xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 //   possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 //   integer <=64 bits and all possible callees are readnone, for each class and
16 //   each list of constant arguments: evaluate the function, store the return
17 //   value alongside the virtual table, and rewrite each virtual call as a load
18 //   from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 //   propagation hold and each function returns the same constant value, replace
21 //   each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 //   for virtual constant propagation hold and a single vtable's function
24 //   returns 0, or a single vtable's function returns 1, replace each virtual
25 //   call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines:
28 //
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33 //
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 //   that contains all vtables with !type metadata that participate in the link.
37 //   The pass computes a resolution for each virtual call and stores it in the
38 //   type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 //   modules. The pass applies the resolutions previously computed during the
41 //   import phase to each eligible virtual call.
42 //
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 //   contains a summary of all vtables with !type metadata that participate in
46 //   the link. It computes a resolution for each virtual call and stores it in
47 //   the type identifier summary. Only single implementation devirtualization
48 //   is supported.
49 // - Import phase: (same as with hybrid case above).
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/Analysis/AssumptionCache.h"
62 #include "llvm/Analysis/BasicAliasAnalysis.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TypeMetadataUtils.h"
65 #include "llvm/Bitcode/BitcodeReader.h"
66 #include "llvm/Bitcode/BitcodeWriter.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/MDBuilder.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/ModuleSummaryIndexYAML.h"
85 #include "llvm/Support/Casting.h"
86 #include "llvm/Support/CommandLine.h"
87 #include "llvm/Support/Errc.h"
88 #include "llvm/Support/Error.h"
89 #include "llvm/Support/FileSystem.h"
90 #include "llvm/Support/GlobPattern.h"
91 #include "llvm/Support/MathExtras.h"
92 #include "llvm/TargetParser/Triple.h"
93 #include "llvm/Transforms/IPO.h"
94 #include "llvm/Transforms/IPO/FunctionAttrs.h"
95 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
96 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
97 #include "llvm/Transforms/Utils/Evaluator.h"
98 #include <algorithm>
99 #include <cstddef>
100 #include <map>
101 #include <set>
102 #include <string>
103 
104 using namespace llvm;
105 using namespace wholeprogramdevirt;
106 
107 #define DEBUG_TYPE "wholeprogramdevirt"
108 
109 STATISTIC(NumDevirtTargets, "Number of whole program devirtualization targets");
110 STATISTIC(NumSingleImpl, "Number of single implementation devirtualizations");
111 STATISTIC(NumBranchFunnel, "Number of branch funnels");
112 STATISTIC(NumUniformRetVal, "Number of uniform return value optimizations");
113 STATISTIC(NumUniqueRetVal, "Number of unique return value optimizations");
114 STATISTIC(NumVirtConstProp1Bit,
115           "Number of 1 bit virtual constant propagations");
116 STATISTIC(NumVirtConstProp, "Number of virtual constant propagations");
117 
118 static cl::opt<PassSummaryAction> ClSummaryAction(
119     "wholeprogramdevirt-summary-action",
120     cl::desc("What to do with the summary when running this pass"),
121     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
122                clEnumValN(PassSummaryAction::Import, "import",
123                           "Import typeid resolutions from summary and globals"),
124                clEnumValN(PassSummaryAction::Export, "export",
125                           "Export typeid resolutions to summary and globals")),
126     cl::Hidden);
127 
128 static cl::opt<std::string> ClReadSummary(
129     "wholeprogramdevirt-read-summary",
130     cl::desc(
131         "Read summary from given bitcode or YAML file before running pass"),
132     cl::Hidden);
133 
134 static cl::opt<std::string> ClWriteSummary(
135     "wholeprogramdevirt-write-summary",
136     cl::desc("Write summary to given bitcode or YAML file after running pass. "
137              "Output file format is deduced from extension: *.bc means writing "
138              "bitcode, otherwise YAML"),
139     cl::Hidden);
140 
141 static cl::opt<unsigned>
142     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
143                 cl::init(10),
144                 cl::desc("Maximum number of call targets per "
145                          "call site to enable branch funnels"));
146 
147 static cl::opt<bool>
148     PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
149                        cl::desc("Print index-based devirtualization messages"));
150 
151 /// Provide a way to force enable whole program visibility in tests.
152 /// This is needed to support legacy tests that don't contain
153 /// !vcall_visibility metadata (the mere presense of type tests
154 /// previously implied hidden visibility).
155 static cl::opt<bool>
156     WholeProgramVisibility("whole-program-visibility", cl::Hidden,
157                            cl::desc("Enable whole program visibility"));
158 
159 /// Provide a way to force disable whole program for debugging or workarounds,
160 /// when enabled via the linker.
161 static cl::opt<bool> DisableWholeProgramVisibility(
162     "disable-whole-program-visibility", cl::Hidden,
163     cl::desc("Disable whole program visibility (overrides enabling options)"));
164 
165 /// Provide way to prevent certain function from being devirtualized
166 static cl::list<std::string>
167     SkipFunctionNames("wholeprogramdevirt-skip",
168                       cl::desc("Prevent function(s) from being devirtualized"),
169                       cl::Hidden, cl::CommaSeparated);
170 
171 /// Mechanism to add runtime checking of devirtualization decisions, optionally
172 /// trapping or falling back to indirect call on any that are not correct.
173 /// Trapping mode is useful for debugging undefined behavior leading to failures
174 /// with WPD. Fallback mode is useful for ensuring safety when whole program
175 /// visibility may be compromised.
176 enum WPDCheckMode { None, Trap, Fallback };
177 static cl::opt<WPDCheckMode> DevirtCheckMode(
178     "wholeprogramdevirt-check", cl::Hidden,
179     cl::desc("Type of checking for incorrect devirtualizations"),
180     cl::values(clEnumValN(WPDCheckMode::None, "none", "No checking"),
181                clEnumValN(WPDCheckMode::Trap, "trap", "Trap when incorrect"),
182                clEnumValN(WPDCheckMode::Fallback, "fallback",
183                           "Fallback to indirect when incorrect")));
184 
185 namespace {
186 struct PatternList {
187   std::vector<GlobPattern> Patterns;
init__anone706c94a0111::PatternList188   template <class T> void init(const T &StringList) {
189     for (const auto &S : StringList)
190       if (Expected<GlobPattern> Pat = GlobPattern::create(S))
191         Patterns.push_back(std::move(*Pat));
192   }
match__anone706c94a0111::PatternList193   bool match(StringRef S) {
194     for (const GlobPattern &P : Patterns)
195       if (P.match(S))
196         return true;
197     return false;
198   }
199 };
200 } // namespace
201 
202 // Find the minimum offset that we may store a value of size Size bits at. If
203 // IsAfter is set, look for an offset before the object, otherwise look for an
204 // offset after the object.
205 uint64_t
findLowestOffset(ArrayRef<VirtualCallTarget> Targets,bool IsAfter,uint64_t Size)206 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
207                                      bool IsAfter, uint64_t Size) {
208   // Find a minimum offset taking into account only vtable sizes.
209   uint64_t MinByte = 0;
210   for (const VirtualCallTarget &Target : Targets) {
211     if (IsAfter)
212       MinByte = std::max(MinByte, Target.minAfterBytes());
213     else
214       MinByte = std::max(MinByte, Target.minBeforeBytes());
215   }
216 
217   // Build a vector of arrays of bytes covering, for each target, a slice of the
218   // used region (see AccumBitVector::BytesUsed in
219   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
220   // this aligns the used regions to start at MinByte.
221   //
222   // In this example, A, B and C are vtables, # is a byte already allocated for
223   // a virtual function pointer, AAAA... (etc.) are the used regions for the
224   // vtables and Offset(X) is the value computed for the Offset variable below
225   // for X.
226   //
227   //                    Offset(A)
228   //                    |       |
229   //                            |MinByte
230   // A: ################AAAAAAAA|AAAAAAAA
231   // B: ########BBBBBBBBBBBBBBBB|BBBB
232   // C: ########################|CCCCCCCCCCCCCCCC
233   //            |   Offset(B)   |
234   //
235   // This code produces the slices of A, B and C that appear after the divider
236   // at MinByte.
237   std::vector<ArrayRef<uint8_t>> Used;
238   for (const VirtualCallTarget &Target : Targets) {
239     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
240                                        : Target.TM->Bits->Before.BytesUsed;
241     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
242                               : MinByte - Target.minBeforeBytes();
243 
244     // Disregard used regions that are smaller than Offset. These are
245     // effectively all-free regions that do not need to be checked.
246     if (VTUsed.size() > Offset)
247       Used.push_back(VTUsed.slice(Offset));
248   }
249 
250   if (Size == 1) {
251     // Find a free bit in each member of Used.
252     for (unsigned I = 0;; ++I) {
253       uint8_t BitsUsed = 0;
254       for (auto &&B : Used)
255         if (I < B.size())
256           BitsUsed |= B[I];
257       if (BitsUsed != 0xff)
258         return (MinByte + I) * 8 + llvm::countr_zero(uint8_t(~BitsUsed));
259     }
260   } else {
261     // Find a free (Size/8) byte region in each member of Used.
262     // FIXME: see if alignment helps.
263     for (unsigned I = 0;; ++I) {
264       for (auto &&B : Used) {
265         unsigned Byte = 0;
266         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
267           if (B[I + Byte])
268             goto NextI;
269           ++Byte;
270         }
271       }
272       return (MinByte + I) * 8;
273     NextI:;
274     }
275   }
276 }
277 
setBeforeReturnValues(MutableArrayRef<VirtualCallTarget> Targets,uint64_t AllocBefore,unsigned BitWidth,int64_t & OffsetByte,uint64_t & OffsetBit)278 void wholeprogramdevirt::setBeforeReturnValues(
279     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
280     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
281   if (BitWidth == 1)
282     OffsetByte = -(AllocBefore / 8 + 1);
283   else
284     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
285   OffsetBit = AllocBefore % 8;
286 
287   for (VirtualCallTarget &Target : Targets) {
288     if (BitWidth == 1)
289       Target.setBeforeBit(AllocBefore);
290     else
291       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
292   }
293 }
294 
setAfterReturnValues(MutableArrayRef<VirtualCallTarget> Targets,uint64_t AllocAfter,unsigned BitWidth,int64_t & OffsetByte,uint64_t & OffsetBit)295 void wholeprogramdevirt::setAfterReturnValues(
296     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
297     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
298   if (BitWidth == 1)
299     OffsetByte = AllocAfter / 8;
300   else
301     OffsetByte = (AllocAfter + 7) / 8;
302   OffsetBit = AllocAfter % 8;
303 
304   for (VirtualCallTarget &Target : Targets) {
305     if (BitWidth == 1)
306       Target.setAfterBit(AllocAfter);
307     else
308       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
309   }
310 }
311 
VirtualCallTarget(GlobalValue * Fn,const TypeMemberInfo * TM)312 VirtualCallTarget::VirtualCallTarget(GlobalValue *Fn, const TypeMemberInfo *TM)
313     : Fn(Fn), TM(TM),
314       IsBigEndian(Fn->getDataLayout().isBigEndian()),
315       WasDevirt(false) {}
316 
317 namespace {
318 
319 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
320 // tables, and the ByteOffset is the offset in bytes from the address point to
321 // the virtual function pointer.
322 struct VTableSlot {
323   Metadata *TypeID;
324   uint64_t ByteOffset;
325 };
326 
327 } // end anonymous namespace
328 
329 namespace llvm {
330 
331 template <> struct DenseMapInfo<VTableSlot> {
getEmptyKeyllvm::DenseMapInfo332   static VTableSlot getEmptyKey() {
333     return {DenseMapInfo<Metadata *>::getEmptyKey(),
334             DenseMapInfo<uint64_t>::getEmptyKey()};
335   }
getTombstoneKeyllvm::DenseMapInfo336   static VTableSlot getTombstoneKey() {
337     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
338             DenseMapInfo<uint64_t>::getTombstoneKey()};
339   }
getHashValuellvm::DenseMapInfo340   static unsigned getHashValue(const VTableSlot &I) {
341     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
342            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
343   }
isEqualllvm::DenseMapInfo344   static bool isEqual(const VTableSlot &LHS,
345                       const VTableSlot &RHS) {
346     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
347   }
348 };
349 
350 template <> struct DenseMapInfo<VTableSlotSummary> {
getEmptyKeyllvm::DenseMapInfo351   static VTableSlotSummary getEmptyKey() {
352     return {DenseMapInfo<StringRef>::getEmptyKey(),
353             DenseMapInfo<uint64_t>::getEmptyKey()};
354   }
getTombstoneKeyllvm::DenseMapInfo355   static VTableSlotSummary getTombstoneKey() {
356     return {DenseMapInfo<StringRef>::getTombstoneKey(),
357             DenseMapInfo<uint64_t>::getTombstoneKey()};
358   }
getHashValuellvm::DenseMapInfo359   static unsigned getHashValue(const VTableSlotSummary &I) {
360     return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
361            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
362   }
isEqualllvm::DenseMapInfo363   static bool isEqual(const VTableSlotSummary &LHS,
364                       const VTableSlotSummary &RHS) {
365     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
366   }
367 };
368 
369 } // end namespace llvm
370 
371 // Returns true if the function must be unreachable based on ValueInfo.
372 //
373 // In particular, identifies a function as unreachable in the following
374 // conditions
375 //   1) All summaries are live.
376 //   2) All function summaries indicate it's unreachable
377 //   3) There is no non-function with the same GUID (which is rare)
mustBeUnreachableFunction(ValueInfo TheFnVI)378 static bool mustBeUnreachableFunction(ValueInfo TheFnVI) {
379   if ((!TheFnVI) || TheFnVI.getSummaryList().empty()) {
380     // Returns false if ValueInfo is absent, or the summary list is empty
381     // (e.g., function declarations).
382     return false;
383   }
384 
385   for (const auto &Summary : TheFnVI.getSummaryList()) {
386     // Conservatively returns false if any non-live functions are seen.
387     // In general either all summaries should be live or all should be dead.
388     if (!Summary->isLive())
389       return false;
390     if (auto *FS = dyn_cast<FunctionSummary>(Summary->getBaseObject())) {
391       if (!FS->fflags().MustBeUnreachable)
392         return false;
393     }
394     // Be conservative if a non-function has the same GUID (which is rare).
395     else
396       return false;
397   }
398   // All function summaries are live and all of them agree that the function is
399   // unreachble.
400   return true;
401 }
402 
403 namespace {
404 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
405 // the indirect virtual call.
406 struct VirtualCallSite {
407   Value *VTable = nullptr;
408   CallBase &CB;
409 
410   // If non-null, this field points to the associated unsafe use count stored in
411   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
412   // of that field for details.
413   unsigned *NumUnsafeUses = nullptr;
414 
415   void
emitRemark__anone706c94a0311::VirtualCallSite416   emitRemark(const StringRef OptName, const StringRef TargetName,
417              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
418     Function *F = CB.getCaller();
419     DebugLoc DLoc = CB.getDebugLoc();
420     BasicBlock *Block = CB.getParent();
421 
422     using namespace ore;
423     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
424                       << NV("Optimization", OptName)
425                       << ": devirtualized a call to "
426                       << NV("FunctionName", TargetName));
427   }
428 
replaceAndErase__anone706c94a0311::VirtualCallSite429   void replaceAndErase(
430       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
431       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
432       Value *New) {
433     if (RemarksEnabled)
434       emitRemark(OptName, TargetName, OREGetter);
435     CB.replaceAllUsesWith(New);
436     if (auto *II = dyn_cast<InvokeInst>(&CB)) {
437       BranchInst::Create(II->getNormalDest(), CB.getIterator());
438       II->getUnwindDest()->removePredecessor(II->getParent());
439     }
440     CB.eraseFromParent();
441     // This use is no longer unsafe.
442     if (NumUnsafeUses)
443       --*NumUnsafeUses;
444   }
445 };
446 
447 // Call site information collected for a specific VTableSlot and possibly a list
448 // of constant integer arguments. The grouping by arguments is handled by the
449 // VTableSlotInfo class.
450 struct CallSiteInfo {
451   /// The set of call sites for this slot. Used during regular LTO and the
452   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
453   /// call sites that appear in the merged module itself); in each of these
454   /// cases we are directly operating on the call sites at the IR level.
455   std::vector<VirtualCallSite> CallSites;
456 
457   /// Whether all call sites represented by this CallSiteInfo, including those
458   /// in summaries, have been devirtualized. This starts off as true because a
459   /// default constructed CallSiteInfo represents no call sites.
460   bool AllCallSitesDevirted = true;
461 
462   // These fields are used during the export phase of ThinLTO and reflect
463   // information collected from function summaries.
464 
465   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
466   /// this slot.
467   bool SummaryHasTypeTestAssumeUsers = false;
468 
469   /// CFI-specific: a vector containing the list of function summaries that use
470   /// the llvm.type.checked.load intrinsic and therefore will require
471   /// resolutions for llvm.type.test in order to implement CFI checks if
472   /// devirtualization was unsuccessful. If devirtualization was successful, the
473   /// pass will clear this vector by calling markDevirt(). If at the end of the
474   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
475   /// to each of the function summaries in the vector.
476   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
477   std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
478 
isExported__anone706c94a0311::CallSiteInfo479   bool isExported() const {
480     return SummaryHasTypeTestAssumeUsers ||
481            !SummaryTypeCheckedLoadUsers.empty();
482   }
483 
addSummaryTypeCheckedLoadUser__anone706c94a0311::CallSiteInfo484   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
485     SummaryTypeCheckedLoadUsers.push_back(FS);
486     AllCallSitesDevirted = false;
487   }
488 
addSummaryTypeTestAssumeUser__anone706c94a0311::CallSiteInfo489   void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
490     SummaryTypeTestAssumeUsers.push_back(FS);
491     SummaryHasTypeTestAssumeUsers = true;
492     AllCallSitesDevirted = false;
493   }
494 
markDevirt__anone706c94a0311::CallSiteInfo495   void markDevirt() {
496     AllCallSitesDevirted = true;
497 
498     // As explained in the comment for SummaryTypeCheckedLoadUsers.
499     SummaryTypeCheckedLoadUsers.clear();
500   }
501 };
502 
503 // Call site information collected for a specific VTableSlot.
504 struct VTableSlotInfo {
505   // The set of call sites which do not have all constant integer arguments
506   // (excluding "this").
507   CallSiteInfo CSInfo;
508 
509   // The set of call sites with all constant integer arguments (excluding
510   // "this"), grouped by argument list.
511   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
512 
513   void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);
514 
515 private:
516   CallSiteInfo &findCallSiteInfo(CallBase &CB);
517 };
518 
findCallSiteInfo(CallBase & CB)519 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
520   std::vector<uint64_t> Args;
521   auto *CBType = dyn_cast<IntegerType>(CB.getType());
522   if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
523     return CSInfo;
524   for (auto &&Arg : drop_begin(CB.args())) {
525     auto *CI = dyn_cast<ConstantInt>(Arg);
526     if (!CI || CI->getBitWidth() > 64)
527       return CSInfo;
528     Args.push_back(CI->getZExtValue());
529   }
530   return ConstCSInfo[Args];
531 }
532 
addCallSite(Value * VTable,CallBase & CB,unsigned * NumUnsafeUses)533 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
534                                  unsigned *NumUnsafeUses) {
535   auto &CSI = findCallSiteInfo(CB);
536   CSI.AllCallSitesDevirted = false;
537   CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
538 }
539 
540 struct DevirtModule {
541   Module &M;
542   function_ref<AAResults &(Function &)> AARGetter;
543   function_ref<DominatorTree &(Function &)> LookupDomTree;
544 
545   ModuleSummaryIndex *ExportSummary;
546   const ModuleSummaryIndex *ImportSummary;
547 
548   IntegerType *Int8Ty;
549   PointerType *Int8PtrTy;
550   IntegerType *Int32Ty;
551   IntegerType *Int64Ty;
552   IntegerType *IntPtrTy;
553   /// Sizeless array type, used for imported vtables. This provides a signal
554   /// to analyzers that these imports may alias, as they do for example
555   /// when multiple unique return values occur in the same vtable.
556   ArrayType *Int8Arr0Ty;
557 
558   bool RemarksEnabled;
559   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
560 
561   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
562 
563   // Calls that have already been optimized. We may add a call to multiple
564   // VTableSlotInfos if vtable loads are coalesced and need to make sure not to
565   // optimize a call more than once.
566   SmallPtrSet<CallBase *, 8> OptimizedCalls;
567 
568   // Store calls that had their ptrauth bundle removed. They are to be deleted
569   // at the end of the optimization.
570   SmallVector<CallBase *, 8> CallsWithPtrAuthBundleRemoved;
571 
572   // This map keeps track of the number of "unsafe" uses of a loaded function
573   // pointer. The key is the associated llvm.type.test intrinsic call generated
574   // by this pass. An unsafe use is one that calls the loaded function pointer
575   // directly. Every time we eliminate an unsafe use (for example, by
576   // devirtualizing it or by applying virtual constant propagation), we
577   // decrement the value stored in this map. If a value reaches zero, we can
578   // eliminate the type check by RAUWing the associated llvm.type.test call with
579   // true.
580   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
581   PatternList FunctionsToSkip;
582 
DevirtModule__anone706c94a0311::DevirtModule583   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
584                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
585                function_ref<DominatorTree &(Function &)> LookupDomTree,
586                ModuleSummaryIndex *ExportSummary,
587                const ModuleSummaryIndex *ImportSummary)
588       : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
589         ExportSummary(ExportSummary), ImportSummary(ImportSummary),
590         Int8Ty(Type::getInt8Ty(M.getContext())),
591         Int8PtrTy(PointerType::getUnqual(M.getContext())),
592         Int32Ty(Type::getInt32Ty(M.getContext())),
593         Int64Ty(Type::getInt64Ty(M.getContext())),
594         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
595         Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
596         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
597     assert(!(ExportSummary && ImportSummary));
598     FunctionsToSkip.init(SkipFunctionNames);
599   }
600 
601   bool areRemarksEnabled();
602 
603   void
604   scanTypeTestUsers(Function *TypeTestFunc,
605                     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
606   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
607 
608   void buildTypeIdentifierMap(
609       std::vector<VTableBits> &Bits,
610       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
611 
612   bool
613   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
614                             const std::set<TypeMemberInfo> &TypeMemberInfos,
615                             uint64_t ByteOffset,
616                             ModuleSummaryIndex *ExportSummary);
617 
618   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
619                              bool &IsExported);
620   bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
621                            MutableArrayRef<VirtualCallTarget> TargetsForSlot,
622                            VTableSlotInfo &SlotInfo,
623                            WholeProgramDevirtResolution *Res);
624 
625   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
626                               bool &IsExported);
627   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
628                             VTableSlotInfo &SlotInfo,
629                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
630 
631   bool tryEvaluateFunctionsWithArgs(
632       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
633       ArrayRef<uint64_t> Args);
634 
635   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
636                              uint64_t TheRetVal);
637   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
638                            CallSiteInfo &CSInfo,
639                            WholeProgramDevirtResolution::ByArg *Res);
640 
641   // Returns the global symbol name that is used to export information about the
642   // given vtable slot and list of arguments.
643   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
644                             StringRef Name);
645 
646   bool shouldExportConstantsAsAbsoluteSymbols();
647 
648   // This function is called during the export phase to create a symbol
649   // definition containing information about the given vtable slot and list of
650   // arguments.
651   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
652                     Constant *C);
653   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
654                       uint32_t Const, uint32_t &Storage);
655 
656   // This function is called during the import phase to create a reference to
657   // the symbol definition created during the export phase.
658   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
659                          StringRef Name);
660   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
661                            StringRef Name, IntegerType *IntTy,
662                            uint32_t Storage);
663 
664   Constant *getMemberAddr(const TypeMemberInfo *M);
665 
666   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
667                             Constant *UniqueMemberAddr);
668   bool tryUniqueRetValOpt(unsigned BitWidth,
669                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
670                           CallSiteInfo &CSInfo,
671                           WholeProgramDevirtResolution::ByArg *Res,
672                           VTableSlot Slot, ArrayRef<uint64_t> Args);
673 
674   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
675                              Constant *Byte, Constant *Bit);
676   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
677                            VTableSlotInfo &SlotInfo,
678                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
679 
680   void rebuildGlobal(VTableBits &B);
681 
682   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
683   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
684 
685   // If we were able to eliminate all unsafe uses for a type checked load,
686   // eliminate the associated type tests by replacing them with true.
687   void removeRedundantTypeTests();
688 
689   bool run();
690 
691   // Look up the corresponding ValueInfo entry of `TheFn` in `ExportSummary`.
692   //
693   // Caller guarantees that `ExportSummary` is not nullptr.
694   static ValueInfo lookUpFunctionValueInfo(Function *TheFn,
695                                            ModuleSummaryIndex *ExportSummary);
696 
697   // Returns true if the function definition must be unreachable.
698   //
699   // Note if this helper function returns true, `F` is guaranteed
700   // to be unreachable; if it returns false, `F` might still
701   // be unreachable but not covered by this helper function.
702   //
703   // Implementation-wise, if function definition is present, IR is analyzed; if
704   // not, look up function flags from ExportSummary as a fallback.
705   static bool mustBeUnreachableFunction(Function *const F,
706                                         ModuleSummaryIndex *ExportSummary);
707 
708   // Lower the module using the action and summary passed as command line
709   // arguments. For testing purposes only.
710   static bool
711   runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
712                 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
713                 function_ref<DominatorTree &(Function &)> LookupDomTree);
714 };
715 
716 struct DevirtIndex {
717   ModuleSummaryIndex &ExportSummary;
718   // The set in which to record GUIDs exported from their module by
719   // devirtualization, used by client to ensure they are not internalized.
720   std::set<GlobalValue::GUID> &ExportedGUIDs;
721   // A map in which to record the information necessary to locate the WPD
722   // resolution for local targets in case they are exported by cross module
723   // importing.
724   std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
725 
726   MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
727 
728   PatternList FunctionsToSkip;
729 
DevirtIndex__anone706c94a0311::DevirtIndex730   DevirtIndex(
731       ModuleSummaryIndex &ExportSummary,
732       std::set<GlobalValue::GUID> &ExportedGUIDs,
733       std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
734       : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
735         LocalWPDTargetsMap(LocalWPDTargetsMap) {
736     FunctionsToSkip.init(SkipFunctionNames);
737   }
738 
739   bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
740                                  const TypeIdCompatibleVtableInfo TIdInfo,
741                                  uint64_t ByteOffset);
742 
743   bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
744                            VTableSlotSummary &SlotSummary,
745                            VTableSlotInfo &SlotInfo,
746                            WholeProgramDevirtResolution *Res,
747                            std::set<ValueInfo> &DevirtTargets);
748 
749   void run();
750 };
751 } // end anonymous namespace
752 
run(Module & M,ModuleAnalysisManager & AM)753 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
754                                               ModuleAnalysisManager &AM) {
755   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
756   auto AARGetter = [&](Function &F) -> AAResults & {
757     return FAM.getResult<AAManager>(F);
758   };
759   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
760     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
761   };
762   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
763     return FAM.getResult<DominatorTreeAnalysis>(F);
764   };
765   if (UseCommandLine) {
766     if (!DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree))
767       return PreservedAnalyses::all();
768     return PreservedAnalyses::none();
769   }
770   if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
771                     ImportSummary)
772            .run())
773     return PreservedAnalyses::all();
774   return PreservedAnalyses::none();
775 }
776 
777 // Enable whole program visibility if enabled by client (e.g. linker) or
778 // internal option, and not force disabled.
hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO)779 bool llvm::hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
780   return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
781          !DisableWholeProgramVisibility;
782 }
783 
784 static bool
typeIDVisibleToRegularObj(StringRef TypeID,function_ref<bool (StringRef)> IsVisibleToRegularObj)785 typeIDVisibleToRegularObj(StringRef TypeID,
786                           function_ref<bool(StringRef)> IsVisibleToRegularObj) {
787   // TypeID for member function pointer type is an internal construct
788   // and won't exist in IsVisibleToRegularObj. The full TypeID
789   // will be present and participate in invalidation.
790   if (TypeID.ends_with(".virtual"))
791     return false;
792 
793   // TypeID that doesn't start with Itanium mangling (_ZTS) will be
794   // non-externally visible types which cannot interact with
795   // external native files. See CodeGenModule::CreateMetadataIdentifierImpl.
796   if (!TypeID.consume_front("_ZTS"))
797     return false;
798 
799   // TypeID is keyed off the type name symbol (_ZTS). However, the native
800   // object may not contain this symbol if it does not contain a key
801   // function for the base type and thus only contains a reference to the
802   // type info (_ZTI). To catch this case we query using the type info
803   // symbol corresponding to the TypeID.
804   std::string typeInfo = ("_ZTI" + TypeID).str();
805   return IsVisibleToRegularObj(typeInfo);
806 }
807 
808 static bool
skipUpdateDueToValidation(GlobalVariable & GV,function_ref<bool (StringRef)> IsVisibleToRegularObj)809 skipUpdateDueToValidation(GlobalVariable &GV,
810                           function_ref<bool(StringRef)> IsVisibleToRegularObj) {
811   SmallVector<MDNode *, 2> Types;
812   GV.getMetadata(LLVMContext::MD_type, Types);
813 
814   for (auto Type : Types)
815     if (auto *TypeID = dyn_cast<MDString>(Type->getOperand(1).get()))
816       return typeIDVisibleToRegularObj(TypeID->getString(),
817                                        IsVisibleToRegularObj);
818 
819   return false;
820 }
821 
822 /// If whole program visibility asserted, then upgrade all public vcall
823 /// visibility metadata on vtable definitions to linkage unit visibility in
824 /// Module IR (for regular or hybrid LTO).
updateVCallVisibilityInModule(Module & M,bool WholeProgramVisibilityEnabledInLTO,const DenseSet<GlobalValue::GUID> & DynamicExportSymbols,bool ValidateAllVtablesHaveTypeInfos,function_ref<bool (StringRef)> IsVisibleToRegularObj)825 void llvm::updateVCallVisibilityInModule(
826     Module &M, bool WholeProgramVisibilityEnabledInLTO,
827     const DenseSet<GlobalValue::GUID> &DynamicExportSymbols,
828     bool ValidateAllVtablesHaveTypeInfos,
829     function_ref<bool(StringRef)> IsVisibleToRegularObj) {
830   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
831     return;
832   for (GlobalVariable &GV : M.globals()) {
833     // Add linkage unit visibility to any variable with type metadata, which are
834     // the vtable definitions. We won't have an existing vcall_visibility
835     // metadata on vtable definitions with public visibility.
836     if (GV.hasMetadata(LLVMContext::MD_type) &&
837         GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic &&
838         // Don't upgrade the visibility for symbols exported to the dynamic
839         // linker, as we have no information on their eventual use.
840         !DynamicExportSymbols.count(GV.getGUID()) &&
841         // With validation enabled, we want to exclude symbols visible to
842         // regular objects. Local symbols will be in this group due to the
843         // current implementation but those with VCallVisibilityTranslationUnit
844         // will have already been marked in clang so are unaffected.
845         !(ValidateAllVtablesHaveTypeInfos &&
846           skipUpdateDueToValidation(GV, IsVisibleToRegularObj)))
847       GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
848   }
849 }
850 
updatePublicTypeTestCalls(Module & M,bool WholeProgramVisibilityEnabledInLTO)851 void llvm::updatePublicTypeTestCalls(Module &M,
852                                      bool WholeProgramVisibilityEnabledInLTO) {
853   Function *PublicTypeTestFunc =
854       M.getFunction(Intrinsic::getName(Intrinsic::public_type_test));
855   if (!PublicTypeTestFunc)
856     return;
857   if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) {
858     Function *TypeTestFunc =
859         Intrinsic::getDeclaration(&M, Intrinsic::type_test);
860     for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
861       auto *CI = cast<CallInst>(U.getUser());
862       auto *NewCI = CallInst::Create(
863           TypeTestFunc, {CI->getArgOperand(0), CI->getArgOperand(1)},
864           std::nullopt, "", CI->getIterator());
865       CI->replaceAllUsesWith(NewCI);
866       CI->eraseFromParent();
867     }
868   } else {
869     auto *True = ConstantInt::getTrue(M.getContext());
870     for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
871       auto *CI = cast<CallInst>(U.getUser());
872       CI->replaceAllUsesWith(True);
873       CI->eraseFromParent();
874     }
875   }
876 }
877 
878 /// Based on typeID string, get all associated vtable GUIDS that are
879 /// visible to regular objects.
getVisibleToRegularObjVtableGUIDs(ModuleSummaryIndex & Index,DenseSet<GlobalValue::GUID> & VisibleToRegularObjSymbols,function_ref<bool (StringRef)> IsVisibleToRegularObj)880 void llvm::getVisibleToRegularObjVtableGUIDs(
881     ModuleSummaryIndex &Index,
882     DenseSet<GlobalValue::GUID> &VisibleToRegularObjSymbols,
883     function_ref<bool(StringRef)> IsVisibleToRegularObj) {
884   for (const auto &typeID : Index.typeIdCompatibleVtableMap()) {
885     if (typeIDVisibleToRegularObj(typeID.first, IsVisibleToRegularObj))
886       for (const TypeIdOffsetVtableInfo &P : typeID.second)
887         VisibleToRegularObjSymbols.insert(P.VTableVI.getGUID());
888   }
889 }
890 
891 /// If whole program visibility asserted, then upgrade all public vcall
892 /// visibility metadata on vtable definition summaries to linkage unit
893 /// visibility in Module summary index (for ThinLTO).
updateVCallVisibilityInIndex(ModuleSummaryIndex & Index,bool WholeProgramVisibilityEnabledInLTO,const DenseSet<GlobalValue::GUID> & DynamicExportSymbols,const DenseSet<GlobalValue::GUID> & VisibleToRegularObjSymbols)894 void llvm::updateVCallVisibilityInIndex(
895     ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO,
896     const DenseSet<GlobalValue::GUID> &DynamicExportSymbols,
897     const DenseSet<GlobalValue::GUID> &VisibleToRegularObjSymbols) {
898   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
899     return;
900   for (auto &P : Index) {
901     // Don't upgrade the visibility for symbols exported to the dynamic
902     // linker, as we have no information on their eventual use.
903     if (DynamicExportSymbols.count(P.first))
904       continue;
905     for (auto &S : P.second.SummaryList) {
906       auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
907       if (!GVar ||
908           GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic)
909         continue;
910       // With validation enabled, we want to exclude symbols visible to regular
911       // objects. Local symbols will be in this group due to the current
912       // implementation but those with VCallVisibilityTranslationUnit will have
913       // already been marked in clang so are unaffected.
914       if (VisibleToRegularObjSymbols.count(P.first))
915         continue;
916       GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
917     }
918   }
919 }
920 
runWholeProgramDevirtOnIndex(ModuleSummaryIndex & Summary,std::set<GlobalValue::GUID> & ExportedGUIDs,std::map<ValueInfo,std::vector<VTableSlotSummary>> & LocalWPDTargetsMap)921 void llvm::runWholeProgramDevirtOnIndex(
922     ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
923     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
924   DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
925 }
926 
updateIndexWPDForExports(ModuleSummaryIndex & Summary,function_ref<bool (StringRef,ValueInfo)> isExported,std::map<ValueInfo,std::vector<VTableSlotSummary>> & LocalWPDTargetsMap)927 void llvm::updateIndexWPDForExports(
928     ModuleSummaryIndex &Summary,
929     function_ref<bool(StringRef, ValueInfo)> isExported,
930     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
931   for (auto &T : LocalWPDTargetsMap) {
932     auto &VI = T.first;
933     // This was enforced earlier during trySingleImplDevirt.
934     assert(VI.getSummaryList().size() == 1 &&
935            "Devirt of local target has more than one copy");
936     auto &S = VI.getSummaryList()[0];
937     if (!isExported(S->modulePath(), VI))
938       continue;
939 
940     // It's been exported by a cross module import.
941     for (auto &SlotSummary : T.second) {
942       auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
943       assert(TIdSum);
944       auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
945       assert(WPDRes != TIdSum->WPDRes.end());
946       WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
947           WPDRes->second.SingleImplName,
948           Summary.getModuleHash(S->modulePath()));
949     }
950   }
951 }
952 
checkCombinedSummaryForTesting(ModuleSummaryIndex * Summary)953 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
954   // Check that summary index contains regular LTO module when performing
955   // export to prevent occasional use of index from pure ThinLTO compilation
956   // (-fno-split-lto-module). This kind of summary index is passed to
957   // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
958   const auto &ModPaths = Summary->modulePaths();
959   if (ClSummaryAction != PassSummaryAction::Import &&
960       !ModPaths.contains(ModuleSummaryIndex::getRegularLTOModuleName()))
961     return createStringError(
962         errc::invalid_argument,
963         "combined summary should contain Regular LTO module");
964   return ErrorSuccess();
965 }
966 
runForTesting(Module & M,function_ref<AAResults & (Function &)> AARGetter,function_ref<OptimizationRemarkEmitter & (Function *)> OREGetter,function_ref<DominatorTree & (Function &)> LookupDomTree)967 bool DevirtModule::runForTesting(
968     Module &M, function_ref<AAResults &(Function &)> AARGetter,
969     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
970     function_ref<DominatorTree &(Function &)> LookupDomTree) {
971   std::unique_ptr<ModuleSummaryIndex> Summary =
972       std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
973 
974   // Handle the command-line summary arguments. This code is for testing
975   // purposes only, so we handle errors directly.
976   if (!ClReadSummary.empty()) {
977     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
978                           ": ");
979     auto ReadSummaryFile =
980         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
981     if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
982             getModuleSummaryIndex(*ReadSummaryFile)) {
983       Summary = std::move(*SummaryOrErr);
984       ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
985     } else {
986       // Try YAML if we've failed with bitcode.
987       consumeError(SummaryOrErr.takeError());
988       yaml::Input In(ReadSummaryFile->getBuffer());
989       In >> *Summary;
990       ExitOnErr(errorCodeToError(In.error()));
991     }
992   }
993 
994   bool Changed =
995       DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
996                    ClSummaryAction == PassSummaryAction::Export ? Summary.get()
997                                                                 : nullptr,
998                    ClSummaryAction == PassSummaryAction::Import ? Summary.get()
999                                                                 : nullptr)
1000           .run();
1001 
1002   if (!ClWriteSummary.empty()) {
1003     ExitOnError ExitOnErr(
1004         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
1005     std::error_code EC;
1006     if (StringRef(ClWriteSummary).ends_with(".bc")) {
1007       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
1008       ExitOnErr(errorCodeToError(EC));
1009       writeIndexToFile(*Summary, OS);
1010     } else {
1011       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF);
1012       ExitOnErr(errorCodeToError(EC));
1013       yaml::Output Out(OS);
1014       Out << *Summary;
1015     }
1016   }
1017 
1018   return Changed;
1019 }
1020 
buildTypeIdentifierMap(std::vector<VTableBits> & Bits,DenseMap<Metadata *,std::set<TypeMemberInfo>> & TypeIdMap)1021 void DevirtModule::buildTypeIdentifierMap(
1022     std::vector<VTableBits> &Bits,
1023     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1024   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
1025   Bits.reserve(M.global_size());
1026   SmallVector<MDNode *, 2> Types;
1027   for (GlobalVariable &GV : M.globals()) {
1028     Types.clear();
1029     GV.getMetadata(LLVMContext::MD_type, Types);
1030     if (GV.isDeclaration() || Types.empty())
1031       continue;
1032 
1033     VTableBits *&BitsPtr = GVToBits[&GV];
1034     if (!BitsPtr) {
1035       Bits.emplace_back();
1036       Bits.back().GV = &GV;
1037       Bits.back().ObjectSize =
1038           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
1039       BitsPtr = &Bits.back();
1040     }
1041 
1042     for (MDNode *Type : Types) {
1043       auto TypeID = Type->getOperand(1).get();
1044 
1045       uint64_t Offset =
1046           cast<ConstantInt>(
1047               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
1048               ->getZExtValue();
1049 
1050       TypeIdMap[TypeID].insert({BitsPtr, Offset});
1051     }
1052   }
1053 }
1054 
tryFindVirtualCallTargets(std::vector<VirtualCallTarget> & TargetsForSlot,const std::set<TypeMemberInfo> & TypeMemberInfos,uint64_t ByteOffset,ModuleSummaryIndex * ExportSummary)1055 bool DevirtModule::tryFindVirtualCallTargets(
1056     std::vector<VirtualCallTarget> &TargetsForSlot,
1057     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset,
1058     ModuleSummaryIndex *ExportSummary) {
1059   for (const TypeMemberInfo &TM : TypeMemberInfos) {
1060     if (!TM.Bits->GV->isConstant())
1061       return false;
1062 
1063     // We cannot perform whole program devirtualization analysis on a vtable
1064     // with public LTO visibility.
1065     if (TM.Bits->GV->getVCallVisibility() ==
1066         GlobalObject::VCallVisibilityPublic)
1067       return false;
1068 
1069     Function *Fn = nullptr;
1070     Constant *C = nullptr;
1071     std::tie(Fn, C) =
1072         getFunctionAtVTableOffset(TM.Bits->GV, TM.Offset + ByteOffset, M);
1073 
1074     if (!Fn)
1075       return false;
1076 
1077     if (FunctionsToSkip.match(Fn->getName()))
1078       return false;
1079 
1080     // We can disregard __cxa_pure_virtual as a possible call target, as
1081     // calls to pure virtuals are UB.
1082     if (Fn->getName() == "__cxa_pure_virtual")
1083       continue;
1084 
1085     // We can disregard unreachable functions as possible call targets, as
1086     // unreachable functions shouldn't be called.
1087     if (mustBeUnreachableFunction(Fn, ExportSummary))
1088       continue;
1089 
1090     // Save the symbol used in the vtable to use as the devirtualization
1091     // target.
1092     auto GV = dyn_cast<GlobalValue>(C);
1093     assert(GV);
1094     TargetsForSlot.push_back({GV, &TM});
1095   }
1096 
1097   // Give up if we couldn't find any targets.
1098   return !TargetsForSlot.empty();
1099 }
1100 
tryFindVirtualCallTargets(std::vector<ValueInfo> & TargetsForSlot,const TypeIdCompatibleVtableInfo TIdInfo,uint64_t ByteOffset)1101 bool DevirtIndex::tryFindVirtualCallTargets(
1102     std::vector<ValueInfo> &TargetsForSlot,
1103     const TypeIdCompatibleVtableInfo TIdInfo, uint64_t ByteOffset) {
1104   for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
1105     // Find a representative copy of the vtable initializer.
1106     // We can have multiple available_externally, linkonce_odr and weak_odr
1107     // vtable initializers. We can also have multiple external vtable
1108     // initializers in the case of comdats, which we cannot check here.
1109     // The linker should give an error in this case.
1110     //
1111     // Also, handle the case of same-named local Vtables with the same path
1112     // and therefore the same GUID. This can happen if there isn't enough
1113     // distinguishing path when compiling the source file. In that case we
1114     // conservatively return false early.
1115     const GlobalVarSummary *VS = nullptr;
1116     bool LocalFound = false;
1117     for (const auto &S : P.VTableVI.getSummaryList()) {
1118       if (GlobalValue::isLocalLinkage(S->linkage())) {
1119         if (LocalFound)
1120           return false;
1121         LocalFound = true;
1122       }
1123       auto *CurVS = cast<GlobalVarSummary>(S->getBaseObject());
1124       if (!CurVS->vTableFuncs().empty() ||
1125           // Previously clang did not attach the necessary type metadata to
1126           // available_externally vtables, in which case there would not
1127           // be any vtable functions listed in the summary and we need
1128           // to treat this case conservatively (in case the bitcode is old).
1129           // However, we will also not have any vtable functions in the
1130           // case of a pure virtual base class. In that case we do want
1131           // to set VS to avoid treating it conservatively.
1132           !GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
1133         VS = CurVS;
1134         // We cannot perform whole program devirtualization analysis on a vtable
1135         // with public LTO visibility.
1136         if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
1137           return false;
1138       }
1139     }
1140     // There will be no VS if all copies are available_externally having no
1141     // type metadata. In that case we can't safely perform WPD.
1142     if (!VS)
1143       return false;
1144     if (!VS->isLive())
1145       continue;
1146     for (auto VTP : VS->vTableFuncs()) {
1147       if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
1148         continue;
1149 
1150       if (mustBeUnreachableFunction(VTP.FuncVI))
1151         continue;
1152 
1153       TargetsForSlot.push_back(VTP.FuncVI);
1154     }
1155   }
1156 
1157   // Give up if we couldn't find any targets.
1158   return !TargetsForSlot.empty();
1159 }
1160 
applySingleImplDevirt(VTableSlotInfo & SlotInfo,Constant * TheFn,bool & IsExported)1161 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
1162                                          Constant *TheFn, bool &IsExported) {
1163   // Don't devirtualize function if we're told to skip it
1164   // in -wholeprogramdevirt-skip.
1165   if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName()))
1166     return;
1167   auto Apply = [&](CallSiteInfo &CSInfo) {
1168     for (auto &&VCallSite : CSInfo.CallSites) {
1169       if (!OptimizedCalls.insert(&VCallSite.CB).second)
1170         continue;
1171 
1172       if (RemarksEnabled)
1173         VCallSite.emitRemark("single-impl",
1174                              TheFn->stripPointerCasts()->getName(), OREGetter);
1175       NumSingleImpl++;
1176       auto &CB = VCallSite.CB;
1177       assert(!CB.getCalledFunction() && "devirtualizing direct call?");
1178       IRBuilder<> Builder(&CB);
1179       Value *Callee =
1180           Builder.CreateBitCast(TheFn, CB.getCalledOperand()->getType());
1181 
1182       // If trap checking is enabled, add support to compare the virtual
1183       // function pointer to the devirtualized target. In case of a mismatch,
1184       // perform a debug trap.
1185       if (DevirtCheckMode == WPDCheckMode::Trap) {
1186         auto *Cond = Builder.CreateICmpNE(CB.getCalledOperand(), Callee);
1187         Instruction *ThenTerm =
1188             SplitBlockAndInsertIfThen(Cond, &CB, /*Unreachable=*/false);
1189         Builder.SetInsertPoint(ThenTerm);
1190         Function *TrapFn = Intrinsic::getDeclaration(&M, Intrinsic::debugtrap);
1191         auto *CallTrap = Builder.CreateCall(TrapFn);
1192         CallTrap->setDebugLoc(CB.getDebugLoc());
1193       }
1194 
1195       // If fallback checking is enabled, add support to compare the virtual
1196       // function pointer to the devirtualized target. In case of a mismatch,
1197       // fall back to indirect call.
1198       if (DevirtCheckMode == WPDCheckMode::Fallback) {
1199         MDNode *Weights = MDBuilder(M.getContext()).createLikelyBranchWeights();
1200         // Version the indirect call site. If the called value is equal to the
1201         // given callee, 'NewInst' will be executed, otherwise the original call
1202         // site will be executed.
1203         CallBase &NewInst = versionCallSite(CB, Callee, Weights);
1204         NewInst.setCalledOperand(Callee);
1205         // Since the new call site is direct, we must clear metadata that
1206         // is only appropriate for indirect calls. This includes !prof and
1207         // !callees metadata.
1208         NewInst.setMetadata(LLVMContext::MD_prof, nullptr);
1209         NewInst.setMetadata(LLVMContext::MD_callees, nullptr);
1210         // Additionally, we should remove them from the fallback indirect call,
1211         // so that we don't attempt to perform indirect call promotion later.
1212         CB.setMetadata(LLVMContext::MD_prof, nullptr);
1213         CB.setMetadata(LLVMContext::MD_callees, nullptr);
1214       }
1215 
1216       // In either trapping or non-checking mode, devirtualize original call.
1217       else {
1218         // Devirtualize unconditionally.
1219         CB.setCalledOperand(Callee);
1220         // Since the call site is now direct, we must clear metadata that
1221         // is only appropriate for indirect calls. This includes !prof and
1222         // !callees metadata.
1223         CB.setMetadata(LLVMContext::MD_prof, nullptr);
1224         CB.setMetadata(LLVMContext::MD_callees, nullptr);
1225         if (CB.getCalledOperand() &&
1226             CB.getOperandBundle(LLVMContext::OB_ptrauth)) {
1227           auto *NewCS = CallBase::removeOperandBundle(
1228               &CB, LLVMContext::OB_ptrauth, CB.getIterator());
1229           CB.replaceAllUsesWith(NewCS);
1230           // Schedule for deletion at the end of pass run.
1231           CallsWithPtrAuthBundleRemoved.push_back(&CB);
1232         }
1233       }
1234 
1235       // This use is no longer unsafe.
1236       if (VCallSite.NumUnsafeUses)
1237         --*VCallSite.NumUnsafeUses;
1238     }
1239     if (CSInfo.isExported())
1240       IsExported = true;
1241     CSInfo.markDevirt();
1242   };
1243   Apply(SlotInfo.CSInfo);
1244   for (auto &P : SlotInfo.ConstCSInfo)
1245     Apply(P.second);
1246 }
1247 
AddCalls(VTableSlotInfo & SlotInfo,const ValueInfo & Callee)1248 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
1249   // We can't add calls if we haven't seen a definition
1250   if (Callee.getSummaryList().empty())
1251     return false;
1252 
1253   // Insert calls into the summary index so that the devirtualized targets
1254   // are eligible for import.
1255   // FIXME: Annotate type tests with hotness. For now, mark these as hot
1256   // to better ensure we have the opportunity to inline them.
1257   bool IsExported = false;
1258   auto &S = Callee.getSummaryList()[0];
1259   CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* HasTailCall = */ false,
1260                 /* RelBF = */ 0);
1261   auto AddCalls = [&](CallSiteInfo &CSInfo) {
1262     for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1263       FS->addCall({Callee, CI});
1264       IsExported |= S->modulePath() != FS->modulePath();
1265     }
1266     for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1267       FS->addCall({Callee, CI});
1268       IsExported |= S->modulePath() != FS->modulePath();
1269     }
1270   };
1271   AddCalls(SlotInfo.CSInfo);
1272   for (auto &P : SlotInfo.ConstCSInfo)
1273     AddCalls(P.second);
1274   return IsExported;
1275 }
1276 
trySingleImplDevirt(ModuleSummaryIndex * ExportSummary,MutableArrayRef<VirtualCallTarget> TargetsForSlot,VTableSlotInfo & SlotInfo,WholeProgramDevirtResolution * Res)1277 bool DevirtModule::trySingleImplDevirt(
1278     ModuleSummaryIndex *ExportSummary,
1279     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1280     WholeProgramDevirtResolution *Res) {
1281   // See if the program contains a single implementation of this virtual
1282   // function.
1283   auto *TheFn = TargetsForSlot[0].Fn;
1284   for (auto &&Target : TargetsForSlot)
1285     if (TheFn != Target.Fn)
1286       return false;
1287 
1288   // If so, update each call site to call that implementation directly.
1289   if (RemarksEnabled || AreStatisticsEnabled())
1290     TargetsForSlot[0].WasDevirt = true;
1291 
1292   bool IsExported = false;
1293   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
1294   if (!IsExported)
1295     return false;
1296 
1297   // If the only implementation has local linkage, we must promote to external
1298   // to make it visible to thin LTO objects. We can only get here during the
1299   // ThinLTO export phase.
1300   if (TheFn->hasLocalLinkage()) {
1301     std::string NewName = (TheFn->getName() + ".llvm.merged").str();
1302 
1303     // Since we are renaming the function, any comdats with the same name must
1304     // also be renamed. This is required when targeting COFF, as the comdat name
1305     // must match one of the names of the symbols in the comdat.
1306     if (Comdat *C = TheFn->getComdat()) {
1307       if (C->getName() == TheFn->getName()) {
1308         Comdat *NewC = M.getOrInsertComdat(NewName);
1309         NewC->setSelectionKind(C->getSelectionKind());
1310         for (GlobalObject &GO : M.global_objects())
1311           if (GO.getComdat() == C)
1312             GO.setComdat(NewC);
1313       }
1314     }
1315 
1316     TheFn->setLinkage(GlobalValue::ExternalLinkage);
1317     TheFn->setVisibility(GlobalValue::HiddenVisibility);
1318     TheFn->setName(NewName);
1319   }
1320   if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
1321     // Any needed promotion of 'TheFn' has already been done during
1322     // LTO unit split, so we can ignore return value of AddCalls.
1323     AddCalls(SlotInfo, TheFnVI);
1324 
1325   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1326   Res->SingleImplName = std::string(TheFn->getName());
1327 
1328   return true;
1329 }
1330 
trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,VTableSlotSummary & SlotSummary,VTableSlotInfo & SlotInfo,WholeProgramDevirtResolution * Res,std::set<ValueInfo> & DevirtTargets)1331 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
1332                                       VTableSlotSummary &SlotSummary,
1333                                       VTableSlotInfo &SlotInfo,
1334                                       WholeProgramDevirtResolution *Res,
1335                                       std::set<ValueInfo> &DevirtTargets) {
1336   // See if the program contains a single implementation of this virtual
1337   // function.
1338   auto TheFn = TargetsForSlot[0];
1339   for (auto &&Target : TargetsForSlot)
1340     if (TheFn != Target)
1341       return false;
1342 
1343   // Don't devirtualize if we don't have target definition.
1344   auto Size = TheFn.getSummaryList().size();
1345   if (!Size)
1346     return false;
1347 
1348   // Don't devirtualize function if we're told to skip it
1349   // in -wholeprogramdevirt-skip.
1350   if (FunctionsToSkip.match(TheFn.name()))
1351     return false;
1352 
1353   // If the summary list contains multiple summaries where at least one is
1354   // a local, give up, as we won't know which (possibly promoted) name to use.
1355   for (const auto &S : TheFn.getSummaryList())
1356     if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1357       return false;
1358 
1359   // Collect functions devirtualized at least for one call site for stats.
1360   if (PrintSummaryDevirt || AreStatisticsEnabled())
1361     DevirtTargets.insert(TheFn);
1362 
1363   auto &S = TheFn.getSummaryList()[0];
1364   bool IsExported = AddCalls(SlotInfo, TheFn);
1365   if (IsExported)
1366     ExportedGUIDs.insert(TheFn.getGUID());
1367 
1368   // Record in summary for use in devirtualization during the ThinLTO import
1369   // step.
1370   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1371   if (GlobalValue::isLocalLinkage(S->linkage())) {
1372     if (IsExported)
1373       // If target is a local function and we are exporting it by
1374       // devirtualizing a call in another module, we need to record the
1375       // promoted name.
1376       Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1377           TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1378     else {
1379       LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1380       Res->SingleImplName = std::string(TheFn.name());
1381     }
1382   } else
1383     Res->SingleImplName = std::string(TheFn.name());
1384 
1385   // Name will be empty if this thin link driven off of serialized combined
1386   // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1387   // legacy LTO API anyway.
1388   assert(!Res->SingleImplName.empty());
1389 
1390   return true;
1391 }
1392 
tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,VTableSlotInfo & SlotInfo,WholeProgramDevirtResolution * Res,VTableSlot Slot)1393 void DevirtModule::tryICallBranchFunnel(
1394     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1395     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1396   Triple T(M.getTargetTriple());
1397   if (T.getArch() != Triple::x86_64)
1398     return;
1399 
1400   if (TargetsForSlot.size() > ClThreshold)
1401     return;
1402 
1403   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1404   if (!HasNonDevirt)
1405     for (auto &P : SlotInfo.ConstCSInfo)
1406       if (!P.second.AllCallSitesDevirted) {
1407         HasNonDevirt = true;
1408         break;
1409       }
1410 
1411   if (!HasNonDevirt)
1412     return;
1413 
1414   FunctionType *FT =
1415       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1416   Function *JT;
1417   if (isa<MDString>(Slot.TypeID)) {
1418     JT = Function::Create(FT, Function::ExternalLinkage,
1419                           M.getDataLayout().getProgramAddressSpace(),
1420                           getGlobalName(Slot, {}, "branch_funnel"), &M);
1421     JT->setVisibility(GlobalValue::HiddenVisibility);
1422   } else {
1423     JT = Function::Create(FT, Function::InternalLinkage,
1424                           M.getDataLayout().getProgramAddressSpace(),
1425                           "branch_funnel", &M);
1426   }
1427   JT->addParamAttr(0, Attribute::Nest);
1428 
1429   std::vector<Value *> JTArgs;
1430   JTArgs.push_back(JT->arg_begin());
1431   for (auto &T : TargetsForSlot) {
1432     JTArgs.push_back(getMemberAddr(T.TM));
1433     JTArgs.push_back(T.Fn);
1434   }
1435 
1436   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1437   Function *Intr =
1438       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1439 
1440   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1441   CI->setTailCallKind(CallInst::TCK_MustTail);
1442   ReturnInst::Create(M.getContext(), nullptr, BB);
1443 
1444   bool IsExported = false;
1445   applyICallBranchFunnel(SlotInfo, JT, IsExported);
1446   if (IsExported)
1447     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1448 }
1449 
applyICallBranchFunnel(VTableSlotInfo & SlotInfo,Constant * JT,bool & IsExported)1450 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1451                                           Constant *JT, bool &IsExported) {
1452   auto Apply = [&](CallSiteInfo &CSInfo) {
1453     if (CSInfo.isExported())
1454       IsExported = true;
1455     if (CSInfo.AllCallSitesDevirted)
1456       return;
1457 
1458     std::map<CallBase *, CallBase *> CallBases;
1459     for (auto &&VCallSite : CSInfo.CallSites) {
1460       CallBase &CB = VCallSite.CB;
1461 
1462       if (CallBases.find(&CB) != CallBases.end()) {
1463         // When finding devirtualizable calls, it's possible to find the same
1464         // vtable passed to multiple llvm.type.test or llvm.type.checked.load
1465         // calls, which can cause duplicate call sites to be recorded in
1466         // [Const]CallSites. If we've already found one of these
1467         // call instances, just ignore it. It will be replaced later.
1468         continue;
1469       }
1470 
1471       // Jump tables are only profitable if the retpoline mitigation is enabled.
1472       Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
1473       if (!FSAttr.isValid() ||
1474           !FSAttr.getValueAsString().contains("+retpoline"))
1475         continue;
1476 
1477       NumBranchFunnel++;
1478       if (RemarksEnabled)
1479         VCallSite.emitRemark("branch-funnel",
1480                              JT->stripPointerCasts()->getName(), OREGetter);
1481 
1482       // Pass the address of the vtable in the nest register, which is r10 on
1483       // x86_64.
1484       std::vector<Type *> NewArgs;
1485       NewArgs.push_back(Int8PtrTy);
1486       append_range(NewArgs, CB.getFunctionType()->params());
1487       FunctionType *NewFT =
1488           FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
1489                             CB.getFunctionType()->isVarArg());
1490       PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1491 
1492       IRBuilder<> IRB(&CB);
1493       std::vector<Value *> Args;
1494       Args.push_back(VCallSite.VTable);
1495       llvm::append_range(Args, CB.args());
1496 
1497       CallBase *NewCS = nullptr;
1498       if (isa<CallInst>(CB))
1499         NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1500       else
1501         NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1502                                  cast<InvokeInst>(CB).getNormalDest(),
1503                                  cast<InvokeInst>(CB).getUnwindDest(), Args);
1504       NewCS->setCallingConv(CB.getCallingConv());
1505 
1506       AttributeList Attrs = CB.getAttributes();
1507       std::vector<AttributeSet> NewArgAttrs;
1508       NewArgAttrs.push_back(AttributeSet::get(
1509           M.getContext(), ArrayRef<Attribute>{Attribute::get(
1510                               M.getContext(), Attribute::Nest)}));
1511       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1512         NewArgAttrs.push_back(Attrs.getParamAttrs(I));
1513       NewCS->setAttributes(
1514           AttributeList::get(M.getContext(), Attrs.getFnAttrs(),
1515                              Attrs.getRetAttrs(), NewArgAttrs));
1516 
1517       CallBases[&CB] = NewCS;
1518 
1519       // This use is no longer unsafe.
1520       if (VCallSite.NumUnsafeUses)
1521         --*VCallSite.NumUnsafeUses;
1522     }
1523     // Don't mark as devirtualized because there may be callers compiled without
1524     // retpoline mitigation, which would mean that they are lowered to
1525     // llvm.type.test and therefore require an llvm.type.test resolution for the
1526     // type identifier.
1527 
1528     for (auto &[Old, New] : CallBases) {
1529       Old->replaceAllUsesWith(New);
1530       Old->eraseFromParent();
1531     }
1532   };
1533   Apply(SlotInfo.CSInfo);
1534   for (auto &P : SlotInfo.ConstCSInfo)
1535     Apply(P.second);
1536 }
1537 
tryEvaluateFunctionsWithArgs(MutableArrayRef<VirtualCallTarget> TargetsForSlot,ArrayRef<uint64_t> Args)1538 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1539     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1540     ArrayRef<uint64_t> Args) {
1541   // Evaluate each function and store the result in each target's RetVal
1542   // field.
1543   for (VirtualCallTarget &Target : TargetsForSlot) {
1544     // TODO: Skip for now if the vtable symbol was an alias to a function,
1545     // need to evaluate whether it would be correct to analyze the aliasee
1546     // function for this optimization.
1547     auto Fn = dyn_cast<Function>(Target.Fn);
1548     if (!Fn)
1549       return false;
1550 
1551     if (Fn->arg_size() != Args.size() + 1)
1552       return false;
1553 
1554     Evaluator Eval(M.getDataLayout(), nullptr);
1555     SmallVector<Constant *, 2> EvalArgs;
1556     EvalArgs.push_back(
1557         Constant::getNullValue(Fn->getFunctionType()->getParamType(0)));
1558     for (unsigned I = 0; I != Args.size(); ++I) {
1559       auto *ArgTy =
1560           dyn_cast<IntegerType>(Fn->getFunctionType()->getParamType(I + 1));
1561       if (!ArgTy)
1562         return false;
1563       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1564     }
1565 
1566     Constant *RetVal;
1567     if (!Eval.EvaluateFunction(Fn, RetVal, EvalArgs) ||
1568         !isa<ConstantInt>(RetVal))
1569       return false;
1570     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1571   }
1572   return true;
1573 }
1574 
applyUniformRetValOpt(CallSiteInfo & CSInfo,StringRef FnName,uint64_t TheRetVal)1575 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1576                                          uint64_t TheRetVal) {
1577   for (auto Call : CSInfo.CallSites) {
1578     if (!OptimizedCalls.insert(&Call.CB).second)
1579       continue;
1580     NumUniformRetVal++;
1581     Call.replaceAndErase(
1582         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1583         ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
1584   }
1585   CSInfo.markDevirt();
1586 }
1587 
tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,CallSiteInfo & CSInfo,WholeProgramDevirtResolution::ByArg * Res)1588 bool DevirtModule::tryUniformRetValOpt(
1589     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1590     WholeProgramDevirtResolution::ByArg *Res) {
1591   // Uniform return value optimization. If all functions return the same
1592   // constant, replace all calls with that constant.
1593   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1594   for (const VirtualCallTarget &Target : TargetsForSlot)
1595     if (Target.RetVal != TheRetVal)
1596       return false;
1597 
1598   if (CSInfo.isExported()) {
1599     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1600     Res->Info = TheRetVal;
1601   }
1602 
1603   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1604   if (RemarksEnabled || AreStatisticsEnabled())
1605     for (auto &&Target : TargetsForSlot)
1606       Target.WasDevirt = true;
1607   return true;
1608 }
1609 
getGlobalName(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name)1610 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1611                                         ArrayRef<uint64_t> Args,
1612                                         StringRef Name) {
1613   std::string FullName = "__typeid_";
1614   raw_string_ostream OS(FullName);
1615   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1616   for (uint64_t Arg : Args)
1617     OS << '_' << Arg;
1618   OS << '_' << Name;
1619   return FullName;
1620 }
1621 
shouldExportConstantsAsAbsoluteSymbols()1622 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1623   Triple T(M.getTargetTriple());
1624   return T.isX86() && T.getObjectFormat() == Triple::ELF;
1625 }
1626 
exportGlobal(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name,Constant * C)1627 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1628                                 StringRef Name, Constant *C) {
1629   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1630                                         getGlobalName(Slot, Args, Name), C, &M);
1631   GA->setVisibility(GlobalValue::HiddenVisibility);
1632 }
1633 
exportConstant(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name,uint32_t Const,uint32_t & Storage)1634 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1635                                   StringRef Name, uint32_t Const,
1636                                   uint32_t &Storage) {
1637   if (shouldExportConstantsAsAbsoluteSymbols()) {
1638     exportGlobal(
1639         Slot, Args, Name,
1640         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1641     return;
1642   }
1643 
1644   Storage = Const;
1645 }
1646 
importGlobal(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name)1647 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1648                                      StringRef Name) {
1649   Constant *C =
1650       M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
1651   auto *GV = dyn_cast<GlobalVariable>(C);
1652   if (GV)
1653     GV->setVisibility(GlobalValue::HiddenVisibility);
1654   return C;
1655 }
1656 
importConstant(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name,IntegerType * IntTy,uint32_t Storage)1657 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1658                                        StringRef Name, IntegerType *IntTy,
1659                                        uint32_t Storage) {
1660   if (!shouldExportConstantsAsAbsoluteSymbols())
1661     return ConstantInt::get(IntTy, Storage);
1662 
1663   Constant *C = importGlobal(Slot, Args, Name);
1664   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1665   C = ConstantExpr::getPtrToInt(C, IntTy);
1666 
1667   // We only need to set metadata if the global is newly created, in which
1668   // case it would not have hidden visibility.
1669   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1670     return C;
1671 
1672   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1673     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1674     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1675     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1676                     MDNode::get(M.getContext(), {MinC, MaxC}));
1677   };
1678   unsigned AbsWidth = IntTy->getBitWidth();
1679   if (AbsWidth == IntPtrTy->getBitWidth())
1680     SetAbsRange(~0ull, ~0ull); // Full set.
1681   else
1682     SetAbsRange(0, 1ull << AbsWidth);
1683   return C;
1684 }
1685 
applyUniqueRetValOpt(CallSiteInfo & CSInfo,StringRef FnName,bool IsOne,Constant * UniqueMemberAddr)1686 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1687                                         bool IsOne,
1688                                         Constant *UniqueMemberAddr) {
1689   for (auto &&Call : CSInfo.CallSites) {
1690     if (!OptimizedCalls.insert(&Call.CB).second)
1691       continue;
1692     IRBuilder<> B(&Call.CB);
1693     Value *Cmp =
1694         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
1695                      B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
1696     Cmp = B.CreateZExt(Cmp, Call.CB.getType());
1697     NumUniqueRetVal++;
1698     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1699                          Cmp);
1700   }
1701   CSInfo.markDevirt();
1702 }
1703 
getMemberAddr(const TypeMemberInfo * M)1704 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1705   return ConstantExpr::getGetElementPtr(Int8Ty, M->Bits->GV,
1706                                         ConstantInt::get(Int64Ty, M->Offset));
1707 }
1708 
tryUniqueRetValOpt(unsigned BitWidth,MutableArrayRef<VirtualCallTarget> TargetsForSlot,CallSiteInfo & CSInfo,WholeProgramDevirtResolution::ByArg * Res,VTableSlot Slot,ArrayRef<uint64_t> Args)1709 bool DevirtModule::tryUniqueRetValOpt(
1710     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1711     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1712     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1713   // IsOne controls whether we look for a 0 or a 1.
1714   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1715     const TypeMemberInfo *UniqueMember = nullptr;
1716     for (const VirtualCallTarget &Target : TargetsForSlot) {
1717       if (Target.RetVal == (IsOne ? 1 : 0)) {
1718         if (UniqueMember)
1719           return false;
1720         UniqueMember = Target.TM;
1721       }
1722     }
1723 
1724     // We should have found a unique member or bailed out by now. We already
1725     // checked for a uniform return value in tryUniformRetValOpt.
1726     assert(UniqueMember);
1727 
1728     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1729     if (CSInfo.isExported()) {
1730       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1731       Res->Info = IsOne;
1732 
1733       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1734     }
1735 
1736     // Replace each call with the comparison.
1737     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1738                          UniqueMemberAddr);
1739 
1740     // Update devirtualization statistics for targets.
1741     if (RemarksEnabled || AreStatisticsEnabled())
1742       for (auto &&Target : TargetsForSlot)
1743         Target.WasDevirt = true;
1744 
1745     return true;
1746   };
1747 
1748   if (BitWidth == 1) {
1749     if (tryUniqueRetValOptFor(true))
1750       return true;
1751     if (tryUniqueRetValOptFor(false))
1752       return true;
1753   }
1754   return false;
1755 }
1756 
applyVirtualConstProp(CallSiteInfo & CSInfo,StringRef FnName,Constant * Byte,Constant * Bit)1757 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1758                                          Constant *Byte, Constant *Bit) {
1759   for (auto Call : CSInfo.CallSites) {
1760     if (!OptimizedCalls.insert(&Call.CB).second)
1761       continue;
1762     auto *RetType = cast<IntegerType>(Call.CB.getType());
1763     IRBuilder<> B(&Call.CB);
1764     Value *Addr = B.CreatePtrAdd(Call.VTable, Byte);
1765     if (RetType->getBitWidth() == 1) {
1766       Value *Bits = B.CreateLoad(Int8Ty, Addr);
1767       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1768       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1769       NumVirtConstProp1Bit++;
1770       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1771                            OREGetter, IsBitSet);
1772     } else {
1773       Value *Val = B.CreateLoad(RetType, Addr);
1774       NumVirtConstProp++;
1775       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1776                            OREGetter, Val);
1777     }
1778   }
1779   CSInfo.markDevirt();
1780 }
1781 
tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,VTableSlotInfo & SlotInfo,WholeProgramDevirtResolution * Res,VTableSlot Slot)1782 bool DevirtModule::tryVirtualConstProp(
1783     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1784     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1785   // TODO: Skip for now if the vtable symbol was an alias to a function,
1786   // need to evaluate whether it would be correct to analyze the aliasee
1787   // function for this optimization.
1788   auto Fn = dyn_cast<Function>(TargetsForSlot[0].Fn);
1789   if (!Fn)
1790     return false;
1791   // This only works if the function returns an integer.
1792   auto RetType = dyn_cast<IntegerType>(Fn->getReturnType());
1793   if (!RetType)
1794     return false;
1795   unsigned BitWidth = RetType->getBitWidth();
1796   if (BitWidth > 64)
1797     return false;
1798 
1799   // Make sure that each function is defined, does not access memory, takes at
1800   // least one argument, does not use its first argument (which we assume is
1801   // 'this'), and has the same return type.
1802   //
1803   // Note that we test whether this copy of the function is readnone, rather
1804   // than testing function attributes, which must hold for any copy of the
1805   // function, even a less optimized version substituted at link time. This is
1806   // sound because the virtual constant propagation optimizations effectively
1807   // inline all implementations of the virtual function into each call site,
1808   // rather than using function attributes to perform local optimization.
1809   for (VirtualCallTarget &Target : TargetsForSlot) {
1810     // TODO: Skip for now if the vtable symbol was an alias to a function,
1811     // need to evaluate whether it would be correct to analyze the aliasee
1812     // function for this optimization.
1813     auto Fn = dyn_cast<Function>(Target.Fn);
1814     if (!Fn)
1815       return false;
1816 
1817     if (Fn->isDeclaration() ||
1818         !computeFunctionBodyMemoryAccess(*Fn, AARGetter(*Fn))
1819              .doesNotAccessMemory() ||
1820         Fn->arg_empty() || !Fn->arg_begin()->use_empty() ||
1821         Fn->getReturnType() != RetType)
1822       return false;
1823   }
1824 
1825   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1826     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1827       continue;
1828 
1829     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1830     if (Res)
1831       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1832 
1833     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1834       continue;
1835 
1836     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1837                            ResByArg, Slot, CSByConstantArg.first))
1838       continue;
1839 
1840     // Find an allocation offset in bits in all vtables associated with the
1841     // type.
1842     uint64_t AllocBefore =
1843         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1844     uint64_t AllocAfter =
1845         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1846 
1847     // Calculate the total amount of padding needed to store a value at both
1848     // ends of the object.
1849     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1850     for (auto &&Target : TargetsForSlot) {
1851       TotalPaddingBefore += std::max<int64_t>(
1852           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1853       TotalPaddingAfter += std::max<int64_t>(
1854           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1855     }
1856 
1857     // If the amount of padding is too large, give up.
1858     // FIXME: do something smarter here.
1859     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1860       continue;
1861 
1862     // Calculate the offset to the value as a (possibly negative) byte offset
1863     // and (if applicable) a bit offset, and store the values in the targets.
1864     int64_t OffsetByte;
1865     uint64_t OffsetBit;
1866     if (TotalPaddingBefore <= TotalPaddingAfter)
1867       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1868                             OffsetBit);
1869     else
1870       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1871                            OffsetBit);
1872 
1873     if (RemarksEnabled || AreStatisticsEnabled())
1874       for (auto &&Target : TargetsForSlot)
1875         Target.WasDevirt = true;
1876 
1877 
1878     if (CSByConstantArg.second.isExported()) {
1879       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1880       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1881                      ResByArg->Byte);
1882       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1883                      ResByArg->Bit);
1884     }
1885 
1886     // Rewrite each call to a load from OffsetByte/OffsetBit.
1887     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1888     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1889     applyVirtualConstProp(CSByConstantArg.second,
1890                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1891   }
1892   return true;
1893 }
1894 
rebuildGlobal(VTableBits & B)1895 void DevirtModule::rebuildGlobal(VTableBits &B) {
1896   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1897     return;
1898 
1899   // Align the before byte array to the global's minimum alignment so that we
1900   // don't break any alignment requirements on the global.
1901   Align Alignment = M.getDataLayout().getValueOrABITypeAlignment(
1902       B.GV->getAlign(), B.GV->getValueType());
1903   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1904 
1905   // Before was stored in reverse order; flip it now.
1906   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1907     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1908 
1909   // Build an anonymous global containing the before bytes, followed by the
1910   // original initializer, followed by the after bytes.
1911   auto NewInit = ConstantStruct::getAnon(
1912       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1913        B.GV->getInitializer(),
1914        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1915   auto NewGV =
1916       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1917                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1918   NewGV->setSection(B.GV->getSection());
1919   NewGV->setComdat(B.GV->getComdat());
1920   NewGV->setAlignment(B.GV->getAlign());
1921 
1922   // Copy the original vtable's metadata to the anonymous global, adjusting
1923   // offsets as required.
1924   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1925 
1926   // Build an alias named after the original global, pointing at the second
1927   // element (the original initializer).
1928   auto Alias = GlobalAlias::create(
1929       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1930       ConstantExpr::getInBoundsGetElementPtr(
1931           NewInit->getType(), NewGV,
1932           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1933                                ConstantInt::get(Int32Ty, 1)}),
1934       &M);
1935   Alias->setVisibility(B.GV->getVisibility());
1936   Alias->takeName(B.GV);
1937 
1938   B.GV->replaceAllUsesWith(Alias);
1939   B.GV->eraseFromParent();
1940 }
1941 
areRemarksEnabled()1942 bool DevirtModule::areRemarksEnabled() {
1943   const auto &FL = M.getFunctionList();
1944   for (const Function &Fn : FL) {
1945     if (Fn.empty())
1946       continue;
1947     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &Fn.front());
1948     return DI.isEnabled();
1949   }
1950   return false;
1951 }
1952 
scanTypeTestUsers(Function * TypeTestFunc,DenseMap<Metadata *,std::set<TypeMemberInfo>> & TypeIdMap)1953 void DevirtModule::scanTypeTestUsers(
1954     Function *TypeTestFunc,
1955     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1956   // Find all virtual calls via a virtual table pointer %p under an assumption
1957   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1958   // points to a member of the type identifier %md. Group calls by (type ID,
1959   // offset) pair (effectively the identity of the virtual function) and store
1960   // to CallSlots.
1961   for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
1962     auto *CI = dyn_cast<CallInst>(U.getUser());
1963     if (!CI)
1964       continue;
1965 
1966     // Search for virtual calls based on %p and add them to DevirtCalls.
1967     SmallVector<DevirtCallSite, 1> DevirtCalls;
1968     SmallVector<CallInst *, 1> Assumes;
1969     auto &DT = LookupDomTree(*CI->getFunction());
1970     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1971 
1972     Metadata *TypeId =
1973         cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1974     // If we found any, add them to CallSlots.
1975     if (!Assumes.empty()) {
1976       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1977       for (DevirtCallSite Call : DevirtCalls)
1978         CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
1979     }
1980 
1981     auto RemoveTypeTestAssumes = [&]() {
1982       // We no longer need the assumes or the type test.
1983       for (auto *Assume : Assumes)
1984         Assume->eraseFromParent();
1985       // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1986       // may use the vtable argument later.
1987       if (CI->use_empty())
1988         CI->eraseFromParent();
1989     };
1990 
1991     // At this point we could remove all type test assume sequences, as they
1992     // were originally inserted for WPD. However, we can keep these in the
1993     // code stream for later analysis (e.g. to help drive more efficient ICP
1994     // sequences). They will eventually be removed by a second LowerTypeTests
1995     // invocation that cleans them up. In order to do this correctly, the first
1996     // LowerTypeTests invocation needs to know that they have "Unknown" type
1997     // test resolution, so that they aren't treated as Unsat and lowered to
1998     // False, which will break any uses on assumes. Below we remove any type
1999     // test assumes that will not be treated as Unknown by LTT.
2000 
2001     // The type test assumes will be treated by LTT as Unsat if the type id is
2002     // not used on a global (in which case it has no entry in the TypeIdMap).
2003     if (!TypeIdMap.count(TypeId))
2004       RemoveTypeTestAssumes();
2005 
2006     // For ThinLTO importing, we need to remove the type test assumes if this is
2007     // an MDString type id without a corresponding TypeIdSummary. Any
2008     // non-MDString type ids are ignored and treated as Unknown by LTT, so their
2009     // type test assumes can be kept. If the MDString type id is missing a
2010     // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
2011     // exporting phase of WPD from analyzing it), then it would be treated as
2012     // Unsat by LTT and we need to remove its type test assumes here. If not
2013     // used on a vcall we don't need them for later optimization use in any
2014     // case.
2015     else if (ImportSummary && isa<MDString>(TypeId)) {
2016       const TypeIdSummary *TidSummary =
2017           ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString());
2018       if (!TidSummary)
2019         RemoveTypeTestAssumes();
2020       else
2021         // If one was created it should not be Unsat, because if we reached here
2022         // the type id was used on a global.
2023         assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat);
2024     }
2025   }
2026 }
2027 
scanTypeCheckedLoadUsers(Function * TypeCheckedLoadFunc)2028 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
2029   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
2030 
2031   for (Use &U : llvm::make_early_inc_range(TypeCheckedLoadFunc->uses())) {
2032     auto *CI = dyn_cast<CallInst>(U.getUser());
2033     if (!CI)
2034       continue;
2035 
2036     Value *Ptr = CI->getArgOperand(0);
2037     Value *Offset = CI->getArgOperand(1);
2038     Value *TypeIdValue = CI->getArgOperand(2);
2039     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
2040 
2041     SmallVector<DevirtCallSite, 1> DevirtCalls;
2042     SmallVector<Instruction *, 1> LoadedPtrs;
2043     SmallVector<Instruction *, 1> Preds;
2044     bool HasNonCallUses = false;
2045     auto &DT = LookupDomTree(*CI->getFunction());
2046     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
2047                                                HasNonCallUses, CI, DT);
2048 
2049     // Start by generating "pessimistic" code that explicitly loads the function
2050     // pointer from the vtable and performs the type check. If possible, we will
2051     // eliminate the load and the type check later.
2052 
2053     // If possible, only generate the load at the point where it is used.
2054     // This helps avoid unnecessary spills.
2055     IRBuilder<> LoadB(
2056         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
2057 
2058     Value *LoadedValue = nullptr;
2059     if (TypeCheckedLoadFunc->getIntrinsicID() ==
2060         Intrinsic::type_checked_load_relative) {
2061       Value *GEP = LoadB.CreatePtrAdd(Ptr, Offset);
2062       LoadedValue = LoadB.CreateLoad(Int32Ty, GEP);
2063       LoadedValue = LoadB.CreateSExt(LoadedValue, IntPtrTy);
2064       GEP = LoadB.CreatePtrToInt(GEP, IntPtrTy);
2065       LoadedValue = LoadB.CreateAdd(GEP, LoadedValue);
2066       LoadedValue = LoadB.CreateIntToPtr(LoadedValue, Int8PtrTy);
2067     } else {
2068       Value *GEP = LoadB.CreatePtrAdd(Ptr, Offset);
2069       LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEP);
2070     }
2071 
2072     for (Instruction *LoadedPtr : LoadedPtrs) {
2073       LoadedPtr->replaceAllUsesWith(LoadedValue);
2074       LoadedPtr->eraseFromParent();
2075     }
2076 
2077     // Likewise for the type test.
2078     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
2079     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
2080 
2081     for (Instruction *Pred : Preds) {
2082       Pred->replaceAllUsesWith(TypeTestCall);
2083       Pred->eraseFromParent();
2084     }
2085 
2086     // We have already erased any extractvalue instructions that refer to the
2087     // intrinsic call, but the intrinsic may have other non-extractvalue uses
2088     // (although this is unlikely). In that case, explicitly build a pair and
2089     // RAUW it.
2090     if (!CI->use_empty()) {
2091       Value *Pair = PoisonValue::get(CI->getType());
2092       IRBuilder<> B(CI);
2093       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
2094       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
2095       CI->replaceAllUsesWith(Pair);
2096     }
2097 
2098     // The number of unsafe uses is initially the number of uses.
2099     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
2100     NumUnsafeUses = DevirtCalls.size();
2101 
2102     // If the function pointer has a non-call user, we cannot eliminate the type
2103     // check, as one of those users may eventually call the pointer. Increment
2104     // the unsafe use count to make sure it cannot reach zero.
2105     if (HasNonCallUses)
2106       ++NumUnsafeUses;
2107     for (DevirtCallSite Call : DevirtCalls) {
2108       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
2109                                                    &NumUnsafeUses);
2110     }
2111 
2112     CI->eraseFromParent();
2113   }
2114 }
2115 
importResolution(VTableSlot Slot,VTableSlotInfo & SlotInfo)2116 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
2117   auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
2118   if (!TypeId)
2119     return;
2120   const TypeIdSummary *TidSummary =
2121       ImportSummary->getTypeIdSummary(TypeId->getString());
2122   if (!TidSummary)
2123     return;
2124   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
2125   if (ResI == TidSummary->WPDRes.end())
2126     return;
2127   const WholeProgramDevirtResolution &Res = ResI->second;
2128 
2129   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
2130     assert(!Res.SingleImplName.empty());
2131     // The type of the function in the declaration is irrelevant because every
2132     // call site will cast it to the correct type.
2133     Constant *SingleImpl =
2134         cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
2135                                              Type::getVoidTy(M.getContext()))
2136                            .getCallee());
2137 
2138     // This is the import phase so we should not be exporting anything.
2139     bool IsExported = false;
2140     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
2141     assert(!IsExported);
2142   }
2143 
2144   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
2145     auto I = Res.ResByArg.find(CSByConstantArg.first);
2146     if (I == Res.ResByArg.end())
2147       continue;
2148     auto &ResByArg = I->second;
2149     // FIXME: We should figure out what to do about the "function name" argument
2150     // to the apply* functions, as the function names are unavailable during the
2151     // importing phase. For now we just pass the empty string. This does not
2152     // impact correctness because the function names are just used for remarks.
2153     switch (ResByArg.TheKind) {
2154     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2155       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
2156       break;
2157     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
2158       Constant *UniqueMemberAddr =
2159           importGlobal(Slot, CSByConstantArg.first, "unique_member");
2160       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
2161                            UniqueMemberAddr);
2162       break;
2163     }
2164     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
2165       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
2166                                       Int32Ty, ResByArg.Byte);
2167       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
2168                                      ResByArg.Bit);
2169       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
2170       break;
2171     }
2172     default:
2173       break;
2174     }
2175   }
2176 
2177   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
2178     // The type of the function is irrelevant, because it's bitcast at calls
2179     // anyhow.
2180     Constant *JT = cast<Constant>(
2181         M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
2182                               Type::getVoidTy(M.getContext()))
2183             .getCallee());
2184     bool IsExported = false;
2185     applyICallBranchFunnel(SlotInfo, JT, IsExported);
2186     assert(!IsExported);
2187   }
2188 }
2189 
removeRedundantTypeTests()2190 void DevirtModule::removeRedundantTypeTests() {
2191   auto True = ConstantInt::getTrue(M.getContext());
2192   for (auto &&U : NumUnsafeUsesForTypeTest) {
2193     if (U.second == 0) {
2194       U.first->replaceAllUsesWith(True);
2195       U.first->eraseFromParent();
2196     }
2197   }
2198 }
2199 
2200 ValueInfo
lookUpFunctionValueInfo(Function * TheFn,ModuleSummaryIndex * ExportSummary)2201 DevirtModule::lookUpFunctionValueInfo(Function *TheFn,
2202                                       ModuleSummaryIndex *ExportSummary) {
2203   assert((ExportSummary != nullptr) &&
2204          "Caller guarantees ExportSummary is not nullptr");
2205 
2206   const auto TheFnGUID = TheFn->getGUID();
2207   const auto TheFnGUIDWithExportedName = GlobalValue::getGUID(TheFn->getName());
2208   // Look up ValueInfo with the GUID in the current linkage.
2209   ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFnGUID);
2210   // If no entry is found and GUID is different from GUID computed using
2211   // exported name, look up ValueInfo with the exported name unconditionally.
2212   // This is a fallback.
2213   //
2214   // The reason to have a fallback:
2215   // 1. LTO could enable global value internalization via
2216   // `enable-lto-internalization`.
2217   // 2. The GUID in ExportedSummary is computed using exported name.
2218   if ((!TheFnVI) && (TheFnGUID != TheFnGUIDWithExportedName)) {
2219     TheFnVI = ExportSummary->getValueInfo(TheFnGUIDWithExportedName);
2220   }
2221   return TheFnVI;
2222 }
2223 
mustBeUnreachableFunction(Function * const F,ModuleSummaryIndex * ExportSummary)2224 bool DevirtModule::mustBeUnreachableFunction(
2225     Function *const F, ModuleSummaryIndex *ExportSummary) {
2226   // First, learn unreachability by analyzing function IR.
2227   if (!F->isDeclaration()) {
2228     // A function must be unreachable if its entry block ends with an
2229     // 'unreachable'.
2230     return isa<UnreachableInst>(F->getEntryBlock().getTerminator());
2231   }
2232   // Learn unreachability from ExportSummary if ExportSummary is present.
2233   return ExportSummary &&
2234          ::mustBeUnreachableFunction(
2235              DevirtModule::lookUpFunctionValueInfo(F, ExportSummary));
2236 }
2237 
run()2238 bool DevirtModule::run() {
2239   // If only some of the modules were split, we cannot correctly perform
2240   // this transformation. We already checked for the presense of type tests
2241   // with partially split modules during the thin link, and would have emitted
2242   // an error if any were found, so here we can simply return.
2243   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
2244       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
2245     return false;
2246 
2247   Function *TypeTestFunc =
2248       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
2249   Function *TypeCheckedLoadFunc =
2250       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
2251   Function *TypeCheckedLoadRelativeFunc =
2252       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load_relative));
2253   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
2254 
2255   // Normally if there are no users of the devirtualization intrinsics in the
2256   // module, this pass has nothing to do. But if we are exporting, we also need
2257   // to handle any users that appear only in the function summaries.
2258   if (!ExportSummary &&
2259       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
2260        AssumeFunc->use_empty()) &&
2261       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()) &&
2262       (!TypeCheckedLoadRelativeFunc ||
2263        TypeCheckedLoadRelativeFunc->use_empty()))
2264     return false;
2265 
2266   // Rebuild type metadata into a map for easy lookup.
2267   std::vector<VTableBits> Bits;
2268   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
2269   buildTypeIdentifierMap(Bits, TypeIdMap);
2270 
2271   if (TypeTestFunc && AssumeFunc)
2272     scanTypeTestUsers(TypeTestFunc, TypeIdMap);
2273 
2274   if (TypeCheckedLoadFunc)
2275     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
2276 
2277   if (TypeCheckedLoadRelativeFunc)
2278     scanTypeCheckedLoadUsers(TypeCheckedLoadRelativeFunc);
2279 
2280   if (ImportSummary) {
2281     for (auto &S : CallSlots)
2282       importResolution(S.first, S.second);
2283 
2284     removeRedundantTypeTests();
2285 
2286     // We have lowered or deleted the type intrinsics, so we will no longer have
2287     // enough information to reason about the liveness of virtual function
2288     // pointers in GlobalDCE.
2289     for (GlobalVariable &GV : M.globals())
2290       GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2291 
2292     // The rest of the code is only necessary when exporting or during regular
2293     // LTO, so we are done.
2294     return true;
2295   }
2296 
2297   if (TypeIdMap.empty())
2298     return true;
2299 
2300   // Collect information from summary about which calls to try to devirtualize.
2301   if (ExportSummary) {
2302     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2303     for (auto &P : TypeIdMap) {
2304       if (auto *TypeId = dyn_cast<MDString>(P.first))
2305         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
2306             TypeId);
2307     }
2308 
2309     for (auto &P : *ExportSummary) {
2310       for (auto &S : P.second.SummaryList) {
2311         auto *FS = dyn_cast<FunctionSummary>(S.get());
2312         if (!FS)
2313           continue;
2314         // FIXME: Only add live functions.
2315         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2316           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2317             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2318           }
2319         }
2320         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2321           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2322             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2323           }
2324         }
2325         for (const FunctionSummary::ConstVCall &VC :
2326              FS->type_test_assume_const_vcalls()) {
2327           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2328             CallSlots[{MD, VC.VFunc.Offset}]
2329                 .ConstCSInfo[VC.Args]
2330                 .addSummaryTypeTestAssumeUser(FS);
2331           }
2332         }
2333         for (const FunctionSummary::ConstVCall &VC :
2334              FS->type_checked_load_const_vcalls()) {
2335           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2336             CallSlots[{MD, VC.VFunc.Offset}]
2337                 .ConstCSInfo[VC.Args]
2338                 .addSummaryTypeCheckedLoadUser(FS);
2339           }
2340         }
2341       }
2342     }
2343   }
2344 
2345   // For each (type, offset) pair:
2346   bool DidVirtualConstProp = false;
2347   std::map<std::string, GlobalValue *> DevirtTargets;
2348   for (auto &S : CallSlots) {
2349     // Search each of the members of the type identifier for the virtual
2350     // function implementation at offset S.first.ByteOffset, and add to
2351     // TargetsForSlot.
2352     std::vector<VirtualCallTarget> TargetsForSlot;
2353     WholeProgramDevirtResolution *Res = nullptr;
2354     const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID];
2355     if (ExportSummary && isa<MDString>(S.first.TypeID) &&
2356         TypeMemberInfos.size())
2357       // For any type id used on a global's type metadata, create the type id
2358       // summary resolution regardless of whether we can devirtualize, so that
2359       // lower type tests knows the type id is not Unsat. If it was not used on
2360       // a global's type metadata, the TypeIdMap entry set will be empty, and
2361       // we don't want to create an entry (with the default Unknown type
2362       // resolution), which can prevent detection of the Unsat.
2363       Res = &ExportSummary
2364                  ->getOrInsertTypeIdSummary(
2365                      cast<MDString>(S.first.TypeID)->getString())
2366                  .WPDRes[S.first.ByteOffset];
2367     if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos,
2368                                   S.first.ByteOffset, ExportSummary)) {
2369 
2370       if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
2371         DidVirtualConstProp |=
2372             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
2373 
2374         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
2375       }
2376 
2377       // Collect functions devirtualized at least for one call site for stats.
2378       if (RemarksEnabled || AreStatisticsEnabled())
2379         for (const auto &T : TargetsForSlot)
2380           if (T.WasDevirt)
2381             DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
2382     }
2383 
2384     // CFI-specific: if we are exporting and any llvm.type.checked.load
2385     // intrinsics were *not* devirtualized, we need to add the resulting
2386     // llvm.type.test intrinsics to the function summaries so that the
2387     // LowerTypeTests pass will export them.
2388     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
2389       auto GUID =
2390           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
2391       for (auto *FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
2392         FS->addTypeTest(GUID);
2393       for (auto &CCS : S.second.ConstCSInfo)
2394         for (auto *FS : CCS.second.SummaryTypeCheckedLoadUsers)
2395           FS->addTypeTest(GUID);
2396     }
2397   }
2398 
2399   if (RemarksEnabled) {
2400     // Generate remarks for each devirtualized function.
2401     for (const auto &DT : DevirtTargets) {
2402       GlobalValue *GV = DT.second;
2403       auto F = dyn_cast<Function>(GV);
2404       if (!F) {
2405         auto A = dyn_cast<GlobalAlias>(GV);
2406         assert(A && isa<Function>(A->getAliasee()));
2407         F = dyn_cast<Function>(A->getAliasee());
2408         assert(F);
2409       }
2410 
2411       using namespace ore;
2412       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
2413                         << "devirtualized "
2414                         << NV("FunctionName", DT.first));
2415     }
2416   }
2417 
2418   NumDevirtTargets += DevirtTargets.size();
2419 
2420   removeRedundantTypeTests();
2421 
2422   // Rebuild each global we touched as part of virtual constant propagation to
2423   // include the before and after bytes.
2424   if (DidVirtualConstProp)
2425     for (VTableBits &B : Bits)
2426       rebuildGlobal(B);
2427 
2428   // We have lowered or deleted the type intrinsics, so we will no longer have
2429   // enough information to reason about the liveness of virtual function
2430   // pointers in GlobalDCE.
2431   for (GlobalVariable &GV : M.globals())
2432     GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2433 
2434   for (auto *CI : CallsWithPtrAuthBundleRemoved)
2435     CI->eraseFromParent();
2436 
2437   return true;
2438 }
2439 
run()2440 void DevirtIndex::run() {
2441   if (ExportSummary.typeIdCompatibleVtableMap().empty())
2442     return;
2443 
2444   DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
2445   for (const auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
2446     NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
2447     // Create the type id summary resolution regardlness of whether we can
2448     // devirtualize, so that lower type tests knows the type id is used on
2449     // a global and not Unsat. We do this here rather than in the loop over the
2450     // CallSlots, since that handling will only see type tests that directly
2451     // feed assumes, and we would miss any that aren't currently handled by WPD
2452     // (such as type tests that feed assumes via phis).
2453     ExportSummary.getOrInsertTypeIdSummary(P.first);
2454   }
2455 
2456   // Collect information from summary about which calls to try to devirtualize.
2457   for (auto &P : ExportSummary) {
2458     for (auto &S : P.second.SummaryList) {
2459       auto *FS = dyn_cast<FunctionSummary>(S.get());
2460       if (!FS)
2461         continue;
2462       // FIXME: Only add live functions.
2463       for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2464         for (StringRef Name : NameByGUID[VF.GUID]) {
2465           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2466         }
2467       }
2468       for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2469         for (StringRef Name : NameByGUID[VF.GUID]) {
2470           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2471         }
2472       }
2473       for (const FunctionSummary::ConstVCall &VC :
2474            FS->type_test_assume_const_vcalls()) {
2475         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2476           CallSlots[{Name, VC.VFunc.Offset}]
2477               .ConstCSInfo[VC.Args]
2478               .addSummaryTypeTestAssumeUser(FS);
2479         }
2480       }
2481       for (const FunctionSummary::ConstVCall &VC :
2482            FS->type_checked_load_const_vcalls()) {
2483         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2484           CallSlots[{Name, VC.VFunc.Offset}]
2485               .ConstCSInfo[VC.Args]
2486               .addSummaryTypeCheckedLoadUser(FS);
2487         }
2488       }
2489     }
2490   }
2491 
2492   std::set<ValueInfo> DevirtTargets;
2493   // For each (type, offset) pair:
2494   for (auto &S : CallSlots) {
2495     // Search each of the members of the type identifier for the virtual
2496     // function implementation at offset S.first.ByteOffset, and add to
2497     // TargetsForSlot.
2498     std::vector<ValueInfo> TargetsForSlot;
2499     auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2500     assert(TidSummary);
2501     // The type id summary would have been created while building the NameByGUID
2502     // map earlier.
2503     WholeProgramDevirtResolution *Res =
2504         &ExportSummary.getTypeIdSummary(S.first.TypeID)
2505              ->WPDRes[S.first.ByteOffset];
2506     if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2507                                   S.first.ByteOffset)) {
2508 
2509       if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2510                                DevirtTargets))
2511         continue;
2512     }
2513   }
2514 
2515   // Optionally have the thin link print message for each devirtualized
2516   // function.
2517   if (PrintSummaryDevirt)
2518     for (const auto &DT : DevirtTargets)
2519       errs() << "Devirtualized call to " << DT << "\n";
2520 
2521   NumDevirtTargets += DevirtTargets.size();
2522 }
2523