xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaType.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements type-related semantic analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/Type.h"
24 #include "clang/AST/TypeLoc.h"
25 #include "clang/AST/TypeLocVisitor.h"
26 #include "clang/Basic/PartialDiagnostic.h"
27 #include "clang/Basic/SourceLocation.h"
28 #include "clang/Basic/Specifiers.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/DelayedDiagnostic.h"
33 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/ParsedAttr.h"
35 #include "clang/Sema/ParsedTemplate.h"
36 #include "clang/Sema/ScopeInfo.h"
37 #include "clang/Sema/SemaCUDA.h"
38 #include "clang/Sema/SemaInternal.h"
39 #include "clang/Sema/SemaObjC.h"
40 #include "clang/Sema/SemaOpenMP.h"
41 #include "clang/Sema/Template.h"
42 #include "clang/Sema/TemplateInstCallback.h"
43 #include "llvm/ADT/ArrayRef.h"
44 #include "llvm/ADT/STLForwardCompat.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/StringExtras.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include <bitset>
52 #include <optional>
53 
54 using namespace clang;
55 
56 enum TypeDiagSelector {
57   TDS_Function,
58   TDS_Pointer,
59   TDS_ObjCObjOrBlock
60 };
61 
62 /// isOmittedBlockReturnType - Return true if this declarator is missing a
63 /// return type because this is a omitted return type on a block literal.
isOmittedBlockReturnType(const Declarator & D)64 static bool isOmittedBlockReturnType(const Declarator &D) {
65   if (D.getContext() != DeclaratorContext::BlockLiteral ||
66       D.getDeclSpec().hasTypeSpecifier())
67     return false;
68 
69   if (D.getNumTypeObjects() == 0)
70     return true;   // ^{ ... }
71 
72   if (D.getNumTypeObjects() == 1 &&
73       D.getTypeObject(0).Kind == DeclaratorChunk::Function)
74     return true;   // ^(int X, float Y) { ... }
75 
76   return false;
77 }
78 
79 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
80 /// doesn't apply to the given type.
diagnoseBadTypeAttribute(Sema & S,const ParsedAttr & attr,QualType type)81 static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
82                                      QualType type) {
83   TypeDiagSelector WhichType;
84   bool useExpansionLoc = true;
85   switch (attr.getKind()) {
86   case ParsedAttr::AT_ObjCGC:
87     WhichType = TDS_Pointer;
88     break;
89   case ParsedAttr::AT_ObjCOwnership:
90     WhichType = TDS_ObjCObjOrBlock;
91     break;
92   default:
93     // Assume everything else was a function attribute.
94     WhichType = TDS_Function;
95     useExpansionLoc = false;
96     break;
97   }
98 
99   SourceLocation loc = attr.getLoc();
100   StringRef name = attr.getAttrName()->getName();
101 
102   // The GC attributes are usually written with macros;  special-case them.
103   IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
104                                           : nullptr;
105   if (useExpansionLoc && loc.isMacroID() && II) {
106     if (II->isStr("strong")) {
107       if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
108     } else if (II->isStr("weak")) {
109       if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
110     }
111   }
112 
113   S.Diag(loc, attr.isRegularKeywordAttribute()
114                   ? diag::err_type_attribute_wrong_type
115                   : diag::warn_type_attribute_wrong_type)
116       << name << WhichType << type;
117 }
118 
119 // objc_gc applies to Objective-C pointers or, otherwise, to the
120 // smallest available pointer type (i.e. 'void*' in 'void**').
121 #define OBJC_POINTER_TYPE_ATTRS_CASELIST                                       \
122   case ParsedAttr::AT_ObjCGC:                                                  \
123   case ParsedAttr::AT_ObjCOwnership
124 
125 // Calling convention attributes.
126 #define CALLING_CONV_ATTRS_CASELIST                                            \
127   case ParsedAttr::AT_CDecl:                                                   \
128   case ParsedAttr::AT_FastCall:                                                \
129   case ParsedAttr::AT_StdCall:                                                 \
130   case ParsedAttr::AT_ThisCall:                                                \
131   case ParsedAttr::AT_RegCall:                                                 \
132   case ParsedAttr::AT_Pascal:                                                  \
133   case ParsedAttr::AT_SwiftCall:                                               \
134   case ParsedAttr::AT_SwiftAsyncCall:                                          \
135   case ParsedAttr::AT_VectorCall:                                              \
136   case ParsedAttr::AT_AArch64VectorPcs:                                        \
137   case ParsedAttr::AT_AArch64SVEPcs:                                           \
138   case ParsedAttr::AT_AMDGPUKernelCall:                                        \
139   case ParsedAttr::AT_MSABI:                                                   \
140   case ParsedAttr::AT_SysVABI:                                                 \
141   case ParsedAttr::AT_Pcs:                                                     \
142   case ParsedAttr::AT_IntelOclBicc:                                            \
143   case ParsedAttr::AT_PreserveMost:                                            \
144   case ParsedAttr::AT_PreserveAll:                                             \
145   case ParsedAttr::AT_M68kRTD:                                                 \
146   case ParsedAttr::AT_PreserveNone:                                            \
147   case ParsedAttr::AT_RISCVVectorCC
148 
149 // Function type attributes.
150 #define FUNCTION_TYPE_ATTRS_CASELIST                                           \
151   case ParsedAttr::AT_NSReturnsRetained:                                       \
152   case ParsedAttr::AT_NoReturn:                                                \
153   case ParsedAttr::AT_NonBlocking:                                             \
154   case ParsedAttr::AT_NonAllocating:                                           \
155   case ParsedAttr::AT_Blocking:                                                \
156   case ParsedAttr::AT_Allocating:                                              \
157   case ParsedAttr::AT_Regparm:                                                 \
158   case ParsedAttr::AT_CmseNSCall:                                              \
159   case ParsedAttr::AT_ArmStreaming:                                            \
160   case ParsedAttr::AT_ArmStreamingCompatible:                                  \
161   case ParsedAttr::AT_ArmPreserves:                                            \
162   case ParsedAttr::AT_ArmIn:                                                   \
163   case ParsedAttr::AT_ArmOut:                                                  \
164   case ParsedAttr::AT_ArmInOut:                                                \
165   case ParsedAttr::AT_AnyX86NoCallerSavedRegisters:                            \
166   case ParsedAttr::AT_AnyX86NoCfCheck:                                         \
167     CALLING_CONV_ATTRS_CASELIST
168 
169 // Microsoft-specific type qualifiers.
170 #define MS_TYPE_ATTRS_CASELIST                                                 \
171   case ParsedAttr::AT_Ptr32:                                                   \
172   case ParsedAttr::AT_Ptr64:                                                   \
173   case ParsedAttr::AT_SPtr:                                                    \
174   case ParsedAttr::AT_UPtr
175 
176 // Nullability qualifiers.
177 #define NULLABILITY_TYPE_ATTRS_CASELIST                                        \
178   case ParsedAttr::AT_TypeNonNull:                                             \
179   case ParsedAttr::AT_TypeNullable:                                            \
180   case ParsedAttr::AT_TypeNullableResult:                                      \
181   case ParsedAttr::AT_TypeNullUnspecified
182 
183 namespace {
184   /// An object which stores processing state for the entire
185   /// GetTypeForDeclarator process.
186   class TypeProcessingState {
187     Sema &sema;
188 
189     /// The declarator being processed.
190     Declarator &declarator;
191 
192     /// The index of the declarator chunk we're currently processing.
193     /// May be the total number of valid chunks, indicating the
194     /// DeclSpec.
195     unsigned chunkIndex;
196 
197     /// The original set of attributes on the DeclSpec.
198     SmallVector<ParsedAttr *, 2> savedAttrs;
199 
200     /// A list of attributes to diagnose the uselessness of when the
201     /// processing is complete.
202     SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
203 
204     /// Attributes corresponding to AttributedTypeLocs that we have not yet
205     /// populated.
206     // FIXME: The two-phase mechanism by which we construct Types and fill
207     // their TypeLocs makes it hard to correctly assign these. We keep the
208     // attributes in creation order as an attempt to make them line up
209     // properly.
210     using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
211     SmallVector<TypeAttrPair, 8> AttrsForTypes;
212     bool AttrsForTypesSorted = true;
213 
214     /// MacroQualifiedTypes mapping to macro expansion locations that will be
215     /// stored in a MacroQualifiedTypeLoc.
216     llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
217 
218     /// Flag to indicate we parsed a noderef attribute. This is used for
219     /// validating that noderef was used on a pointer or array.
220     bool parsedNoDeref;
221 
222   public:
TypeProcessingState(Sema & sema,Declarator & declarator)223     TypeProcessingState(Sema &sema, Declarator &declarator)
224         : sema(sema), declarator(declarator),
225           chunkIndex(declarator.getNumTypeObjects()), parsedNoDeref(false) {}
226 
getSema() const227     Sema &getSema() const {
228       return sema;
229     }
230 
getDeclarator() const231     Declarator &getDeclarator() const {
232       return declarator;
233     }
234 
isProcessingDeclSpec() const235     bool isProcessingDeclSpec() const {
236       return chunkIndex == declarator.getNumTypeObjects();
237     }
238 
getCurrentChunkIndex() const239     unsigned getCurrentChunkIndex() const {
240       return chunkIndex;
241     }
242 
setCurrentChunkIndex(unsigned idx)243     void setCurrentChunkIndex(unsigned idx) {
244       assert(idx <= declarator.getNumTypeObjects());
245       chunkIndex = idx;
246     }
247 
getCurrentAttributes() const248     ParsedAttributesView &getCurrentAttributes() const {
249       if (isProcessingDeclSpec())
250         return getMutableDeclSpec().getAttributes();
251       return declarator.getTypeObject(chunkIndex).getAttrs();
252     }
253 
254     /// Save the current set of attributes on the DeclSpec.
saveDeclSpecAttrs()255     void saveDeclSpecAttrs() {
256       // Don't try to save them multiple times.
257       if (!savedAttrs.empty())
258         return;
259 
260       DeclSpec &spec = getMutableDeclSpec();
261       llvm::append_range(savedAttrs,
262                          llvm::make_pointer_range(spec.getAttributes()));
263     }
264 
265     /// Record that we had nowhere to put the given type attribute.
266     /// We will diagnose such attributes later.
addIgnoredTypeAttr(ParsedAttr & attr)267     void addIgnoredTypeAttr(ParsedAttr &attr) {
268       ignoredTypeAttrs.push_back(&attr);
269     }
270 
271     /// Diagnose all the ignored type attributes, given that the
272     /// declarator worked out to the given type.
diagnoseIgnoredTypeAttrs(QualType type) const273     void diagnoseIgnoredTypeAttrs(QualType type) const {
274       for (auto *Attr : ignoredTypeAttrs)
275         diagnoseBadTypeAttribute(getSema(), *Attr, type);
276     }
277 
278     /// Get an attributed type for the given attribute, and remember the Attr
279     /// object so that we can attach it to the AttributedTypeLoc.
getAttributedType(Attr * A,QualType ModifiedType,QualType EquivType)280     QualType getAttributedType(Attr *A, QualType ModifiedType,
281                                QualType EquivType) {
282       QualType T =
283           sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
284       AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
285       AttrsForTypesSorted = false;
286       return T;
287     }
288 
289     /// Get a BTFTagAttributed type for the btf_type_tag attribute.
getBTFTagAttributedType(const BTFTypeTagAttr * BTFAttr,QualType WrappedType)290     QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
291                                      QualType WrappedType) {
292       return sema.Context.getBTFTagAttributedType(BTFAttr, WrappedType);
293     }
294 
295     /// Completely replace the \c auto in \p TypeWithAuto by
296     /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
297     /// necessary.
ReplaceAutoType(QualType TypeWithAuto,QualType Replacement)298     QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
299       QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
300       if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
301         // Attributed type still should be an attributed type after replacement.
302         auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
303         for (TypeAttrPair &A : AttrsForTypes) {
304           if (A.first == AttrTy)
305             A.first = NewAttrTy;
306         }
307         AttrsForTypesSorted = false;
308       }
309       return T;
310     }
311 
312     /// Extract and remove the Attr* for a given attributed type.
takeAttrForAttributedType(const AttributedType * AT)313     const Attr *takeAttrForAttributedType(const AttributedType *AT) {
314       if (!AttrsForTypesSorted) {
315         llvm::stable_sort(AttrsForTypes, llvm::less_first());
316         AttrsForTypesSorted = true;
317       }
318 
319       // FIXME: This is quadratic if we have lots of reuses of the same
320       // attributed type.
321       for (auto It = std::partition_point(
322                AttrsForTypes.begin(), AttrsForTypes.end(),
323                [=](const TypeAttrPair &A) { return A.first < AT; });
324            It != AttrsForTypes.end() && It->first == AT; ++It) {
325         if (It->second) {
326           const Attr *Result = It->second;
327           It->second = nullptr;
328           return Result;
329         }
330       }
331 
332       llvm_unreachable("no Attr* for AttributedType*");
333     }
334 
335     SourceLocation
getExpansionLocForMacroQualifiedType(const MacroQualifiedType * MQT) const336     getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
337       auto FoundLoc = LocsForMacros.find(MQT);
338       assert(FoundLoc != LocsForMacros.end() &&
339              "Unable to find macro expansion location for MacroQualifedType");
340       return FoundLoc->second;
341     }
342 
setExpansionLocForMacroQualifiedType(const MacroQualifiedType * MQT,SourceLocation Loc)343     void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
344                                               SourceLocation Loc) {
345       LocsForMacros[MQT] = Loc;
346     }
347 
setParsedNoDeref(bool parsed)348     void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
349 
didParseNoDeref() const350     bool didParseNoDeref() const { return parsedNoDeref; }
351 
~TypeProcessingState()352     ~TypeProcessingState() {
353       if (savedAttrs.empty())
354         return;
355 
356       getMutableDeclSpec().getAttributes().clearListOnly();
357       for (ParsedAttr *AL : savedAttrs)
358         getMutableDeclSpec().getAttributes().addAtEnd(AL);
359     }
360 
361   private:
getMutableDeclSpec() const362     DeclSpec &getMutableDeclSpec() const {
363       return const_cast<DeclSpec&>(declarator.getDeclSpec());
364     }
365   };
366 } // end anonymous namespace
367 
moveAttrFromListToList(ParsedAttr & attr,ParsedAttributesView & fromList,ParsedAttributesView & toList)368 static void moveAttrFromListToList(ParsedAttr &attr,
369                                    ParsedAttributesView &fromList,
370                                    ParsedAttributesView &toList) {
371   fromList.remove(&attr);
372   toList.addAtEnd(&attr);
373 }
374 
375 /// The location of a type attribute.
376 enum TypeAttrLocation {
377   /// The attribute is in the decl-specifier-seq.
378   TAL_DeclSpec,
379   /// The attribute is part of a DeclaratorChunk.
380   TAL_DeclChunk,
381   /// The attribute is immediately after the declaration's name.
382   TAL_DeclName
383 };
384 
385 static void
386 processTypeAttrs(TypeProcessingState &state, QualType &type,
387                  TypeAttrLocation TAL, const ParsedAttributesView &attrs,
388                  CUDAFunctionTarget CFT = CUDAFunctionTarget::HostDevice);
389 
390 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
391                                    QualType &type, CUDAFunctionTarget CFT);
392 
393 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
394                                              ParsedAttr &attr, QualType &type);
395 
396 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
397                                  QualType &type);
398 
399 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
400                                         ParsedAttr &attr, QualType &type);
401 
handleObjCPointerTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType & type)402 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
403                                       ParsedAttr &attr, QualType &type) {
404   if (attr.getKind() == ParsedAttr::AT_ObjCGC)
405     return handleObjCGCTypeAttr(state, attr, type);
406   assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
407   return handleObjCOwnershipTypeAttr(state, attr, type);
408 }
409 
410 /// Given the index of a declarator chunk, check whether that chunk
411 /// directly specifies the return type of a function and, if so, find
412 /// an appropriate place for it.
413 ///
414 /// \param i - a notional index which the search will start
415 ///   immediately inside
416 ///
417 /// \param onlyBlockPointers Whether we should only look into block
418 /// pointer types (vs. all pointer types).
maybeMovePastReturnType(Declarator & declarator,unsigned i,bool onlyBlockPointers)419 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
420                                                 unsigned i,
421                                                 bool onlyBlockPointers) {
422   assert(i <= declarator.getNumTypeObjects());
423 
424   DeclaratorChunk *result = nullptr;
425 
426   // First, look inwards past parens for a function declarator.
427   for (; i != 0; --i) {
428     DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
429     switch (fnChunk.Kind) {
430     case DeclaratorChunk::Paren:
431       continue;
432 
433     // If we find anything except a function, bail out.
434     case DeclaratorChunk::Pointer:
435     case DeclaratorChunk::BlockPointer:
436     case DeclaratorChunk::Array:
437     case DeclaratorChunk::Reference:
438     case DeclaratorChunk::MemberPointer:
439     case DeclaratorChunk::Pipe:
440       return result;
441 
442     // If we do find a function declarator, scan inwards from that,
443     // looking for a (block-)pointer declarator.
444     case DeclaratorChunk::Function:
445       for (--i; i != 0; --i) {
446         DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
447         switch (ptrChunk.Kind) {
448         case DeclaratorChunk::Paren:
449         case DeclaratorChunk::Array:
450         case DeclaratorChunk::Function:
451         case DeclaratorChunk::Reference:
452         case DeclaratorChunk::Pipe:
453           continue;
454 
455         case DeclaratorChunk::MemberPointer:
456         case DeclaratorChunk::Pointer:
457           if (onlyBlockPointers)
458             continue;
459 
460           [[fallthrough]];
461 
462         case DeclaratorChunk::BlockPointer:
463           result = &ptrChunk;
464           goto continue_outer;
465         }
466         llvm_unreachable("bad declarator chunk kind");
467       }
468 
469       // If we run out of declarators doing that, we're done.
470       return result;
471     }
472     llvm_unreachable("bad declarator chunk kind");
473 
474     // Okay, reconsider from our new point.
475   continue_outer: ;
476   }
477 
478   // Ran out of chunks, bail out.
479   return result;
480 }
481 
482 /// Given that an objc_gc attribute was written somewhere on a
483 /// declaration *other* than on the declarator itself (for which, use
484 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
485 /// didn't apply in whatever position it was written in, try to move
486 /// it to a more appropriate position.
distributeObjCPointerTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType type)487 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
488                                           ParsedAttr &attr, QualType type) {
489   Declarator &declarator = state.getDeclarator();
490 
491   // Move it to the outermost normal or block pointer declarator.
492   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
493     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
494     switch (chunk.Kind) {
495     case DeclaratorChunk::Pointer:
496     case DeclaratorChunk::BlockPointer: {
497       // But don't move an ARC ownership attribute to the return type
498       // of a block.
499       DeclaratorChunk *destChunk = nullptr;
500       if (state.isProcessingDeclSpec() &&
501           attr.getKind() == ParsedAttr::AT_ObjCOwnership)
502         destChunk = maybeMovePastReturnType(declarator, i - 1,
503                                             /*onlyBlockPointers=*/true);
504       if (!destChunk) destChunk = &chunk;
505 
506       moveAttrFromListToList(attr, state.getCurrentAttributes(),
507                              destChunk->getAttrs());
508       return;
509     }
510 
511     case DeclaratorChunk::Paren:
512     case DeclaratorChunk::Array:
513       continue;
514 
515     // We may be starting at the return type of a block.
516     case DeclaratorChunk::Function:
517       if (state.isProcessingDeclSpec() &&
518           attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
519         if (DeclaratorChunk *dest = maybeMovePastReturnType(
520                                       declarator, i,
521                                       /*onlyBlockPointers=*/true)) {
522           moveAttrFromListToList(attr, state.getCurrentAttributes(),
523                                  dest->getAttrs());
524           return;
525         }
526       }
527       goto error;
528 
529     // Don't walk through these.
530     case DeclaratorChunk::Reference:
531     case DeclaratorChunk::MemberPointer:
532     case DeclaratorChunk::Pipe:
533       goto error;
534     }
535   }
536  error:
537 
538   diagnoseBadTypeAttribute(state.getSema(), attr, type);
539 }
540 
541 /// Distribute an objc_gc type attribute that was written on the
542 /// declarator.
distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState & state,ParsedAttr & attr,QualType & declSpecType)543 static void distributeObjCPointerTypeAttrFromDeclarator(
544     TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
545   Declarator &declarator = state.getDeclarator();
546 
547   // objc_gc goes on the innermost pointer to something that's not a
548   // pointer.
549   unsigned innermost = -1U;
550   bool considerDeclSpec = true;
551   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
552     DeclaratorChunk &chunk = declarator.getTypeObject(i);
553     switch (chunk.Kind) {
554     case DeclaratorChunk::Pointer:
555     case DeclaratorChunk::BlockPointer:
556       innermost = i;
557       continue;
558 
559     case DeclaratorChunk::Reference:
560     case DeclaratorChunk::MemberPointer:
561     case DeclaratorChunk::Paren:
562     case DeclaratorChunk::Array:
563     case DeclaratorChunk::Pipe:
564       continue;
565 
566     case DeclaratorChunk::Function:
567       considerDeclSpec = false;
568       goto done;
569     }
570   }
571  done:
572 
573   // That might actually be the decl spec if we weren't blocked by
574   // anything in the declarator.
575   if (considerDeclSpec) {
576     if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
577       // Splice the attribute into the decl spec.  Prevents the
578       // attribute from being applied multiple times and gives
579       // the source-location-filler something to work with.
580       state.saveDeclSpecAttrs();
581       declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
582           declarator.getAttributes(), &attr);
583       return;
584     }
585   }
586 
587   // Otherwise, if we found an appropriate chunk, splice the attribute
588   // into it.
589   if (innermost != -1U) {
590     moveAttrFromListToList(attr, declarator.getAttributes(),
591                            declarator.getTypeObject(innermost).getAttrs());
592     return;
593   }
594 
595   // Otherwise, diagnose when we're done building the type.
596   declarator.getAttributes().remove(&attr);
597   state.addIgnoredTypeAttr(attr);
598 }
599 
600 /// A function type attribute was written somewhere in a declaration
601 /// *other* than on the declarator itself or in the decl spec.  Given
602 /// that it didn't apply in whatever position it was written in, try
603 /// to move it to a more appropriate position.
distributeFunctionTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType type)604 static void distributeFunctionTypeAttr(TypeProcessingState &state,
605                                        ParsedAttr &attr, QualType type) {
606   Declarator &declarator = state.getDeclarator();
607 
608   // Try to push the attribute from the return type of a function to
609   // the function itself.
610   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
611     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
612     switch (chunk.Kind) {
613     case DeclaratorChunk::Function:
614       moveAttrFromListToList(attr, state.getCurrentAttributes(),
615                              chunk.getAttrs());
616       return;
617 
618     case DeclaratorChunk::Paren:
619     case DeclaratorChunk::Pointer:
620     case DeclaratorChunk::BlockPointer:
621     case DeclaratorChunk::Array:
622     case DeclaratorChunk::Reference:
623     case DeclaratorChunk::MemberPointer:
624     case DeclaratorChunk::Pipe:
625       continue;
626     }
627   }
628 
629   diagnoseBadTypeAttribute(state.getSema(), attr, type);
630 }
631 
632 /// Try to distribute a function type attribute to the innermost
633 /// function chunk or type.  Returns true if the attribute was
634 /// distributed, false if no location was found.
distributeFunctionTypeAttrToInnermost(TypeProcessingState & state,ParsedAttr & attr,ParsedAttributesView & attrList,QualType & declSpecType,CUDAFunctionTarget CFT)635 static bool distributeFunctionTypeAttrToInnermost(
636     TypeProcessingState &state, ParsedAttr &attr,
637     ParsedAttributesView &attrList, QualType &declSpecType,
638     CUDAFunctionTarget CFT) {
639   Declarator &declarator = state.getDeclarator();
640 
641   // Put it on the innermost function chunk, if there is one.
642   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
643     DeclaratorChunk &chunk = declarator.getTypeObject(i);
644     if (chunk.Kind != DeclaratorChunk::Function) continue;
645 
646     moveAttrFromListToList(attr, attrList, chunk.getAttrs());
647     return true;
648   }
649 
650   return handleFunctionTypeAttr(state, attr, declSpecType, CFT);
651 }
652 
653 /// A function type attribute was written in the decl spec.  Try to
654 /// apply it somewhere.
distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState & state,ParsedAttr & attr,QualType & declSpecType,CUDAFunctionTarget CFT)655 static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
656                                                    ParsedAttr &attr,
657                                                    QualType &declSpecType,
658                                                    CUDAFunctionTarget CFT) {
659   state.saveDeclSpecAttrs();
660 
661   // Try to distribute to the innermost.
662   if (distributeFunctionTypeAttrToInnermost(
663           state, attr, state.getCurrentAttributes(), declSpecType, CFT))
664     return;
665 
666   // If that failed, diagnose the bad attribute when the declarator is
667   // fully built.
668   state.addIgnoredTypeAttr(attr);
669 }
670 
671 /// A function type attribute was written on the declarator or declaration.
672 /// Try to apply it somewhere.
673 /// `Attrs` is the attribute list containing the declaration (either of the
674 /// declarator or the declaration).
distributeFunctionTypeAttrFromDeclarator(TypeProcessingState & state,ParsedAttr & attr,QualType & declSpecType,CUDAFunctionTarget CFT)675 static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
676                                                      ParsedAttr &attr,
677                                                      QualType &declSpecType,
678                                                      CUDAFunctionTarget CFT) {
679   Declarator &declarator = state.getDeclarator();
680 
681   // Try to distribute to the innermost.
682   if (distributeFunctionTypeAttrToInnermost(
683           state, attr, declarator.getAttributes(), declSpecType, CFT))
684     return;
685 
686   // If that failed, diagnose the bad attribute when the declarator is
687   // fully built.
688   declarator.getAttributes().remove(&attr);
689   state.addIgnoredTypeAttr(attr);
690 }
691 
692 /// Given that there are attributes written on the declarator or declaration
693 /// itself, try to distribute any type attributes to the appropriate
694 /// declarator chunk.
695 ///
696 /// These are attributes like the following:
697 ///   int f ATTR;
698 ///   int (f ATTR)();
699 /// but not necessarily this:
700 ///   int f() ATTR;
701 ///
702 /// `Attrs` is the attribute list containing the declaration (either of the
703 /// declarator or the declaration).
distributeTypeAttrsFromDeclarator(TypeProcessingState & state,QualType & declSpecType,CUDAFunctionTarget CFT)704 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
705                                               QualType &declSpecType,
706                                               CUDAFunctionTarget CFT) {
707   // The called functions in this loop actually remove things from the current
708   // list, so iterating over the existing list isn't possible.  Instead, make a
709   // non-owning copy and iterate over that.
710   ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
711   for (ParsedAttr &attr : AttrsCopy) {
712     // Do not distribute [[]] attributes. They have strict rules for what
713     // they appertain to.
714     if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute())
715       continue;
716 
717     switch (attr.getKind()) {
718     OBJC_POINTER_TYPE_ATTRS_CASELIST:
719       distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
720       break;
721 
722     FUNCTION_TYPE_ATTRS_CASELIST:
723       distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType, CFT);
724       break;
725 
726     MS_TYPE_ATTRS_CASELIST:
727       // Microsoft type attributes cannot go after the declarator-id.
728       continue;
729 
730     NULLABILITY_TYPE_ATTRS_CASELIST:
731       // Nullability specifiers cannot go after the declarator-id.
732 
733     // Objective-C __kindof does not get distributed.
734     case ParsedAttr::AT_ObjCKindOf:
735       continue;
736 
737     default:
738       break;
739     }
740   }
741 }
742 
743 /// Add a synthetic '()' to a block-literal declarator if it is
744 /// required, given the return type.
maybeSynthesizeBlockSignature(TypeProcessingState & state,QualType declSpecType)745 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
746                                           QualType declSpecType) {
747   Declarator &declarator = state.getDeclarator();
748 
749   // First, check whether the declarator would produce a function,
750   // i.e. whether the innermost semantic chunk is a function.
751   if (declarator.isFunctionDeclarator()) {
752     // If so, make that declarator a prototyped declarator.
753     declarator.getFunctionTypeInfo().hasPrototype = true;
754     return;
755   }
756 
757   // If there are any type objects, the type as written won't name a
758   // function, regardless of the decl spec type.  This is because a
759   // block signature declarator is always an abstract-declarator, and
760   // abstract-declarators can't just be parentheses chunks.  Therefore
761   // we need to build a function chunk unless there are no type
762   // objects and the decl spec type is a function.
763   if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
764     return;
765 
766   // Note that there *are* cases with invalid declarators where
767   // declarators consist solely of parentheses.  In general, these
768   // occur only in failed efforts to make function declarators, so
769   // faking up the function chunk is still the right thing to do.
770 
771   // Otherwise, we need to fake up a function declarator.
772   SourceLocation loc = declarator.getBeginLoc();
773 
774   // ...and *prepend* it to the declarator.
775   SourceLocation NoLoc;
776   declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
777       /*HasProto=*/true,
778       /*IsAmbiguous=*/false,
779       /*LParenLoc=*/NoLoc,
780       /*ArgInfo=*/nullptr,
781       /*NumParams=*/0,
782       /*EllipsisLoc=*/NoLoc,
783       /*RParenLoc=*/NoLoc,
784       /*RefQualifierIsLvalueRef=*/true,
785       /*RefQualifierLoc=*/NoLoc,
786       /*MutableLoc=*/NoLoc, EST_None,
787       /*ESpecRange=*/SourceRange(),
788       /*Exceptions=*/nullptr,
789       /*ExceptionRanges=*/nullptr,
790       /*NumExceptions=*/0,
791       /*NoexceptExpr=*/nullptr,
792       /*ExceptionSpecTokens=*/nullptr,
793       /*DeclsInPrototype=*/std::nullopt, loc, loc, declarator));
794 
795   // For consistency, make sure the state still has us as processing
796   // the decl spec.
797   assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
798   state.setCurrentChunkIndex(declarator.getNumTypeObjects());
799 }
800 
diagnoseAndRemoveTypeQualifiers(Sema & S,const DeclSpec & DS,unsigned & TypeQuals,QualType TypeSoFar,unsigned RemoveTQs,unsigned DiagID)801 static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
802                                             unsigned &TypeQuals,
803                                             QualType TypeSoFar,
804                                             unsigned RemoveTQs,
805                                             unsigned DiagID) {
806   // If this occurs outside a template instantiation, warn the user about
807   // it; they probably didn't mean to specify a redundant qualifier.
808   typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
809   for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
810                        QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
811                        QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
812                        QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
813     if (!(RemoveTQs & Qual.first))
814       continue;
815 
816     if (!S.inTemplateInstantiation()) {
817       if (TypeQuals & Qual.first)
818         S.Diag(Qual.second, DiagID)
819           << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
820           << FixItHint::CreateRemoval(Qual.second);
821     }
822 
823     TypeQuals &= ~Qual.first;
824   }
825 }
826 
827 /// Return true if this is omitted block return type. Also check type
828 /// attributes and type qualifiers when returning true.
checkOmittedBlockReturnType(Sema & S,Declarator & declarator,QualType Result)829 static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
830                                         QualType Result) {
831   if (!isOmittedBlockReturnType(declarator))
832     return false;
833 
834   // Warn if we see type attributes for omitted return type on a block literal.
835   SmallVector<ParsedAttr *, 2> ToBeRemoved;
836   for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
837     if (AL.isInvalid() || !AL.isTypeAttr())
838       continue;
839     S.Diag(AL.getLoc(),
840            diag::warn_block_literal_attributes_on_omitted_return_type)
841         << AL;
842     ToBeRemoved.push_back(&AL);
843   }
844   // Remove bad attributes from the list.
845   for (ParsedAttr *AL : ToBeRemoved)
846     declarator.getMutableDeclSpec().getAttributes().remove(AL);
847 
848   // Warn if we see type qualifiers for omitted return type on a block literal.
849   const DeclSpec &DS = declarator.getDeclSpec();
850   unsigned TypeQuals = DS.getTypeQualifiers();
851   diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
852       diag::warn_block_literal_qualifiers_on_omitted_return_type);
853   declarator.getMutableDeclSpec().ClearTypeQualifiers();
854 
855   return true;
856 }
857 
858 static OpenCLAccessAttr::Spelling
getImageAccess(const ParsedAttributesView & Attrs)859 getImageAccess(const ParsedAttributesView &Attrs) {
860   for (const ParsedAttr &AL : Attrs)
861     if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
862       return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
863   return OpenCLAccessAttr::Keyword_read_only;
864 }
865 
866 static UnaryTransformType::UTTKind
TSTToUnaryTransformType(DeclSpec::TST SwitchTST)867 TSTToUnaryTransformType(DeclSpec::TST SwitchTST) {
868   switch (SwitchTST) {
869 #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait)                                  \
870   case TST_##Trait:                                                            \
871     return UnaryTransformType::Enum;
872 #include "clang/Basic/TransformTypeTraits.def"
873   default:
874     llvm_unreachable("attempted to parse a non-unary transform builtin");
875   }
876 }
877 
878 /// Convert the specified declspec to the appropriate type
879 /// object.
880 /// \param state Specifies the declarator containing the declaration specifier
881 /// to be converted, along with other associated processing state.
882 /// \returns The type described by the declaration specifiers.  This function
883 /// never returns null.
ConvertDeclSpecToType(TypeProcessingState & state)884 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
885   // FIXME: Should move the logic from DeclSpec::Finish to here for validity
886   // checking.
887 
888   Sema &S = state.getSema();
889   Declarator &declarator = state.getDeclarator();
890   DeclSpec &DS = declarator.getMutableDeclSpec();
891   SourceLocation DeclLoc = declarator.getIdentifierLoc();
892   if (DeclLoc.isInvalid())
893     DeclLoc = DS.getBeginLoc();
894 
895   ASTContext &Context = S.Context;
896 
897   QualType Result;
898   switch (DS.getTypeSpecType()) {
899   case DeclSpec::TST_void:
900     Result = Context.VoidTy;
901     break;
902   case DeclSpec::TST_char:
903     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
904       Result = Context.CharTy;
905     else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
906       Result = Context.SignedCharTy;
907     else {
908       assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
909              "Unknown TSS value");
910       Result = Context.UnsignedCharTy;
911     }
912     break;
913   case DeclSpec::TST_wchar:
914     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
915       Result = Context.WCharTy;
916     else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
917       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
918         << DS.getSpecifierName(DS.getTypeSpecType(),
919                                Context.getPrintingPolicy());
920       Result = Context.getSignedWCharType();
921     } else {
922       assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
923              "Unknown TSS value");
924       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
925         << DS.getSpecifierName(DS.getTypeSpecType(),
926                                Context.getPrintingPolicy());
927       Result = Context.getUnsignedWCharType();
928     }
929     break;
930   case DeclSpec::TST_char8:
931     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
932            "Unknown TSS value");
933     Result = Context.Char8Ty;
934     break;
935   case DeclSpec::TST_char16:
936     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
937            "Unknown TSS value");
938     Result = Context.Char16Ty;
939     break;
940   case DeclSpec::TST_char32:
941     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
942            "Unknown TSS value");
943     Result = Context.Char32Ty;
944     break;
945   case DeclSpec::TST_unspecified:
946     // If this is a missing declspec in a block literal return context, then it
947     // is inferred from the return statements inside the block.
948     // The declspec is always missing in a lambda expr context; it is either
949     // specified with a trailing return type or inferred.
950     if (S.getLangOpts().CPlusPlus14 &&
951         declarator.getContext() == DeclaratorContext::LambdaExpr) {
952       // In C++1y, a lambda's implicit return type is 'auto'.
953       Result = Context.getAutoDeductType();
954       break;
955     } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
956                checkOmittedBlockReturnType(S, declarator,
957                                            Context.DependentTy)) {
958       Result = Context.DependentTy;
959       break;
960     }
961 
962     // Unspecified typespec defaults to int in C90.  However, the C90 grammar
963     // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
964     // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
965     // Note that the one exception to this is function definitions, which are
966     // allowed to be completely missing a declspec.  This is handled in the
967     // parser already though by it pretending to have seen an 'int' in this
968     // case.
969     if (S.getLangOpts().isImplicitIntRequired()) {
970       S.Diag(DeclLoc, diag::warn_missing_type_specifier)
971           << DS.getSourceRange()
972           << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
973     } else if (!DS.hasTypeSpecifier()) {
974       // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
975       // "At least one type specifier shall be given in the declaration
976       // specifiers in each declaration, and in the specifier-qualifier list in
977       // each struct declaration and type name."
978       if (!S.getLangOpts().isImplicitIntAllowed() && !DS.isTypeSpecPipe()) {
979         S.Diag(DeclLoc, diag::err_missing_type_specifier)
980             << DS.getSourceRange();
981 
982         // When this occurs, often something is very broken with the value
983         // being declared, poison it as invalid so we don't get chains of
984         // errors.
985         declarator.setInvalidType(true);
986       } else if (S.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
987                  DS.isTypeSpecPipe()) {
988         S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
989             << DS.getSourceRange();
990         declarator.setInvalidType(true);
991       } else {
992         assert(S.getLangOpts().isImplicitIntAllowed() &&
993                "implicit int is disabled?");
994         S.Diag(DeclLoc, diag::ext_missing_type_specifier)
995             << DS.getSourceRange()
996             << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
997       }
998     }
999 
1000     [[fallthrough]];
1001   case DeclSpec::TST_int: {
1002     if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1003       switch (DS.getTypeSpecWidth()) {
1004       case TypeSpecifierWidth::Unspecified:
1005         Result = Context.IntTy;
1006         break;
1007       case TypeSpecifierWidth::Short:
1008         Result = Context.ShortTy;
1009         break;
1010       case TypeSpecifierWidth::Long:
1011         Result = Context.LongTy;
1012         break;
1013       case TypeSpecifierWidth::LongLong:
1014         Result = Context.LongLongTy;
1015 
1016         // 'long long' is a C99 or C++11 feature.
1017         if (!S.getLangOpts().C99) {
1018           if (S.getLangOpts().CPlusPlus)
1019             S.Diag(DS.getTypeSpecWidthLoc(),
1020                    S.getLangOpts().CPlusPlus11 ?
1021                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1022           else
1023             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1024         }
1025         break;
1026       }
1027     } else {
1028       switch (DS.getTypeSpecWidth()) {
1029       case TypeSpecifierWidth::Unspecified:
1030         Result = Context.UnsignedIntTy;
1031         break;
1032       case TypeSpecifierWidth::Short:
1033         Result = Context.UnsignedShortTy;
1034         break;
1035       case TypeSpecifierWidth::Long:
1036         Result = Context.UnsignedLongTy;
1037         break;
1038       case TypeSpecifierWidth::LongLong:
1039         Result = Context.UnsignedLongLongTy;
1040 
1041         // 'long long' is a C99 or C++11 feature.
1042         if (!S.getLangOpts().C99) {
1043           if (S.getLangOpts().CPlusPlus)
1044             S.Diag(DS.getTypeSpecWidthLoc(),
1045                    S.getLangOpts().CPlusPlus11 ?
1046                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1047           else
1048             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1049         }
1050         break;
1051       }
1052     }
1053     break;
1054   }
1055   case DeclSpec::TST_bitint: {
1056     if (!S.Context.getTargetInfo().hasBitIntType())
1057       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "_BitInt";
1058     Result =
1059         S.BuildBitIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1060                           DS.getRepAsExpr(), DS.getBeginLoc());
1061     if (Result.isNull()) {
1062       Result = Context.IntTy;
1063       declarator.setInvalidType(true);
1064     }
1065     break;
1066   }
1067   case DeclSpec::TST_accum: {
1068     switch (DS.getTypeSpecWidth()) {
1069     case TypeSpecifierWidth::Short:
1070       Result = Context.ShortAccumTy;
1071       break;
1072     case TypeSpecifierWidth::Unspecified:
1073       Result = Context.AccumTy;
1074       break;
1075     case TypeSpecifierWidth::Long:
1076       Result = Context.LongAccumTy;
1077       break;
1078     case TypeSpecifierWidth::LongLong:
1079       llvm_unreachable("Unable to specify long long as _Accum width");
1080     }
1081 
1082     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1083       Result = Context.getCorrespondingUnsignedType(Result);
1084 
1085     if (DS.isTypeSpecSat())
1086       Result = Context.getCorrespondingSaturatedType(Result);
1087 
1088     break;
1089   }
1090   case DeclSpec::TST_fract: {
1091     switch (DS.getTypeSpecWidth()) {
1092     case TypeSpecifierWidth::Short:
1093       Result = Context.ShortFractTy;
1094       break;
1095     case TypeSpecifierWidth::Unspecified:
1096       Result = Context.FractTy;
1097       break;
1098     case TypeSpecifierWidth::Long:
1099       Result = Context.LongFractTy;
1100       break;
1101     case TypeSpecifierWidth::LongLong:
1102       llvm_unreachable("Unable to specify long long as _Fract width");
1103     }
1104 
1105     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1106       Result = Context.getCorrespondingUnsignedType(Result);
1107 
1108     if (DS.isTypeSpecSat())
1109       Result = Context.getCorrespondingSaturatedType(Result);
1110 
1111     break;
1112   }
1113   case DeclSpec::TST_int128:
1114     if (!S.Context.getTargetInfo().hasInt128Type() &&
1115         !(S.getLangOpts().SYCLIsDevice || S.getLangOpts().CUDAIsDevice ||
1116           (S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice)))
1117       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1118         << "__int128";
1119     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1120       Result = Context.UnsignedInt128Ty;
1121     else
1122       Result = Context.Int128Ty;
1123     break;
1124   case DeclSpec::TST_float16:
1125     // CUDA host and device may have different _Float16 support, therefore
1126     // do not diagnose _Float16 usage to avoid false alarm.
1127     // ToDo: more precise diagnostics for CUDA.
1128     if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1129         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1130       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1131         << "_Float16";
1132     Result = Context.Float16Ty;
1133     break;
1134   case DeclSpec::TST_half:    Result = Context.HalfTy; break;
1135   case DeclSpec::TST_BFloat16:
1136     if (!S.Context.getTargetInfo().hasBFloat16Type() &&
1137         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice) &&
1138         !S.getLangOpts().SYCLIsDevice)
1139       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__bf16";
1140     Result = Context.BFloat16Ty;
1141     break;
1142   case DeclSpec::TST_float:   Result = Context.FloatTy; break;
1143   case DeclSpec::TST_double:
1144     if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1145       Result = Context.LongDoubleTy;
1146     else
1147       Result = Context.DoubleTy;
1148     if (S.getLangOpts().OpenCL) {
1149       if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts()))
1150         S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1151             << 0 << Result
1152             << (S.getLangOpts().getOpenCLCompatibleVersion() == 300
1153                     ? "cl_khr_fp64 and __opencl_c_fp64"
1154                     : "cl_khr_fp64");
1155       else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts()))
1156         S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma);
1157     }
1158     break;
1159   case DeclSpec::TST_float128:
1160     if (!S.Context.getTargetInfo().hasFloat128Type() &&
1161         !S.getLangOpts().SYCLIsDevice && !S.getLangOpts().CUDAIsDevice &&
1162         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1163       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1164         << "__float128";
1165     Result = Context.Float128Ty;
1166     break;
1167   case DeclSpec::TST_ibm128:
1168     if (!S.Context.getTargetInfo().hasIbm128Type() &&
1169         !S.getLangOpts().SYCLIsDevice &&
1170         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1171       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__ibm128";
1172     Result = Context.Ibm128Ty;
1173     break;
1174   case DeclSpec::TST_bool:
1175     Result = Context.BoolTy; // _Bool or bool
1176     break;
1177   case DeclSpec::TST_decimal32:    // _Decimal32
1178   case DeclSpec::TST_decimal64:    // _Decimal64
1179   case DeclSpec::TST_decimal128:   // _Decimal128
1180     S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1181     Result = Context.IntTy;
1182     declarator.setInvalidType(true);
1183     break;
1184   case DeclSpec::TST_class:
1185   case DeclSpec::TST_enum:
1186   case DeclSpec::TST_union:
1187   case DeclSpec::TST_struct:
1188   case DeclSpec::TST_interface: {
1189     TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1190     if (!D) {
1191       // This can happen in C++ with ambiguous lookups.
1192       Result = Context.IntTy;
1193       declarator.setInvalidType(true);
1194       break;
1195     }
1196 
1197     // If the type is deprecated or unavailable, diagnose it.
1198     S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1199 
1200     assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1201            DS.getTypeSpecComplex() == 0 &&
1202            DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1203            "No qualifiers on tag names!");
1204 
1205     // TypeQuals handled by caller.
1206     Result = Context.getTypeDeclType(D);
1207 
1208     // In both C and C++, make an ElaboratedType.
1209     ElaboratedTypeKeyword Keyword
1210       = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1211     Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1212                                  DS.isTypeSpecOwned() ? D : nullptr);
1213     break;
1214   }
1215   case DeclSpec::TST_typename: {
1216     assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1217            DS.getTypeSpecComplex() == 0 &&
1218            DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1219            "Can't handle qualifiers on typedef names yet!");
1220     Result = S.GetTypeFromParser(DS.getRepAsType());
1221     if (Result.isNull()) {
1222       declarator.setInvalidType(true);
1223     }
1224 
1225     // TypeQuals handled by caller.
1226     break;
1227   }
1228   case DeclSpec::TST_typeof_unqualType:
1229   case DeclSpec::TST_typeofType:
1230     // FIXME: Preserve type source info.
1231     Result = S.GetTypeFromParser(DS.getRepAsType());
1232     assert(!Result.isNull() && "Didn't get a type for typeof?");
1233     if (!Result->isDependentType())
1234       if (const TagType *TT = Result->getAs<TagType>())
1235         S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1236     // TypeQuals handled by caller.
1237     Result = Context.getTypeOfType(
1238         Result, DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
1239                     ? TypeOfKind::Unqualified
1240                     : TypeOfKind::Qualified);
1241     break;
1242   case DeclSpec::TST_typeof_unqualExpr:
1243   case DeclSpec::TST_typeofExpr: {
1244     Expr *E = DS.getRepAsExpr();
1245     assert(E && "Didn't get an expression for typeof?");
1246     // TypeQuals handled by caller.
1247     Result = S.BuildTypeofExprType(E, DS.getTypeSpecType() ==
1248                                               DeclSpec::TST_typeof_unqualExpr
1249                                           ? TypeOfKind::Unqualified
1250                                           : TypeOfKind::Qualified);
1251     if (Result.isNull()) {
1252       Result = Context.IntTy;
1253       declarator.setInvalidType(true);
1254     }
1255     break;
1256   }
1257   case DeclSpec::TST_decltype: {
1258     Expr *E = DS.getRepAsExpr();
1259     assert(E && "Didn't get an expression for decltype?");
1260     // TypeQuals handled by caller.
1261     Result = S.BuildDecltypeType(E);
1262     if (Result.isNull()) {
1263       Result = Context.IntTy;
1264       declarator.setInvalidType(true);
1265     }
1266     break;
1267   }
1268   case DeclSpec::TST_typename_pack_indexing: {
1269     Expr *E = DS.getPackIndexingExpr();
1270     assert(E && "Didn't get an expression for pack indexing");
1271     QualType Pattern = S.GetTypeFromParser(DS.getRepAsType());
1272     Result = S.BuildPackIndexingType(Pattern, E, DS.getBeginLoc(),
1273                                      DS.getEllipsisLoc());
1274     if (Result.isNull()) {
1275       declarator.setInvalidType(true);
1276       Result = Context.IntTy;
1277     }
1278     break;
1279   }
1280 
1281 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
1282 #include "clang/Basic/TransformTypeTraits.def"
1283     Result = S.GetTypeFromParser(DS.getRepAsType());
1284     assert(!Result.isNull() && "Didn't get a type for the transformation?");
1285     Result = S.BuildUnaryTransformType(
1286         Result, TSTToUnaryTransformType(DS.getTypeSpecType()),
1287         DS.getTypeSpecTypeLoc());
1288     if (Result.isNull()) {
1289       Result = Context.IntTy;
1290       declarator.setInvalidType(true);
1291     }
1292     break;
1293 
1294   case DeclSpec::TST_auto:
1295   case DeclSpec::TST_decltype_auto: {
1296     auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1297                       ? AutoTypeKeyword::DecltypeAuto
1298                       : AutoTypeKeyword::Auto;
1299 
1300     ConceptDecl *TypeConstraintConcept = nullptr;
1301     llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1302     if (DS.isConstrainedAuto()) {
1303       if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1304         TypeConstraintConcept =
1305             cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1306         TemplateArgumentListInfo TemplateArgsInfo;
1307         TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1308         TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1309         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1310                                            TemplateId->NumArgs);
1311         S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1312         for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1313           TemplateArgs.push_back(ArgLoc.getArgument());
1314       } else {
1315         declarator.setInvalidType(true);
1316       }
1317     }
1318     Result = S.Context.getAutoType(QualType(), AutoKW,
1319                                    /*IsDependent*/ false, /*IsPack=*/false,
1320                                    TypeConstraintConcept, TemplateArgs);
1321     break;
1322   }
1323 
1324   case DeclSpec::TST_auto_type:
1325     Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1326     break;
1327 
1328   case DeclSpec::TST_unknown_anytype:
1329     Result = Context.UnknownAnyTy;
1330     break;
1331 
1332   case DeclSpec::TST_atomic:
1333     Result = S.GetTypeFromParser(DS.getRepAsType());
1334     assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1335     Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1336     if (Result.isNull()) {
1337       Result = Context.IntTy;
1338       declarator.setInvalidType(true);
1339     }
1340     break;
1341 
1342 #define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
1343   case DeclSpec::TST_##ImgType##_t:                                            \
1344     switch (getImageAccess(DS.getAttributes())) {                              \
1345     case OpenCLAccessAttr::Keyword_write_only:                                 \
1346       Result = Context.Id##WOTy;                                               \
1347       break;                                                                   \
1348     case OpenCLAccessAttr::Keyword_read_write:                                 \
1349       Result = Context.Id##RWTy;                                               \
1350       break;                                                                   \
1351     case OpenCLAccessAttr::Keyword_read_only:                                  \
1352       Result = Context.Id##ROTy;                                               \
1353       break;                                                                   \
1354     case OpenCLAccessAttr::SpellingNotCalculated:                              \
1355       llvm_unreachable("Spelling not yet calculated");                         \
1356     }                                                                          \
1357     break;
1358 #include "clang/Basic/OpenCLImageTypes.def"
1359 
1360   case DeclSpec::TST_error:
1361     Result = Context.IntTy;
1362     declarator.setInvalidType(true);
1363     break;
1364   }
1365 
1366   // FIXME: we want resulting declarations to be marked invalid, but claiming
1367   // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1368   // a null type.
1369   if (Result->containsErrors())
1370     declarator.setInvalidType();
1371 
1372   if (S.getLangOpts().OpenCL) {
1373     const auto &OpenCLOptions = S.getOpenCLOptions();
1374     bool IsOpenCLC30Compatible =
1375         S.getLangOpts().getOpenCLCompatibleVersion() == 300;
1376     // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1377     // support.
1378     // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1379     // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1380     // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1381     // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1382     // only when the optional feature is supported
1383     if ((Result->isImageType() || Result->isSamplerT()) &&
1384         (IsOpenCLC30Compatible &&
1385          !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) {
1386       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1387           << 0 << Result << "__opencl_c_images";
1388       declarator.setInvalidType();
1389     } else if (Result->isOCLImage3dWOType() &&
1390                !OpenCLOptions.isSupported("cl_khr_3d_image_writes",
1391                                           S.getLangOpts())) {
1392       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1393           << 0 << Result
1394           << (IsOpenCLC30Compatible
1395                   ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1396                   : "cl_khr_3d_image_writes");
1397       declarator.setInvalidType();
1398     }
1399   }
1400 
1401   bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1402                           DS.getTypeSpecType() == DeclSpec::TST_fract;
1403 
1404   // Only fixed point types can be saturated
1405   if (DS.isTypeSpecSat() && !IsFixedPointType)
1406     S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1407         << DS.getSpecifierName(DS.getTypeSpecType(),
1408                                Context.getPrintingPolicy());
1409 
1410   // Handle complex types.
1411   if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1412     if (S.getLangOpts().Freestanding)
1413       S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1414     Result = Context.getComplexType(Result);
1415   } else if (DS.isTypeAltiVecVector()) {
1416     unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1417     assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1418     VectorKind VecKind = VectorKind::AltiVecVector;
1419     if (DS.isTypeAltiVecPixel())
1420       VecKind = VectorKind::AltiVecPixel;
1421     else if (DS.isTypeAltiVecBool())
1422       VecKind = VectorKind::AltiVecBool;
1423     Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1424   }
1425 
1426   // _Imaginary was a feature of C99 through C23 but was never supported in
1427   // Clang. The feature was removed in C2y, but we retain the unsupported
1428   // diagnostic for an improved user experience.
1429   if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1430     S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1431 
1432   // Before we process any type attributes, synthesize a block literal
1433   // function declarator if necessary.
1434   if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1435     maybeSynthesizeBlockSignature(state, Result);
1436 
1437   // Apply any type attributes from the decl spec.  This may cause the
1438   // list of type attributes to be temporarily saved while the type
1439   // attributes are pushed around.
1440   // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1441   if (!DS.isTypeSpecPipe()) {
1442     // We also apply declaration attributes that "slide" to the decl spec.
1443     // Ordering can be important for attributes. The decalaration attributes
1444     // come syntactically before the decl spec attributes, so we process them
1445     // in that order.
1446     ParsedAttributesView SlidingAttrs;
1447     for (ParsedAttr &AL : declarator.getDeclarationAttributes()) {
1448       if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
1449         SlidingAttrs.addAtEnd(&AL);
1450 
1451         // For standard syntax attributes, which would normally appertain to the
1452         // declaration here, suggest moving them to the type instead. But only
1453         // do this for our own vendor attributes; moving other vendors'
1454         // attributes might hurt portability.
1455         // There's one special case that we need to deal with here: The
1456         // `MatrixType` attribute may only be used in a typedef declaration. If
1457         // it's being used anywhere else, don't output the warning as
1458         // ProcessDeclAttributes() will output an error anyway.
1459         if (AL.isStandardAttributeSyntax() && AL.isClangScope() &&
1460             !(AL.getKind() == ParsedAttr::AT_MatrixType &&
1461               DS.getStorageClassSpec() != DeclSpec::SCS_typedef)) {
1462           S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
1463               << AL;
1464         }
1465       }
1466     }
1467     // During this call to processTypeAttrs(),
1468     // TypeProcessingState::getCurrentAttributes() will erroneously return a
1469     // reference to the DeclSpec attributes, rather than the declaration
1470     // attributes. However, this doesn't matter, as getCurrentAttributes()
1471     // is only called when distributing attributes from one attribute list
1472     // to another. Declaration attributes are always C++11 attributes, and these
1473     // are never distributed.
1474     processTypeAttrs(state, Result, TAL_DeclSpec, SlidingAttrs);
1475     processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1476   }
1477 
1478   // Apply const/volatile/restrict qualifiers to T.
1479   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1480     // Warn about CV qualifiers on function types.
1481     // C99 6.7.3p8:
1482     //   If the specification of a function type includes any type qualifiers,
1483     //   the behavior is undefined.
1484     // C++11 [dcl.fct]p7:
1485     //   The effect of a cv-qualifier-seq in a function declarator is not the
1486     //   same as adding cv-qualification on top of the function type. In the
1487     //   latter case, the cv-qualifiers are ignored.
1488     if (Result->isFunctionType()) {
1489       diagnoseAndRemoveTypeQualifiers(
1490           S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1491           S.getLangOpts().CPlusPlus
1492               ? diag::warn_typecheck_function_qualifiers_ignored
1493               : diag::warn_typecheck_function_qualifiers_unspecified);
1494       // No diagnostic for 'restrict' or '_Atomic' applied to a
1495       // function type; we'll diagnose those later, in BuildQualifiedType.
1496     }
1497 
1498     // C++11 [dcl.ref]p1:
1499     //   Cv-qualified references are ill-formed except when the
1500     //   cv-qualifiers are introduced through the use of a typedef-name
1501     //   or decltype-specifier, in which case the cv-qualifiers are ignored.
1502     //
1503     // There don't appear to be any other contexts in which a cv-qualified
1504     // reference type could be formed, so the 'ill-formed' clause here appears
1505     // to never happen.
1506     if (TypeQuals && Result->isReferenceType()) {
1507       diagnoseAndRemoveTypeQualifiers(
1508           S, DS, TypeQuals, Result,
1509           DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1510           diag::warn_typecheck_reference_qualifiers);
1511     }
1512 
1513     // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1514     // than once in the same specifier-list or qualifier-list, either directly
1515     // or via one or more typedefs."
1516     if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1517         && TypeQuals & Result.getCVRQualifiers()) {
1518       if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1519         S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1520           << "const";
1521       }
1522 
1523       if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1524         S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1525           << "volatile";
1526       }
1527 
1528       // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1529       // produce a warning in this case.
1530     }
1531 
1532     QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1533 
1534     // If adding qualifiers fails, just use the unqualified type.
1535     if (Qualified.isNull())
1536       declarator.setInvalidType(true);
1537     else
1538       Result = Qualified;
1539   }
1540 
1541   assert(!Result.isNull() && "This function should not return a null type");
1542   return Result;
1543 }
1544 
getPrintableNameForEntity(DeclarationName Entity)1545 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1546   if (Entity)
1547     return Entity.getAsString();
1548 
1549   return "type name";
1550 }
1551 
isDependentOrGNUAutoType(QualType T)1552 static bool isDependentOrGNUAutoType(QualType T) {
1553   if (T->isDependentType())
1554     return true;
1555 
1556   const auto *AT = dyn_cast<AutoType>(T);
1557   return AT && AT->isGNUAutoType();
1558 }
1559 
BuildQualifiedType(QualType T,SourceLocation Loc,Qualifiers Qs,const DeclSpec * DS)1560 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1561                                   Qualifiers Qs, const DeclSpec *DS) {
1562   if (T.isNull())
1563     return QualType();
1564 
1565   // Ignore any attempt to form a cv-qualified reference.
1566   if (T->isReferenceType()) {
1567     Qs.removeConst();
1568     Qs.removeVolatile();
1569   }
1570 
1571   // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1572   // object or incomplete types shall not be restrict-qualified."
1573   if (Qs.hasRestrict()) {
1574     unsigned DiagID = 0;
1575     QualType ProblemTy;
1576 
1577     if (T->isAnyPointerType() || T->isReferenceType() ||
1578         T->isMemberPointerType()) {
1579       QualType EltTy;
1580       if (T->isObjCObjectPointerType())
1581         EltTy = T;
1582       else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1583         EltTy = PTy->getPointeeType();
1584       else
1585         EltTy = T->getPointeeType();
1586 
1587       // If we have a pointer or reference, the pointee must have an object
1588       // incomplete type.
1589       if (!EltTy->isIncompleteOrObjectType()) {
1590         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1591         ProblemTy = EltTy;
1592       }
1593     } else if (!isDependentOrGNUAutoType(T)) {
1594       // For an __auto_type variable, we may not have seen the initializer yet
1595       // and so have no idea whether the underlying type is a pointer type or
1596       // not.
1597       DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1598       ProblemTy = T;
1599     }
1600 
1601     if (DiagID) {
1602       Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1603       Qs.removeRestrict();
1604     }
1605   }
1606 
1607   return Context.getQualifiedType(T, Qs);
1608 }
1609 
BuildQualifiedType(QualType T,SourceLocation Loc,unsigned CVRAU,const DeclSpec * DS)1610 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1611                                   unsigned CVRAU, const DeclSpec *DS) {
1612   if (T.isNull())
1613     return QualType();
1614 
1615   // Ignore any attempt to form a cv-qualified reference.
1616   if (T->isReferenceType())
1617     CVRAU &=
1618         ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1619 
1620   // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1621   // TQ_unaligned;
1622   unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1623 
1624   // C11 6.7.3/5:
1625   //   If the same qualifier appears more than once in the same
1626   //   specifier-qualifier-list, either directly or via one or more typedefs,
1627   //   the behavior is the same as if it appeared only once.
1628   //
1629   // It's not specified what happens when the _Atomic qualifier is applied to
1630   // a type specified with the _Atomic specifier, but we assume that this
1631   // should be treated as if the _Atomic qualifier appeared multiple times.
1632   if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1633     // C11 6.7.3/5:
1634     //   If other qualifiers appear along with the _Atomic qualifier in a
1635     //   specifier-qualifier-list, the resulting type is the so-qualified
1636     //   atomic type.
1637     //
1638     // Don't need to worry about array types here, since _Atomic can't be
1639     // applied to such types.
1640     SplitQualType Split = T.getSplitUnqualifiedType();
1641     T = BuildAtomicType(QualType(Split.Ty, 0),
1642                         DS ? DS->getAtomicSpecLoc() : Loc);
1643     if (T.isNull())
1644       return T;
1645     Split.Quals.addCVRQualifiers(CVR);
1646     return BuildQualifiedType(T, Loc, Split.Quals);
1647   }
1648 
1649   Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1650   Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1651   return BuildQualifiedType(T, Loc, Q, DS);
1652 }
1653 
BuildParenType(QualType T)1654 QualType Sema::BuildParenType(QualType T) {
1655   return Context.getParenType(T);
1656 }
1657 
1658 /// Given that we're building a pointer or reference to the given
inferARCLifetimeForPointee(Sema & S,QualType type,SourceLocation loc,bool isReference)1659 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1660                                            SourceLocation loc,
1661                                            bool isReference) {
1662   // Bail out if retention is unrequired or already specified.
1663   if (!type->isObjCLifetimeType() ||
1664       type.getObjCLifetime() != Qualifiers::OCL_None)
1665     return type;
1666 
1667   Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1668 
1669   // If the object type is const-qualified, we can safely use
1670   // __unsafe_unretained.  This is safe (because there are no read
1671   // barriers), and it'll be safe to coerce anything but __weak* to
1672   // the resulting type.
1673   if (type.isConstQualified()) {
1674     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1675 
1676   // Otherwise, check whether the static type does not require
1677   // retaining.  This currently only triggers for Class (possibly
1678   // protocol-qualifed, and arrays thereof).
1679   } else if (type->isObjCARCImplicitlyUnretainedType()) {
1680     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1681 
1682   // If we are in an unevaluated context, like sizeof, skip adding a
1683   // qualification.
1684   } else if (S.isUnevaluatedContext()) {
1685     return type;
1686 
1687   // If that failed, give an error and recover using __strong.  __strong
1688   // is the option most likely to prevent spurious second-order diagnostics,
1689   // like when binding a reference to a field.
1690   } else {
1691     // These types can show up in private ivars in system headers, so
1692     // we need this to not be an error in those cases.  Instead we
1693     // want to delay.
1694     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1695       S.DelayedDiagnostics.add(
1696           sema::DelayedDiagnostic::makeForbiddenType(loc,
1697               diag::err_arc_indirect_no_ownership, type, isReference));
1698     } else {
1699       S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1700     }
1701     implicitLifetime = Qualifiers::OCL_Strong;
1702   }
1703   assert(implicitLifetime && "didn't infer any lifetime!");
1704 
1705   Qualifiers qs;
1706   qs.addObjCLifetime(implicitLifetime);
1707   return S.Context.getQualifiedType(type, qs);
1708 }
1709 
getFunctionQualifiersAsString(const FunctionProtoType * FnTy)1710 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1711   std::string Quals = FnTy->getMethodQuals().getAsString();
1712 
1713   switch (FnTy->getRefQualifier()) {
1714   case RQ_None:
1715     break;
1716 
1717   case RQ_LValue:
1718     if (!Quals.empty())
1719       Quals += ' ';
1720     Quals += '&';
1721     break;
1722 
1723   case RQ_RValue:
1724     if (!Quals.empty())
1725       Quals += ' ';
1726     Quals += "&&";
1727     break;
1728   }
1729 
1730   return Quals;
1731 }
1732 
1733 namespace {
1734 /// Kinds of declarator that cannot contain a qualified function type.
1735 ///
1736 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1737 ///     a function type with a cv-qualifier or a ref-qualifier can only appear
1738 ///     at the topmost level of a type.
1739 ///
1740 /// Parens and member pointers are permitted. We don't diagnose array and
1741 /// function declarators, because they don't allow function types at all.
1742 ///
1743 /// The values of this enum are used in diagnostics.
1744 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1745 } // end anonymous namespace
1746 
1747 /// Check whether the type T is a qualified function type, and if it is,
1748 /// diagnose that it cannot be contained within the given kind of declarator.
checkQualifiedFunction(Sema & S,QualType T,SourceLocation Loc,QualifiedFunctionKind QFK)1749 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1750                                    QualifiedFunctionKind QFK) {
1751   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1752   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1753   if (!FPT ||
1754       (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1755     return false;
1756 
1757   S.Diag(Loc, diag::err_compound_qualified_function_type)
1758     << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1759     << getFunctionQualifiersAsString(FPT);
1760   return true;
1761 }
1762 
CheckQualifiedFunctionForTypeId(QualType T,SourceLocation Loc)1763 bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
1764   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1765   if (!FPT ||
1766       (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1767     return false;
1768 
1769   Diag(Loc, diag::err_qualified_function_typeid)
1770       << T << getFunctionQualifiersAsString(FPT);
1771   return true;
1772 }
1773 
1774 // Helper to deduce addr space of a pointee type in OpenCL mode.
deduceOpenCLPointeeAddrSpace(Sema & S,QualType PointeeType)1775 static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
1776   if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
1777       !PointeeType->isSamplerT() &&
1778       !PointeeType.hasAddressSpace())
1779     PointeeType = S.getASTContext().getAddrSpaceQualType(
1780         PointeeType, S.getASTContext().getDefaultOpenCLPointeeAddrSpace());
1781   return PointeeType;
1782 }
1783 
BuildPointerType(QualType T,SourceLocation Loc,DeclarationName Entity)1784 QualType Sema::BuildPointerType(QualType T,
1785                                 SourceLocation Loc, DeclarationName Entity) {
1786   if (T->isReferenceType()) {
1787     // C++ 8.3.2p4: There shall be no ... pointers to references ...
1788     Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1789       << getPrintableNameForEntity(Entity) << T;
1790     return QualType();
1791   }
1792 
1793   if (T->isFunctionType() && getLangOpts().OpenCL &&
1794       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
1795                                             getLangOpts())) {
1796     Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
1797     return QualType();
1798   }
1799 
1800   if (getLangOpts().HLSL && Loc.isValid()) {
1801     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
1802     return QualType();
1803   }
1804 
1805   if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1806     return QualType();
1807 
1808   assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1809 
1810   // In ARC, it is forbidden to build pointers to unqualified pointers.
1811   if (getLangOpts().ObjCAutoRefCount)
1812     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1813 
1814   if (getLangOpts().OpenCL)
1815     T = deduceOpenCLPointeeAddrSpace(*this, T);
1816 
1817   // In WebAssembly, pointers to reference types and pointers to tables are
1818   // illegal.
1819   if (getASTContext().getTargetInfo().getTriple().isWasm()) {
1820     if (T.isWebAssemblyReferenceType()) {
1821       Diag(Loc, diag::err_wasm_reference_pr) << 0;
1822       return QualType();
1823     }
1824 
1825     // We need to desugar the type here in case T is a ParenType.
1826     if (T->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
1827       Diag(Loc, diag::err_wasm_table_pr) << 0;
1828       return QualType();
1829     }
1830   }
1831 
1832   // Build the pointer type.
1833   return Context.getPointerType(T);
1834 }
1835 
BuildReferenceType(QualType T,bool SpelledAsLValue,SourceLocation Loc,DeclarationName Entity)1836 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1837                                   SourceLocation Loc,
1838                                   DeclarationName Entity) {
1839   assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1840          "Unresolved overloaded function type");
1841 
1842   // C++0x [dcl.ref]p6:
1843   //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1844   //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1845   //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1846   //   the type "lvalue reference to T", while an attempt to create the type
1847   //   "rvalue reference to cv TR" creates the type TR.
1848   bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1849 
1850   // C++ [dcl.ref]p4: There shall be no references to references.
1851   //
1852   // According to C++ DR 106, references to references are only
1853   // diagnosed when they are written directly (e.g., "int & &"),
1854   // but not when they happen via a typedef:
1855   //
1856   //   typedef int& intref;
1857   //   typedef intref& intref2;
1858   //
1859   // Parser::ParseDeclaratorInternal diagnoses the case where
1860   // references are written directly; here, we handle the
1861   // collapsing of references-to-references as described in C++0x.
1862   // DR 106 and 540 introduce reference-collapsing into C++98/03.
1863 
1864   // C++ [dcl.ref]p1:
1865   //   A declarator that specifies the type "reference to cv void"
1866   //   is ill-formed.
1867   if (T->isVoidType()) {
1868     Diag(Loc, diag::err_reference_to_void);
1869     return QualType();
1870   }
1871 
1872   if (getLangOpts().HLSL && Loc.isValid()) {
1873     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 1;
1874     return QualType();
1875   }
1876 
1877   if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
1878     return QualType();
1879 
1880   if (T->isFunctionType() && getLangOpts().OpenCL &&
1881       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
1882                                             getLangOpts())) {
1883     Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
1884     return QualType();
1885   }
1886 
1887   // In ARC, it is forbidden to build references to unqualified pointers.
1888   if (getLangOpts().ObjCAutoRefCount)
1889     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1890 
1891   if (getLangOpts().OpenCL)
1892     T = deduceOpenCLPointeeAddrSpace(*this, T);
1893 
1894   // In WebAssembly, references to reference types and tables are illegal.
1895   if (getASTContext().getTargetInfo().getTriple().isWasm() &&
1896       T.isWebAssemblyReferenceType()) {
1897     Diag(Loc, diag::err_wasm_reference_pr) << 1;
1898     return QualType();
1899   }
1900   if (T->isWebAssemblyTableType()) {
1901     Diag(Loc, diag::err_wasm_table_pr) << 1;
1902     return QualType();
1903   }
1904 
1905   // Handle restrict on references.
1906   if (LValueRef)
1907     return Context.getLValueReferenceType(T, SpelledAsLValue);
1908   return Context.getRValueReferenceType(T);
1909 }
1910 
BuildReadPipeType(QualType T,SourceLocation Loc)1911 QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
1912   return Context.getReadPipeType(T);
1913 }
1914 
BuildWritePipeType(QualType T,SourceLocation Loc)1915 QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
1916   return Context.getWritePipeType(T);
1917 }
1918 
BuildBitIntType(bool IsUnsigned,Expr * BitWidth,SourceLocation Loc)1919 QualType Sema::BuildBitIntType(bool IsUnsigned, Expr *BitWidth,
1920                                SourceLocation Loc) {
1921   if (BitWidth->isInstantiationDependent())
1922     return Context.getDependentBitIntType(IsUnsigned, BitWidth);
1923 
1924   llvm::APSInt Bits(32);
1925   ExprResult ICE =
1926       VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
1927 
1928   if (ICE.isInvalid())
1929     return QualType();
1930 
1931   size_t NumBits = Bits.getZExtValue();
1932   if (!IsUnsigned && NumBits < 2) {
1933     Diag(Loc, diag::err_bit_int_bad_size) << 0;
1934     return QualType();
1935   }
1936 
1937   if (IsUnsigned && NumBits < 1) {
1938     Diag(Loc, diag::err_bit_int_bad_size) << 1;
1939     return QualType();
1940   }
1941 
1942   const TargetInfo &TI = getASTContext().getTargetInfo();
1943   if (NumBits > TI.getMaxBitIntWidth()) {
1944     Diag(Loc, diag::err_bit_int_max_size)
1945         << IsUnsigned << static_cast<uint64_t>(TI.getMaxBitIntWidth());
1946     return QualType();
1947   }
1948 
1949   return Context.getBitIntType(IsUnsigned, NumBits);
1950 }
1951 
1952 /// Check whether the specified array bound can be evaluated using the relevant
1953 /// language rules. If so, returns the possibly-converted expression and sets
1954 /// SizeVal to the size. If not, but the expression might be a VLA bound,
1955 /// returns ExprResult(). Otherwise, produces a diagnostic and returns
1956 /// ExprError().
checkArraySize(Sema & S,Expr * & ArraySize,llvm::APSInt & SizeVal,unsigned VLADiag,bool VLAIsError)1957 static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
1958                                  llvm::APSInt &SizeVal, unsigned VLADiag,
1959                                  bool VLAIsError) {
1960   if (S.getLangOpts().CPlusPlus14 &&
1961       (VLAIsError ||
1962        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
1963     // C++14 [dcl.array]p1:
1964     //   The constant-expression shall be a converted constant expression of
1965     //   type std::size_t.
1966     //
1967     // Don't apply this rule if we might be forming a VLA: in that case, we
1968     // allow non-constant expressions and constant-folding. We only need to use
1969     // the converted constant expression rules (to properly convert the source)
1970     // when the source expression is of class type.
1971     return S.CheckConvertedConstantExpression(
1972         ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
1973   }
1974 
1975   // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1976   // (like gnu99, but not c99) accept any evaluatable value as an extension.
1977   class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1978   public:
1979     unsigned VLADiag;
1980     bool VLAIsError;
1981     bool IsVLA = false;
1982 
1983     VLADiagnoser(unsigned VLADiag, bool VLAIsError)
1984         : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
1985 
1986     Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
1987                                                    QualType T) override {
1988       return S.Diag(Loc, diag::err_array_size_non_int) << T;
1989     }
1990 
1991     Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
1992                                                SourceLocation Loc) override {
1993       IsVLA = !VLAIsError;
1994       return S.Diag(Loc, VLADiag);
1995     }
1996 
1997     Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
1998                                              SourceLocation Loc) override {
1999       return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2000     }
2001   } Diagnoser(VLADiag, VLAIsError);
2002 
2003   ExprResult R =
2004       S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2005   if (Diagnoser.IsVLA)
2006     return ExprResult();
2007   return R;
2008 }
2009 
checkArrayElementAlignment(QualType EltTy,SourceLocation Loc)2010 bool Sema::checkArrayElementAlignment(QualType EltTy, SourceLocation Loc) {
2011   EltTy = Context.getBaseElementType(EltTy);
2012   if (EltTy->isIncompleteType() || EltTy->isDependentType() ||
2013       EltTy->isUndeducedType())
2014     return true;
2015 
2016   CharUnits Size = Context.getTypeSizeInChars(EltTy);
2017   CharUnits Alignment = Context.getTypeAlignInChars(EltTy);
2018 
2019   if (Size.isMultipleOf(Alignment))
2020     return true;
2021 
2022   Diag(Loc, diag::err_array_element_alignment)
2023       << EltTy << Size.getQuantity() << Alignment.getQuantity();
2024   return false;
2025 }
2026 
BuildArrayType(QualType T,ArraySizeModifier ASM,Expr * ArraySize,unsigned Quals,SourceRange Brackets,DeclarationName Entity)2027 QualType Sema::BuildArrayType(QualType T, ArraySizeModifier ASM,
2028                               Expr *ArraySize, unsigned Quals,
2029                               SourceRange Brackets, DeclarationName Entity) {
2030 
2031   SourceLocation Loc = Brackets.getBegin();
2032   if (getLangOpts().CPlusPlus) {
2033     // C++ [dcl.array]p1:
2034     //   T is called the array element type; this type shall not be a reference
2035     //   type, the (possibly cv-qualified) type void, a function type or an
2036     //   abstract class type.
2037     //
2038     // C++ [dcl.array]p3:
2039     //   When several "array of" specifications are adjacent, [...] only the
2040     //   first of the constant expressions that specify the bounds of the arrays
2041     //   may be omitted.
2042     //
2043     // Note: function types are handled in the common path with C.
2044     if (T->isReferenceType()) {
2045       Diag(Loc, diag::err_illegal_decl_array_of_references)
2046       << getPrintableNameForEntity(Entity) << T;
2047       return QualType();
2048     }
2049 
2050     if (T->isVoidType() || T->isIncompleteArrayType()) {
2051       Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2052       return QualType();
2053     }
2054 
2055     if (RequireNonAbstractType(Brackets.getBegin(), T,
2056                                diag::err_array_of_abstract_type))
2057       return QualType();
2058 
2059     // Mentioning a member pointer type for an array type causes us to lock in
2060     // an inheritance model, even if it's inside an unused typedef.
2061     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2062       if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2063         if (!MPTy->getClass()->isDependentType())
2064           (void)isCompleteType(Loc, T);
2065 
2066   } else {
2067     // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2068     // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2069     if (!T.isWebAssemblyReferenceType() &&
2070         RequireCompleteSizedType(Loc, T,
2071                                  diag::err_array_incomplete_or_sizeless_type))
2072       return QualType();
2073   }
2074 
2075   // Multi-dimensional arrays of WebAssembly references are not allowed.
2076   if (Context.getTargetInfo().getTriple().isWasm() && T->isArrayType()) {
2077     const auto *ATy = dyn_cast<ArrayType>(T);
2078     if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) {
2079       Diag(Loc, diag::err_wasm_reftype_multidimensional_array);
2080       return QualType();
2081     }
2082   }
2083 
2084   if (T->isSizelessType() && !T.isWebAssemblyReferenceType()) {
2085     Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2086     return QualType();
2087   }
2088 
2089   if (T->isFunctionType()) {
2090     Diag(Loc, diag::err_illegal_decl_array_of_functions)
2091       << getPrintableNameForEntity(Entity) << T;
2092     return QualType();
2093   }
2094 
2095   if (const RecordType *EltTy = T->getAs<RecordType>()) {
2096     // If the element type is a struct or union that contains a variadic
2097     // array, accept it as a GNU extension: C99 6.7.2.1p2.
2098     if (EltTy->getDecl()->hasFlexibleArrayMember())
2099       Diag(Loc, diag::ext_flexible_array_in_array) << T;
2100   } else if (T->isObjCObjectType()) {
2101     Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2102     return QualType();
2103   }
2104 
2105   if (!checkArrayElementAlignment(T, Loc))
2106     return QualType();
2107 
2108   // Do placeholder conversions on the array size expression.
2109   if (ArraySize && ArraySize->hasPlaceholderType()) {
2110     ExprResult Result = CheckPlaceholderExpr(ArraySize);
2111     if (Result.isInvalid()) return QualType();
2112     ArraySize = Result.get();
2113   }
2114 
2115   // Do lvalue-to-rvalue conversions on the array size expression.
2116   if (ArraySize && !ArraySize->isPRValue()) {
2117     ExprResult Result = DefaultLvalueConversion(ArraySize);
2118     if (Result.isInvalid())
2119       return QualType();
2120 
2121     ArraySize = Result.get();
2122   }
2123 
2124   // C99 6.7.5.2p1: The size expression shall have integer type.
2125   // C++11 allows contextual conversions to such types.
2126   if (!getLangOpts().CPlusPlus11 &&
2127       ArraySize && !ArraySize->isTypeDependent() &&
2128       !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2129     Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2130         << ArraySize->getType() << ArraySize->getSourceRange();
2131     return QualType();
2132   }
2133 
2134   auto IsStaticAssertLike = [](const Expr *ArraySize, ASTContext &Context) {
2135     if (!ArraySize)
2136       return false;
2137 
2138     // If the array size expression is a conditional expression whose branches
2139     // are both integer constant expressions, one negative and one positive,
2140     // then it's assumed to be like an old-style static assertion. e.g.,
2141     //   int old_style_assert[expr ? 1 : -1];
2142     // We will accept any integer constant expressions instead of assuming the
2143     // values 1 and -1 are always used.
2144     if (const auto *CondExpr = dyn_cast_if_present<ConditionalOperator>(
2145             ArraySize->IgnoreParenImpCasts())) {
2146       std::optional<llvm::APSInt> LHS =
2147           CondExpr->getLHS()->getIntegerConstantExpr(Context);
2148       std::optional<llvm::APSInt> RHS =
2149           CondExpr->getRHS()->getIntegerConstantExpr(Context);
2150       return LHS && RHS && LHS->isNegative() != RHS->isNegative();
2151     }
2152     return false;
2153   };
2154 
2155   // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2156   unsigned VLADiag;
2157   bool VLAIsError;
2158   if (getLangOpts().OpenCL) {
2159     // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2160     VLADiag = diag::err_opencl_vla;
2161     VLAIsError = true;
2162   } else if (getLangOpts().C99) {
2163     VLADiag = diag::warn_vla_used;
2164     VLAIsError = false;
2165   } else if (isSFINAEContext()) {
2166     VLADiag = diag::err_vla_in_sfinae;
2167     VLAIsError = true;
2168   } else if (getLangOpts().OpenMP && OpenMP().isInOpenMPTaskUntiedContext()) {
2169     VLADiag = diag::err_openmp_vla_in_task_untied;
2170     VLAIsError = true;
2171   } else if (getLangOpts().CPlusPlus) {
2172     if (getLangOpts().CPlusPlus11 && IsStaticAssertLike(ArraySize, Context))
2173       VLADiag = getLangOpts().GNUMode
2174                     ? diag::ext_vla_cxx_in_gnu_mode_static_assert
2175                     : diag::ext_vla_cxx_static_assert;
2176     else
2177       VLADiag = getLangOpts().GNUMode ? diag::ext_vla_cxx_in_gnu_mode
2178                                       : diag::ext_vla_cxx;
2179     VLAIsError = false;
2180   } else {
2181     VLADiag = diag::ext_vla;
2182     VLAIsError = false;
2183   }
2184 
2185   llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2186   if (!ArraySize) {
2187     if (ASM == ArraySizeModifier::Star) {
2188       Diag(Loc, VLADiag);
2189       if (VLAIsError)
2190         return QualType();
2191 
2192       T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2193     } else {
2194       T = Context.getIncompleteArrayType(T, ASM, Quals);
2195     }
2196   } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2197     T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2198   } else {
2199     ExprResult R =
2200         checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2201     if (R.isInvalid())
2202       return QualType();
2203 
2204     if (!R.isUsable()) {
2205       // C99: an array with a non-ICE size is a VLA. We accept any expression
2206       // that we can fold to a non-zero positive value as a non-VLA as an
2207       // extension.
2208       T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2209     } else if (!T->isDependentType() && !T->isIncompleteType() &&
2210                !T->isConstantSizeType()) {
2211       // C99: an array with an element type that has a non-constant-size is a
2212       // VLA.
2213       // FIXME: Add a note to explain why this isn't a VLA.
2214       Diag(Loc, VLADiag);
2215       if (VLAIsError)
2216         return QualType();
2217       T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2218     } else {
2219       // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2220       // have a value greater than zero.
2221       // In C++, this follows from narrowing conversions being disallowed.
2222       if (ConstVal.isSigned() && ConstVal.isNegative()) {
2223         if (Entity)
2224           Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2225               << getPrintableNameForEntity(Entity)
2226               << ArraySize->getSourceRange();
2227         else
2228           Diag(ArraySize->getBeginLoc(),
2229                diag::err_typecheck_negative_array_size)
2230               << ArraySize->getSourceRange();
2231         return QualType();
2232       }
2233       if (ConstVal == 0 && !T.isWebAssemblyReferenceType()) {
2234         // GCC accepts zero sized static arrays. We allow them when
2235         // we're not in a SFINAE context.
2236         Diag(ArraySize->getBeginLoc(),
2237              isSFINAEContext() ? diag::err_typecheck_zero_array_size
2238                                : diag::ext_typecheck_zero_array_size)
2239             << 0 << ArraySize->getSourceRange();
2240       }
2241 
2242       // Is the array too large?
2243       unsigned ActiveSizeBits =
2244           (!T->isDependentType() && !T->isVariablyModifiedType() &&
2245            !T->isIncompleteType() && !T->isUndeducedType())
2246               ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2247               : ConstVal.getActiveBits();
2248       if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2249         Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2250             << toString(ConstVal, 10) << ArraySize->getSourceRange();
2251         return QualType();
2252       }
2253 
2254       T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2255     }
2256   }
2257 
2258   if (T->isVariableArrayType()) {
2259     if (!Context.getTargetInfo().isVLASupported()) {
2260       // CUDA device code and some other targets don't support VLAs.
2261       bool IsCUDADevice = (getLangOpts().CUDA && getLangOpts().CUDAIsDevice);
2262       targetDiag(Loc,
2263                  IsCUDADevice ? diag::err_cuda_vla : diag::err_vla_unsupported)
2264           << (IsCUDADevice ? llvm::to_underlying(CUDA().CurrentTarget()) : 0);
2265     } else if (sema::FunctionScopeInfo *FSI = getCurFunction()) {
2266       // VLAs are supported on this target, but we may need to do delayed
2267       // checking that the VLA is not being used within a coroutine.
2268       FSI->setHasVLA(Loc);
2269     }
2270   }
2271 
2272   // If this is not C99, diagnose array size modifiers on non-VLAs.
2273   if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2274       (ASM != ArraySizeModifier::Normal || Quals != 0)) {
2275     Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2276                                       : diag::ext_c99_array_usage)
2277         << llvm::to_underlying(ASM);
2278   }
2279 
2280   // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2281   // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2282   // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2283   if (getLangOpts().OpenCL) {
2284     const QualType ArrType = Context.getBaseElementType(T);
2285     if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2286         ArrType->isSamplerT() || ArrType->isImageType()) {
2287       Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2288       return QualType();
2289     }
2290   }
2291 
2292   return T;
2293 }
2294 
BuildVectorType(QualType CurType,Expr * SizeExpr,SourceLocation AttrLoc)2295 QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2296                                SourceLocation AttrLoc) {
2297   // The base type must be integer (not Boolean or enumeration) or float, and
2298   // can't already be a vector.
2299   if ((!CurType->isDependentType() &&
2300        (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2301         (!CurType->isIntegerType() && !CurType->isRealFloatingType())) &&
2302        !CurType->isBitIntType()) ||
2303       CurType->isArrayType()) {
2304     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2305     return QualType();
2306   }
2307   // Only support _BitInt elements with byte-sized power of 2 NumBits.
2308   if (const auto *BIT = CurType->getAs<BitIntType>()) {
2309     unsigned NumBits = BIT->getNumBits();
2310     if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2311       Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2312           << (NumBits < 8);
2313       return QualType();
2314     }
2315   }
2316 
2317   if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2318     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2319                                           VectorKind::Generic);
2320 
2321   std::optional<llvm::APSInt> VecSize =
2322       SizeExpr->getIntegerConstantExpr(Context);
2323   if (!VecSize) {
2324     Diag(AttrLoc, diag::err_attribute_argument_type)
2325         << "vector_size" << AANT_ArgumentIntegerConstant
2326         << SizeExpr->getSourceRange();
2327     return QualType();
2328   }
2329 
2330   if (CurType->isDependentType())
2331     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2332                                           VectorKind::Generic);
2333 
2334   // vecSize is specified in bytes - convert to bits.
2335   if (!VecSize->isIntN(61)) {
2336     // Bit size will overflow uint64.
2337     Diag(AttrLoc, diag::err_attribute_size_too_large)
2338         << SizeExpr->getSourceRange() << "vector";
2339     return QualType();
2340   }
2341   uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2342   unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2343 
2344   if (VectorSizeBits == 0) {
2345     Diag(AttrLoc, diag::err_attribute_zero_size)
2346         << SizeExpr->getSourceRange() << "vector";
2347     return QualType();
2348   }
2349 
2350   if (!TypeSize || VectorSizeBits % TypeSize) {
2351     Diag(AttrLoc, diag::err_attribute_invalid_size)
2352         << SizeExpr->getSourceRange();
2353     return QualType();
2354   }
2355 
2356   if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2357     Diag(AttrLoc, diag::err_attribute_size_too_large)
2358         << SizeExpr->getSourceRange() << "vector";
2359     return QualType();
2360   }
2361 
2362   return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2363                                VectorKind::Generic);
2364 }
2365 
BuildExtVectorType(QualType T,Expr * ArraySize,SourceLocation AttrLoc)2366 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2367                                   SourceLocation AttrLoc) {
2368   // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2369   // in conjunction with complex types (pointers, arrays, functions, etc.).
2370   //
2371   // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2372   // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2373   // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2374   // of bool aren't allowed.
2375   //
2376   // We explicitly allow bool elements in ext_vector_type for C/C++.
2377   bool IsNoBoolVecLang = getLangOpts().OpenCL || getLangOpts().OpenCLCPlusPlus;
2378   if ((!T->isDependentType() && !T->isIntegerType() &&
2379        !T->isRealFloatingType()) ||
2380       (IsNoBoolVecLang && T->isBooleanType())) {
2381     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2382     return QualType();
2383   }
2384 
2385   // Only support _BitInt elements with byte-sized power of 2 NumBits.
2386   if (T->isBitIntType()) {
2387     unsigned NumBits = T->castAs<BitIntType>()->getNumBits();
2388     if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2389       Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2390           << (NumBits < 8);
2391       return QualType();
2392     }
2393   }
2394 
2395   if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2396     std::optional<llvm::APSInt> vecSize =
2397         ArraySize->getIntegerConstantExpr(Context);
2398     if (!vecSize) {
2399       Diag(AttrLoc, diag::err_attribute_argument_type)
2400         << "ext_vector_type" << AANT_ArgumentIntegerConstant
2401         << ArraySize->getSourceRange();
2402       return QualType();
2403     }
2404 
2405     if (!vecSize->isIntN(32)) {
2406       Diag(AttrLoc, diag::err_attribute_size_too_large)
2407           << ArraySize->getSourceRange() << "vector";
2408       return QualType();
2409     }
2410     // Unlike gcc's vector_size attribute, the size is specified as the
2411     // number of elements, not the number of bytes.
2412     unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2413 
2414     if (vectorSize == 0) {
2415       Diag(AttrLoc, diag::err_attribute_zero_size)
2416           << ArraySize->getSourceRange() << "vector";
2417       return QualType();
2418     }
2419 
2420     return Context.getExtVectorType(T, vectorSize);
2421   }
2422 
2423   return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2424 }
2425 
BuildMatrixType(QualType ElementTy,Expr * NumRows,Expr * NumCols,SourceLocation AttrLoc)2426 QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2427                                SourceLocation AttrLoc) {
2428   assert(Context.getLangOpts().MatrixTypes &&
2429          "Should never build a matrix type when it is disabled");
2430 
2431   // Check element type, if it is not dependent.
2432   if (!ElementTy->isDependentType() &&
2433       !MatrixType::isValidElementType(ElementTy)) {
2434     Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2435     return QualType();
2436   }
2437 
2438   if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2439       NumRows->isValueDependent() || NumCols->isValueDependent())
2440     return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2441                                                AttrLoc);
2442 
2443   std::optional<llvm::APSInt> ValueRows =
2444       NumRows->getIntegerConstantExpr(Context);
2445   std::optional<llvm::APSInt> ValueColumns =
2446       NumCols->getIntegerConstantExpr(Context);
2447 
2448   auto const RowRange = NumRows->getSourceRange();
2449   auto const ColRange = NumCols->getSourceRange();
2450 
2451   // Both are row and column expressions are invalid.
2452   if (!ValueRows && !ValueColumns) {
2453     Diag(AttrLoc, diag::err_attribute_argument_type)
2454         << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2455         << ColRange;
2456     return QualType();
2457   }
2458 
2459   // Only the row expression is invalid.
2460   if (!ValueRows) {
2461     Diag(AttrLoc, diag::err_attribute_argument_type)
2462         << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2463     return QualType();
2464   }
2465 
2466   // Only the column expression is invalid.
2467   if (!ValueColumns) {
2468     Diag(AttrLoc, diag::err_attribute_argument_type)
2469         << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2470     return QualType();
2471   }
2472 
2473   // Check the matrix dimensions.
2474   unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2475   unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2476   if (MatrixRows == 0 && MatrixColumns == 0) {
2477     Diag(AttrLoc, diag::err_attribute_zero_size)
2478         << "matrix" << RowRange << ColRange;
2479     return QualType();
2480   }
2481   if (MatrixRows == 0) {
2482     Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2483     return QualType();
2484   }
2485   if (MatrixColumns == 0) {
2486     Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2487     return QualType();
2488   }
2489   if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2490     Diag(AttrLoc, diag::err_attribute_size_too_large)
2491         << RowRange << "matrix row";
2492     return QualType();
2493   }
2494   if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2495     Diag(AttrLoc, diag::err_attribute_size_too_large)
2496         << ColRange << "matrix column";
2497     return QualType();
2498   }
2499   return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2500 }
2501 
CheckFunctionReturnType(QualType T,SourceLocation Loc)2502 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2503   if (T->isArrayType() || T->isFunctionType()) {
2504     Diag(Loc, diag::err_func_returning_array_function)
2505       << T->isFunctionType() << T;
2506     return true;
2507   }
2508 
2509   // Functions cannot return half FP.
2510   if (T->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2511       !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2512     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2513       FixItHint::CreateInsertion(Loc, "*");
2514     return true;
2515   }
2516 
2517   // Methods cannot return interface types. All ObjC objects are
2518   // passed by reference.
2519   if (T->isObjCObjectType()) {
2520     Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2521         << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2522     return true;
2523   }
2524 
2525   if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2526       T.hasNonTrivialToPrimitiveCopyCUnion())
2527     checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2528                           NTCUK_Destruct|NTCUK_Copy);
2529 
2530   // C++2a [dcl.fct]p12:
2531   //   A volatile-qualified return type is deprecated
2532   if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2533     Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2534 
2535   if (T.getAddressSpace() != LangAS::Default && getLangOpts().HLSL)
2536     return true;
2537   return false;
2538 }
2539 
2540 /// Check the extended parameter information.  Most of the necessary
2541 /// checking should occur when applying the parameter attribute; the
2542 /// only other checks required are positional restrictions.
checkExtParameterInfos(Sema & S,ArrayRef<QualType> paramTypes,const FunctionProtoType::ExtProtoInfo & EPI,llvm::function_ref<SourceLocation (unsigned)> getParamLoc)2543 static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2544                     const FunctionProtoType::ExtProtoInfo &EPI,
2545                     llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2546   assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
2547 
2548   bool emittedError = false;
2549   auto actualCC = EPI.ExtInfo.getCC();
2550   enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync };
2551   auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) {
2552     bool isCompatible =
2553         (required == RequiredCC::OnlySwift)
2554             ? (actualCC == CC_Swift)
2555             : (actualCC == CC_Swift || actualCC == CC_SwiftAsync);
2556     if (isCompatible || emittedError)
2557       return;
2558     S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2559         << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI())
2560         << (required == RequiredCC::OnlySwift);
2561     emittedError = true;
2562   };
2563   for (size_t paramIndex = 0, numParams = paramTypes.size();
2564           paramIndex != numParams; ++paramIndex) {
2565     switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2566     // Nothing interesting to check for orindary-ABI parameters.
2567     case ParameterABI::Ordinary:
2568       continue;
2569 
2570     // swift_indirect_result parameters must be a prefix of the function
2571     // arguments.
2572     case ParameterABI::SwiftIndirectResult:
2573       checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2574       if (paramIndex != 0 &&
2575           EPI.ExtParameterInfos[paramIndex - 1].getABI()
2576             != ParameterABI::SwiftIndirectResult) {
2577         S.Diag(getParamLoc(paramIndex),
2578                diag::err_swift_indirect_result_not_first);
2579       }
2580       continue;
2581 
2582     case ParameterABI::SwiftContext:
2583       checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2584       continue;
2585 
2586     // SwiftAsyncContext is not limited to swiftasynccall functions.
2587     case ParameterABI::SwiftAsyncContext:
2588       continue;
2589 
2590     // swift_error parameters must be preceded by a swift_context parameter.
2591     case ParameterABI::SwiftErrorResult:
2592       checkCompatible(paramIndex, RequiredCC::OnlySwift);
2593       if (paramIndex == 0 ||
2594           EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2595               ParameterABI::SwiftContext) {
2596         S.Diag(getParamLoc(paramIndex),
2597                diag::err_swift_error_result_not_after_swift_context);
2598       }
2599       continue;
2600     }
2601     llvm_unreachable("bad ABI kind");
2602   }
2603 }
2604 
BuildFunctionType(QualType T,MutableArrayRef<QualType> ParamTypes,SourceLocation Loc,DeclarationName Entity,const FunctionProtoType::ExtProtoInfo & EPI)2605 QualType Sema::BuildFunctionType(QualType T,
2606                                  MutableArrayRef<QualType> ParamTypes,
2607                                  SourceLocation Loc, DeclarationName Entity,
2608                                  const FunctionProtoType::ExtProtoInfo &EPI) {
2609   bool Invalid = false;
2610 
2611   Invalid |= CheckFunctionReturnType(T, Loc);
2612 
2613   for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2614     // FIXME: Loc is too inprecise here, should use proper locations for args.
2615     QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2616     if (ParamType->isVoidType()) {
2617       Diag(Loc, diag::err_param_with_void_type);
2618       Invalid = true;
2619     } else if (ParamType->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2620                !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2621       // Disallow half FP arguments.
2622       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2623         FixItHint::CreateInsertion(Loc, "*");
2624       Invalid = true;
2625     } else if (ParamType->isWebAssemblyTableType()) {
2626       Diag(Loc, diag::err_wasm_table_as_function_parameter);
2627       Invalid = true;
2628     }
2629 
2630     // C++2a [dcl.fct]p4:
2631     //   A parameter with volatile-qualified type is deprecated
2632     if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2633       Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2634 
2635     ParamTypes[Idx] = ParamType;
2636   }
2637 
2638   if (EPI.ExtParameterInfos) {
2639     checkExtParameterInfos(*this, ParamTypes, EPI,
2640                            [=](unsigned i) { return Loc; });
2641   }
2642 
2643   if (EPI.ExtInfo.getProducesResult()) {
2644     // This is just a warning, so we can't fail to build if we see it.
2645     ObjC().checkNSReturnsRetainedReturnType(Loc, T);
2646   }
2647 
2648   if (Invalid)
2649     return QualType();
2650 
2651   return Context.getFunctionType(T, ParamTypes, EPI);
2652 }
2653 
BuildMemberPointerType(QualType T,QualType Class,SourceLocation Loc,DeclarationName Entity)2654 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2655                                       SourceLocation Loc,
2656                                       DeclarationName Entity) {
2657   // Verify that we're not building a pointer to pointer to function with
2658   // exception specification.
2659   if (CheckDistantExceptionSpec(T)) {
2660     Diag(Loc, diag::err_distant_exception_spec);
2661     return QualType();
2662   }
2663 
2664   // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2665   //   with reference type, or "cv void."
2666   if (T->isReferenceType()) {
2667     Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2668       << getPrintableNameForEntity(Entity) << T;
2669     return QualType();
2670   }
2671 
2672   if (T->isVoidType()) {
2673     Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2674       << getPrintableNameForEntity(Entity);
2675     return QualType();
2676   }
2677 
2678   if (!Class->isDependentType() && !Class->isRecordType()) {
2679     Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2680     return QualType();
2681   }
2682 
2683   if (T->isFunctionType() && getLangOpts().OpenCL &&
2684       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2685                                             getLangOpts())) {
2686     Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2687     return QualType();
2688   }
2689 
2690   if (getLangOpts().HLSL && Loc.isValid()) {
2691     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
2692     return QualType();
2693   }
2694 
2695   // Adjust the default free function calling convention to the default method
2696   // calling convention.
2697   bool IsCtorOrDtor =
2698       (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2699       (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2700   if (T->isFunctionType())
2701     adjustMemberFunctionCC(T, /*HasThisPointer=*/true, IsCtorOrDtor, Loc);
2702 
2703   return Context.getMemberPointerType(T, Class.getTypePtr());
2704 }
2705 
BuildBlockPointerType(QualType T,SourceLocation Loc,DeclarationName Entity)2706 QualType Sema::BuildBlockPointerType(QualType T,
2707                                      SourceLocation Loc,
2708                                      DeclarationName Entity) {
2709   if (!T->isFunctionType()) {
2710     Diag(Loc, diag::err_nonfunction_block_type);
2711     return QualType();
2712   }
2713 
2714   if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2715     return QualType();
2716 
2717   if (getLangOpts().OpenCL)
2718     T = deduceOpenCLPointeeAddrSpace(*this, T);
2719 
2720   return Context.getBlockPointerType(T);
2721 }
2722 
GetTypeFromParser(ParsedType Ty,TypeSourceInfo ** TInfo)2723 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2724   QualType QT = Ty.get();
2725   if (QT.isNull()) {
2726     if (TInfo) *TInfo = nullptr;
2727     return QualType();
2728   }
2729 
2730   TypeSourceInfo *DI = nullptr;
2731   if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2732     QT = LIT->getType();
2733     DI = LIT->getTypeSourceInfo();
2734   }
2735 
2736   if (TInfo) *TInfo = DI;
2737   return QT;
2738 }
2739 
2740 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2741                                             Qualifiers::ObjCLifetime ownership,
2742                                             unsigned chunkIndex);
2743 
2744 /// Given that this is the declaration of a parameter under ARC,
2745 /// attempt to infer attributes and such for pointer-to-whatever
2746 /// types.
inferARCWriteback(TypeProcessingState & state,QualType & declSpecType)2747 static void inferARCWriteback(TypeProcessingState &state,
2748                               QualType &declSpecType) {
2749   Sema &S = state.getSema();
2750   Declarator &declarator = state.getDeclarator();
2751 
2752   // TODO: should we care about decl qualifiers?
2753 
2754   // Check whether the declarator has the expected form.  We walk
2755   // from the inside out in order to make the block logic work.
2756   unsigned outermostPointerIndex = 0;
2757   bool isBlockPointer = false;
2758   unsigned numPointers = 0;
2759   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2760     unsigned chunkIndex = i;
2761     DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2762     switch (chunk.Kind) {
2763     case DeclaratorChunk::Paren:
2764       // Ignore parens.
2765       break;
2766 
2767     case DeclaratorChunk::Reference:
2768     case DeclaratorChunk::Pointer:
2769       // Count the number of pointers.  Treat references
2770       // interchangeably as pointers; if they're mis-ordered, normal
2771       // type building will discover that.
2772       outermostPointerIndex = chunkIndex;
2773       numPointers++;
2774       break;
2775 
2776     case DeclaratorChunk::BlockPointer:
2777       // If we have a pointer to block pointer, that's an acceptable
2778       // indirect reference; anything else is not an application of
2779       // the rules.
2780       if (numPointers != 1) return;
2781       numPointers++;
2782       outermostPointerIndex = chunkIndex;
2783       isBlockPointer = true;
2784 
2785       // We don't care about pointer structure in return values here.
2786       goto done;
2787 
2788     case DeclaratorChunk::Array: // suppress if written (id[])?
2789     case DeclaratorChunk::Function:
2790     case DeclaratorChunk::MemberPointer:
2791     case DeclaratorChunk::Pipe:
2792       return;
2793     }
2794   }
2795  done:
2796 
2797   // If we have *one* pointer, then we want to throw the qualifier on
2798   // the declaration-specifiers, which means that it needs to be a
2799   // retainable object type.
2800   if (numPointers == 1) {
2801     // If it's not a retainable object type, the rule doesn't apply.
2802     if (!declSpecType->isObjCRetainableType()) return;
2803 
2804     // If it already has lifetime, don't do anything.
2805     if (declSpecType.getObjCLifetime()) return;
2806 
2807     // Otherwise, modify the type in-place.
2808     Qualifiers qs;
2809 
2810     if (declSpecType->isObjCARCImplicitlyUnretainedType())
2811       qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
2812     else
2813       qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
2814     declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2815 
2816   // If we have *two* pointers, then we want to throw the qualifier on
2817   // the outermost pointer.
2818   } else if (numPointers == 2) {
2819     // If we don't have a block pointer, we need to check whether the
2820     // declaration-specifiers gave us something that will turn into a
2821     // retainable object pointer after we slap the first pointer on it.
2822     if (!isBlockPointer && !declSpecType->isObjCObjectType())
2823       return;
2824 
2825     // Look for an explicit lifetime attribute there.
2826     DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2827     if (chunk.Kind != DeclaratorChunk::Pointer &&
2828         chunk.Kind != DeclaratorChunk::BlockPointer)
2829       return;
2830     for (const ParsedAttr &AL : chunk.getAttrs())
2831       if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
2832         return;
2833 
2834     transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
2835                                           outermostPointerIndex);
2836 
2837   // Any other number of pointers/references does not trigger the rule.
2838   } else return;
2839 
2840   // TODO: mark whether we did this inference?
2841 }
2842 
diagnoseIgnoredQualifiers(unsigned DiagID,unsigned Quals,SourceLocation FallbackLoc,SourceLocation ConstQualLoc,SourceLocation VolatileQualLoc,SourceLocation RestrictQualLoc,SourceLocation AtomicQualLoc,SourceLocation UnalignedQualLoc)2843 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2844                                      SourceLocation FallbackLoc,
2845                                      SourceLocation ConstQualLoc,
2846                                      SourceLocation VolatileQualLoc,
2847                                      SourceLocation RestrictQualLoc,
2848                                      SourceLocation AtomicQualLoc,
2849                                      SourceLocation UnalignedQualLoc) {
2850   if (!Quals)
2851     return;
2852 
2853   struct Qual {
2854     const char *Name;
2855     unsigned Mask;
2856     SourceLocation Loc;
2857   } const QualKinds[5] = {
2858     { "const", DeclSpec::TQ_const, ConstQualLoc },
2859     { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2860     { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2861     { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
2862     { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2863   };
2864 
2865   SmallString<32> QualStr;
2866   unsigned NumQuals = 0;
2867   SourceLocation Loc;
2868   FixItHint FixIts[5];
2869 
2870   // Build a string naming the redundant qualifiers.
2871   for (auto &E : QualKinds) {
2872     if (Quals & E.Mask) {
2873       if (!QualStr.empty()) QualStr += ' ';
2874       QualStr += E.Name;
2875 
2876       // If we have a location for the qualifier, offer a fixit.
2877       SourceLocation QualLoc = E.Loc;
2878       if (QualLoc.isValid()) {
2879         FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2880         if (Loc.isInvalid() ||
2881             getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2882           Loc = QualLoc;
2883       }
2884 
2885       ++NumQuals;
2886     }
2887   }
2888 
2889   Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2890     << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2891 }
2892 
2893 // Diagnose pointless type qualifiers on the return type of a function.
diagnoseRedundantReturnTypeQualifiers(Sema & S,QualType RetTy,Declarator & D,unsigned FunctionChunkIndex)2894 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2895                                                   Declarator &D,
2896                                                   unsigned FunctionChunkIndex) {
2897   const DeclaratorChunk::FunctionTypeInfo &FTI =
2898       D.getTypeObject(FunctionChunkIndex).Fun;
2899   if (FTI.hasTrailingReturnType()) {
2900     S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2901                                 RetTy.getLocalCVRQualifiers(),
2902                                 FTI.getTrailingReturnTypeLoc());
2903     return;
2904   }
2905 
2906   for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2907                 End = D.getNumTypeObjects();
2908        OuterChunkIndex != End; ++OuterChunkIndex) {
2909     DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2910     switch (OuterChunk.Kind) {
2911     case DeclaratorChunk::Paren:
2912       continue;
2913 
2914     case DeclaratorChunk::Pointer: {
2915       DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2916       S.diagnoseIgnoredQualifiers(
2917           diag::warn_qual_return_type,
2918           PTI.TypeQuals,
2919           SourceLocation(),
2920           PTI.ConstQualLoc,
2921           PTI.VolatileQualLoc,
2922           PTI.RestrictQualLoc,
2923           PTI.AtomicQualLoc,
2924           PTI.UnalignedQualLoc);
2925       return;
2926     }
2927 
2928     case DeclaratorChunk::Function:
2929     case DeclaratorChunk::BlockPointer:
2930     case DeclaratorChunk::Reference:
2931     case DeclaratorChunk::Array:
2932     case DeclaratorChunk::MemberPointer:
2933     case DeclaratorChunk::Pipe:
2934       // FIXME: We can't currently provide an accurate source location and a
2935       // fix-it hint for these.
2936       unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2937       S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2938                                   RetTy.getCVRQualifiers() | AtomicQual,
2939                                   D.getIdentifierLoc());
2940       return;
2941     }
2942 
2943     llvm_unreachable("unknown declarator chunk kind");
2944   }
2945 
2946   // If the qualifiers come from a conversion function type, don't diagnose
2947   // them -- they're not necessarily redundant, since such a conversion
2948   // operator can be explicitly called as "x.operator const int()".
2949   if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
2950     return;
2951 
2952   // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2953   // which are present there.
2954   S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2955                               D.getDeclSpec().getTypeQualifiers(),
2956                               D.getIdentifierLoc(),
2957                               D.getDeclSpec().getConstSpecLoc(),
2958                               D.getDeclSpec().getVolatileSpecLoc(),
2959                               D.getDeclSpec().getRestrictSpecLoc(),
2960                               D.getDeclSpec().getAtomicSpecLoc(),
2961                               D.getDeclSpec().getUnalignedSpecLoc());
2962 }
2963 
2964 static std::pair<QualType, TypeSourceInfo *>
InventTemplateParameter(TypeProcessingState & state,QualType T,TypeSourceInfo * TrailingTSI,AutoType * Auto,InventedTemplateParameterInfo & Info)2965 InventTemplateParameter(TypeProcessingState &state, QualType T,
2966                         TypeSourceInfo *TrailingTSI, AutoType *Auto,
2967                         InventedTemplateParameterInfo &Info) {
2968   Sema &S = state.getSema();
2969   Declarator &D = state.getDeclarator();
2970 
2971   const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
2972   const unsigned AutoParameterPosition = Info.TemplateParams.size();
2973   const bool IsParameterPack = D.hasEllipsis();
2974 
2975   // If auto is mentioned in a lambda parameter or abbreviated function
2976   // template context, convert it to a template parameter type.
2977 
2978   // Create the TemplateTypeParmDecl here to retrieve the corresponding
2979   // template parameter type. Template parameters are temporarily added
2980   // to the TU until the associated TemplateDecl is created.
2981   TemplateTypeParmDecl *InventedTemplateParam =
2982       TemplateTypeParmDecl::Create(
2983           S.Context, S.Context.getTranslationUnitDecl(),
2984           /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
2985           /*NameLoc=*/D.getIdentifierLoc(),
2986           TemplateParameterDepth, AutoParameterPosition,
2987           S.InventAbbreviatedTemplateParameterTypeName(
2988               D.getIdentifier(), AutoParameterPosition), false,
2989           IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
2990   InventedTemplateParam->setImplicit();
2991   Info.TemplateParams.push_back(InventedTemplateParam);
2992 
2993   // Attach type constraints to the new parameter.
2994   if (Auto->isConstrained()) {
2995     if (TrailingTSI) {
2996       // The 'auto' appears in a trailing return type we've already built;
2997       // extract its type constraints to attach to the template parameter.
2998       AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
2999       TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3000       bool Invalid = false;
3001       for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) {
3002         if (D.getEllipsisLoc().isInvalid() && !Invalid &&
3003             S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx),
3004                                               Sema::UPPC_TypeConstraint))
3005           Invalid = true;
3006         TAL.addArgument(AutoLoc.getArgLoc(Idx));
3007       }
3008 
3009       if (!Invalid) {
3010         S.AttachTypeConstraint(
3011             AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(),
3012             AutoLoc.getNamedConcept(), /*FoundDecl=*/AutoLoc.getFoundDecl(),
3013             AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3014             InventedTemplateParam, D.getEllipsisLoc());
3015       }
3016     } else {
3017       // The 'auto' appears in the decl-specifiers; we've not finished forming
3018       // TypeSourceInfo for it yet.
3019       TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3020       TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
3021                                                 TemplateId->RAngleLoc);
3022       bool Invalid = false;
3023       if (TemplateId->LAngleLoc.isValid()) {
3024         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3025                                            TemplateId->NumArgs);
3026         S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3027 
3028         if (D.getEllipsisLoc().isInvalid()) {
3029           for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) {
3030             if (S.DiagnoseUnexpandedParameterPack(Arg,
3031                                                   Sema::UPPC_TypeConstraint)) {
3032               Invalid = true;
3033               break;
3034             }
3035           }
3036         }
3037       }
3038       if (!Invalid) {
3039         UsingShadowDecl *USD =
3040             TemplateId->Template.get().getAsUsingShadowDecl();
3041         auto *CD =
3042             cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
3043         S.AttachTypeConstraint(
3044             D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3045             DeclarationNameInfo(DeclarationName(TemplateId->Name),
3046                                 TemplateId->TemplateNameLoc),
3047             CD,
3048             /*FoundDecl=*/
3049             USD ? cast<NamedDecl>(USD) : CD,
3050             TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3051             InventedTemplateParam, D.getEllipsisLoc());
3052       }
3053     }
3054   }
3055 
3056   // Replace the 'auto' in the function parameter with this invented
3057   // template type parameter.
3058   // FIXME: Retain some type sugar to indicate that this was written
3059   //  as 'auto'?
3060   QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3061   QualType NewT = state.ReplaceAutoType(T, Replacement);
3062   TypeSourceInfo *NewTSI =
3063       TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3064                   : nullptr;
3065   return {NewT, NewTSI};
3066 }
3067 
3068 static TypeSourceInfo *
3069 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3070                                QualType T, TypeSourceInfo *ReturnTypeInfo);
3071 
GetDeclSpecTypeForDeclarator(TypeProcessingState & state,TypeSourceInfo * & ReturnTypeInfo)3072 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3073                                              TypeSourceInfo *&ReturnTypeInfo) {
3074   Sema &SemaRef = state.getSema();
3075   Declarator &D = state.getDeclarator();
3076   QualType T;
3077   ReturnTypeInfo = nullptr;
3078 
3079   // The TagDecl owned by the DeclSpec.
3080   TagDecl *OwnedTagDecl = nullptr;
3081 
3082   switch (D.getName().getKind()) {
3083   case UnqualifiedIdKind::IK_ImplicitSelfParam:
3084   case UnqualifiedIdKind::IK_OperatorFunctionId:
3085   case UnqualifiedIdKind::IK_Identifier:
3086   case UnqualifiedIdKind::IK_LiteralOperatorId:
3087   case UnqualifiedIdKind::IK_TemplateId:
3088     T = ConvertDeclSpecToType(state);
3089 
3090     if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3091       OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3092       // Owned declaration is embedded in declarator.
3093       OwnedTagDecl->setEmbeddedInDeclarator(true);
3094     }
3095     break;
3096 
3097   case UnqualifiedIdKind::IK_ConstructorName:
3098   case UnqualifiedIdKind::IK_ConstructorTemplateId:
3099   case UnqualifiedIdKind::IK_DestructorName:
3100     // Constructors and destructors don't have return types. Use
3101     // "void" instead.
3102     T = SemaRef.Context.VoidTy;
3103     processTypeAttrs(state, T, TAL_DeclSpec,
3104                      D.getMutableDeclSpec().getAttributes());
3105     break;
3106 
3107   case UnqualifiedIdKind::IK_DeductionGuideName:
3108     // Deduction guides have a trailing return type and no type in their
3109     // decl-specifier sequence. Use a placeholder return type for now.
3110     T = SemaRef.Context.DependentTy;
3111     break;
3112 
3113   case UnqualifiedIdKind::IK_ConversionFunctionId:
3114     // The result type of a conversion function is the type that it
3115     // converts to.
3116     T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3117                                   &ReturnTypeInfo);
3118     break;
3119   }
3120 
3121   // Note: We don't need to distribute declaration attributes (i.e.
3122   // D.getDeclarationAttributes()) because those are always C++11 attributes,
3123   // and those don't get distributed.
3124   distributeTypeAttrsFromDeclarator(
3125       state, T, SemaRef.CUDA().IdentifyTarget(D.getAttributes()));
3126 
3127   // Find the deduced type in this type. Look in the trailing return type if we
3128   // have one, otherwise in the DeclSpec type.
3129   // FIXME: The standard wording doesn't currently describe this.
3130   DeducedType *Deduced = T->getContainedDeducedType();
3131   bool DeducedIsTrailingReturnType = false;
3132   if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3133     QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3134     Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3135     DeducedIsTrailingReturnType = true;
3136   }
3137 
3138   // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3139   if (Deduced) {
3140     AutoType *Auto = dyn_cast<AutoType>(Deduced);
3141     int Error = -1;
3142 
3143     // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3144     // class template argument deduction)?
3145     bool IsCXXAutoType =
3146         (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3147     bool IsDeducedReturnType = false;
3148 
3149     switch (D.getContext()) {
3150     case DeclaratorContext::LambdaExpr:
3151       // Declared return type of a lambda-declarator is implicit and is always
3152       // 'auto'.
3153       break;
3154     case DeclaratorContext::ObjCParameter:
3155     case DeclaratorContext::ObjCResult:
3156       Error = 0;
3157       break;
3158     case DeclaratorContext::RequiresExpr:
3159       Error = 22;
3160       break;
3161     case DeclaratorContext::Prototype:
3162     case DeclaratorContext::LambdaExprParameter: {
3163       InventedTemplateParameterInfo *Info = nullptr;
3164       if (D.getContext() == DeclaratorContext::Prototype) {
3165         // With concepts we allow 'auto' in function parameters.
3166         if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3167             Auto->getKeyword() != AutoTypeKeyword::Auto) {
3168           Error = 0;
3169           break;
3170         } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3171           Error = 21;
3172           break;
3173         }
3174 
3175         Info = &SemaRef.InventedParameterInfos.back();
3176       } else {
3177         // In C++14, generic lambdas allow 'auto' in their parameters.
3178         if (!SemaRef.getLangOpts().CPlusPlus14 && Auto &&
3179             Auto->getKeyword() == AutoTypeKeyword::Auto) {
3180           Error = 25; // auto not allowed in lambda parameter (before C++14)
3181           break;
3182         } else if (!Auto || Auto->getKeyword() != AutoTypeKeyword::Auto) {
3183           Error = 16; // __auto_type or decltype(auto) not allowed in lambda
3184                       // parameter
3185           break;
3186         }
3187         Info = SemaRef.getCurLambda();
3188         assert(Info && "No LambdaScopeInfo on the stack!");
3189       }
3190 
3191       // We'll deal with inventing template parameters for 'auto' in trailing
3192       // return types when we pick up the trailing return type when processing
3193       // the function chunk.
3194       if (!DeducedIsTrailingReturnType)
3195         T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3196       break;
3197     }
3198     case DeclaratorContext::Member: {
3199       if (D.isStaticMember() || D.isFunctionDeclarator())
3200         break;
3201       bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3202       if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3203         Error = 6; // Interface member.
3204       } else {
3205         switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3206         case TagTypeKind::Enum:
3207           llvm_unreachable("unhandled tag kind");
3208         case TagTypeKind::Struct:
3209           Error = Cxx ? 1 : 2; /* Struct member */
3210           break;
3211         case TagTypeKind::Union:
3212           Error = Cxx ? 3 : 4; /* Union member */
3213           break;
3214         case TagTypeKind::Class:
3215           Error = 5; /* Class member */
3216           break;
3217         case TagTypeKind::Interface:
3218           Error = 6; /* Interface member */
3219           break;
3220         }
3221       }
3222       if (D.getDeclSpec().isFriendSpecified())
3223         Error = 20; // Friend type
3224       break;
3225     }
3226     case DeclaratorContext::CXXCatch:
3227     case DeclaratorContext::ObjCCatch:
3228       Error = 7; // Exception declaration
3229       break;
3230     case DeclaratorContext::TemplateParam:
3231       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3232           !SemaRef.getLangOpts().CPlusPlus20)
3233         Error = 19; // Template parameter (until C++20)
3234       else if (!SemaRef.getLangOpts().CPlusPlus17)
3235         Error = 8; // Template parameter (until C++17)
3236       break;
3237     case DeclaratorContext::BlockLiteral:
3238       Error = 9; // Block literal
3239       break;
3240     case DeclaratorContext::TemplateArg:
3241       // Within a template argument list, a deduced template specialization
3242       // type will be reinterpreted as a template template argument.
3243       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3244           !D.getNumTypeObjects() &&
3245           D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3246         break;
3247       [[fallthrough]];
3248     case DeclaratorContext::TemplateTypeArg:
3249       Error = 10; // Template type argument
3250       break;
3251     case DeclaratorContext::AliasDecl:
3252     case DeclaratorContext::AliasTemplate:
3253       Error = 12; // Type alias
3254       break;
3255     case DeclaratorContext::TrailingReturn:
3256     case DeclaratorContext::TrailingReturnVar:
3257       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3258         Error = 13; // Function return type
3259       IsDeducedReturnType = true;
3260       break;
3261     case DeclaratorContext::ConversionId:
3262       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3263         Error = 14; // conversion-type-id
3264       IsDeducedReturnType = true;
3265       break;
3266     case DeclaratorContext::FunctionalCast:
3267       if (isa<DeducedTemplateSpecializationType>(Deduced))
3268         break;
3269       if (SemaRef.getLangOpts().CPlusPlus23 && IsCXXAutoType &&
3270           !Auto->isDecltypeAuto())
3271         break; // auto(x)
3272       [[fallthrough]];
3273     case DeclaratorContext::TypeName:
3274     case DeclaratorContext::Association:
3275       Error = 15; // Generic
3276       break;
3277     case DeclaratorContext::File:
3278     case DeclaratorContext::Block:
3279     case DeclaratorContext::ForInit:
3280     case DeclaratorContext::SelectionInit:
3281     case DeclaratorContext::Condition:
3282       // FIXME: P0091R3 (erroneously) does not permit class template argument
3283       // deduction in conditions, for-init-statements, and other declarations
3284       // that are not simple-declarations.
3285       break;
3286     case DeclaratorContext::CXXNew:
3287       // FIXME: P0091R3 does not permit class template argument deduction here,
3288       // but we follow GCC and allow it anyway.
3289       if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3290         Error = 17; // 'new' type
3291       break;
3292     case DeclaratorContext::KNRTypeList:
3293       Error = 18; // K&R function parameter
3294       break;
3295     }
3296 
3297     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3298       Error = 11;
3299 
3300     // In Objective-C it is an error to use 'auto' on a function declarator
3301     // (and everywhere for '__auto_type').
3302     if (D.isFunctionDeclarator() &&
3303         (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3304       Error = 13;
3305 
3306     SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3307     if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3308       AutoRange = D.getName().getSourceRange();
3309 
3310     if (Error != -1) {
3311       unsigned Kind;
3312       if (Auto) {
3313         switch (Auto->getKeyword()) {
3314         case AutoTypeKeyword::Auto: Kind = 0; break;
3315         case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3316         case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3317         }
3318       } else {
3319         assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
3320                "unknown auto type");
3321         Kind = 3;
3322       }
3323 
3324       auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3325       TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3326 
3327       SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3328         << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3329         << QualType(Deduced, 0) << AutoRange;
3330       if (auto *TD = TN.getAsTemplateDecl())
3331         SemaRef.NoteTemplateLocation(*TD);
3332 
3333       T = SemaRef.Context.IntTy;
3334       D.setInvalidType(true);
3335     } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3336       // If there was a trailing return type, we already got
3337       // warn_cxx98_compat_trailing_return_type in the parser.
3338       SemaRef.Diag(AutoRange.getBegin(),
3339                    D.getContext() == DeclaratorContext::LambdaExprParameter
3340                        ? diag::warn_cxx11_compat_generic_lambda
3341                    : IsDeducedReturnType
3342                        ? diag::warn_cxx11_compat_deduced_return_type
3343                        : diag::warn_cxx98_compat_auto_type_specifier)
3344           << AutoRange;
3345     }
3346   }
3347 
3348   if (SemaRef.getLangOpts().CPlusPlus &&
3349       OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3350     // Check the contexts where C++ forbids the declaration of a new class
3351     // or enumeration in a type-specifier-seq.
3352     unsigned DiagID = 0;
3353     switch (D.getContext()) {
3354     case DeclaratorContext::TrailingReturn:
3355     case DeclaratorContext::TrailingReturnVar:
3356       // Class and enumeration definitions are syntactically not allowed in
3357       // trailing return types.
3358       llvm_unreachable("parser should not have allowed this");
3359       break;
3360     case DeclaratorContext::File:
3361     case DeclaratorContext::Member:
3362     case DeclaratorContext::Block:
3363     case DeclaratorContext::ForInit:
3364     case DeclaratorContext::SelectionInit:
3365     case DeclaratorContext::BlockLiteral:
3366     case DeclaratorContext::LambdaExpr:
3367       // C++11 [dcl.type]p3:
3368       //   A type-specifier-seq shall not define a class or enumeration unless
3369       //   it appears in the type-id of an alias-declaration (7.1.3) that is not
3370       //   the declaration of a template-declaration.
3371     case DeclaratorContext::AliasDecl:
3372       break;
3373     case DeclaratorContext::AliasTemplate:
3374       DiagID = diag::err_type_defined_in_alias_template;
3375       break;
3376     case DeclaratorContext::TypeName:
3377     case DeclaratorContext::FunctionalCast:
3378     case DeclaratorContext::ConversionId:
3379     case DeclaratorContext::TemplateParam:
3380     case DeclaratorContext::CXXNew:
3381     case DeclaratorContext::CXXCatch:
3382     case DeclaratorContext::ObjCCatch:
3383     case DeclaratorContext::TemplateArg:
3384     case DeclaratorContext::TemplateTypeArg:
3385     case DeclaratorContext::Association:
3386       DiagID = diag::err_type_defined_in_type_specifier;
3387       break;
3388     case DeclaratorContext::Prototype:
3389     case DeclaratorContext::LambdaExprParameter:
3390     case DeclaratorContext::ObjCParameter:
3391     case DeclaratorContext::ObjCResult:
3392     case DeclaratorContext::KNRTypeList:
3393     case DeclaratorContext::RequiresExpr:
3394       // C++ [dcl.fct]p6:
3395       //   Types shall not be defined in return or parameter types.
3396       DiagID = diag::err_type_defined_in_param_type;
3397       break;
3398     case DeclaratorContext::Condition:
3399       // C++ 6.4p2:
3400       // The type-specifier-seq shall not contain typedef and shall not declare
3401       // a new class or enumeration.
3402       DiagID = diag::err_type_defined_in_condition;
3403       break;
3404     }
3405 
3406     if (DiagID != 0) {
3407       SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3408           << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3409       D.setInvalidType(true);
3410     }
3411   }
3412 
3413   assert(!T.isNull() && "This function should not return a null type");
3414   return T;
3415 }
3416 
3417 /// Produce an appropriate diagnostic for an ambiguity between a function
3418 /// declarator and a C++ direct-initializer.
warnAboutAmbiguousFunction(Sema & S,Declarator & D,DeclaratorChunk & DeclType,QualType RT)3419 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3420                                        DeclaratorChunk &DeclType, QualType RT) {
3421   const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3422   assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3423 
3424   // If the return type is void there is no ambiguity.
3425   if (RT->isVoidType())
3426     return;
3427 
3428   // An initializer for a non-class type can have at most one argument.
3429   if (!RT->isRecordType() && FTI.NumParams > 1)
3430     return;
3431 
3432   // An initializer for a reference must have exactly one argument.
3433   if (RT->isReferenceType() && FTI.NumParams != 1)
3434     return;
3435 
3436   // Only warn if this declarator is declaring a function at block scope, and
3437   // doesn't have a storage class (such as 'extern') specified.
3438   if (!D.isFunctionDeclarator() ||
3439       D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3440       !S.CurContext->isFunctionOrMethod() ||
3441       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3442     return;
3443 
3444   // Inside a condition, a direct initializer is not permitted. We allow one to
3445   // be parsed in order to give better diagnostics in condition parsing.
3446   if (D.getContext() == DeclaratorContext::Condition)
3447     return;
3448 
3449   SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3450 
3451   S.Diag(DeclType.Loc,
3452          FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3453                        : diag::warn_empty_parens_are_function_decl)
3454       << ParenRange;
3455 
3456   // If the declaration looks like:
3457   //   T var1,
3458   //   f();
3459   // and name lookup finds a function named 'f', then the ',' was
3460   // probably intended to be a ';'.
3461   if (!D.isFirstDeclarator() && D.getIdentifier()) {
3462     FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3463     FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3464     if (Comma.getFileID() != Name.getFileID() ||
3465         Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3466       LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3467                           Sema::LookupOrdinaryName);
3468       if (S.LookupName(Result, S.getCurScope()))
3469         S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3470           << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3471           << D.getIdentifier();
3472       Result.suppressDiagnostics();
3473     }
3474   }
3475 
3476   if (FTI.NumParams > 0) {
3477     // For a declaration with parameters, eg. "T var(T());", suggest adding
3478     // parens around the first parameter to turn the declaration into a
3479     // variable declaration.
3480     SourceRange Range = FTI.Params[0].Param->getSourceRange();
3481     SourceLocation B = Range.getBegin();
3482     SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3483     // FIXME: Maybe we should suggest adding braces instead of parens
3484     // in C++11 for classes that don't have an initializer_list constructor.
3485     S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3486       << FixItHint::CreateInsertion(B, "(")
3487       << FixItHint::CreateInsertion(E, ")");
3488   } else {
3489     // For a declaration without parameters, eg. "T var();", suggest replacing
3490     // the parens with an initializer to turn the declaration into a variable
3491     // declaration.
3492     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3493 
3494     // Empty parens mean value-initialization, and no parens mean
3495     // default initialization. These are equivalent if the default
3496     // constructor is user-provided or if zero-initialization is a
3497     // no-op.
3498     if (RD && RD->hasDefinition() &&
3499         (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3500       S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3501         << FixItHint::CreateRemoval(ParenRange);
3502     else {
3503       std::string Init =
3504           S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3505       if (Init.empty() && S.LangOpts.CPlusPlus11)
3506         Init = "{}";
3507       if (!Init.empty())
3508         S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3509           << FixItHint::CreateReplacement(ParenRange, Init);
3510     }
3511   }
3512 }
3513 
3514 /// Produce an appropriate diagnostic for a declarator with top-level
3515 /// parentheses.
warnAboutRedundantParens(Sema & S,Declarator & D,QualType T)3516 static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3517   DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3518   assert(Paren.Kind == DeclaratorChunk::Paren &&
3519          "do not have redundant top-level parentheses");
3520 
3521   // This is a syntactic check; we're not interested in cases that arise
3522   // during template instantiation.
3523   if (S.inTemplateInstantiation())
3524     return;
3525 
3526   // Check whether this could be intended to be a construction of a temporary
3527   // object in C++ via a function-style cast.
3528   bool CouldBeTemporaryObject =
3529       S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3530       !D.isInvalidType() && D.getIdentifier() &&
3531       D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3532       (T->isRecordType() || T->isDependentType()) &&
3533       D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3534 
3535   bool StartsWithDeclaratorId = true;
3536   for (auto &C : D.type_objects()) {
3537     switch (C.Kind) {
3538     case DeclaratorChunk::Paren:
3539       if (&C == &Paren)
3540         continue;
3541       [[fallthrough]];
3542     case DeclaratorChunk::Pointer:
3543       StartsWithDeclaratorId = false;
3544       continue;
3545 
3546     case DeclaratorChunk::Array:
3547       if (!C.Arr.NumElts)
3548         CouldBeTemporaryObject = false;
3549       continue;
3550 
3551     case DeclaratorChunk::Reference:
3552       // FIXME: Suppress the warning here if there is no initializer; we're
3553       // going to give an error anyway.
3554       // We assume that something like 'T (&x) = y;' is highly likely to not
3555       // be intended to be a temporary object.
3556       CouldBeTemporaryObject = false;
3557       StartsWithDeclaratorId = false;
3558       continue;
3559 
3560     case DeclaratorChunk::Function:
3561       // In a new-type-id, function chunks require parentheses.
3562       if (D.getContext() == DeclaratorContext::CXXNew)
3563         return;
3564       // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3565       // redundant-parens warning, but we don't know whether the function
3566       // chunk was syntactically valid as an expression here.
3567       CouldBeTemporaryObject = false;
3568       continue;
3569 
3570     case DeclaratorChunk::BlockPointer:
3571     case DeclaratorChunk::MemberPointer:
3572     case DeclaratorChunk::Pipe:
3573       // These cannot appear in expressions.
3574       CouldBeTemporaryObject = false;
3575       StartsWithDeclaratorId = false;
3576       continue;
3577     }
3578   }
3579 
3580   // FIXME: If there is an initializer, assume that this is not intended to be
3581   // a construction of a temporary object.
3582 
3583   // Check whether the name has already been declared; if not, this is not a
3584   // function-style cast.
3585   if (CouldBeTemporaryObject) {
3586     LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3587                         Sema::LookupOrdinaryName);
3588     if (!S.LookupName(Result, S.getCurScope()))
3589       CouldBeTemporaryObject = false;
3590     Result.suppressDiagnostics();
3591   }
3592 
3593   SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3594 
3595   if (!CouldBeTemporaryObject) {
3596     // If we have A (::B), the parentheses affect the meaning of the program.
3597     // Suppress the warning in that case. Don't bother looking at the DeclSpec
3598     // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3599     // formally unambiguous.
3600     if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3601       for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3602            NNS = NNS->getPrefix()) {
3603         if (NNS->getKind() == NestedNameSpecifier::Global)
3604           return;
3605       }
3606     }
3607 
3608     S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3609         << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3610         << FixItHint::CreateRemoval(Paren.EndLoc);
3611     return;
3612   }
3613 
3614   S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3615       << ParenRange << D.getIdentifier();
3616   auto *RD = T->getAsCXXRecordDecl();
3617   if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3618     S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3619         << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3620         << D.getIdentifier();
3621   // FIXME: A cast to void is probably a better suggestion in cases where it's
3622   // valid (when there is no initializer and we're not in a condition).
3623   S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3624       << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3625       << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3626   S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3627       << FixItHint::CreateRemoval(Paren.Loc)
3628       << FixItHint::CreateRemoval(Paren.EndLoc);
3629 }
3630 
3631 /// Helper for figuring out the default CC for a function declarator type.  If
3632 /// this is the outermost chunk, then we can determine the CC from the
3633 /// declarator context.  If not, then this could be either a member function
3634 /// type or normal function type.
getCCForDeclaratorChunk(Sema & S,Declarator & D,const ParsedAttributesView & AttrList,const DeclaratorChunk::FunctionTypeInfo & FTI,unsigned ChunkIndex)3635 static CallingConv getCCForDeclaratorChunk(
3636     Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3637     const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3638   assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
3639 
3640   // Check for an explicit CC attribute.
3641   for (const ParsedAttr &AL : AttrList) {
3642     switch (AL.getKind()) {
3643     CALLING_CONV_ATTRS_CASELIST : {
3644       // Ignore attributes that don't validate or can't apply to the
3645       // function type.  We'll diagnose the failure to apply them in
3646       // handleFunctionTypeAttr.
3647       CallingConv CC;
3648       if (!S.CheckCallingConvAttr(AL, CC, /*FunctionDecl=*/nullptr,
3649                                   S.CUDA().IdentifyTarget(D.getAttributes())) &&
3650           (!FTI.isVariadic || supportsVariadicCall(CC))) {
3651         return CC;
3652       }
3653       break;
3654     }
3655 
3656     default:
3657       break;
3658     }
3659   }
3660 
3661   bool IsCXXInstanceMethod = false;
3662 
3663   if (S.getLangOpts().CPlusPlus) {
3664     // Look inwards through parentheses to see if this chunk will form a
3665     // member pointer type or if we're the declarator.  Any type attributes
3666     // between here and there will override the CC we choose here.
3667     unsigned I = ChunkIndex;
3668     bool FoundNonParen = false;
3669     while (I && !FoundNonParen) {
3670       --I;
3671       if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3672         FoundNonParen = true;
3673     }
3674 
3675     if (FoundNonParen) {
3676       // If we're not the declarator, we're a regular function type unless we're
3677       // in a member pointer.
3678       IsCXXInstanceMethod =
3679           D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3680     } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
3681       // This can only be a call operator for a lambda, which is an instance
3682       // method, unless explicitly specified as 'static'.
3683       IsCXXInstanceMethod =
3684           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static;
3685     } else {
3686       // We're the innermost decl chunk, so must be a function declarator.
3687       assert(D.isFunctionDeclarator());
3688 
3689       // If we're inside a record, we're declaring a method, but it could be
3690       // explicitly or implicitly static.
3691       IsCXXInstanceMethod =
3692           D.isFirstDeclarationOfMember() &&
3693           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3694           !D.isStaticMember();
3695     }
3696   }
3697 
3698   CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3699                                                          IsCXXInstanceMethod);
3700 
3701   // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3702   // and AMDGPU targets, hence it cannot be treated as a calling
3703   // convention attribute. This is the simplest place to infer
3704   // calling convention for OpenCL kernels.
3705   if (S.getLangOpts().OpenCL) {
3706     for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3707       if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3708         CC = CC_OpenCLKernel;
3709         break;
3710       }
3711     }
3712   } else if (S.getLangOpts().CUDA) {
3713     // If we're compiling CUDA/HIP code and targeting SPIR-V we need to make
3714     // sure the kernels will be marked with the right calling convention so that
3715     // they will be visible by the APIs that ingest SPIR-V.
3716     llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
3717     if (Triple.getArch() == llvm::Triple::spirv32 ||
3718         Triple.getArch() == llvm::Triple::spirv64) {
3719       for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3720         if (AL.getKind() == ParsedAttr::AT_CUDAGlobal) {
3721           CC = CC_OpenCLKernel;
3722           break;
3723         }
3724       }
3725     }
3726   }
3727 
3728   return CC;
3729 }
3730 
3731 namespace {
3732   /// A simple notion of pointer kinds, which matches up with the various
3733   /// pointer declarators.
3734   enum class SimplePointerKind {
3735     Pointer,
3736     BlockPointer,
3737     MemberPointer,
3738     Array,
3739   };
3740 } // end anonymous namespace
3741 
getNullabilityKeyword(NullabilityKind nullability)3742 IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3743   switch (nullability) {
3744   case NullabilityKind::NonNull:
3745     if (!Ident__Nonnull)
3746       Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3747     return Ident__Nonnull;
3748 
3749   case NullabilityKind::Nullable:
3750     if (!Ident__Nullable)
3751       Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3752     return Ident__Nullable;
3753 
3754   case NullabilityKind::NullableResult:
3755     if (!Ident__Nullable_result)
3756       Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
3757     return Ident__Nullable_result;
3758 
3759   case NullabilityKind::Unspecified:
3760     if (!Ident__Null_unspecified)
3761       Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3762     return Ident__Null_unspecified;
3763   }
3764   llvm_unreachable("Unknown nullability kind.");
3765 }
3766 
3767 /// Check whether there is a nullability attribute of any kind in the given
3768 /// attribute list.
hasNullabilityAttr(const ParsedAttributesView & attrs)3769 static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3770   for (const ParsedAttr &AL : attrs) {
3771     if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3772         AL.getKind() == ParsedAttr::AT_TypeNullable ||
3773         AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
3774         AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3775       return true;
3776   }
3777 
3778   return false;
3779 }
3780 
3781 namespace {
3782   /// Describes the kind of a pointer a declarator describes.
3783   enum class PointerDeclaratorKind {
3784     // Not a pointer.
3785     NonPointer,
3786     // Single-level pointer.
3787     SingleLevelPointer,
3788     // Multi-level pointer (of any pointer kind).
3789     MultiLevelPointer,
3790     // CFFooRef*
3791     MaybePointerToCFRef,
3792     // CFErrorRef*
3793     CFErrorRefPointer,
3794     // NSError**
3795     NSErrorPointerPointer,
3796   };
3797 
3798   /// Describes a declarator chunk wrapping a pointer that marks inference as
3799   /// unexpected.
3800   // These values must be kept in sync with diagnostics.
3801   enum class PointerWrappingDeclaratorKind {
3802     /// Pointer is top-level.
3803     None = -1,
3804     /// Pointer is an array element.
3805     Array = 0,
3806     /// Pointer is the referent type of a C++ reference.
3807     Reference = 1
3808   };
3809 } // end anonymous namespace
3810 
3811 /// Classify the given declarator, whose type-specified is \c type, based on
3812 /// what kind of pointer it refers to.
3813 ///
3814 /// This is used to determine the default nullability.
3815 static PointerDeclaratorKind
classifyPointerDeclarator(Sema & S,QualType type,Declarator & declarator,PointerWrappingDeclaratorKind & wrappingKind)3816 classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
3817                           PointerWrappingDeclaratorKind &wrappingKind) {
3818   unsigned numNormalPointers = 0;
3819 
3820   // For any dependent type, we consider it a non-pointer.
3821   if (type->isDependentType())
3822     return PointerDeclaratorKind::NonPointer;
3823 
3824   // Look through the declarator chunks to identify pointers.
3825   for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3826     DeclaratorChunk &chunk = declarator.getTypeObject(i);
3827     switch (chunk.Kind) {
3828     case DeclaratorChunk::Array:
3829       if (numNormalPointers == 0)
3830         wrappingKind = PointerWrappingDeclaratorKind::Array;
3831       break;
3832 
3833     case DeclaratorChunk::Function:
3834     case DeclaratorChunk::Pipe:
3835       break;
3836 
3837     case DeclaratorChunk::BlockPointer:
3838     case DeclaratorChunk::MemberPointer:
3839       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3840                                    : PointerDeclaratorKind::SingleLevelPointer;
3841 
3842     case DeclaratorChunk::Paren:
3843       break;
3844 
3845     case DeclaratorChunk::Reference:
3846       if (numNormalPointers == 0)
3847         wrappingKind = PointerWrappingDeclaratorKind::Reference;
3848       break;
3849 
3850     case DeclaratorChunk::Pointer:
3851       ++numNormalPointers;
3852       if (numNormalPointers > 2)
3853         return PointerDeclaratorKind::MultiLevelPointer;
3854       break;
3855     }
3856   }
3857 
3858   // Then, dig into the type specifier itself.
3859   unsigned numTypeSpecifierPointers = 0;
3860   do {
3861     // Decompose normal pointers.
3862     if (auto ptrType = type->getAs<PointerType>()) {
3863       ++numNormalPointers;
3864 
3865       if (numNormalPointers > 2)
3866         return PointerDeclaratorKind::MultiLevelPointer;
3867 
3868       type = ptrType->getPointeeType();
3869       ++numTypeSpecifierPointers;
3870       continue;
3871     }
3872 
3873     // Decompose block pointers.
3874     if (type->getAs<BlockPointerType>()) {
3875       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3876                                    : PointerDeclaratorKind::SingleLevelPointer;
3877     }
3878 
3879     // Decompose member pointers.
3880     if (type->getAs<MemberPointerType>()) {
3881       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3882                                    : PointerDeclaratorKind::SingleLevelPointer;
3883     }
3884 
3885     // Look at Objective-C object pointers.
3886     if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3887       ++numNormalPointers;
3888       ++numTypeSpecifierPointers;
3889 
3890       // If this is NSError**, report that.
3891       if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3892         if (objcClassDecl->getIdentifier() == S.ObjC().getNSErrorIdent() &&
3893             numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3894           return PointerDeclaratorKind::NSErrorPointerPointer;
3895         }
3896       }
3897 
3898       break;
3899     }
3900 
3901     // Look at Objective-C class types.
3902     if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3903       if (objcClass->getInterface()->getIdentifier() ==
3904           S.ObjC().getNSErrorIdent()) {
3905         if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3906           return PointerDeclaratorKind::NSErrorPointerPointer;
3907       }
3908 
3909       break;
3910     }
3911 
3912     // If at this point we haven't seen a pointer, we won't see one.
3913     if (numNormalPointers == 0)
3914       return PointerDeclaratorKind::NonPointer;
3915 
3916     if (auto recordType = type->getAs<RecordType>()) {
3917       RecordDecl *recordDecl = recordType->getDecl();
3918 
3919       // If this is CFErrorRef*, report it as such.
3920       if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
3921           S.ObjC().isCFError(recordDecl)) {
3922         return PointerDeclaratorKind::CFErrorRefPointer;
3923       }
3924       break;
3925     }
3926 
3927     break;
3928   } while (true);
3929 
3930   switch (numNormalPointers) {
3931   case 0:
3932     return PointerDeclaratorKind::NonPointer;
3933 
3934   case 1:
3935     return PointerDeclaratorKind::SingleLevelPointer;
3936 
3937   case 2:
3938     return PointerDeclaratorKind::MaybePointerToCFRef;
3939 
3940   default:
3941     return PointerDeclaratorKind::MultiLevelPointer;
3942   }
3943 }
3944 
getNullabilityCompletenessCheckFileID(Sema & S,SourceLocation loc)3945 static FileID getNullabilityCompletenessCheckFileID(Sema &S,
3946                                                     SourceLocation loc) {
3947   // If we're anywhere in a function, method, or closure context, don't perform
3948   // completeness checks.
3949   for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3950     if (ctx->isFunctionOrMethod())
3951       return FileID();
3952 
3953     if (ctx->isFileContext())
3954       break;
3955   }
3956 
3957   // We only care about the expansion location.
3958   loc = S.SourceMgr.getExpansionLoc(loc);
3959   FileID file = S.SourceMgr.getFileID(loc);
3960   if (file.isInvalid())
3961     return FileID();
3962 
3963   // Retrieve file information.
3964   bool invalid = false;
3965   const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3966   if (invalid || !sloc.isFile())
3967     return FileID();
3968 
3969   // We don't want to perform completeness checks on the main file or in
3970   // system headers.
3971   const SrcMgr::FileInfo &fileInfo = sloc.getFile();
3972   if (fileInfo.getIncludeLoc().isInvalid())
3973     return FileID();
3974   if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
3975       S.Diags.getSuppressSystemWarnings()) {
3976     return FileID();
3977   }
3978 
3979   return file;
3980 }
3981 
3982 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
3983 /// taking into account whitespace before and after.
3984 template <typename DiagBuilderT>
fixItNullability(Sema & S,DiagBuilderT & Diag,SourceLocation PointerLoc,NullabilityKind Nullability)3985 static void fixItNullability(Sema &S, DiagBuilderT &Diag,
3986                              SourceLocation PointerLoc,
3987                              NullabilityKind Nullability) {
3988   assert(PointerLoc.isValid());
3989   if (PointerLoc.isMacroID())
3990     return;
3991 
3992   SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
3993   if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
3994     return;
3995 
3996   const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
3997   if (!NextChar)
3998     return;
3999 
4000   SmallString<32> InsertionTextBuf{" "};
4001   InsertionTextBuf += getNullabilitySpelling(Nullability);
4002   InsertionTextBuf += " ";
4003   StringRef InsertionText = InsertionTextBuf.str();
4004 
4005   if (isWhitespace(*NextChar)) {
4006     InsertionText = InsertionText.drop_back();
4007   } else if (NextChar[-1] == '[') {
4008     if (NextChar[0] == ']')
4009       InsertionText = InsertionText.drop_back().drop_front();
4010     else
4011       InsertionText = InsertionText.drop_front();
4012   } else if (!isAsciiIdentifierContinue(NextChar[0], /*allow dollar*/ true) &&
4013              !isAsciiIdentifierContinue(NextChar[-1], /*allow dollar*/ true)) {
4014     InsertionText = InsertionText.drop_back().drop_front();
4015   }
4016 
4017   Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4018 }
4019 
emitNullabilityConsistencyWarning(Sema & S,SimplePointerKind PointerKind,SourceLocation PointerLoc,SourceLocation PointerEndLoc)4020 static void emitNullabilityConsistencyWarning(Sema &S,
4021                                               SimplePointerKind PointerKind,
4022                                               SourceLocation PointerLoc,
4023                                               SourceLocation PointerEndLoc) {
4024   assert(PointerLoc.isValid());
4025 
4026   if (PointerKind == SimplePointerKind::Array) {
4027     S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4028   } else {
4029     S.Diag(PointerLoc, diag::warn_nullability_missing)
4030       << static_cast<unsigned>(PointerKind);
4031   }
4032 
4033   auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4034   if (FixItLoc.isMacroID())
4035     return;
4036 
4037   auto addFixIt = [&](NullabilityKind Nullability) {
4038     auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4039     Diag << static_cast<unsigned>(Nullability);
4040     Diag << static_cast<unsigned>(PointerKind);
4041     fixItNullability(S, Diag, FixItLoc, Nullability);
4042   };
4043   addFixIt(NullabilityKind::Nullable);
4044   addFixIt(NullabilityKind::NonNull);
4045 }
4046 
4047 /// Complains about missing nullability if the file containing \p pointerLoc
4048 /// has other uses of nullability (either the keywords or the \c assume_nonnull
4049 /// pragma).
4050 ///
4051 /// If the file has \e not seen other uses of nullability, this particular
4052 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4053 static void
checkNullabilityConsistency(Sema & S,SimplePointerKind pointerKind,SourceLocation pointerLoc,SourceLocation pointerEndLoc=SourceLocation ())4054 checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4055                             SourceLocation pointerLoc,
4056                             SourceLocation pointerEndLoc = SourceLocation()) {
4057   // Determine which file we're performing consistency checking for.
4058   FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4059   if (file.isInvalid())
4060     return;
4061 
4062   // If we haven't seen any type nullability in this file, we won't warn now
4063   // about anything.
4064   FileNullability &fileNullability = S.NullabilityMap[file];
4065   if (!fileNullability.SawTypeNullability) {
4066     // If this is the first pointer declarator in the file, and the appropriate
4067     // warning is on, record it in case we need to diagnose it retroactively.
4068     diag::kind diagKind;
4069     if (pointerKind == SimplePointerKind::Array)
4070       diagKind = diag::warn_nullability_missing_array;
4071     else
4072       diagKind = diag::warn_nullability_missing;
4073 
4074     if (fileNullability.PointerLoc.isInvalid() &&
4075         !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4076       fileNullability.PointerLoc = pointerLoc;
4077       fileNullability.PointerEndLoc = pointerEndLoc;
4078       fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4079     }
4080 
4081     return;
4082   }
4083 
4084   // Complain about missing nullability.
4085   emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4086 }
4087 
4088 /// Marks that a nullability feature has been used in the file containing
4089 /// \p loc.
4090 ///
4091 /// If this file already had pointer types in it that were missing nullability,
4092 /// the first such instance is retroactively diagnosed.
4093 ///
4094 /// \sa checkNullabilityConsistency
recordNullabilitySeen(Sema & S,SourceLocation loc)4095 static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4096   FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4097   if (file.isInvalid())
4098     return;
4099 
4100   FileNullability &fileNullability = S.NullabilityMap[file];
4101   if (fileNullability.SawTypeNullability)
4102     return;
4103   fileNullability.SawTypeNullability = true;
4104 
4105   // If we haven't seen any type nullability before, now we have. Retroactively
4106   // diagnose the first unannotated pointer, if there was one.
4107   if (fileNullability.PointerLoc.isInvalid())
4108     return;
4109 
4110   auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4111   emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4112                                     fileNullability.PointerEndLoc);
4113 }
4114 
4115 /// Returns true if any of the declarator chunks before \p endIndex include a
4116 /// level of indirection: array, pointer, reference, or pointer-to-member.
4117 ///
4118 /// Because declarator chunks are stored in outer-to-inner order, testing
4119 /// every chunk before \p endIndex is testing all chunks that embed the current
4120 /// chunk as part of their type.
4121 ///
4122 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4123 /// end index, in which case all chunks are tested.
hasOuterPointerLikeChunk(const Declarator & D,unsigned endIndex)4124 static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4125   unsigned i = endIndex;
4126   while (i != 0) {
4127     // Walk outwards along the declarator chunks.
4128     --i;
4129     const DeclaratorChunk &DC = D.getTypeObject(i);
4130     switch (DC.Kind) {
4131     case DeclaratorChunk::Paren:
4132       break;
4133     case DeclaratorChunk::Array:
4134     case DeclaratorChunk::Pointer:
4135     case DeclaratorChunk::Reference:
4136     case DeclaratorChunk::MemberPointer:
4137       return true;
4138     case DeclaratorChunk::Function:
4139     case DeclaratorChunk::BlockPointer:
4140     case DeclaratorChunk::Pipe:
4141       // These are invalid anyway, so just ignore.
4142       break;
4143     }
4144   }
4145   return false;
4146 }
4147 
IsNoDerefableChunk(const DeclaratorChunk & Chunk)4148 static bool IsNoDerefableChunk(const DeclaratorChunk &Chunk) {
4149   return (Chunk.Kind == DeclaratorChunk::Pointer ||
4150           Chunk.Kind == DeclaratorChunk::Array);
4151 }
4152 
4153 template<typename AttrT>
createSimpleAttr(ASTContext & Ctx,ParsedAttr & AL)4154 static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4155   AL.setUsedAsTypeAttr();
4156   return ::new (Ctx) AttrT(Ctx, AL);
4157 }
4158 
createNullabilityAttr(ASTContext & Ctx,ParsedAttr & Attr,NullabilityKind NK)4159 static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4160                                    NullabilityKind NK) {
4161   switch (NK) {
4162   case NullabilityKind::NonNull:
4163     return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4164 
4165   case NullabilityKind::Nullable:
4166     return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4167 
4168   case NullabilityKind::NullableResult:
4169     return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4170 
4171   case NullabilityKind::Unspecified:
4172     return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4173   }
4174   llvm_unreachable("unknown NullabilityKind");
4175 }
4176 
4177 // Diagnose whether this is a case with the multiple addr spaces.
4178 // Returns true if this is an invalid case.
4179 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4180 // by qualifiers for two or more different address spaces."
DiagnoseMultipleAddrSpaceAttributes(Sema & S,LangAS ASOld,LangAS ASNew,SourceLocation AttrLoc)4181 static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4182                                                 LangAS ASNew,
4183                                                 SourceLocation AttrLoc) {
4184   if (ASOld != LangAS::Default) {
4185     if (ASOld != ASNew) {
4186       S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4187       return true;
4188     }
4189     // Emit a warning if they are identical; it's likely unintended.
4190     S.Diag(AttrLoc,
4191            diag::warn_attribute_address_multiple_identical_qualifiers);
4192   }
4193   return false;
4194 }
4195 
4196 // Whether this is a type broadly expected to have nullability attached.
4197 // These types are affected by `#pragma assume_nonnull`, and missing nullability
4198 // will be diagnosed with -Wnullability-completeness.
shouldHaveNullability(QualType T)4199 static bool shouldHaveNullability(QualType T) {
4200   return T->canHaveNullability(/*ResultIfUnknown=*/false) &&
4201          // For now, do not infer/require nullability on C++ smart pointers.
4202          // It's unclear whether the pragma's behavior is useful for C++.
4203          // e.g. treating type-aliases and template-type-parameters differently
4204          // from types of declarations can be surprising.
4205          !isa<RecordType, TemplateSpecializationType>(
4206              T->getCanonicalTypeInternal());
4207 }
4208 
GetFullTypeForDeclarator(TypeProcessingState & state,QualType declSpecType,TypeSourceInfo * TInfo)4209 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4210                                                 QualType declSpecType,
4211                                                 TypeSourceInfo *TInfo) {
4212   // The TypeSourceInfo that this function returns will not be a null type.
4213   // If there is an error, this function will fill in a dummy type as fallback.
4214   QualType T = declSpecType;
4215   Declarator &D = state.getDeclarator();
4216   Sema &S = state.getSema();
4217   ASTContext &Context = S.Context;
4218   const LangOptions &LangOpts = S.getLangOpts();
4219 
4220   // The name we're declaring, if any.
4221   DeclarationName Name;
4222   if (D.getIdentifier())
4223     Name = D.getIdentifier();
4224 
4225   // Does this declaration declare a typedef-name?
4226   bool IsTypedefName =
4227       D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4228       D.getContext() == DeclaratorContext::AliasDecl ||
4229       D.getContext() == DeclaratorContext::AliasTemplate;
4230 
4231   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4232   bool IsQualifiedFunction = T->isFunctionProtoType() &&
4233       (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4234        T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4235 
4236   // If T is 'decltype(auto)', the only declarators we can have are parens
4237   // and at most one function declarator if this is a function declaration.
4238   // If T is a deduced class template specialization type, we can have no
4239   // declarator chunks at all.
4240   if (auto *DT = T->getAs<DeducedType>()) {
4241     const AutoType *AT = T->getAs<AutoType>();
4242     bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4243     if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4244       for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4245         unsigned Index = E - I - 1;
4246         DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4247         unsigned DiagId = IsClassTemplateDeduction
4248                               ? diag::err_deduced_class_template_compound_type
4249                               : diag::err_decltype_auto_compound_type;
4250         unsigned DiagKind = 0;
4251         switch (DeclChunk.Kind) {
4252         case DeclaratorChunk::Paren:
4253           // FIXME: Rejecting this is a little silly.
4254           if (IsClassTemplateDeduction) {
4255             DiagKind = 4;
4256             break;
4257           }
4258           continue;
4259         case DeclaratorChunk::Function: {
4260           if (IsClassTemplateDeduction) {
4261             DiagKind = 3;
4262             break;
4263           }
4264           unsigned FnIndex;
4265           if (D.isFunctionDeclarationContext() &&
4266               D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4267             continue;
4268           DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4269           break;
4270         }
4271         case DeclaratorChunk::Pointer:
4272         case DeclaratorChunk::BlockPointer:
4273         case DeclaratorChunk::MemberPointer:
4274           DiagKind = 0;
4275           break;
4276         case DeclaratorChunk::Reference:
4277           DiagKind = 1;
4278           break;
4279         case DeclaratorChunk::Array:
4280           DiagKind = 2;
4281           break;
4282         case DeclaratorChunk::Pipe:
4283           break;
4284         }
4285 
4286         S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4287         D.setInvalidType(true);
4288         break;
4289       }
4290     }
4291   }
4292 
4293   // Determine whether we should infer _Nonnull on pointer types.
4294   std::optional<NullabilityKind> inferNullability;
4295   bool inferNullabilityCS = false;
4296   bool inferNullabilityInnerOnly = false;
4297   bool inferNullabilityInnerOnlyComplete = false;
4298 
4299   // Are we in an assume-nonnull region?
4300   bool inAssumeNonNullRegion = false;
4301   SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4302   if (assumeNonNullLoc.isValid()) {
4303     inAssumeNonNullRegion = true;
4304     recordNullabilitySeen(S, assumeNonNullLoc);
4305   }
4306 
4307   // Whether to complain about missing nullability specifiers or not.
4308   enum {
4309     /// Never complain.
4310     CAMN_No,
4311     /// Complain on the inner pointers (but not the outermost
4312     /// pointer).
4313     CAMN_InnerPointers,
4314     /// Complain about any pointers that don't have nullability
4315     /// specified or inferred.
4316     CAMN_Yes
4317   } complainAboutMissingNullability = CAMN_No;
4318   unsigned NumPointersRemaining = 0;
4319   auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4320 
4321   if (IsTypedefName) {
4322     // For typedefs, we do not infer any nullability (the default),
4323     // and we only complain about missing nullability specifiers on
4324     // inner pointers.
4325     complainAboutMissingNullability = CAMN_InnerPointers;
4326 
4327     if (shouldHaveNullability(T) && !T->getNullability()) {
4328       // Note that we allow but don't require nullability on dependent types.
4329       ++NumPointersRemaining;
4330     }
4331 
4332     for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4333       DeclaratorChunk &chunk = D.getTypeObject(i);
4334       switch (chunk.Kind) {
4335       case DeclaratorChunk::Array:
4336       case DeclaratorChunk::Function:
4337       case DeclaratorChunk::Pipe:
4338         break;
4339 
4340       case DeclaratorChunk::BlockPointer:
4341       case DeclaratorChunk::MemberPointer:
4342         ++NumPointersRemaining;
4343         break;
4344 
4345       case DeclaratorChunk::Paren:
4346       case DeclaratorChunk::Reference:
4347         continue;
4348 
4349       case DeclaratorChunk::Pointer:
4350         ++NumPointersRemaining;
4351         continue;
4352       }
4353     }
4354   } else {
4355     bool isFunctionOrMethod = false;
4356     switch (auto context = state.getDeclarator().getContext()) {
4357     case DeclaratorContext::ObjCParameter:
4358     case DeclaratorContext::ObjCResult:
4359     case DeclaratorContext::Prototype:
4360     case DeclaratorContext::TrailingReturn:
4361     case DeclaratorContext::TrailingReturnVar:
4362       isFunctionOrMethod = true;
4363       [[fallthrough]];
4364 
4365     case DeclaratorContext::Member:
4366       if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4367         complainAboutMissingNullability = CAMN_No;
4368         break;
4369       }
4370 
4371       // Weak properties are inferred to be nullable.
4372       if (state.getDeclarator().isObjCWeakProperty()) {
4373         // Weak properties cannot be nonnull, and should not complain about
4374         // missing nullable attributes during completeness checks.
4375         complainAboutMissingNullability = CAMN_No;
4376         if (inAssumeNonNullRegion) {
4377           inferNullability = NullabilityKind::Nullable;
4378         }
4379         break;
4380       }
4381 
4382       [[fallthrough]];
4383 
4384     case DeclaratorContext::File:
4385     case DeclaratorContext::KNRTypeList: {
4386       complainAboutMissingNullability = CAMN_Yes;
4387 
4388       // Nullability inference depends on the type and declarator.
4389       auto wrappingKind = PointerWrappingDeclaratorKind::None;
4390       switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4391       case PointerDeclaratorKind::NonPointer:
4392       case PointerDeclaratorKind::MultiLevelPointer:
4393         // Cannot infer nullability.
4394         break;
4395 
4396       case PointerDeclaratorKind::SingleLevelPointer:
4397         // Infer _Nonnull if we are in an assumes-nonnull region.
4398         if (inAssumeNonNullRegion) {
4399           complainAboutInferringWithinChunk = wrappingKind;
4400           inferNullability = NullabilityKind::NonNull;
4401           inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4402                                 context == DeclaratorContext::ObjCResult);
4403         }
4404         break;
4405 
4406       case PointerDeclaratorKind::CFErrorRefPointer:
4407       case PointerDeclaratorKind::NSErrorPointerPointer:
4408         // Within a function or method signature, infer _Nullable at both
4409         // levels.
4410         if (isFunctionOrMethod && inAssumeNonNullRegion)
4411           inferNullability = NullabilityKind::Nullable;
4412         break;
4413 
4414       case PointerDeclaratorKind::MaybePointerToCFRef:
4415         if (isFunctionOrMethod) {
4416           // On pointer-to-pointer parameters marked cf_returns_retained or
4417           // cf_returns_not_retained, if the outer pointer is explicit then
4418           // infer the inner pointer as _Nullable.
4419           auto hasCFReturnsAttr =
4420               [](const ParsedAttributesView &AttrList) -> bool {
4421             return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4422                    AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4423           };
4424           if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4425             if (hasCFReturnsAttr(D.getDeclarationAttributes()) ||
4426                 hasCFReturnsAttr(D.getAttributes()) ||
4427                 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4428                 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4429               inferNullability = NullabilityKind::Nullable;
4430               inferNullabilityInnerOnly = true;
4431             }
4432           }
4433         }
4434         break;
4435       }
4436       break;
4437     }
4438 
4439     case DeclaratorContext::ConversionId:
4440       complainAboutMissingNullability = CAMN_Yes;
4441       break;
4442 
4443     case DeclaratorContext::AliasDecl:
4444     case DeclaratorContext::AliasTemplate:
4445     case DeclaratorContext::Block:
4446     case DeclaratorContext::BlockLiteral:
4447     case DeclaratorContext::Condition:
4448     case DeclaratorContext::CXXCatch:
4449     case DeclaratorContext::CXXNew:
4450     case DeclaratorContext::ForInit:
4451     case DeclaratorContext::SelectionInit:
4452     case DeclaratorContext::LambdaExpr:
4453     case DeclaratorContext::LambdaExprParameter:
4454     case DeclaratorContext::ObjCCatch:
4455     case DeclaratorContext::TemplateParam:
4456     case DeclaratorContext::TemplateArg:
4457     case DeclaratorContext::TemplateTypeArg:
4458     case DeclaratorContext::TypeName:
4459     case DeclaratorContext::FunctionalCast:
4460     case DeclaratorContext::RequiresExpr:
4461     case DeclaratorContext::Association:
4462       // Don't infer in these contexts.
4463       break;
4464     }
4465   }
4466 
4467   // Local function that returns true if its argument looks like a va_list.
4468   auto isVaList = [&S](QualType T) -> bool {
4469     auto *typedefTy = T->getAs<TypedefType>();
4470     if (!typedefTy)
4471       return false;
4472     TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4473     do {
4474       if (typedefTy->getDecl() == vaListTypedef)
4475         return true;
4476       if (auto *name = typedefTy->getDecl()->getIdentifier())
4477         if (name->isStr("va_list"))
4478           return true;
4479       typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4480     } while (typedefTy);
4481     return false;
4482   };
4483 
4484   // Local function that checks the nullability for a given pointer declarator.
4485   // Returns true if _Nonnull was inferred.
4486   auto inferPointerNullability =
4487       [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4488           SourceLocation pointerEndLoc,
4489           ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4490     // We've seen a pointer.
4491     if (NumPointersRemaining > 0)
4492       --NumPointersRemaining;
4493 
4494     // If a nullability attribute is present, there's nothing to do.
4495     if (hasNullabilityAttr(attrs))
4496       return nullptr;
4497 
4498     // If we're supposed to infer nullability, do so now.
4499     if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4500       ParsedAttr::Form form =
4501           inferNullabilityCS
4502               ? ParsedAttr::Form::ContextSensitiveKeyword()
4503               : ParsedAttr::Form::Keyword(false /*IsAlignAs*/,
4504                                           false /*IsRegularKeywordAttribute*/);
4505       ParsedAttr *nullabilityAttr = Pool.create(
4506           S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4507           nullptr, SourceLocation(), nullptr, 0, form);
4508 
4509       attrs.addAtEnd(nullabilityAttr);
4510 
4511       if (inferNullabilityCS) {
4512         state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4513           ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4514       }
4515 
4516       if (pointerLoc.isValid() &&
4517           complainAboutInferringWithinChunk !=
4518             PointerWrappingDeclaratorKind::None) {
4519         auto Diag =
4520             S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4521         Diag << static_cast<int>(complainAboutInferringWithinChunk);
4522         fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4523       }
4524 
4525       if (inferNullabilityInnerOnly)
4526         inferNullabilityInnerOnlyComplete = true;
4527       return nullabilityAttr;
4528     }
4529 
4530     // If we're supposed to complain about missing nullability, do so
4531     // now if it's truly missing.
4532     switch (complainAboutMissingNullability) {
4533     case CAMN_No:
4534       break;
4535 
4536     case CAMN_InnerPointers:
4537       if (NumPointersRemaining == 0)
4538         break;
4539       [[fallthrough]];
4540 
4541     case CAMN_Yes:
4542       checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4543     }
4544     return nullptr;
4545   };
4546 
4547   // If the type itself could have nullability but does not, infer pointer
4548   // nullability and perform consistency checking.
4549   if (S.CodeSynthesisContexts.empty()) {
4550     if (shouldHaveNullability(T) && !T->getNullability()) {
4551       if (isVaList(T)) {
4552         // Record that we've seen a pointer, but do nothing else.
4553         if (NumPointersRemaining > 0)
4554           --NumPointersRemaining;
4555       } else {
4556         SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4557         if (T->isBlockPointerType())
4558           pointerKind = SimplePointerKind::BlockPointer;
4559         else if (T->isMemberPointerType())
4560           pointerKind = SimplePointerKind::MemberPointer;
4561 
4562         if (auto *attr = inferPointerNullability(
4563                 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4564                 D.getDeclSpec().getEndLoc(),
4565                 D.getMutableDeclSpec().getAttributes(),
4566                 D.getMutableDeclSpec().getAttributePool())) {
4567           T = state.getAttributedType(
4568               createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4569         }
4570       }
4571     }
4572 
4573     if (complainAboutMissingNullability == CAMN_Yes && T->isArrayType() &&
4574         !T->getNullability() && !isVaList(T) && D.isPrototypeContext() &&
4575         !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4576       checkNullabilityConsistency(S, SimplePointerKind::Array,
4577                                   D.getDeclSpec().getTypeSpecTypeLoc());
4578     }
4579   }
4580 
4581   bool ExpectNoDerefChunk =
4582       state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4583 
4584   // Walk the DeclTypeInfo, building the recursive type as we go.
4585   // DeclTypeInfos are ordered from the identifier out, which is
4586   // opposite of what we want :).
4587 
4588   // Track if the produced type matches the structure of the declarator.
4589   // This is used later to decide if we can fill `TypeLoc` from
4590   // `DeclaratorChunk`s. E.g. it must be false if Clang recovers from
4591   // an error by replacing the type with `int`.
4592   bool AreDeclaratorChunksValid = true;
4593   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4594     unsigned chunkIndex = e - i - 1;
4595     state.setCurrentChunkIndex(chunkIndex);
4596     DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4597     IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4598     switch (DeclType.Kind) {
4599     case DeclaratorChunk::Paren:
4600       if (i == 0)
4601         warnAboutRedundantParens(S, D, T);
4602       T = S.BuildParenType(T);
4603       break;
4604     case DeclaratorChunk::BlockPointer:
4605       // If blocks are disabled, emit an error.
4606       if (!LangOpts.Blocks)
4607         S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4608 
4609       // Handle pointer nullability.
4610       inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4611                               DeclType.EndLoc, DeclType.getAttrs(),
4612                               state.getDeclarator().getAttributePool());
4613 
4614       T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4615       if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4616         // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4617         // qualified with const.
4618         if (LangOpts.OpenCL)
4619           DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4620         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4621       }
4622       break;
4623     case DeclaratorChunk::Pointer:
4624       // Verify that we're not building a pointer to pointer to function with
4625       // exception specification.
4626       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4627         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4628         D.setInvalidType(true);
4629         // Build the type anyway.
4630       }
4631 
4632       // Handle pointer nullability
4633       inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4634                               DeclType.EndLoc, DeclType.getAttrs(),
4635                               state.getDeclarator().getAttributePool());
4636 
4637       if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4638         T = Context.getObjCObjectPointerType(T);
4639         if (DeclType.Ptr.TypeQuals)
4640           T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4641         break;
4642       }
4643 
4644       // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4645       // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4646       // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4647       if (LangOpts.OpenCL) {
4648         if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4649             T->isBlockPointerType()) {
4650           S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4651           D.setInvalidType(true);
4652         }
4653       }
4654 
4655       T = S.BuildPointerType(T, DeclType.Loc, Name);
4656       if (DeclType.Ptr.TypeQuals)
4657         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4658       break;
4659     case DeclaratorChunk::Reference: {
4660       // Verify that we're not building a reference to pointer to function with
4661       // exception specification.
4662       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4663         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4664         D.setInvalidType(true);
4665         // Build the type anyway.
4666       }
4667       T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4668 
4669       if (DeclType.Ref.HasRestrict)
4670         T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4671       break;
4672     }
4673     case DeclaratorChunk::Array: {
4674       // Verify that we're not building an array of pointers to function with
4675       // exception specification.
4676       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4677         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4678         D.setInvalidType(true);
4679         // Build the type anyway.
4680       }
4681       DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4682       Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4683       ArraySizeModifier ASM;
4684 
4685       // Microsoft property fields can have multiple sizeless array chunks
4686       // (i.e. int x[][][]). Skip all of these except one to avoid creating
4687       // bad incomplete array types.
4688       if (chunkIndex != 0 && !ArraySize &&
4689           D.getDeclSpec().getAttributes().hasMSPropertyAttr()) {
4690         // This is a sizeless chunk. If the next is also, skip this one.
4691         DeclaratorChunk &NextDeclType = D.getTypeObject(chunkIndex - 1);
4692         if (NextDeclType.Kind == DeclaratorChunk::Array &&
4693             !NextDeclType.Arr.NumElts)
4694           break;
4695       }
4696 
4697       if (ATI.isStar)
4698         ASM = ArraySizeModifier::Star;
4699       else if (ATI.hasStatic)
4700         ASM = ArraySizeModifier::Static;
4701       else
4702         ASM = ArraySizeModifier::Normal;
4703       if (ASM == ArraySizeModifier::Star && !D.isPrototypeContext()) {
4704         // FIXME: This check isn't quite right: it allows star in prototypes
4705         // for function definitions, and disallows some edge cases detailed
4706         // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4707         S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4708         ASM = ArraySizeModifier::Normal;
4709         D.setInvalidType(true);
4710       }
4711 
4712       // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4713       // shall appear only in a declaration of a function parameter with an
4714       // array type, ...
4715       if (ASM == ArraySizeModifier::Static || ATI.TypeQuals) {
4716         if (!(D.isPrototypeContext() ||
4717               D.getContext() == DeclaratorContext::KNRTypeList)) {
4718           S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype)
4719               << (ASM == ArraySizeModifier::Static ? "'static'"
4720                                                    : "type qualifier");
4721           // Remove the 'static' and the type qualifiers.
4722           if (ASM == ArraySizeModifier::Static)
4723             ASM = ArraySizeModifier::Normal;
4724           ATI.TypeQuals = 0;
4725           D.setInvalidType(true);
4726         }
4727 
4728         // C99 6.7.5.2p1: ... and then only in the outermost array type
4729         // derivation.
4730         if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4731           S.Diag(DeclType.Loc, diag::err_array_static_not_outermost)
4732               << (ASM == ArraySizeModifier::Static ? "'static'"
4733                                                    : "type qualifier");
4734           if (ASM == ArraySizeModifier::Static)
4735             ASM = ArraySizeModifier::Normal;
4736           ATI.TypeQuals = 0;
4737           D.setInvalidType(true);
4738         }
4739       }
4740 
4741       // Array parameters can be marked nullable as well, although it's not
4742       // necessary if they're marked 'static'.
4743       if (complainAboutMissingNullability == CAMN_Yes &&
4744           !hasNullabilityAttr(DeclType.getAttrs()) &&
4745           ASM != ArraySizeModifier::Static && D.isPrototypeContext() &&
4746           !hasOuterPointerLikeChunk(D, chunkIndex)) {
4747         checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4748       }
4749 
4750       T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4751                            SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4752       break;
4753     }
4754     case DeclaratorChunk::Function: {
4755       // If the function declarator has a prototype (i.e. it is not () and
4756       // does not have a K&R-style identifier list), then the arguments are part
4757       // of the type, otherwise the argument list is ().
4758       DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4759       IsQualifiedFunction =
4760           FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4761 
4762       // Check for auto functions and trailing return type and adjust the
4763       // return type accordingly.
4764       if (!D.isInvalidType()) {
4765         auto IsClassType = [&](CXXScopeSpec &SS) {
4766           // If there already was an problem with the scope, don’t issue another
4767           // error about the explicit object parameter.
4768           return SS.isInvalid() ||
4769                  isa_and_present<CXXRecordDecl>(S.computeDeclContext(SS));
4770         };
4771 
4772         // C++23 [dcl.fct]p6:
4773         //
4774         // An explicit-object-parameter-declaration is a parameter-declaration
4775         // with a this specifier. An explicit-object-parameter-declaration shall
4776         // appear only as the first parameter-declaration of a
4777         // parameter-declaration-list of one of:
4778         //
4779         // - a declaration of a member function or member function template
4780         //   ([class.mem]), or
4781         //
4782         // - an explicit instantiation ([temp.explicit]) or explicit
4783         //   specialization ([temp.expl.spec]) of a templated member function,
4784         //   or
4785         //
4786         // - a lambda-declarator [expr.prim.lambda].
4787         DeclaratorContext C = D.getContext();
4788         ParmVarDecl *First =
4789             FTI.NumParams
4790                 ? dyn_cast_if_present<ParmVarDecl>(FTI.Params[0].Param)
4791                 : nullptr;
4792 
4793         bool IsFunctionDecl = D.getInnermostNonParenChunk() == &DeclType;
4794         if (First && First->isExplicitObjectParameter() &&
4795             C != DeclaratorContext::LambdaExpr &&
4796 
4797             // Either not a member or nested declarator in a member.
4798             //
4799             // Note that e.g. 'static' or 'friend' declarations are accepted
4800             // here; we diagnose them later when we build the member function
4801             // because it's easier that way.
4802             (C != DeclaratorContext::Member || !IsFunctionDecl) &&
4803 
4804             // Allow out-of-line definitions of member functions.
4805             !IsClassType(D.getCXXScopeSpec())) {
4806           if (IsFunctionDecl)
4807             S.Diag(First->getBeginLoc(),
4808                    diag::err_explicit_object_parameter_nonmember)
4809                 << /*non-member*/ 2 << /*function*/ 0
4810                 << First->getSourceRange();
4811           else
4812             S.Diag(First->getBeginLoc(),
4813                    diag::err_explicit_object_parameter_invalid)
4814                 << First->getSourceRange();
4815 
4816           D.setInvalidType();
4817           AreDeclaratorChunksValid = false;
4818         }
4819 
4820         // trailing-return-type is only required if we're declaring a function,
4821         // and not, for instance, a pointer to a function.
4822         if (D.getDeclSpec().hasAutoTypeSpec() &&
4823             !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4824           if (!S.getLangOpts().CPlusPlus14) {
4825             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4826                    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4827                        ? diag::err_auto_missing_trailing_return
4828                        : diag::err_deduced_return_type);
4829             T = Context.IntTy;
4830             D.setInvalidType(true);
4831             AreDeclaratorChunksValid = false;
4832           } else {
4833             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4834                    diag::warn_cxx11_compat_deduced_return_type);
4835           }
4836         } else if (FTI.hasTrailingReturnType()) {
4837           // T must be exactly 'auto' at this point. See CWG issue 681.
4838           if (isa<ParenType>(T)) {
4839             S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4840                 << T << D.getSourceRange();
4841             D.setInvalidType(true);
4842             // FIXME: recover and fill decls in `TypeLoc`s.
4843             AreDeclaratorChunksValid = false;
4844           } else if (D.getName().getKind() ==
4845                      UnqualifiedIdKind::IK_DeductionGuideName) {
4846             if (T != Context.DependentTy) {
4847               S.Diag(D.getDeclSpec().getBeginLoc(),
4848                      diag::err_deduction_guide_with_complex_decl)
4849                   << D.getSourceRange();
4850               D.setInvalidType(true);
4851               // FIXME: recover and fill decls in `TypeLoc`s.
4852               AreDeclaratorChunksValid = false;
4853             }
4854           } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
4855                      (T.hasQualifiers() || !isa<AutoType>(T) ||
4856                       cast<AutoType>(T)->getKeyword() !=
4857                           AutoTypeKeyword::Auto ||
4858                       cast<AutoType>(T)->isConstrained())) {
4859             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4860                    diag::err_trailing_return_without_auto)
4861                 << T << D.getDeclSpec().getSourceRange();
4862             D.setInvalidType(true);
4863             // FIXME: recover and fill decls in `TypeLoc`s.
4864             AreDeclaratorChunksValid = false;
4865           }
4866           T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4867           if (T.isNull()) {
4868             // An error occurred parsing the trailing return type.
4869             T = Context.IntTy;
4870             D.setInvalidType(true);
4871           } else if (AutoType *Auto = T->getContainedAutoType()) {
4872             // If the trailing return type contains an `auto`, we may need to
4873             // invent a template parameter for it, for cases like
4874             // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
4875             InventedTemplateParameterInfo *InventedParamInfo = nullptr;
4876             if (D.getContext() == DeclaratorContext::Prototype)
4877               InventedParamInfo = &S.InventedParameterInfos.back();
4878             else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
4879               InventedParamInfo = S.getCurLambda();
4880             if (InventedParamInfo) {
4881               std::tie(T, TInfo) = InventTemplateParameter(
4882                   state, T, TInfo, Auto, *InventedParamInfo);
4883             }
4884           }
4885         } else {
4886           // This function type is not the type of the entity being declared,
4887           // so checking the 'auto' is not the responsibility of this chunk.
4888         }
4889       }
4890 
4891       // C99 6.7.5.3p1: The return type may not be a function or array type.
4892       // For conversion functions, we'll diagnose this particular error later.
4893       if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4894           (D.getName().getKind() !=
4895            UnqualifiedIdKind::IK_ConversionFunctionId)) {
4896         unsigned diagID = diag::err_func_returning_array_function;
4897         // Last processing chunk in block context means this function chunk
4898         // represents the block.
4899         if (chunkIndex == 0 &&
4900             D.getContext() == DeclaratorContext::BlockLiteral)
4901           diagID = diag::err_block_returning_array_function;
4902         S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4903         T = Context.IntTy;
4904         D.setInvalidType(true);
4905         AreDeclaratorChunksValid = false;
4906       }
4907 
4908       // Do not allow returning half FP value.
4909       // FIXME: This really should be in BuildFunctionType.
4910       if (T->isHalfType()) {
4911         if (S.getLangOpts().OpenCL) {
4912           if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
4913                                                       S.getLangOpts())) {
4914             S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4915                 << T << 0 /*pointer hint*/;
4916             D.setInvalidType(true);
4917           }
4918         } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
4919                    !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
4920           S.Diag(D.getIdentifierLoc(),
4921             diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4922           D.setInvalidType(true);
4923         }
4924       }
4925 
4926       if (LangOpts.OpenCL) {
4927         // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4928         // function.
4929         if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
4930             T->isPipeType()) {
4931           S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4932               << T << 1 /*hint off*/;
4933           D.setInvalidType(true);
4934         }
4935         // OpenCL doesn't support variadic functions and blocks
4936         // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
4937         // We also allow here any toolchain reserved identifiers.
4938         if (FTI.isVariadic &&
4939             !S.getOpenCLOptions().isAvailableOption(
4940                 "__cl_clang_variadic_functions", S.getLangOpts()) &&
4941             !(D.getIdentifier() &&
4942               ((D.getIdentifier()->getName() == "printf" &&
4943                 LangOpts.getOpenCLCompatibleVersion() >= 120) ||
4944                D.getIdentifier()->getName().starts_with("__")))) {
4945           S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
4946           D.setInvalidType(true);
4947         }
4948       }
4949 
4950       // Methods cannot return interface types. All ObjC objects are
4951       // passed by reference.
4952       if (T->isObjCObjectType()) {
4953         SourceLocation DiagLoc, FixitLoc;
4954         if (TInfo) {
4955           DiagLoc = TInfo->getTypeLoc().getBeginLoc();
4956           FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
4957         } else {
4958           DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
4959           FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
4960         }
4961         S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
4962           << 0 << T
4963           << FixItHint::CreateInsertion(FixitLoc, "*");
4964 
4965         T = Context.getObjCObjectPointerType(T);
4966         if (TInfo) {
4967           TypeLocBuilder TLB;
4968           TLB.pushFullCopy(TInfo->getTypeLoc());
4969           ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
4970           TLoc.setStarLoc(FixitLoc);
4971           TInfo = TLB.getTypeSourceInfo(Context, T);
4972         } else {
4973           AreDeclaratorChunksValid = false;
4974         }
4975 
4976         D.setInvalidType(true);
4977       }
4978 
4979       // cv-qualifiers on return types are pointless except when the type is a
4980       // class type in C++.
4981       if ((T.getCVRQualifiers() || T->isAtomicType()) &&
4982           !(S.getLangOpts().CPlusPlus &&
4983             (T->isDependentType() || T->isRecordType()))) {
4984         if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
4985             D.getFunctionDefinitionKind() ==
4986                 FunctionDefinitionKind::Definition) {
4987           // [6.9.1/3] qualified void return is invalid on a C
4988           // function definition.  Apparently ok on declarations and
4989           // in C++ though (!)
4990           S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
4991         } else
4992           diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
4993 
4994         // C++2a [dcl.fct]p12:
4995         //   A volatile-qualified return type is deprecated
4996         if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
4997           S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
4998       }
4999 
5000       // Objective-C ARC ownership qualifiers are ignored on the function
5001       // return type (by type canonicalization). Complain if this attribute
5002       // was written here.
5003       if (T.getQualifiers().hasObjCLifetime()) {
5004         SourceLocation AttrLoc;
5005         if (chunkIndex + 1 < D.getNumTypeObjects()) {
5006           DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5007           for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5008             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5009               AttrLoc = AL.getLoc();
5010               break;
5011             }
5012           }
5013         }
5014         if (AttrLoc.isInvalid()) {
5015           for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5016             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5017               AttrLoc = AL.getLoc();
5018               break;
5019             }
5020           }
5021         }
5022 
5023         if (AttrLoc.isValid()) {
5024           // The ownership attributes are almost always written via
5025           // the predefined
5026           // __strong/__weak/__autoreleasing/__unsafe_unretained.
5027           if (AttrLoc.isMacroID())
5028             AttrLoc =
5029                 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5030 
5031           S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5032             << T.getQualifiers().getObjCLifetime();
5033         }
5034       }
5035 
5036       if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5037         // C++ [dcl.fct]p6:
5038         //   Types shall not be defined in return or parameter types.
5039         TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5040         S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5041           << Context.getTypeDeclType(Tag);
5042       }
5043 
5044       // Exception specs are not allowed in typedefs. Complain, but add it
5045       // anyway.
5046       if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5047         S.Diag(FTI.getExceptionSpecLocBeg(),
5048                diag::err_exception_spec_in_typedef)
5049             << (D.getContext() == DeclaratorContext::AliasDecl ||
5050                 D.getContext() == DeclaratorContext::AliasTemplate);
5051 
5052       // If we see "T var();" or "T var(T());" at block scope, it is probably
5053       // an attempt to initialize a variable, not a function declaration.
5054       if (FTI.isAmbiguous)
5055         warnAboutAmbiguousFunction(S, D, DeclType, T);
5056 
5057       FunctionType::ExtInfo EI(
5058           getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5059 
5060       // OpenCL disallows functions without a prototype, but it doesn't enforce
5061       // strict prototypes as in C23 because it allows a function definition to
5062       // have an identifier list. See OpenCL 3.0 6.11/g for more details.
5063       if (!FTI.NumParams && !FTI.isVariadic &&
5064           !LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL) {
5065         // Simple void foo(), where the incoming T is the result type.
5066         T = Context.getFunctionNoProtoType(T, EI);
5067       } else {
5068         // We allow a zero-parameter variadic function in C if the
5069         // function is marked with the "overloadable" attribute. Scan
5070         // for this attribute now. We also allow it in C23 per WG14 N2975.
5071         if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
5072           if (LangOpts.C23)
5073             S.Diag(FTI.getEllipsisLoc(),
5074                    diag::warn_c17_compat_ellipsis_only_parameter);
5075           else if (!D.getDeclarationAttributes().hasAttribute(
5076                        ParsedAttr::AT_Overloadable) &&
5077                    !D.getAttributes().hasAttribute(
5078                        ParsedAttr::AT_Overloadable) &&
5079                    !D.getDeclSpec().getAttributes().hasAttribute(
5080                        ParsedAttr::AT_Overloadable))
5081             S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5082         }
5083 
5084         if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5085           // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5086           // definition.
5087           S.Diag(FTI.Params[0].IdentLoc,
5088                  diag::err_ident_list_in_fn_declaration);
5089           D.setInvalidType(true);
5090           // Recover by creating a K&R-style function type, if possible.
5091           T = (!LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL)
5092                   ? Context.getFunctionNoProtoType(T, EI)
5093                   : Context.IntTy;
5094           AreDeclaratorChunksValid = false;
5095           break;
5096         }
5097 
5098         FunctionProtoType::ExtProtoInfo EPI;
5099         EPI.ExtInfo = EI;
5100         EPI.Variadic = FTI.isVariadic;
5101         EPI.EllipsisLoc = FTI.getEllipsisLoc();
5102         EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5103         EPI.TypeQuals.addCVRUQualifiers(
5104             FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5105                                  : 0);
5106         EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5107                     : FTI.RefQualifierIsLValueRef? RQ_LValue
5108                     : RQ_RValue;
5109 
5110         // Otherwise, we have a function with a parameter list that is
5111         // potentially variadic.
5112         SmallVector<QualType, 16> ParamTys;
5113         ParamTys.reserve(FTI.NumParams);
5114 
5115         SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5116           ExtParameterInfos(FTI.NumParams);
5117         bool HasAnyInterestingExtParameterInfos = false;
5118 
5119         for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5120           ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5121           QualType ParamTy = Param->getType();
5122           assert(!ParamTy.isNull() && "Couldn't parse type?");
5123 
5124           // Look for 'void'.  void is allowed only as a single parameter to a
5125           // function with no other parameters (C99 6.7.5.3p10).  We record
5126           // int(void) as a FunctionProtoType with an empty parameter list.
5127           if (ParamTy->isVoidType()) {
5128             // If this is something like 'float(int, void)', reject it.  'void'
5129             // is an incomplete type (C99 6.2.5p19) and function decls cannot
5130             // have parameters of incomplete type.
5131             if (FTI.NumParams != 1 || FTI.isVariadic) {
5132               S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5133               ParamTy = Context.IntTy;
5134               Param->setType(ParamTy);
5135             } else if (FTI.Params[i].Ident) {
5136               // Reject, but continue to parse 'int(void abc)'.
5137               S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5138               ParamTy = Context.IntTy;
5139               Param->setType(ParamTy);
5140             } else {
5141               // Reject, but continue to parse 'float(const void)'.
5142               if (ParamTy.hasQualifiers())
5143                 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5144 
5145               // Do not add 'void' to the list.
5146               break;
5147             }
5148           } else if (ParamTy->isHalfType()) {
5149             // Disallow half FP parameters.
5150             // FIXME: This really should be in BuildFunctionType.
5151             if (S.getLangOpts().OpenCL) {
5152               if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5153                                                           S.getLangOpts())) {
5154                 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5155                     << ParamTy << 0;
5156                 D.setInvalidType();
5157                 Param->setInvalidDecl();
5158               }
5159             } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
5160                        !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
5161               S.Diag(Param->getLocation(),
5162                 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5163               D.setInvalidType();
5164             }
5165           } else if (!FTI.hasPrototype) {
5166             if (Context.isPromotableIntegerType(ParamTy)) {
5167               ParamTy = Context.getPromotedIntegerType(ParamTy);
5168               Param->setKNRPromoted(true);
5169             } else if (const BuiltinType *BTy = ParamTy->getAs<BuiltinType>()) {
5170               if (BTy->getKind() == BuiltinType::Float) {
5171                 ParamTy = Context.DoubleTy;
5172                 Param->setKNRPromoted(true);
5173               }
5174             }
5175           } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5176             // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5177             S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5178                 << ParamTy << 1 /*hint off*/;
5179             D.setInvalidType();
5180           }
5181 
5182           if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5183             ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5184             HasAnyInterestingExtParameterInfos = true;
5185           }
5186 
5187           if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5188             ExtParameterInfos[i] =
5189               ExtParameterInfos[i].withABI(attr->getABI());
5190             HasAnyInterestingExtParameterInfos = true;
5191           }
5192 
5193           if (Param->hasAttr<PassObjectSizeAttr>()) {
5194             ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5195             HasAnyInterestingExtParameterInfos = true;
5196           }
5197 
5198           if (Param->hasAttr<NoEscapeAttr>()) {
5199             ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5200             HasAnyInterestingExtParameterInfos = true;
5201           }
5202 
5203           ParamTys.push_back(ParamTy);
5204         }
5205 
5206         if (HasAnyInterestingExtParameterInfos) {
5207           EPI.ExtParameterInfos = ExtParameterInfos.data();
5208           checkExtParameterInfos(S, ParamTys, EPI,
5209               [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5210         }
5211 
5212         SmallVector<QualType, 4> Exceptions;
5213         SmallVector<ParsedType, 2> DynamicExceptions;
5214         SmallVector<SourceRange, 2> DynamicExceptionRanges;
5215         Expr *NoexceptExpr = nullptr;
5216 
5217         if (FTI.getExceptionSpecType() == EST_Dynamic) {
5218           // FIXME: It's rather inefficient to have to split into two vectors
5219           // here.
5220           unsigned N = FTI.getNumExceptions();
5221           DynamicExceptions.reserve(N);
5222           DynamicExceptionRanges.reserve(N);
5223           for (unsigned I = 0; I != N; ++I) {
5224             DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5225             DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5226           }
5227         } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5228           NoexceptExpr = FTI.NoexceptExpr;
5229         }
5230 
5231         S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5232                                       FTI.getExceptionSpecType(),
5233                                       DynamicExceptions,
5234                                       DynamicExceptionRanges,
5235                                       NoexceptExpr,
5236                                       Exceptions,
5237                                       EPI.ExceptionSpec);
5238 
5239         // FIXME: Set address space from attrs for C++ mode here.
5240         // OpenCLCPlusPlus: A class member function has an address space.
5241         auto IsClassMember = [&]() {
5242           return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5243                   state.getDeclarator()
5244                           .getCXXScopeSpec()
5245                           .getScopeRep()
5246                           ->getKind() == NestedNameSpecifier::TypeSpec) ||
5247                  state.getDeclarator().getContext() ==
5248                      DeclaratorContext::Member ||
5249                  state.getDeclarator().getContext() ==
5250                      DeclaratorContext::LambdaExpr;
5251         };
5252 
5253         if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5254           LangAS ASIdx = LangAS::Default;
5255           // Take address space attr if any and mark as invalid to avoid adding
5256           // them later while creating QualType.
5257           if (FTI.MethodQualifiers)
5258             for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5259               LangAS ASIdxNew = attr.asOpenCLLangAS();
5260               if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5261                                                       attr.getLoc()))
5262                 D.setInvalidType(true);
5263               else
5264                 ASIdx = ASIdxNew;
5265             }
5266           // If a class member function's address space is not set, set it to
5267           // __generic.
5268           LangAS AS =
5269               (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5270                                         : ASIdx);
5271           EPI.TypeQuals.addAddressSpace(AS);
5272         }
5273         T = Context.getFunctionType(T, ParamTys, EPI);
5274       }
5275       break;
5276     }
5277     case DeclaratorChunk::MemberPointer: {
5278       // The scope spec must refer to a class, or be dependent.
5279       CXXScopeSpec &SS = DeclType.Mem.Scope();
5280       QualType ClsType;
5281 
5282       // Handle pointer nullability.
5283       inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5284                               DeclType.EndLoc, DeclType.getAttrs(),
5285                               state.getDeclarator().getAttributePool());
5286 
5287       if (SS.isInvalid()) {
5288         // Avoid emitting extra errors if we already errored on the scope.
5289         D.setInvalidType(true);
5290       } else if (S.isDependentScopeSpecifier(SS) ||
5291                  isa_and_nonnull<CXXRecordDecl>(S.computeDeclContext(SS))) {
5292         NestedNameSpecifier *NNS = SS.getScopeRep();
5293         NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5294         switch (NNS->getKind()) {
5295         case NestedNameSpecifier::Identifier:
5296           ClsType = Context.getDependentNameType(
5297               ElaboratedTypeKeyword::None, NNSPrefix, NNS->getAsIdentifier());
5298           break;
5299 
5300         case NestedNameSpecifier::Namespace:
5301         case NestedNameSpecifier::NamespaceAlias:
5302         case NestedNameSpecifier::Global:
5303         case NestedNameSpecifier::Super:
5304           llvm_unreachable("Nested-name-specifier must name a type");
5305 
5306         case NestedNameSpecifier::TypeSpec:
5307         case NestedNameSpecifier::TypeSpecWithTemplate:
5308           ClsType = QualType(NNS->getAsType(), 0);
5309           // Note: if the NNS has a prefix and ClsType is a nondependent
5310           // TemplateSpecializationType, then the NNS prefix is NOT included
5311           // in ClsType; hence we wrap ClsType into an ElaboratedType.
5312           // NOTE: in particular, no wrap occurs if ClsType already is an
5313           // Elaborated, DependentName, or DependentTemplateSpecialization.
5314           if (isa<TemplateSpecializationType>(NNS->getAsType()))
5315             ClsType = Context.getElaboratedType(ElaboratedTypeKeyword::None,
5316                                                 NNSPrefix, ClsType);
5317           break;
5318         }
5319       } else {
5320         S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5321              diag::err_illegal_decl_mempointer_in_nonclass)
5322           << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5323           << DeclType.Mem.Scope().getRange();
5324         D.setInvalidType(true);
5325       }
5326 
5327       if (!ClsType.isNull())
5328         T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5329                                      D.getIdentifier());
5330       else
5331         AreDeclaratorChunksValid = false;
5332 
5333       if (T.isNull()) {
5334         T = Context.IntTy;
5335         D.setInvalidType(true);
5336         AreDeclaratorChunksValid = false;
5337       } else if (DeclType.Mem.TypeQuals) {
5338         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5339       }
5340       break;
5341     }
5342 
5343     case DeclaratorChunk::Pipe: {
5344       T = S.BuildReadPipeType(T, DeclType.Loc);
5345       processTypeAttrs(state, T, TAL_DeclSpec,
5346                        D.getMutableDeclSpec().getAttributes());
5347       break;
5348     }
5349     }
5350 
5351     if (T.isNull()) {
5352       D.setInvalidType(true);
5353       T = Context.IntTy;
5354       AreDeclaratorChunksValid = false;
5355     }
5356 
5357     // See if there are any attributes on this declarator chunk.
5358     processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs(),
5359                      S.CUDA().IdentifyTarget(D.getAttributes()));
5360 
5361     if (DeclType.Kind != DeclaratorChunk::Paren) {
5362       if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5363         S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5364 
5365       ExpectNoDerefChunk = state.didParseNoDeref();
5366     }
5367   }
5368 
5369   if (ExpectNoDerefChunk)
5370     S.Diag(state.getDeclarator().getBeginLoc(),
5371            diag::warn_noderef_on_non_pointer_or_array);
5372 
5373   // GNU warning -Wstrict-prototypes
5374   //   Warn if a function declaration or definition is without a prototype.
5375   //   This warning is issued for all kinds of unprototyped function
5376   //   declarations (i.e. function type typedef, function pointer etc.)
5377   //   C99 6.7.5.3p14:
5378   //   The empty list in a function declarator that is not part of a definition
5379   //   of that function specifies that no information about the number or types
5380   //   of the parameters is supplied.
5381   // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of
5382   // function declarations whose behavior changes in C23.
5383   if (!LangOpts.requiresStrictPrototypes()) {
5384     bool IsBlock = false;
5385     for (const DeclaratorChunk &DeclType : D.type_objects()) {
5386       switch (DeclType.Kind) {
5387       case DeclaratorChunk::BlockPointer:
5388         IsBlock = true;
5389         break;
5390       case DeclaratorChunk::Function: {
5391         const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5392         // We suppress the warning when there's no LParen location, as this
5393         // indicates the declaration was an implicit declaration, which gets
5394         // warned about separately via -Wimplicit-function-declaration. We also
5395         // suppress the warning when we know the function has a prototype.
5396         if (!FTI.hasPrototype && FTI.NumParams == 0 && !FTI.isVariadic &&
5397             FTI.getLParenLoc().isValid())
5398           S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5399               << IsBlock
5400               << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5401         IsBlock = false;
5402         break;
5403       }
5404       default:
5405         break;
5406       }
5407     }
5408   }
5409 
5410   assert(!T.isNull() && "T must not be null after this point");
5411 
5412   if (LangOpts.CPlusPlus && T->isFunctionType()) {
5413     const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5414     assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
5415 
5416     // C++ 8.3.5p4:
5417     //   A cv-qualifier-seq shall only be part of the function type
5418     //   for a nonstatic member function, the function type to which a pointer
5419     //   to member refers, or the top-level function type of a function typedef
5420     //   declaration.
5421     //
5422     // Core issue 547 also allows cv-qualifiers on function types that are
5423     // top-level template type arguments.
5424     enum {
5425       NonMember,
5426       Member,
5427       ExplicitObjectMember,
5428       DeductionGuide
5429     } Kind = NonMember;
5430     if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5431       Kind = DeductionGuide;
5432     else if (!D.getCXXScopeSpec().isSet()) {
5433       if ((D.getContext() == DeclaratorContext::Member ||
5434            D.getContext() == DeclaratorContext::LambdaExpr) &&
5435           !D.getDeclSpec().isFriendSpecified())
5436         Kind = Member;
5437     } else {
5438       DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5439       if (!DC || DC->isRecord())
5440         Kind = Member;
5441     }
5442 
5443     if (Kind == Member) {
5444       unsigned I;
5445       if (D.isFunctionDeclarator(I)) {
5446         const DeclaratorChunk &Chunk = D.getTypeObject(I);
5447         if (Chunk.Fun.NumParams) {
5448           auto *P = dyn_cast_or_null<ParmVarDecl>(Chunk.Fun.Params->Param);
5449           if (P && P->isExplicitObjectParameter())
5450             Kind = ExplicitObjectMember;
5451         }
5452       }
5453     }
5454 
5455     // C++11 [dcl.fct]p6 (w/DR1417):
5456     // An attempt to specify a function type with a cv-qualifier-seq or a
5457     // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5458     //  - the function type for a non-static member function,
5459     //  - the function type to which a pointer to member refers,
5460     //  - the top-level function type of a function typedef declaration or
5461     //    alias-declaration,
5462     //  - the type-id in the default argument of a type-parameter, or
5463     //  - the type-id of a template-argument for a type-parameter
5464     //
5465     // C++23 [dcl.fct]p6 (P0847R7)
5466     // ... A member-declarator with an explicit-object-parameter-declaration
5467     // shall not include a ref-qualifier or a cv-qualifier-seq and shall not be
5468     // declared static or virtual ...
5469     //
5470     // FIXME: Checking this here is insufficient. We accept-invalid on:
5471     //
5472     //   template<typename T> struct S { void f(T); };
5473     //   S<int() const> s;
5474     //
5475     // ... for instance.
5476     if (IsQualifiedFunction &&
5477         // Check for non-static member function and not and
5478         // explicit-object-parameter-declaration
5479         (Kind != Member || D.isExplicitObjectMemberFunction() ||
5480          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
5481          (D.getContext() == clang::DeclaratorContext::Member &&
5482           D.isStaticMember())) &&
5483         !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5484         D.getContext() != DeclaratorContext::TemplateTypeArg) {
5485       SourceLocation Loc = D.getBeginLoc();
5486       SourceRange RemovalRange;
5487       unsigned I;
5488       if (D.isFunctionDeclarator(I)) {
5489         SmallVector<SourceLocation, 4> RemovalLocs;
5490         const DeclaratorChunk &Chunk = D.getTypeObject(I);
5491         assert(Chunk.Kind == DeclaratorChunk::Function);
5492 
5493         if (Chunk.Fun.hasRefQualifier())
5494           RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5495 
5496         if (Chunk.Fun.hasMethodTypeQualifiers())
5497           Chunk.Fun.MethodQualifiers->forEachQualifier(
5498               [&](DeclSpec::TQ TypeQual, StringRef QualName,
5499                   SourceLocation SL) { RemovalLocs.push_back(SL); });
5500 
5501         if (!RemovalLocs.empty()) {
5502           llvm::sort(RemovalLocs,
5503                      BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5504           RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5505           Loc = RemovalLocs.front();
5506         }
5507       }
5508 
5509       S.Diag(Loc, diag::err_invalid_qualified_function_type)
5510         << Kind << D.isFunctionDeclarator() << T
5511         << getFunctionQualifiersAsString(FnTy)
5512         << FixItHint::CreateRemoval(RemovalRange);
5513 
5514       // Strip the cv-qualifiers and ref-qualifiers from the type.
5515       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5516       EPI.TypeQuals.removeCVRQualifiers();
5517       EPI.RefQualifier = RQ_None;
5518 
5519       T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5520                                   EPI);
5521       // Rebuild any parens around the identifier in the function type.
5522       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5523         if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5524           break;
5525         T = S.BuildParenType(T);
5526       }
5527     }
5528   }
5529 
5530   // Apply any undistributed attributes from the declaration or declarator.
5531   ParsedAttributesView NonSlidingAttrs;
5532   for (ParsedAttr &AL : D.getDeclarationAttributes()) {
5533     if (!AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
5534       NonSlidingAttrs.addAtEnd(&AL);
5535     }
5536   }
5537   processTypeAttrs(state, T, TAL_DeclName, NonSlidingAttrs);
5538   processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5539 
5540   // Diagnose any ignored type attributes.
5541   state.diagnoseIgnoredTypeAttrs(T);
5542 
5543   // C++0x [dcl.constexpr]p9:
5544   //  A constexpr specifier used in an object declaration declares the object
5545   //  as const.
5546   if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
5547       T->isObjectType())
5548     T.addConst();
5549 
5550   // C++2a [dcl.fct]p4:
5551   //   A parameter with volatile-qualified type is deprecated
5552   if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
5553       (D.getContext() == DeclaratorContext::Prototype ||
5554        D.getContext() == DeclaratorContext::LambdaExprParameter))
5555     S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5556 
5557   // If there was an ellipsis in the declarator, the declaration declares a
5558   // parameter pack whose type may be a pack expansion type.
5559   if (D.hasEllipsis()) {
5560     // C++0x [dcl.fct]p13:
5561     //   A declarator-id or abstract-declarator containing an ellipsis shall
5562     //   only be used in a parameter-declaration. Such a parameter-declaration
5563     //   is a parameter pack (14.5.3). [...]
5564     switch (D.getContext()) {
5565     case DeclaratorContext::Prototype:
5566     case DeclaratorContext::LambdaExprParameter:
5567     case DeclaratorContext::RequiresExpr:
5568       // C++0x [dcl.fct]p13:
5569       //   [...] When it is part of a parameter-declaration-clause, the
5570       //   parameter pack is a function parameter pack (14.5.3). The type T
5571       //   of the declarator-id of the function parameter pack shall contain
5572       //   a template parameter pack; each template parameter pack in T is
5573       //   expanded by the function parameter pack.
5574       //
5575       // We represent function parameter packs as function parameters whose
5576       // type is a pack expansion.
5577       if (!T->containsUnexpandedParameterPack() &&
5578           (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5579         S.Diag(D.getEllipsisLoc(),
5580              diag::err_function_parameter_pack_without_parameter_packs)
5581           << T <<  D.getSourceRange();
5582         D.setEllipsisLoc(SourceLocation());
5583       } else {
5584         T = Context.getPackExpansionType(T, std::nullopt,
5585                                          /*ExpectPackInType=*/false);
5586       }
5587       break;
5588     case DeclaratorContext::TemplateParam:
5589       // C++0x [temp.param]p15:
5590       //   If a template-parameter is a [...] is a parameter-declaration that
5591       //   declares a parameter pack (8.3.5), then the template-parameter is a
5592       //   template parameter pack (14.5.3).
5593       //
5594       // Note: core issue 778 clarifies that, if there are any unexpanded
5595       // parameter packs in the type of the non-type template parameter, then
5596       // it expands those parameter packs.
5597       if (T->containsUnexpandedParameterPack())
5598         T = Context.getPackExpansionType(T, std::nullopt);
5599       else
5600         S.Diag(D.getEllipsisLoc(),
5601                LangOpts.CPlusPlus11
5602                  ? diag::warn_cxx98_compat_variadic_templates
5603                  : diag::ext_variadic_templates);
5604       break;
5605 
5606     case DeclaratorContext::File:
5607     case DeclaratorContext::KNRTypeList:
5608     case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5609     case DeclaratorContext::ObjCResult:    // FIXME: special diagnostic here?
5610     case DeclaratorContext::TypeName:
5611     case DeclaratorContext::FunctionalCast:
5612     case DeclaratorContext::CXXNew:
5613     case DeclaratorContext::AliasDecl:
5614     case DeclaratorContext::AliasTemplate:
5615     case DeclaratorContext::Member:
5616     case DeclaratorContext::Block:
5617     case DeclaratorContext::ForInit:
5618     case DeclaratorContext::SelectionInit:
5619     case DeclaratorContext::Condition:
5620     case DeclaratorContext::CXXCatch:
5621     case DeclaratorContext::ObjCCatch:
5622     case DeclaratorContext::BlockLiteral:
5623     case DeclaratorContext::LambdaExpr:
5624     case DeclaratorContext::ConversionId:
5625     case DeclaratorContext::TrailingReturn:
5626     case DeclaratorContext::TrailingReturnVar:
5627     case DeclaratorContext::TemplateArg:
5628     case DeclaratorContext::TemplateTypeArg:
5629     case DeclaratorContext::Association:
5630       // FIXME: We may want to allow parameter packs in block-literal contexts
5631       // in the future.
5632       S.Diag(D.getEllipsisLoc(),
5633              diag::err_ellipsis_in_declarator_not_parameter);
5634       D.setEllipsisLoc(SourceLocation());
5635       break;
5636     }
5637   }
5638 
5639   assert(!T.isNull() && "T must not be null at the end of this function");
5640   if (!AreDeclaratorChunksValid)
5641     return Context.getTrivialTypeSourceInfo(T);
5642   return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5643 }
5644 
GetTypeForDeclarator(Declarator & D)5645 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D) {
5646   // Determine the type of the declarator. Not all forms of declarator
5647   // have a type.
5648 
5649   TypeProcessingState state(*this, D);
5650 
5651   TypeSourceInfo *ReturnTypeInfo = nullptr;
5652   QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5653   if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5654     inferARCWriteback(state, T);
5655 
5656   return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5657 }
5658 
transferARCOwnershipToDeclSpec(Sema & S,QualType & declSpecTy,Qualifiers::ObjCLifetime ownership)5659 static void transferARCOwnershipToDeclSpec(Sema &S,
5660                                            QualType &declSpecTy,
5661                                            Qualifiers::ObjCLifetime ownership) {
5662   if (declSpecTy->isObjCRetainableType() &&
5663       declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5664     Qualifiers qs;
5665     qs.addObjCLifetime(ownership);
5666     declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5667   }
5668 }
5669 
transferARCOwnershipToDeclaratorChunk(TypeProcessingState & state,Qualifiers::ObjCLifetime ownership,unsigned chunkIndex)5670 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5671                                             Qualifiers::ObjCLifetime ownership,
5672                                             unsigned chunkIndex) {
5673   Sema &S = state.getSema();
5674   Declarator &D = state.getDeclarator();
5675 
5676   // Look for an explicit lifetime attribute.
5677   DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5678   if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5679     return;
5680 
5681   const char *attrStr = nullptr;
5682   switch (ownership) {
5683   case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
5684   case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5685   case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5686   case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5687   case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5688   }
5689 
5690   IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5691   Arg->Ident = &S.Context.Idents.get(attrStr);
5692   Arg->Loc = SourceLocation();
5693 
5694   ArgsUnion Args(Arg);
5695 
5696   // If there wasn't one, add one (with an invalid source location
5697   // so that we don't make an AttributedType for it).
5698   ParsedAttr *attr = D.getAttributePool().create(
5699       &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5700       /*scope*/ nullptr, SourceLocation(),
5701       /*args*/ &Args, 1, ParsedAttr::Form::GNU());
5702   chunk.getAttrs().addAtEnd(attr);
5703   // TODO: mark whether we did this inference?
5704 }
5705 
5706 /// Used for transferring ownership in casts resulting in l-values.
transferARCOwnership(TypeProcessingState & state,QualType & declSpecTy,Qualifiers::ObjCLifetime ownership)5707 static void transferARCOwnership(TypeProcessingState &state,
5708                                  QualType &declSpecTy,
5709                                  Qualifiers::ObjCLifetime ownership) {
5710   Sema &S = state.getSema();
5711   Declarator &D = state.getDeclarator();
5712 
5713   int inner = -1;
5714   bool hasIndirection = false;
5715   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5716     DeclaratorChunk &chunk = D.getTypeObject(i);
5717     switch (chunk.Kind) {
5718     case DeclaratorChunk::Paren:
5719       // Ignore parens.
5720       break;
5721 
5722     case DeclaratorChunk::Array:
5723     case DeclaratorChunk::Reference:
5724     case DeclaratorChunk::Pointer:
5725       if (inner != -1)
5726         hasIndirection = true;
5727       inner = i;
5728       break;
5729 
5730     case DeclaratorChunk::BlockPointer:
5731       if (inner != -1)
5732         transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5733       return;
5734 
5735     case DeclaratorChunk::Function:
5736     case DeclaratorChunk::MemberPointer:
5737     case DeclaratorChunk::Pipe:
5738       return;
5739     }
5740   }
5741 
5742   if (inner == -1)
5743     return;
5744 
5745   DeclaratorChunk &chunk = D.getTypeObject(inner);
5746   if (chunk.Kind == DeclaratorChunk::Pointer) {
5747     if (declSpecTy->isObjCRetainableType())
5748       return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5749     if (declSpecTy->isObjCObjectType() && hasIndirection)
5750       return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5751   } else {
5752     assert(chunk.Kind == DeclaratorChunk::Array ||
5753            chunk.Kind == DeclaratorChunk::Reference);
5754     return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5755   }
5756 }
5757 
GetTypeForDeclaratorCast(Declarator & D,QualType FromTy)5758 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5759   TypeProcessingState state(*this, D);
5760 
5761   TypeSourceInfo *ReturnTypeInfo = nullptr;
5762   QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5763 
5764   if (getLangOpts().ObjC) {
5765     Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5766     if (ownership != Qualifiers::OCL_None)
5767       transferARCOwnership(state, declSpecTy, ownership);
5768   }
5769 
5770   return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5771 }
5772 
fillAttributedTypeLoc(AttributedTypeLoc TL,TypeProcessingState & State)5773 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5774                                   TypeProcessingState &State) {
5775   TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5776 }
5777 
fillMatrixTypeLoc(MatrixTypeLoc MTL,const ParsedAttributesView & Attrs)5778 static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
5779                               const ParsedAttributesView &Attrs) {
5780   for (const ParsedAttr &AL : Attrs) {
5781     if (AL.getKind() == ParsedAttr::AT_MatrixType) {
5782       MTL.setAttrNameLoc(AL.getLoc());
5783       MTL.setAttrRowOperand(AL.getArgAsExpr(0));
5784       MTL.setAttrColumnOperand(AL.getArgAsExpr(1));
5785       MTL.setAttrOperandParensRange(SourceRange());
5786       return;
5787     }
5788   }
5789 
5790   llvm_unreachable("no matrix_type attribute found at the expected location!");
5791 }
5792 
5793 namespace {
5794   class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5795     Sema &SemaRef;
5796     ASTContext &Context;
5797     TypeProcessingState &State;
5798     const DeclSpec &DS;
5799 
5800   public:
TypeSpecLocFiller(Sema & S,ASTContext & Context,TypeProcessingState & State,const DeclSpec & DS)5801     TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5802                       const DeclSpec &DS)
5803         : SemaRef(S), Context(Context), State(State), DS(DS) {}
5804 
VisitAttributedTypeLoc(AttributedTypeLoc TL)5805     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5806       Visit(TL.getModifiedLoc());
5807       fillAttributedTypeLoc(TL, State);
5808     }
VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL)5809     void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
5810       Visit(TL.getWrappedLoc());
5811     }
VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL)5812     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5813       Visit(TL.getInnerLoc());
5814       TL.setExpansionLoc(
5815           State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5816     }
VisitQualifiedTypeLoc(QualifiedTypeLoc TL)5817     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5818       Visit(TL.getUnqualifiedLoc());
5819     }
5820     // Allow to fill pointee's type locations, e.g.,
5821     //   int __attr * __attr * __attr *p;
VisitPointerTypeLoc(PointerTypeLoc TL)5822     void VisitPointerTypeLoc(PointerTypeLoc TL) { Visit(TL.getNextTypeLoc()); }
VisitTypedefTypeLoc(TypedefTypeLoc TL)5823     void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5824       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5825     }
VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL)5826     void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5827       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5828       // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5829       // addition field. What we have is good enough for display of location
5830       // of 'fixit' on interface name.
5831       TL.setNameEndLoc(DS.getEndLoc());
5832     }
VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL)5833     void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5834       TypeSourceInfo *RepTInfo = nullptr;
5835       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5836       TL.copy(RepTInfo->getTypeLoc());
5837     }
VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL)5838     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5839       TypeSourceInfo *RepTInfo = nullptr;
5840       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5841       TL.copy(RepTInfo->getTypeLoc());
5842     }
VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL)5843     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5844       TypeSourceInfo *TInfo = nullptr;
5845       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5846 
5847       // If we got no declarator info from previous Sema routines,
5848       // just fill with the typespec loc.
5849       if (!TInfo) {
5850         TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5851         return;
5852       }
5853 
5854       TypeLoc OldTL = TInfo->getTypeLoc();
5855       if (TInfo->getType()->getAs<ElaboratedType>()) {
5856         ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5857         TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5858             .castAs<TemplateSpecializationTypeLoc>();
5859         TL.copy(NamedTL);
5860       } else {
5861         TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5862         assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
5863       }
5864 
5865     }
VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL)5866     void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5867       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
5868              DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr);
5869       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5870       TL.setParensRange(DS.getTypeofParensRange());
5871     }
VisitTypeOfTypeLoc(TypeOfTypeLoc TL)5872     void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5873       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
5874              DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType);
5875       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5876       TL.setParensRange(DS.getTypeofParensRange());
5877       assert(DS.getRepAsType());
5878       TypeSourceInfo *TInfo = nullptr;
5879       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5880       TL.setUnmodifiedTInfo(TInfo);
5881     }
VisitDecltypeTypeLoc(DecltypeTypeLoc TL)5882     void VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
5883       assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
5884       TL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
5885       TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
5886     }
VisitPackIndexingTypeLoc(PackIndexingTypeLoc TL)5887     void VisitPackIndexingTypeLoc(PackIndexingTypeLoc TL) {
5888       assert(DS.getTypeSpecType() == DeclSpec::TST_typename_pack_indexing);
5889       TL.setEllipsisLoc(DS.getEllipsisLoc());
5890     }
VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL)5891     void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5892       assert(DS.isTransformTypeTrait(DS.getTypeSpecType()));
5893       TL.setKWLoc(DS.getTypeSpecTypeLoc());
5894       TL.setParensRange(DS.getTypeofParensRange());
5895       assert(DS.getRepAsType());
5896       TypeSourceInfo *TInfo = nullptr;
5897       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5898       TL.setUnderlyingTInfo(TInfo);
5899     }
VisitBuiltinTypeLoc(BuiltinTypeLoc TL)5900     void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5901       // By default, use the source location of the type specifier.
5902       TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5903       if (TL.needsExtraLocalData()) {
5904         // Set info for the written builtin specifiers.
5905         TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5906         // Try to have a meaningful source location.
5907         if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
5908           TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5909         if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
5910           TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5911       }
5912     }
VisitElaboratedTypeLoc(ElaboratedTypeLoc TL)5913     void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5914       if (DS.getTypeSpecType() == TST_typename) {
5915         TypeSourceInfo *TInfo = nullptr;
5916         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5917         if (TInfo)
5918           if (auto ETL = TInfo->getTypeLoc().getAs<ElaboratedTypeLoc>()) {
5919             TL.copy(ETL);
5920             return;
5921           }
5922       }
5923       const ElaboratedType *T = TL.getTypePtr();
5924       TL.setElaboratedKeywordLoc(T->getKeyword() != ElaboratedTypeKeyword::None
5925                                      ? DS.getTypeSpecTypeLoc()
5926                                      : SourceLocation());
5927       const CXXScopeSpec& SS = DS.getTypeSpecScope();
5928       TL.setQualifierLoc(SS.getWithLocInContext(Context));
5929       Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5930     }
VisitDependentNameTypeLoc(DependentNameTypeLoc TL)5931     void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5932       assert(DS.getTypeSpecType() == TST_typename);
5933       TypeSourceInfo *TInfo = nullptr;
5934       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5935       assert(TInfo);
5936       TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
5937     }
VisitDependentTemplateSpecializationTypeLoc(DependentTemplateSpecializationTypeLoc TL)5938     void VisitDependentTemplateSpecializationTypeLoc(
5939                                  DependentTemplateSpecializationTypeLoc TL) {
5940       assert(DS.getTypeSpecType() == TST_typename);
5941       TypeSourceInfo *TInfo = nullptr;
5942       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5943       assert(TInfo);
5944       TL.copy(
5945           TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
5946     }
VisitAutoTypeLoc(AutoTypeLoc TL)5947     void VisitAutoTypeLoc(AutoTypeLoc TL) {
5948       assert(DS.getTypeSpecType() == TST_auto ||
5949              DS.getTypeSpecType() == TST_decltype_auto ||
5950              DS.getTypeSpecType() == TST_auto_type ||
5951              DS.getTypeSpecType() == TST_unspecified);
5952       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5953       if (DS.getTypeSpecType() == TST_decltype_auto)
5954         TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
5955       if (!DS.isConstrainedAuto())
5956         return;
5957       TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
5958       if (!TemplateId)
5959         return;
5960 
5961       NestedNameSpecifierLoc NNS =
5962           (DS.getTypeSpecScope().isNotEmpty()
5963                ? DS.getTypeSpecScope().getWithLocInContext(Context)
5964                : NestedNameSpecifierLoc());
5965       TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
5966                                                 TemplateId->RAngleLoc);
5967       if (TemplateId->NumArgs > 0) {
5968         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5969                                            TemplateId->NumArgs);
5970         SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
5971       }
5972       DeclarationNameInfo DNI = DeclarationNameInfo(
5973           TL.getTypePtr()->getTypeConstraintConcept()->getDeclName(),
5974           TemplateId->TemplateNameLoc);
5975 
5976       NamedDecl *FoundDecl;
5977       if (auto TN = TemplateId->Template.get();
5978           UsingShadowDecl *USD = TN.getAsUsingShadowDecl())
5979         FoundDecl = cast<NamedDecl>(USD);
5980       else
5981         FoundDecl = cast_if_present<NamedDecl>(TN.getAsTemplateDecl());
5982 
5983       auto *CR = ConceptReference::Create(
5984           Context, NNS, TemplateId->TemplateKWLoc, DNI, FoundDecl,
5985           /*NamedDecl=*/TL.getTypePtr()->getTypeConstraintConcept(),
5986           ASTTemplateArgumentListInfo::Create(Context, TemplateArgsInfo));
5987       TL.setConceptReference(CR);
5988     }
VisitTagTypeLoc(TagTypeLoc TL)5989     void VisitTagTypeLoc(TagTypeLoc TL) {
5990       TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
5991     }
VisitAtomicTypeLoc(AtomicTypeLoc TL)5992     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
5993       // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
5994       // or an _Atomic qualifier.
5995       if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
5996         TL.setKWLoc(DS.getTypeSpecTypeLoc());
5997         TL.setParensRange(DS.getTypeofParensRange());
5998 
5999         TypeSourceInfo *TInfo = nullptr;
6000         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6001         assert(TInfo);
6002         TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6003       } else {
6004         TL.setKWLoc(DS.getAtomicSpecLoc());
6005         // No parens, to indicate this was spelled as an _Atomic qualifier.
6006         TL.setParensRange(SourceRange());
6007         Visit(TL.getValueLoc());
6008       }
6009     }
6010 
VisitPipeTypeLoc(PipeTypeLoc TL)6011     void VisitPipeTypeLoc(PipeTypeLoc TL) {
6012       TL.setKWLoc(DS.getTypeSpecTypeLoc());
6013 
6014       TypeSourceInfo *TInfo = nullptr;
6015       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6016       TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6017     }
6018 
VisitExtIntTypeLoc(BitIntTypeLoc TL)6019     void VisitExtIntTypeLoc(BitIntTypeLoc TL) {
6020       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6021     }
6022 
VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL)6023     void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL) {
6024       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6025     }
6026 
VisitTypeLoc(TypeLoc TL)6027     void VisitTypeLoc(TypeLoc TL) {
6028       // FIXME: add other typespec types and change this to an assert.
6029       TL.initialize(Context, DS.getTypeSpecTypeLoc());
6030     }
6031   };
6032 
6033   class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6034     ASTContext &Context;
6035     TypeProcessingState &State;
6036     const DeclaratorChunk &Chunk;
6037 
6038   public:
DeclaratorLocFiller(ASTContext & Context,TypeProcessingState & State,const DeclaratorChunk & Chunk)6039     DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6040                         const DeclaratorChunk &Chunk)
6041         : Context(Context), State(State), Chunk(Chunk) {}
6042 
VisitQualifiedTypeLoc(QualifiedTypeLoc TL)6043     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6044       llvm_unreachable("qualified type locs not expected here!");
6045     }
VisitDecayedTypeLoc(DecayedTypeLoc TL)6046     void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6047       llvm_unreachable("decayed type locs not expected here!");
6048     }
VisitArrayParameterTypeLoc(ArrayParameterTypeLoc TL)6049     void VisitArrayParameterTypeLoc(ArrayParameterTypeLoc TL) {
6050       llvm_unreachable("array parameter type locs not expected here!");
6051     }
6052 
VisitAttributedTypeLoc(AttributedTypeLoc TL)6053     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6054       fillAttributedTypeLoc(TL, State);
6055     }
VisitCountAttributedTypeLoc(CountAttributedTypeLoc TL)6056     void VisitCountAttributedTypeLoc(CountAttributedTypeLoc TL) {
6057       // nothing
6058     }
VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL)6059     void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
6060       // nothing
6061     }
VisitAdjustedTypeLoc(AdjustedTypeLoc TL)6062     void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6063       // nothing
6064     }
VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL)6065     void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6066       assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
6067       TL.setCaretLoc(Chunk.Loc);
6068     }
VisitPointerTypeLoc(PointerTypeLoc TL)6069     void VisitPointerTypeLoc(PointerTypeLoc TL) {
6070       assert(Chunk.Kind == DeclaratorChunk::Pointer);
6071       TL.setStarLoc(Chunk.Loc);
6072     }
VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL)6073     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6074       assert(Chunk.Kind == DeclaratorChunk::Pointer);
6075       TL.setStarLoc(Chunk.Loc);
6076     }
VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL)6077     void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6078       assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
6079       const CXXScopeSpec& SS = Chunk.Mem.Scope();
6080       NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6081 
6082       const Type* ClsTy = TL.getClass();
6083       QualType ClsQT = QualType(ClsTy, 0);
6084       TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
6085       // Now copy source location info into the type loc component.
6086       TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6087       switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6088       case NestedNameSpecifier::Identifier:
6089         assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
6090         {
6091           DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6092           DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6093           DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6094           DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6095         }
6096         break;
6097 
6098       case NestedNameSpecifier::TypeSpec:
6099       case NestedNameSpecifier::TypeSpecWithTemplate:
6100         if (isa<ElaboratedType>(ClsTy)) {
6101           ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6102           ETLoc.setElaboratedKeywordLoc(SourceLocation());
6103           ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6104           TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6105           NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
6106         } else {
6107           ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
6108         }
6109         break;
6110 
6111       case NestedNameSpecifier::Namespace:
6112       case NestedNameSpecifier::NamespaceAlias:
6113       case NestedNameSpecifier::Global:
6114       case NestedNameSpecifier::Super:
6115         llvm_unreachable("Nested-name-specifier must name a type");
6116       }
6117 
6118       // Finally fill in MemberPointerLocInfo fields.
6119       TL.setStarLoc(Chunk.Mem.StarLoc);
6120       TL.setClassTInfo(ClsTInfo);
6121     }
VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL)6122     void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6123       assert(Chunk.Kind == DeclaratorChunk::Reference);
6124       // 'Amp' is misleading: this might have been originally
6125       /// spelled with AmpAmp.
6126       TL.setAmpLoc(Chunk.Loc);
6127     }
VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL)6128     void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6129       assert(Chunk.Kind == DeclaratorChunk::Reference);
6130       assert(!Chunk.Ref.LValueRef);
6131       TL.setAmpAmpLoc(Chunk.Loc);
6132     }
VisitArrayTypeLoc(ArrayTypeLoc TL)6133     void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6134       assert(Chunk.Kind == DeclaratorChunk::Array);
6135       TL.setLBracketLoc(Chunk.Loc);
6136       TL.setRBracketLoc(Chunk.EndLoc);
6137       TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6138     }
VisitFunctionTypeLoc(FunctionTypeLoc TL)6139     void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6140       assert(Chunk.Kind == DeclaratorChunk::Function);
6141       TL.setLocalRangeBegin(Chunk.Loc);
6142       TL.setLocalRangeEnd(Chunk.EndLoc);
6143 
6144       const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6145       TL.setLParenLoc(FTI.getLParenLoc());
6146       TL.setRParenLoc(FTI.getRParenLoc());
6147       for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6148         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
6149         TL.setParam(tpi++, Param);
6150       }
6151       TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6152     }
VisitParenTypeLoc(ParenTypeLoc TL)6153     void VisitParenTypeLoc(ParenTypeLoc TL) {
6154       assert(Chunk.Kind == DeclaratorChunk::Paren);
6155       TL.setLParenLoc(Chunk.Loc);
6156       TL.setRParenLoc(Chunk.EndLoc);
6157     }
VisitPipeTypeLoc(PipeTypeLoc TL)6158     void VisitPipeTypeLoc(PipeTypeLoc TL) {
6159       assert(Chunk.Kind == DeclaratorChunk::Pipe);
6160       TL.setKWLoc(Chunk.Loc);
6161     }
VisitBitIntTypeLoc(BitIntTypeLoc TL)6162     void VisitBitIntTypeLoc(BitIntTypeLoc TL) {
6163       TL.setNameLoc(Chunk.Loc);
6164     }
VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL)6165     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6166       TL.setExpansionLoc(Chunk.Loc);
6167     }
VisitVectorTypeLoc(VectorTypeLoc TL)6168     void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); }
VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL)6169     void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) {
6170       TL.setNameLoc(Chunk.Loc);
6171     }
VisitExtVectorTypeLoc(ExtVectorTypeLoc TL)6172     void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
6173       TL.setNameLoc(Chunk.Loc);
6174     }
6175     void
VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL)6176     VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) {
6177       TL.setNameLoc(Chunk.Loc);
6178     }
VisitMatrixTypeLoc(MatrixTypeLoc TL)6179     void VisitMatrixTypeLoc(MatrixTypeLoc TL) {
6180       fillMatrixTypeLoc(TL, Chunk.getAttrs());
6181     }
6182 
VisitTypeLoc(TypeLoc TL)6183     void VisitTypeLoc(TypeLoc TL) {
6184       llvm_unreachable("unsupported TypeLoc kind in declarator!");
6185     }
6186   };
6187 } // end anonymous namespace
6188 
fillAtomicQualLoc(AtomicTypeLoc ATL,const DeclaratorChunk & Chunk)6189 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
6190   SourceLocation Loc;
6191   switch (Chunk.Kind) {
6192   case DeclaratorChunk::Function:
6193   case DeclaratorChunk::Array:
6194   case DeclaratorChunk::Paren:
6195   case DeclaratorChunk::Pipe:
6196     llvm_unreachable("cannot be _Atomic qualified");
6197 
6198   case DeclaratorChunk::Pointer:
6199     Loc = Chunk.Ptr.AtomicQualLoc;
6200     break;
6201 
6202   case DeclaratorChunk::BlockPointer:
6203   case DeclaratorChunk::Reference:
6204   case DeclaratorChunk::MemberPointer:
6205     // FIXME: Provide a source location for the _Atomic keyword.
6206     break;
6207   }
6208 
6209   ATL.setKWLoc(Loc);
6210   ATL.setParensRange(SourceRange());
6211 }
6212 
6213 static void
fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,const ParsedAttributesView & Attrs)6214 fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6215                                  const ParsedAttributesView &Attrs) {
6216   for (const ParsedAttr &AL : Attrs) {
6217     if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6218       DASTL.setAttrNameLoc(AL.getLoc());
6219       DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
6220       DASTL.setAttrOperandParensRange(SourceRange());
6221       return;
6222     }
6223   }
6224 
6225   llvm_unreachable(
6226       "no address_space attribute found at the expected location!");
6227 }
6228 
6229 /// Create and instantiate a TypeSourceInfo with type source information.
6230 ///
6231 /// \param T QualType referring to the type as written in source code.
6232 ///
6233 /// \param ReturnTypeInfo For declarators whose return type does not show
6234 /// up in the normal place in the declaration specifiers (such as a C++
6235 /// conversion function), this pointer will refer to a type source information
6236 /// for that return type.
6237 static TypeSourceInfo *
GetTypeSourceInfoForDeclarator(TypeProcessingState & State,QualType T,TypeSourceInfo * ReturnTypeInfo)6238 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6239                                QualType T, TypeSourceInfo *ReturnTypeInfo) {
6240   Sema &S = State.getSema();
6241   Declarator &D = State.getDeclarator();
6242 
6243   TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6244   UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6245 
6246   // Handle parameter packs whose type is a pack expansion.
6247   if (isa<PackExpansionType>(T)) {
6248     CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6249     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6250   }
6251 
6252   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
6253     // Microsoft property fields can have multiple sizeless array chunks
6254     // (i.e. int x[][][]). Don't create more than one level of incomplete array.
6255     if (CurrTL.getTypeLocClass() == TypeLoc::IncompleteArray && e != 1 &&
6256         D.getDeclSpec().getAttributes().hasMSPropertyAttr())
6257       continue;
6258 
6259     // An AtomicTypeLoc might be produced by an atomic qualifier in this
6260     // declarator chunk.
6261     if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6262       fillAtomicQualLoc(ATL, D.getTypeObject(i));
6263       CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6264     }
6265 
6266     bool HasDesugaredTypeLoc = true;
6267     while (HasDesugaredTypeLoc) {
6268       switch (CurrTL.getTypeLocClass()) {
6269       case TypeLoc::MacroQualified: {
6270         auto TL = CurrTL.castAs<MacroQualifiedTypeLoc>();
6271         TL.setExpansionLoc(
6272             State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6273         CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6274         break;
6275       }
6276 
6277       case TypeLoc::Attributed: {
6278         auto TL = CurrTL.castAs<AttributedTypeLoc>();
6279         fillAttributedTypeLoc(TL, State);
6280         CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6281         break;
6282       }
6283 
6284       case TypeLoc::Adjusted:
6285       case TypeLoc::BTFTagAttributed: {
6286         CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6287         break;
6288       }
6289 
6290       case TypeLoc::DependentAddressSpace: {
6291         auto TL = CurrTL.castAs<DependentAddressSpaceTypeLoc>();
6292         fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
6293         CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6294         break;
6295       }
6296 
6297       default:
6298         HasDesugaredTypeLoc = false;
6299         break;
6300       }
6301     }
6302 
6303     DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
6304     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6305   }
6306 
6307   // If we have different source information for the return type, use
6308   // that.  This really only applies to C++ conversion functions.
6309   if (ReturnTypeInfo) {
6310     TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6311     assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
6312     memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
6313   } else {
6314     TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
6315   }
6316 
6317   return TInfo;
6318 }
6319 
6320 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
CreateParsedType(QualType T,TypeSourceInfo * TInfo)6321 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6322   // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6323   // and Sema during declaration parsing. Try deallocating/caching them when
6324   // it's appropriate, instead of allocating them and keeping them around.
6325   LocInfoType *LocT = (LocInfoType *)BumpAlloc.Allocate(sizeof(LocInfoType),
6326                                                         alignof(LocInfoType));
6327   new (LocT) LocInfoType(T, TInfo);
6328   assert(LocT->getTypeClass() != T->getTypeClass() &&
6329          "LocInfoType's TypeClass conflicts with an existing Type class");
6330   return ParsedType::make(QualType(LocT, 0));
6331 }
6332 
getAsStringInternal(std::string & Str,const PrintingPolicy & Policy) const6333 void LocInfoType::getAsStringInternal(std::string &Str,
6334                                       const PrintingPolicy &Policy) const {
6335   llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
6336          " was used directly instead of getting the QualType through"
6337          " GetTypeFromParser");
6338 }
6339 
ActOnTypeName(Declarator & D)6340 TypeResult Sema::ActOnTypeName(Declarator &D) {
6341   // C99 6.7.6: Type names have no identifier.  This is already validated by
6342   // the parser.
6343   assert(D.getIdentifier() == nullptr &&
6344          "Type name should have no identifier!");
6345 
6346   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
6347   QualType T = TInfo->getType();
6348   if (D.isInvalidType())
6349     return true;
6350 
6351   // Make sure there are no unused decl attributes on the declarator.
6352   // We don't want to do this for ObjC parameters because we're going
6353   // to apply them to the actual parameter declaration.
6354   // Likewise, we don't want to do this for alias declarations, because
6355   // we are actually going to build a declaration from this eventually.
6356   if (D.getContext() != DeclaratorContext::ObjCParameter &&
6357       D.getContext() != DeclaratorContext::AliasDecl &&
6358       D.getContext() != DeclaratorContext::AliasTemplate)
6359     checkUnusedDeclAttributes(D);
6360 
6361   if (getLangOpts().CPlusPlus) {
6362     // Check that there are no default arguments (C++ only).
6363     CheckExtraCXXDefaultArguments(D);
6364   }
6365 
6366   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) {
6367     const AutoType *AT = TL.getTypePtr();
6368     CheckConstrainedAuto(AT, TL.getConceptNameLoc());
6369   }
6370   return CreateParsedType(T, TInfo);
6371 }
6372 
6373 //===----------------------------------------------------------------------===//
6374 // Type Attribute Processing
6375 //===----------------------------------------------------------------------===//
6376 
6377 /// Build an AddressSpace index from a constant expression and diagnose any
6378 /// errors related to invalid address_spaces. Returns true on successfully
6379 /// building an AddressSpace index.
BuildAddressSpaceIndex(Sema & S,LangAS & ASIdx,const Expr * AddrSpace,SourceLocation AttrLoc)6380 static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6381                                    const Expr *AddrSpace,
6382                                    SourceLocation AttrLoc) {
6383   if (!AddrSpace->isValueDependent()) {
6384     std::optional<llvm::APSInt> OptAddrSpace =
6385         AddrSpace->getIntegerConstantExpr(S.Context);
6386     if (!OptAddrSpace) {
6387       S.Diag(AttrLoc, diag::err_attribute_argument_type)
6388           << "'address_space'" << AANT_ArgumentIntegerConstant
6389           << AddrSpace->getSourceRange();
6390       return false;
6391     }
6392     llvm::APSInt &addrSpace = *OptAddrSpace;
6393 
6394     // Bounds checking.
6395     if (addrSpace.isSigned()) {
6396       if (addrSpace.isNegative()) {
6397         S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6398             << AddrSpace->getSourceRange();
6399         return false;
6400       }
6401       addrSpace.setIsSigned(false);
6402     }
6403 
6404     llvm::APSInt max(addrSpace.getBitWidth());
6405     max =
6406         Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6407 
6408     if (addrSpace > max) {
6409       S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6410           << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6411       return false;
6412     }
6413 
6414     ASIdx =
6415         getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6416     return true;
6417   }
6418 
6419   // Default value for DependentAddressSpaceTypes
6420   ASIdx = LangAS::Default;
6421   return true;
6422 }
6423 
BuildAddressSpaceAttr(QualType & T,LangAS ASIdx,Expr * AddrSpace,SourceLocation AttrLoc)6424 QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6425                                      SourceLocation AttrLoc) {
6426   if (!AddrSpace->isValueDependent()) {
6427     if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6428                                             AttrLoc))
6429       return QualType();
6430 
6431     return Context.getAddrSpaceQualType(T, ASIdx);
6432   }
6433 
6434   // A check with similar intentions as checking if a type already has an
6435   // address space except for on a dependent types, basically if the
6436   // current type is already a DependentAddressSpaceType then its already
6437   // lined up to have another address space on it and we can't have
6438   // multiple address spaces on the one pointer indirection
6439   if (T->getAs<DependentAddressSpaceType>()) {
6440     Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6441     return QualType();
6442   }
6443 
6444   return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6445 }
6446 
BuildAddressSpaceAttr(QualType & T,Expr * AddrSpace,SourceLocation AttrLoc)6447 QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6448                                      SourceLocation AttrLoc) {
6449   LangAS ASIdx;
6450   if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6451     return QualType();
6452   return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6453 }
6454 
HandleBTFTypeTagAttribute(QualType & Type,const ParsedAttr & Attr,TypeProcessingState & State)6455 static void HandleBTFTypeTagAttribute(QualType &Type, const ParsedAttr &Attr,
6456                                       TypeProcessingState &State) {
6457   Sema &S = State.getSema();
6458 
6459   // Check the number of attribute arguments.
6460   if (Attr.getNumArgs() != 1) {
6461     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6462         << Attr << 1;
6463     Attr.setInvalid();
6464     return;
6465   }
6466 
6467   // Ensure the argument is a string.
6468   auto *StrLiteral = dyn_cast<StringLiteral>(Attr.getArgAsExpr(0));
6469   if (!StrLiteral) {
6470     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6471         << Attr << AANT_ArgumentString;
6472     Attr.setInvalid();
6473     return;
6474   }
6475 
6476   ASTContext &Ctx = S.Context;
6477   StringRef BTFTypeTag = StrLiteral->getString();
6478   Type = State.getBTFTagAttributedType(
6479       ::new (Ctx) BTFTypeTagAttr(Ctx, Attr, BTFTypeTag), Type);
6480 }
6481 
6482 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6483 /// specified type.  The attribute contains 1 argument, the id of the address
6484 /// space for the type.
HandleAddressSpaceTypeAttribute(QualType & Type,const ParsedAttr & Attr,TypeProcessingState & State)6485 static void HandleAddressSpaceTypeAttribute(QualType &Type,
6486                                             const ParsedAttr &Attr,
6487                                             TypeProcessingState &State) {
6488   Sema &S = State.getSema();
6489 
6490   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6491   // qualified by an address-space qualifier."
6492   if (Type->isFunctionType()) {
6493     S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6494     Attr.setInvalid();
6495     return;
6496   }
6497 
6498   LangAS ASIdx;
6499   if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6500 
6501     // Check the attribute arguments.
6502     if (Attr.getNumArgs() != 1) {
6503       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6504                                                                         << 1;
6505       Attr.setInvalid();
6506       return;
6507     }
6508 
6509     Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6510     LangAS ASIdx;
6511     if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6512       Attr.setInvalid();
6513       return;
6514     }
6515 
6516     ASTContext &Ctx = S.Context;
6517     auto *ASAttr =
6518         ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6519 
6520     // If the expression is not value dependent (not templated), then we can
6521     // apply the address space qualifiers just to the equivalent type.
6522     // Otherwise, we make an AttributedType with the modified and equivalent
6523     // type the same, and wrap it in a DependentAddressSpaceType. When this
6524     // dependent type is resolved, the qualifier is added to the equivalent type
6525     // later.
6526     QualType T;
6527     if (!ASArgExpr->isValueDependent()) {
6528       QualType EquivType =
6529           S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6530       if (EquivType.isNull()) {
6531         Attr.setInvalid();
6532         return;
6533       }
6534       T = State.getAttributedType(ASAttr, Type, EquivType);
6535     } else {
6536       T = State.getAttributedType(ASAttr, Type, Type);
6537       T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6538     }
6539 
6540     if (!T.isNull())
6541       Type = T;
6542     else
6543       Attr.setInvalid();
6544   } else {
6545     // The keyword-based type attributes imply which address space to use.
6546     ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS()
6547                                          : Attr.asOpenCLLangAS();
6548     if (S.getLangOpts().HLSL)
6549       ASIdx = Attr.asHLSLLangAS();
6550 
6551     if (ASIdx == LangAS::Default)
6552       llvm_unreachable("Invalid address space");
6553 
6554     if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6555                                             Attr.getLoc())) {
6556       Attr.setInvalid();
6557       return;
6558     }
6559 
6560     Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6561   }
6562 }
6563 
6564 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
6565 /// attribute on the specified type.
6566 ///
6567 /// Returns 'true' if the attribute was handled.
handleObjCOwnershipTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType & type)6568 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6569                                         ParsedAttr &attr, QualType &type) {
6570   bool NonObjCPointer = false;
6571 
6572   if (!type->isDependentType() && !type->isUndeducedType()) {
6573     if (const PointerType *ptr = type->getAs<PointerType>()) {
6574       QualType pointee = ptr->getPointeeType();
6575       if (pointee->isObjCRetainableType() || pointee->isPointerType())
6576         return false;
6577       // It is important not to lose the source info that there was an attribute
6578       // applied to non-objc pointer. We will create an attributed type but
6579       // its type will be the same as the original type.
6580       NonObjCPointer = true;
6581     } else if (!type->isObjCRetainableType()) {
6582       return false;
6583     }
6584 
6585     // Don't accept an ownership attribute in the declspec if it would
6586     // just be the return type of a block pointer.
6587     if (state.isProcessingDeclSpec()) {
6588       Declarator &D = state.getDeclarator();
6589       if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6590                                   /*onlyBlockPointers=*/true))
6591         return false;
6592     }
6593   }
6594 
6595   Sema &S = state.getSema();
6596   SourceLocation AttrLoc = attr.getLoc();
6597   if (AttrLoc.isMacroID())
6598     AttrLoc =
6599         S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6600 
6601   if (!attr.isArgIdent(0)) {
6602     S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6603                                                        << AANT_ArgumentString;
6604     attr.setInvalid();
6605     return true;
6606   }
6607 
6608   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6609   Qualifiers::ObjCLifetime lifetime;
6610   if (II->isStr("none"))
6611     lifetime = Qualifiers::OCL_ExplicitNone;
6612   else if (II->isStr("strong"))
6613     lifetime = Qualifiers::OCL_Strong;
6614   else if (II->isStr("weak"))
6615     lifetime = Qualifiers::OCL_Weak;
6616   else if (II->isStr("autoreleasing"))
6617     lifetime = Qualifiers::OCL_Autoreleasing;
6618   else {
6619     S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6620     attr.setInvalid();
6621     return true;
6622   }
6623 
6624   // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6625   // outside of ARC mode.
6626   if (!S.getLangOpts().ObjCAutoRefCount &&
6627       lifetime != Qualifiers::OCL_Weak &&
6628       lifetime != Qualifiers::OCL_ExplicitNone) {
6629     return true;
6630   }
6631 
6632   SplitQualType underlyingType = type.split();
6633 
6634   // Check for redundant/conflicting ownership qualifiers.
6635   if (Qualifiers::ObjCLifetime previousLifetime
6636         = type.getQualifiers().getObjCLifetime()) {
6637     // If it's written directly, that's an error.
6638     if (S.Context.hasDirectOwnershipQualifier(type)) {
6639       S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6640         << type;
6641       return true;
6642     }
6643 
6644     // Otherwise, if the qualifiers actually conflict, pull sugar off
6645     // and remove the ObjCLifetime qualifiers.
6646     if (previousLifetime != lifetime) {
6647       // It's possible to have multiple local ObjCLifetime qualifiers. We
6648       // can't stop after we reach a type that is directly qualified.
6649       const Type *prevTy = nullptr;
6650       while (!prevTy || prevTy != underlyingType.Ty) {
6651         prevTy = underlyingType.Ty;
6652         underlyingType = underlyingType.getSingleStepDesugaredType();
6653       }
6654       underlyingType.Quals.removeObjCLifetime();
6655     }
6656   }
6657 
6658   underlyingType.Quals.addObjCLifetime(lifetime);
6659 
6660   if (NonObjCPointer) {
6661     StringRef name = attr.getAttrName()->getName();
6662     switch (lifetime) {
6663     case Qualifiers::OCL_None:
6664     case Qualifiers::OCL_ExplicitNone:
6665       break;
6666     case Qualifiers::OCL_Strong: name = "__strong"; break;
6667     case Qualifiers::OCL_Weak: name = "__weak"; break;
6668     case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6669     }
6670     S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6671       << TDS_ObjCObjOrBlock << type;
6672   }
6673 
6674   // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6675   // because having both 'T' and '__unsafe_unretained T' exist in the type
6676   // system causes unfortunate widespread consistency problems.  (For example,
6677   // they're not considered compatible types, and we mangle them identicially
6678   // as template arguments.)  These problems are all individually fixable,
6679   // but it's easier to just not add the qualifier and instead sniff it out
6680   // in specific places using isObjCInertUnsafeUnretainedType().
6681   //
6682   // Doing this does means we miss some trivial consistency checks that
6683   // would've triggered in ARC, but that's better than trying to solve all
6684   // the coexistence problems with __unsafe_unretained.
6685   if (!S.getLangOpts().ObjCAutoRefCount &&
6686       lifetime == Qualifiers::OCL_ExplicitNone) {
6687     type = state.getAttributedType(
6688         createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6689         type, type);
6690     return true;
6691   }
6692 
6693   QualType origType = type;
6694   if (!NonObjCPointer)
6695     type = S.Context.getQualifiedType(underlyingType);
6696 
6697   // If we have a valid source location for the attribute, use an
6698   // AttributedType instead.
6699   if (AttrLoc.isValid()) {
6700     type = state.getAttributedType(::new (S.Context)
6701                                        ObjCOwnershipAttr(S.Context, attr, II),
6702                                    origType, type);
6703   }
6704 
6705   auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6706                             unsigned diagnostic, QualType type) {
6707     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6708       S.DelayedDiagnostics.add(
6709           sema::DelayedDiagnostic::makeForbiddenType(
6710               S.getSourceManager().getExpansionLoc(loc),
6711               diagnostic, type, /*ignored*/ 0));
6712     } else {
6713       S.Diag(loc, diagnostic);
6714     }
6715   };
6716 
6717   // Sometimes, __weak isn't allowed.
6718   if (lifetime == Qualifiers::OCL_Weak &&
6719       !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6720 
6721     // Use a specialized diagnostic if the runtime just doesn't support them.
6722     unsigned diagnostic =
6723       (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6724                                        : diag::err_arc_weak_no_runtime);
6725 
6726     // In any case, delay the diagnostic until we know what we're parsing.
6727     diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6728 
6729     attr.setInvalid();
6730     return true;
6731   }
6732 
6733   // Forbid __weak for class objects marked as
6734   // objc_arc_weak_reference_unavailable
6735   if (lifetime == Qualifiers::OCL_Weak) {
6736     if (const ObjCObjectPointerType *ObjT =
6737           type->getAs<ObjCObjectPointerType>()) {
6738       if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6739         if (Class->isArcWeakrefUnavailable()) {
6740           S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6741           S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6742                  diag::note_class_declared);
6743         }
6744       }
6745     }
6746   }
6747 
6748   return true;
6749 }
6750 
6751 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6752 /// attribute on the specified type.  Returns true to indicate that
6753 /// the attribute was handled, false to indicate that the type does
6754 /// not permit the attribute.
handleObjCGCTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType & type)6755 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6756                                  QualType &type) {
6757   Sema &S = state.getSema();
6758 
6759   // Delay if this isn't some kind of pointer.
6760   if (!type->isPointerType() &&
6761       !type->isObjCObjectPointerType() &&
6762       !type->isBlockPointerType())
6763     return false;
6764 
6765   if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6766     S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6767     attr.setInvalid();
6768     return true;
6769   }
6770 
6771   // Check the attribute arguments.
6772   if (!attr.isArgIdent(0)) {
6773     S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6774         << attr << AANT_ArgumentString;
6775     attr.setInvalid();
6776     return true;
6777   }
6778   Qualifiers::GC GCAttr;
6779   if (attr.getNumArgs() > 1) {
6780     S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6781                                                                       << 1;
6782     attr.setInvalid();
6783     return true;
6784   }
6785 
6786   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6787   if (II->isStr("weak"))
6788     GCAttr = Qualifiers::Weak;
6789   else if (II->isStr("strong"))
6790     GCAttr = Qualifiers::Strong;
6791   else {
6792     S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6793         << attr << II;
6794     attr.setInvalid();
6795     return true;
6796   }
6797 
6798   QualType origType = type;
6799   type = S.Context.getObjCGCQualType(origType, GCAttr);
6800 
6801   // Make an attributed type to preserve the source information.
6802   if (attr.getLoc().isValid())
6803     type = state.getAttributedType(
6804         ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
6805 
6806   return true;
6807 }
6808 
6809 namespace {
6810   /// A helper class to unwrap a type down to a function for the
6811   /// purposes of applying attributes there.
6812   ///
6813   /// Use:
6814   ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
6815   ///   if (unwrapped.isFunctionType()) {
6816   ///     const FunctionType *fn = unwrapped.get();
6817   ///     // change fn somehow
6818   ///     T = unwrapped.wrap(fn);
6819   ///   }
6820   struct FunctionTypeUnwrapper {
6821     enum WrapKind {
6822       Desugar,
6823       Attributed,
6824       Parens,
6825       Array,
6826       Pointer,
6827       BlockPointer,
6828       Reference,
6829       MemberPointer,
6830       MacroQualified,
6831     };
6832 
6833     QualType Original;
6834     const FunctionType *Fn;
6835     SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6836 
FunctionTypeUnwrapper__anonc2847d971511::FunctionTypeUnwrapper6837     FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6838       while (true) {
6839         const Type *Ty = T.getTypePtr();
6840         if (isa<FunctionType>(Ty)) {
6841           Fn = cast<FunctionType>(Ty);
6842           return;
6843         } else if (isa<ParenType>(Ty)) {
6844           T = cast<ParenType>(Ty)->getInnerType();
6845           Stack.push_back(Parens);
6846         } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) ||
6847                    isa<IncompleteArrayType>(Ty)) {
6848           T = cast<ArrayType>(Ty)->getElementType();
6849           Stack.push_back(Array);
6850         } else if (isa<PointerType>(Ty)) {
6851           T = cast<PointerType>(Ty)->getPointeeType();
6852           Stack.push_back(Pointer);
6853         } else if (isa<BlockPointerType>(Ty)) {
6854           T = cast<BlockPointerType>(Ty)->getPointeeType();
6855           Stack.push_back(BlockPointer);
6856         } else if (isa<MemberPointerType>(Ty)) {
6857           T = cast<MemberPointerType>(Ty)->getPointeeType();
6858           Stack.push_back(MemberPointer);
6859         } else if (isa<ReferenceType>(Ty)) {
6860           T = cast<ReferenceType>(Ty)->getPointeeType();
6861           Stack.push_back(Reference);
6862         } else if (isa<AttributedType>(Ty)) {
6863           T = cast<AttributedType>(Ty)->getEquivalentType();
6864           Stack.push_back(Attributed);
6865         } else if (isa<MacroQualifiedType>(Ty)) {
6866           T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
6867           Stack.push_back(MacroQualified);
6868         } else {
6869           const Type *DTy = Ty->getUnqualifiedDesugaredType();
6870           if (Ty == DTy) {
6871             Fn = nullptr;
6872             return;
6873           }
6874 
6875           T = QualType(DTy, 0);
6876           Stack.push_back(Desugar);
6877         }
6878       }
6879     }
6880 
isFunctionType__anonc2847d971511::FunctionTypeUnwrapper6881     bool isFunctionType() const { return (Fn != nullptr); }
get__anonc2847d971511::FunctionTypeUnwrapper6882     const FunctionType *get() const { return Fn; }
6883 
wrap__anonc2847d971511::FunctionTypeUnwrapper6884     QualType wrap(Sema &S, const FunctionType *New) {
6885       // If T wasn't modified from the unwrapped type, do nothing.
6886       if (New == get()) return Original;
6887 
6888       Fn = New;
6889       return wrap(S.Context, Original, 0);
6890     }
6891 
6892   private:
wrap__anonc2847d971511::FunctionTypeUnwrapper6893     QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6894       if (I == Stack.size())
6895         return C.getQualifiedType(Fn, Old.getQualifiers());
6896 
6897       // Build up the inner type, applying the qualifiers from the old
6898       // type to the new type.
6899       SplitQualType SplitOld = Old.split();
6900 
6901       // As a special case, tail-recurse if there are no qualifiers.
6902       if (SplitOld.Quals.empty())
6903         return wrap(C, SplitOld.Ty, I);
6904       return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6905     }
6906 
wrap__anonc2847d971511::FunctionTypeUnwrapper6907     QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6908       if (I == Stack.size()) return QualType(Fn, 0);
6909 
6910       switch (static_cast<WrapKind>(Stack[I++])) {
6911       case Desugar:
6912         // This is the point at which we potentially lose source
6913         // information.
6914         return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6915 
6916       case Attributed:
6917         return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6918 
6919       case Parens: {
6920         QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6921         return C.getParenType(New);
6922       }
6923 
6924       case MacroQualified:
6925         return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
6926 
6927       case Array: {
6928         if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) {
6929           QualType New = wrap(C, CAT->getElementType(), I);
6930           return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(),
6931                                         CAT->getSizeModifier(),
6932                                         CAT->getIndexTypeCVRQualifiers());
6933         }
6934 
6935         if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) {
6936           QualType New = wrap(C, VAT->getElementType(), I);
6937           return C.getVariableArrayType(
6938               New, VAT->getSizeExpr(), VAT->getSizeModifier(),
6939               VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange());
6940         }
6941 
6942         const auto *IAT = cast<IncompleteArrayType>(Old);
6943         QualType New = wrap(C, IAT->getElementType(), I);
6944         return C.getIncompleteArrayType(New, IAT->getSizeModifier(),
6945                                         IAT->getIndexTypeCVRQualifiers());
6946       }
6947 
6948       case Pointer: {
6949         QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
6950         return C.getPointerType(New);
6951       }
6952 
6953       case BlockPointer: {
6954         QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
6955         return C.getBlockPointerType(New);
6956       }
6957 
6958       case MemberPointer: {
6959         const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
6960         QualType New = wrap(C, OldMPT->getPointeeType(), I);
6961         return C.getMemberPointerType(New, OldMPT->getClass());
6962       }
6963 
6964       case Reference: {
6965         const ReferenceType *OldRef = cast<ReferenceType>(Old);
6966         QualType New = wrap(C, OldRef->getPointeeType(), I);
6967         if (isa<LValueReferenceType>(OldRef))
6968           return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
6969         else
6970           return C.getRValueReferenceType(New);
6971       }
6972       }
6973 
6974       llvm_unreachable("unknown wrapping kind");
6975     }
6976   };
6977 } // end anonymous namespace
6978 
handleMSPointerTypeQualifierAttr(TypeProcessingState & State,ParsedAttr & PAttr,QualType & Type)6979 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
6980                                              ParsedAttr &PAttr, QualType &Type) {
6981   Sema &S = State.getSema();
6982 
6983   Attr *A;
6984   switch (PAttr.getKind()) {
6985   default: llvm_unreachable("Unknown attribute kind");
6986   case ParsedAttr::AT_Ptr32:
6987     A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
6988     break;
6989   case ParsedAttr::AT_Ptr64:
6990     A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
6991     break;
6992   case ParsedAttr::AT_SPtr:
6993     A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
6994     break;
6995   case ParsedAttr::AT_UPtr:
6996     A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
6997     break;
6998   }
6999 
7000   std::bitset<attr::LastAttr> Attrs;
7001   QualType Desugared = Type;
7002   for (;;) {
7003     if (const TypedefType *TT = dyn_cast<TypedefType>(Desugared)) {
7004       Desugared = TT->desugar();
7005       continue;
7006     } else if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Desugared)) {
7007       Desugared = ET->desugar();
7008       continue;
7009     }
7010     const AttributedType *AT = dyn_cast<AttributedType>(Desugared);
7011     if (!AT)
7012       break;
7013     Attrs[AT->getAttrKind()] = true;
7014     Desugared = AT->getModifiedType();
7015   }
7016 
7017   // You cannot specify duplicate type attributes, so if the attribute has
7018   // already been applied, flag it.
7019   attr::Kind NewAttrKind = A->getKind();
7020   if (Attrs[NewAttrKind]) {
7021     S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7022     return true;
7023   }
7024   Attrs[NewAttrKind] = true;
7025 
7026   // You cannot have both __sptr and __uptr on the same type, nor can you
7027   // have __ptr32 and __ptr64.
7028   if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
7029     S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7030         << "'__ptr32'"
7031         << "'__ptr64'" << /*isRegularKeyword=*/0;
7032     return true;
7033   } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
7034     S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7035         << "'__sptr'"
7036         << "'__uptr'" << /*isRegularKeyword=*/0;
7037     return true;
7038   }
7039 
7040   // Check the raw (i.e., desugared) Canonical type to see if it
7041   // is a pointer type.
7042   if (!isa<PointerType>(Desugared)) {
7043     // Pointer type qualifiers can only operate on pointer types, but not
7044     // pointer-to-member types.
7045     if (Type->isMemberPointerType())
7046       S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
7047     else
7048       S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
7049     return true;
7050   }
7051 
7052   // Add address space to type based on its attributes.
7053   LangAS ASIdx = LangAS::Default;
7054   uint64_t PtrWidth =
7055       S.Context.getTargetInfo().getPointerWidth(LangAS::Default);
7056   if (PtrWidth == 32) {
7057     if (Attrs[attr::Ptr64])
7058       ASIdx = LangAS::ptr64;
7059     else if (Attrs[attr::UPtr])
7060       ASIdx = LangAS::ptr32_uptr;
7061   } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
7062     if (Attrs[attr::UPtr])
7063       ASIdx = LangAS::ptr32_uptr;
7064     else
7065       ASIdx = LangAS::ptr32_sptr;
7066   }
7067 
7068   QualType Pointee = Type->getPointeeType();
7069   if (ASIdx != LangAS::Default)
7070     Pointee = S.Context.getAddrSpaceQualType(
7071         S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7072   Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
7073   return false;
7074 }
7075 
HandleWebAssemblyFuncrefAttr(TypeProcessingState & State,QualType & QT,ParsedAttr & PAttr)7076 static bool HandleWebAssemblyFuncrefAttr(TypeProcessingState &State,
7077                                          QualType &QT, ParsedAttr &PAttr) {
7078   assert(PAttr.getKind() == ParsedAttr::AT_WebAssemblyFuncref);
7079 
7080   Sema &S = State.getSema();
7081   Attr *A = createSimpleAttr<WebAssemblyFuncrefAttr>(S.Context, PAttr);
7082 
7083   std::bitset<attr::LastAttr> Attrs;
7084   attr::Kind NewAttrKind = A->getKind();
7085   const auto *AT = dyn_cast<AttributedType>(QT);
7086   while (AT) {
7087     Attrs[AT->getAttrKind()] = true;
7088     AT = dyn_cast<AttributedType>(AT->getModifiedType());
7089   }
7090 
7091   // You cannot specify duplicate type attributes, so if the attribute has
7092   // already been applied, flag it.
7093   if (Attrs[NewAttrKind]) {
7094     S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7095     return true;
7096   }
7097 
7098   // Add address space to type based on its attributes.
7099   LangAS ASIdx = LangAS::wasm_funcref;
7100   QualType Pointee = QT->getPointeeType();
7101   Pointee = S.Context.getAddrSpaceQualType(
7102       S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7103   QT = State.getAttributedType(A, QT, S.Context.getPointerType(Pointee));
7104   return false;
7105 }
7106 
7107 /// Rebuild an attributed type without the nullability attribute on it.
rebuildAttributedTypeWithoutNullability(ASTContext & Ctx,QualType Type)7108 static QualType rebuildAttributedTypeWithoutNullability(ASTContext &Ctx,
7109                                                         QualType Type) {
7110   auto Attributed = dyn_cast<AttributedType>(Type.getTypePtr());
7111   if (!Attributed)
7112     return Type;
7113 
7114   // Skip the nullability attribute; we're done.
7115   if (Attributed->getImmediateNullability())
7116     return Attributed->getModifiedType();
7117 
7118   // Build the modified type.
7119   QualType Modified = rebuildAttributedTypeWithoutNullability(
7120       Ctx, Attributed->getModifiedType());
7121   assert(Modified.getTypePtr() != Attributed->getModifiedType().getTypePtr());
7122   return Ctx.getAttributedType(Attributed->getAttrKind(), Modified,
7123                                Attributed->getEquivalentType());
7124 }
7125 
7126 /// Map a nullability attribute kind to a nullability kind.
mapNullabilityAttrKind(ParsedAttr::Kind kind)7127 static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7128   switch (kind) {
7129   case ParsedAttr::AT_TypeNonNull:
7130     return NullabilityKind::NonNull;
7131 
7132   case ParsedAttr::AT_TypeNullable:
7133     return NullabilityKind::Nullable;
7134 
7135   case ParsedAttr::AT_TypeNullableResult:
7136     return NullabilityKind::NullableResult;
7137 
7138   case ParsedAttr::AT_TypeNullUnspecified:
7139     return NullabilityKind::Unspecified;
7140 
7141   default:
7142     llvm_unreachable("not a nullability attribute kind");
7143   }
7144 }
7145 
CheckNullabilityTypeSpecifier(Sema & S,TypeProcessingState * State,ParsedAttr * PAttr,QualType & QT,NullabilityKind Nullability,SourceLocation NullabilityLoc,bool IsContextSensitive,bool AllowOnArrayType,bool OverrideExisting)7146 static bool CheckNullabilityTypeSpecifier(
7147     Sema &S, TypeProcessingState *State, ParsedAttr *PAttr, QualType &QT,
7148     NullabilityKind Nullability, SourceLocation NullabilityLoc,
7149     bool IsContextSensitive, bool AllowOnArrayType, bool OverrideExisting) {
7150   bool Implicit = (State == nullptr);
7151   if (!Implicit)
7152     recordNullabilitySeen(S, NullabilityLoc);
7153 
7154   // Check for existing nullability attributes on the type.
7155   QualType Desugared = QT;
7156   while (auto *Attributed = dyn_cast<AttributedType>(Desugared.getTypePtr())) {
7157     // Check whether there is already a null
7158     if (auto ExistingNullability = Attributed->getImmediateNullability()) {
7159       // Duplicated nullability.
7160       if (Nullability == *ExistingNullability) {
7161         if (Implicit)
7162           break;
7163 
7164         S.Diag(NullabilityLoc, diag::warn_nullability_duplicate)
7165             << DiagNullabilityKind(Nullability, IsContextSensitive)
7166             << FixItHint::CreateRemoval(NullabilityLoc);
7167 
7168         break;
7169       }
7170 
7171       if (!OverrideExisting) {
7172         // Conflicting nullability.
7173         S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7174             << DiagNullabilityKind(Nullability, IsContextSensitive)
7175             << DiagNullabilityKind(*ExistingNullability, false);
7176         return true;
7177       }
7178 
7179       // Rebuild the attributed type, dropping the existing nullability.
7180       QT = rebuildAttributedTypeWithoutNullability(S.Context, QT);
7181     }
7182 
7183     Desugared = Attributed->getModifiedType();
7184   }
7185 
7186   // If there is already a different nullability specifier, complain.
7187   // This (unlike the code above) looks through typedefs that might
7188   // have nullability specifiers on them, which means we cannot
7189   // provide a useful Fix-It.
7190   if (auto ExistingNullability = Desugared->getNullability()) {
7191     if (Nullability != *ExistingNullability && !Implicit) {
7192       S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7193           << DiagNullabilityKind(Nullability, IsContextSensitive)
7194           << DiagNullabilityKind(*ExistingNullability, false);
7195 
7196       // Try to find the typedef with the existing nullability specifier.
7197       if (auto TT = Desugared->getAs<TypedefType>()) {
7198         TypedefNameDecl *typedefDecl = TT->getDecl();
7199         QualType underlyingType = typedefDecl->getUnderlyingType();
7200         if (auto typedefNullability =
7201                 AttributedType::stripOuterNullability(underlyingType)) {
7202           if (*typedefNullability == *ExistingNullability) {
7203             S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7204                 << DiagNullabilityKind(*ExistingNullability, false);
7205           }
7206         }
7207       }
7208 
7209       return true;
7210     }
7211   }
7212 
7213   // If this definitely isn't a pointer type, reject the specifier.
7214   if (!Desugared->canHaveNullability() &&
7215       !(AllowOnArrayType && Desugared->isArrayType())) {
7216     if (!Implicit)
7217       S.Diag(NullabilityLoc, diag::err_nullability_nonpointer)
7218           << DiagNullabilityKind(Nullability, IsContextSensitive) << QT;
7219 
7220     return true;
7221   }
7222 
7223   // For the context-sensitive keywords/Objective-C property
7224   // attributes, require that the type be a single-level pointer.
7225   if (IsContextSensitive) {
7226     // Make sure that the pointee isn't itself a pointer type.
7227     const Type *pointeeType = nullptr;
7228     if (Desugared->isArrayType())
7229       pointeeType = Desugared->getArrayElementTypeNoTypeQual();
7230     else if (Desugared->isAnyPointerType())
7231       pointeeType = Desugared->getPointeeType().getTypePtr();
7232 
7233     if (pointeeType && (pointeeType->isAnyPointerType() ||
7234                         pointeeType->isObjCObjectPointerType() ||
7235                         pointeeType->isMemberPointerType())) {
7236       S.Diag(NullabilityLoc, diag::err_nullability_cs_multilevel)
7237           << DiagNullabilityKind(Nullability, true) << QT;
7238       S.Diag(NullabilityLoc, diag::note_nullability_type_specifier)
7239           << DiagNullabilityKind(Nullability, false) << QT
7240           << FixItHint::CreateReplacement(NullabilityLoc,
7241                                           getNullabilitySpelling(Nullability));
7242       return true;
7243     }
7244   }
7245 
7246   // Form the attributed type.
7247   if (State) {
7248     assert(PAttr);
7249     Attr *A = createNullabilityAttr(S.Context, *PAttr, Nullability);
7250     QT = State->getAttributedType(A, QT, QT);
7251   } else {
7252     attr::Kind attrKind = AttributedType::getNullabilityAttrKind(Nullability);
7253     QT = S.Context.getAttributedType(attrKind, QT, QT);
7254   }
7255   return false;
7256 }
7257 
CheckNullabilityTypeSpecifier(TypeProcessingState & State,QualType & Type,ParsedAttr & Attr,bool AllowOnArrayType)7258 static bool CheckNullabilityTypeSpecifier(TypeProcessingState &State,
7259                                           QualType &Type, ParsedAttr &Attr,
7260                                           bool AllowOnArrayType) {
7261   NullabilityKind Nullability = mapNullabilityAttrKind(Attr.getKind());
7262   SourceLocation NullabilityLoc = Attr.getLoc();
7263   bool IsContextSensitive = Attr.isContextSensitiveKeywordAttribute();
7264 
7265   return CheckNullabilityTypeSpecifier(State.getSema(), &State, &Attr, Type,
7266                                        Nullability, NullabilityLoc,
7267                                        IsContextSensitive, AllowOnArrayType,
7268                                        /*overrideExisting*/ false);
7269 }
7270 
CheckImplicitNullabilityTypeSpecifier(QualType & Type,NullabilityKind Nullability,SourceLocation DiagLoc,bool AllowArrayTypes,bool OverrideExisting)7271 bool Sema::CheckImplicitNullabilityTypeSpecifier(QualType &Type,
7272                                                  NullabilityKind Nullability,
7273                                                  SourceLocation DiagLoc,
7274                                                  bool AllowArrayTypes,
7275                                                  bool OverrideExisting) {
7276   return CheckNullabilityTypeSpecifier(
7277       *this, nullptr, nullptr, Type, Nullability, DiagLoc,
7278       /*isContextSensitive*/ false, AllowArrayTypes, OverrideExisting);
7279 }
7280 
7281 /// Check the application of the Objective-C '__kindof' qualifier to
7282 /// the given type.
checkObjCKindOfType(TypeProcessingState & state,QualType & type,ParsedAttr & attr)7283 static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7284                                 ParsedAttr &attr) {
7285   Sema &S = state.getSema();
7286 
7287   if (isa<ObjCTypeParamType>(type)) {
7288     // Build the attributed type to record where __kindof occurred.
7289     type = state.getAttributedType(
7290         createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7291     return false;
7292   }
7293 
7294   // Find out if it's an Objective-C object or object pointer type;
7295   const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7296   const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7297                                           : type->getAs<ObjCObjectType>();
7298 
7299   // If not, we can't apply __kindof.
7300   if (!objType) {
7301     // FIXME: Handle dependent types that aren't yet object types.
7302     S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7303       << type;
7304     return true;
7305   }
7306 
7307   // Rebuild the "equivalent" type, which pushes __kindof down into
7308   // the object type.
7309   // There is no need to apply kindof on an unqualified id type.
7310   QualType equivType = S.Context.getObjCObjectType(
7311       objType->getBaseType(), objType->getTypeArgsAsWritten(),
7312       objType->getProtocols(),
7313       /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7314 
7315   // If we started with an object pointer type, rebuild it.
7316   if (ptrType) {
7317     equivType = S.Context.getObjCObjectPointerType(equivType);
7318     if (auto nullability = type->getNullability()) {
7319       // We create a nullability attribute from the __kindof attribute.
7320       // Make sure that will make sense.
7321       assert(attr.getAttributeSpellingListIndex() == 0 &&
7322              "multiple spellings for __kindof?");
7323       Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
7324       A->setImplicit(true);
7325       equivType = state.getAttributedType(A, equivType, equivType);
7326     }
7327   }
7328 
7329   // Build the attributed type to record where __kindof occurred.
7330   type = state.getAttributedType(
7331       createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7332   return false;
7333 }
7334 
7335 /// Distribute a nullability type attribute that cannot be applied to
7336 /// the type specifier to a pointer, block pointer, or member pointer
7337 /// declarator, complaining if necessary.
7338 ///
7339 /// \returns true if the nullability annotation was distributed, false
7340 /// otherwise.
distributeNullabilityTypeAttr(TypeProcessingState & state,QualType type,ParsedAttr & attr)7341 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7342                                           QualType type, ParsedAttr &attr) {
7343   Declarator &declarator = state.getDeclarator();
7344 
7345   /// Attempt to move the attribute to the specified chunk.
7346   auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7347     // If there is already a nullability attribute there, don't add
7348     // one.
7349     if (hasNullabilityAttr(chunk.getAttrs()))
7350       return false;
7351 
7352     // Complain about the nullability qualifier being in the wrong
7353     // place.
7354     enum {
7355       PK_Pointer,
7356       PK_BlockPointer,
7357       PK_MemberPointer,
7358       PK_FunctionPointer,
7359       PK_MemberFunctionPointer,
7360     } pointerKind
7361       = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7362                                                              : PK_Pointer)
7363         : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7364         : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7365 
7366     auto diag = state.getSema().Diag(attr.getLoc(),
7367                                      diag::warn_nullability_declspec)
7368       << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7369                              attr.isContextSensitiveKeywordAttribute())
7370       << type
7371       << static_cast<unsigned>(pointerKind);
7372 
7373     // FIXME: MemberPointer chunks don't carry the location of the *.
7374     if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7375       diag << FixItHint::CreateRemoval(attr.getLoc())
7376            << FixItHint::CreateInsertion(
7377                   state.getSema().getPreprocessor().getLocForEndOfToken(
7378                       chunk.Loc),
7379                   " " + attr.getAttrName()->getName().str() + " ");
7380     }
7381 
7382     moveAttrFromListToList(attr, state.getCurrentAttributes(),
7383                            chunk.getAttrs());
7384     return true;
7385   };
7386 
7387   // Move it to the outermost pointer, member pointer, or block
7388   // pointer declarator.
7389   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7390     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
7391     switch (chunk.Kind) {
7392     case DeclaratorChunk::Pointer:
7393     case DeclaratorChunk::BlockPointer:
7394     case DeclaratorChunk::MemberPointer:
7395       return moveToChunk(chunk, false);
7396 
7397     case DeclaratorChunk::Paren:
7398     case DeclaratorChunk::Array:
7399       continue;
7400 
7401     case DeclaratorChunk::Function:
7402       // Try to move past the return type to a function/block/member
7403       // function pointer.
7404       if (DeclaratorChunk *dest = maybeMovePastReturnType(
7405                                     declarator, i,
7406                                     /*onlyBlockPointers=*/false)) {
7407         return moveToChunk(*dest, true);
7408       }
7409 
7410       return false;
7411 
7412     // Don't walk through these.
7413     case DeclaratorChunk::Reference:
7414     case DeclaratorChunk::Pipe:
7415       return false;
7416     }
7417   }
7418 
7419   return false;
7420 }
7421 
getCCTypeAttr(ASTContext & Ctx,ParsedAttr & Attr)7422 static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7423   assert(!Attr.isInvalid());
7424   switch (Attr.getKind()) {
7425   default:
7426     llvm_unreachable("not a calling convention attribute");
7427   case ParsedAttr::AT_CDecl:
7428     return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7429   case ParsedAttr::AT_FastCall:
7430     return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7431   case ParsedAttr::AT_StdCall:
7432     return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7433   case ParsedAttr::AT_ThisCall:
7434     return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7435   case ParsedAttr::AT_RegCall:
7436     return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7437   case ParsedAttr::AT_Pascal:
7438     return createSimpleAttr<PascalAttr>(Ctx, Attr);
7439   case ParsedAttr::AT_SwiftCall:
7440     return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7441   case ParsedAttr::AT_SwiftAsyncCall:
7442     return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr);
7443   case ParsedAttr::AT_VectorCall:
7444     return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7445   case ParsedAttr::AT_AArch64VectorPcs:
7446     return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7447   case ParsedAttr::AT_AArch64SVEPcs:
7448     return createSimpleAttr<AArch64SVEPcsAttr>(Ctx, Attr);
7449   case ParsedAttr::AT_ArmStreaming:
7450     return createSimpleAttr<ArmStreamingAttr>(Ctx, Attr);
7451   case ParsedAttr::AT_AMDGPUKernelCall:
7452     return createSimpleAttr<AMDGPUKernelCallAttr>(Ctx, Attr);
7453   case ParsedAttr::AT_Pcs: {
7454     // The attribute may have had a fixit applied where we treated an
7455     // identifier as a string literal.  The contents of the string are valid,
7456     // but the form may not be.
7457     StringRef Str;
7458     if (Attr.isArgExpr(0))
7459       Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7460     else
7461       Str = Attr.getArgAsIdent(0)->Ident->getName();
7462     PcsAttr::PCSType Type;
7463     if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7464       llvm_unreachable("already validated the attribute");
7465     return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7466   }
7467   case ParsedAttr::AT_IntelOclBicc:
7468     return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7469   case ParsedAttr::AT_MSABI:
7470     return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7471   case ParsedAttr::AT_SysVABI:
7472     return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7473   case ParsedAttr::AT_PreserveMost:
7474     return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7475   case ParsedAttr::AT_PreserveAll:
7476     return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7477   case ParsedAttr::AT_M68kRTD:
7478     return createSimpleAttr<M68kRTDAttr>(Ctx, Attr);
7479   case ParsedAttr::AT_PreserveNone:
7480     return createSimpleAttr<PreserveNoneAttr>(Ctx, Attr);
7481   case ParsedAttr::AT_RISCVVectorCC:
7482     return createSimpleAttr<RISCVVectorCCAttr>(Ctx, Attr);
7483   }
7484   llvm_unreachable("unexpected attribute kind!");
7485 }
7486 
7487 std::optional<FunctionEffectMode>
ActOnEffectExpression(Expr * CondExpr,StringRef AttributeName)7488 Sema::ActOnEffectExpression(Expr *CondExpr, StringRef AttributeName) {
7489   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent())
7490     return FunctionEffectMode::Dependent;
7491 
7492   std::optional<llvm::APSInt> ConditionValue =
7493       CondExpr->getIntegerConstantExpr(Context);
7494   if (!ConditionValue) {
7495     // FIXME: err_attribute_argument_type doesn't quote the attribute
7496     // name but needs to; users are inconsistent.
7497     Diag(CondExpr->getExprLoc(), diag::err_attribute_argument_type)
7498         << AttributeName << AANT_ArgumentIntegerConstant
7499         << CondExpr->getSourceRange();
7500     return std::nullopt;
7501   }
7502   return !ConditionValue->isZero() ? FunctionEffectMode::True
7503                                    : FunctionEffectMode::False;
7504 }
7505 
7506 static bool
handleNonBlockingNonAllocatingTypeAttr(TypeProcessingState & TPState,ParsedAttr & PAttr,QualType & QT,FunctionTypeUnwrapper & Unwrapped)7507 handleNonBlockingNonAllocatingTypeAttr(TypeProcessingState &TPState,
7508                                        ParsedAttr &PAttr, QualType &QT,
7509                                        FunctionTypeUnwrapper &Unwrapped) {
7510   // Delay if this is not a function type.
7511   if (!Unwrapped.isFunctionType())
7512     return false;
7513 
7514   Sema &S = TPState.getSema();
7515 
7516   // Require FunctionProtoType.
7517   auto *FPT = Unwrapped.get()->getAs<FunctionProtoType>();
7518   if (FPT == nullptr) {
7519     S.Diag(PAttr.getLoc(), diag::err_func_with_effects_no_prototype)
7520         << PAttr.getAttrName()->getName();
7521     return true;
7522   }
7523 
7524   // Parse the new  attribute.
7525   // non/blocking or non/allocating? Or conditional (computed)?
7526   bool IsNonBlocking = PAttr.getKind() == ParsedAttr::AT_NonBlocking ||
7527                        PAttr.getKind() == ParsedAttr::AT_Blocking;
7528 
7529   FunctionEffectMode NewMode = FunctionEffectMode::None;
7530   Expr *CondExpr = nullptr; // only valid if dependent
7531 
7532   if (PAttr.getKind() == ParsedAttr::AT_NonBlocking ||
7533       PAttr.getKind() == ParsedAttr::AT_NonAllocating) {
7534     if (!PAttr.checkAtMostNumArgs(S, 1)) {
7535       PAttr.setInvalid();
7536       return true;
7537     }
7538 
7539     // Parse the condition, if any.
7540     if (PAttr.getNumArgs() == 1) {
7541       CondExpr = PAttr.getArgAsExpr(0);
7542       std::optional<FunctionEffectMode> MaybeMode =
7543           S.ActOnEffectExpression(CondExpr, PAttr.getAttrName()->getName());
7544       if (!MaybeMode) {
7545         PAttr.setInvalid();
7546         return true;
7547       }
7548       NewMode = *MaybeMode;
7549       if (NewMode != FunctionEffectMode::Dependent)
7550         CondExpr = nullptr;
7551     } else {
7552       NewMode = FunctionEffectMode::True;
7553     }
7554   } else {
7555     // This is the `blocking` or `allocating` attribute.
7556     if (S.CheckAttrNoArgs(PAttr)) {
7557       // The attribute has been marked invalid.
7558       return true;
7559     }
7560     NewMode = FunctionEffectMode::False;
7561   }
7562 
7563   const FunctionEffect::Kind FEKind =
7564       (NewMode == FunctionEffectMode::False)
7565           ? (IsNonBlocking ? FunctionEffect::Kind::Blocking
7566                            : FunctionEffect::Kind::Allocating)
7567           : (IsNonBlocking ? FunctionEffect::Kind::NonBlocking
7568                            : FunctionEffect::Kind::NonAllocating);
7569   const FunctionEffectWithCondition NewEC{FunctionEffect(FEKind),
7570                                           EffectConditionExpr(CondExpr)};
7571 
7572   if (S.diagnoseConflictingFunctionEffect(FPT->getFunctionEffects(), NewEC,
7573                                           PAttr.getLoc())) {
7574     PAttr.setInvalid();
7575     return true;
7576   }
7577 
7578   // Add the effect to the FunctionProtoType.
7579   FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7580   FunctionEffectSet FX(EPI.FunctionEffects);
7581   FunctionEffectSet::Conflicts Errs;
7582   [[maybe_unused]] bool Success = FX.insert(NewEC, Errs);
7583   assert(Success && "effect conflicts should have been diagnosed above");
7584   EPI.FunctionEffects = FunctionEffectsRef(FX);
7585 
7586   QualType NewType = S.Context.getFunctionType(FPT->getReturnType(),
7587                                                FPT->getParamTypes(), EPI);
7588   QT = Unwrapped.wrap(S, NewType->getAs<FunctionType>());
7589   return true;
7590 }
7591 
checkMutualExclusion(TypeProcessingState & state,const FunctionProtoType::ExtProtoInfo & EPI,ParsedAttr & Attr,AttributeCommonInfo::Kind OtherKind)7592 static bool checkMutualExclusion(TypeProcessingState &state,
7593                                  const FunctionProtoType::ExtProtoInfo &EPI,
7594                                  ParsedAttr &Attr,
7595                                  AttributeCommonInfo::Kind OtherKind) {
7596   auto OtherAttr = std::find_if(
7597       state.getCurrentAttributes().begin(), state.getCurrentAttributes().end(),
7598       [OtherKind](const ParsedAttr &A) { return A.getKind() == OtherKind; });
7599   if (OtherAttr == state.getCurrentAttributes().end() || OtherAttr->isInvalid())
7600     return false;
7601 
7602   Sema &S = state.getSema();
7603   S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
7604       << *OtherAttr << Attr
7605       << (OtherAttr->isRegularKeywordAttribute() ||
7606           Attr.isRegularKeywordAttribute());
7607   S.Diag(OtherAttr->getLoc(), diag::note_conflicting_attribute);
7608   Attr.setInvalid();
7609   return true;
7610 }
7611 
handleArmStateAttribute(Sema & S,FunctionProtoType::ExtProtoInfo & EPI,ParsedAttr & Attr,FunctionType::ArmStateValue State)7612 static bool handleArmStateAttribute(Sema &S,
7613                                     FunctionProtoType::ExtProtoInfo &EPI,
7614                                     ParsedAttr &Attr,
7615                                     FunctionType::ArmStateValue State) {
7616   if (!Attr.getNumArgs()) {
7617     S.Diag(Attr.getLoc(), diag::err_missing_arm_state) << Attr;
7618     Attr.setInvalid();
7619     return true;
7620   }
7621 
7622   for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {
7623     StringRef StateName;
7624     SourceLocation LiteralLoc;
7625     if (!S.checkStringLiteralArgumentAttr(Attr, I, StateName, &LiteralLoc))
7626       return true;
7627 
7628     unsigned Shift;
7629     FunctionType::ArmStateValue ExistingState;
7630     if (StateName == "za") {
7631       Shift = FunctionType::SME_ZAShift;
7632       ExistingState = FunctionType::getArmZAState(EPI.AArch64SMEAttributes);
7633     } else if (StateName == "zt0") {
7634       Shift = FunctionType::SME_ZT0Shift;
7635       ExistingState = FunctionType::getArmZT0State(EPI.AArch64SMEAttributes);
7636     } else {
7637       S.Diag(LiteralLoc, diag::err_unknown_arm_state) << StateName;
7638       Attr.setInvalid();
7639       return true;
7640     }
7641 
7642     // __arm_in(S), __arm_out(S), __arm_inout(S) and __arm_preserves(S)
7643     // are all mutually exclusive for the same S, so check if there are
7644     // conflicting attributes.
7645     if (ExistingState != FunctionType::ARM_None && ExistingState != State) {
7646       S.Diag(LiteralLoc, diag::err_conflicting_attributes_arm_state)
7647           << StateName;
7648       Attr.setInvalid();
7649       return true;
7650     }
7651 
7652     EPI.setArmSMEAttribute(
7653         (FunctionType::AArch64SMETypeAttributes)((State << Shift)));
7654   }
7655   return false;
7656 }
7657 
7658 /// Process an individual function attribute.  Returns true to
7659 /// indicate that the attribute was handled, false if it wasn't.
handleFunctionTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType & type,CUDAFunctionTarget CFT)7660 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7661                                    QualType &type, CUDAFunctionTarget CFT) {
7662   Sema &S = state.getSema();
7663 
7664   FunctionTypeUnwrapper unwrapped(S, type);
7665 
7666   if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7667     if (S.CheckAttrNoArgs(attr))
7668       return true;
7669 
7670     // Delay if this is not a function type.
7671     if (!unwrapped.isFunctionType())
7672       return false;
7673 
7674     // Otherwise we can process right away.
7675     FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7676     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7677     return true;
7678   }
7679 
7680   if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
7681     // Delay if this is not a function type.
7682     if (!unwrapped.isFunctionType())
7683       return false;
7684 
7685     // Ignore if we don't have CMSE enabled.
7686     if (!S.getLangOpts().Cmse) {
7687       S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
7688       attr.setInvalid();
7689       return true;
7690     }
7691 
7692     // Otherwise we can process right away.
7693     FunctionType::ExtInfo EI =
7694         unwrapped.get()->getExtInfo().withCmseNSCall(true);
7695     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7696     return true;
7697   }
7698 
7699   // ns_returns_retained is not always a type attribute, but if we got
7700   // here, we're treating it as one right now.
7701   if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7702     if (attr.getNumArgs()) return true;
7703 
7704     // Delay if this is not a function type.
7705     if (!unwrapped.isFunctionType())
7706       return false;
7707 
7708     // Check whether the return type is reasonable.
7709     if (S.ObjC().checkNSReturnsRetainedReturnType(
7710             attr.getLoc(), unwrapped.get()->getReturnType()))
7711       return true;
7712 
7713     // Only actually change the underlying type in ARC builds.
7714     QualType origType = type;
7715     if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7716       FunctionType::ExtInfo EI
7717         = unwrapped.get()->getExtInfo().withProducesResult(true);
7718       type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7719     }
7720     type = state.getAttributedType(
7721         createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7722         origType, type);
7723     return true;
7724   }
7725 
7726   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7727     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7728       return true;
7729 
7730     // Delay if this is not a function type.
7731     if (!unwrapped.isFunctionType())
7732       return false;
7733 
7734     FunctionType::ExtInfo EI =
7735         unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7736     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7737     return true;
7738   }
7739 
7740   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7741     if (!S.getLangOpts().CFProtectionBranch) {
7742       S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7743       attr.setInvalid();
7744       return true;
7745     }
7746 
7747     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7748       return true;
7749 
7750     // If this is not a function type, warning will be asserted by subject
7751     // check.
7752     if (!unwrapped.isFunctionType())
7753       return true;
7754 
7755     FunctionType::ExtInfo EI =
7756       unwrapped.get()->getExtInfo().withNoCfCheck(true);
7757     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7758     return true;
7759   }
7760 
7761   if (attr.getKind() == ParsedAttr::AT_Regparm) {
7762     unsigned value;
7763     if (S.CheckRegparmAttr(attr, value))
7764       return true;
7765 
7766     // Delay if this is not a function type.
7767     if (!unwrapped.isFunctionType())
7768       return false;
7769 
7770     // Diagnose regparm with fastcall.
7771     const FunctionType *fn = unwrapped.get();
7772     CallingConv CC = fn->getCallConv();
7773     if (CC == CC_X86FastCall) {
7774       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7775           << FunctionType::getNameForCallConv(CC) << "regparm"
7776           << attr.isRegularKeywordAttribute();
7777       attr.setInvalid();
7778       return true;
7779     }
7780 
7781     FunctionType::ExtInfo EI =
7782       unwrapped.get()->getExtInfo().withRegParm(value);
7783     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7784     return true;
7785   }
7786 
7787   if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
7788       attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible ||
7789       attr.getKind() == ParsedAttr::AT_ArmPreserves ||
7790       attr.getKind() == ParsedAttr::AT_ArmIn ||
7791       attr.getKind() == ParsedAttr::AT_ArmOut ||
7792       attr.getKind() == ParsedAttr::AT_ArmInOut) {
7793     if (S.CheckAttrTarget(attr))
7794       return true;
7795 
7796     if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
7797         attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible)
7798       if (S.CheckAttrNoArgs(attr))
7799         return true;
7800 
7801     if (!unwrapped.isFunctionType())
7802       return false;
7803 
7804     const auto *FnTy = unwrapped.get()->getAs<FunctionProtoType>();
7805     if (!FnTy) {
7806       // SME ACLE attributes are not supported on K&R-style unprototyped C
7807       // functions.
7808       S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) <<
7809         attr << attr.isRegularKeywordAttribute() << ExpectedFunctionWithProtoType;
7810       attr.setInvalid();
7811       return false;
7812     }
7813 
7814     FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
7815     switch (attr.getKind()) {
7816     case ParsedAttr::AT_ArmStreaming:
7817       if (checkMutualExclusion(state, EPI, attr,
7818                                ParsedAttr::AT_ArmStreamingCompatible))
7819         return true;
7820       EPI.setArmSMEAttribute(FunctionType::SME_PStateSMEnabledMask);
7821       break;
7822     case ParsedAttr::AT_ArmStreamingCompatible:
7823       if (checkMutualExclusion(state, EPI, attr, ParsedAttr::AT_ArmStreaming))
7824         return true;
7825       EPI.setArmSMEAttribute(FunctionType::SME_PStateSMCompatibleMask);
7826       break;
7827     case ParsedAttr::AT_ArmPreserves:
7828       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_Preserves))
7829         return true;
7830       break;
7831     case ParsedAttr::AT_ArmIn:
7832       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_In))
7833         return true;
7834       break;
7835     case ParsedAttr::AT_ArmOut:
7836       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_Out))
7837         return true;
7838       break;
7839     case ParsedAttr::AT_ArmInOut:
7840       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_InOut))
7841         return true;
7842       break;
7843     default:
7844       llvm_unreachable("Unsupported attribute");
7845     }
7846 
7847     QualType newtype = S.Context.getFunctionType(FnTy->getReturnType(),
7848                                                  FnTy->getParamTypes(), EPI);
7849     type = unwrapped.wrap(S, newtype->getAs<FunctionType>());
7850     return true;
7851   }
7852 
7853   if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7854     // Delay if this is not a function type.
7855     if (!unwrapped.isFunctionType())
7856       return false;
7857 
7858     if (S.CheckAttrNoArgs(attr)) {
7859       attr.setInvalid();
7860       return true;
7861     }
7862 
7863     // Otherwise we can process right away.
7864     auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
7865 
7866     // MSVC ignores nothrow if it is in conflict with an explicit exception
7867     // specification.
7868     if (Proto->hasExceptionSpec()) {
7869       switch (Proto->getExceptionSpecType()) {
7870       case EST_None:
7871         llvm_unreachable("This doesn't have an exception spec!");
7872 
7873       case EST_DynamicNone:
7874       case EST_BasicNoexcept:
7875       case EST_NoexceptTrue:
7876       case EST_NoThrow:
7877         // Exception spec doesn't conflict with nothrow, so don't warn.
7878         [[fallthrough]];
7879       case EST_Unparsed:
7880       case EST_Uninstantiated:
7881       case EST_DependentNoexcept:
7882       case EST_Unevaluated:
7883         // We don't have enough information to properly determine if there is a
7884         // conflict, so suppress the warning.
7885         break;
7886       case EST_Dynamic:
7887       case EST_MSAny:
7888       case EST_NoexceptFalse:
7889         S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
7890         break;
7891       }
7892       return true;
7893     }
7894 
7895     type = unwrapped.wrap(
7896         S, S.Context
7897                .getFunctionTypeWithExceptionSpec(
7898                    QualType{Proto, 0},
7899                    FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
7900                ->getAs<FunctionType>());
7901     return true;
7902   }
7903 
7904   if (attr.getKind() == ParsedAttr::AT_NonBlocking ||
7905       attr.getKind() == ParsedAttr::AT_NonAllocating ||
7906       attr.getKind() == ParsedAttr::AT_Blocking ||
7907       attr.getKind() == ParsedAttr::AT_Allocating) {
7908     return handleNonBlockingNonAllocatingTypeAttr(state, attr, type, unwrapped);
7909   }
7910 
7911   // Delay if the type didn't work out to a function.
7912   if (!unwrapped.isFunctionType()) return false;
7913 
7914   // Otherwise, a calling convention.
7915   CallingConv CC;
7916   if (S.CheckCallingConvAttr(attr, CC, /*FunctionDecl=*/nullptr, CFT))
7917     return true;
7918 
7919   const FunctionType *fn = unwrapped.get();
7920   CallingConv CCOld = fn->getCallConv();
7921   Attr *CCAttr = getCCTypeAttr(S.Context, attr);
7922 
7923   if (CCOld != CC) {
7924     // Error out on when there's already an attribute on the type
7925     // and the CCs don't match.
7926     if (S.getCallingConvAttributedType(type)) {
7927       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7928           << FunctionType::getNameForCallConv(CC)
7929           << FunctionType::getNameForCallConv(CCOld)
7930           << attr.isRegularKeywordAttribute();
7931       attr.setInvalid();
7932       return true;
7933     }
7934   }
7935 
7936   // Diagnose use of variadic functions with calling conventions that
7937   // don't support them (e.g. because they're callee-cleanup).
7938   // We delay warning about this on unprototyped function declarations
7939   // until after redeclaration checking, just in case we pick up a
7940   // prototype that way.  And apparently we also "delay" warning about
7941   // unprototyped function types in general, despite not necessarily having
7942   // much ability to diagnose it later.
7943   if (!supportsVariadicCall(CC)) {
7944     const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
7945     if (FnP && FnP->isVariadic()) {
7946       // stdcall and fastcall are ignored with a warning for GCC and MS
7947       // compatibility.
7948       if (CC == CC_X86StdCall || CC == CC_X86FastCall)
7949         return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
7950                << FunctionType::getNameForCallConv(CC)
7951                << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
7952 
7953       attr.setInvalid();
7954       return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
7955              << FunctionType::getNameForCallConv(CC);
7956     }
7957   }
7958 
7959   // Also diagnose fastcall with regparm.
7960   if (CC == CC_X86FastCall && fn->getHasRegParm()) {
7961     S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7962         << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall)
7963         << attr.isRegularKeywordAttribute();
7964     attr.setInvalid();
7965     return true;
7966   }
7967 
7968   // Modify the CC from the wrapped function type, wrap it all back, and then
7969   // wrap the whole thing in an AttributedType as written.  The modified type
7970   // might have a different CC if we ignored the attribute.
7971   QualType Equivalent;
7972   if (CCOld == CC) {
7973     Equivalent = type;
7974   } else {
7975     auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
7976     Equivalent =
7977       unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7978   }
7979   type = state.getAttributedType(CCAttr, type, Equivalent);
7980   return true;
7981 }
7982 
hasExplicitCallingConv(QualType T)7983 bool Sema::hasExplicitCallingConv(QualType T) {
7984   const AttributedType *AT;
7985 
7986   // Stop if we'd be stripping off a typedef sugar node to reach the
7987   // AttributedType.
7988   while ((AT = T->getAs<AttributedType>()) &&
7989          AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
7990     if (AT->isCallingConv())
7991       return true;
7992     T = AT->getModifiedType();
7993   }
7994   return false;
7995 }
7996 
adjustMemberFunctionCC(QualType & T,bool HasThisPointer,bool IsCtorOrDtor,SourceLocation Loc)7997 void Sema::adjustMemberFunctionCC(QualType &T, bool HasThisPointer,
7998                                   bool IsCtorOrDtor, SourceLocation Loc) {
7999   FunctionTypeUnwrapper Unwrapped(*this, T);
8000   const FunctionType *FT = Unwrapped.get();
8001   bool IsVariadic = (isa<FunctionProtoType>(FT) &&
8002                      cast<FunctionProtoType>(FT)->isVariadic());
8003   CallingConv CurCC = FT->getCallConv();
8004   CallingConv ToCC =
8005       Context.getDefaultCallingConvention(IsVariadic, HasThisPointer);
8006 
8007   if (CurCC == ToCC)
8008     return;
8009 
8010   // MS compiler ignores explicit calling convention attributes on structors. We
8011   // should do the same.
8012   if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
8013     // Issue a warning on ignored calling convention -- except of __stdcall.
8014     // Again, this is what MS compiler does.
8015     if (CurCC != CC_X86StdCall)
8016       Diag(Loc, diag::warn_cconv_unsupported)
8017           << FunctionType::getNameForCallConv(CurCC)
8018           << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
8019   // Default adjustment.
8020   } else {
8021     // Only adjust types with the default convention.  For example, on Windows
8022     // we should adjust a __cdecl type to __thiscall for instance methods, and a
8023     // __thiscall type to __cdecl for static methods.
8024     CallingConv DefaultCC =
8025         Context.getDefaultCallingConvention(IsVariadic, !HasThisPointer);
8026 
8027     if (CurCC != DefaultCC)
8028       return;
8029 
8030     if (hasExplicitCallingConv(T))
8031       return;
8032   }
8033 
8034   FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
8035   QualType Wrapped = Unwrapped.wrap(*this, FT);
8036   T = Context.getAdjustedType(T, Wrapped);
8037 }
8038 
8039 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
8040 /// and float scalars, although arrays, pointers, and function return values are
8041 /// allowed in conjunction with this construct. Aggregates with this attribute
8042 /// are invalid, even if they are of the same size as a corresponding scalar.
8043 /// The raw attribute should contain precisely 1 argument, the vector size for
8044 /// the variable, measured in bytes. If curType and rawAttr are well formed,
8045 /// this routine will return a new vector type.
HandleVectorSizeAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S)8046 static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
8047                                  Sema &S) {
8048   // Check the attribute arguments.
8049   if (Attr.getNumArgs() != 1) {
8050     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8051                                                                       << 1;
8052     Attr.setInvalid();
8053     return;
8054   }
8055 
8056   Expr *SizeExpr = Attr.getArgAsExpr(0);
8057   QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
8058   if (!T.isNull())
8059     CurType = T;
8060   else
8061     Attr.setInvalid();
8062 }
8063 
8064 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
8065 /// a type.
HandleExtVectorTypeAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S)8066 static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8067                                     Sema &S) {
8068   // check the attribute arguments.
8069   if (Attr.getNumArgs() != 1) {
8070     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8071                                                                       << 1;
8072     return;
8073   }
8074 
8075   Expr *SizeExpr = Attr.getArgAsExpr(0);
8076   QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc());
8077   if (!T.isNull())
8078     CurType = T;
8079 }
8080 
isPermittedNeonBaseType(QualType & Ty,VectorKind VecKind,Sema & S)8081 static bool isPermittedNeonBaseType(QualType &Ty, VectorKind VecKind, Sema &S) {
8082   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
8083   if (!BTy)
8084     return false;
8085 
8086   llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
8087 
8088   // Signed poly is mathematically wrong, but has been baked into some ABIs by
8089   // now.
8090   bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
8091                         Triple.getArch() == llvm::Triple::aarch64_32 ||
8092                         Triple.getArch() == llvm::Triple::aarch64_be;
8093   if (VecKind == VectorKind::NeonPoly) {
8094     if (IsPolyUnsigned) {
8095       // AArch64 polynomial vectors are unsigned.
8096       return BTy->getKind() == BuiltinType::UChar ||
8097              BTy->getKind() == BuiltinType::UShort ||
8098              BTy->getKind() == BuiltinType::ULong ||
8099              BTy->getKind() == BuiltinType::ULongLong;
8100     } else {
8101       // AArch32 polynomial vectors are signed.
8102       return BTy->getKind() == BuiltinType::SChar ||
8103              BTy->getKind() == BuiltinType::Short ||
8104              BTy->getKind() == BuiltinType::LongLong;
8105     }
8106   }
8107 
8108   // Non-polynomial vector types: the usual suspects are allowed, as well as
8109   // float64_t on AArch64.
8110   if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
8111       BTy->getKind() == BuiltinType::Double)
8112     return true;
8113 
8114   return BTy->getKind() == BuiltinType::SChar ||
8115          BTy->getKind() == BuiltinType::UChar ||
8116          BTy->getKind() == BuiltinType::Short ||
8117          BTy->getKind() == BuiltinType::UShort ||
8118          BTy->getKind() == BuiltinType::Int ||
8119          BTy->getKind() == BuiltinType::UInt ||
8120          BTy->getKind() == BuiltinType::Long ||
8121          BTy->getKind() == BuiltinType::ULong ||
8122          BTy->getKind() == BuiltinType::LongLong ||
8123          BTy->getKind() == BuiltinType::ULongLong ||
8124          BTy->getKind() == BuiltinType::Float ||
8125          BTy->getKind() == BuiltinType::Half ||
8126          BTy->getKind() == BuiltinType::BFloat16;
8127 }
8128 
verifyValidIntegerConstantExpr(Sema & S,const ParsedAttr & Attr,llvm::APSInt & Result)8129 static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
8130                                            llvm::APSInt &Result) {
8131   const auto *AttrExpr = Attr.getArgAsExpr(0);
8132   if (!AttrExpr->isTypeDependent()) {
8133     if (std::optional<llvm::APSInt> Res =
8134             AttrExpr->getIntegerConstantExpr(S.Context)) {
8135       Result = *Res;
8136       return true;
8137     }
8138   }
8139   S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
8140       << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
8141   Attr.setInvalid();
8142   return false;
8143 }
8144 
8145 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
8146 /// "neon_polyvector_type" attributes are used to create vector types that
8147 /// are mangled according to ARM's ABI.  Otherwise, these types are identical
8148 /// to those created with the "vector_size" attribute.  Unlike "vector_size"
8149 /// the argument to these Neon attributes is the number of vector elements,
8150 /// not the vector size in bytes.  The vector width and element type must
8151 /// match one of the standard Neon vector types.
HandleNeonVectorTypeAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S,VectorKind VecKind)8152 static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8153                                      Sema &S, VectorKind VecKind) {
8154   bool IsTargetCUDAAndHostARM = false;
8155   if (S.getLangOpts().CUDAIsDevice) {
8156     const TargetInfo *AuxTI = S.getASTContext().getAuxTargetInfo();
8157     IsTargetCUDAAndHostARM =
8158         AuxTI && (AuxTI->getTriple().isAArch64() || AuxTI->getTriple().isARM());
8159   }
8160 
8161   // Target must have NEON (or MVE, whose vectors are similar enough
8162   // not to need a separate attribute)
8163   if (!S.Context.getTargetInfo().hasFeature("mve") &&
8164       VecKind == VectorKind::Neon &&
8165       S.Context.getTargetInfo().getTriple().isArmMClass()) {
8166     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile)
8167         << Attr << "'mve'";
8168     Attr.setInvalid();
8169     return;
8170   }
8171   if (!S.Context.getTargetInfo().hasFeature("mve") &&
8172       VecKind == VectorKind::NeonPoly &&
8173       S.Context.getTargetInfo().getTriple().isArmMClass()) {
8174     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile)
8175         << Attr << "'mve'";
8176     Attr.setInvalid();
8177     return;
8178   }
8179 
8180   // Check the attribute arguments.
8181   if (Attr.getNumArgs() != 1) {
8182     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8183         << Attr << 1;
8184     Attr.setInvalid();
8185     return;
8186   }
8187   // The number of elements must be an ICE.
8188   llvm::APSInt numEltsInt(32);
8189   if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt))
8190     return;
8191 
8192   // Only certain element types are supported for Neon vectors.
8193   if (!isPermittedNeonBaseType(CurType, VecKind, S) &&
8194       !IsTargetCUDAAndHostARM) {
8195     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
8196     Attr.setInvalid();
8197     return;
8198   }
8199 
8200   // The total size of the vector must be 64 or 128 bits.
8201   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
8202   unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
8203   unsigned vecSize = typeSize * numElts;
8204   if (vecSize != 64 && vecSize != 128) {
8205     S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
8206     Attr.setInvalid();
8207     return;
8208   }
8209 
8210   CurType = S.Context.getVectorType(CurType, numElts, VecKind);
8211 }
8212 
8213 /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
8214 /// used to create fixed-length versions of sizeless SVE types defined by
8215 /// the ACLE, such as svint32_t and svbool_t.
HandleArmSveVectorBitsTypeAttr(QualType & CurType,ParsedAttr & Attr,Sema & S)8216 static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
8217                                            Sema &S) {
8218   // Target must have SVE.
8219   if (!S.Context.getTargetInfo().hasFeature("sve")) {
8220     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'";
8221     Attr.setInvalid();
8222     return;
8223   }
8224 
8225   // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or
8226   // if <bits>+ syntax is used.
8227   if (!S.getLangOpts().VScaleMin ||
8228       S.getLangOpts().VScaleMin != S.getLangOpts().VScaleMax) {
8229     S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
8230         << Attr;
8231     Attr.setInvalid();
8232     return;
8233   }
8234 
8235   // Check the attribute arguments.
8236   if (Attr.getNumArgs() != 1) {
8237     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8238         << Attr << 1;
8239     Attr.setInvalid();
8240     return;
8241   }
8242 
8243   // The vector size must be an integer constant expression.
8244   llvm::APSInt SveVectorSizeInBits(32);
8245   if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits))
8246     return;
8247 
8248   unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
8249 
8250   // The attribute vector size must match -msve-vector-bits.
8251   if (VecSize != S.getLangOpts().VScaleMin * 128) {
8252     S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
8253         << VecSize << S.getLangOpts().VScaleMin * 128;
8254     Attr.setInvalid();
8255     return;
8256   }
8257 
8258   // Attribute can only be attached to a single SVE vector or predicate type.
8259   if (!CurType->isSveVLSBuiltinType()) {
8260     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
8261         << Attr << CurType;
8262     Attr.setInvalid();
8263     return;
8264   }
8265 
8266   const auto *BT = CurType->castAs<BuiltinType>();
8267 
8268   QualType EltType = CurType->getSveEltType(S.Context);
8269   unsigned TypeSize = S.Context.getTypeSize(EltType);
8270   VectorKind VecKind = VectorKind::SveFixedLengthData;
8271   if (BT->getKind() == BuiltinType::SveBool) {
8272     // Predicates are represented as i8.
8273     VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
8274     VecKind = VectorKind::SveFixedLengthPredicate;
8275   } else
8276     VecSize /= TypeSize;
8277   CurType = S.Context.getVectorType(EltType, VecSize, VecKind);
8278 }
8279 
HandleArmMveStrictPolymorphismAttr(TypeProcessingState & State,QualType & CurType,ParsedAttr & Attr)8280 static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
8281                                                QualType &CurType,
8282                                                ParsedAttr &Attr) {
8283   const VectorType *VT = dyn_cast<VectorType>(CurType);
8284   if (!VT || VT->getVectorKind() != VectorKind::Neon) {
8285     State.getSema().Diag(Attr.getLoc(),
8286                          diag::err_attribute_arm_mve_polymorphism);
8287     Attr.setInvalid();
8288     return;
8289   }
8290 
8291   CurType =
8292       State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
8293                                   State.getSema().Context, Attr),
8294                               CurType, CurType);
8295 }
8296 
8297 /// HandleRISCVRVVVectorBitsTypeAttr - The "riscv_rvv_vector_bits" attribute is
8298 /// used to create fixed-length versions of sizeless RVV types such as
8299 /// vint8m1_t_t.
HandleRISCVRVVVectorBitsTypeAttr(QualType & CurType,ParsedAttr & Attr,Sema & S)8300 static void HandleRISCVRVVVectorBitsTypeAttr(QualType &CurType,
8301                                              ParsedAttr &Attr, Sema &S) {
8302   // Target must have vector extension.
8303   if (!S.Context.getTargetInfo().hasFeature("zve32x")) {
8304     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
8305         << Attr << "'zve32x'";
8306     Attr.setInvalid();
8307     return;
8308   }
8309 
8310   auto VScale = S.Context.getTargetInfo().getVScaleRange(S.getLangOpts());
8311   if (!VScale || !VScale->first || VScale->first != VScale->second) {
8312     S.Diag(Attr.getLoc(), diag::err_attribute_riscv_rvv_bits_unsupported)
8313         << Attr;
8314     Attr.setInvalid();
8315     return;
8316   }
8317 
8318   // Check the attribute arguments.
8319   if (Attr.getNumArgs() != 1) {
8320     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8321         << Attr << 1;
8322     Attr.setInvalid();
8323     return;
8324   }
8325 
8326   // The vector size must be an integer constant expression.
8327   llvm::APSInt RVVVectorSizeInBits(32);
8328   if (!verifyValidIntegerConstantExpr(S, Attr, RVVVectorSizeInBits))
8329     return;
8330 
8331   // Attribute can only be attached to a single RVV vector type.
8332   if (!CurType->isRVVVLSBuiltinType()) {
8333     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_rvv_type)
8334         << Attr << CurType;
8335     Attr.setInvalid();
8336     return;
8337   }
8338 
8339   unsigned VecSize = static_cast<unsigned>(RVVVectorSizeInBits.getZExtValue());
8340 
8341   ASTContext::BuiltinVectorTypeInfo Info =
8342       S.Context.getBuiltinVectorTypeInfo(CurType->castAs<BuiltinType>());
8343   unsigned MinElts = Info.EC.getKnownMinValue();
8344 
8345   VectorKind VecKind = VectorKind::RVVFixedLengthData;
8346   unsigned ExpectedSize = VScale->first * MinElts;
8347   QualType EltType = CurType->getRVVEltType(S.Context);
8348   unsigned EltSize = S.Context.getTypeSize(EltType);
8349   unsigned NumElts;
8350   if (Info.ElementType == S.Context.BoolTy) {
8351     NumElts = VecSize / S.Context.getCharWidth();
8352     VecKind = VectorKind::RVVFixedLengthMask;
8353   } else {
8354     ExpectedSize *= EltSize;
8355     NumElts = VecSize / EltSize;
8356   }
8357 
8358   // The attribute vector size must match -mrvv-vector-bits.
8359   if (ExpectedSize % 8 != 0 || VecSize != ExpectedSize) {
8360     S.Diag(Attr.getLoc(), diag::err_attribute_bad_rvv_vector_size)
8361         << VecSize << ExpectedSize;
8362     Attr.setInvalid();
8363     return;
8364   }
8365 
8366   CurType = S.Context.getVectorType(EltType, NumElts, VecKind);
8367 }
8368 
8369 /// Handle OpenCL Access Qualifier Attribute.
HandleOpenCLAccessAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S)8370 static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
8371                                    Sema &S) {
8372   // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
8373   if (!(CurType->isImageType() || CurType->isPipeType())) {
8374     S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
8375     Attr.setInvalid();
8376     return;
8377   }
8378 
8379   if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
8380     QualType BaseTy = TypedefTy->desugar();
8381 
8382     std::string PrevAccessQual;
8383     if (BaseTy->isPipeType()) {
8384       if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
8385         OpenCLAccessAttr *Attr =
8386             TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
8387         PrevAccessQual = Attr->getSpelling();
8388       } else {
8389         PrevAccessQual = "read_only";
8390       }
8391     } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
8392 
8393       switch (ImgType->getKind()) {
8394         #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8395       case BuiltinType::Id:                                          \
8396         PrevAccessQual = #Access;                                    \
8397         break;
8398         #include "clang/Basic/OpenCLImageTypes.def"
8399       default:
8400         llvm_unreachable("Unable to find corresponding image type.");
8401       }
8402     } else {
8403       llvm_unreachable("unexpected type");
8404     }
8405     StringRef AttrName = Attr.getAttrName()->getName();
8406     if (PrevAccessQual == AttrName.ltrim("_")) {
8407       // Duplicated qualifiers
8408       S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
8409          << AttrName << Attr.getRange();
8410     } else {
8411       // Contradicting qualifiers
8412       S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
8413     }
8414 
8415     S.Diag(TypedefTy->getDecl()->getBeginLoc(),
8416            diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
8417   } else if (CurType->isPipeType()) {
8418     if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
8419       QualType ElemType = CurType->castAs<PipeType>()->getElementType();
8420       CurType = S.Context.getWritePipeType(ElemType);
8421     }
8422   }
8423 }
8424 
8425 /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
HandleMatrixTypeAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S)8426 static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8427                                  Sema &S) {
8428   if (!S.getLangOpts().MatrixTypes) {
8429     S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
8430     return;
8431   }
8432 
8433   if (Attr.getNumArgs() != 2) {
8434     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8435         << Attr << 2;
8436     return;
8437   }
8438 
8439   Expr *RowsExpr = Attr.getArgAsExpr(0);
8440   Expr *ColsExpr = Attr.getArgAsExpr(1);
8441   QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc());
8442   if (!T.isNull())
8443     CurType = T;
8444 }
8445 
HandleAnnotateTypeAttr(TypeProcessingState & State,QualType & CurType,const ParsedAttr & PA)8446 static void HandleAnnotateTypeAttr(TypeProcessingState &State,
8447                                    QualType &CurType, const ParsedAttr &PA) {
8448   Sema &S = State.getSema();
8449 
8450   if (PA.getNumArgs() < 1) {
8451     S.Diag(PA.getLoc(), diag::err_attribute_too_few_arguments) << PA << 1;
8452     return;
8453   }
8454 
8455   // Make sure that there is a string literal as the annotation's first
8456   // argument.
8457   StringRef Str;
8458   if (!S.checkStringLiteralArgumentAttr(PA, 0, Str))
8459     return;
8460 
8461   llvm::SmallVector<Expr *, 4> Args;
8462   Args.reserve(PA.getNumArgs() - 1);
8463   for (unsigned Idx = 1; Idx < PA.getNumArgs(); Idx++) {
8464     assert(!PA.isArgIdent(Idx));
8465     Args.push_back(PA.getArgAsExpr(Idx));
8466   }
8467   if (!S.ConstantFoldAttrArgs(PA, Args))
8468     return;
8469   auto *AnnotateTypeAttr =
8470       AnnotateTypeAttr::Create(S.Context, Str, Args.data(), Args.size(), PA);
8471   CurType = State.getAttributedType(AnnotateTypeAttr, CurType, CurType);
8472 }
8473 
HandleLifetimeBoundAttr(TypeProcessingState & State,QualType & CurType,ParsedAttr & Attr)8474 static void HandleLifetimeBoundAttr(TypeProcessingState &State,
8475                                     QualType &CurType,
8476                                     ParsedAttr &Attr) {
8477   if (State.getDeclarator().isDeclarationOfFunction()) {
8478     CurType = State.getAttributedType(
8479         createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
8480         CurType, CurType);
8481   }
8482 }
8483 
HandleHLSLParamModifierAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S)8484 static void HandleHLSLParamModifierAttr(QualType &CurType,
8485                                         const ParsedAttr &Attr, Sema &S) {
8486   // Don't apply this attribute to template dependent types. It is applied on
8487   // substitution during template instantiation.
8488   if (CurType->isDependentType())
8489     return;
8490   if (Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_inout ||
8491       Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_out)
8492     CurType = S.getASTContext().getLValueReferenceType(CurType);
8493 }
8494 
processTypeAttrs(TypeProcessingState & state,QualType & type,TypeAttrLocation TAL,const ParsedAttributesView & attrs,CUDAFunctionTarget CFT)8495 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
8496                              TypeAttrLocation TAL,
8497                              const ParsedAttributesView &attrs,
8498                              CUDAFunctionTarget CFT) {
8499 
8500   state.setParsedNoDeref(false);
8501   if (attrs.empty())
8502     return;
8503 
8504   // Scan through and apply attributes to this type where it makes sense.  Some
8505   // attributes (such as __address_space__, __vector_size__, etc) apply to the
8506   // type, but others can be present in the type specifiers even though they
8507   // apply to the decl.  Here we apply type attributes and ignore the rest.
8508 
8509   // This loop modifies the list pretty frequently, but we still need to make
8510   // sure we visit every element once. Copy the attributes list, and iterate
8511   // over that.
8512   ParsedAttributesView AttrsCopy{attrs};
8513   for (ParsedAttr &attr : AttrsCopy) {
8514 
8515     // Skip attributes that were marked to be invalid.
8516     if (attr.isInvalid())
8517       continue;
8518 
8519     if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute()) {
8520       // [[gnu::...]] attributes are treated as declaration attributes, so may
8521       // not appertain to a DeclaratorChunk. If we handle them as type
8522       // attributes, accept them in that position and diagnose the GCC
8523       // incompatibility.
8524       if (attr.isGNUScope()) {
8525         assert(attr.isStandardAttributeSyntax());
8526         bool IsTypeAttr = attr.isTypeAttr();
8527         if (TAL == TAL_DeclChunk) {
8528           state.getSema().Diag(attr.getLoc(),
8529                                IsTypeAttr
8530                                    ? diag::warn_gcc_ignores_type_attr
8531                                    : diag::warn_cxx11_gnu_attribute_on_type)
8532               << attr;
8533           if (!IsTypeAttr)
8534             continue;
8535         }
8536       } else if (TAL != TAL_DeclSpec && TAL != TAL_DeclChunk &&
8537                  !attr.isTypeAttr()) {
8538         // Otherwise, only consider type processing for a C++11 attribute if
8539         // - it has actually been applied to a type (decl-specifier-seq or
8540         //   declarator chunk), or
8541         // - it is a type attribute, irrespective of where it was applied (so
8542         //   that we can support the legacy behavior of some type attributes
8543         //   that can be applied to the declaration name).
8544         continue;
8545       }
8546     }
8547 
8548     // If this is an attribute we can handle, do so now,
8549     // otherwise, add it to the FnAttrs list for rechaining.
8550     switch (attr.getKind()) {
8551     default:
8552       // A [[]] attribute on a declarator chunk must appertain to a type.
8553       if ((attr.isStandardAttributeSyntax() ||
8554            attr.isRegularKeywordAttribute()) &&
8555           TAL == TAL_DeclChunk) {
8556         state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8557             << attr << attr.isRegularKeywordAttribute();
8558         attr.setUsedAsTypeAttr();
8559       }
8560       break;
8561 
8562     case ParsedAttr::UnknownAttribute:
8563       if (attr.isStandardAttributeSyntax()) {
8564         state.getSema().Diag(attr.getLoc(),
8565                              diag::warn_unknown_attribute_ignored)
8566             << attr << attr.getRange();
8567         // Mark the attribute as invalid so we don't emit the same diagnostic
8568         // multiple times.
8569         attr.setInvalid();
8570       }
8571       break;
8572 
8573     case ParsedAttr::IgnoredAttribute:
8574       break;
8575 
8576     case ParsedAttr::AT_BTFTypeTag:
8577       HandleBTFTypeTagAttribute(type, attr, state);
8578       attr.setUsedAsTypeAttr();
8579       break;
8580 
8581     case ParsedAttr::AT_MayAlias:
8582       // FIXME: This attribute needs to actually be handled, but if we ignore
8583       // it it breaks large amounts of Linux software.
8584       attr.setUsedAsTypeAttr();
8585       break;
8586     case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8587     case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8588     case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8589     case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8590     case ParsedAttr::AT_OpenCLLocalAddressSpace:
8591     case ParsedAttr::AT_OpenCLConstantAddressSpace:
8592     case ParsedAttr::AT_OpenCLGenericAddressSpace:
8593     case ParsedAttr::AT_HLSLGroupSharedAddressSpace:
8594     case ParsedAttr::AT_AddressSpace:
8595       HandleAddressSpaceTypeAttribute(type, attr, state);
8596       attr.setUsedAsTypeAttr();
8597       break;
8598     OBJC_POINTER_TYPE_ATTRS_CASELIST:
8599       if (!handleObjCPointerTypeAttr(state, attr, type))
8600         distributeObjCPointerTypeAttr(state, attr, type);
8601       attr.setUsedAsTypeAttr();
8602       break;
8603     case ParsedAttr::AT_VectorSize:
8604       HandleVectorSizeAttr(type, attr, state.getSema());
8605       attr.setUsedAsTypeAttr();
8606       break;
8607     case ParsedAttr::AT_ExtVectorType:
8608       HandleExtVectorTypeAttr(type, attr, state.getSema());
8609       attr.setUsedAsTypeAttr();
8610       break;
8611     case ParsedAttr::AT_NeonVectorType:
8612       HandleNeonVectorTypeAttr(type, attr, state.getSema(), VectorKind::Neon);
8613       attr.setUsedAsTypeAttr();
8614       break;
8615     case ParsedAttr::AT_NeonPolyVectorType:
8616       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8617                                VectorKind::NeonPoly);
8618       attr.setUsedAsTypeAttr();
8619       break;
8620     case ParsedAttr::AT_ArmSveVectorBits:
8621       HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema());
8622       attr.setUsedAsTypeAttr();
8623       break;
8624     case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8625       HandleArmMveStrictPolymorphismAttr(state, type, attr);
8626       attr.setUsedAsTypeAttr();
8627       break;
8628     }
8629     case ParsedAttr::AT_RISCVRVVVectorBits:
8630       HandleRISCVRVVVectorBitsTypeAttr(type, attr, state.getSema());
8631       attr.setUsedAsTypeAttr();
8632       break;
8633     case ParsedAttr::AT_OpenCLAccess:
8634       HandleOpenCLAccessAttr(type, attr, state.getSema());
8635       attr.setUsedAsTypeAttr();
8636       break;
8637     case ParsedAttr::AT_LifetimeBound:
8638       if (TAL == TAL_DeclChunk)
8639         HandleLifetimeBoundAttr(state, type, attr);
8640       break;
8641 
8642     case ParsedAttr::AT_NoDeref: {
8643       // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8644       // See https://github.com/llvm/llvm-project/issues/55790 for details.
8645       // For the time being, we simply emit a warning that the attribute is
8646       // ignored.
8647       if (attr.isStandardAttributeSyntax()) {
8648         state.getSema().Diag(attr.getLoc(), diag::warn_attribute_ignored)
8649             << attr;
8650         break;
8651       }
8652       ASTContext &Ctx = state.getSema().Context;
8653       type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8654                                      type, type);
8655       attr.setUsedAsTypeAttr();
8656       state.setParsedNoDeref(true);
8657       break;
8658     }
8659 
8660     case ParsedAttr::AT_MatrixType:
8661       HandleMatrixTypeAttr(type, attr, state.getSema());
8662       attr.setUsedAsTypeAttr();
8663       break;
8664 
8665     case ParsedAttr::AT_WebAssemblyFuncref: {
8666       if (!HandleWebAssemblyFuncrefAttr(state, type, attr))
8667         attr.setUsedAsTypeAttr();
8668       break;
8669     }
8670 
8671     case ParsedAttr::AT_HLSLParamModifier: {
8672       HandleHLSLParamModifierAttr(type, attr, state.getSema());
8673       attr.setUsedAsTypeAttr();
8674       break;
8675     }
8676 
8677     MS_TYPE_ATTRS_CASELIST:
8678       if (!handleMSPointerTypeQualifierAttr(state, attr, type))
8679         attr.setUsedAsTypeAttr();
8680       break;
8681 
8682 
8683     NULLABILITY_TYPE_ATTRS_CASELIST:
8684       // Either add nullability here or try to distribute it.  We
8685       // don't want to distribute the nullability specifier past any
8686       // dependent type, because that complicates the user model.
8687       if (type->canHaveNullability() || type->isDependentType() ||
8688           type->isArrayType() ||
8689           !distributeNullabilityTypeAttr(state, type, attr)) {
8690         unsigned endIndex;
8691         if (TAL == TAL_DeclChunk)
8692           endIndex = state.getCurrentChunkIndex();
8693         else
8694           endIndex = state.getDeclarator().getNumTypeObjects();
8695         bool allowOnArrayType =
8696             state.getDeclarator().isPrototypeContext() &&
8697             !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
8698         if (CheckNullabilityTypeSpecifier(state, type, attr,
8699                                           allowOnArrayType)) {
8700           attr.setInvalid();
8701         }
8702 
8703         attr.setUsedAsTypeAttr();
8704       }
8705       break;
8706 
8707     case ParsedAttr::AT_ObjCKindOf:
8708       // '__kindof' must be part of the decl-specifiers.
8709       switch (TAL) {
8710       case TAL_DeclSpec:
8711         break;
8712 
8713       case TAL_DeclChunk:
8714       case TAL_DeclName:
8715         state.getSema().Diag(attr.getLoc(),
8716                              diag::err_objc_kindof_wrong_position)
8717             << FixItHint::CreateRemoval(attr.getLoc())
8718             << FixItHint::CreateInsertion(
8719                    state.getDeclarator().getDeclSpec().getBeginLoc(),
8720                    "__kindof ");
8721         break;
8722       }
8723 
8724       // Apply it regardless.
8725       if (checkObjCKindOfType(state, type, attr))
8726         attr.setInvalid();
8727       break;
8728 
8729     case ParsedAttr::AT_NoThrow:
8730     // Exception Specifications aren't generally supported in C mode throughout
8731     // clang, so revert to attribute-based handling for C.
8732       if (!state.getSema().getLangOpts().CPlusPlus)
8733         break;
8734       [[fallthrough]];
8735     FUNCTION_TYPE_ATTRS_CASELIST:
8736       attr.setUsedAsTypeAttr();
8737 
8738       // Attributes with standard syntax have strict rules for what they
8739       // appertain to and hence should not use the "distribution" logic below.
8740       if (attr.isStandardAttributeSyntax() ||
8741           attr.isRegularKeywordAttribute()) {
8742         if (!handleFunctionTypeAttr(state, attr, type, CFT)) {
8743           diagnoseBadTypeAttribute(state.getSema(), attr, type);
8744           attr.setInvalid();
8745         }
8746         break;
8747       }
8748 
8749       // Never process function type attributes as part of the
8750       // declaration-specifiers.
8751       if (TAL == TAL_DeclSpec)
8752         distributeFunctionTypeAttrFromDeclSpec(state, attr, type, CFT);
8753 
8754       // Otherwise, handle the possible delays.
8755       else if (!handleFunctionTypeAttr(state, attr, type, CFT))
8756         distributeFunctionTypeAttr(state, attr, type);
8757       break;
8758     case ParsedAttr::AT_AcquireHandle: {
8759       if (!type->isFunctionType())
8760         return;
8761 
8762       if (attr.getNumArgs() != 1) {
8763         state.getSema().Diag(attr.getLoc(),
8764                              diag::err_attribute_wrong_number_arguments)
8765             << attr << 1;
8766         attr.setInvalid();
8767         return;
8768       }
8769 
8770       StringRef HandleType;
8771       if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
8772         return;
8773       type = state.getAttributedType(
8774           AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
8775           type, type);
8776       attr.setUsedAsTypeAttr();
8777       break;
8778     }
8779     case ParsedAttr::AT_AnnotateType: {
8780       HandleAnnotateTypeAttr(state, type, attr);
8781       attr.setUsedAsTypeAttr();
8782       break;
8783     }
8784     }
8785 
8786     // Handle attributes that are defined in a macro. We do not want this to be
8787     // applied to ObjC builtin attributes.
8788     if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
8789         !type.getQualifiers().hasObjCLifetime() &&
8790         !type.getQualifiers().hasObjCGCAttr() &&
8791         attr.getKind() != ParsedAttr::AT_ObjCGC &&
8792         attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
8793       const IdentifierInfo *MacroII = attr.getMacroIdentifier();
8794       type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
8795       state.setExpansionLocForMacroQualifiedType(
8796           cast<MacroQualifiedType>(type.getTypePtr()),
8797           attr.getMacroExpansionLoc());
8798     }
8799   }
8800 }
8801 
completeExprArrayBound(Expr * E)8802 void Sema::completeExprArrayBound(Expr *E) {
8803   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8804     if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8805       if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
8806         auto *Def = Var->getDefinition();
8807         if (!Def) {
8808           SourceLocation PointOfInstantiation = E->getExprLoc();
8809           runWithSufficientStackSpace(PointOfInstantiation, [&] {
8810             InstantiateVariableDefinition(PointOfInstantiation, Var);
8811           });
8812           Def = Var->getDefinition();
8813 
8814           // If we don't already have a point of instantiation, and we managed
8815           // to instantiate a definition, this is the point of instantiation.
8816           // Otherwise, we don't request an end-of-TU instantiation, so this is
8817           // not a point of instantiation.
8818           // FIXME: Is this really the right behavior?
8819           if (Var->getPointOfInstantiation().isInvalid() && Def) {
8820             assert(Var->getTemplateSpecializationKind() ==
8821                        TSK_ImplicitInstantiation &&
8822                    "explicit instantiation with no point of instantiation");
8823             Var->setTemplateSpecializationKind(
8824                 Var->getTemplateSpecializationKind(), PointOfInstantiation);
8825           }
8826         }
8827 
8828         // Update the type to the definition's type both here and within the
8829         // expression.
8830         if (Def) {
8831           DRE->setDecl(Def);
8832           QualType T = Def->getType();
8833           DRE->setType(T);
8834           // FIXME: Update the type on all intervening expressions.
8835           E->setType(T);
8836         }
8837 
8838         // We still go on to try to complete the type independently, as it
8839         // may also require instantiations or diagnostics if it remains
8840         // incomplete.
8841       }
8842     }
8843   }
8844   if (const auto CastE = dyn_cast<ExplicitCastExpr>(E)) {
8845     QualType DestType = CastE->getTypeAsWritten();
8846     if (const auto *IAT = Context.getAsIncompleteArrayType(DestType)) {
8847       // C++20 [expr.static.cast]p.4: ... If T is array of unknown bound,
8848       // this direct-initialization defines the type of the expression
8849       // as U[1]
8850       QualType ResultType = Context.getConstantArrayType(
8851           IAT->getElementType(),
8852           llvm::APInt(Context.getTypeSize(Context.getSizeType()), 1),
8853           /*SizeExpr=*/nullptr, ArraySizeModifier::Normal,
8854           /*IndexTypeQuals=*/0);
8855       E->setType(ResultType);
8856     }
8857   }
8858 }
8859 
getCompletedType(Expr * E)8860 QualType Sema::getCompletedType(Expr *E) {
8861   // Incomplete array types may be completed by the initializer attached to
8862   // their definitions. For static data members of class templates and for
8863   // variable templates, we need to instantiate the definition to get this
8864   // initializer and complete the type.
8865   if (E->getType()->isIncompleteArrayType())
8866     completeExprArrayBound(E);
8867 
8868   // FIXME: Are there other cases which require instantiating something other
8869   // than the type to complete the type of an expression?
8870 
8871   return E->getType();
8872 }
8873 
RequireCompleteExprType(Expr * E,CompleteTypeKind Kind,TypeDiagnoser & Diagnoser)8874 bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
8875                                    TypeDiagnoser &Diagnoser) {
8876   return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind,
8877                              Diagnoser);
8878 }
8879 
RequireCompleteExprType(Expr * E,unsigned DiagID)8880 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
8881   BoundTypeDiagnoser<> Diagnoser(DiagID);
8882   return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
8883 }
8884 
RequireCompleteType(SourceLocation Loc,QualType T,CompleteTypeKind Kind,TypeDiagnoser & Diagnoser)8885 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8886                                CompleteTypeKind Kind,
8887                                TypeDiagnoser &Diagnoser) {
8888   if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser))
8889     return true;
8890   if (const TagType *Tag = T->getAs<TagType>()) {
8891     if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
8892       Tag->getDecl()->setCompleteDefinitionRequired();
8893       Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
8894     }
8895   }
8896   return false;
8897 }
8898 
hasStructuralCompatLayout(Decl * D,Decl * Suggested)8899 bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
8900   llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
8901   if (!Suggested)
8902     return false;
8903 
8904   // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
8905   // and isolate from other C++ specific checks.
8906   StructuralEquivalenceContext Ctx(
8907       D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
8908       StructuralEquivalenceKind::Default,
8909       false /*StrictTypeSpelling*/, true /*Complain*/,
8910       true /*ErrorOnTagTypeMismatch*/);
8911   return Ctx.IsEquivalent(D, Suggested);
8912 }
8913 
hasAcceptableDefinition(NamedDecl * D,NamedDecl ** Suggested,AcceptableKind Kind,bool OnlyNeedComplete)8914 bool Sema::hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested,
8915                                    AcceptableKind Kind, bool OnlyNeedComplete) {
8916   // Easy case: if we don't have modules, all declarations are visible.
8917   if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
8918     return true;
8919 
8920   // If this definition was instantiated from a template, map back to the
8921   // pattern from which it was instantiated.
8922   if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
8923     // We're in the middle of defining it; this definition should be treated
8924     // as visible.
8925     return true;
8926   } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
8927     if (auto *Pattern = RD->getTemplateInstantiationPattern())
8928       RD = Pattern;
8929     D = RD->getDefinition();
8930   } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
8931     if (auto *Pattern = ED->getTemplateInstantiationPattern())
8932       ED = Pattern;
8933     if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
8934       // If the enum has a fixed underlying type, it may have been forward
8935       // declared. In -fms-compatibility, `enum Foo;` will also forward declare
8936       // the enum and assign it the underlying type of `int`. Since we're only
8937       // looking for a complete type (not a definition), any visible declaration
8938       // of it will do.
8939       *Suggested = nullptr;
8940       for (auto *Redecl : ED->redecls()) {
8941         if (isAcceptable(Redecl, Kind))
8942           return true;
8943         if (Redecl->isThisDeclarationADefinition() ||
8944             (Redecl->isCanonicalDecl() && !*Suggested))
8945           *Suggested = Redecl;
8946       }
8947 
8948       return false;
8949     }
8950     D = ED->getDefinition();
8951   } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
8952     if (auto *Pattern = FD->getTemplateInstantiationPattern())
8953       FD = Pattern;
8954     D = FD->getDefinition();
8955   } else if (auto *VD = dyn_cast<VarDecl>(D)) {
8956     if (auto *Pattern = VD->getTemplateInstantiationPattern())
8957       VD = Pattern;
8958     D = VD->getDefinition();
8959   }
8960 
8961   assert(D && "missing definition for pattern of instantiated definition");
8962 
8963   *Suggested = D;
8964 
8965   auto DefinitionIsAcceptable = [&] {
8966     // The (primary) definition might be in a visible module.
8967     if (isAcceptable(D, Kind))
8968       return true;
8969 
8970     // A visible module might have a merged definition instead.
8971     if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
8972                              : hasVisibleMergedDefinition(D)) {
8973       if (CodeSynthesisContexts.empty() &&
8974           !getLangOpts().ModulesLocalVisibility) {
8975         // Cache the fact that this definition is implicitly visible because
8976         // there is a visible merged definition.
8977         D->setVisibleDespiteOwningModule();
8978       }
8979       return true;
8980     }
8981 
8982     return false;
8983   };
8984 
8985   if (DefinitionIsAcceptable())
8986     return true;
8987 
8988   // The external source may have additional definitions of this entity that are
8989   // visible, so complete the redeclaration chain now and ask again.
8990   if (auto *Source = Context.getExternalSource()) {
8991     Source->CompleteRedeclChain(D);
8992     return DefinitionIsAcceptable();
8993   }
8994 
8995   return false;
8996 }
8997 
8998 /// Determine whether there is any declaration of \p D that was ever a
8999 ///        definition (perhaps before module merging) and is currently visible.
9000 /// \param D The definition of the entity.
9001 /// \param Suggested Filled in with the declaration that should be made visible
9002 ///        in order to provide a definition of this entity.
9003 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9004 ///        not defined. This only matters for enums with a fixed underlying
9005 ///        type, since in all other cases, a type is complete if and only if it
9006 ///        is defined.
hasVisibleDefinition(NamedDecl * D,NamedDecl ** Suggested,bool OnlyNeedComplete)9007 bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
9008                                 bool OnlyNeedComplete) {
9009   return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Visible,
9010                                  OnlyNeedComplete);
9011 }
9012 
9013 /// Determine whether there is any declaration of \p D that was ever a
9014 ///        definition (perhaps before module merging) and is currently
9015 ///        reachable.
9016 /// \param D The definition of the entity.
9017 /// \param Suggested Filled in with the declaration that should be made
9018 /// reachable
9019 ///        in order to provide a definition of this entity.
9020 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9021 ///        not defined. This only matters for enums with a fixed underlying
9022 ///        type, since in all other cases, a type is complete if and only if it
9023 ///        is defined.
hasReachableDefinition(NamedDecl * D,NamedDecl ** Suggested,bool OnlyNeedComplete)9024 bool Sema::hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested,
9025                                   bool OnlyNeedComplete) {
9026   return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Reachable,
9027                                  OnlyNeedComplete);
9028 }
9029 
9030 /// Locks in the inheritance model for the given class and all of its bases.
assignInheritanceModel(Sema & S,CXXRecordDecl * RD)9031 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
9032   RD = RD->getMostRecentNonInjectedDecl();
9033   if (!RD->hasAttr<MSInheritanceAttr>()) {
9034     MSInheritanceModel IM;
9035     bool BestCase = false;
9036     switch (S.MSPointerToMemberRepresentationMethod) {
9037     case LangOptions::PPTMK_BestCase:
9038       BestCase = true;
9039       IM = RD->calculateInheritanceModel();
9040       break;
9041     case LangOptions::PPTMK_FullGeneralitySingleInheritance:
9042       IM = MSInheritanceModel::Single;
9043       break;
9044     case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
9045       IM = MSInheritanceModel::Multiple;
9046       break;
9047     case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
9048       IM = MSInheritanceModel::Unspecified;
9049       break;
9050     }
9051 
9052     SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
9053                           ? S.ImplicitMSInheritanceAttrLoc
9054                           : RD->getSourceRange();
9055     RD->addAttr(MSInheritanceAttr::CreateImplicit(
9056         S.getASTContext(), BestCase, Loc, MSInheritanceAttr::Spelling(IM)));
9057     S.Consumer.AssignInheritanceModel(RD);
9058   }
9059 }
9060 
RequireCompleteTypeImpl(SourceLocation Loc,QualType T,CompleteTypeKind Kind,TypeDiagnoser * Diagnoser)9061 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
9062                                    CompleteTypeKind Kind,
9063                                    TypeDiagnoser *Diagnoser) {
9064   // FIXME: Add this assertion to make sure we always get instantiation points.
9065   //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
9066   // FIXME: Add this assertion to help us flush out problems with
9067   // checking for dependent types and type-dependent expressions.
9068   //
9069   //  assert(!T->isDependentType() &&
9070   //         "Can't ask whether a dependent type is complete");
9071 
9072   if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
9073     if (!MPTy->getClass()->isDependentType()) {
9074       if (getLangOpts().CompleteMemberPointers &&
9075           !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
9076           RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
9077                               diag::err_memptr_incomplete))
9078         return true;
9079 
9080       // We lock in the inheritance model once somebody has asked us to ensure
9081       // that a pointer-to-member type is complete.
9082       if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9083         (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
9084         assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
9085       }
9086     }
9087   }
9088 
9089   NamedDecl *Def = nullptr;
9090   bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
9091   bool Incomplete = (T->isIncompleteType(&Def) ||
9092                      (!AcceptSizeless && T->isSizelessBuiltinType()));
9093 
9094   // Check that any necessary explicit specializations are visible. For an
9095   // enum, we just need the declaration, so don't check this.
9096   if (Def && !isa<EnumDecl>(Def))
9097     checkSpecializationReachability(Loc, Def);
9098 
9099   // If we have a complete type, we're done.
9100   if (!Incomplete) {
9101     NamedDecl *Suggested = nullptr;
9102     if (Def &&
9103         !hasReachableDefinition(Def, &Suggested, /*OnlyNeedComplete=*/true)) {
9104       // If the user is going to see an error here, recover by making the
9105       // definition visible.
9106       bool TreatAsComplete = Diagnoser && !isSFINAEContext();
9107       if (Diagnoser && Suggested)
9108         diagnoseMissingImport(Loc, Suggested, MissingImportKind::Definition,
9109                               /*Recover*/ TreatAsComplete);
9110       return !TreatAsComplete;
9111     } else if (Def && !TemplateInstCallbacks.empty()) {
9112       CodeSynthesisContext TempInst;
9113       TempInst.Kind = CodeSynthesisContext::Memoization;
9114       TempInst.Template = Def;
9115       TempInst.Entity = Def;
9116       TempInst.PointOfInstantiation = Loc;
9117       atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
9118       atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
9119     }
9120 
9121     return false;
9122   }
9123 
9124   TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
9125   ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
9126 
9127   // Give the external source a chance to provide a definition of the type.
9128   // This is kept separate from completing the redeclaration chain so that
9129   // external sources such as LLDB can avoid synthesizing a type definition
9130   // unless it's actually needed.
9131   if (Tag || IFace) {
9132     // Avoid diagnosing invalid decls as incomplete.
9133     if (Def->isInvalidDecl())
9134       return true;
9135 
9136     // Give the external AST source a chance to complete the type.
9137     if (auto *Source = Context.getExternalSource()) {
9138       if (Tag && Tag->hasExternalLexicalStorage())
9139           Source->CompleteType(Tag);
9140       if (IFace && IFace->hasExternalLexicalStorage())
9141           Source->CompleteType(IFace);
9142       // If the external source completed the type, go through the motions
9143       // again to ensure we're allowed to use the completed type.
9144       if (!T->isIncompleteType())
9145         return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9146     }
9147   }
9148 
9149   // If we have a class template specialization or a class member of a
9150   // class template specialization, or an array with known size of such,
9151   // try to instantiate it.
9152   if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
9153     bool Instantiated = false;
9154     bool Diagnosed = false;
9155     if (RD->isDependentContext()) {
9156       // Don't try to instantiate a dependent class (eg, a member template of
9157       // an instantiated class template specialization).
9158       // FIXME: Can this ever happen?
9159     } else if (auto *ClassTemplateSpec =
9160             dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
9161       if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
9162         runWithSufficientStackSpace(Loc, [&] {
9163           Diagnosed = InstantiateClassTemplateSpecialization(
9164               Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
9165               /*Complain=*/Diagnoser);
9166         });
9167         Instantiated = true;
9168       }
9169     } else {
9170       CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
9171       if (!RD->isBeingDefined() && Pattern) {
9172         MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
9173         assert(MSI && "Missing member specialization information?");
9174         // This record was instantiated from a class within a template.
9175         if (MSI->getTemplateSpecializationKind() !=
9176             TSK_ExplicitSpecialization) {
9177           runWithSufficientStackSpace(Loc, [&] {
9178             Diagnosed = InstantiateClass(Loc, RD, Pattern,
9179                                          getTemplateInstantiationArgs(RD),
9180                                          TSK_ImplicitInstantiation,
9181                                          /*Complain=*/Diagnoser);
9182           });
9183           Instantiated = true;
9184         }
9185       }
9186     }
9187 
9188     if (Instantiated) {
9189       // Instantiate* might have already complained that the template is not
9190       // defined, if we asked it to.
9191       if (Diagnoser && Diagnosed)
9192         return true;
9193       // If we instantiated a definition, check that it's usable, even if
9194       // instantiation produced an error, so that repeated calls to this
9195       // function give consistent answers.
9196       if (!T->isIncompleteType())
9197         return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9198     }
9199   }
9200 
9201   // FIXME: If we didn't instantiate a definition because of an explicit
9202   // specialization declaration, check that it's visible.
9203 
9204   if (!Diagnoser)
9205     return true;
9206 
9207   Diagnoser->diagnose(*this, Loc, T);
9208 
9209   // If the type was a forward declaration of a class/struct/union
9210   // type, produce a note.
9211   if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
9212     Diag(Tag->getLocation(),
9213          Tag->isBeingDefined() ? diag::note_type_being_defined
9214                                : diag::note_forward_declaration)
9215       << Context.getTagDeclType(Tag);
9216 
9217   // If the Objective-C class was a forward declaration, produce a note.
9218   if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
9219     Diag(IFace->getLocation(), diag::note_forward_class);
9220 
9221   // If we have external information that we can use to suggest a fix,
9222   // produce a note.
9223   if (ExternalSource)
9224     ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
9225 
9226   return true;
9227 }
9228 
RequireCompleteType(SourceLocation Loc,QualType T,CompleteTypeKind Kind,unsigned DiagID)9229 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9230                                CompleteTypeKind Kind, unsigned DiagID) {
9231   BoundTypeDiagnoser<> Diagnoser(DiagID);
9232   return RequireCompleteType(Loc, T, Kind, Diagnoser);
9233 }
9234 
9235 /// Get diagnostic %select index for tag kind for
9236 /// literal type diagnostic message.
9237 /// WARNING: Indexes apply to particular diagnostics only!
9238 ///
9239 /// \returns diagnostic %select index.
getLiteralDiagFromTagKind(TagTypeKind Tag)9240 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
9241   switch (Tag) {
9242   case TagTypeKind::Struct:
9243     return 0;
9244   case TagTypeKind::Interface:
9245     return 1;
9246   case TagTypeKind::Class:
9247     return 2;
9248   default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
9249   }
9250 }
9251 
RequireLiteralType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)9252 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
9253                               TypeDiagnoser &Diagnoser) {
9254   assert(!T->isDependentType() && "type should not be dependent");
9255 
9256   QualType ElemType = Context.getBaseElementType(T);
9257   if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
9258       T->isLiteralType(Context))
9259     return false;
9260 
9261   Diagnoser.diagnose(*this, Loc, T);
9262 
9263   if (T->isVariableArrayType())
9264     return true;
9265 
9266   const RecordType *RT = ElemType->getAs<RecordType>();
9267   if (!RT)
9268     return true;
9269 
9270   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
9271 
9272   // A partially-defined class type can't be a literal type, because a literal
9273   // class type must have a trivial destructor (which can't be checked until
9274   // the class definition is complete).
9275   if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
9276     return true;
9277 
9278   // [expr.prim.lambda]p3:
9279   //   This class type is [not] a literal type.
9280   if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
9281     Diag(RD->getLocation(), diag::note_non_literal_lambda);
9282     return true;
9283   }
9284 
9285   // If the class has virtual base classes, then it's not an aggregate, and
9286   // cannot have any constexpr constructors or a trivial default constructor,
9287   // so is non-literal. This is better to diagnose than the resulting absence
9288   // of constexpr constructors.
9289   if (RD->getNumVBases()) {
9290     Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
9291       << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
9292     for (const auto &I : RD->vbases())
9293       Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
9294           << I.getSourceRange();
9295   } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
9296              !RD->hasTrivialDefaultConstructor()) {
9297     Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
9298   } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
9299     for (const auto &I : RD->bases()) {
9300       if (!I.getType()->isLiteralType(Context)) {
9301         Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
9302             << RD << I.getType() << I.getSourceRange();
9303         return true;
9304       }
9305     }
9306     for (const auto *I : RD->fields()) {
9307       if (!I->getType()->isLiteralType(Context) ||
9308           I->getType().isVolatileQualified()) {
9309         Diag(I->getLocation(), diag::note_non_literal_field)
9310           << RD << I << I->getType()
9311           << I->getType().isVolatileQualified();
9312         return true;
9313       }
9314     }
9315   } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
9316                                        : !RD->hasTrivialDestructor()) {
9317     // All fields and bases are of literal types, so have trivial or constexpr
9318     // destructors. If this class's destructor is non-trivial / non-constexpr,
9319     // it must be user-declared.
9320     CXXDestructorDecl *Dtor = RD->getDestructor();
9321     assert(Dtor && "class has literal fields and bases but no dtor?");
9322     if (!Dtor)
9323       return true;
9324 
9325     if (getLangOpts().CPlusPlus20) {
9326       Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
9327           << RD;
9328     } else {
9329       Diag(Dtor->getLocation(), Dtor->isUserProvided()
9330                                     ? diag::note_non_literal_user_provided_dtor
9331                                     : diag::note_non_literal_nontrivial_dtor)
9332           << RD;
9333       if (!Dtor->isUserProvided())
9334         SpecialMemberIsTrivial(Dtor, CXXSpecialMemberKind::Destructor,
9335                                TAH_IgnoreTrivialABI,
9336                                /*Diagnose*/ true);
9337     }
9338   }
9339 
9340   return true;
9341 }
9342 
RequireLiteralType(SourceLocation Loc,QualType T,unsigned DiagID)9343 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
9344   BoundTypeDiagnoser<> Diagnoser(DiagID);
9345   return RequireLiteralType(Loc, T, Diagnoser);
9346 }
9347 
getElaboratedType(ElaboratedTypeKeyword Keyword,const CXXScopeSpec & SS,QualType T,TagDecl * OwnedTagDecl)9348 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
9349                                  const CXXScopeSpec &SS, QualType T,
9350                                  TagDecl *OwnedTagDecl) {
9351   if (T.isNull())
9352     return T;
9353   return Context.getElaboratedType(
9354       Keyword, SS.isValid() ? SS.getScopeRep() : nullptr, T, OwnedTagDecl);
9355 }
9356 
BuildTypeofExprType(Expr * E,TypeOfKind Kind)9357 QualType Sema::BuildTypeofExprType(Expr *E, TypeOfKind Kind) {
9358   assert(!E->hasPlaceholderType() && "unexpected placeholder");
9359 
9360   if (!getLangOpts().CPlusPlus && E->refersToBitField())
9361     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
9362         << (Kind == TypeOfKind::Unqualified ? 3 : 2);
9363 
9364   if (!E->isTypeDependent()) {
9365     QualType T = E->getType();
9366     if (const TagType *TT = T->getAs<TagType>())
9367       DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
9368   }
9369   return Context.getTypeOfExprType(E, Kind);
9370 }
9371 
9372 static void
BuildTypeCoupledDecls(Expr * E,llvm::SmallVectorImpl<TypeCoupledDeclRefInfo> & Decls)9373 BuildTypeCoupledDecls(Expr *E,
9374                       llvm::SmallVectorImpl<TypeCoupledDeclRefInfo> &Decls) {
9375   // Currently, 'counted_by' only allows direct DeclRefExpr to FieldDecl.
9376   auto *CountDecl = cast<DeclRefExpr>(E)->getDecl();
9377   Decls.push_back(TypeCoupledDeclRefInfo(CountDecl, /*IsDref*/ false));
9378 }
9379 
BuildCountAttributedArrayOrPointerType(QualType WrappedTy,Expr * CountExpr,bool CountInBytes,bool OrNull)9380 QualType Sema::BuildCountAttributedArrayOrPointerType(QualType WrappedTy,
9381                                                       Expr *CountExpr,
9382                                                       bool CountInBytes,
9383                                                       bool OrNull) {
9384   assert(WrappedTy->isIncompleteArrayType() || WrappedTy->isPointerType());
9385 
9386   llvm::SmallVector<TypeCoupledDeclRefInfo, 1> Decls;
9387   BuildTypeCoupledDecls(CountExpr, Decls);
9388   /// When the resulting expression is invalid, we still create the AST using
9389   /// the original count expression for the sake of AST dump.
9390   return Context.getCountAttributedType(WrappedTy, CountExpr, CountInBytes,
9391                                         OrNull, Decls);
9392 }
9393 
9394 /// getDecltypeForExpr - Given an expr, will return the decltype for
9395 /// that expression, according to the rules in C++11
9396 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
getDecltypeForExpr(Expr * E)9397 QualType Sema::getDecltypeForExpr(Expr *E) {
9398 
9399   Expr *IDExpr = E;
9400   if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(E))
9401     IDExpr = ImplCastExpr->getSubExpr();
9402 
9403   if (auto *PackExpr = dyn_cast<PackIndexingExpr>(E)) {
9404     if (E->isInstantiationDependent())
9405       IDExpr = PackExpr->getPackIdExpression();
9406     else
9407       IDExpr = PackExpr->getSelectedExpr();
9408   }
9409 
9410   if (E->isTypeDependent())
9411     return Context.DependentTy;
9412 
9413   // C++11 [dcl.type.simple]p4:
9414   //   The type denoted by decltype(e) is defined as follows:
9415 
9416   // C++20:
9417   //     - if E is an unparenthesized id-expression naming a non-type
9418   //       template-parameter (13.2), decltype(E) is the type of the
9419   //       template-parameter after performing any necessary type deduction
9420   // Note that this does not pick up the implicit 'const' for a template
9421   // parameter object. This rule makes no difference before C++20 so we apply
9422   // it unconditionally.
9423   if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(IDExpr))
9424     return SNTTPE->getParameterType(Context);
9425 
9426   //     - if e is an unparenthesized id-expression or an unparenthesized class
9427   //       member access (5.2.5), decltype(e) is the type of the entity named
9428   //       by e. If there is no such entity, or if e names a set of overloaded
9429   //       functions, the program is ill-formed;
9430   //
9431   // We apply the same rules for Objective-C ivar and property references.
9432   if (const auto *DRE = dyn_cast<DeclRefExpr>(IDExpr)) {
9433     const ValueDecl *VD = DRE->getDecl();
9434     QualType T = VD->getType();
9435     return isa<TemplateParamObjectDecl>(VD) ? T.getUnqualifiedType() : T;
9436   }
9437   if (const auto *ME = dyn_cast<MemberExpr>(IDExpr)) {
9438     if (const auto *VD = ME->getMemberDecl())
9439       if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
9440         return VD->getType();
9441   } else if (const auto *IR = dyn_cast<ObjCIvarRefExpr>(IDExpr)) {
9442     return IR->getDecl()->getType();
9443   } else if (const auto *PR = dyn_cast<ObjCPropertyRefExpr>(IDExpr)) {
9444     if (PR->isExplicitProperty())
9445       return PR->getExplicitProperty()->getType();
9446   } else if (const auto *PE = dyn_cast<PredefinedExpr>(IDExpr)) {
9447     return PE->getType();
9448   }
9449 
9450   // C++11 [expr.lambda.prim]p18:
9451   //   Every occurrence of decltype((x)) where x is a possibly
9452   //   parenthesized id-expression that names an entity of automatic
9453   //   storage duration is treated as if x were transformed into an
9454   //   access to a corresponding data member of the closure type that
9455   //   would have been declared if x were an odr-use of the denoted
9456   //   entity.
9457   if (getCurLambda() && isa<ParenExpr>(IDExpr)) {
9458     if (auto *DRE = dyn_cast<DeclRefExpr>(IDExpr->IgnoreParens())) {
9459       if (auto *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
9460         QualType T = getCapturedDeclRefType(Var, DRE->getLocation());
9461         if (!T.isNull())
9462           return Context.getLValueReferenceType(T);
9463       }
9464     }
9465   }
9466 
9467   return Context.getReferenceQualifiedType(E);
9468 }
9469 
BuildDecltypeType(Expr * E,bool AsUnevaluated)9470 QualType Sema::BuildDecltypeType(Expr *E, bool AsUnevaluated) {
9471   assert(!E->hasPlaceholderType() && "unexpected placeholder");
9472 
9473   if (AsUnevaluated && CodeSynthesisContexts.empty() &&
9474       !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) {
9475     // The expression operand for decltype is in an unevaluated expression
9476     // context, so side effects could result in unintended consequences.
9477     // Exclude instantiation-dependent expressions, because 'decltype' is often
9478     // used to build SFINAE gadgets.
9479     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
9480   }
9481   return Context.getDecltypeType(E, getDecltypeForExpr(E));
9482 }
9483 
ActOnPackIndexingType(QualType Pattern,Expr * IndexExpr,SourceLocation Loc,SourceLocation EllipsisLoc)9484 QualType Sema::ActOnPackIndexingType(QualType Pattern, Expr *IndexExpr,
9485                                      SourceLocation Loc,
9486                                      SourceLocation EllipsisLoc) {
9487   if (!IndexExpr)
9488     return QualType();
9489 
9490   // Diagnose unexpanded packs but continue to improve recovery.
9491   if (!Pattern->containsUnexpandedParameterPack())
9492     Diag(Loc, diag::err_expected_name_of_pack) << Pattern;
9493 
9494   QualType Type = BuildPackIndexingType(Pattern, IndexExpr, Loc, EllipsisLoc);
9495 
9496   if (!Type.isNull())
9497     Diag(Loc, getLangOpts().CPlusPlus26 ? diag::warn_cxx23_pack_indexing
9498                                         : diag::ext_pack_indexing);
9499   return Type;
9500 }
9501 
BuildPackIndexingType(QualType Pattern,Expr * IndexExpr,SourceLocation Loc,SourceLocation EllipsisLoc,bool FullySubstituted,ArrayRef<QualType> Expansions)9502 QualType Sema::BuildPackIndexingType(QualType Pattern, Expr *IndexExpr,
9503                                      SourceLocation Loc,
9504                                      SourceLocation EllipsisLoc,
9505                                      bool FullySubstituted,
9506                                      ArrayRef<QualType> Expansions) {
9507 
9508   std::optional<int64_t> Index;
9509   if (FullySubstituted && !IndexExpr->isValueDependent() &&
9510       !IndexExpr->isTypeDependent()) {
9511     llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
9512     ExprResult Res = CheckConvertedConstantExpression(
9513         IndexExpr, Context.getSizeType(), Value, CCEK_ArrayBound);
9514     if (!Res.isUsable())
9515       return QualType();
9516     Index = Value.getExtValue();
9517     IndexExpr = Res.get();
9518   }
9519 
9520   if (FullySubstituted && Index) {
9521     if (*Index < 0 || *Index >= int64_t(Expansions.size())) {
9522       Diag(IndexExpr->getBeginLoc(), diag::err_pack_index_out_of_bound)
9523           << *Index << Pattern << Expansions.size();
9524       return QualType();
9525     }
9526   }
9527 
9528   return Context.getPackIndexingType(Pattern, IndexExpr, FullySubstituted,
9529                                      Expansions, Index.value_or(-1));
9530 }
9531 
GetEnumUnderlyingType(Sema & S,QualType BaseType,SourceLocation Loc)9532 static QualType GetEnumUnderlyingType(Sema &S, QualType BaseType,
9533                                       SourceLocation Loc) {
9534   assert(BaseType->isEnumeralType());
9535   EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl();
9536   assert(ED && "EnumType has no EnumDecl");
9537 
9538   S.DiagnoseUseOfDecl(ED, Loc);
9539 
9540   QualType Underlying = ED->getIntegerType();
9541   assert(!Underlying.isNull());
9542 
9543   return Underlying;
9544 }
9545 
BuiltinEnumUnderlyingType(QualType BaseType,SourceLocation Loc)9546 QualType Sema::BuiltinEnumUnderlyingType(QualType BaseType,
9547                                          SourceLocation Loc) {
9548   if (!BaseType->isEnumeralType()) {
9549     Diag(Loc, diag::err_only_enums_have_underlying_types);
9550     return QualType();
9551   }
9552 
9553   // The enum could be incomplete if we're parsing its definition or
9554   // recovering from an error.
9555   NamedDecl *FwdDecl = nullptr;
9556   if (BaseType->isIncompleteType(&FwdDecl)) {
9557     Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
9558     Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
9559     return QualType();
9560   }
9561 
9562   return GetEnumUnderlyingType(*this, BaseType, Loc);
9563 }
9564 
BuiltinAddPointer(QualType BaseType,SourceLocation Loc)9565 QualType Sema::BuiltinAddPointer(QualType BaseType, SourceLocation Loc) {
9566   QualType Pointer = BaseType.isReferenceable() || BaseType->isVoidType()
9567                          ? BuildPointerType(BaseType.getNonReferenceType(), Loc,
9568                                             DeclarationName())
9569                          : BaseType;
9570 
9571   return Pointer.isNull() ? QualType() : Pointer;
9572 }
9573 
BuiltinRemovePointer(QualType BaseType,SourceLocation Loc)9574 QualType Sema::BuiltinRemovePointer(QualType BaseType, SourceLocation Loc) {
9575   // We don't want block pointers or ObjectiveC's id type.
9576   if (!BaseType->isAnyPointerType() || BaseType->isObjCIdType())
9577     return BaseType;
9578 
9579   return BaseType->getPointeeType();
9580 }
9581 
BuiltinDecay(QualType BaseType,SourceLocation Loc)9582 QualType Sema::BuiltinDecay(QualType BaseType, SourceLocation Loc) {
9583   QualType Underlying = BaseType.getNonReferenceType();
9584   if (Underlying->isArrayType())
9585     return Context.getDecayedType(Underlying);
9586 
9587   if (Underlying->isFunctionType())
9588     return BuiltinAddPointer(BaseType, Loc);
9589 
9590   SplitQualType Split = Underlying.getSplitUnqualifiedType();
9591   // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is
9592   // in the same group of qualifiers as 'const' and 'volatile', we're extending
9593   // '__decay(T)' so that it removes all qualifiers.
9594   Split.Quals.removeCVRQualifiers();
9595   return Context.getQualifiedType(Split);
9596 }
9597 
BuiltinAddReference(QualType BaseType,UTTKind UKind,SourceLocation Loc)9598 QualType Sema::BuiltinAddReference(QualType BaseType, UTTKind UKind,
9599                                    SourceLocation Loc) {
9600   assert(LangOpts.CPlusPlus);
9601   QualType Reference =
9602       BaseType.isReferenceable()
9603           ? BuildReferenceType(BaseType,
9604                                UKind == UnaryTransformType::AddLvalueReference,
9605                                Loc, DeclarationName())
9606           : BaseType;
9607   return Reference.isNull() ? QualType() : Reference;
9608 }
9609 
BuiltinRemoveExtent(QualType BaseType,UTTKind UKind,SourceLocation Loc)9610 QualType Sema::BuiltinRemoveExtent(QualType BaseType, UTTKind UKind,
9611                                    SourceLocation Loc) {
9612   if (UKind == UnaryTransformType::RemoveAllExtents)
9613     return Context.getBaseElementType(BaseType);
9614 
9615   if (const auto *AT = Context.getAsArrayType(BaseType))
9616     return AT->getElementType();
9617 
9618   return BaseType;
9619 }
9620 
BuiltinRemoveReference(QualType BaseType,UTTKind UKind,SourceLocation Loc)9621 QualType Sema::BuiltinRemoveReference(QualType BaseType, UTTKind UKind,
9622                                       SourceLocation Loc) {
9623   assert(LangOpts.CPlusPlus);
9624   QualType T = BaseType.getNonReferenceType();
9625   if (UKind == UTTKind::RemoveCVRef &&
9626       (T.isConstQualified() || T.isVolatileQualified())) {
9627     Qualifiers Quals;
9628     QualType Unqual = Context.getUnqualifiedArrayType(T, Quals);
9629     Quals.removeConst();
9630     Quals.removeVolatile();
9631     T = Context.getQualifiedType(Unqual, Quals);
9632   }
9633   return T;
9634 }
9635 
BuiltinChangeCVRQualifiers(QualType BaseType,UTTKind UKind,SourceLocation Loc)9636 QualType Sema::BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind,
9637                                           SourceLocation Loc) {
9638   if ((BaseType->isReferenceType() && UKind != UTTKind::RemoveRestrict) ||
9639       BaseType->isFunctionType())
9640     return BaseType;
9641 
9642   Qualifiers Quals;
9643   QualType Unqual = Context.getUnqualifiedArrayType(BaseType, Quals);
9644 
9645   if (UKind == UTTKind::RemoveConst || UKind == UTTKind::RemoveCV)
9646     Quals.removeConst();
9647   if (UKind == UTTKind::RemoveVolatile || UKind == UTTKind::RemoveCV)
9648     Quals.removeVolatile();
9649   if (UKind == UTTKind::RemoveRestrict)
9650     Quals.removeRestrict();
9651 
9652   return Context.getQualifiedType(Unqual, Quals);
9653 }
9654 
ChangeIntegralSignedness(Sema & S,QualType BaseType,bool IsMakeSigned,SourceLocation Loc)9655 static QualType ChangeIntegralSignedness(Sema &S, QualType BaseType,
9656                                          bool IsMakeSigned,
9657                                          SourceLocation Loc) {
9658   if (BaseType->isEnumeralType()) {
9659     QualType Underlying = GetEnumUnderlyingType(S, BaseType, Loc);
9660     if (auto *BitInt = dyn_cast<BitIntType>(Underlying)) {
9661       unsigned int Bits = BitInt->getNumBits();
9662       if (Bits > 1)
9663         return S.Context.getBitIntType(!IsMakeSigned, Bits);
9664 
9665       S.Diag(Loc, diag::err_make_signed_integral_only)
9666           << IsMakeSigned << /*_BitInt(1)*/ true << BaseType << 1 << Underlying;
9667       return QualType();
9668     }
9669     if (Underlying->isBooleanType()) {
9670       S.Diag(Loc, diag::err_make_signed_integral_only)
9671           << IsMakeSigned << /*_BitInt(1)*/ false << BaseType << 1
9672           << Underlying;
9673       return QualType();
9674     }
9675   }
9676 
9677   bool Int128Unsupported = !S.Context.getTargetInfo().hasInt128Type();
9678   std::array<CanQualType *, 6> AllSignedIntegers = {
9679       &S.Context.SignedCharTy, &S.Context.ShortTy,    &S.Context.IntTy,
9680       &S.Context.LongTy,       &S.Context.LongLongTy, &S.Context.Int128Ty};
9681   ArrayRef<CanQualType *> AvailableSignedIntegers(
9682       AllSignedIntegers.data(), AllSignedIntegers.size() - Int128Unsupported);
9683   std::array<CanQualType *, 6> AllUnsignedIntegers = {
9684       &S.Context.UnsignedCharTy,     &S.Context.UnsignedShortTy,
9685       &S.Context.UnsignedIntTy,      &S.Context.UnsignedLongTy,
9686       &S.Context.UnsignedLongLongTy, &S.Context.UnsignedInt128Ty};
9687   ArrayRef<CanQualType *> AvailableUnsignedIntegers(AllUnsignedIntegers.data(),
9688                                                     AllUnsignedIntegers.size() -
9689                                                         Int128Unsupported);
9690   ArrayRef<CanQualType *> *Consider =
9691       IsMakeSigned ? &AvailableSignedIntegers : &AvailableUnsignedIntegers;
9692 
9693   uint64_t BaseSize = S.Context.getTypeSize(BaseType);
9694   auto *Result =
9695       llvm::find_if(*Consider, [&S, BaseSize](const CanQual<Type> *T) {
9696         return BaseSize == S.Context.getTypeSize(T->getTypePtr());
9697       });
9698 
9699   assert(Result != Consider->end());
9700   return QualType((*Result)->getTypePtr(), 0);
9701 }
9702 
BuiltinChangeSignedness(QualType BaseType,UTTKind UKind,SourceLocation Loc)9703 QualType Sema::BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
9704                                        SourceLocation Loc) {
9705   bool IsMakeSigned = UKind == UnaryTransformType::MakeSigned;
9706   if ((!BaseType->isIntegerType() && !BaseType->isEnumeralType()) ||
9707       BaseType->isBooleanType() ||
9708       (BaseType->isBitIntType() &&
9709        BaseType->getAs<BitIntType>()->getNumBits() < 2)) {
9710     Diag(Loc, diag::err_make_signed_integral_only)
9711         << IsMakeSigned << BaseType->isBitIntType() << BaseType << 0;
9712     return QualType();
9713   }
9714 
9715   bool IsNonIntIntegral =
9716       BaseType->isChar16Type() || BaseType->isChar32Type() ||
9717       BaseType->isWideCharType() || BaseType->isEnumeralType();
9718 
9719   QualType Underlying =
9720       IsNonIntIntegral
9721           ? ChangeIntegralSignedness(*this, BaseType, IsMakeSigned, Loc)
9722       : IsMakeSigned ? Context.getCorrespondingSignedType(BaseType)
9723                      : Context.getCorrespondingUnsignedType(BaseType);
9724   if (Underlying.isNull())
9725     return Underlying;
9726   return Context.getQualifiedType(Underlying, BaseType.getQualifiers());
9727 }
9728 
BuildUnaryTransformType(QualType BaseType,UTTKind UKind,SourceLocation Loc)9729 QualType Sema::BuildUnaryTransformType(QualType BaseType, UTTKind UKind,
9730                                        SourceLocation Loc) {
9731   if (BaseType->isDependentType())
9732     return Context.getUnaryTransformType(BaseType, BaseType, UKind);
9733   QualType Result;
9734   switch (UKind) {
9735   case UnaryTransformType::EnumUnderlyingType: {
9736     Result = BuiltinEnumUnderlyingType(BaseType, Loc);
9737     break;
9738   }
9739   case UnaryTransformType::AddPointer: {
9740     Result = BuiltinAddPointer(BaseType, Loc);
9741     break;
9742   }
9743   case UnaryTransformType::RemovePointer: {
9744     Result = BuiltinRemovePointer(BaseType, Loc);
9745     break;
9746   }
9747   case UnaryTransformType::Decay: {
9748     Result = BuiltinDecay(BaseType, Loc);
9749     break;
9750   }
9751   case UnaryTransformType::AddLvalueReference:
9752   case UnaryTransformType::AddRvalueReference: {
9753     Result = BuiltinAddReference(BaseType, UKind, Loc);
9754     break;
9755   }
9756   case UnaryTransformType::RemoveAllExtents:
9757   case UnaryTransformType::RemoveExtent: {
9758     Result = BuiltinRemoveExtent(BaseType, UKind, Loc);
9759     break;
9760   }
9761   case UnaryTransformType::RemoveCVRef:
9762   case UnaryTransformType::RemoveReference: {
9763     Result = BuiltinRemoveReference(BaseType, UKind, Loc);
9764     break;
9765   }
9766   case UnaryTransformType::RemoveConst:
9767   case UnaryTransformType::RemoveCV:
9768   case UnaryTransformType::RemoveRestrict:
9769   case UnaryTransformType::RemoveVolatile: {
9770     Result = BuiltinChangeCVRQualifiers(BaseType, UKind, Loc);
9771     break;
9772   }
9773   case UnaryTransformType::MakeSigned:
9774   case UnaryTransformType::MakeUnsigned: {
9775     Result = BuiltinChangeSignedness(BaseType, UKind, Loc);
9776     break;
9777   }
9778   }
9779 
9780   return !Result.isNull()
9781              ? Context.getUnaryTransformType(BaseType, Result, UKind)
9782              : Result;
9783 }
9784 
BuildAtomicType(QualType T,SourceLocation Loc)9785 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
9786   if (!isDependentOrGNUAutoType(T)) {
9787     // FIXME: It isn't entirely clear whether incomplete atomic types
9788     // are allowed or not; for simplicity, ban them for the moment.
9789     if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
9790       return QualType();
9791 
9792     int DisallowedKind = -1;
9793     if (T->isArrayType())
9794       DisallowedKind = 1;
9795     else if (T->isFunctionType())
9796       DisallowedKind = 2;
9797     else if (T->isReferenceType())
9798       DisallowedKind = 3;
9799     else if (T->isAtomicType())
9800       DisallowedKind = 4;
9801     else if (T.hasQualifiers())
9802       DisallowedKind = 5;
9803     else if (T->isSizelessType())
9804       DisallowedKind = 6;
9805     else if (!T.isTriviallyCopyableType(Context) && getLangOpts().CPlusPlus)
9806       // Some other non-trivially-copyable type (probably a C++ class)
9807       DisallowedKind = 7;
9808     else if (T->isBitIntType())
9809       DisallowedKind = 8;
9810     else if (getLangOpts().C23 && T->isUndeducedAutoType())
9811       // _Atomic auto is prohibited in C23
9812       DisallowedKind = 9;
9813 
9814     if (DisallowedKind != -1) {
9815       Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
9816       return QualType();
9817     }
9818 
9819     // FIXME: Do we need any handling for ARC here?
9820   }
9821 
9822   // Build the pointer type.
9823   return Context.getAtomicType(T);
9824 }
9825