1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright © 2006-2015, Intel Corporation.
4 *
5 * Authors: Ashok Raj <ashok.raj@intel.com>
6 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
7 * David Woodhouse <David.Woodhouse@intel.com>
8 */
9
10 #ifndef _INTEL_IOMMU_H_
11 #define _INTEL_IOMMU_H_
12
13 #include <linux/types.h>
14 #include <linux/iova.h>
15 #include <linux/io.h>
16 #include <linux/idr.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/list.h>
19 #include <linux/iommu.h>
20 #include <linux/io-64-nonatomic-lo-hi.h>
21 #include <linux/dmar.h>
22 #include <linux/bitfield.h>
23 #include <linux/xarray.h>
24 #include <linux/perf_event.h>
25
26 #include <asm/cacheflush.h>
27 #include <asm/iommu.h>
28 #include <uapi/linux/iommufd.h>
29
30 /*
31 * VT-d hardware uses 4KiB page size regardless of host page size.
32 */
33 #define VTD_PAGE_SHIFT (12)
34 #define VTD_PAGE_SIZE (1UL << VTD_PAGE_SHIFT)
35 #define VTD_PAGE_MASK (((u64)-1) << VTD_PAGE_SHIFT)
36 #define VTD_PAGE_ALIGN(addr) (((addr) + VTD_PAGE_SIZE - 1) & VTD_PAGE_MASK)
37
38 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
39
40 #define VTD_STRIDE_SHIFT (9)
41 #define VTD_STRIDE_MASK (((u64)-1) << VTD_STRIDE_SHIFT)
42
43 #define DMA_PTE_READ BIT_ULL(0)
44 #define DMA_PTE_WRITE BIT_ULL(1)
45 #define DMA_PTE_LARGE_PAGE BIT_ULL(7)
46 #define DMA_PTE_SNP BIT_ULL(11)
47
48 #define DMA_FL_PTE_PRESENT BIT_ULL(0)
49 #define DMA_FL_PTE_US BIT_ULL(2)
50 #define DMA_FL_PTE_ACCESS BIT_ULL(5)
51 #define DMA_FL_PTE_DIRTY BIT_ULL(6)
52
53 #define DMA_SL_PTE_DIRTY_BIT 9
54 #define DMA_SL_PTE_DIRTY BIT_ULL(DMA_SL_PTE_DIRTY_BIT)
55
56 #define ADDR_WIDTH_5LEVEL (57)
57 #define ADDR_WIDTH_4LEVEL (48)
58
59 #define CONTEXT_TT_MULTI_LEVEL 0
60 #define CONTEXT_TT_DEV_IOTLB 1
61 #define CONTEXT_TT_PASS_THROUGH 2
62 #define CONTEXT_PASIDE BIT_ULL(3)
63
64 /*
65 * Intel IOMMU register specification per version 1.0 public spec.
66 */
67 #define DMAR_VER_REG 0x0 /* Arch version supported by this IOMMU */
68 #define DMAR_CAP_REG 0x8 /* Hardware supported capabilities */
69 #define DMAR_ECAP_REG 0x10 /* Extended capabilities supported */
70 #define DMAR_GCMD_REG 0x18 /* Global command register */
71 #define DMAR_GSTS_REG 0x1c /* Global status register */
72 #define DMAR_RTADDR_REG 0x20 /* Root entry table */
73 #define DMAR_CCMD_REG 0x28 /* Context command reg */
74 #define DMAR_FSTS_REG 0x34 /* Fault Status register */
75 #define DMAR_FECTL_REG 0x38 /* Fault control register */
76 #define DMAR_FEDATA_REG 0x3c /* Fault event interrupt data register */
77 #define DMAR_FEADDR_REG 0x40 /* Fault event interrupt addr register */
78 #define DMAR_FEUADDR_REG 0x44 /* Upper address register */
79 #define DMAR_AFLOG_REG 0x58 /* Advanced Fault control */
80 #define DMAR_PMEN_REG 0x64 /* Enable Protected Memory Region */
81 #define DMAR_PLMBASE_REG 0x68 /* PMRR Low addr */
82 #define DMAR_PLMLIMIT_REG 0x6c /* PMRR low limit */
83 #define DMAR_PHMBASE_REG 0x70 /* pmrr high base addr */
84 #define DMAR_PHMLIMIT_REG 0x78 /* pmrr high limit */
85 #define DMAR_IQH_REG 0x80 /* Invalidation queue head register */
86 #define DMAR_IQT_REG 0x88 /* Invalidation queue tail register */
87 #define DMAR_IQ_SHIFT 4 /* Invalidation queue head/tail shift */
88 #define DMAR_IQA_REG 0x90 /* Invalidation queue addr register */
89 #define DMAR_ICS_REG 0x9c /* Invalidation complete status register */
90 #define DMAR_IQER_REG 0xb0 /* Invalidation queue error record register */
91 #define DMAR_IRTA_REG 0xb8 /* Interrupt remapping table addr register */
92 #define DMAR_PQH_REG 0xc0 /* Page request queue head register */
93 #define DMAR_PQT_REG 0xc8 /* Page request queue tail register */
94 #define DMAR_PQA_REG 0xd0 /* Page request queue address register */
95 #define DMAR_PRS_REG 0xdc /* Page request status register */
96 #define DMAR_PECTL_REG 0xe0 /* Page request event control register */
97 #define DMAR_PEDATA_REG 0xe4 /* Page request event interrupt data register */
98 #define DMAR_PEADDR_REG 0xe8 /* Page request event interrupt addr register */
99 #define DMAR_PEUADDR_REG 0xec /* Page request event Upper address register */
100 #define DMAR_MTRRCAP_REG 0x100 /* MTRR capability register */
101 #define DMAR_MTRRDEF_REG 0x108 /* MTRR default type register */
102 #define DMAR_MTRR_FIX64K_00000_REG 0x120 /* MTRR Fixed range registers */
103 #define DMAR_MTRR_FIX16K_80000_REG 0x128
104 #define DMAR_MTRR_FIX16K_A0000_REG 0x130
105 #define DMAR_MTRR_FIX4K_C0000_REG 0x138
106 #define DMAR_MTRR_FIX4K_C8000_REG 0x140
107 #define DMAR_MTRR_FIX4K_D0000_REG 0x148
108 #define DMAR_MTRR_FIX4K_D8000_REG 0x150
109 #define DMAR_MTRR_FIX4K_E0000_REG 0x158
110 #define DMAR_MTRR_FIX4K_E8000_REG 0x160
111 #define DMAR_MTRR_FIX4K_F0000_REG 0x168
112 #define DMAR_MTRR_FIX4K_F8000_REG 0x170
113 #define DMAR_MTRR_PHYSBASE0_REG 0x180 /* MTRR Variable range registers */
114 #define DMAR_MTRR_PHYSMASK0_REG 0x188
115 #define DMAR_MTRR_PHYSBASE1_REG 0x190
116 #define DMAR_MTRR_PHYSMASK1_REG 0x198
117 #define DMAR_MTRR_PHYSBASE2_REG 0x1a0
118 #define DMAR_MTRR_PHYSMASK2_REG 0x1a8
119 #define DMAR_MTRR_PHYSBASE3_REG 0x1b0
120 #define DMAR_MTRR_PHYSMASK3_REG 0x1b8
121 #define DMAR_MTRR_PHYSBASE4_REG 0x1c0
122 #define DMAR_MTRR_PHYSMASK4_REG 0x1c8
123 #define DMAR_MTRR_PHYSBASE5_REG 0x1d0
124 #define DMAR_MTRR_PHYSMASK5_REG 0x1d8
125 #define DMAR_MTRR_PHYSBASE6_REG 0x1e0
126 #define DMAR_MTRR_PHYSMASK6_REG 0x1e8
127 #define DMAR_MTRR_PHYSBASE7_REG 0x1f0
128 #define DMAR_MTRR_PHYSMASK7_REG 0x1f8
129 #define DMAR_MTRR_PHYSBASE8_REG 0x200
130 #define DMAR_MTRR_PHYSMASK8_REG 0x208
131 #define DMAR_MTRR_PHYSBASE9_REG 0x210
132 #define DMAR_MTRR_PHYSMASK9_REG 0x218
133 #define DMAR_PERFCAP_REG 0x300
134 #define DMAR_PERFCFGOFF_REG 0x310
135 #define DMAR_PERFOVFOFF_REG 0x318
136 #define DMAR_PERFCNTROFF_REG 0x31c
137 #define DMAR_PERFINTRSTS_REG 0x324
138 #define DMAR_PERFINTRCTL_REG 0x328
139 #define DMAR_PERFEVNTCAP_REG 0x380
140 #define DMAR_ECMD_REG 0x400
141 #define DMAR_ECEO_REG 0x408
142 #define DMAR_ECRSP_REG 0x410
143 #define DMAR_ECCAP_REG 0x430
144
145 #define DMAR_IQER_REG_IQEI(reg) FIELD_GET(GENMASK_ULL(3, 0), reg)
146 #define DMAR_IQER_REG_ITESID(reg) FIELD_GET(GENMASK_ULL(47, 32), reg)
147 #define DMAR_IQER_REG_ICESID(reg) FIELD_GET(GENMASK_ULL(63, 48), reg)
148
149 #define OFFSET_STRIDE (9)
150
151 #define dmar_readq(a) readq(a)
152 #define dmar_writeq(a,v) writeq(v,a)
153 #define dmar_readl(a) readl(a)
154 #define dmar_writel(a, v) writel(v, a)
155
156 #define DMAR_VER_MAJOR(v) (((v) & 0xf0) >> 4)
157 #define DMAR_VER_MINOR(v) ((v) & 0x0f)
158
159 /*
160 * Decoding Capability Register
161 */
162 #define cap_esrtps(c) (((c) >> 63) & 1)
163 #define cap_esirtps(c) (((c) >> 62) & 1)
164 #define cap_ecmds(c) (((c) >> 61) & 1)
165 #define cap_fl5lp_support(c) (((c) >> 60) & 1)
166 #define cap_pi_support(c) (((c) >> 59) & 1)
167 #define cap_fl1gp_support(c) (((c) >> 56) & 1)
168 #define cap_read_drain(c) (((c) >> 55) & 1)
169 #define cap_write_drain(c) (((c) >> 54) & 1)
170 #define cap_max_amask_val(c) (((c) >> 48) & 0x3f)
171 #define cap_num_fault_regs(c) ((((c) >> 40) & 0xff) + 1)
172 #define cap_pgsel_inv(c) (((c) >> 39) & 1)
173
174 #define cap_super_page_val(c) (((c) >> 34) & 0xf)
175 #define cap_super_offset(c) (((find_first_bit(&cap_super_page_val(c), 4)) \
176 * OFFSET_STRIDE) + 21)
177
178 #define cap_fault_reg_offset(c) ((((c) >> 24) & 0x3ff) * 16)
179 #define cap_max_fault_reg_offset(c) \
180 (cap_fault_reg_offset(c) + cap_num_fault_regs(c) * 16)
181
182 #define cap_zlr(c) (((c) >> 22) & 1)
183 #define cap_isoch(c) (((c) >> 23) & 1)
184 #define cap_mgaw(c) ((((c) >> 16) & 0x3f) + 1)
185 #define cap_sagaw(c) (((c) >> 8) & 0x1f)
186 #define cap_caching_mode(c) (((c) >> 7) & 1)
187 #define cap_phmr(c) (((c) >> 6) & 1)
188 #define cap_plmr(c) (((c) >> 5) & 1)
189 #define cap_rwbf(c) (((c) >> 4) & 1)
190 #define cap_afl(c) (((c) >> 3) & 1)
191 #define cap_ndoms(c) (((unsigned long)1) << (4 + 2 * ((c) & 0x7)))
192 /*
193 * Extended Capability Register
194 */
195
196 #define ecap_pms(e) (((e) >> 51) & 0x1)
197 #define ecap_rps(e) (((e) >> 49) & 0x1)
198 #define ecap_smpwc(e) (((e) >> 48) & 0x1)
199 #define ecap_flts(e) (((e) >> 47) & 0x1)
200 #define ecap_slts(e) (((e) >> 46) & 0x1)
201 #define ecap_slads(e) (((e) >> 45) & 0x1)
202 #define ecap_smts(e) (((e) >> 43) & 0x1)
203 #define ecap_dit(e) (((e) >> 41) & 0x1)
204 #define ecap_pds(e) (((e) >> 42) & 0x1)
205 #define ecap_pasid(e) (((e) >> 40) & 0x1)
206 #define ecap_pss(e) (((e) >> 35) & 0x1f)
207 #define ecap_eafs(e) (((e) >> 34) & 0x1)
208 #define ecap_nwfs(e) (((e) >> 33) & 0x1)
209 #define ecap_srs(e) (((e) >> 31) & 0x1)
210 #define ecap_ers(e) (((e) >> 30) & 0x1)
211 #define ecap_prs(e) (((e) >> 29) & 0x1)
212 #define ecap_broken_pasid(e) (((e) >> 28) & 0x1)
213 #define ecap_dis(e) (((e) >> 27) & 0x1)
214 #define ecap_nest(e) (((e) >> 26) & 0x1)
215 #define ecap_mts(e) (((e) >> 25) & 0x1)
216 #define ecap_iotlb_offset(e) ((((e) >> 8) & 0x3ff) * 16)
217 #define ecap_max_iotlb_offset(e) (ecap_iotlb_offset(e) + 16)
218 #define ecap_coherent(e) ((e) & 0x1)
219 #define ecap_qis(e) ((e) & 0x2)
220 #define ecap_pass_through(e) (((e) >> 6) & 0x1)
221 #define ecap_eim_support(e) (((e) >> 4) & 0x1)
222 #define ecap_ir_support(e) (((e) >> 3) & 0x1)
223 #define ecap_dev_iotlb_support(e) (((e) >> 2) & 0x1)
224 #define ecap_max_handle_mask(e) (((e) >> 20) & 0xf)
225 #define ecap_sc_support(e) (((e) >> 7) & 0x1) /* Snooping Control */
226
227 /*
228 * Decoding Perf Capability Register
229 */
230 #define pcap_num_cntr(p) ((p) & 0xffff)
231 #define pcap_cntr_width(p) (((p) >> 16) & 0x7f)
232 #define pcap_num_event_group(p) (((p) >> 24) & 0x1f)
233 #define pcap_filters_mask(p) (((p) >> 32) & 0x1f)
234 #define pcap_interrupt(p) (((p) >> 50) & 0x1)
235 /* The counter stride is calculated as 2 ^ (x+10) bytes */
236 #define pcap_cntr_stride(p) (1ULL << ((((p) >> 52) & 0x7) + 10))
237
238 /*
239 * Decoding Perf Event Capability Register
240 */
241 #define pecap_es(p) ((p) & 0xfffffff)
242
243 /* Virtual command interface capability */
244 #define vccap_pasid(v) (((v) & DMA_VCS_PAS)) /* PASID allocation */
245
246 /* IOTLB_REG */
247 #define DMA_TLB_FLUSH_GRANU_OFFSET 60
248 #define DMA_TLB_GLOBAL_FLUSH (((u64)1) << 60)
249 #define DMA_TLB_DSI_FLUSH (((u64)2) << 60)
250 #define DMA_TLB_PSI_FLUSH (((u64)3) << 60)
251 #define DMA_TLB_IIRG(type) ((type >> 60) & 3)
252 #define DMA_TLB_IAIG(val) (((val) >> 57) & 3)
253 #define DMA_TLB_READ_DRAIN (((u64)1) << 49)
254 #define DMA_TLB_WRITE_DRAIN (((u64)1) << 48)
255 #define DMA_TLB_DID(id) (((u64)((id) & 0xffff)) << 32)
256 #define DMA_TLB_IVT (((u64)1) << 63)
257 #define DMA_TLB_IH_NONLEAF (((u64)1) << 6)
258 #define DMA_TLB_MAX_SIZE (0x3f)
259
260 /* INVALID_DESC */
261 #define DMA_CCMD_INVL_GRANU_OFFSET 61
262 #define DMA_ID_TLB_GLOBAL_FLUSH (((u64)1) << 4)
263 #define DMA_ID_TLB_DSI_FLUSH (((u64)2) << 4)
264 #define DMA_ID_TLB_PSI_FLUSH (((u64)3) << 4)
265 #define DMA_ID_TLB_READ_DRAIN (((u64)1) << 7)
266 #define DMA_ID_TLB_WRITE_DRAIN (((u64)1) << 6)
267 #define DMA_ID_TLB_DID(id) (((u64)((id & 0xffff) << 16)))
268 #define DMA_ID_TLB_IH_NONLEAF (((u64)1) << 6)
269 #define DMA_ID_TLB_ADDR(addr) (addr)
270 #define DMA_ID_TLB_ADDR_MASK(mask) (mask)
271
272 /* PMEN_REG */
273 #define DMA_PMEN_EPM (((u32)1)<<31)
274 #define DMA_PMEN_PRS (((u32)1)<<0)
275
276 /* GCMD_REG */
277 #define DMA_GCMD_TE (((u32)1) << 31)
278 #define DMA_GCMD_SRTP (((u32)1) << 30)
279 #define DMA_GCMD_SFL (((u32)1) << 29)
280 #define DMA_GCMD_EAFL (((u32)1) << 28)
281 #define DMA_GCMD_WBF (((u32)1) << 27)
282 #define DMA_GCMD_QIE (((u32)1) << 26)
283 #define DMA_GCMD_SIRTP (((u32)1) << 24)
284 #define DMA_GCMD_IRE (((u32) 1) << 25)
285 #define DMA_GCMD_CFI (((u32) 1) << 23)
286
287 /* GSTS_REG */
288 #define DMA_GSTS_TES (((u32)1) << 31)
289 #define DMA_GSTS_RTPS (((u32)1) << 30)
290 #define DMA_GSTS_FLS (((u32)1) << 29)
291 #define DMA_GSTS_AFLS (((u32)1) << 28)
292 #define DMA_GSTS_WBFS (((u32)1) << 27)
293 #define DMA_GSTS_QIES (((u32)1) << 26)
294 #define DMA_GSTS_IRTPS (((u32)1) << 24)
295 #define DMA_GSTS_IRES (((u32)1) << 25)
296 #define DMA_GSTS_CFIS (((u32)1) << 23)
297
298 /* DMA_RTADDR_REG */
299 #define DMA_RTADDR_SMT (((u64)1) << 10)
300
301 /* CCMD_REG */
302 #define DMA_CCMD_ICC (((u64)1) << 63)
303 #define DMA_CCMD_GLOBAL_INVL (((u64)1) << 61)
304 #define DMA_CCMD_DOMAIN_INVL (((u64)2) << 61)
305 #define DMA_CCMD_DEVICE_INVL (((u64)3) << 61)
306 #define DMA_CCMD_FM(m) (((u64)((m) & 0x3)) << 32)
307 #define DMA_CCMD_MASK_NOBIT 0
308 #define DMA_CCMD_MASK_1BIT 1
309 #define DMA_CCMD_MASK_2BIT 2
310 #define DMA_CCMD_MASK_3BIT 3
311 #define DMA_CCMD_SID(s) (((u64)((s) & 0xffff)) << 16)
312 #define DMA_CCMD_DID(d) ((u64)((d) & 0xffff))
313
314 /* ECMD_REG */
315 #define DMA_MAX_NUM_ECMD 256
316 #define DMA_MAX_NUM_ECMDCAP (DMA_MAX_NUM_ECMD / 64)
317 #define DMA_ECMD_REG_STEP 8
318 #define DMA_ECMD_ENABLE 0xf0
319 #define DMA_ECMD_DISABLE 0xf1
320 #define DMA_ECMD_FREEZE 0xf4
321 #define DMA_ECMD_UNFREEZE 0xf5
322 #define DMA_ECMD_OA_SHIFT 16
323 #define DMA_ECMD_ECRSP_IP 0x1
324 #define DMA_ECMD_ECCAP3 3
325 #define DMA_ECMD_ECCAP3_ECNTS BIT_ULL(48)
326 #define DMA_ECMD_ECCAP3_DCNTS BIT_ULL(49)
327 #define DMA_ECMD_ECCAP3_FCNTS BIT_ULL(52)
328 #define DMA_ECMD_ECCAP3_UFCNTS BIT_ULL(53)
329 #define DMA_ECMD_ECCAP3_ESSENTIAL (DMA_ECMD_ECCAP3_ECNTS | \
330 DMA_ECMD_ECCAP3_DCNTS | \
331 DMA_ECMD_ECCAP3_FCNTS | \
332 DMA_ECMD_ECCAP3_UFCNTS)
333
334 /* FECTL_REG */
335 #define DMA_FECTL_IM (((u32)1) << 31)
336
337 /* FSTS_REG */
338 #define DMA_FSTS_PFO (1 << 0) /* Primary Fault Overflow */
339 #define DMA_FSTS_PPF (1 << 1) /* Primary Pending Fault */
340 #define DMA_FSTS_IQE (1 << 4) /* Invalidation Queue Error */
341 #define DMA_FSTS_ICE (1 << 5) /* Invalidation Completion Error */
342 #define DMA_FSTS_ITE (1 << 6) /* Invalidation Time-out Error */
343 #define DMA_FSTS_PRO (1 << 7) /* Page Request Overflow */
344 #define dma_fsts_fault_record_index(s) (((s) >> 8) & 0xff)
345
346 /* FRCD_REG, 32 bits access */
347 #define DMA_FRCD_F (((u32)1) << 31)
348 #define dma_frcd_type(d) ((d >> 30) & 1)
349 #define dma_frcd_fault_reason(c) (c & 0xff)
350 #define dma_frcd_source_id(c) (c & 0xffff)
351 #define dma_frcd_pasid_value(c) (((c) >> 8) & 0xfffff)
352 #define dma_frcd_pasid_present(c) (((c) >> 31) & 1)
353 /* low 64 bit */
354 #define dma_frcd_page_addr(d) (d & (((u64)-1) << PAGE_SHIFT))
355
356 /* PRS_REG */
357 #define DMA_PRS_PPR ((u32)1)
358 #define DMA_PRS_PRO ((u32)2)
359
360 #define DMA_VCS_PAS ((u64)1)
361
362 /* PERFINTRSTS_REG */
363 #define DMA_PERFINTRSTS_PIS ((u32)1)
364
365 #define IOMMU_WAIT_OP(iommu, offset, op, cond, sts) \
366 do { \
367 cycles_t start_time = get_cycles(); \
368 while (1) { \
369 sts = op(iommu->reg + offset); \
370 if (cond) \
371 break; \
372 if (DMAR_OPERATION_TIMEOUT < (get_cycles() - start_time))\
373 panic("DMAR hardware is malfunctioning\n"); \
374 cpu_relax(); \
375 } \
376 } while (0)
377
378 #define QI_LENGTH 256 /* queue length */
379
380 enum {
381 QI_FREE,
382 QI_IN_USE,
383 QI_DONE,
384 QI_ABORT
385 };
386
387 #define QI_CC_TYPE 0x1
388 #define QI_IOTLB_TYPE 0x2
389 #define QI_DIOTLB_TYPE 0x3
390 #define QI_IEC_TYPE 0x4
391 #define QI_IWD_TYPE 0x5
392 #define QI_EIOTLB_TYPE 0x6
393 #define QI_PC_TYPE 0x7
394 #define QI_DEIOTLB_TYPE 0x8
395 #define QI_PGRP_RESP_TYPE 0x9
396 #define QI_PSTRM_RESP_TYPE 0xa
397
398 #define QI_IEC_SELECTIVE (((u64)1) << 4)
399 #define QI_IEC_IIDEX(idx) (((u64)(idx & 0xffff) << 32))
400 #define QI_IEC_IM(m) (((u64)(m & 0x1f) << 27))
401
402 #define QI_IWD_STATUS_DATA(d) (((u64)d) << 32)
403 #define QI_IWD_STATUS_WRITE (((u64)1) << 5)
404 #define QI_IWD_FENCE (((u64)1) << 6)
405 #define QI_IWD_PRQ_DRAIN (((u64)1) << 7)
406
407 #define QI_IOTLB_DID(did) (((u64)did) << 16)
408 #define QI_IOTLB_DR(dr) (((u64)dr) << 7)
409 #define QI_IOTLB_DW(dw) (((u64)dw) << 6)
410 #define QI_IOTLB_GRAN(gran) (((u64)gran) >> (DMA_TLB_FLUSH_GRANU_OFFSET-4))
411 #define QI_IOTLB_ADDR(addr) (((u64)addr) & VTD_PAGE_MASK)
412 #define QI_IOTLB_IH(ih) (((u64)ih) << 6)
413 #define QI_IOTLB_AM(am) (((u8)am) & 0x3f)
414
415 #define QI_CC_FM(fm) (((u64)fm) << 48)
416 #define QI_CC_SID(sid) (((u64)sid) << 32)
417 #define QI_CC_DID(did) (((u64)did) << 16)
418 #define QI_CC_GRAN(gran) (((u64)gran) >> (DMA_CCMD_INVL_GRANU_OFFSET-4))
419
420 #define QI_DEV_IOTLB_SID(sid) ((u64)((sid) & 0xffff) << 32)
421 #define QI_DEV_IOTLB_QDEP(qdep) (((qdep) & 0x1f) << 16)
422 #define QI_DEV_IOTLB_ADDR(addr) ((u64)(addr) & VTD_PAGE_MASK)
423 #define QI_DEV_IOTLB_PFSID(pfsid) (((u64)(pfsid & 0xf) << 12) | \
424 ((u64)((pfsid >> 4) & 0xfff) << 52))
425 #define QI_DEV_IOTLB_SIZE 1
426 #define QI_DEV_IOTLB_MAX_INVS 32
427
428 #define QI_PC_PASID(pasid) (((u64)pasid) << 32)
429 #define QI_PC_DID(did) (((u64)did) << 16)
430 #define QI_PC_GRAN(gran) (((u64)gran) << 4)
431
432 /* PASID cache invalidation granu */
433 #define QI_PC_ALL_PASIDS 0
434 #define QI_PC_PASID_SEL 1
435 #define QI_PC_GLOBAL 3
436
437 #define QI_EIOTLB_ADDR(addr) ((u64)(addr) & VTD_PAGE_MASK)
438 #define QI_EIOTLB_IH(ih) (((u64)ih) << 6)
439 #define QI_EIOTLB_AM(am) (((u64)am) & 0x3f)
440 #define QI_EIOTLB_PASID(pasid) (((u64)pasid) << 32)
441 #define QI_EIOTLB_DID(did) (((u64)did) << 16)
442 #define QI_EIOTLB_GRAN(gran) (((u64)gran) << 4)
443
444 /* QI Dev-IOTLB inv granu */
445 #define QI_DEV_IOTLB_GRAN_ALL 1
446 #define QI_DEV_IOTLB_GRAN_PASID_SEL 0
447
448 #define QI_DEV_EIOTLB_ADDR(a) ((u64)(a) & VTD_PAGE_MASK)
449 #define QI_DEV_EIOTLB_SIZE (((u64)1) << 11)
450 #define QI_DEV_EIOTLB_PASID(p) ((u64)((p) & 0xfffff) << 32)
451 #define QI_DEV_EIOTLB_SID(sid) ((u64)((sid) & 0xffff) << 16)
452 #define QI_DEV_EIOTLB_QDEP(qd) ((u64)((qd) & 0x1f) << 4)
453 #define QI_DEV_EIOTLB_PFSID(pfsid) (((u64)(pfsid & 0xf) << 12) | \
454 ((u64)((pfsid >> 4) & 0xfff) << 52))
455 #define QI_DEV_EIOTLB_MAX_INVS 32
456
457 /* Page group response descriptor QW0 */
458 #define QI_PGRP_PASID_P(p) (((u64)(p)) << 4)
459 #define QI_PGRP_RESP_CODE(res) (((u64)(res)) << 12)
460 #define QI_PGRP_DID(rid) (((u64)(rid)) << 16)
461 #define QI_PGRP_PASID(pasid) (((u64)(pasid)) << 32)
462
463 /* Page group response descriptor QW1 */
464 #define QI_PGRP_LPIG(x) (((u64)(x)) << 2)
465 #define QI_PGRP_IDX(idx) (((u64)(idx)) << 3)
466
467
468 #define QI_RESP_SUCCESS 0x0
469 #define QI_RESP_INVALID 0x1
470 #define QI_RESP_FAILURE 0xf
471
472 #define QI_GRAN_NONG_PASID 2
473 #define QI_GRAN_PSI_PASID 3
474
475 #define qi_shift(iommu) (DMAR_IQ_SHIFT + !!ecap_smts((iommu)->ecap))
476
477 struct qi_desc {
478 u64 qw0;
479 u64 qw1;
480 u64 qw2;
481 u64 qw3;
482 };
483
484 struct q_inval {
485 raw_spinlock_t q_lock;
486 void *desc; /* invalidation queue */
487 int *desc_status; /* desc status */
488 int free_head; /* first free entry */
489 int free_tail; /* last free entry */
490 int free_cnt;
491 };
492
493 /* Page Request Queue depth */
494 #define PRQ_ORDER 4
495 #define PRQ_RING_MASK ((0x1000 << PRQ_ORDER) - 0x20)
496 #define PRQ_DEPTH ((0x1000 << PRQ_ORDER) >> 5)
497
498 struct dmar_pci_notify_info;
499
500 #ifdef CONFIG_IRQ_REMAP
501 /* 1MB - maximum possible interrupt remapping table size */
502 #define INTR_REMAP_PAGE_ORDER 8
503 #define INTR_REMAP_TABLE_REG_SIZE 0xf
504 #define INTR_REMAP_TABLE_REG_SIZE_MASK 0xf
505
506 #define INTR_REMAP_TABLE_ENTRIES 65536
507
508 struct irq_domain;
509
510 struct ir_table {
511 struct irte *base;
512 unsigned long *bitmap;
513 };
514
515 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info);
516 #else
517 static inline void
intel_irq_remap_add_device(struct dmar_pci_notify_info * info)518 intel_irq_remap_add_device(struct dmar_pci_notify_info *info) { }
519 #endif
520
521 struct iommu_flush {
522 void (*flush_context)(struct intel_iommu *iommu, u16 did, u16 sid,
523 u8 fm, u64 type);
524 void (*flush_iotlb)(struct intel_iommu *iommu, u16 did, u64 addr,
525 unsigned int size_order, u64 type);
526 };
527
528 enum {
529 SR_DMAR_FECTL_REG,
530 SR_DMAR_FEDATA_REG,
531 SR_DMAR_FEADDR_REG,
532 SR_DMAR_FEUADDR_REG,
533 MAX_SR_DMAR_REGS
534 };
535
536 #define VTD_FLAG_TRANS_PRE_ENABLED (1 << 0)
537 #define VTD_FLAG_IRQ_REMAP_PRE_ENABLED (1 << 1)
538 #define VTD_FLAG_SVM_CAPABLE (1 << 2)
539
540 #define sm_supported(iommu) (intel_iommu_sm && ecap_smts((iommu)->ecap))
541 #define pasid_supported(iommu) (sm_supported(iommu) && \
542 ecap_pasid((iommu)->ecap))
543 #define ssads_supported(iommu) (sm_supported(iommu) && \
544 ecap_slads((iommu)->ecap))
545 #define nested_supported(iommu) (sm_supported(iommu) && \
546 ecap_nest((iommu)->ecap))
547
548 struct pasid_entry;
549 struct pasid_state_entry;
550 struct page_req_dsc;
551
552 /*
553 * 0: Present
554 * 1-11: Reserved
555 * 12-63: Context Ptr (12 - (haw-1))
556 * 64-127: Reserved
557 */
558 struct root_entry {
559 u64 lo;
560 u64 hi;
561 };
562
563 /*
564 * low 64 bits:
565 * 0: present
566 * 1: fault processing disable
567 * 2-3: translation type
568 * 12-63: address space root
569 * high 64 bits:
570 * 0-2: address width
571 * 3-6: aval
572 * 8-23: domain id
573 */
574 struct context_entry {
575 u64 lo;
576 u64 hi;
577 };
578
579 struct iommu_domain_info {
580 struct intel_iommu *iommu;
581 unsigned int refcnt; /* Refcount of devices per iommu */
582 u16 did; /* Domain ids per IOMMU. Use u16 since
583 * domain ids are 16 bit wide according
584 * to VT-d spec, section 9.3 */
585 };
586
587 /*
588 * We start simply by using a fixed size for the batched descriptors. This
589 * size is currently sufficient for our needs. Future improvements could
590 * involve dynamically allocating the batch buffer based on actual demand,
591 * allowing us to adjust the batch size for optimal performance in different
592 * scenarios.
593 */
594 #define QI_MAX_BATCHED_DESC_COUNT 16
595 struct qi_batch {
596 struct qi_desc descs[QI_MAX_BATCHED_DESC_COUNT];
597 unsigned int index;
598 };
599
600 struct dmar_domain {
601 int nid; /* node id */
602 struct xarray iommu_array; /* Attached IOMMU array */
603
604 u8 iommu_coherency: 1; /* indicate coherency of iommu access */
605 u8 force_snooping : 1; /* Create IOPTEs with snoop control */
606 u8 set_pte_snp:1;
607 u8 use_first_level:1; /* DMA translation for the domain goes
608 * through the first level page table,
609 * otherwise, goes through the second
610 * level.
611 */
612 u8 dirty_tracking:1; /* Dirty tracking is enabled */
613 u8 nested_parent:1; /* Has other domains nested on it */
614 u8 has_mappings:1; /* Has mappings configured through
615 * iommu_map() interface.
616 */
617
618 spinlock_t lock; /* Protect device tracking lists */
619 struct list_head devices; /* all devices' list */
620 struct list_head dev_pasids; /* all attached pasids */
621
622 spinlock_t cache_lock; /* Protect the cache tag list */
623 struct list_head cache_tags; /* Cache tag list */
624 struct qi_batch *qi_batch; /* Batched QI descriptors */
625
626 int iommu_superpage;/* Level of superpages supported:
627 0 == 4KiB (no superpages), 1 == 2MiB,
628 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
629 union {
630 /* DMA remapping domain */
631 struct {
632 /* virtual address */
633 struct dma_pte *pgd;
634 /* max guest address width */
635 int gaw;
636 /*
637 * adjusted guest address width:
638 * 0: level 2 30-bit
639 * 1: level 3 39-bit
640 * 2: level 4 48-bit
641 * 3: level 5 57-bit
642 */
643 int agaw;
644 /* maximum mapped address */
645 u64 max_addr;
646 /* Protect the s1_domains list */
647 spinlock_t s1_lock;
648 /* Track s1_domains nested on this domain */
649 struct list_head s1_domains;
650 };
651
652 /* Nested user domain */
653 struct {
654 /* parent page table which the user domain is nested on */
655 struct dmar_domain *s2_domain;
656 /* user page table pointer (in GPA) */
657 unsigned long s1_pgtbl;
658 /* page table attributes */
659 struct iommu_hwpt_vtd_s1 s1_cfg;
660 /* link to parent domain siblings */
661 struct list_head s2_link;
662 };
663
664 /* SVA domain */
665 struct {
666 struct mmu_notifier notifier;
667 };
668 };
669
670 struct iommu_domain domain; /* generic domain data structure for
671 iommu core */
672 };
673
674 /*
675 * In theory, the VT-d 4.0 spec can support up to 2 ^ 16 counters.
676 * But in practice, there are only 14 counters for the existing
677 * platform. Setting the max number of counters to 64 should be good
678 * enough for a long time. Also, supporting more than 64 counters
679 * requires more extras, e.g., extra freeze and overflow registers,
680 * which is not necessary for now.
681 */
682 #define IOMMU_PMU_IDX_MAX 64
683
684 struct iommu_pmu {
685 struct intel_iommu *iommu;
686 u32 num_cntr; /* Number of counters */
687 u32 num_eg; /* Number of event group */
688 u32 cntr_width; /* Counter width */
689 u32 cntr_stride; /* Counter Stride */
690 u32 filter; /* Bitmask of filter support */
691 void __iomem *base; /* the PerfMon base address */
692 void __iomem *cfg_reg; /* counter configuration base address */
693 void __iomem *cntr_reg; /* counter 0 address*/
694 void __iomem *overflow; /* overflow status register */
695
696 u64 *evcap; /* Indicates all supported events */
697 u32 **cntr_evcap; /* Supported events of each counter. */
698
699 struct pmu pmu;
700 DECLARE_BITMAP(used_mask, IOMMU_PMU_IDX_MAX);
701 struct perf_event *event_list[IOMMU_PMU_IDX_MAX];
702 unsigned char irq_name[16];
703 };
704
705 #define IOMMU_IRQ_ID_OFFSET_PRQ (DMAR_UNITS_SUPPORTED)
706 #define IOMMU_IRQ_ID_OFFSET_PERF (2 * DMAR_UNITS_SUPPORTED)
707
708 struct intel_iommu {
709 void __iomem *reg; /* Pointer to hardware regs, virtual addr */
710 u64 reg_phys; /* physical address of hw register set */
711 u64 reg_size; /* size of hw register set */
712 u64 cap;
713 u64 ecap;
714 u64 vccap;
715 u64 ecmdcap[DMA_MAX_NUM_ECMDCAP];
716 u32 gcmd; /* Holds TE, EAFL. Don't need SRTP, SFL, WBF */
717 raw_spinlock_t register_lock; /* protect register handling */
718 int seq_id; /* sequence id of the iommu */
719 int agaw; /* agaw of this iommu */
720 int msagaw; /* max sagaw of this iommu */
721 unsigned int irq, pr_irq, perf_irq;
722 u16 segment; /* PCI segment# */
723 unsigned char name[13]; /* Device Name */
724
725 #ifdef CONFIG_INTEL_IOMMU
726 unsigned long *domain_ids; /* bitmap of domains */
727 unsigned long *copied_tables; /* bitmap of copied tables */
728 spinlock_t lock; /* protect context, domain ids */
729 struct root_entry *root_entry; /* virtual address */
730
731 struct iommu_flush flush;
732 #endif
733 #ifdef CONFIG_INTEL_IOMMU_SVM
734 struct page_req_dsc *prq;
735 unsigned char prq_name[16]; /* Name for PRQ interrupt */
736 unsigned long prq_seq_number;
737 struct completion prq_complete;
738 #endif
739 struct iopf_queue *iopf_queue;
740 unsigned char iopfq_name[16];
741 /* Synchronization between fault report and iommu device release. */
742 struct mutex iopf_lock;
743 struct q_inval *qi; /* Queued invalidation info */
744 u32 iommu_state[MAX_SR_DMAR_REGS]; /* Store iommu states between suspend and resume.*/
745
746 /* rb tree for all probed devices */
747 struct rb_root device_rbtree;
748 /* protect the device_rbtree */
749 spinlock_t device_rbtree_lock;
750
751 #ifdef CONFIG_IRQ_REMAP
752 struct ir_table *ir_table; /* Interrupt remapping info */
753 struct irq_domain *ir_domain;
754 #endif
755 struct iommu_device iommu; /* IOMMU core code handle */
756 int node;
757 u32 flags; /* Software defined flags */
758
759 struct dmar_drhd_unit *drhd;
760 void *perf_statistic;
761
762 struct iommu_pmu *pmu;
763 };
764
765 /* PCI domain-device relationship */
766 struct device_domain_info {
767 struct list_head link; /* link to domain siblings */
768 u32 segment; /* PCI segment number */
769 u8 bus; /* PCI bus number */
770 u8 devfn; /* PCI devfn number */
771 u16 pfsid; /* SRIOV physical function source ID */
772 u8 pasid_supported:3;
773 u8 pasid_enabled:1;
774 u8 pri_supported:1;
775 u8 pri_enabled:1;
776 u8 ats_supported:1;
777 u8 ats_enabled:1;
778 u8 dtlb_extra_inval:1; /* Quirk for devices need extra flush */
779 u8 ats_qdep;
780 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
781 struct intel_iommu *iommu; /* IOMMU used by this device */
782 struct dmar_domain *domain; /* pointer to domain */
783 struct pasid_table *pasid_table; /* pasid table */
784 /* device tracking node(lookup by PCI RID) */
785 struct rb_node node;
786 #ifdef CONFIG_INTEL_IOMMU_DEBUGFS
787 struct dentry *debugfs_dentry; /* pointer to device directory dentry */
788 #endif
789 };
790
791 struct dev_pasid_info {
792 struct list_head link_domain; /* link to domain siblings */
793 struct device *dev;
794 ioasid_t pasid;
795 #ifdef CONFIG_INTEL_IOMMU_DEBUGFS
796 struct dentry *debugfs_dentry; /* pointer to pasid directory dentry */
797 #endif
798 };
799
__iommu_flush_cache(struct intel_iommu * iommu,void * addr,int size)800 static inline void __iommu_flush_cache(
801 struct intel_iommu *iommu, void *addr, int size)
802 {
803 if (!ecap_coherent(iommu->ecap))
804 clflush_cache_range(addr, size);
805 }
806
807 /* Convert generic struct iommu_domain to private struct dmar_domain */
to_dmar_domain(struct iommu_domain * dom)808 static inline struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
809 {
810 return container_of(dom, struct dmar_domain, domain);
811 }
812
813 /* Retrieve the domain ID which has allocated to the domain */
814 static inline u16
domain_id_iommu(struct dmar_domain * domain,struct intel_iommu * iommu)815 domain_id_iommu(struct dmar_domain *domain, struct intel_iommu *iommu)
816 {
817 struct iommu_domain_info *info =
818 xa_load(&domain->iommu_array, iommu->seq_id);
819
820 return info->did;
821 }
822
823 /*
824 * 0: readable
825 * 1: writable
826 * 2-6: reserved
827 * 7: super page
828 * 8-10: available
829 * 11: snoop behavior
830 * 12-63: Host physical address
831 */
832 struct dma_pte {
833 u64 val;
834 };
835
dma_clear_pte(struct dma_pte * pte)836 static inline void dma_clear_pte(struct dma_pte *pte)
837 {
838 pte->val = 0;
839 }
840
dma_pte_addr(struct dma_pte * pte)841 static inline u64 dma_pte_addr(struct dma_pte *pte)
842 {
843 #ifdef CONFIG_64BIT
844 return pte->val & VTD_PAGE_MASK;
845 #else
846 /* Must have a full atomic 64-bit read */
847 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
848 #endif
849 }
850
dma_pte_present(struct dma_pte * pte)851 static inline bool dma_pte_present(struct dma_pte *pte)
852 {
853 return (pte->val & 3) != 0;
854 }
855
dma_sl_pte_test_and_clear_dirty(struct dma_pte * pte,unsigned long flags)856 static inline bool dma_sl_pte_test_and_clear_dirty(struct dma_pte *pte,
857 unsigned long flags)
858 {
859 if (flags & IOMMU_DIRTY_NO_CLEAR)
860 return (pte->val & DMA_SL_PTE_DIRTY) != 0;
861
862 return test_and_clear_bit(DMA_SL_PTE_DIRTY_BIT,
863 (unsigned long *)&pte->val);
864 }
865
dma_pte_superpage(struct dma_pte * pte)866 static inline bool dma_pte_superpage(struct dma_pte *pte)
867 {
868 return (pte->val & DMA_PTE_LARGE_PAGE);
869 }
870
first_pte_in_page(struct dma_pte * pte)871 static inline bool first_pte_in_page(struct dma_pte *pte)
872 {
873 return IS_ALIGNED((unsigned long)pte, VTD_PAGE_SIZE);
874 }
875
nr_pte_to_next_page(struct dma_pte * pte)876 static inline int nr_pte_to_next_page(struct dma_pte *pte)
877 {
878 return first_pte_in_page(pte) ? BIT_ULL(VTD_STRIDE_SHIFT) :
879 (struct dma_pte *)ALIGN((unsigned long)pte, VTD_PAGE_SIZE) - pte;
880 }
881
context_present(struct context_entry * context)882 static inline bool context_present(struct context_entry *context)
883 {
884 return (context->lo & 1);
885 }
886
887 #define LEVEL_STRIDE (9)
888 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
889 #define MAX_AGAW_WIDTH (64)
890 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
891
agaw_to_level(int agaw)892 static inline int agaw_to_level(int agaw)
893 {
894 return agaw + 2;
895 }
896
agaw_to_width(int agaw)897 static inline int agaw_to_width(int agaw)
898 {
899 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
900 }
901
width_to_agaw(int width)902 static inline int width_to_agaw(int width)
903 {
904 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
905 }
906
level_to_offset_bits(int level)907 static inline unsigned int level_to_offset_bits(int level)
908 {
909 return (level - 1) * LEVEL_STRIDE;
910 }
911
pfn_level_offset(u64 pfn,int level)912 static inline int pfn_level_offset(u64 pfn, int level)
913 {
914 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
915 }
916
level_mask(int level)917 static inline u64 level_mask(int level)
918 {
919 return -1ULL << level_to_offset_bits(level);
920 }
921
level_size(int level)922 static inline u64 level_size(int level)
923 {
924 return 1ULL << level_to_offset_bits(level);
925 }
926
align_to_level(u64 pfn,int level)927 static inline u64 align_to_level(u64 pfn, int level)
928 {
929 return (pfn + level_size(level) - 1) & level_mask(level);
930 }
931
lvl_to_nr_pages(unsigned int lvl)932 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
933 {
934 return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
935 }
936
937 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
938 are never going to work. */
mm_to_dma_pfn_start(unsigned long mm_pfn)939 static inline unsigned long mm_to_dma_pfn_start(unsigned long mm_pfn)
940 {
941 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
942 }
mm_to_dma_pfn_end(unsigned long mm_pfn)943 static inline unsigned long mm_to_dma_pfn_end(unsigned long mm_pfn)
944 {
945 return ((mm_pfn + 1) << (PAGE_SHIFT - VTD_PAGE_SHIFT)) - 1;
946 }
page_to_dma_pfn(struct page * pg)947 static inline unsigned long page_to_dma_pfn(struct page *pg)
948 {
949 return mm_to_dma_pfn_start(page_to_pfn(pg));
950 }
virt_to_dma_pfn(void * p)951 static inline unsigned long virt_to_dma_pfn(void *p)
952 {
953 return page_to_dma_pfn(virt_to_page(p));
954 }
955
context_set_present(struct context_entry * context)956 static inline void context_set_present(struct context_entry *context)
957 {
958 context->lo |= 1;
959 }
960
context_set_fault_enable(struct context_entry * context)961 static inline void context_set_fault_enable(struct context_entry *context)
962 {
963 context->lo &= (((u64)-1) << 2) | 1;
964 }
965
context_set_translation_type(struct context_entry * context,unsigned long value)966 static inline void context_set_translation_type(struct context_entry *context,
967 unsigned long value)
968 {
969 context->lo &= (((u64)-1) << 4) | 3;
970 context->lo |= (value & 3) << 2;
971 }
972
context_set_address_root(struct context_entry * context,unsigned long value)973 static inline void context_set_address_root(struct context_entry *context,
974 unsigned long value)
975 {
976 context->lo &= ~VTD_PAGE_MASK;
977 context->lo |= value & VTD_PAGE_MASK;
978 }
979
context_set_address_width(struct context_entry * context,unsigned long value)980 static inline void context_set_address_width(struct context_entry *context,
981 unsigned long value)
982 {
983 context->hi |= value & 7;
984 }
985
context_set_domain_id(struct context_entry * context,unsigned long value)986 static inline void context_set_domain_id(struct context_entry *context,
987 unsigned long value)
988 {
989 context->hi |= (value & ((1 << 16) - 1)) << 8;
990 }
991
context_set_pasid(struct context_entry * context)992 static inline void context_set_pasid(struct context_entry *context)
993 {
994 context->lo |= CONTEXT_PASIDE;
995 }
996
context_domain_id(struct context_entry * c)997 static inline int context_domain_id(struct context_entry *c)
998 {
999 return((c->hi >> 8) & 0xffff);
1000 }
1001
context_clear_entry(struct context_entry * context)1002 static inline void context_clear_entry(struct context_entry *context)
1003 {
1004 context->lo = 0;
1005 context->hi = 0;
1006 }
1007
1008 #ifdef CONFIG_INTEL_IOMMU
context_copied(struct intel_iommu * iommu,u8 bus,u8 devfn)1009 static inline bool context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
1010 {
1011 if (!iommu->copied_tables)
1012 return false;
1013
1014 return test_bit(((long)bus << 8) | devfn, iommu->copied_tables);
1015 }
1016
1017 static inline void
set_context_copied(struct intel_iommu * iommu,u8 bus,u8 devfn)1018 set_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
1019 {
1020 set_bit(((long)bus << 8) | devfn, iommu->copied_tables);
1021 }
1022
1023 static inline void
clear_context_copied(struct intel_iommu * iommu,u8 bus,u8 devfn)1024 clear_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
1025 {
1026 clear_bit(((long)bus << 8) | devfn, iommu->copied_tables);
1027 }
1028 #endif /* CONFIG_INTEL_IOMMU */
1029
1030 /*
1031 * Set the RID_PASID field of a scalable mode context entry. The
1032 * IOMMU hardware will use the PASID value set in this field for
1033 * DMA translations of DMA requests without PASID.
1034 */
1035 static inline void
context_set_sm_rid2pasid(struct context_entry * context,unsigned long pasid)1036 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1037 {
1038 context->hi |= pasid & ((1 << 20) - 1);
1039 }
1040
1041 /*
1042 * Set the DTE(Device-TLB Enable) field of a scalable mode context
1043 * entry.
1044 */
context_set_sm_dte(struct context_entry * context)1045 static inline void context_set_sm_dte(struct context_entry *context)
1046 {
1047 context->lo |= BIT_ULL(2);
1048 }
1049
1050 /*
1051 * Set the PRE(Page Request Enable) field of a scalable mode context
1052 * entry.
1053 */
context_set_sm_pre(struct context_entry * context)1054 static inline void context_set_sm_pre(struct context_entry *context)
1055 {
1056 context->lo |= BIT_ULL(4);
1057 }
1058
1059 /*
1060 * Clear the PRE(Page Request Enable) field of a scalable mode context
1061 * entry.
1062 */
context_clear_sm_pre(struct context_entry * context)1063 static inline void context_clear_sm_pre(struct context_entry *context)
1064 {
1065 context->lo &= ~BIT_ULL(4);
1066 }
1067
1068 /* Returns a number of VTD pages, but aligned to MM page size */
aligned_nrpages(unsigned long host_addr,size_t size)1069 static inline unsigned long aligned_nrpages(unsigned long host_addr, size_t size)
1070 {
1071 host_addr &= ~PAGE_MASK;
1072 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1073 }
1074
1075 /* Return a size from number of VTD pages. */
nrpages_to_size(unsigned long npages)1076 static inline unsigned long nrpages_to_size(unsigned long npages)
1077 {
1078 return npages << VTD_PAGE_SHIFT;
1079 }
1080
qi_desc_iotlb(struct intel_iommu * iommu,u16 did,u64 addr,unsigned int size_order,u64 type,struct qi_desc * desc)1081 static inline void qi_desc_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1082 unsigned int size_order, u64 type,
1083 struct qi_desc *desc)
1084 {
1085 u8 dw = 0, dr = 0;
1086 int ih = 0;
1087
1088 if (cap_write_drain(iommu->cap))
1089 dw = 1;
1090
1091 if (cap_read_drain(iommu->cap))
1092 dr = 1;
1093
1094 desc->qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1095 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1096 desc->qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1097 | QI_IOTLB_AM(size_order);
1098 desc->qw2 = 0;
1099 desc->qw3 = 0;
1100 }
1101
qi_desc_dev_iotlb(u16 sid,u16 pfsid,u16 qdep,u64 addr,unsigned int mask,struct qi_desc * desc)1102 static inline void qi_desc_dev_iotlb(u16 sid, u16 pfsid, u16 qdep, u64 addr,
1103 unsigned int mask, struct qi_desc *desc)
1104 {
1105 if (mask) {
1106 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1107 desc->qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1108 } else {
1109 desc->qw1 = QI_DEV_IOTLB_ADDR(addr);
1110 }
1111
1112 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1113 qdep = 0;
1114
1115 desc->qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1116 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1117 desc->qw2 = 0;
1118 desc->qw3 = 0;
1119 }
1120
qi_desc_piotlb(u16 did,u32 pasid,u64 addr,unsigned long npages,bool ih,struct qi_desc * desc)1121 static inline void qi_desc_piotlb(u16 did, u32 pasid, u64 addr,
1122 unsigned long npages, bool ih,
1123 struct qi_desc *desc)
1124 {
1125 if (npages == -1) {
1126 desc->qw0 = QI_EIOTLB_PASID(pasid) |
1127 QI_EIOTLB_DID(did) |
1128 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1129 QI_EIOTLB_TYPE;
1130 desc->qw1 = 0;
1131 } else {
1132 int mask = ilog2(__roundup_pow_of_two(npages));
1133 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1134
1135 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1136 addr = ALIGN_DOWN(addr, align);
1137
1138 desc->qw0 = QI_EIOTLB_PASID(pasid) |
1139 QI_EIOTLB_DID(did) |
1140 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1141 QI_EIOTLB_TYPE;
1142 desc->qw1 = QI_EIOTLB_ADDR(addr) |
1143 QI_EIOTLB_IH(ih) |
1144 QI_EIOTLB_AM(mask);
1145 }
1146 }
1147
qi_desc_dev_iotlb_pasid(u16 sid,u16 pfsid,u32 pasid,u16 qdep,u64 addr,unsigned int size_order,struct qi_desc * desc)1148 static inline void qi_desc_dev_iotlb_pasid(u16 sid, u16 pfsid, u32 pasid,
1149 u16 qdep, u64 addr,
1150 unsigned int size_order,
1151 struct qi_desc *desc)
1152 {
1153 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1154
1155 desc->qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1156 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1157 QI_DEV_IOTLB_PFSID(pfsid);
1158
1159 /*
1160 * If S bit is 0, we only flush a single page. If S bit is set,
1161 * The least significant zero bit indicates the invalidation address
1162 * range. VT-d spec 6.5.2.6.
1163 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1164 * size order = 0 is PAGE_SIZE 4KB
1165 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1166 * ECAP.
1167 */
1168 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1169 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1170 addr, size_order);
1171
1172 /* Take page address */
1173 desc->qw1 = QI_DEV_EIOTLB_ADDR(addr);
1174
1175 if (size_order) {
1176 /*
1177 * Existing 0s in address below size_order may be the least
1178 * significant bit, we must set them to 1s to avoid having
1179 * smaller size than desired.
1180 */
1181 desc->qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1182 VTD_PAGE_SHIFT);
1183 /* Clear size_order bit to indicate size */
1184 desc->qw1 &= ~mask;
1185 /* Set the S bit to indicate flushing more than 1 page */
1186 desc->qw1 |= QI_DEV_EIOTLB_SIZE;
1187 }
1188 }
1189
1190 /* Convert value to context PASID directory size field coding. */
1191 #define context_pdts(pds) (((pds) & 0x7) << 9)
1192
1193 struct dmar_drhd_unit *dmar_find_matched_drhd_unit(struct pci_dev *dev);
1194
1195 int dmar_enable_qi(struct intel_iommu *iommu);
1196 void dmar_disable_qi(struct intel_iommu *iommu);
1197 int dmar_reenable_qi(struct intel_iommu *iommu);
1198 void qi_global_iec(struct intel_iommu *iommu);
1199
1200 void qi_flush_context(struct intel_iommu *iommu, u16 did,
1201 u16 sid, u8 fm, u64 type);
1202 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1203 unsigned int size_order, u64 type);
1204 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1205 u16 qdep, u64 addr, unsigned mask);
1206
1207 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1208 unsigned long npages, bool ih);
1209
1210 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1211 u32 pasid, u16 qdep, u64 addr,
1212 unsigned int size_order);
1213 void quirk_extra_dev_tlb_flush(struct device_domain_info *info,
1214 unsigned long address, unsigned long pages,
1215 u32 pasid, u16 qdep);
1216 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, u64 granu,
1217 u32 pasid);
1218
1219 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1220 unsigned int count, unsigned long options);
1221
1222 void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1223 unsigned int size_order, u64 type);
1224 /*
1225 * Options used in qi_submit_sync:
1226 * QI_OPT_WAIT_DRAIN - Wait for PRQ drain completion, spec 6.5.2.8.
1227 */
1228 #define QI_OPT_WAIT_DRAIN BIT(0)
1229
1230 int domain_attach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu);
1231 void domain_detach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu);
1232 void device_block_translation(struct device *dev);
1233 int prepare_domain_attach_device(struct iommu_domain *domain,
1234 struct device *dev);
1235 void domain_update_iommu_cap(struct dmar_domain *domain);
1236
1237 int dmar_ir_support(void);
1238
1239 void iommu_flush_write_buffer(struct intel_iommu *iommu);
1240 struct iommu_domain *intel_nested_domain_alloc(struct iommu_domain *parent,
1241 const struct iommu_user_data *user_data);
1242 struct device *device_rbtree_find(struct intel_iommu *iommu, u16 rid);
1243
1244 enum cache_tag_type {
1245 CACHE_TAG_IOTLB,
1246 CACHE_TAG_DEVTLB,
1247 CACHE_TAG_NESTING_IOTLB,
1248 CACHE_TAG_NESTING_DEVTLB,
1249 };
1250
1251 struct cache_tag {
1252 struct list_head node;
1253 enum cache_tag_type type;
1254 struct intel_iommu *iommu;
1255 /*
1256 * The @dev field represents the location of the cache. For IOTLB, it
1257 * resides on the IOMMU hardware. @dev stores the device pointer to
1258 * the IOMMU hardware. For DevTLB, it locates in the PCIe endpoint.
1259 * @dev stores the device pointer to that endpoint.
1260 */
1261 struct device *dev;
1262 u16 domain_id;
1263 ioasid_t pasid;
1264 unsigned int users;
1265 };
1266
1267 int cache_tag_assign_domain(struct dmar_domain *domain,
1268 struct device *dev, ioasid_t pasid);
1269 void cache_tag_unassign_domain(struct dmar_domain *domain,
1270 struct device *dev, ioasid_t pasid);
1271 void cache_tag_flush_range(struct dmar_domain *domain, unsigned long start,
1272 unsigned long end, int ih);
1273 void cache_tag_flush_all(struct dmar_domain *domain);
1274 void cache_tag_flush_range_np(struct dmar_domain *domain, unsigned long start,
1275 unsigned long end);
1276
1277 void intel_context_flush_present(struct device_domain_info *info,
1278 struct context_entry *context,
1279 u16 did, bool affect_domains);
1280
1281 #ifdef CONFIG_INTEL_IOMMU_SVM
1282 void intel_svm_check(struct intel_iommu *iommu);
1283 int intel_svm_enable_prq(struct intel_iommu *iommu);
1284 int intel_svm_finish_prq(struct intel_iommu *iommu);
1285 void intel_svm_page_response(struct device *dev, struct iopf_fault *evt,
1286 struct iommu_page_response *msg);
1287 struct iommu_domain *intel_svm_domain_alloc(struct device *dev,
1288 struct mm_struct *mm);
1289 void intel_drain_pasid_prq(struct device *dev, u32 pasid);
1290 #else
intel_svm_check(struct intel_iommu * iommu)1291 static inline void intel_svm_check(struct intel_iommu *iommu) {}
intel_drain_pasid_prq(struct device * dev,u32 pasid)1292 static inline void intel_drain_pasid_prq(struct device *dev, u32 pasid) {}
intel_svm_domain_alloc(struct device * dev,struct mm_struct * mm)1293 static inline struct iommu_domain *intel_svm_domain_alloc(struct device *dev,
1294 struct mm_struct *mm)
1295 {
1296 return ERR_PTR(-ENODEV);
1297 }
1298 #endif
1299
1300 #ifdef CONFIG_INTEL_IOMMU_DEBUGFS
1301 void intel_iommu_debugfs_init(void);
1302 void intel_iommu_debugfs_create_dev(struct device_domain_info *info);
1303 void intel_iommu_debugfs_remove_dev(struct device_domain_info *info);
1304 void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid);
1305 void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid);
1306 #else
intel_iommu_debugfs_init(void)1307 static inline void intel_iommu_debugfs_init(void) {}
intel_iommu_debugfs_create_dev(struct device_domain_info * info)1308 static inline void intel_iommu_debugfs_create_dev(struct device_domain_info *info) {}
intel_iommu_debugfs_remove_dev(struct device_domain_info * info)1309 static inline void intel_iommu_debugfs_remove_dev(struct device_domain_info *info) {}
intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info * dev_pasid)1310 static inline void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid) {}
intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info * dev_pasid)1311 static inline void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid) {}
1312 #endif /* CONFIG_INTEL_IOMMU_DEBUGFS */
1313
1314 extern const struct attribute_group *intel_iommu_groups[];
1315 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
1316 u8 devfn, int alloc);
1317
1318 extern const struct iommu_ops intel_iommu_ops;
1319
1320 #ifdef CONFIG_INTEL_IOMMU
1321 extern int intel_iommu_sm;
1322 int iommu_calculate_agaw(struct intel_iommu *iommu);
1323 int iommu_calculate_max_sagaw(struct intel_iommu *iommu);
1324 int ecmd_submit_sync(struct intel_iommu *iommu, u8 ecmd, u64 oa, u64 ob);
1325
ecmd_has_pmu_essential(struct intel_iommu * iommu)1326 static inline bool ecmd_has_pmu_essential(struct intel_iommu *iommu)
1327 {
1328 return (iommu->ecmdcap[DMA_ECMD_ECCAP3] & DMA_ECMD_ECCAP3_ESSENTIAL) ==
1329 DMA_ECMD_ECCAP3_ESSENTIAL;
1330 }
1331
1332 extern int dmar_disabled;
1333 extern int intel_iommu_enabled;
1334 #else
iommu_calculate_agaw(struct intel_iommu * iommu)1335 static inline int iommu_calculate_agaw(struct intel_iommu *iommu)
1336 {
1337 return 0;
1338 }
iommu_calculate_max_sagaw(struct intel_iommu * iommu)1339 static inline int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
1340 {
1341 return 0;
1342 }
1343 #define dmar_disabled (1)
1344 #define intel_iommu_enabled (0)
1345 #define intel_iommu_sm (0)
1346 #endif
1347
decode_prq_descriptor(char * str,size_t size,u64 dw0,u64 dw1,u64 dw2,u64 dw3)1348 static inline const char *decode_prq_descriptor(char *str, size_t size,
1349 u64 dw0, u64 dw1, u64 dw2, u64 dw3)
1350 {
1351 char *buf = str;
1352 int bytes;
1353
1354 bytes = snprintf(buf, size,
1355 "rid=0x%llx addr=0x%llx %c%c%c%c%c pasid=0x%llx index=0x%llx",
1356 FIELD_GET(GENMASK_ULL(31, 16), dw0),
1357 FIELD_GET(GENMASK_ULL(63, 12), dw1),
1358 dw1 & BIT_ULL(0) ? 'r' : '-',
1359 dw1 & BIT_ULL(1) ? 'w' : '-',
1360 dw0 & BIT_ULL(52) ? 'x' : '-',
1361 dw0 & BIT_ULL(53) ? 'p' : '-',
1362 dw1 & BIT_ULL(2) ? 'l' : '-',
1363 FIELD_GET(GENMASK_ULL(51, 32), dw0),
1364 FIELD_GET(GENMASK_ULL(11, 3), dw1));
1365
1366 /* Private Data */
1367 if (dw0 & BIT_ULL(9)) {
1368 size -= bytes;
1369 buf += bytes;
1370 snprintf(buf, size, " private=0x%llx/0x%llx\n", dw2, dw3);
1371 }
1372
1373 return str;
1374 }
1375
1376 #endif
1377