsp)
2580 {
2581 file_walk_data_t *fw;
2582 mdb_file_proc_t p;
2583
2584 if (wsp->walk_addr == 0) {
2585 mdb_warn("file walk doesn't support global walks\n");
2586 return (WALK_ERR);
2587 }
2588
2589 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2590
2591 if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t",
2592 wsp->walk_addr, 0) == -1) {
2593 mdb_free(fw, sizeof (file_walk_data_t));
2594 mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2595 return (WALK_ERR);
2596 }
2597
2598 if (p.p_user.u_finfo.fi_nfiles == 0) {
2599 mdb_free(fw, sizeof (file_walk_data_t));
2600 return (WALK_DONE);
2601 }
2602
2603 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2604 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2605 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2606
2607 if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2608 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2609 mdb_warn("failed to read file array at %p",
2610 p.p_user.u_finfo.fi_list);
2611 mdb_free(fw->fw_flist, fw->fw_flistsz);
2612 mdb_free(fw, sizeof (file_walk_data_t));
2613 return (WALK_ERR);
2614 }
2615
2616 fw->fw_ndx = 0;
2617 wsp->walk_data = fw;
2618
2619 return (WALK_NEXT);
2620 }
2621
2622 int
file_walk_step(mdb_walk_state_t * wsp)2623 file_walk_step(mdb_walk_state_t *wsp)
2624 {
2625 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2626 struct file file;
2627 uintptr_t fp;
2628
2629 again:
2630 if (fw->fw_ndx == fw->fw_nofiles)
2631 return (WALK_DONE);
2632
2633 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0)
2634 goto again;
2635
2636 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2637 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2638 }
2639
2640 int
allfile_walk_step(mdb_walk_state_t * wsp)2641 allfile_walk_step(mdb_walk_state_t *wsp)
2642 {
2643 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2644 struct file file;
2645 uintptr_t fp;
2646
2647 if (fw->fw_ndx == fw->fw_nofiles)
2648 return (WALK_DONE);
2649
2650 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0)
2651 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2652 else
2653 bzero(&file, sizeof (file));
2654
2655 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2656 }
2657
2658 void
file_walk_fini(mdb_walk_state_t * wsp)2659 file_walk_fini(mdb_walk_state_t *wsp)
2660 {
2661 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2662
2663 mdb_free(fw->fw_flist, fw->fw_flistsz);
2664 mdb_free(fw, sizeof (file_walk_data_t));
2665 }
2666
2667 int
port_walk_init(mdb_walk_state_t * wsp)2668 port_walk_init(mdb_walk_state_t *wsp)
2669 {
2670 if (wsp->walk_addr == 0) {
2671 mdb_warn("port walk doesn't support global walks\n");
2672 return (WALK_ERR);
2673 }
2674
2675 if (mdb_layered_walk("file", wsp) == -1) {
2676 mdb_warn("couldn't walk 'file'");
2677 return (WALK_ERR);
2678 }
2679 return (WALK_NEXT);
2680 }
2681
2682 int
port_walk_step(mdb_walk_state_t * wsp)2683 port_walk_step(mdb_walk_state_t *wsp)
2684 {
2685 struct vnode vn;
2686 uintptr_t vp;
2687 uintptr_t pp;
2688 struct port port;
2689
2690 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2691 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2692 mdb_warn("failed to read vnode_t at %p", vp);
2693 return (WALK_ERR);
2694 }
2695 if (vn.v_type != VPORT)
2696 return (WALK_NEXT);
2697
2698 pp = (uintptr_t)vn.v_data;
2699 if (mdb_vread(&port, sizeof (port), pp) == -1) {
2700 mdb_warn("failed to read port_t at %p", pp);
2701 return (WALK_ERR);
2702 }
2703 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2704 }
2705
2706 typedef struct portev_walk_data {
2707 list_node_t *pev_node;
2708 list_node_t *pev_last;
2709 size_t pev_offset;
2710 } portev_walk_data_t;
2711
2712 int
portev_walk_init(mdb_walk_state_t * wsp)2713 portev_walk_init(mdb_walk_state_t *wsp)
2714 {
2715 portev_walk_data_t *pevd;
2716 struct port port;
2717 struct vnode vn;
2718 struct list *list;
2719 uintptr_t vp;
2720
2721 if (wsp->walk_addr == 0) {
2722 mdb_warn("portev walk doesn't support global walks\n");
2723 return (WALK_ERR);
2724 }
2725
2726 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2727
2728 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2729 mdb_free(pevd, sizeof (portev_walk_data_t));
2730 mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2731 return (WALK_ERR);
2732 }
2733
2734 vp = (uintptr_t)port.port_vnode;
2735 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2736 mdb_free(pevd, sizeof (portev_walk_data_t));
2737 mdb_warn("failed to read vnode_t at %p", vp);
2738 return (WALK_ERR);
2739 }
2740
2741 if (vn.v_type != VPORT) {
2742 mdb_free(pevd, sizeof (portev_walk_data_t));
2743 mdb_warn("input address (%p) does not point to an event port",
2744 wsp->walk_addr);
2745 return (WALK_ERR);
2746 }
2747
2748 if (port.port_queue.portq_nent == 0) {
2749 mdb_free(pevd, sizeof (portev_walk_data_t));
2750 return (WALK_DONE);
2751 }
2752 list = &port.port_queue.portq_list;
2753 pevd->pev_offset = list->list_offset;
2754 pevd->pev_last = list->list_head.list_prev;
2755 pevd->pev_node = list->list_head.list_next;
2756 wsp->walk_data = pevd;
2757 return (WALK_NEXT);
2758 }
2759
2760 int
portev_walk_step(mdb_walk_state_t * wsp)2761 portev_walk_step(mdb_walk_state_t *wsp)
2762 {
2763 portev_walk_data_t *pevd;
2764 struct port_kevent ev;
2765 uintptr_t evp;
2766
2767 pevd = (portev_walk_data_t *)wsp->walk_data;
2768
2769 if (pevd->pev_last == NULL)
2770 return (WALK_DONE);
2771 if (pevd->pev_node == pevd->pev_last)
2772 pevd->pev_last = NULL; /* last round */
2773
2774 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2775 if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2776 mdb_warn("failed to read port_kevent at %p", evp);
2777 return (WALK_DONE);
2778 }
2779 pevd->pev_node = ev.portkev_node.list_next;
2780 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2781 }
2782
2783 void
portev_walk_fini(mdb_walk_state_t * wsp)2784 portev_walk_fini(mdb_walk_state_t *wsp)
2785 {
2786 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2787
2788 if (pevd != NULL)
2789 mdb_free(pevd, sizeof (portev_walk_data_t));
2790 }
2791
2792 typedef struct proc_walk_data {
2793 uintptr_t *pw_stack;
2794 int pw_depth;
2795 int pw_max;
2796 } proc_walk_data_t;
2797
2798 int
proc_walk_init(mdb_walk_state_t * wsp)2799 proc_walk_init(mdb_walk_state_t *wsp)
2800 {
2801 GElf_Sym sym;
2802 proc_walk_data_t *pw;
2803
2804 if (wsp->walk_addr == 0) {
2805 if (mdb_lookup_by_name("p0", &sym) == -1) {
2806 mdb_warn("failed to read 'practive'");
2807 return (WALK_ERR);
2808 }
2809 wsp->walk_addr = (uintptr_t)sym.st_value;
2810 }
2811
2812 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2813
2814 if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2815 mdb_warn("failed to read 'nproc'");
2816 mdb_free(pw, sizeof (pw));
2817 return (WALK_ERR);
2818 }
2819
2820 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2821 wsp->walk_data = pw;
2822
2823 return (WALK_NEXT);
2824 }
2825
2826 typedef struct mdb_walk_proc {
2827 struct proc *p_child;
2828 struct proc *p_sibling;
2829 } mdb_walk_proc_t;
2830
2831 int
proc_walk_step(mdb_walk_state_t * wsp)2832 proc_walk_step(mdb_walk_state_t *wsp)
2833 {
2834 proc_walk_data_t *pw = wsp->walk_data;
2835 uintptr_t addr = wsp->walk_addr;
2836 uintptr_t cld, sib;
2837 int status;
2838 mdb_walk_proc_t pr;
2839
2840 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2841 addr, 0) == -1) {
2842 mdb_warn("failed to read proc at %p", addr);
2843 return (WALK_DONE);
2844 }
2845
2846 cld = (uintptr_t)pr.p_child;
2847 sib = (uintptr_t)pr.p_sibling;
2848
2849 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2850 pw->pw_depth--;
2851 goto sib;
2852 }
2853
2854 /*
2855 * Always pass NULL as the local copy pointer. Consumers
2856 * should use mdb_ctf_vread() to read their own minimal
2857 * version of proc_t. Thus minimizing the chance of breakage
2858 * with older crash dumps.
2859 */
2860 status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata);
2861
2862 if (status != WALK_NEXT)
2863 return (status);
2864
2865 if ((wsp->walk_addr = cld) != 0) {
2866 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2867 cld, 0) == -1) {
2868 mdb_warn("proc %p has invalid p_child %p; skipping\n",
2869 addr, cld);
2870 goto sib;
2871 }
2872
2873 pw->pw_stack[pw->pw_depth++] = addr;
2874
2875 if (pw->pw_depth == pw->pw_max) {
2876 mdb_warn("depth %d exceeds max depth; try again\n",
2877 pw->pw_depth);
2878 return (WALK_DONE);
2879 }
2880 return (WALK_NEXT);
2881 }
2882
2883 sib:
2884 /*
2885 * We know that p0 has no siblings, and if another starting proc
2886 * was given, we don't want to walk its siblings anyway.
2887 */
2888 if (pw->pw_depth == 0)
2889 return (WALK_DONE);
2890
2891 if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2892 sib, 0) == -1) {
2893 mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2894 addr, sib);
2895 sib = 0;
2896 }
2897
2898 if ((wsp->walk_addr = sib) == 0) {
2899 if (pw->pw_depth > 0) {
2900 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2901 return (WALK_NEXT);
2902 }
2903 return (WALK_DONE);
2904 }
2905
2906 return (WALK_NEXT);
2907 }
2908
2909 void
proc_walk_fini(mdb_walk_state_t * wsp)2910 proc_walk_fini(mdb_walk_state_t *wsp)
2911 {
2912 proc_walk_data_t *pw = wsp->walk_data;
2913
2914 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2915 mdb_free(pw, sizeof (proc_walk_data_t));
2916 }
2917
2918 int
task_walk_init(mdb_walk_state_t * wsp)2919 task_walk_init(mdb_walk_state_t *wsp)
2920 {
2921 task_t task;
2922
2923 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2924 mdb_warn("failed to read task at %p", wsp->walk_addr);
2925 return (WALK_ERR);
2926 }
2927 wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2928 wsp->walk_data = task.tk_memb_list;
2929 return (WALK_NEXT);
2930 }
2931
2932 typedef struct mdb_task_proc {
2933 struct proc *p_tasknext;
2934 } mdb_task_proc_t;
2935
2936 int
task_walk_step(mdb_walk_state_t * wsp)2937 task_walk_step(mdb_walk_state_t *wsp)
2938 {
2939 mdb_task_proc_t proc;
2940 int status;
2941
2942 if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t",
2943 wsp->walk_addr, 0) == -1) {
2944 mdb_warn("failed to read proc at %p", wsp->walk_addr);
2945 return (WALK_DONE);
2946 }
2947
2948 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2949
2950 if (proc.p_tasknext == wsp->walk_data)
2951 return (WALK_DONE);
2952
2953 wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2954 return (status);
2955 }
2956
2957 int
project_walk_init(mdb_walk_state_t * wsp)2958 project_walk_init(mdb_walk_state_t *wsp)
2959 {
2960 if (wsp->walk_addr == 0) {
2961 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2962 mdb_warn("failed to read 'proj0p'");
2963 return (WALK_ERR);
2964 }
2965 }
2966 wsp->walk_data = (void *)wsp->walk_addr;
2967 return (WALK_NEXT);
2968 }
2969
2970 int
project_walk_step(mdb_walk_state_t * wsp)2971 project_walk_step(mdb_walk_state_t *wsp)
2972 {
2973 uintptr_t addr = wsp->walk_addr;
2974 kproject_t pj;
2975 int status;
2976
2977 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2978 mdb_warn("failed to read project at %p", addr);
2979 return (WALK_DONE);
2980 }
2981 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2982 if (status != WALK_NEXT)
2983 return (status);
2984 wsp->walk_addr = (uintptr_t)pj.kpj_next;
2985 if ((void *)wsp->walk_addr == wsp->walk_data)
2986 return (WALK_DONE);
2987 return (WALK_NEXT);
2988 }
2989
2990 static int
generic_walk_step(mdb_walk_state_t * wsp)2991 generic_walk_step(mdb_walk_state_t *wsp)
2992 {
2993 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2994 wsp->walk_cbdata));
2995 }
2996
2997 static int
cpu_walk_cmp(const void * l,const void * r)2998 cpu_walk_cmp(const void *l, const void *r)
2999 {
3000 uintptr_t lhs = *((uintptr_t *)l);
3001 uintptr_t rhs = *((uintptr_t *)r);
3002 cpu_t lcpu, rcpu;
3003
3004 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
3005 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
3006
3007 if (lcpu.cpu_id < rcpu.cpu_id)
3008 return (-1);
3009
3010 if (lcpu.cpu_id > rcpu.cpu_id)
3011 return (1);
3012
3013 return (0);
3014 }
3015
3016 typedef struct cpu_walk {
3017 uintptr_t *cw_array;
3018 int cw_ndx;
3019 } cpu_walk_t;
3020
3021 int
cpu_walk_init(mdb_walk_state_t * wsp)3022 cpu_walk_init(mdb_walk_state_t *wsp)
3023 {
3024 cpu_walk_t *cw;
3025 int max_ncpus, i = 0;
3026 uintptr_t current, first;
3027 cpu_t cpu, panic_cpu;
3028 uintptr_t panicstr, addr = 0;
3029 GElf_Sym sym;
3030
3031 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
3032
3033 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
3034 mdb_warn("failed to read 'max_ncpus'");
3035 return (WALK_ERR);
3036 }
3037
3038 if (mdb_readvar(&panicstr, "panicstr") == -1) {
3039 mdb_warn("failed to read 'panicstr'");
3040 return (WALK_ERR);
3041 }
3042
3043 if (panicstr != 0) {
3044 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
3045 mdb_warn("failed to find 'panic_cpu'");
3046 return (WALK_ERR);
3047 }
3048
3049 addr = (uintptr_t)sym.st_value;
3050
3051 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
3052 mdb_warn("failed to read 'panic_cpu'");
3053 return (WALK_ERR);
3054 }
3055 }
3056
3057 /*
3058 * Unfortunately, there is no platform-independent way to walk
3059 * CPUs in ID order. We therefore loop through in cpu_next order,
3060 * building an array of CPU pointers which will subsequently be
3061 * sorted.
3062 */
3063 cw->cw_array =
3064 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
3065
3066 if (mdb_readvar(&first, "cpu_list") == -1) {
3067 mdb_warn("failed to read 'cpu_list'");
3068 return (WALK_ERR);
3069 }
3070
3071 current = first;
3072 do {
3073 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
3074 mdb_warn("failed to read cpu at %p", current);
3075 return (WALK_ERR);
3076 }
3077
3078 if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) {
3079 cw->cw_array[i++] = addr;
3080 } else {
3081 cw->cw_array[i++] = current;
3082 }
3083 } while ((current = (uintptr_t)cpu.cpu_next) != first);
3084
3085 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
3086 wsp->walk_data = cw;
3087
3088 return (WALK_NEXT);
3089 }
3090
3091 int
cpu_walk_step(mdb_walk_state_t * wsp)3092 cpu_walk_step(mdb_walk_state_t *wsp)
3093 {
3094 cpu_walk_t *cw = wsp->walk_data;
3095 cpu_t cpu;
3096 uintptr_t addr = cw->cw_array[cw->cw_ndx++];
3097
3098 if (addr == 0)
3099 return (WALK_DONE);
3100
3101 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
3102 mdb_warn("failed to read cpu at %p", addr);
3103 return (WALK_DONE);
3104 }
3105
3106 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
3107 }
3108
3109 typedef struct cpuinfo_data {
3110 intptr_t cid_cpu;
3111 uintptr_t **cid_ithr;
3112 char cid_print_head;
3113 char cid_print_thr;
3114 char cid_print_ithr;
3115 char cid_print_flags;
3116 } cpuinfo_data_t;
3117
3118 int
cpuinfo_walk_ithread(uintptr_t addr,const kthread_t * thr,cpuinfo_data_t * cid)3119 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
3120 {
3121 cpu_t c;
3122 int id;
3123 uint8_t pil;
3124
3125 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
3126 return (WALK_NEXT);
3127
3128 if (thr->t_bound_cpu == NULL) {
3129 mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
3130 return (WALK_NEXT);
3131 }
3132
3133 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
3134
3135 if ((id = c.cpu_id) >= NCPU) {
3136 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
3137 thr->t_bound_cpu, id, NCPU);
3138 return (WALK_NEXT);
3139 }
3140
3141 if ((pil = thr->t_pil) >= NINTR) {
3142 mdb_warn("thread %p has pil (%d) greater than %d\n",
3143 addr, pil, NINTR);
3144 return (WALK_NEXT);
3145 }
3146
3147 if (cid->cid_ithr[id][pil] != 0) {
3148 mdb_warn("CPU %d has multiple threads at pil %d (at least "
3149 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
3150 return (WALK_NEXT);
3151 }
3152
3153 cid->cid_ithr[id][pil] = addr;
3154
3155 return (WALK_NEXT);
3156 }
3157
3158 #define CPUINFO_IDWIDTH 3
3159 #define CPUINFO_FLAGWIDTH 9
3160
3161 #ifdef _LP64
3162 #if defined(__amd64)
3163 #define CPUINFO_TWIDTH 16
3164 #define CPUINFO_CPUWIDTH 16
3165 #else
3166 #define CPUINFO_CPUWIDTH 11
3167 #define CPUINFO_TWIDTH 11
3168 #endif
3169 #else
3170 #define CPUINFO_CPUWIDTH 8
3171 #define CPUINFO_TWIDTH 8
3172 #endif
3173
3174 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
3175 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
3176 #define CPUINFO_ITHRDELT 4
3177
3178 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \
3179 flagline < nflaglines ? flagbuf[flagline++] : "")
3180
3181 typedef struct mdb_cpuinfo_proc {
3182 struct {
3183 char u_comm[MAXCOMLEN + 1];
3184 } p_user;
3185 } mdb_cpuinfo_proc_t;
3186
3187 int
cpuinfo_walk_cpu(uintptr_t addr,const cpu_t * cpu,cpuinfo_data_t * cid)3188 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
3189 {
3190 kthread_t t;
3191 disp_t disp;
3192 mdb_cpuinfo_proc_t p;
3193 uintptr_t pinned = 0;
3194 char **flagbuf;
3195 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
3196
3197 const char *flags[] = {
3198 "RUNNING", "READY", "QUIESCED", "EXISTS",
3199 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
3200 "SPARE", "FAULTED", "DISABLED", NULL
3201 };
3202
3203 if (cid->cid_cpu != -1) {
3204 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
3205 return (WALK_NEXT);
3206
3207 /*
3208 * Set cid_cpu to -1 to indicate that we found a matching CPU.
3209 */
3210 cid->cid_cpu = -1;
3211 rval = WALK_DONE;
3212 }
3213
3214 if (cid->cid_print_head) {
3215 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
3216 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
3217 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
3218 "PROC");
3219 cid->cid_print_head = FALSE;
3220 }
3221
3222 bspl = cpu->cpu_base_spl;
3223
3224 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
3225 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
3226 return (WALK_ERR);
3227 }
3228
3229 mdb_printf("%3d %0*p %3x %4d %4d ",
3230 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
3231 disp.disp_nrunnable, bspl);
3232
3233 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
3234 mdb_printf("%3d ", t.t_pri);
3235 } else {
3236 mdb_printf("%3s ", "-");
3237 }
3238
3239 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
3240 cpu->cpu_kprunrun ? "yes" : "no");
3241
3242 if (cpu->cpu_last_swtch) {
3243 mdb_printf("t-%-4d ",
3244 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch);
3245 } else {
3246 mdb_printf("%-6s ", "-");
3247 }
3248
3249 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
3250
3251 if (cpu->cpu_thread == cpu->cpu_idle_thread)
3252 mdb_printf(" (idle)\n");
3253 else if (cpu->cpu_thread == NULL)
3254 mdb_printf(" -\n");
3255 else {
3256 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3257 (uintptr_t)t.t_procp, 0) != -1) {
3258 mdb_printf(" %s\n", p.p_user.u_comm);
3259 } else {
3260 mdb_printf(" ?\n");
3261 }
3262 }
3263
3264 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
3265
3266 if (cid->cid_print_flags) {
3267 int first = 1, i, j, k;
3268 char *s;
3269
3270 cid->cid_print_head = TRUE;
3271
3272 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
3273 if (!(cpu->cpu_flags & i))
3274 continue;
3275
3276 if (first) {
3277 s = mdb_alloc(CPUINFO_THRDELT + 1,
3278 UM_GC | UM_SLEEP);
3279
3280 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3281 "%*s|%*s", CPUINFO_FLAGDELT, "",
3282 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3283 flagbuf[nflaglines++] = s;
3284 }
3285
3286 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3287 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3288 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3289 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3290 first ? "<--+" : "");
3291
3292 for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3293 s[k] = ' ';
3294 s[k] = '\0';
3295
3296 flagbuf[nflaglines++] = s;
3297 first = 0;
3298 }
3299 }
3300
3301 if (cid->cid_print_ithr) {
3302 int i, found_one = FALSE;
3303 int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3304
3305 for (i = NINTR - 1; i >= 0; i--) {
3306 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3307
3308 if (iaddr == 0)
3309 continue;
3310
3311 if (!found_one) {
3312 found_one = TRUE;
3313
3314 CPUINFO_INDENT;
3315 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3316 CPUINFO_ITHRDELT, "");
3317
3318 CPUINFO_INDENT;
3319 mdb_printf("%c%*s+--> %3s %s\n",
3320 print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3321 "", "PIL", "THREAD");
3322 }
3323
3324 if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3325 mdb_warn("failed to read kthread_t at %p",
3326 iaddr);
3327 return (WALK_ERR);
3328 }
3329
3330 CPUINFO_INDENT;
3331 mdb_printf("%c%*s %3d %0*p\n",
3332 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3333 t.t_pil, CPUINFO_TWIDTH, iaddr);
3334
3335 pinned = (uintptr_t)t.t_intr;
3336 }
3337
3338 if (found_one && pinned != 0) {
3339 cid->cid_print_head = TRUE;
3340 (void) strcpy(p.p_user.u_comm, "?");
3341
3342 if (mdb_vread(&t, sizeof (t),
3343 (uintptr_t)pinned) == -1) {
3344 mdb_warn("failed to read kthread_t at %p",
3345 pinned);
3346 return (WALK_ERR);
3347 }
3348 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3349 (uintptr_t)t.t_procp, 0) == -1) {
3350 mdb_warn("failed to read proc_t at %p",
3351 t.t_procp);
3352 return (WALK_ERR);
3353 }
3354
3355 CPUINFO_INDENT;
3356 mdb_printf("%c%*s %3s %0*p %s\n",
3357 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3358 CPUINFO_TWIDTH, pinned,
3359 pinned == (uintptr_t)cpu->cpu_idle_thread ?
3360 "(idle)" : p.p_user.u_comm);
3361 }
3362 }
3363
3364 if (disp.disp_nrunnable && cid->cid_print_thr) {
3365 dispq_t *dq;
3366
3367 int i, npri = disp.disp_npri;
3368
3369 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3370
3371 if (mdb_vread(dq, sizeof (dispq_t) * npri,
3372 (uintptr_t)disp.disp_q) == -1) {
3373 mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3374 return (WALK_ERR);
3375 }
3376
3377 CPUINFO_INDENT;
3378 mdb_printf("|\n");
3379
3380 CPUINFO_INDENT;
3381 mdb_printf("+--> %3s %-*s %s\n", "PRI",
3382 CPUINFO_TWIDTH, "THREAD", "PROC");
3383
3384 for (i = npri - 1; i >= 0; i--) {
3385 uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3386
3387 while (taddr != 0) {
3388 if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3389 mdb_warn("failed to read kthread_t "
3390 "at %p", taddr);
3391 return (WALK_ERR);
3392 }
3393 if (mdb_ctf_vread(&p, "proc_t",
3394 "mdb_cpuinfo_proc_t",
3395 (uintptr_t)t.t_procp, 0) == -1) {
3396 mdb_warn("failed to read proc_t at %p",
3397 t.t_procp);
3398 return (WALK_ERR);
3399 }
3400
3401 CPUINFO_INDENT;
3402 mdb_printf(" %3d %0*p %s\n", t.t_pri,
3403 CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3404
3405 taddr = (uintptr_t)t.t_link;
3406 }
3407 }
3408 cid->cid_print_head = TRUE;
3409 }
3410
3411 while (flagline < nflaglines)
3412 mdb_printf("%s\n", flagbuf[flagline++]);
3413
3414 if (cid->cid_print_head)
3415 mdb_printf("\n");
3416
3417 return (rval);
3418 }
3419
3420 int
cpuinfo(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3421 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3422 {
3423 uint_t verbose = FALSE;
3424 cpuinfo_data_t cid;
3425
3426 cid.cid_print_ithr = FALSE;
3427 cid.cid_print_thr = FALSE;
3428 cid.cid_print_flags = FALSE;
3429 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3430 cid.cid_cpu = -1;
3431
3432 if (flags & DCMD_ADDRSPEC)
3433 cid.cid_cpu = addr;
3434
3435 if (mdb_getopts(argc, argv,
3436 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3437 return (DCMD_USAGE);
3438
3439 if (verbose) {
3440 cid.cid_print_ithr = TRUE;
3441 cid.cid_print_thr = TRUE;
3442 cid.cid_print_flags = TRUE;
3443 cid.cid_print_head = TRUE;
3444 }
3445
3446 if (cid.cid_print_ithr) {
3447 int i;
3448
3449 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3450 * NCPU, UM_SLEEP | UM_GC);
3451
3452 for (i = 0; i < NCPU; i++)
3453 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3454 NINTR, UM_SLEEP | UM_GC);
3455
3456 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3457 &cid) == -1) {
3458 mdb_warn("couldn't walk thread");
3459 return (DCMD_ERR);
3460 }
3461 }
3462
3463 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3464 mdb_warn("can't walk cpus");
3465 return (DCMD_ERR);
3466 }
3467
3468 if (cid.cid_cpu != -1) {
3469 /*
3470 * We didn't find this CPU when we walked through the CPUs
3471 * (i.e. the address specified doesn't show up in the "cpu"
3472 * walk). However, the specified address may still correspond
3473 * to a valid cpu_t (for example, if the specified address is
3474 * the actual panicking cpu_t and not the cached panic_cpu).
3475 * Point is: even if we didn't find it, we still want to try
3476 * to print the specified address as a cpu_t.
3477 */
3478 cpu_t cpu;
3479
3480 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3481 mdb_warn("%p is neither a valid CPU ID nor a "
3482 "valid cpu_t address\n", cid.cid_cpu);
3483 return (DCMD_ERR);
3484 }
3485
3486 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3487 }
3488
3489 return (DCMD_OK);
3490 }
3491
3492 /*ARGSUSED*/
3493 int
flipone(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3494 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3495 {
3496 int i;
3497
3498 if (!(flags & DCMD_ADDRSPEC))
3499 return (DCMD_USAGE);
3500
3501 for (i = 0; i < sizeof (addr) * NBBY; i++)
3502 mdb_printf("%p\n", addr ^ (1UL << i));
3503
3504 return (DCMD_OK);
3505 }
3506
3507 typedef struct mdb_as2proc_proc {
3508 struct as *p_as;
3509 } mdb_as2proc_proc_t;
3510
3511 /*ARGSUSED*/
3512 int
as2proc_walk(uintptr_t addr,const void * ignored,struct as ** asp)3513 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp)
3514 {
3515 mdb_as2proc_proc_t p;
3516
3517 mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0);
3518
3519 if (p.p_as == *asp)
3520 mdb_printf("%p\n", addr);
3521 return (WALK_NEXT);
3522 }
3523
3524 /*ARGSUSED*/
3525 int
as2proc(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3526 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3527 {
3528 if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3529 return (DCMD_USAGE);
3530
3531 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3532 mdb_warn("failed to walk proc");
3533 return (DCMD_ERR);
3534 }
3535
3536 return (DCMD_OK);
3537 }
3538
3539 typedef struct mdb_ptree_proc {
3540 struct proc *p_parent;
3541 struct {
3542 char u_comm[MAXCOMLEN + 1];
3543 } p_user;
3544 } mdb_ptree_proc_t;
3545
3546 /*ARGSUSED*/
3547 int
ptree_walk(uintptr_t addr,const void * ignored,void * data)3548 ptree_walk(uintptr_t addr, const void *ignored, void *data)
3549 {
3550 mdb_ptree_proc_t proc;
3551 mdb_ptree_proc_t parent;
3552 int ident = 0;
3553 uintptr_t paddr;
3554
3555 mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0);
3556
3557 for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) {
3558 mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0);
3559 paddr = (uintptr_t)parent.p_parent;
3560 }
3561
3562 mdb_inc_indent(ident);
3563 mdb_printf("%0?p %s\n", addr, proc.p_user.u_comm);
3564 mdb_dec_indent(ident);
3565
3566 return (WALK_NEXT);
3567 }
3568
3569 void
ptree_ancestors(uintptr_t addr,uintptr_t start)3570 ptree_ancestors(uintptr_t addr, uintptr_t start)
3571 {
3572 mdb_ptree_proc_t p;
3573
3574 if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) {
3575 mdb_warn("couldn't read ancestor at %p", addr);
3576 return;
3577 }
3578
3579 if (p.p_parent != NULL)
3580 ptree_ancestors((uintptr_t)p.p_parent, start);
3581
3582 if (addr != start)
3583 (void) ptree_walk(addr, &p, NULL);
3584 }
3585
3586 /*ARGSUSED*/
3587 int
ptree(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3588 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3589 {
3590 if (!(flags & DCMD_ADDRSPEC))
3591 addr = 0;
3592 else
3593 ptree_ancestors(addr, addr);
3594
3595 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3596 mdb_warn("couldn't walk 'proc'");
3597 return (DCMD_ERR);
3598 }
3599
3600 return (DCMD_OK);
3601 }
3602
3603 typedef struct mdb_fd_proc {
3604 struct {
3605 struct {
3606 int fi_nfiles;
3607 uf_entry_t *volatile fi_list;
3608 } u_finfo;
3609 } p_user;
3610 } mdb_fd_proc_t;
3611
3612 /*ARGSUSED*/
3613 static int
fd(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3614 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3615 {
3616 int fdnum;
3617 const mdb_arg_t *argp = &argv[0];
3618 mdb_fd_proc_t p;
3619 uf_entry_t uf;
3620
3621 if ((flags & DCMD_ADDRSPEC) == 0) {
3622 mdb_warn("fd doesn't give global information\n");
3623 return (DCMD_ERR);
3624 }
3625 if (argc != 1)
3626 return (DCMD_USAGE);
3627
3628 if (argp->a_type == MDB_TYPE_IMMEDIATE)
3629 fdnum = argp->a_un.a_val;
3630 else
3631 fdnum = mdb_strtoull(argp->a_un.a_str);
3632
3633 if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) {
3634 mdb_warn("couldn't read proc_t at %p", addr);
3635 return (DCMD_ERR);
3636 }
3637 if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3638 mdb_warn("process %p only has %d files open.\n",
3639 addr, p.p_user.u_finfo.fi_nfiles);
3640 return (DCMD_ERR);
3641 }
3642 if (mdb_vread(&uf, sizeof (uf_entry_t),
3643 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3644 mdb_warn("couldn't read uf_entry_t at %p",
3645 &p.p_user.u_finfo.fi_list[fdnum]);
3646 return (DCMD_ERR);
3647 }
3648
3649 mdb_printf("%p\n", uf.uf_file);
3650 return (DCMD_OK);
3651 }
3652
3653 /*ARGSUSED*/
3654 static int
pid2proc(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3655 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3656 {
3657 pid_t pid = (pid_t)addr;
3658
3659 if (argc != 0)
3660 return (DCMD_USAGE);
3661
3662 if ((addr = mdb_pid2proc(pid, NULL)) == 0) {
3663 mdb_warn("PID 0t%d not found\n", pid);
3664 return (DCMD_ERR);
3665 }
3666
3667 mdb_printf("%p\n", addr);
3668 return (DCMD_OK);
3669 }
3670
3671 static char *sysfile_cmd[] = {
3672 "exclude:",
3673 "include:",
3674 "forceload:",
3675 "rootdev:",
3676 "rootfs:",
3677 "swapdev:",
3678 "swapfs:",
3679 "moddir:",
3680 "set",
3681 "unknown",
3682 };
3683
3684 static char *sysfile_ops[] = { "", "=", "&", "|" };
3685
3686 /*ARGSUSED*/
3687 static int
sysfile_vmem_seg(uintptr_t addr,const vmem_seg_t * vsp,void ** target)3688 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3689 {
3690 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3691 *target = NULL;
3692 return (WALK_DONE);
3693 }
3694 return (WALK_NEXT);
3695 }
3696
3697 /*ARGSUSED*/
3698 static int
sysfile(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3699 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3700 {
3701 struct sysparam *sysp, sys;
3702 char var[256];
3703 char modname[256];
3704 char val[256];
3705 char strval[256];
3706 vmem_t *mod_sysfile_arena;
3707 void *straddr;
3708
3709 if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3710 mdb_warn("failed to read sysparam_hd");
3711 return (DCMD_ERR);
3712 }
3713
3714 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3715 mdb_warn("failed to read mod_sysfile_arena");
3716 return (DCMD_ERR);
3717 }
3718
3719 while (sysp != NULL) {
3720 var[0] = '\0';
3721 val[0] = '\0';
3722 modname[0] = '\0';
3723 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3724 mdb_warn("couldn't read sysparam %p", sysp);
3725 return (DCMD_ERR);
3726 }
3727 if (sys.sys_modnam != NULL &&
3728 mdb_readstr(modname, 256,
3729 (uintptr_t)sys.sys_modnam) == -1) {
3730 mdb_warn("couldn't read modname in %p", sysp);
3731 return (DCMD_ERR);
3732 }
3733 if (sys.sys_ptr != NULL &&
3734 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3735 mdb_warn("couldn't read ptr in %p", sysp);
3736 return (DCMD_ERR);
3737 }
3738 if (sys.sys_op != SETOP_NONE) {
3739 /*
3740 * Is this an int or a string? We determine this
3741 * by checking whether straddr is contained in
3742 * mod_sysfile_arena. If so, the walker will set
3743 * straddr to NULL.
3744 */
3745 straddr = (void *)(uintptr_t)sys.sys_info;
3746 if (sys.sys_op == SETOP_ASSIGN &&
3747 sys.sys_info != 0 &&
3748 mdb_pwalk("vmem_seg",
3749 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3750 (uintptr_t)mod_sysfile_arena) == 0 &&
3751 straddr == NULL &&
3752 mdb_readstr(strval, 256,
3753 (uintptr_t)sys.sys_info) != -1) {
3754 (void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3755 strval);
3756 } else {
3757 (void) mdb_snprintf(val, sizeof (val),
3758 "0x%llx [0t%llu]", sys.sys_info,
3759 sys.sys_info);
3760 }
3761 }
3762 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3763 modname, modname[0] == '\0' ? "" : ":",
3764 var, sysfile_ops[sys.sys_op], val);
3765
3766 sysp = sys.sys_next;
3767 }
3768
3769 return (DCMD_OK);
3770 }
3771
3772 int
didmatch(uintptr_t addr,const kthread_t * thr,kt_did_t * didp)3773 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3774 {
3775
3776 if (*didp == thr->t_did) {
3777 mdb_printf("%p\n", addr);
3778 return (WALK_DONE);
3779 } else
3780 return (WALK_NEXT);
3781 }
3782
3783 /*ARGSUSED*/
3784 int
did2thread(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3785 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3786 {
3787 const mdb_arg_t *argp = &argv[0];
3788 kt_did_t did;
3789
3790 if (argc != 1)
3791 return (DCMD_USAGE);
3792
3793 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3794
3795 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3796 mdb_warn("failed to walk thread");
3797 return (DCMD_ERR);
3798
3799 }
3800 return (DCMD_OK);
3801
3802 }
3803
3804 static int
errorq_walk_init(mdb_walk_state_t * wsp)3805 errorq_walk_init(mdb_walk_state_t *wsp)
3806 {
3807 if (wsp->walk_addr == 0 &&
3808 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3809 mdb_warn("failed to read errorq_list");
3810 return (WALK_ERR);
3811 }
3812
3813 return (WALK_NEXT);
3814 }
3815
3816 static int
errorq_walk_step(mdb_walk_state_t * wsp)3817 errorq_walk_step(mdb_walk_state_t *wsp)
3818 {
3819 uintptr_t addr = wsp->walk_addr;
3820 errorq_t eq;
3821
3822 if (addr == 0)
3823 return (WALK_DONE);
3824
3825 if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3826 mdb_warn("failed to read errorq at %p", addr);
3827 return (WALK_ERR);
3828 }
3829
3830 wsp->walk_addr = (uintptr_t)eq.eq_next;
3831 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3832 }
3833
3834 typedef struct eqd_walk_data {
3835 uintptr_t *eqd_stack;
3836 void *eqd_buf;
3837 ulong_t eqd_qpos;
3838 ulong_t eqd_qlen;
3839 size_t eqd_size;
3840 } eqd_walk_data_t;
3841
3842 /*
3843 * In order to walk the list of pending error queue elements, we push the
3844 * addresses of the corresponding data buffers in to the eqd_stack array.
3845 * The error lists are in reverse chronological order when iterating using
3846 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3847 * walker client gets addresses in order from oldest error to newest error.
3848 */
3849 static void
eqd_push_list(eqd_walk_data_t * eqdp,uintptr_t addr)3850 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3851 {
3852 errorq_elem_t eqe;
3853
3854 while (addr != 0) {
3855 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3856 mdb_warn("failed to read errorq element at %p", addr);
3857 break;
3858 }
3859
3860 if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3861 mdb_warn("errorq is overfull -- more than %lu "
3862 "elems found\n", eqdp->eqd_qlen);
3863 break;
3864 }
3865
3866 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3867 addr = (uintptr_t)eqe.eqe_prev;
3868 }
3869 }
3870
3871 static int
eqd_walk_init(mdb_walk_state_t * wsp)3872 eqd_walk_init(mdb_walk_state_t *wsp)
3873 {
3874 eqd_walk_data_t *eqdp;
3875 errorq_elem_t eqe, *addr;
3876 errorq_t eq;
3877 ulong_t i;
3878
3879 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3880 mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3881 return (WALK_ERR);
3882 }
3883
3884 if (eq.eq_ptail != NULL &&
3885 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3886 mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3887 return (WALK_ERR);
3888 }
3889
3890 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3891 wsp->walk_data = eqdp;
3892
3893 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3894 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3895 eqdp->eqd_qlen = eq.eq_qlen;
3896 eqdp->eqd_qpos = 0;
3897 eqdp->eqd_size = eq.eq_size;
3898
3899 /*
3900 * The newest elements in the queue are on the pending list, so we
3901 * push those on to our stack first.
3902 */
3903 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3904
3905 /*
3906 * If eq_ptail is set, it may point to a subset of the errors on the
3907 * pending list in the event a atomic_cas_ptr() failed; if ptail's
3908 * data is already in our stack, NULL out eq_ptail and ignore it.
3909 */
3910 if (eq.eq_ptail != NULL) {
3911 for (i = 0; i < eqdp->eqd_qpos; i++) {
3912 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3913 eq.eq_ptail = NULL;
3914 break;
3915 }
3916 }
3917 }
3918
3919 /*
3920 * If eq_phead is set, it has the processing list in order from oldest
3921 * to newest. Use this to recompute eq_ptail as best we can and then
3922 * we nicely fall into eqd_push_list() of eq_ptail below.
3923 */
3924 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3925 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3926 eq.eq_ptail = addr;
3927
3928 /*
3929 * The oldest elements in the queue are on the processing list, subject
3930 * to machinations in the if-clauses above. Push any such elements.
3931 */
3932 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3933 return (WALK_NEXT);
3934 }
3935
3936 static int
eqd_walk_step(mdb_walk_state_t * wsp)3937 eqd_walk_step(mdb_walk_state_t *wsp)
3938 {
3939 eqd_walk_data_t *eqdp = wsp->walk_data;
3940 uintptr_t addr;
3941
3942 if (eqdp->eqd_qpos == 0)
3943 return (WALK_DONE);
3944
3945 addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3946
3947 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3948 mdb_warn("failed to read errorq data at %p", addr);
3949 return (WALK_ERR);
3950 }
3951
3952 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3953 }
3954
3955 static void
eqd_walk_fini(mdb_walk_state_t * wsp)3956 eqd_walk_fini(mdb_walk_state_t *wsp)
3957 {
3958 eqd_walk_data_t *eqdp = wsp->walk_data;
3959
3960 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3961 mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3962 mdb_free(eqdp, sizeof (eqd_walk_data_t));
3963 }
3964
3965 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3966
3967 static int
errorq(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3968 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3969 {
3970 int i;
3971 errorq_t eq;
3972 uint_t opt_v = FALSE;
3973
3974 if (!(flags & DCMD_ADDRSPEC)) {
3975 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3976 mdb_warn("can't walk 'errorq'");
3977 return (DCMD_ERR);
3978 }
3979 return (DCMD_OK);
3980 }
3981
3982 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3983 argc -= i;
3984 argv += i;
3985
3986 if (argc != 0)
3987 return (DCMD_USAGE);
3988
3989 if (opt_v || DCMD_HDRSPEC(flags)) {
3990 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3991 "ADDR", "NAME", "S", "V", "N");
3992 if (!opt_v) {
3993 mdb_printf("%7s %7s %7s%</u>\n",
3994 "ACCEPT", "DROP", "LOG");
3995 } else {
3996 mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3997 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3998 }
3999 }
4000
4001 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
4002 mdb_warn("failed to read errorq at %p", addr);
4003 return (DCMD_ERR);
4004 }
4005
4006 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
4007 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
4008 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
4009 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
4010
4011 if (!opt_v) {
4012 mdb_printf("%7llu %7llu %7llu\n",
4013 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
4014 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
4015 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
4016 } else {
4017 mdb_printf("%5s %6lu %6lu %3u %a\n",
4018 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
4019 mdb_printf("%38s\n%41s"
4020 "%12s %llu\n"
4021 "%53s %llu\n"
4022 "%53s %llu\n"
4023 "%53s %llu\n"
4024 "%53s %llu\n"
4025 "%53s %llu\n"
4026 "%53s %llu\n"
4027 "%53s %llu\n\n",
4028 "|", "+-> ",
4029 "DISPATCHED", EQKSVAL(eq, eqk_dispatched),
4030 "DROPPED", EQKSVAL(eq, eqk_dropped),
4031 "LOGGED", EQKSVAL(eq, eqk_logged),
4032 "RESERVED", EQKSVAL(eq, eqk_reserved),
4033 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail),
4034 "COMMITTED", EQKSVAL(eq, eqk_committed),
4035 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail),
4036 "CANCELLED", EQKSVAL(eq, eqk_cancelled));
4037 }
4038
4039 return (DCMD_OK);
4040 }
4041
4042 /*ARGSUSED*/
4043 static int
panicinfo(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4044 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4045 {
4046 cpu_t panic_cpu;
4047 kthread_t *panic_thread;
4048 void *buf;
4049 panic_data_t *pd;
4050 int i, n;
4051
4052 if (!mdb_prop_postmortem) {
4053 mdb_warn("panicinfo can only be run on a system "
4054 "dump; see dumpadm(8)\n");
4055 return (DCMD_ERR);
4056 }
4057
4058 if (flags & DCMD_ADDRSPEC || argc != 0)
4059 return (DCMD_USAGE);
4060
4061 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
4062 mdb_warn("failed to read 'panic_cpu'");
4063 else
4064 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
4065
4066 if (mdb_readvar(&panic_thread, "panic_thread") == -1)
4067 mdb_warn("failed to read 'panic_thread'");
4068 else
4069 mdb_printf("%16s %?p\n", "thread", panic_thread);
4070
4071 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
4072 pd = (panic_data_t *)buf;
4073
4074 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
4075 pd->pd_version != PANICBUFVERS) {
4076 mdb_warn("failed to read 'panicbuf'");
4077 mdb_free(buf, PANICBUFSIZE);
4078 return (DCMD_ERR);
4079 }
4080
4081 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff);
4082
4083 n = (pd->pd_msgoff - (sizeof (panic_data_t) -
4084 sizeof (panic_nv_t))) / sizeof (panic_nv_t);
4085
4086 for (i = 0; i < n; i++)
4087 mdb_printf("%16s %?llx\n",
4088 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
4089
4090 mdb_free(buf, PANICBUFSIZE);
4091 return (DCMD_OK);
4092 }
4093
4094 /*
4095 * ::time dcmd, which will print a hires timestamp of when we entered the
4096 * debugger, or the lbolt value if used with the -l option.
4097 *
4098 */
4099 /*ARGSUSED*/
4100 static int
time(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4101 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4102 {
4103 uint_t opt_dec = FALSE;
4104 uint_t opt_lbolt = FALSE;
4105 uint_t opt_hex = FALSE;
4106 const char *fmt;
4107 hrtime_t result;
4108
4109 if (mdb_getopts(argc, argv,
4110 'd', MDB_OPT_SETBITS, TRUE, &opt_dec,
4111 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt,
4112 'x', MDB_OPT_SETBITS, TRUE, &opt_hex,
4113 NULL) != argc)
4114 return (DCMD_USAGE);
4115
4116 if (opt_dec && opt_hex)
4117 return (DCMD_USAGE);
4118
4119 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime();
4120 fmt =
4121 opt_hex ? "0x%llx\n" :
4122 opt_dec ? "0t%lld\n" : "%#llr\n";
4123
4124 mdb_printf(fmt, result);
4125 return (DCMD_OK);
4126 }
4127
4128 void
time_help(void)4129 time_help(void)
4130 {
4131 mdb_printf("Prints the system time in nanoseconds.\n\n"
4132 "::time will return the timestamp at which we dropped into, \n"
4133 "if called from, kmdb(1); the core dump's high resolution \n"
4134 "time if inspecting one; or the running hires time if we're \n"
4135 "looking at a live system.\n\n"
4136 "Switches:\n"
4137 " -d report times in decimal\n"
4138 " -l prints the number of clock ticks since system boot\n"
4139 " -x report times in hexadecimal\n");
4140 }
4141
4142 extern int cmd_refstr(uintptr_t, uint_t, int, const mdb_arg_t *);
4143
4144 static const mdb_dcmd_t dcmds[] = {
4145
4146 /* from genunix.c */
4147 { "as2proc", ":", "convert as to proc_t address", as2proc },
4148 { "binding_hash_entry", ":", "print driver names hash table entry",
4149 binding_hash_entry },
4150 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
4151 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
4152 " [-FivVA]",
4153 "display callouts", callout, callout_help },
4154 { "calloutid", "[-d|v] xid", "print callout by extended id",
4155 calloutid, calloutid_help },
4156 { "class", NULL, "print process scheduler classes", class },
4157 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
4158 { "did2thread", "? kt_did", "find kernel thread for this id",
4159 did2thread },
4160 { "errorq", "?[-v]", "display kernel error queues", errorq },
4161 { "fd", ":[fd num]", "get a file pointer from an fd", fd },
4162 { "flipone", ":", "the vik_rev_level 2 special", flipone },
4163 { "lminfo", NULL, "print lock manager information", lminfo },
4164 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
4165 { "panicinfo", NULL, "print panic information", panicinfo },
4166 { "pid2proc", "?", "convert PID to proc_t address", pid2proc },
4167 { "project", NULL, "display kernel project(s)", project },
4168 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps,
4169 ps_help },
4170 { "pflags", NULL, "display various proc_t flags", pflags },
4171 { "pgrep", "[-x] [-n | -o] pattern",
4172 "pattern match against all processes", pgrep },
4173 { "ptree", NULL, "print process tree", ptree },
4174 { "refstr", NULL, "print string from a refstr_t", cmd_refstr, NULL },
4175 { "sysevent", "?[-sv]", "print sysevent pending or sent queue",
4176 sysevent},
4177 { "sysevent_channel", "?", "print sysevent channel database",
4178 sysevent_channel},
4179 { "sysevent_class_list", ":", "print sysevent class list",
4180 sysevent_class_list},
4181 { "sysevent_subclass_list", ":",
4182 "print sysevent subclass list", sysevent_subclass_list},
4183 { "system", NULL, "print contents of /etc/system file", sysfile },
4184 { "task", NULL, "display kernel task(s)", task },
4185 { "time", "[-dlx]", "display system time", time, time_help },
4186 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
4187 { "whereopen", ":", "given a vnode, dumps procs which have it open",
4188 whereopen },
4189
4190 /* from bio.c */
4191 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
4192
4193 /* from bitset.c */
4194 { "bitset", ":", "display a bitset", bitset, bitset_help },
4195
4196 /* from contract.c */
4197 { "contract", "?", "display a contract", cmd_contract },
4198 { "ctevent", ":", "display a contract event", cmd_ctevent },
4199 { "ctid", ":", "convert id to a contract pointer", cmd_ctid },
4200
4201 /* from cpupart.c */
4202 { "cpupart", "?[-v]", "print cpu partition info", cpupart },
4203
4204 /* from cred.c */
4205 { "cred", ":[-v]", "display a credential", cmd_cred },
4206 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp },
4207 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid },
4208 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist },
4209
4210 /* from cyclic.c */
4211 { "cyccover", NULL, "dump cyclic coverage information", cyccover },
4212 { "cycid", "?", "dump a cyclic id", cycid },
4213 { "cycinfo", "?", "dump cyc_cpu info", cycinfo },
4214 { "cyclic", ":", "developer information", cyclic },
4215 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
4216
4217 /* from damap.c */
4218 { "damap", ":", "display a damap_t", damap, damap_help },
4219
4220 /* from ddi_periodic.c */
4221 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo },
4222
4223 /* from devinfo.c */
4224 { "devbindings", "?[-qs] [device-name | major-num]",
4225 "print devinfo nodes bound to device-name or major-num",
4226 devbindings, devinfo_help },
4227 { "devinfo", ":[-qsd] [-b bus]", "detailed devinfo of one node",
4228 devinfo, devinfo_help },
4229 { "devinfo_audit", ":[-v]", "devinfo configuration audit record",
4230 devinfo_audit },
4231 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
4232 devinfo_audit_log },
4233 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
4234 devinfo_audit_node },
4235 { "devinfo2driver", ":", "find driver name for this devinfo node",
4236 devinfo2driver },
4237 { "devnames", "?[-vm] [num]", "print devnames array", devnames },
4238 { "dev2major", "?<dev_t>", "convert dev_t to a major number",
4239 dev2major },
4240 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
4241 dev2minor },
4242 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
4243 devt },
4244 { "major2name", "?<major-num>", "convert major number to dev name",
4245 major2name },
4246 { "minornodes", ":", "given a devinfo node, print its minor nodes",
4247 minornodes },
4248 { "modctl2devinfo", ":", "given a modctl, list its devinfos",
4249 modctl2devinfo },
4250 { "name2major", "<dev-name>", "convert dev name to major number",
4251 name2major },
4252 { "prtconf", "?[-vpc] [-d driver] [-i inst]", "print devinfo tree",
4253 prtconf, prtconf_help },
4254 { "softstate", ":<instance>", "retrieve soft-state pointer",
4255 softstate },
4256 { "devinfo_fm", ":", "devinfo fault managment configuration",
4257 devinfo_fm },
4258 { "devinfo_fmce", ":", "devinfo fault managment cache entry",
4259 devinfo_fmce},
4260
4261 /* from findstack.c */
4262 { "findstack", ":[-v]", "find kernel thread stack", findstack },
4263 { "findstack_debug", NULL, "toggle findstack debugging",
4264 findstack_debug },
4265 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
4266 "[-s sobj | -S sobj] [-t tstate | -T tstate]",
4267 "print unique kernel thread stacks",
4268 stacks, stacks_help },
4269
4270 /* from fm.c */
4271 { "ereport", "[-v]", "print ereports logged in dump",
4272 ereport },
4273
4274 /* from group.c */
4275 { "group", "?[-q]", "display a group", group},
4276
4277 /* from hotplug.c */
4278 { "hotplug", "?[-p]", "display a registered hotplug attachment",
4279 hotplug, hotplug_help },
4280
4281 /* from irm.c */
4282 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
4283 { "irmreqs", NULL, "display interrupt requests in an interrupt pool",
4284 irmreqs_dcmd },
4285 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
4286
4287 /* from kgrep.c + genunix.c */
4288 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
4289 kgrep_help },
4290
4291 /* from kmem.c */
4292 { "allocdby", ":", "given a thread, print its allocated buffers",
4293 allocdby },
4294 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
4295 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
4296 { "freedby", ":", "given a thread, print its freed buffers", freedby },
4297 { "kmalog", "?[ fail | slab | zerosized ]",
4298 "display kmem transaction log and stack traces for specified type",
4299 kmalog },
4300 { "kmastat", "[-kmg]", "kernel memory allocator stats",
4301 kmastat },
4302 { "kmausers", "?[-ef] [cache ...]", "current medium and large users "
4303 "of the kmem allocator", kmausers, kmausers_help },
4304 { "kmem_cache", "?[-n name]",
4305 "print kernel memory caches", kmem_cache, kmem_cache_help},
4306 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
4307 "[-B minbinsize]", "display slab usage per kmem cache",
4308 kmem_slabs, kmem_slabs_help },
4309 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
4310 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4311 { "kmem_verify", "?", "check integrity of kmem-managed memory",
4312 kmem_verify },
4313 { "vmem", "?", "print a vmem_t", vmem },
4314 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4315 "[-m minsize] [-M maxsize] [-t thread] [-T type]",
4316 "print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4317 { "whatthread", ":[-v]", "print threads whose stack contains the "
4318 "given address", whatthread },
4319
4320 /* from ldi.c */
4321 { "ldi_handle", "?[-i]", "display a layered driver handle",
4322 ldi_handle, ldi_handle_help },
4323 { "ldi_ident", NULL, "display a layered driver identifier",
4324 ldi_ident, ldi_ident_help },
4325
4326 /* from leaky.c + leaky_subr.c */
4327 { "findleaks", FINDLEAKS_USAGE,
4328 "search for potential kernel memory leaks", findleaks,
4329 findleaks_help },
4330
4331 /* from lgrp.c */
4332 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4333 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4334
4335 /* from log.c */
4336 { "msgbuf", "?[-tTv]", "print most recent console messages", msgbuf,
4337 msgbuf_help },
4338
4339 /* from mdi.c */
4340 { "mdipi", NULL, "given a path, dump mdi_pathinfo "
4341 "and detailed pi_prop list", mdipi },
4342 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4343 mdiprops },
4344 { "mdiphci", NULL, "given a phci, dump mdi_phci and "
4345 "list all paths", mdiphci },
4346 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4347 "all phcis", mdivhci },
4348 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4349 "client links", mdiclient_paths },
4350 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4351 "phci links", mdiphci_paths },
4352 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4353 mdiphcis },
4354
4355 /* from memory.c */
4356 { "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4357 { "memlist", "?[-iav]", "display a struct memlist", memlist },
4358 { "memstat", NULL, "display memory usage summary", memstat },
4359 { "page", "?", "display a summarized page_t", page },
4360 { "pagelookup", "?[-v vp] [-o offset]",
4361 "find the page_t with the name {vp, offset}",
4362 pagelookup, pagelookup_help },
4363 { "page_num2pp", ":", "find the page_t for a given page frame number",
4364 page_num2pp },
4365 { "pmap", ":[-q]", "print process memory map", pmap },
4366 { "seg", ":", "print address space segment", seg },
4367 { "swapinfo", "?", "display a struct swapinfo", swapinfof },
4368 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4369
4370 /* from modhash.c */
4371 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4372 "display information about one or all mod_hash structures",
4373 modhash, modhash_help },
4374 { "modent", ":[-k | -v | -t type]",
4375 "display information about a mod_hash_entry", modent,
4376 modent_help },
4377
4378 /* from net.c */
4379 { "dladm", "?<sub-command> [flags]", "show data link information",
4380 dladm, dladm_help },
4381 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4382 mi },
4383 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4384 "show network statistics", netstat },
4385 { "sonode", "?[-f inet | inet6 | unix | #] "
4386 "[-t stream | dgram | raw | #] [-p #]",
4387 "filter and display sonode", sonode },
4388
4389 /* from netstack.c */
4390 { "netstack", "", "show stack instances", netstack },
4391 { "netstackid2netstack", ":",
4392 "translate a netstack id to its netstack_t",
4393 netstackid2netstack },
4394
4395 /* from nvpair.c */
4396 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4397 nvpair_print },
4398 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4399 print_nvlist },
4400
4401 /* from pg.c */
4402 { "pg", "?[-q]", "display a pg", pg},
4403
4404 /* from rctl.c */
4405 { "rctl_dict", "?", "print systemwide default rctl definitions",
4406 rctl_dict },
4407 { "rctl_list", ":[handle]", "print rctls for the given proc",
4408 rctl_list },
4409 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4410 rctl },
4411 { "rctl_validate", ":[-v] [-n #]", "test resource control value "
4412 "sequence", rctl_validate },
4413
4414 /* from sobj.c */
4415 { "rwlock", ":", "dump out a readers/writer lock", rwlock },
4416 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4417 mutex_help },
4418 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4419 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4420 { "turnstile", "?", "display a turnstile", turnstile },
4421
4422 /* from stream.c */
4423 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4424 "print an mblk", mblk_prt, mblk_help },
4425 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4426 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4427 mblk2dblk },
4428 { "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4429 { "q2rdq", ":", "print read queue for a given queue", q2rdq },
4430 { "q2syncq", ":", "print syncq for a given queue", q2syncq },
4431 { "q2stream", ":", "print stream pointer for a given queue", q2stream },
4432 { "q2wrq", ":", "print write queue for a given queue", q2wrq },
4433 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4434 "filter and display STREAM queue", queue, queue_help },
4435 { "stdata", ":[-q|v] [-f flag] [-F flag]",
4436 "filter and display STREAM head", stdata, stdata_help },
4437 { "str2mate", ":", "print mate of this stream", str2mate },
4438 { "str2wrq", ":", "print write queue of this stream", str2wrq },
4439 { "stream", ":", "display STREAM", stream },
4440 { "strftevent", ":", "print STREAMS flow trace event", strftevent },
4441 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4442 "filter and display STREAM sync queue", syncq, syncq_help },
4443 { "syncq2q", ":", "print queue for a given syncq", syncq2q },
4444
4445 /* from taskq.c */
4446 { "taskq", ":[-atT] [-m min_maxq] [-n name]",
4447 "display a taskq", taskq, taskq_help },
4448 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4449
4450 /* from thread.c */
4451 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4452 thread_help },
4453 { "threadlist", "?[-t] [-v [count]]",
4454 "display threads and associated C stack traces", threadlist,
4455 threadlist_help },
4456 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4457 stackinfo_help },
4458
4459 /* from tsd.c */
4460 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4461 { "tsdtot", ":", "find thread with this tsd", tsdtot },
4462
4463 /*
4464 * typegraph does not work under kmdb, as it requires too much memory
4465 * for its internal data structures.
4466 */
4467 #ifndef _KMDB
4468 /* from typegraph.c */
4469 { "findlocks", ":", "find locks held by specified thread", findlocks },
4470 { "findfalse", "?[-v]", "find potentially falsely shared structures",
4471 findfalse },
4472 { "typegraph", NULL, "build type graph", typegraph },
4473 { "istype", ":type", "manually set object type", istype },
4474 { "notype", ":", "manually clear object type", notype },
4475 { "whattype", ":", "determine object type", whattype },
4476 #endif
4477
4478 /* from vfs.c */
4479 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4480 { "pfiles", ":[-fp]", "print process file information", pfiles,
4481 pfiles_help },
4482
4483 /* from zone.c */
4484 { "zid2zone", ":", "find the zone_t with the given zone id",
4485 zid2zone },
4486 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4487 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4488 "selected zones", zsd },
4489
4490 #ifndef _KMDB
4491 { "gcore", NULL, "generate a user core for the given process",
4492 gcore_dcmd },
4493 #endif
4494
4495 { NULL }
4496 };
4497
4498 static const mdb_walker_t walkers[] = {
4499
4500 /* from genunix.c */
4501 { "callouts_bytime", "walk callouts by list chain (expiration time)",
4502 callout_walk_init, callout_walk_step, callout_walk_fini,
4503 (void *)CALLOUT_WALK_BYLIST },
4504 { "callouts_byid", "walk callouts by id hash chain",
4505 callout_walk_init, callout_walk_step, callout_walk_fini,
4506 (void *)CALLOUT_WALK_BYID },
4507 { "callout_list", "walk a callout list", callout_list_walk_init,
4508 callout_list_walk_step, callout_list_walk_fini },
4509 { "callout_table", "walk callout table array", callout_table_walk_init,
4510 callout_table_walk_step, callout_table_walk_fini },
4511 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4512 { "dnlc", "walk dnlc entries",
4513 dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini },
4514 { "ereportq_dump", "walk list of ereports in dump error queue",
4515 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4516 { "ereportq_pend", "walk list of ereports in pending error queue",
4517 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4518 { "errorq", "walk list of system error queues",
4519 errorq_walk_init, errorq_walk_step, NULL },
4520 { "errorq_data", "walk pending error queue data buffers",
4521 eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4522 { "allfile", "given a proc pointer, list all file pointers",
4523 file_walk_init, allfile_walk_step, file_walk_fini },
4524 { "file", "given a proc pointer, list of open file pointers",
4525 file_walk_init, file_walk_step, file_walk_fini },
4526 { "lock_descriptor", "walk lock_descriptor_t structures",
4527 ld_walk_init, ld_walk_step, NULL },
4528 { "lock_graph", "walk lock graph",
4529 lg_walk_init, lg_walk_step, NULL },
4530 { "port", "given a proc pointer, list of created event ports",
4531 port_walk_init, port_walk_step, NULL },
4532 { "portev", "given a port pointer, list of events in the queue",
4533 portev_walk_init, portev_walk_step, portev_walk_fini },
4534 { "proc", "list of active proc_t structures",
4535 proc_walk_init, proc_walk_step, proc_walk_fini },
4536 { "projects", "walk a list of kernel projects",
4537 project_walk_init, project_walk_step, NULL },
4538 { "sysevent_pend", "walk sysevent pending queue",
4539 sysevent_pend_walk_init, sysevent_walk_step,
4540 sysevent_walk_fini},
4541 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4542 sysevent_walk_step, sysevent_walk_fini},
4543 { "sysevent_channel", "walk sysevent channel subscriptions",
4544 sysevent_channel_walk_init, sysevent_channel_walk_step,
4545 sysevent_channel_walk_fini},
4546 { "sysevent_class_list", "walk sysevent subscription's class list",
4547 sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4548 sysevent_class_list_walk_fini},
4549 { "sysevent_subclass_list",
4550 "walk sysevent subscription's subclass list",
4551 sysevent_subclass_list_walk_init,
4552 sysevent_subclass_list_walk_step,
4553 sysevent_subclass_list_walk_fini},
4554 { "task", "given a task pointer, walk its processes",
4555 task_walk_init, task_walk_step, NULL },
4556
4557 /* from avl.c */
4558 { AVL_WALK_NAME, AVL_WALK_DESC,
4559 avl_walk_init, avl_walk_step, avl_walk_fini },
4560
4561 /* from bio.c */
4562 { "buf", "walk the bio buf hash",
4563 buf_walk_init, buf_walk_step, buf_walk_fini },
4564
4565 /* from contract.c */
4566 { "contract", "walk all contracts, or those of the specified type",
4567 ct_walk_init, generic_walk_step, NULL },
4568 { "ct_event", "walk events on a contract event queue",
4569 ct_event_walk_init, generic_walk_step, NULL },
4570 { "ct_listener", "walk contract event queue listeners",
4571 ct_listener_walk_init, generic_walk_step, NULL },
4572
4573 /* from cpupart.c */
4574 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4575 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4576 NULL },
4577 { "cpupart_walk", "walk the set of cpu partitions",
4578 cpupart_walk_init, cpupart_walk_step, NULL },
4579
4580 /* from ctxop.c */
4581 { "ctxop", "walk list of context ops on a thread",
4582 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4583
4584 /* from cyclic.c */
4585 { "cyccpu", "walk per-CPU cyc_cpu structures",
4586 cyccpu_walk_init, cyccpu_walk_step, NULL },
4587 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4588 cycomni_walk_init, cycomni_walk_step, NULL },
4589 { "cyctrace", "walk cyclic trace buffer",
4590 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4591
4592 /* from devinfo.c */
4593 { "binding_hash", "walk all entries in binding hash table",
4594 binding_hash_walk_init, binding_hash_walk_step, NULL },
4595 { "devinfo", "walk devinfo tree or subtree",
4596 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4597 { "devinfo_audit_log", "walk devinfo audit system-wide log",
4598 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4599 devinfo_audit_log_walk_fini},
4600 { "devinfo_audit_node", "walk per-devinfo audit history",
4601 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4602 devinfo_audit_node_walk_fini},
4603 { "devinfo_children", "walk children of devinfo node",
4604 devinfo_children_walk_init, devinfo_children_walk_step,
4605 devinfo_children_walk_fini },
4606 { "devinfo_parents", "walk ancestors of devinfo node",
4607 devinfo_parents_walk_init, devinfo_parents_walk_step,
4608 devinfo_parents_walk_fini },
4609 { "devinfo_siblings", "walk siblings of devinfo node",
4610 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4611 { "devi_next", "walk devinfo list",
4612 NULL, devi_next_walk_step, NULL },
4613 { "devnames", "walk devnames array",
4614 devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4615 { "minornode", "given a devinfo node, walk minor nodes",
4616 minornode_walk_init, minornode_walk_step, NULL },
4617 { "softstate",
4618 "given an i_ddi_soft_state*, list all in-use driver stateps",
4619 soft_state_walk_init, soft_state_walk_step,
4620 NULL, NULL },
4621 { "softstate_all",
4622 "given an i_ddi_soft_state*, list all driver stateps",
4623 soft_state_walk_init, soft_state_all_walk_step,
4624 NULL, NULL },
4625 { "devinfo_fmc",
4626 "walk a fault management handle cache active list",
4627 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4628
4629 /* from group.c */
4630 { "group", "walk all elements of a group",
4631 group_walk_init, group_walk_step, NULL },
4632
4633 /* from irm.c */
4634 { "irmpools", "walk global list of interrupt pools",
4635 irmpools_walk_init, list_walk_step, list_walk_fini },
4636 { "irmreqs", "walk list of interrupt requests in an interrupt pool",
4637 irmreqs_walk_init, list_walk_step, list_walk_fini },
4638
4639 /* from kmem.c */
4640 { "allocdby", "given a thread, walk its allocated bufctls",
4641 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4642 { "bufctl", "walk a kmem cache's bufctls",
4643 bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4644 { "bufctl_history", "walk the available history of a bufctl",
4645 bufctl_history_walk_init, bufctl_history_walk_step,
4646 bufctl_history_walk_fini },
4647 { "freedby", "given a thread, walk its freed bufctls",
4648 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4649 { "freectl", "walk a kmem cache's free bufctls",
4650 freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4651 { "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4652 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4653 { "freemem", "walk a kmem cache's free memory",
4654 freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4655 { "freemem_constructed", "walk a kmem cache's constructed free memory",
4656 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4657 { "kmem", "walk a kmem cache",
4658 kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4659 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4660 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4661 { "kmem_hash", "given a kmem cache, walk its allocated hash table",
4662 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4663 { "kmem_log", "walk the kmem transaction log",
4664 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4665 { "kmem_slab", "given a kmem cache, walk its slabs",
4666 kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4667 { "kmem_slab_partial",
4668 "given a kmem cache, walk its partially allocated slabs (min 1)",
4669 kmem_slab_walk_partial_init, combined_walk_step,
4670 combined_walk_fini },
4671 { "vmem", "walk vmem structures in pre-fix, depth-first order",
4672 vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4673 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4674 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4675 { "vmem_free", "given a vmem_t, walk its free vmem_segs",
4676 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4677 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4678 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4679 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4680 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4681 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4682 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4683
4684 /* from ldi.c */
4685 { "ldi_handle", "walk the layered driver handle hash",
4686 ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4687 { "ldi_ident", "walk the layered driver identifier hash",
4688 ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4689
4690 /* from leaky.c + leaky_subr.c */
4691 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4692 "stack trace",
4693 leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4694 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4695 "leaks w/ same stack trace",
4696 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4697
4698 /* from lgrp.c */
4699 { "lgrp_cpulist", "walk CPUs in a given lgroup",
4700 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4701 { "lgrptbl", "walk lgroup table",
4702 lgrp_walk_init, lgrp_walk_step, NULL },
4703 { "lgrp_parents", "walk up lgroup lineage from given lgroup",
4704 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4705 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4706 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4707 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4708 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4709
4710 /* from list.c */
4711 { LIST_WALK_NAME, LIST_WALK_DESC,
4712 list_walk_init, list_walk_step, list_walk_fini },
4713
4714 /* from mdi.c */
4715 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4716 mdi_pi_client_link_walk_init,
4717 mdi_pi_client_link_walk_step,
4718 mdi_pi_client_link_walk_fini },
4719 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4720 mdi_pi_phci_link_walk_init,
4721 mdi_pi_phci_link_walk_step,
4722 mdi_pi_phci_link_walk_fini },
4723 { "mdiphci_list", "Walker for mdi_phci ph_next link",
4724 mdi_phci_ph_next_walk_init,
4725 mdi_phci_ph_next_walk_step,
4726 mdi_phci_ph_next_walk_fini },
4727
4728 /* from memory.c */
4729 { "allpages", "walk all pages, including free pages",
4730 allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4731 { "anon", "given an amp, list allocated anon structures",
4732 anon_walk_init, anon_walk_step, anon_walk_fini,
4733 ANON_WALK_ALLOC },
4734 { "anon_all", "given an amp, list contents of all anon slots",
4735 anon_walk_init, anon_walk_step, anon_walk_fini,
4736 ANON_WALK_ALL },
4737 { "memlist", "walk specified memlist",
4738 NULL, memlist_walk_step, NULL },
4739 { "page", "walk all pages, or those from the specified vnode",
4740 page_walk_init, page_walk_step, page_walk_fini },
4741 { "seg", "given an as, list of segments",
4742 seg_walk_init, avl_walk_step, avl_walk_fini },
4743 { "segvn_anon",
4744 "given a struct segvn_data, list allocated anon structures",
4745 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4746 ANON_WALK_ALLOC },
4747 { "segvn_anon_all",
4748 "given a struct segvn_data, list contents of all anon slots",
4749 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4750 ANON_WALK_ALL },
4751 { "segvn_pages",
4752 "given a struct segvn_data, list resident pages in "
4753 "offset order",
4754 segvn_pages_walk_init, segvn_pages_walk_step,
4755 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4756 { "segvn_pages_all",
4757 "for each offset in a struct segvn_data, give page_t pointer "
4758 "(if resident), or NULL.",
4759 segvn_pages_walk_init, segvn_pages_walk_step,
4760 segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4761 { "swapinfo", "walk swapinfo structures",
4762 swap_walk_init, swap_walk_step, NULL },
4763
4764 /* from modhash.c */
4765 { "modhash", "walk list of mod_hash structures", modhash_walk_init,
4766 modhash_walk_step, NULL },
4767 { "modent", "walk list of entries in a given mod_hash",
4768 modent_walk_init, modent_walk_step, modent_walk_fini },
4769 { "modchain", "walk list of entries in a given mod_hash_entry",
4770 NULL, modchain_walk_step, NULL },
4771
4772 /* from net.c */
4773 { "icmp", "walk ICMP control structures using MI for all stacks",
4774 mi_payload_walk_init, mi_payload_walk_step, NULL,
4775 &mi_icmp_arg },
4776 { "mi", "given a MI_O, walk the MI",
4777 mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4778 { "sonode", "given a sonode, walk its children",
4779 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4780 { "icmp_stacks", "walk all the icmp_stack_t",
4781 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4782 { "tcp_stacks", "walk all the tcp_stack_t",
4783 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4784 { "udp_stacks", "walk all the udp_stack_t",
4785 udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4786
4787 /* from netstack.c */
4788 { "netstack", "walk a list of kernel netstacks",
4789 netstack_walk_init, netstack_walk_step, NULL },
4790
4791 /* from nvpair.c */
4792 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4793 nvpair_walk_init, nvpair_walk_step, NULL },
4794
4795 /* from pci.c */
4796 { "pcie_bus", "walk all pcie_bus_t's", pcie_bus_walk_init,
4797 pcie_bus_walk_step, NULL },
4798
4799 /* from rctl.c */
4800 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4801 rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4802 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4803 rctl_set_walk_step, NULL },
4804 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4805 rctl_val_walk_init, rctl_val_walk_step },
4806
4807 /* from sobj.c */
4808 { "blocked", "walk threads blocked on a given sobj",
4809 blocked_walk_init, blocked_walk_step, NULL },
4810 { "wchan", "given a wchan, list of blocked threads",
4811 wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4812
4813 /* from stream.c */
4814 { "b_cont", "walk mblk_t list using b_cont",
4815 mblk_walk_init, b_cont_step, mblk_walk_fini },
4816 { "b_next", "walk mblk_t list using b_next",
4817 mblk_walk_init, b_next_step, mblk_walk_fini },
4818 { "qlink", "walk queue_t list using q_link",
4819 queue_walk_init, queue_link_step, queue_walk_fini },
4820 { "qnext", "walk queue_t list using q_next",
4821 queue_walk_init, queue_next_step, queue_walk_fini },
4822 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4823 strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4824 { "readq", "walk read queue side of stdata",
4825 str_walk_init, strr_walk_step, str_walk_fini },
4826 { "writeq", "walk write queue side of stdata",
4827 str_walk_init, strw_walk_step, str_walk_fini },
4828
4829 /* from taskq.c */
4830 { "taskq_thread", "given a taskq_t, list all of its threads",
4831 taskq_thread_walk_init,
4832 taskq_thread_walk_step,
4833 taskq_thread_walk_fini },
4834 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4835 taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4836
4837 /* from thread.c */
4838 { "deathrow", "walk threads on both lwp_ and thread_deathrow",
4839 deathrow_walk_init, deathrow_walk_step, NULL },
4840 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4841 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4842 { "cpupart_dispq",
4843 "given a cpupart_t, walk threads in dispatcher queues",
4844 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4845 { "lwp_deathrow", "walk lwp_deathrow",
4846 lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4847 { "thread", "global or per-process kthread_t structures",
4848 thread_walk_init, thread_walk_step, thread_walk_fini },
4849 { "thread_deathrow", "walk threads on thread_deathrow",
4850 thread_deathrow_walk_init, deathrow_walk_step, NULL },
4851
4852 /* from tsd.c */
4853 { "tsd", "walk list of thread-specific data",
4854 tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4855
4856 /* from tsol.c */
4857 { "tnrh", "walk remote host cache structures",
4858 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4859 { "tnrhtp", "walk remote host template structures",
4860 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4861
4862 /*
4863 * typegraph does not work under kmdb, as it requires too much memory
4864 * for its internal data structures.
4865 */
4866 #ifndef _KMDB
4867 /* from typegraph.c */
4868 { "typeconflict", "walk buffers with conflicting type inferences",
4869 typegraph_walk_init, typeconflict_walk_step },
4870 { "typeunknown", "walk buffers with unknown types",
4871 typegraph_walk_init, typeunknown_walk_step },
4872 #endif
4873
4874 /* from vfs.c */
4875 { "vfs", "walk file system list",
4876 vfs_walk_init, vfs_walk_step },
4877
4878 /* from zone.c */
4879 { "zone", "walk a list of kernel zones",
4880 zone_walk_init, zone_walk_step, NULL },
4881 { "zsd", "walk list of zsd entries for a zone",
4882 zsd_walk_init, zsd_walk_step, NULL },
4883
4884 { NULL }
4885 };
4886
4887 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4888
4889 /*ARGSUSED*/
4890 static void
genunix_statechange_cb(void * ignored)4891 genunix_statechange_cb(void *ignored)
4892 {
4893 /*
4894 * Force ::findleaks and ::stacks to let go any cached state.
4895 */
4896 leaky_cleanup(1);
4897 stacks_cleanup(1);
4898
4899 kmem_statechange(); /* notify kmem */
4900 }
4901
4902 const mdb_modinfo_t *
_mdb_init(void)4903 _mdb_init(void)
4904 {
4905 kmem_init();
4906
4907 (void) mdb_callback_add(MDB_CALLBACK_STCHG,
4908 genunix_statechange_cb, NULL);
4909
4910 #ifndef _KMDB
4911 gcore_init();
4912 #endif
4913
4914 return (&modinfo);
4915 }
4916
4917 void
_mdb_fini(void)4918 _mdb_fini(void)
4919 {
4920 leaky_cleanup(1);
4921 stacks_cleanup(1);
4922 }
4923