xref: /linux/tools/testing/selftests/kvm/arm64/set_id_regs.c (revision 43db1111073049220381944af4a3b8a5400eda71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * set_id_regs - Test for setting ID register from usersapce.
4  *
5  * Copyright (c) 2023 Google LLC.
6  *
7  *
8  * Test that KVM supports setting ID registers from userspace and handles the
9  * feature set correctly.
10  */
11 
12 #include <stdint.h>
13 #include "kvm_util.h"
14 #include "processor.h"
15 #include "test_util.h"
16 #include <linux/bitfield.h>
17 
18 bool have_cap_arm_mte;
19 
20 enum ftr_type {
21 	FTR_EXACT,			/* Use a predefined safe value */
22 	FTR_LOWER_SAFE,			/* Smaller value is safe */
23 	FTR_HIGHER_SAFE,		/* Bigger value is safe */
24 	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
25 	FTR_END,			/* Mark the last ftr bits */
26 };
27 
28 #define FTR_SIGNED	true	/* Value should be treated as signed */
29 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
30 
31 struct reg_ftr_bits {
32 	char *name;
33 	bool sign;
34 	enum ftr_type type;
35 	uint8_t shift;
36 	uint64_t mask;
37 	/*
38 	 * For FTR_EXACT, safe_val is used as the exact safe value.
39 	 * For FTR_LOWER_SAFE, safe_val is used as the minimal safe value.
40 	 */
41 	int64_t safe_val;
42 };
43 
44 struct test_feature_reg {
45 	uint32_t reg;
46 	const struct reg_ftr_bits *ftr_bits;
47 };
48 
49 #define __REG_FTR_BITS(NAME, SIGNED, TYPE, SHIFT, MASK, SAFE_VAL)	\
50 	{								\
51 		.name = #NAME,						\
52 		.sign = SIGNED,						\
53 		.type = TYPE,						\
54 		.shift = SHIFT,						\
55 		.mask = MASK,						\
56 		.safe_val = SAFE_VAL,					\
57 	}
58 
59 #define REG_FTR_BITS(type, reg, field, safe_val) \
60 	__REG_FTR_BITS(reg##_##field, FTR_UNSIGNED, type, reg##_##field##_SHIFT, \
61 		       reg##_##field##_MASK, safe_val)
62 
63 #define S_REG_FTR_BITS(type, reg, field, safe_val) \
64 	__REG_FTR_BITS(reg##_##field, FTR_SIGNED, type, reg##_##field##_SHIFT, \
65 		       reg##_##field##_MASK, safe_val)
66 
67 #define REG_FTR_END					\
68 	{						\
69 		.type = FTR_END,			\
70 	}
71 
72 static const struct reg_ftr_bits ftr_id_aa64dfr0_el1[] = {
73 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DoubleLock, 0),
74 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, WRPs, 0),
75 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, PMUVer, 0),
76 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DebugVer, ID_AA64DFR0_EL1_DebugVer_IMP),
77 	REG_FTR_END,
78 };
79 
80 static const struct reg_ftr_bits ftr_id_dfr0_el1[] = {
81 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, PerfMon, ID_DFR0_EL1_PerfMon_PMUv3),
82 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, CopDbg, ID_DFR0_EL1_CopDbg_Armv8),
83 	REG_FTR_END,
84 };
85 
86 static const struct reg_ftr_bits ftr_id_aa64isar0_el1[] = {
87 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RNDR, 0),
88 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TLB, 0),
89 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TS, 0),
90 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, FHM, 0),
91 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, DP, 0),
92 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM4, 0),
93 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM3, 0),
94 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA3, 0),
95 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RDM, 0),
96 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TME, 0),
97 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, ATOMIC, 0),
98 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, CRC32, 0),
99 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA2, 0),
100 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA1, 0),
101 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, AES, 0),
102 	REG_FTR_END,
103 };
104 
105 static const struct reg_ftr_bits ftr_id_aa64isar1_el1[] = {
106 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LS64, 0),
107 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, XS, 0),
108 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, I8MM, 0),
109 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DGH, 0),
110 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, BF16, 0),
111 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SPECRES, 0),
112 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SB, 0),
113 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FRINTTS, 0),
114 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LRCPC, 0),
115 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FCMA, 0),
116 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, JSCVT, 0),
117 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DPB, 0),
118 	REG_FTR_END,
119 };
120 
121 static const struct reg_ftr_bits ftr_id_aa64isar2_el1[] = {
122 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, BC, 0),
123 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, RPRES, 0),
124 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, WFxT, 0),
125 	REG_FTR_END,
126 };
127 
128 static const struct reg_ftr_bits ftr_id_aa64pfr0_el1[] = {
129 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV3, 0),
130 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV2, 0),
131 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, DIT, 0),
132 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, SEL2, 0),
133 	REG_FTR_BITS(FTR_EXACT, ID_AA64PFR0_EL1, GIC, 0),
134 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL3, 1),
135 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL2, 1),
136 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL1, 1),
137 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL0, 1),
138 	REG_FTR_END,
139 };
140 
141 static const struct reg_ftr_bits ftr_id_aa64pfr1_el1[] = {
142 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, CSV2_frac, 0),
143 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, SSBS, ID_AA64PFR1_EL1_SSBS_NI),
144 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, BT, 0),
145 	REG_FTR_END,
146 };
147 
148 static const struct reg_ftr_bits ftr_id_aa64mmfr0_el1[] = {
149 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ECV, 0),
150 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, EXS, 0),
151 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN4_2, 1),
152 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN64_2, 1),
153 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN16_2, 1),
154 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN4, 0),
155 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN64, 0),
156 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN16, 0),
157 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGENDEL0, 0),
158 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, SNSMEM, 0),
159 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGEND, 0),
160 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, PARANGE, 0),
161 	REG_FTR_END,
162 };
163 
164 static const struct reg_ftr_bits ftr_id_aa64mmfr1_el1[] = {
165 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TIDCP1, 0),
166 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, AFP, 0),
167 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, ETS, 0),
168 	REG_FTR_BITS(FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1, SpecSEI, 0),
169 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, PAN, 0),
170 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, LO, 0),
171 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HPDS, 0),
172 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HAFDBS, 0),
173 	REG_FTR_END,
174 };
175 
176 static const struct reg_ftr_bits ftr_id_aa64mmfr2_el1[] = {
177 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, E0PD, 0),
178 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, BBM, 0),
179 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, TTL, 0),
180 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, AT, 0),
181 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, ST, 0),
182 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, VARange, 0),
183 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, IESB, 0),
184 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, LSM, 0),
185 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, UAO, 0),
186 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, CnP, 0),
187 	REG_FTR_END,
188 };
189 
190 static const struct reg_ftr_bits ftr_id_aa64zfr0_el1[] = {
191 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F64MM, 0),
192 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F32MM, 0),
193 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, I8MM, 0),
194 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SM4, 0),
195 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SHA3, 0),
196 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BF16, 0),
197 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BitPerm, 0),
198 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, AES, 0),
199 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SVEver, 0),
200 	REG_FTR_END,
201 };
202 
203 #define TEST_REG(id, table)			\
204 	{					\
205 		.reg = id,			\
206 		.ftr_bits = &((table)[0]),	\
207 	}
208 
209 static struct test_feature_reg test_regs[] = {
210 	TEST_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0_el1),
211 	TEST_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0_el1),
212 	TEST_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0_el1),
213 	TEST_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1_el1),
214 	TEST_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2_el1),
215 	TEST_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0_el1),
216 	TEST_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1_el1),
217 	TEST_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0_el1),
218 	TEST_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1_el1),
219 	TEST_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2_el1),
220 	TEST_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0_el1),
221 };
222 
223 #define GUEST_REG_SYNC(id) GUEST_SYNC_ARGS(0, id, read_sysreg_s(id), 0, 0);
224 
guest_code(void)225 static void guest_code(void)
226 {
227 	GUEST_REG_SYNC(SYS_ID_AA64DFR0_EL1);
228 	GUEST_REG_SYNC(SYS_ID_DFR0_EL1);
229 	GUEST_REG_SYNC(SYS_ID_AA64ISAR0_EL1);
230 	GUEST_REG_SYNC(SYS_ID_AA64ISAR1_EL1);
231 	GUEST_REG_SYNC(SYS_ID_AA64ISAR2_EL1);
232 	GUEST_REG_SYNC(SYS_ID_AA64PFR0_EL1);
233 	GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1);
234 	GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1);
235 	GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1);
236 	GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1);
237 	GUEST_REG_SYNC(SYS_CTR_EL0);
238 	GUEST_REG_SYNC(SYS_MIDR_EL1);
239 	GUEST_REG_SYNC(SYS_REVIDR_EL1);
240 	GUEST_REG_SYNC(SYS_AIDR_EL1);
241 
242 	GUEST_DONE();
243 }
244 
245 /* Return a safe value to a given ftr_bits an ftr value */
get_safe_value(const struct reg_ftr_bits * ftr_bits,uint64_t ftr)246 uint64_t get_safe_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
247 {
248 	uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
249 
250 	if (ftr_bits->sign == FTR_UNSIGNED) {
251 		switch (ftr_bits->type) {
252 		case FTR_EXACT:
253 			ftr = ftr_bits->safe_val;
254 			break;
255 		case FTR_LOWER_SAFE:
256 			if (ftr > ftr_bits->safe_val)
257 				ftr--;
258 			break;
259 		case FTR_HIGHER_SAFE:
260 			if (ftr < ftr_max)
261 				ftr++;
262 			break;
263 		case FTR_HIGHER_OR_ZERO_SAFE:
264 			if (ftr == ftr_max)
265 				ftr = 0;
266 			else if (ftr != 0)
267 				ftr++;
268 			break;
269 		default:
270 			break;
271 		}
272 	} else if (ftr != ftr_max) {
273 		switch (ftr_bits->type) {
274 		case FTR_EXACT:
275 			ftr = ftr_bits->safe_val;
276 			break;
277 		case FTR_LOWER_SAFE:
278 			if (ftr > ftr_bits->safe_val)
279 				ftr--;
280 			break;
281 		case FTR_HIGHER_SAFE:
282 			if (ftr < ftr_max - 1)
283 				ftr++;
284 			break;
285 		case FTR_HIGHER_OR_ZERO_SAFE:
286 			if (ftr != 0 && ftr != ftr_max - 1)
287 				ftr++;
288 			break;
289 		default:
290 			break;
291 		}
292 	}
293 
294 	return ftr;
295 }
296 
297 /* Return an invalid value to a given ftr_bits an ftr value */
get_invalid_value(const struct reg_ftr_bits * ftr_bits,uint64_t ftr)298 uint64_t get_invalid_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
299 {
300 	uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
301 
302 	if (ftr_bits->sign == FTR_UNSIGNED) {
303 		switch (ftr_bits->type) {
304 		case FTR_EXACT:
305 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
306 			break;
307 		case FTR_LOWER_SAFE:
308 			ftr++;
309 			break;
310 		case FTR_HIGHER_SAFE:
311 			ftr--;
312 			break;
313 		case FTR_HIGHER_OR_ZERO_SAFE:
314 			if (ftr == 0)
315 				ftr = ftr_max;
316 			else
317 				ftr--;
318 			break;
319 		default:
320 			break;
321 		}
322 	} else if (ftr != ftr_max) {
323 		switch (ftr_bits->type) {
324 		case FTR_EXACT:
325 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
326 			break;
327 		case FTR_LOWER_SAFE:
328 			ftr++;
329 			break;
330 		case FTR_HIGHER_SAFE:
331 			ftr--;
332 			break;
333 		case FTR_HIGHER_OR_ZERO_SAFE:
334 			if (ftr == 0)
335 				ftr = ftr_max - 1;
336 			else
337 				ftr--;
338 			break;
339 		default:
340 			break;
341 		}
342 	} else {
343 		ftr = 0;
344 	}
345 
346 	return ftr;
347 }
348 
test_reg_set_success(struct kvm_vcpu * vcpu,uint64_t reg,const struct reg_ftr_bits * ftr_bits)349 static uint64_t test_reg_set_success(struct kvm_vcpu *vcpu, uint64_t reg,
350 				     const struct reg_ftr_bits *ftr_bits)
351 {
352 	uint8_t shift = ftr_bits->shift;
353 	uint64_t mask = ftr_bits->mask;
354 	uint64_t val, new_val, ftr;
355 
356 	val = vcpu_get_reg(vcpu, reg);
357 	ftr = (val & mask) >> shift;
358 
359 	ftr = get_safe_value(ftr_bits, ftr);
360 
361 	ftr <<= shift;
362 	val &= ~mask;
363 	val |= ftr;
364 
365 	vcpu_set_reg(vcpu, reg, val);
366 	new_val = vcpu_get_reg(vcpu, reg);
367 	TEST_ASSERT_EQ(new_val, val);
368 
369 	return new_val;
370 }
371 
test_reg_set_fail(struct kvm_vcpu * vcpu,uint64_t reg,const struct reg_ftr_bits * ftr_bits)372 static void test_reg_set_fail(struct kvm_vcpu *vcpu, uint64_t reg,
373 			      const struct reg_ftr_bits *ftr_bits)
374 {
375 	uint8_t shift = ftr_bits->shift;
376 	uint64_t mask = ftr_bits->mask;
377 	uint64_t val, old_val, ftr;
378 	int r;
379 
380 	val = vcpu_get_reg(vcpu, reg);
381 	ftr = (val & mask) >> shift;
382 
383 	ftr = get_invalid_value(ftr_bits, ftr);
384 
385 	old_val = val;
386 	ftr <<= shift;
387 	val &= ~mask;
388 	val |= ftr;
389 
390 	r = __vcpu_set_reg(vcpu, reg, val);
391 	TEST_ASSERT(r < 0 && errno == EINVAL,
392 		    "Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno);
393 
394 	val = vcpu_get_reg(vcpu, reg);
395 	TEST_ASSERT_EQ(val, old_val);
396 }
397 
398 static uint64_t test_reg_vals[KVM_ARM_FEATURE_ID_RANGE_SIZE];
399 
400 #define encoding_to_range_idx(encoding)							\
401 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(encoding), sys_reg_Op1(encoding),	\
402 				     sys_reg_CRn(encoding), sys_reg_CRm(encoding),	\
403 				     sys_reg_Op2(encoding))
404 
405 
test_vm_ftr_id_regs(struct kvm_vcpu * vcpu,bool aarch64_only)406 static void test_vm_ftr_id_regs(struct kvm_vcpu *vcpu, bool aarch64_only)
407 {
408 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
409 	struct reg_mask_range range = {
410 		.addr = (__u64)masks,
411 	};
412 	int ret;
413 
414 	/* KVM should return error when reserved field is not zero */
415 	range.reserved[0] = 1;
416 	ret = __vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
417 	TEST_ASSERT(ret, "KVM doesn't check invalid parameters.");
418 
419 	/* Get writable masks for feature ID registers */
420 	memset(range.reserved, 0, sizeof(range.reserved));
421 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
422 
423 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++) {
424 		const struct reg_ftr_bits *ftr_bits = test_regs[i].ftr_bits;
425 		uint32_t reg_id = test_regs[i].reg;
426 		uint64_t reg = KVM_ARM64_SYS_REG(reg_id);
427 		int idx;
428 
429 		/* Get the index to masks array for the idreg */
430 		idx = encoding_to_range_idx(reg_id);
431 
432 		for (int j = 0;  ftr_bits[j].type != FTR_END; j++) {
433 			/* Skip aarch32 reg on aarch64 only system, since they are RAZ/WI. */
434 			if (aarch64_only && sys_reg_CRm(reg_id) < 4) {
435 				ksft_test_result_skip("%s on AARCH64 only system\n",
436 						      ftr_bits[j].name);
437 				continue;
438 			}
439 
440 			/* Make sure the feature field is writable */
441 			TEST_ASSERT_EQ(masks[idx] & ftr_bits[j].mask, ftr_bits[j].mask);
442 
443 			test_reg_set_fail(vcpu, reg, &ftr_bits[j]);
444 
445 			test_reg_vals[idx] = test_reg_set_success(vcpu, reg,
446 								  &ftr_bits[j]);
447 
448 			ksft_test_result_pass("%s\n", ftr_bits[j].name);
449 		}
450 	}
451 }
452 
453 #define MPAM_IDREG_TEST	6
test_user_set_mpam_reg(struct kvm_vcpu * vcpu)454 static void test_user_set_mpam_reg(struct kvm_vcpu *vcpu)
455 {
456 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
457 	struct reg_mask_range range = {
458 		.addr = (__u64)masks,
459 	};
460 	uint64_t val;
461 	int idx, err;
462 
463 	/*
464 	 * If ID_AA64PFR0.MPAM is _not_ officially modifiable and is zero,
465 	 * check that if it can be set to 1, (i.e. it is supported by the
466 	 * hardware), that it can't be set to other values.
467 	 */
468 
469 	/* Get writable masks for feature ID registers */
470 	memset(range.reserved, 0, sizeof(range.reserved));
471 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
472 
473 	/* Writeable? Nothing to test! */
474 	idx = encoding_to_range_idx(SYS_ID_AA64PFR0_EL1);
475 	if ((masks[idx] & ID_AA64PFR0_EL1_MPAM_MASK) == ID_AA64PFR0_EL1_MPAM_MASK) {
476 		ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is officially writable, nothing to test\n");
477 		return;
478 	}
479 
480 	/* Get the id register value */
481 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
482 
483 	/* Try to set MPAM=0. This should always be possible. */
484 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
485 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 0);
486 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
487 	if (err)
488 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM=0 was not accepted\n");
489 	else
490 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=0 worked\n");
491 
492 	/* Try to set MPAM=1 */
493 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
494 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 1);
495 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
496 	if (err)
497 		ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is not writable, nothing to test\n");
498 	else
499 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=1 was writable\n");
500 
501 	/* Try to set MPAM=2 */
502 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
503 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 2);
504 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
505 	if (err)
506 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM not arbitrarily modifiable\n");
507 	else
508 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM value should not be ignored\n");
509 
510 	/* And again for ID_AA64PFR1_EL1.MPAM_frac */
511 	idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
512 	if ((masks[idx] & ID_AA64PFR1_EL1_MPAM_frac_MASK) == ID_AA64PFR1_EL1_MPAM_frac_MASK) {
513 		ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is officially writable, nothing to test\n");
514 		return;
515 	}
516 
517 	/* Get the id register value */
518 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
519 
520 	/* Try to set MPAM_frac=0. This should always be possible. */
521 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
522 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 0);
523 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
524 	if (err)
525 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM_frac=0 was not accepted\n");
526 	else
527 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=0 worked\n");
528 
529 	/* Try to set MPAM_frac=1 */
530 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
531 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 1);
532 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
533 	if (err)
534 		ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is not writable, nothing to test\n");
535 	else
536 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=1 was writable\n");
537 
538 	/* Try to set MPAM_frac=2 */
539 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
540 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 2);
541 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
542 	if (err)
543 		ksft_test_result_pass("ID_AA64PFR1_EL1.MPAM_frac not arbitrarily modifiable\n");
544 	else
545 		ksft_test_result_fail("ID_AA64PFR1_EL1.MPAM_frac value should not be ignored\n");
546 }
547 
548 #define MTE_IDREG_TEST 1
test_user_set_mte_reg(struct kvm_vcpu * vcpu)549 static void test_user_set_mte_reg(struct kvm_vcpu *vcpu)
550 {
551 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
552 	struct reg_mask_range range = {
553 		.addr = (__u64)masks,
554 	};
555 	uint64_t val;
556 	uint64_t mte;
557 	uint64_t mte_frac;
558 	int idx, err;
559 
560 	if (!have_cap_arm_mte) {
561 		ksft_test_result_skip("MTE capability not supported, nothing to test\n");
562 		return;
563 	}
564 
565 	/* Get writable masks for feature ID registers */
566 	memset(range.reserved, 0, sizeof(range.reserved));
567 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
568 
569 	idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
570 	if ((masks[idx] & ID_AA64PFR1_EL1_MTE_frac_MASK) == ID_AA64PFR1_EL1_MTE_frac_MASK) {
571 		ksft_test_result_skip("ID_AA64PFR1_EL1.MTE_frac is officially writable, nothing to test\n");
572 		return;
573 	}
574 
575 	/*
576 	 * When MTE is supported but MTE_ASYMM is not (ID_AA64PFR1_EL1.MTE == 2)
577 	 * ID_AA64PFR1_EL1.MTE_frac == 0xF indicates MTE_ASYNC is unsupported
578 	 * and MTE_frac == 0 indicates it is supported.
579 	 *
580 	 * As MTE_frac was previously unconditionally read as 0, check
581 	 * that the set to 0 succeeds but does not change MTE_frac
582 	 * from unsupported (0xF) to supported (0).
583 	 *
584 	 */
585 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
586 
587 	mte = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE), val);
588 	mte_frac = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac), val);
589 	if (mte != ID_AA64PFR1_EL1_MTE_MTE2 ||
590 	    mte_frac != ID_AA64PFR1_EL1_MTE_frac_NI) {
591 		ksft_test_result_skip("MTE_ASYNC or MTE_ASYMM are supported, nothing to test\n");
592 		return;
593 	}
594 
595 	/* Try to set MTE_frac=0. */
596 	val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK;
597 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MTE_frac_MASK, 0);
598 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
599 	if (err) {
600 		ksft_test_result_fail("ID_AA64PFR1_EL1.MTE_frac=0 was not accepted\n");
601 		return;
602 	}
603 
604 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
605 	mte_frac = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac), val);
606 	if (mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI)
607 		ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac=0 accepted and still 0xF\n");
608 	else
609 		ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac no longer 0xF\n");
610 }
611 
test_guest_reg_read(struct kvm_vcpu * vcpu)612 static void test_guest_reg_read(struct kvm_vcpu *vcpu)
613 {
614 	bool done = false;
615 	struct ucall uc;
616 
617 	while (!done) {
618 		vcpu_run(vcpu);
619 
620 		switch (get_ucall(vcpu, &uc)) {
621 		case UCALL_ABORT:
622 			REPORT_GUEST_ASSERT(uc);
623 			break;
624 		case UCALL_SYNC:
625 			/* Make sure the written values are seen by guest */
626 			TEST_ASSERT_EQ(test_reg_vals[encoding_to_range_idx(uc.args[2])],
627 				       uc.args[3]);
628 			break;
629 		case UCALL_DONE:
630 			done = true;
631 			break;
632 		default:
633 			TEST_FAIL("Unexpected ucall: %lu", uc.cmd);
634 		}
635 	}
636 }
637 
638 /* Politely lifted from arch/arm64/include/asm/cache.h */
639 /* Ctypen, bits[3(n - 1) + 2 : 3(n - 1)], for n = 1 to 7 */
640 #define CLIDR_CTYPE_SHIFT(level)	(3 * (level - 1))
641 #define CLIDR_CTYPE_MASK(level)		(7 << CLIDR_CTYPE_SHIFT(level))
642 #define CLIDR_CTYPE(clidr, level)	\
643 	(((clidr) & CLIDR_CTYPE_MASK(level)) >> CLIDR_CTYPE_SHIFT(level))
644 
test_clidr(struct kvm_vcpu * vcpu)645 static void test_clidr(struct kvm_vcpu *vcpu)
646 {
647 	uint64_t clidr;
648 	int level;
649 
650 	clidr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1));
651 
652 	/* find the first empty level in the cache hierarchy */
653 	for (level = 1; level < 7; level++) {
654 		if (!CLIDR_CTYPE(clidr, level))
655 			break;
656 	}
657 
658 	/*
659 	 * If you have a mind-boggling 7 levels of cache, congratulations, you
660 	 * get to fix this.
661 	 */
662 	TEST_ASSERT(level <= 7, "can't find an empty level in cache hierarchy");
663 
664 	/* stick in a unified cache level */
665 	clidr |= BIT(2) << CLIDR_CTYPE_SHIFT(level);
666 
667 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), clidr);
668 	test_reg_vals[encoding_to_range_idx(SYS_CLIDR_EL1)] = clidr;
669 }
670 
test_ctr(struct kvm_vcpu * vcpu)671 static void test_ctr(struct kvm_vcpu *vcpu)
672 {
673 	u64 ctr;
674 
675 	ctr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0));
676 	ctr &= ~CTR_EL0_DIC_MASK;
677 	if (ctr & CTR_EL0_IminLine_MASK)
678 		ctr--;
679 
680 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), ctr);
681 	test_reg_vals[encoding_to_range_idx(SYS_CTR_EL0)] = ctr;
682 }
683 
test_id_reg(struct kvm_vcpu * vcpu,u32 id)684 static void test_id_reg(struct kvm_vcpu *vcpu, u32 id)
685 {
686 	u64 val;
687 
688 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(id));
689 	val++;
690 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(id), val);
691 	test_reg_vals[encoding_to_range_idx(id)] = val;
692 }
693 
test_vcpu_ftr_id_regs(struct kvm_vcpu * vcpu)694 static void test_vcpu_ftr_id_regs(struct kvm_vcpu *vcpu)
695 {
696 	test_clidr(vcpu);
697 	test_ctr(vcpu);
698 
699 	test_id_reg(vcpu, SYS_MPIDR_EL1);
700 	ksft_test_result_pass("%s\n", __func__);
701 }
702 
test_vcpu_non_ftr_id_regs(struct kvm_vcpu * vcpu)703 static void test_vcpu_non_ftr_id_regs(struct kvm_vcpu *vcpu)
704 {
705 	test_id_reg(vcpu, SYS_MIDR_EL1);
706 	test_id_reg(vcpu, SYS_REVIDR_EL1);
707 	test_id_reg(vcpu, SYS_AIDR_EL1);
708 
709 	ksft_test_result_pass("%s\n", __func__);
710 }
711 
test_assert_id_reg_unchanged(struct kvm_vcpu * vcpu,uint32_t encoding)712 static void test_assert_id_reg_unchanged(struct kvm_vcpu *vcpu, uint32_t encoding)
713 {
714 	size_t idx = encoding_to_range_idx(encoding);
715 	uint64_t observed;
716 
717 	observed = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding));
718 	TEST_ASSERT_EQ(test_reg_vals[idx], observed);
719 }
720 
test_reset_preserves_id_regs(struct kvm_vcpu * vcpu)721 static void test_reset_preserves_id_regs(struct kvm_vcpu *vcpu)
722 {
723 	/*
724 	 * Calls KVM_ARM_VCPU_INIT behind the scenes, which will do an
725 	 * architectural reset of the vCPU.
726 	 */
727 	aarch64_vcpu_setup(vcpu, NULL);
728 
729 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++)
730 		test_assert_id_reg_unchanged(vcpu, test_regs[i].reg);
731 
732 	test_assert_id_reg_unchanged(vcpu, SYS_MPIDR_EL1);
733 	test_assert_id_reg_unchanged(vcpu, SYS_CLIDR_EL1);
734 	test_assert_id_reg_unchanged(vcpu, SYS_CTR_EL0);
735 	test_assert_id_reg_unchanged(vcpu, SYS_MIDR_EL1);
736 	test_assert_id_reg_unchanged(vcpu, SYS_REVIDR_EL1);
737 	test_assert_id_reg_unchanged(vcpu, SYS_AIDR_EL1);
738 
739 	ksft_test_result_pass("%s\n", __func__);
740 }
741 
kvm_arch_vm_post_create(struct kvm_vm * vm)742 void kvm_arch_vm_post_create(struct kvm_vm *vm)
743 {
744 	if (vm_check_cap(vm, KVM_CAP_ARM_MTE)) {
745 		vm_enable_cap(vm, KVM_CAP_ARM_MTE, 0);
746 		have_cap_arm_mte = true;
747 	}
748 }
749 
main(void)750 int main(void)
751 {
752 	struct kvm_vcpu *vcpu;
753 	struct kvm_vm *vm;
754 	bool aarch64_only;
755 	uint64_t val, el0;
756 	int test_cnt;
757 
758 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES));
759 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_WRITABLE_IMP_ID_REGS));
760 
761 	vm = vm_create(1);
762 	vm_enable_cap(vm, KVM_CAP_ARM_WRITABLE_IMP_ID_REGS, 0);
763 	vcpu = vm_vcpu_add(vm, 0, guest_code);
764 
765 	/* Check for AARCH64 only system */
766 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
767 	el0 = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), val);
768 	aarch64_only = (el0 == ID_AA64PFR0_EL1_EL0_IMP);
769 
770 	ksft_print_header();
771 
772 	test_cnt = ARRAY_SIZE(ftr_id_aa64dfr0_el1) + ARRAY_SIZE(ftr_id_dfr0_el1) +
773 		   ARRAY_SIZE(ftr_id_aa64isar0_el1) + ARRAY_SIZE(ftr_id_aa64isar1_el1) +
774 		   ARRAY_SIZE(ftr_id_aa64isar2_el1) + ARRAY_SIZE(ftr_id_aa64pfr0_el1) +
775 		   ARRAY_SIZE(ftr_id_aa64pfr1_el1) + ARRAY_SIZE(ftr_id_aa64mmfr0_el1) +
776 		   ARRAY_SIZE(ftr_id_aa64mmfr1_el1) + ARRAY_SIZE(ftr_id_aa64mmfr2_el1) +
777 		   ARRAY_SIZE(ftr_id_aa64zfr0_el1) - ARRAY_SIZE(test_regs) + 3 +
778 		   MPAM_IDREG_TEST + MTE_IDREG_TEST;
779 
780 	ksft_set_plan(test_cnt);
781 
782 	test_vm_ftr_id_regs(vcpu, aarch64_only);
783 	test_vcpu_ftr_id_regs(vcpu);
784 	test_vcpu_non_ftr_id_regs(vcpu);
785 	test_user_set_mpam_reg(vcpu);
786 	test_user_set_mte_reg(vcpu);
787 
788 	test_guest_reg_read(vcpu);
789 
790 	test_reset_preserves_id_regs(vcpu);
791 
792 	kvm_vm_free(vm);
793 
794 	ksft_finished();
795 }
796