xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGBuiltin.cpp (revision d686ce931cab72612a9e1ada9fe99d65e11a32a3)
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ABIInfo.h"
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CGHLSLRuntime.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenCLRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "PatternInit.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/OSLog.h"
29 #include "clang/AST/OperationKinds.h"
30 #include "clang/Basic/TargetBuiltins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/TargetOptions.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Frontend/FrontendDiagnostic.h"
35 #include "llvm/ADT/APFloat.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/FloatingPointMode.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/Analysis/ValueTracking.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/IntrinsicsAArch64.h"
45 #include "llvm/IR/IntrinsicsAMDGPU.h"
46 #include "llvm/IR/IntrinsicsARM.h"
47 #include "llvm/IR/IntrinsicsBPF.h"
48 #include "llvm/IR/IntrinsicsDirectX.h"
49 #include "llvm/IR/IntrinsicsHexagon.h"
50 #include "llvm/IR/IntrinsicsNVPTX.h"
51 #include "llvm/IR/IntrinsicsPowerPC.h"
52 #include "llvm/IR/IntrinsicsR600.h"
53 #include "llvm/IR/IntrinsicsRISCV.h"
54 #include "llvm/IR/IntrinsicsS390.h"
55 #include "llvm/IR/IntrinsicsVE.h"
56 #include "llvm/IR/IntrinsicsWebAssembly.h"
57 #include "llvm/IR/IntrinsicsX86.h"
58 #include "llvm/IR/MDBuilder.h"
59 #include "llvm/IR/MatrixBuilder.h"
60 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
61 #include "llvm/Support/ConvertUTF.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/ScopedPrinter.h"
64 #include "llvm/TargetParser/AArch64TargetParser.h"
65 #include "llvm/TargetParser/X86TargetParser.h"
66 #include <optional>
67 #include <sstream>
68 
69 using namespace clang;
70 using namespace CodeGen;
71 using namespace llvm;
72 
initializeAlloca(CodeGenFunction & CGF,AllocaInst * AI,Value * Size,Align AlignmentInBytes)73 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
74                              Align AlignmentInBytes) {
75   ConstantInt *Byte;
76   switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
77   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
78     // Nothing to initialize.
79     return;
80   case LangOptions::TrivialAutoVarInitKind::Zero:
81     Byte = CGF.Builder.getInt8(0x00);
82     break;
83   case LangOptions::TrivialAutoVarInitKind::Pattern: {
84     llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
85     Byte = llvm::dyn_cast<llvm::ConstantInt>(
86         initializationPatternFor(CGF.CGM, Int8));
87     break;
88   }
89   }
90   if (CGF.CGM.stopAutoInit())
91     return;
92   auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
93   I->addAnnotationMetadata("auto-init");
94 }
95 
96 /// getBuiltinLibFunction - Given a builtin id for a function like
97 /// "__builtin_fabsf", return a Function* for "fabsf".
getBuiltinLibFunction(const FunctionDecl * FD,unsigned BuiltinID)98 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
99                                                      unsigned BuiltinID) {
100   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
101 
102   // Get the name, skip over the __builtin_ prefix (if necessary).
103   StringRef Name;
104   GlobalDecl D(FD);
105 
106   // TODO: This list should be expanded or refactored after all GCC-compatible
107   // std libcall builtins are implemented.
108   static SmallDenseMap<unsigned, StringRef, 64> F128Builtins{
109       {Builtin::BI__builtin___fprintf_chk, "__fprintf_chkieee128"},
110       {Builtin::BI__builtin___printf_chk, "__printf_chkieee128"},
111       {Builtin::BI__builtin___snprintf_chk, "__snprintf_chkieee128"},
112       {Builtin::BI__builtin___sprintf_chk, "__sprintf_chkieee128"},
113       {Builtin::BI__builtin___vfprintf_chk, "__vfprintf_chkieee128"},
114       {Builtin::BI__builtin___vprintf_chk, "__vprintf_chkieee128"},
115       {Builtin::BI__builtin___vsnprintf_chk, "__vsnprintf_chkieee128"},
116       {Builtin::BI__builtin___vsprintf_chk, "__vsprintf_chkieee128"},
117       {Builtin::BI__builtin_fprintf, "__fprintfieee128"},
118       {Builtin::BI__builtin_printf, "__printfieee128"},
119       {Builtin::BI__builtin_snprintf, "__snprintfieee128"},
120       {Builtin::BI__builtin_sprintf, "__sprintfieee128"},
121       {Builtin::BI__builtin_vfprintf, "__vfprintfieee128"},
122       {Builtin::BI__builtin_vprintf, "__vprintfieee128"},
123       {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"},
124       {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"},
125       {Builtin::BI__builtin_fscanf, "__fscanfieee128"},
126       {Builtin::BI__builtin_scanf, "__scanfieee128"},
127       {Builtin::BI__builtin_sscanf, "__sscanfieee128"},
128       {Builtin::BI__builtin_vfscanf, "__vfscanfieee128"},
129       {Builtin::BI__builtin_vscanf, "__vscanfieee128"},
130       {Builtin::BI__builtin_vsscanf, "__vsscanfieee128"},
131       {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"},
132   };
133 
134   // The AIX library functions frexpl, ldexpl, and modfl are for 128-bit
135   // IBM 'long double' (i.e. __ibm128). Map to the 'double' versions
136   // if it is 64-bit 'long double' mode.
137   static SmallDenseMap<unsigned, StringRef, 4> AIXLongDouble64Builtins{
138       {Builtin::BI__builtin_frexpl, "frexp"},
139       {Builtin::BI__builtin_ldexpl, "ldexp"},
140       {Builtin::BI__builtin_modfl, "modf"},
141   };
142 
143   // If the builtin has been declared explicitly with an assembler label,
144   // use the mangled name. This differs from the plain label on platforms
145   // that prefix labels.
146   if (FD->hasAttr<AsmLabelAttr>())
147     Name = getMangledName(D);
148   else {
149     // TODO: This mutation should also be applied to other targets other than
150     // PPC, after backend supports IEEE 128-bit style libcalls.
151     if (getTriple().isPPC64() &&
152         &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
153         F128Builtins.contains(BuiltinID))
154       Name = F128Builtins[BuiltinID];
155     else if (getTriple().isOSAIX() &&
156              &getTarget().getLongDoubleFormat() ==
157                  &llvm::APFloat::IEEEdouble() &&
158              AIXLongDouble64Builtins.contains(BuiltinID))
159       Name = AIXLongDouble64Builtins[BuiltinID];
160     else
161       Name = Context.BuiltinInfo.getName(BuiltinID).substr(10);
162   }
163 
164   llvm::FunctionType *Ty =
165     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
166 
167   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
168 }
169 
170 /// Emit the conversions required to turn the given value into an
171 /// integer of the given size.
EmitToInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::IntegerType * IntType)172 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
173                         QualType T, llvm::IntegerType *IntType) {
174   V = CGF.EmitToMemory(V, T);
175 
176   if (V->getType()->isPointerTy())
177     return CGF.Builder.CreatePtrToInt(V, IntType);
178 
179   assert(V->getType() == IntType);
180   return V;
181 }
182 
EmitFromInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::Type * ResultType)183 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
184                           QualType T, llvm::Type *ResultType) {
185   V = CGF.EmitFromMemory(V, T);
186 
187   if (ResultType->isPointerTy())
188     return CGF.Builder.CreateIntToPtr(V, ResultType);
189 
190   assert(V->getType() == ResultType);
191   return V;
192 }
193 
CheckAtomicAlignment(CodeGenFunction & CGF,const CallExpr * E)194 static Address CheckAtomicAlignment(CodeGenFunction &CGF, const CallExpr *E) {
195   ASTContext &Ctx = CGF.getContext();
196   Address Ptr = CGF.EmitPointerWithAlignment(E->getArg(0));
197   unsigned Bytes = Ptr.getElementType()->isPointerTy()
198                        ? Ctx.getTypeSizeInChars(Ctx.VoidPtrTy).getQuantity()
199                        : Ptr.getElementType()->getScalarSizeInBits() / 8;
200   unsigned Align = Ptr.getAlignment().getQuantity();
201   if (Align % Bytes != 0) {
202     DiagnosticsEngine &Diags = CGF.CGM.getDiags();
203     Diags.Report(E->getBeginLoc(), diag::warn_sync_op_misaligned);
204     // Force address to be at least naturally-aligned.
205     return Ptr.withAlignment(CharUnits::fromQuantity(Bytes));
206   }
207   return Ptr;
208 }
209 
210 /// Utility to insert an atomic instruction based on Intrinsic::ID
211 /// and the expression node.
MakeBinaryAtomicValue(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)212 static Value *MakeBinaryAtomicValue(
213     CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
214     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
215 
216   QualType T = E->getType();
217   assert(E->getArg(0)->getType()->isPointerType());
218   assert(CGF.getContext().hasSameUnqualifiedType(T,
219                                   E->getArg(0)->getType()->getPointeeType()));
220   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
221 
222   Address DestAddr = CheckAtomicAlignment(CGF, E);
223 
224   llvm::IntegerType *IntType = llvm::IntegerType::get(
225       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
226 
227   llvm::Value *Val = CGF.EmitScalarExpr(E->getArg(1));
228   llvm::Type *ValueType = Val->getType();
229   Val = EmitToInt(CGF, Val, T, IntType);
230 
231   llvm::Value *Result =
232       CGF.Builder.CreateAtomicRMW(Kind, DestAddr, Val, Ordering);
233   return EmitFromInt(CGF, Result, T, ValueType);
234 }
235 
EmitNontemporalStore(CodeGenFunction & CGF,const CallExpr * E)236 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
237   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
238   Address Addr = CGF.EmitPointerWithAlignment(E->getArg(1));
239 
240   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
241   LValue LV = CGF.MakeAddrLValue(Addr, E->getArg(0)->getType());
242   LV.setNontemporal(true);
243   CGF.EmitStoreOfScalar(Val, LV, false);
244   return nullptr;
245 }
246 
EmitNontemporalLoad(CodeGenFunction & CGF,const CallExpr * E)247 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
248   Address Addr = CGF.EmitPointerWithAlignment(E->getArg(0));
249 
250   LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
251   LV.setNontemporal(true);
252   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
253 }
254 
EmitBinaryAtomic(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E)255 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
256                                llvm::AtomicRMWInst::BinOp Kind,
257                                const CallExpr *E) {
258   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
259 }
260 
261 /// Utility to insert an atomic instruction based Intrinsic::ID and
262 /// the expression node, where the return value is the result of the
263 /// operation.
EmitBinaryAtomicPost(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E,Instruction::BinaryOps Op,bool Invert=false)264 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
265                                    llvm::AtomicRMWInst::BinOp Kind,
266                                    const CallExpr *E,
267                                    Instruction::BinaryOps Op,
268                                    bool Invert = false) {
269   QualType T = E->getType();
270   assert(E->getArg(0)->getType()->isPointerType());
271   assert(CGF.getContext().hasSameUnqualifiedType(T,
272                                   E->getArg(0)->getType()->getPointeeType()));
273   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
274 
275   Address DestAddr = CheckAtomicAlignment(CGF, E);
276 
277   llvm::IntegerType *IntType = llvm::IntegerType::get(
278       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
279 
280   llvm::Value *Val = CGF.EmitScalarExpr(E->getArg(1));
281   llvm::Type *ValueType = Val->getType();
282   Val = EmitToInt(CGF, Val, T, IntType);
283 
284   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
285       Kind, DestAddr, Val, llvm::AtomicOrdering::SequentiallyConsistent);
286   Result = CGF.Builder.CreateBinOp(Op, Result, Val);
287   if (Invert)
288     Result =
289         CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
290                                 llvm::ConstantInt::getAllOnesValue(IntType));
291   Result = EmitFromInt(CGF, Result, T, ValueType);
292   return RValue::get(Result);
293 }
294 
295 /// Utility to insert an atomic cmpxchg instruction.
296 ///
297 /// @param CGF The current codegen function.
298 /// @param E   Builtin call expression to convert to cmpxchg.
299 ///            arg0 - address to operate on
300 ///            arg1 - value to compare with
301 ///            arg2 - new value
302 /// @param ReturnBool Specifies whether to return success flag of
303 ///                   cmpxchg result or the old value.
304 ///
305 /// @returns result of cmpxchg, according to ReturnBool
306 ///
307 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
308 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
MakeAtomicCmpXchgValue(CodeGenFunction & CGF,const CallExpr * E,bool ReturnBool)309 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
310                                      bool ReturnBool) {
311   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
312   Address DestAddr = CheckAtomicAlignment(CGF, E);
313 
314   llvm::IntegerType *IntType = llvm::IntegerType::get(
315       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
316 
317   Value *Cmp = CGF.EmitScalarExpr(E->getArg(1));
318   llvm::Type *ValueType = Cmp->getType();
319   Cmp = EmitToInt(CGF, Cmp, T, IntType);
320   Value *New = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
321 
322   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
323       DestAddr, Cmp, New, llvm::AtomicOrdering::SequentiallyConsistent,
324       llvm::AtomicOrdering::SequentiallyConsistent);
325   if (ReturnBool)
326     // Extract boolean success flag and zext it to int.
327     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
328                                   CGF.ConvertType(E->getType()));
329   else
330     // Extract old value and emit it using the same type as compare value.
331     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
332                        ValueType);
333 }
334 
335 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
336 /// _InterlockedCompareExchange* intrinsics which have the following signature:
337 /// T _InterlockedCompareExchange(T volatile *Destination,
338 ///                               T Exchange,
339 ///                               T Comparand);
340 ///
341 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
342 /// cmpxchg *Destination, Comparand, Exchange.
343 /// So we need to swap Comparand and Exchange when invoking
344 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
345 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
346 /// already swapped.
347 
348 static
EmitAtomicCmpXchgForMSIntrin(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering SuccessOrdering=AtomicOrdering::SequentiallyConsistent)349 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
350     AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
351   assert(E->getArg(0)->getType()->isPointerType());
352   assert(CGF.getContext().hasSameUnqualifiedType(
353       E->getType(), E->getArg(0)->getType()->getPointeeType()));
354   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
355                                                  E->getArg(1)->getType()));
356   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
357                                                  E->getArg(2)->getType()));
358 
359   Address DestAddr = CheckAtomicAlignment(CGF, E);
360 
361   auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
362   auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
363 
364   // For Release ordering, the failure ordering should be Monotonic.
365   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
366                          AtomicOrdering::Monotonic :
367                          SuccessOrdering;
368 
369   // The atomic instruction is marked volatile for consistency with MSVC. This
370   // blocks the few atomics optimizations that LLVM has. If we want to optimize
371   // _Interlocked* operations in the future, we will have to remove the volatile
372   // marker.
373   auto *Result = CGF.Builder.CreateAtomicCmpXchg(
374       DestAddr, Comparand, Exchange, SuccessOrdering, FailureOrdering);
375   Result->setVolatile(true);
376   return CGF.Builder.CreateExtractValue(Result, 0);
377 }
378 
379 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
380 // prototyped like this:
381 //
382 // unsigned char _InterlockedCompareExchange128...(
383 //     __int64 volatile * _Destination,
384 //     __int64 _ExchangeHigh,
385 //     __int64 _ExchangeLow,
386 //     __int64 * _ComparandResult);
387 //
388 // Note that Destination is assumed to be at least 16-byte aligned, despite
389 // being typed int64.
390 
EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering SuccessOrdering)391 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
392                                               const CallExpr *E,
393                                               AtomicOrdering SuccessOrdering) {
394   assert(E->getNumArgs() == 4);
395   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
396   llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
397   llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
398   Address ComparandAddr = CGF.EmitPointerWithAlignment(E->getArg(3));
399 
400   assert(DestPtr->getType()->isPointerTy());
401   assert(!ExchangeHigh->getType()->isPointerTy());
402   assert(!ExchangeLow->getType()->isPointerTy());
403 
404   // For Release ordering, the failure ordering should be Monotonic.
405   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
406                              ? AtomicOrdering::Monotonic
407                              : SuccessOrdering;
408 
409   // Convert to i128 pointers and values. Alignment is also overridden for
410   // destination pointer.
411   llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
412   Address DestAddr(DestPtr, Int128Ty,
413                    CGF.getContext().toCharUnitsFromBits(128));
414   ComparandAddr = ComparandAddr.withElementType(Int128Ty);
415 
416   // (((i128)hi) << 64) | ((i128)lo)
417   ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
418   ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
419   ExchangeHigh =
420       CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
421   llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
422 
423   // Load the comparand for the instruction.
424   llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandAddr);
425 
426   auto *CXI = CGF.Builder.CreateAtomicCmpXchg(DestAddr, Comparand, Exchange,
427                                               SuccessOrdering, FailureOrdering);
428 
429   // The atomic instruction is marked volatile for consistency with MSVC. This
430   // blocks the few atomics optimizations that LLVM has. If we want to optimize
431   // _Interlocked* operations in the future, we will have to remove the volatile
432   // marker.
433   CXI->setVolatile(true);
434 
435   // Store the result as an outparameter.
436   CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
437                           ComparandAddr);
438 
439   // Get the success boolean and zero extend it to i8.
440   Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
441   return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
442 }
443 
EmitAtomicIncrementValue(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)444 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
445     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
446   assert(E->getArg(0)->getType()->isPointerType());
447 
448   auto *IntTy = CGF.ConvertType(E->getType());
449   Address DestAddr = CheckAtomicAlignment(CGF, E);
450   auto *Result = CGF.Builder.CreateAtomicRMW(
451       AtomicRMWInst::Add, DestAddr, ConstantInt::get(IntTy, 1), Ordering);
452   return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
453 }
454 
EmitAtomicDecrementValue(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)455 static Value *EmitAtomicDecrementValue(
456     CodeGenFunction &CGF, const CallExpr *E,
457     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
458   assert(E->getArg(0)->getType()->isPointerType());
459 
460   auto *IntTy = CGF.ConvertType(E->getType());
461   Address DestAddr = CheckAtomicAlignment(CGF, E);
462   auto *Result = CGF.Builder.CreateAtomicRMW(
463       AtomicRMWInst::Sub, DestAddr, ConstantInt::get(IntTy, 1), Ordering);
464   return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
465 }
466 
467 // Build a plain volatile load.
EmitISOVolatileLoad(CodeGenFunction & CGF,const CallExpr * E)468 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
469   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
470   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
471   CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
472   llvm::Type *ITy =
473       llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
474   llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
475   Load->setVolatile(true);
476   return Load;
477 }
478 
479 // Build a plain volatile store.
EmitISOVolatileStore(CodeGenFunction & CGF,const CallExpr * E)480 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
481   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
482   Value *Value = CGF.EmitScalarExpr(E->getArg(1));
483   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
484   CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
485   llvm::StoreInst *Store =
486       CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
487   Store->setVolatile(true);
488   return Store;
489 }
490 
491 // Emit a simple mangled intrinsic that has 1 argument and a return type
492 // matching the argument type. Depending on mode, this may be a constrained
493 // floating-point intrinsic.
emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)494 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
495                                 const CallExpr *E, unsigned IntrinsicID,
496                                 unsigned ConstrainedIntrinsicID) {
497   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
498 
499   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
500   if (CGF.Builder.getIsFPConstrained()) {
501     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
502     return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
503   } else {
504     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
505     return CGF.Builder.CreateCall(F, Src0);
506   }
507 }
508 
509 // Emit an intrinsic that has 2 operands of the same type as its result.
510 // Depending on mode, this may be a constrained floating-point intrinsic.
emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)511 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
512                                 const CallExpr *E, unsigned IntrinsicID,
513                                 unsigned ConstrainedIntrinsicID) {
514   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
515   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
516 
517   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
518   if (CGF.Builder.getIsFPConstrained()) {
519     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
520     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
521   } else {
522     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
523     return CGF.Builder.CreateCall(F, { Src0, Src1 });
524   }
525 }
526 
527 // Has second type mangled argument.
emitBinaryExpMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,llvm::Intrinsic::ID IntrinsicID,llvm::Intrinsic::ID ConstrainedIntrinsicID)528 static Value *emitBinaryExpMaybeConstrainedFPBuiltin(
529     CodeGenFunction &CGF, const CallExpr *E, llvm::Intrinsic::ID IntrinsicID,
530     llvm::Intrinsic::ID ConstrainedIntrinsicID) {
531   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
532   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
533 
534   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
535   if (CGF.Builder.getIsFPConstrained()) {
536     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
537                                        {Src0->getType(), Src1->getType()});
538     return CGF.Builder.CreateConstrainedFPCall(F, {Src0, Src1});
539   }
540 
541   Function *F =
542       CGF.CGM.getIntrinsic(IntrinsicID, {Src0->getType(), Src1->getType()});
543   return CGF.Builder.CreateCall(F, {Src0, Src1});
544 }
545 
546 // Emit an intrinsic that has 3 operands of the same type as its result.
547 // Depending on mode, this may be a constrained floating-point intrinsic.
emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)548 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
549                                  const CallExpr *E, unsigned IntrinsicID,
550                                  unsigned ConstrainedIntrinsicID) {
551   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
552   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
553   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
554 
555   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
556   if (CGF.Builder.getIsFPConstrained()) {
557     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
558     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
559   } else {
560     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
561     return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
562   }
563 }
564 
565 // Emit an intrinsic where all operands are of the same type as the result.
566 // Depending on mode, this may be a constrained floating-point intrinsic.
emitCallMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID,llvm::Type * Ty,ArrayRef<Value * > Args)567 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
568                                                 unsigned IntrinsicID,
569                                                 unsigned ConstrainedIntrinsicID,
570                                                 llvm::Type *Ty,
571                                                 ArrayRef<Value *> Args) {
572   Function *F;
573   if (CGF.Builder.getIsFPConstrained())
574     F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
575   else
576     F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
577 
578   if (CGF.Builder.getIsFPConstrained())
579     return CGF.Builder.CreateConstrainedFPCall(F, Args);
580   else
581     return CGF.Builder.CreateCall(F, Args);
582 }
583 
584 // Emit a simple intrinsic that has N scalar arguments and a return type
585 // matching the argument type. It is assumed that only the first argument is
586 // overloaded.
587 template <unsigned N>
emitBuiltinWithOneOverloadedType(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,llvm::StringRef Name="")588 Value *emitBuiltinWithOneOverloadedType(CodeGenFunction &CGF, const CallExpr *E,
589                                         unsigned IntrinsicID,
590                                         llvm::StringRef Name = "") {
591   static_assert(N, "expect non-empty argument");
592   SmallVector<Value *, N> Args;
593   for (unsigned I = 0; I < N; ++I)
594     Args.push_back(CGF.EmitScalarExpr(E->getArg(I)));
595   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Args[0]->getType());
596   return CGF.Builder.CreateCall(F, Args, Name);
597 }
598 
599 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
emitFPIntBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)600 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
601                                const CallExpr *E,
602                                unsigned IntrinsicID) {
603   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
604   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
605 
606   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
607   return CGF.Builder.CreateCall(F, {Src0, Src1});
608 }
609 
610 // Emit an intrinsic that has overloaded integer result and fp operand.
611 static Value *
emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)612 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
613                                         unsigned IntrinsicID,
614                                         unsigned ConstrainedIntrinsicID) {
615   llvm::Type *ResultType = CGF.ConvertType(E->getType());
616   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
617 
618   if (CGF.Builder.getIsFPConstrained()) {
619     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
620     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
621                                        {ResultType, Src0->getType()});
622     return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
623   } else {
624     Function *F =
625         CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
626     return CGF.Builder.CreateCall(F, Src0);
627   }
628 }
629 
emitFrexpBuiltin(CodeGenFunction & CGF,const CallExpr * E,llvm::Intrinsic::ID IntrinsicID)630 static Value *emitFrexpBuiltin(CodeGenFunction &CGF, const CallExpr *E,
631                                llvm::Intrinsic::ID IntrinsicID) {
632   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
633   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
634 
635   QualType IntPtrTy = E->getArg(1)->getType()->getPointeeType();
636   llvm::Type *IntTy = CGF.ConvertType(IntPtrTy);
637   llvm::Function *F =
638       CGF.CGM.getIntrinsic(IntrinsicID, {Src0->getType(), IntTy});
639   llvm::Value *Call = CGF.Builder.CreateCall(F, Src0);
640 
641   llvm::Value *Exp = CGF.Builder.CreateExtractValue(Call, 1);
642   LValue LV = CGF.MakeNaturalAlignAddrLValue(Src1, IntPtrTy);
643   CGF.EmitStoreOfScalar(Exp, LV);
644 
645   return CGF.Builder.CreateExtractValue(Call, 0);
646 }
647 
648 /// EmitFAbs - Emit a call to @llvm.fabs().
EmitFAbs(CodeGenFunction & CGF,Value * V)649 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
650   Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
651   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
652   Call->setDoesNotAccessMemory();
653   return Call;
654 }
655 
656 /// Emit the computation of the sign bit for a floating point value. Returns
657 /// the i1 sign bit value.
EmitSignBit(CodeGenFunction & CGF,Value * V)658 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
659   LLVMContext &C = CGF.CGM.getLLVMContext();
660 
661   llvm::Type *Ty = V->getType();
662   int Width = Ty->getPrimitiveSizeInBits();
663   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
664   V = CGF.Builder.CreateBitCast(V, IntTy);
665   if (Ty->isPPC_FP128Ty()) {
666     // We want the sign bit of the higher-order double. The bitcast we just
667     // did works as if the double-double was stored to memory and then
668     // read as an i128. The "store" will put the higher-order double in the
669     // lower address in both little- and big-Endian modes, but the "load"
670     // will treat those bits as a different part of the i128: the low bits in
671     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
672     // we need to shift the high bits down to the low before truncating.
673     Width >>= 1;
674     if (CGF.getTarget().isBigEndian()) {
675       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
676       V = CGF.Builder.CreateLShr(V, ShiftCst);
677     }
678     // We are truncating value in order to extract the higher-order
679     // double, which we will be using to extract the sign from.
680     IntTy = llvm::IntegerType::get(C, Width);
681     V = CGF.Builder.CreateTrunc(V, IntTy);
682   }
683   Value *Zero = llvm::Constant::getNullValue(IntTy);
684   return CGF.Builder.CreateICmpSLT(V, Zero);
685 }
686 
emitLibraryCall(CodeGenFunction & CGF,const FunctionDecl * FD,const CallExpr * E,llvm::Constant * calleeValue)687 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
688                               const CallExpr *E, llvm::Constant *calleeValue) {
689   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
690   CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
691   RValue Call =
692       CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
693 
694   // Check the supported intrinsic.
695   if (unsigned BuiltinID = FD->getBuiltinID()) {
696     auto IsErrnoIntrinsic = [&]() -> unsigned {
697       switch (BuiltinID) {
698       case Builtin::BIexpf:
699       case Builtin::BI__builtin_expf:
700       case Builtin::BI__builtin_expf128:
701         return true;
702       }
703       // TODO: support more FP math libcalls
704       return false;
705     }();
706 
707     // Restrict to target with errno, for example, MacOS doesn't set errno.
708     if (IsErrnoIntrinsic && CGF.CGM.getLangOpts().MathErrno &&
709         !CGF.Builder.getIsFPConstrained()) {
710       ASTContext &Context = CGF.getContext();
711       // Emit "int" TBAA metadata on FP math libcalls.
712       clang::QualType IntTy = Context.IntTy;
713       TBAAAccessInfo TBAAInfo = CGF.CGM.getTBAAAccessInfo(IntTy);
714       Instruction *Inst = cast<llvm::Instruction>(Call.getScalarVal());
715       CGF.CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
716     }
717   }
718   return Call;
719 }
720 
721 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
722 /// depending on IntrinsicID.
723 ///
724 /// \arg CGF The current codegen function.
725 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
726 /// \arg X The first argument to the llvm.*.with.overflow.*.
727 /// \arg Y The second argument to the llvm.*.with.overflow.*.
728 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
729 /// \returns The result (i.e. sum/product) returned by the intrinsic.
EmitOverflowIntrinsic(CodeGenFunction & CGF,const llvm::Intrinsic::ID IntrinsicID,llvm::Value * X,llvm::Value * Y,llvm::Value * & Carry)730 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
731                                           const llvm::Intrinsic::ID IntrinsicID,
732                                           llvm::Value *X, llvm::Value *Y,
733                                           llvm::Value *&Carry) {
734   // Make sure we have integers of the same width.
735   assert(X->getType() == Y->getType() &&
736          "Arguments must be the same type. (Did you forget to make sure both "
737          "arguments have the same integer width?)");
738 
739   Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
740   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
741   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
742   return CGF.Builder.CreateExtractValue(Tmp, 0);
743 }
744 
emitRangedBuiltin(CodeGenFunction & CGF,unsigned IntrinsicID,int low,int high)745 static Value *emitRangedBuiltin(CodeGenFunction &CGF, unsigned IntrinsicID,
746                                 int low, int high) {
747   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
748   llvm::CallInst *Call = CGF.Builder.CreateCall(F);
749   llvm::ConstantRange CR(APInt(32, low), APInt(32, high));
750   Call->addRangeRetAttr(CR);
751   Call->addRetAttr(llvm::Attribute::AttrKind::NoUndef);
752   return Call;
753 }
754 
755 namespace {
756   struct WidthAndSignedness {
757     unsigned Width;
758     bool Signed;
759   };
760 }
761 
762 static WidthAndSignedness
getIntegerWidthAndSignedness(const clang::ASTContext & context,const clang::QualType Type)763 getIntegerWidthAndSignedness(const clang::ASTContext &context,
764                              const clang::QualType Type) {
765   assert(Type->isIntegerType() && "Given type is not an integer.");
766   unsigned Width = Type->isBooleanType()  ? 1
767                    : Type->isBitIntType() ? context.getIntWidth(Type)
768                                           : context.getTypeInfo(Type).Width;
769   bool Signed = Type->isSignedIntegerType();
770   return {Width, Signed};
771 }
772 
773 // Given one or more integer types, this function produces an integer type that
774 // encompasses them: any value in one of the given types could be expressed in
775 // the encompassing type.
776 static struct WidthAndSignedness
EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types)777 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
778   assert(Types.size() > 0 && "Empty list of types.");
779 
780   // If any of the given types is signed, we must return a signed type.
781   bool Signed = false;
782   for (const auto &Type : Types) {
783     Signed |= Type.Signed;
784   }
785 
786   // The encompassing type must have a width greater than or equal to the width
787   // of the specified types.  Additionally, if the encompassing type is signed,
788   // its width must be strictly greater than the width of any unsigned types
789   // given.
790   unsigned Width = 0;
791   for (const auto &Type : Types) {
792     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
793     if (Width < MinWidth) {
794       Width = MinWidth;
795     }
796   }
797 
798   return {Width, Signed};
799 }
800 
EmitVAStartEnd(Value * ArgValue,bool IsStart)801 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
802   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
803   return Builder.CreateCall(CGM.getIntrinsic(inst, {ArgValue->getType()}),
804                             ArgValue);
805 }
806 
807 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
808 /// __builtin_object_size(p, @p To) is correct
areBOSTypesCompatible(int From,int To)809 static bool areBOSTypesCompatible(int From, int To) {
810   // Note: Our __builtin_object_size implementation currently treats Type=0 and
811   // Type=2 identically. Encoding this implementation detail here may make
812   // improving __builtin_object_size difficult in the future, so it's omitted.
813   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
814 }
815 
816 static llvm::Value *
getDefaultBuiltinObjectSizeResult(unsigned Type,llvm::IntegerType * ResType)817 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
818   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
819 }
820 
821 llvm::Value *
evaluateOrEmitBuiltinObjectSize(const Expr * E,unsigned Type,llvm::IntegerType * ResType,llvm::Value * EmittedE,bool IsDynamic)822 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
823                                                  llvm::IntegerType *ResType,
824                                                  llvm::Value *EmittedE,
825                                                  bool IsDynamic) {
826   uint64_t ObjectSize;
827   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
828     return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
829   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
830 }
831 
FindFlexibleArrayMemberFieldAndOffset(ASTContext & Ctx,const RecordDecl * RD,const FieldDecl * FAMDecl,uint64_t & Offset)832 const FieldDecl *CodeGenFunction::FindFlexibleArrayMemberFieldAndOffset(
833     ASTContext &Ctx, const RecordDecl *RD, const FieldDecl *FAMDecl,
834     uint64_t &Offset) {
835   const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
836       getLangOpts().getStrictFlexArraysLevel();
837   uint32_t FieldNo = 0;
838 
839   if (RD->isImplicit())
840     return nullptr;
841 
842   for (const FieldDecl *FD : RD->fields()) {
843     if ((!FAMDecl || FD == FAMDecl) &&
844         Decl::isFlexibleArrayMemberLike(
845             Ctx, FD, FD->getType(), StrictFlexArraysLevel,
846             /*IgnoreTemplateOrMacroSubstitution=*/true)) {
847       const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
848       Offset += Layout.getFieldOffset(FieldNo);
849       return FD;
850     }
851 
852     QualType Ty = FD->getType();
853     if (Ty->isRecordType()) {
854       if (const FieldDecl *Field = FindFlexibleArrayMemberFieldAndOffset(
855               Ctx, Ty->getAsRecordDecl(), FAMDecl, Offset)) {
856         const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
857         Offset += Layout.getFieldOffset(FieldNo);
858         return Field;
859       }
860     }
861 
862     if (!RD->isUnion())
863       ++FieldNo;
864   }
865 
866   return nullptr;
867 }
868 
CountCountedByAttrs(const RecordDecl * RD)869 static unsigned CountCountedByAttrs(const RecordDecl *RD) {
870   unsigned Num = 0;
871 
872   for (const FieldDecl *FD : RD->fields()) {
873     if (FD->getType()->isCountAttributedType())
874       return ++Num;
875 
876     QualType Ty = FD->getType();
877     if (Ty->isRecordType())
878       Num += CountCountedByAttrs(Ty->getAsRecordDecl());
879   }
880 
881   return Num;
882 }
883 
884 llvm::Value *
emitFlexibleArrayMemberSize(const Expr * E,unsigned Type,llvm::IntegerType * ResType)885 CodeGenFunction::emitFlexibleArrayMemberSize(const Expr *E, unsigned Type,
886                                              llvm::IntegerType *ResType) {
887   // The code generated here calculates the size of a struct with a flexible
888   // array member that uses the counted_by attribute. There are two instances
889   // we handle:
890   //
891   //       struct s {
892   //         unsigned long flags;
893   //         int count;
894   //         int array[] __attribute__((counted_by(count)));
895   //       }
896   //
897   //   1) bdos of the flexible array itself:
898   //
899   //     __builtin_dynamic_object_size(p->array, 1) ==
900   //         p->count * sizeof(*p->array)
901   //
902   //   2) bdos of a pointer into the flexible array:
903   //
904   //     __builtin_dynamic_object_size(&p->array[42], 1) ==
905   //         (p->count - 42) * sizeof(*p->array)
906   //
907   //   2) bdos of the whole struct, including the flexible array:
908   //
909   //     __builtin_dynamic_object_size(p, 1) ==
910   //        max(sizeof(struct s),
911   //            offsetof(struct s, array) + p->count * sizeof(*p->array))
912   //
913   ASTContext &Ctx = getContext();
914   const Expr *Base = E->IgnoreParenImpCasts();
915   const Expr *Idx = nullptr;
916 
917   if (const auto *UO = dyn_cast<UnaryOperator>(Base);
918       UO && UO->getOpcode() == UO_AddrOf) {
919     Expr *SubExpr = UO->getSubExpr()->IgnoreParenImpCasts();
920     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(SubExpr)) {
921       Base = ASE->getBase()->IgnoreParenImpCasts();
922       Idx = ASE->getIdx()->IgnoreParenImpCasts();
923 
924       if (const auto *IL = dyn_cast<IntegerLiteral>(Idx)) {
925         int64_t Val = IL->getValue().getSExtValue();
926         if (Val < 0)
927           return getDefaultBuiltinObjectSizeResult(Type, ResType);
928 
929         if (Val == 0)
930           // The index is 0, so we don't need to take it into account.
931           Idx = nullptr;
932       }
933     } else {
934       // Potential pointer to another element in the struct.
935       Base = SubExpr;
936     }
937   }
938 
939   // Get the flexible array member Decl.
940   const RecordDecl *OuterRD = nullptr;
941   const FieldDecl *FAMDecl = nullptr;
942   if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
943     // Check if \p Base is referencing the FAM itself.
944     const ValueDecl *VD = ME->getMemberDecl();
945     OuterRD = VD->getDeclContext()->getOuterLexicalRecordContext();
946     FAMDecl = dyn_cast<FieldDecl>(VD);
947     if (!FAMDecl)
948       return nullptr;
949   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
950     // Check if we're pointing to the whole struct.
951     QualType Ty = DRE->getDecl()->getType();
952     if (Ty->isPointerType())
953       Ty = Ty->getPointeeType();
954     OuterRD = Ty->getAsRecordDecl();
955 
956     // If we have a situation like this:
957     //
958     //     struct union_of_fams {
959     //         int flags;
960     //         union {
961     //             signed char normal_field;
962     //             struct {
963     //                 int count1;
964     //                 int arr1[] __counted_by(count1);
965     //             };
966     //             struct {
967     //                 signed char count2;
968     //                 int arr2[] __counted_by(count2);
969     //             };
970     //         };
971     //    };
972     //
973     // We don't know which 'count' to use in this scenario:
974     //
975     //     size_t get_size(struct union_of_fams *p) {
976     //         return __builtin_dynamic_object_size(p, 1);
977     //     }
978     //
979     // Instead of calculating a wrong number, we give up.
980     if (OuterRD && CountCountedByAttrs(OuterRD) > 1)
981       return nullptr;
982   }
983 
984   if (!OuterRD)
985     return nullptr;
986 
987   // We call FindFlexibleArrayMemberAndOffset even if FAMDecl is non-null to
988   // get its offset.
989   uint64_t Offset = 0;
990   FAMDecl =
991       FindFlexibleArrayMemberFieldAndOffset(Ctx, OuterRD, FAMDecl, Offset);
992   Offset = Ctx.toCharUnitsFromBits(Offset).getQuantity();
993 
994   if (!FAMDecl || !FAMDecl->getType()->isCountAttributedType())
995     // No flexible array member found or it doesn't have the "counted_by"
996     // attribute.
997     return nullptr;
998 
999   const FieldDecl *CountedByFD = FindCountedByField(FAMDecl);
1000   if (!CountedByFD)
1001     // Can't find the field referenced by the "counted_by" attribute.
1002     return nullptr;
1003 
1004   if (isa<DeclRefExpr>(Base))
1005     // The whole struct is specificed in the __bdos. The calculation of the
1006     // whole size of the structure can be done in two ways:
1007     //
1008     //     1) sizeof(struct S) + count * sizeof(typeof(fam))
1009     //     2) offsetof(struct S, fam) + count * sizeof(typeof(fam))
1010     //
1011     // The first will add additional padding after the end of the array,
1012     // allocation while the second method is more precise, but not quite
1013     // expected from programmers. See
1014     // https://lore.kernel.org/lkml/ZvV6X5FPBBW7CO1f@archlinux/ for a
1015     // discussion of the topic.
1016     //
1017     // GCC isn't (currently) able to calculate __bdos on a pointer to the whole
1018     // structure. Therefore, because of the above issue, we'll choose to match
1019     // what GCC does for consistency's sake.
1020     return nullptr;
1021 
1022   // Build a load of the counted_by field.
1023   bool IsSigned = CountedByFD->getType()->isSignedIntegerType();
1024   Value *CountedByInst = EmitCountedByFieldExpr(Base, FAMDecl, CountedByFD);
1025   if (!CountedByInst)
1026     return getDefaultBuiltinObjectSizeResult(Type, ResType);
1027 
1028   CountedByInst = Builder.CreateIntCast(CountedByInst, ResType, IsSigned);
1029 
1030   // Build a load of the index and subtract it from the count.
1031   Value *IdxInst = nullptr;
1032   if (Idx) {
1033     if (Idx->HasSideEffects(getContext()))
1034       // We can't have side-effects.
1035       return getDefaultBuiltinObjectSizeResult(Type, ResType);
1036 
1037     bool IdxSigned = Idx->getType()->isSignedIntegerType();
1038     IdxInst = EmitAnyExprToTemp(Idx).getScalarVal();
1039     IdxInst = Builder.CreateIntCast(IdxInst, ResType, IdxSigned);
1040 
1041     // We go ahead with the calculation here. If the index turns out to be
1042     // negative, we'll catch it at the end.
1043     CountedByInst =
1044         Builder.CreateSub(CountedByInst, IdxInst, "", !IsSigned, IsSigned);
1045   }
1046 
1047   // Calculate how large the flexible array member is in bytes.
1048   const ArrayType *ArrayTy = Ctx.getAsArrayType(FAMDecl->getType());
1049   CharUnits Size = Ctx.getTypeSizeInChars(ArrayTy->getElementType());
1050   llvm::Constant *ElemSize =
1051       llvm::ConstantInt::get(ResType, Size.getQuantity(), IsSigned);
1052   Value *Res =
1053       Builder.CreateMul(CountedByInst, ElemSize, "", !IsSigned, IsSigned);
1054   Res = Builder.CreateIntCast(Res, ResType, IsSigned);
1055 
1056   // A negative \p IdxInst or \p CountedByInst means that the index lands
1057   // outside of the flexible array member. If that's the case, we want to
1058   // return 0.
1059   Value *Cmp = Builder.CreateIsNotNeg(CountedByInst);
1060   if (IdxInst)
1061     Cmp = Builder.CreateAnd(Builder.CreateIsNotNeg(IdxInst), Cmp);
1062 
1063   return Builder.CreateSelect(Cmp, Res, ConstantInt::get(ResType, 0, IsSigned));
1064 }
1065 
1066 /// Returns a Value corresponding to the size of the given expression.
1067 /// This Value may be either of the following:
1068 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
1069 ///     it)
1070 ///   - A call to the @llvm.objectsize intrinsic
1071 ///
1072 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
1073 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
1074 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
1075 llvm::Value *
emitBuiltinObjectSize(const Expr * E,unsigned Type,llvm::IntegerType * ResType,llvm::Value * EmittedE,bool IsDynamic)1076 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
1077                                        llvm::IntegerType *ResType,
1078                                        llvm::Value *EmittedE, bool IsDynamic) {
1079   // We need to reference an argument if the pointer is a parameter with the
1080   // pass_object_size attribute.
1081   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
1082     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
1083     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
1084     if (Param != nullptr && PS != nullptr &&
1085         areBOSTypesCompatible(PS->getType(), Type)) {
1086       auto Iter = SizeArguments.find(Param);
1087       assert(Iter != SizeArguments.end());
1088 
1089       const ImplicitParamDecl *D = Iter->second;
1090       auto DIter = LocalDeclMap.find(D);
1091       assert(DIter != LocalDeclMap.end());
1092 
1093       return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
1094                               getContext().getSizeType(), E->getBeginLoc());
1095     }
1096   }
1097 
1098   if (IsDynamic) {
1099     // Emit special code for a flexible array member with the "counted_by"
1100     // attribute.
1101     if (Value *V = emitFlexibleArrayMemberSize(E, Type, ResType))
1102       return V;
1103   }
1104 
1105   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
1106   // evaluate E for side-effects. In either case, we shouldn't lower to
1107   // @llvm.objectsize.
1108   if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
1109     return getDefaultBuiltinObjectSizeResult(Type, ResType);
1110 
1111   Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
1112   assert(Ptr->getType()->isPointerTy() &&
1113          "Non-pointer passed to __builtin_object_size?");
1114 
1115   Function *F =
1116       CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
1117 
1118   // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
1119   Value *Min = Builder.getInt1((Type & 2) != 0);
1120   // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
1121   Value *NullIsUnknown = Builder.getTrue();
1122   Value *Dynamic = Builder.getInt1(IsDynamic);
1123   return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
1124 }
1125 
1126 namespace {
1127 /// A struct to generically describe a bit test intrinsic.
1128 struct BitTest {
1129   enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
1130   enum InterlockingKind : uint8_t {
1131     Unlocked,
1132     Sequential,
1133     Acquire,
1134     Release,
1135     NoFence
1136   };
1137 
1138   ActionKind Action;
1139   InterlockingKind Interlocking;
1140   bool Is64Bit;
1141 
1142   static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
1143 };
1144 
1145 } // namespace
1146 
decodeBitTestBuiltin(unsigned BuiltinID)1147 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
1148   switch (BuiltinID) {
1149     // Main portable variants.
1150   case Builtin::BI_bittest:
1151     return {TestOnly, Unlocked, false};
1152   case Builtin::BI_bittestandcomplement:
1153     return {Complement, Unlocked, false};
1154   case Builtin::BI_bittestandreset:
1155     return {Reset, Unlocked, false};
1156   case Builtin::BI_bittestandset:
1157     return {Set, Unlocked, false};
1158   case Builtin::BI_interlockedbittestandreset:
1159     return {Reset, Sequential, false};
1160   case Builtin::BI_interlockedbittestandset:
1161     return {Set, Sequential, false};
1162 
1163     // X86-specific 64-bit variants.
1164   case Builtin::BI_bittest64:
1165     return {TestOnly, Unlocked, true};
1166   case Builtin::BI_bittestandcomplement64:
1167     return {Complement, Unlocked, true};
1168   case Builtin::BI_bittestandreset64:
1169     return {Reset, Unlocked, true};
1170   case Builtin::BI_bittestandset64:
1171     return {Set, Unlocked, true};
1172   case Builtin::BI_interlockedbittestandreset64:
1173     return {Reset, Sequential, true};
1174   case Builtin::BI_interlockedbittestandset64:
1175     return {Set, Sequential, true};
1176 
1177     // ARM/AArch64-specific ordering variants.
1178   case Builtin::BI_interlockedbittestandset_acq:
1179     return {Set, Acquire, false};
1180   case Builtin::BI_interlockedbittestandset_rel:
1181     return {Set, Release, false};
1182   case Builtin::BI_interlockedbittestandset_nf:
1183     return {Set, NoFence, false};
1184   case Builtin::BI_interlockedbittestandreset_acq:
1185     return {Reset, Acquire, false};
1186   case Builtin::BI_interlockedbittestandreset_rel:
1187     return {Reset, Release, false};
1188   case Builtin::BI_interlockedbittestandreset_nf:
1189     return {Reset, NoFence, false};
1190   }
1191   llvm_unreachable("expected only bittest intrinsics");
1192 }
1193 
bitActionToX86BTCode(BitTest::ActionKind A)1194 static char bitActionToX86BTCode(BitTest::ActionKind A) {
1195   switch (A) {
1196   case BitTest::TestOnly:   return '\0';
1197   case BitTest::Complement: return 'c';
1198   case BitTest::Reset:      return 'r';
1199   case BitTest::Set:        return 's';
1200   }
1201   llvm_unreachable("invalid action");
1202 }
1203 
EmitX86BitTestIntrinsic(CodeGenFunction & CGF,BitTest BT,const CallExpr * E,Value * BitBase,Value * BitPos)1204 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
1205                                             BitTest BT,
1206                                             const CallExpr *E, Value *BitBase,
1207                                             Value *BitPos) {
1208   char Action = bitActionToX86BTCode(BT.Action);
1209   char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
1210 
1211   // Build the assembly.
1212   SmallString<64> Asm;
1213   raw_svector_ostream AsmOS(Asm);
1214   if (BT.Interlocking != BitTest::Unlocked)
1215     AsmOS << "lock ";
1216   AsmOS << "bt";
1217   if (Action)
1218     AsmOS << Action;
1219   AsmOS << SizeSuffix << " $2, ($1)";
1220 
1221   // Build the constraints. FIXME: We should support immediates when possible.
1222   std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
1223   std::string_view MachineClobbers = CGF.getTarget().getClobbers();
1224   if (!MachineClobbers.empty()) {
1225     Constraints += ',';
1226     Constraints += MachineClobbers;
1227   }
1228   llvm::IntegerType *IntType = llvm::IntegerType::get(
1229       CGF.getLLVMContext(),
1230       CGF.getContext().getTypeSize(E->getArg(1)->getType()));
1231   llvm::FunctionType *FTy =
1232       llvm::FunctionType::get(CGF.Int8Ty, {CGF.UnqualPtrTy, IntType}, false);
1233 
1234   llvm::InlineAsm *IA =
1235       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1236   return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
1237 }
1238 
1239 static llvm::AtomicOrdering
getBitTestAtomicOrdering(BitTest::InterlockingKind I)1240 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
1241   switch (I) {
1242   case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
1243   case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
1244   case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
1245   case BitTest::Release:    return llvm::AtomicOrdering::Release;
1246   case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
1247   }
1248   llvm_unreachable("invalid interlocking");
1249 }
1250 
1251 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
1252 /// bits and a bit position and read and optionally modify the bit at that
1253 /// position. The position index can be arbitrarily large, i.e. it can be larger
1254 /// than 31 or 63, so we need an indexed load in the general case.
EmitBitTestIntrinsic(CodeGenFunction & CGF,unsigned BuiltinID,const CallExpr * E)1255 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
1256                                          unsigned BuiltinID,
1257                                          const CallExpr *E) {
1258   Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
1259   Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
1260 
1261   BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
1262 
1263   // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
1264   // indexing operation internally. Use them if possible.
1265   if (CGF.getTarget().getTriple().isX86())
1266     return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
1267 
1268   // Otherwise, use generic code to load one byte and test the bit. Use all but
1269   // the bottom three bits as the array index, and the bottom three bits to form
1270   // a mask.
1271   // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
1272   Value *ByteIndex = CGF.Builder.CreateAShr(
1273       BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
1274   Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
1275   Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
1276                                                  ByteIndex, "bittest.byteaddr"),
1277                    CGF.Int8Ty, CharUnits::One());
1278   Value *PosLow =
1279       CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
1280                             llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
1281 
1282   // The updating instructions will need a mask.
1283   Value *Mask = nullptr;
1284   if (BT.Action != BitTest::TestOnly) {
1285     Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
1286                                  "bittest.mask");
1287   }
1288 
1289   // Check the action and ordering of the interlocked intrinsics.
1290   llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
1291 
1292   Value *OldByte = nullptr;
1293   if (Ordering != llvm::AtomicOrdering::NotAtomic) {
1294     // Emit a combined atomicrmw load/store operation for the interlocked
1295     // intrinsics.
1296     llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
1297     if (BT.Action == BitTest::Reset) {
1298       Mask = CGF.Builder.CreateNot(Mask);
1299       RMWOp = llvm::AtomicRMWInst::And;
1300     }
1301     OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr, Mask, Ordering);
1302   } else {
1303     // Emit a plain load for the non-interlocked intrinsics.
1304     OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
1305     Value *NewByte = nullptr;
1306     switch (BT.Action) {
1307     case BitTest::TestOnly:
1308       // Don't store anything.
1309       break;
1310     case BitTest::Complement:
1311       NewByte = CGF.Builder.CreateXor(OldByte, Mask);
1312       break;
1313     case BitTest::Reset:
1314       NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
1315       break;
1316     case BitTest::Set:
1317       NewByte = CGF.Builder.CreateOr(OldByte, Mask);
1318       break;
1319     }
1320     if (NewByte)
1321       CGF.Builder.CreateStore(NewByte, ByteAddr);
1322   }
1323 
1324   // However we loaded the old byte, either by plain load or atomicrmw, shift
1325   // the bit into the low position and mask it to 0 or 1.
1326   Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
1327   return CGF.Builder.CreateAnd(
1328       ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
1329 }
1330 
emitPPCLoadReserveIntrinsic(CodeGenFunction & CGF,unsigned BuiltinID,const CallExpr * E)1331 static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
1332                                                 unsigned BuiltinID,
1333                                                 const CallExpr *E) {
1334   Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1335 
1336   SmallString<64> Asm;
1337   raw_svector_ostream AsmOS(Asm);
1338   llvm::IntegerType *RetType = CGF.Int32Ty;
1339 
1340   switch (BuiltinID) {
1341   case clang::PPC::BI__builtin_ppc_ldarx:
1342     AsmOS << "ldarx ";
1343     RetType = CGF.Int64Ty;
1344     break;
1345   case clang::PPC::BI__builtin_ppc_lwarx:
1346     AsmOS << "lwarx ";
1347     RetType = CGF.Int32Ty;
1348     break;
1349   case clang::PPC::BI__builtin_ppc_lharx:
1350     AsmOS << "lharx ";
1351     RetType = CGF.Int16Ty;
1352     break;
1353   case clang::PPC::BI__builtin_ppc_lbarx:
1354     AsmOS << "lbarx ";
1355     RetType = CGF.Int8Ty;
1356     break;
1357   default:
1358     llvm_unreachable("Expected only PowerPC load reserve intrinsics");
1359   }
1360 
1361   AsmOS << "$0, ${1:y}";
1362 
1363   std::string Constraints = "=r,*Z,~{memory}";
1364   std::string_view MachineClobbers = CGF.getTarget().getClobbers();
1365   if (!MachineClobbers.empty()) {
1366     Constraints += ',';
1367     Constraints += MachineClobbers;
1368   }
1369 
1370   llvm::Type *PtrType = CGF.UnqualPtrTy;
1371   llvm::FunctionType *FTy = llvm::FunctionType::get(RetType, {PtrType}, false);
1372 
1373   llvm::InlineAsm *IA =
1374       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1375   llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
1376   CI->addParamAttr(
1377       0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
1378   return CI;
1379 }
1380 
1381 namespace {
1382 enum class MSVCSetJmpKind {
1383   _setjmpex,
1384   _setjmp3,
1385   _setjmp
1386 };
1387 }
1388 
1389 /// MSVC handles setjmp a bit differently on different platforms. On every
1390 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
1391 /// parameters can be passed as variadic arguments, but we always pass none.
EmitMSVCRTSetJmp(CodeGenFunction & CGF,MSVCSetJmpKind SJKind,const CallExpr * E)1392 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1393                                const CallExpr *E) {
1394   llvm::Value *Arg1 = nullptr;
1395   llvm::Type *Arg1Ty = nullptr;
1396   StringRef Name;
1397   bool IsVarArg = false;
1398   if (SJKind == MSVCSetJmpKind::_setjmp3) {
1399     Name = "_setjmp3";
1400     Arg1Ty = CGF.Int32Ty;
1401     Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1402     IsVarArg = true;
1403   } else {
1404     Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1405     Arg1Ty = CGF.Int8PtrTy;
1406     if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1407       Arg1 = CGF.Builder.CreateCall(
1408           CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1409     } else
1410       Arg1 = CGF.Builder.CreateCall(
1411           CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1412           llvm::ConstantInt::get(CGF.Int32Ty, 0));
1413   }
1414 
1415   // Mark the call site and declaration with ReturnsTwice.
1416   llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1417   llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1418       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1419       llvm::Attribute::ReturnsTwice);
1420   llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1421       llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1422       ReturnsTwiceAttr, /*Local=*/true);
1423 
1424   llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1425       CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1426   llvm::Value *Args[] = {Buf, Arg1};
1427   llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1428   CB->setAttributes(ReturnsTwiceAttr);
1429   return RValue::get(CB);
1430 }
1431 
1432 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1433 // we handle them here.
1434 enum class CodeGenFunction::MSVCIntrin {
1435   _BitScanForward,
1436   _BitScanReverse,
1437   _InterlockedAnd,
1438   _InterlockedDecrement,
1439   _InterlockedExchange,
1440   _InterlockedExchangeAdd,
1441   _InterlockedExchangeSub,
1442   _InterlockedIncrement,
1443   _InterlockedOr,
1444   _InterlockedXor,
1445   _InterlockedExchangeAdd_acq,
1446   _InterlockedExchangeAdd_rel,
1447   _InterlockedExchangeAdd_nf,
1448   _InterlockedExchange_acq,
1449   _InterlockedExchange_rel,
1450   _InterlockedExchange_nf,
1451   _InterlockedCompareExchange_acq,
1452   _InterlockedCompareExchange_rel,
1453   _InterlockedCompareExchange_nf,
1454   _InterlockedCompareExchange128,
1455   _InterlockedCompareExchange128_acq,
1456   _InterlockedCompareExchange128_rel,
1457   _InterlockedCompareExchange128_nf,
1458   _InterlockedOr_acq,
1459   _InterlockedOr_rel,
1460   _InterlockedOr_nf,
1461   _InterlockedXor_acq,
1462   _InterlockedXor_rel,
1463   _InterlockedXor_nf,
1464   _InterlockedAnd_acq,
1465   _InterlockedAnd_rel,
1466   _InterlockedAnd_nf,
1467   _InterlockedIncrement_acq,
1468   _InterlockedIncrement_rel,
1469   _InterlockedIncrement_nf,
1470   _InterlockedDecrement_acq,
1471   _InterlockedDecrement_rel,
1472   _InterlockedDecrement_nf,
1473   __fastfail,
1474 };
1475 
1476 static std::optional<CodeGenFunction::MSVCIntrin>
translateArmToMsvcIntrin(unsigned BuiltinID)1477 translateArmToMsvcIntrin(unsigned BuiltinID) {
1478   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1479   switch (BuiltinID) {
1480   default:
1481     return std::nullopt;
1482   case clang::ARM::BI_BitScanForward:
1483   case clang::ARM::BI_BitScanForward64:
1484     return MSVCIntrin::_BitScanForward;
1485   case clang::ARM::BI_BitScanReverse:
1486   case clang::ARM::BI_BitScanReverse64:
1487     return MSVCIntrin::_BitScanReverse;
1488   case clang::ARM::BI_InterlockedAnd64:
1489     return MSVCIntrin::_InterlockedAnd;
1490   case clang::ARM::BI_InterlockedExchange64:
1491     return MSVCIntrin::_InterlockedExchange;
1492   case clang::ARM::BI_InterlockedExchangeAdd64:
1493     return MSVCIntrin::_InterlockedExchangeAdd;
1494   case clang::ARM::BI_InterlockedExchangeSub64:
1495     return MSVCIntrin::_InterlockedExchangeSub;
1496   case clang::ARM::BI_InterlockedOr64:
1497     return MSVCIntrin::_InterlockedOr;
1498   case clang::ARM::BI_InterlockedXor64:
1499     return MSVCIntrin::_InterlockedXor;
1500   case clang::ARM::BI_InterlockedDecrement64:
1501     return MSVCIntrin::_InterlockedDecrement;
1502   case clang::ARM::BI_InterlockedIncrement64:
1503     return MSVCIntrin::_InterlockedIncrement;
1504   case clang::ARM::BI_InterlockedExchangeAdd8_acq:
1505   case clang::ARM::BI_InterlockedExchangeAdd16_acq:
1506   case clang::ARM::BI_InterlockedExchangeAdd_acq:
1507   case clang::ARM::BI_InterlockedExchangeAdd64_acq:
1508     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1509   case clang::ARM::BI_InterlockedExchangeAdd8_rel:
1510   case clang::ARM::BI_InterlockedExchangeAdd16_rel:
1511   case clang::ARM::BI_InterlockedExchangeAdd_rel:
1512   case clang::ARM::BI_InterlockedExchangeAdd64_rel:
1513     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1514   case clang::ARM::BI_InterlockedExchangeAdd8_nf:
1515   case clang::ARM::BI_InterlockedExchangeAdd16_nf:
1516   case clang::ARM::BI_InterlockedExchangeAdd_nf:
1517   case clang::ARM::BI_InterlockedExchangeAdd64_nf:
1518     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1519   case clang::ARM::BI_InterlockedExchange8_acq:
1520   case clang::ARM::BI_InterlockedExchange16_acq:
1521   case clang::ARM::BI_InterlockedExchange_acq:
1522   case clang::ARM::BI_InterlockedExchange64_acq:
1523     return MSVCIntrin::_InterlockedExchange_acq;
1524   case clang::ARM::BI_InterlockedExchange8_rel:
1525   case clang::ARM::BI_InterlockedExchange16_rel:
1526   case clang::ARM::BI_InterlockedExchange_rel:
1527   case clang::ARM::BI_InterlockedExchange64_rel:
1528     return MSVCIntrin::_InterlockedExchange_rel;
1529   case clang::ARM::BI_InterlockedExchange8_nf:
1530   case clang::ARM::BI_InterlockedExchange16_nf:
1531   case clang::ARM::BI_InterlockedExchange_nf:
1532   case clang::ARM::BI_InterlockedExchange64_nf:
1533     return MSVCIntrin::_InterlockedExchange_nf;
1534   case clang::ARM::BI_InterlockedCompareExchange8_acq:
1535   case clang::ARM::BI_InterlockedCompareExchange16_acq:
1536   case clang::ARM::BI_InterlockedCompareExchange_acq:
1537   case clang::ARM::BI_InterlockedCompareExchange64_acq:
1538     return MSVCIntrin::_InterlockedCompareExchange_acq;
1539   case clang::ARM::BI_InterlockedCompareExchange8_rel:
1540   case clang::ARM::BI_InterlockedCompareExchange16_rel:
1541   case clang::ARM::BI_InterlockedCompareExchange_rel:
1542   case clang::ARM::BI_InterlockedCompareExchange64_rel:
1543     return MSVCIntrin::_InterlockedCompareExchange_rel;
1544   case clang::ARM::BI_InterlockedCompareExchange8_nf:
1545   case clang::ARM::BI_InterlockedCompareExchange16_nf:
1546   case clang::ARM::BI_InterlockedCompareExchange_nf:
1547   case clang::ARM::BI_InterlockedCompareExchange64_nf:
1548     return MSVCIntrin::_InterlockedCompareExchange_nf;
1549   case clang::ARM::BI_InterlockedOr8_acq:
1550   case clang::ARM::BI_InterlockedOr16_acq:
1551   case clang::ARM::BI_InterlockedOr_acq:
1552   case clang::ARM::BI_InterlockedOr64_acq:
1553     return MSVCIntrin::_InterlockedOr_acq;
1554   case clang::ARM::BI_InterlockedOr8_rel:
1555   case clang::ARM::BI_InterlockedOr16_rel:
1556   case clang::ARM::BI_InterlockedOr_rel:
1557   case clang::ARM::BI_InterlockedOr64_rel:
1558     return MSVCIntrin::_InterlockedOr_rel;
1559   case clang::ARM::BI_InterlockedOr8_nf:
1560   case clang::ARM::BI_InterlockedOr16_nf:
1561   case clang::ARM::BI_InterlockedOr_nf:
1562   case clang::ARM::BI_InterlockedOr64_nf:
1563     return MSVCIntrin::_InterlockedOr_nf;
1564   case clang::ARM::BI_InterlockedXor8_acq:
1565   case clang::ARM::BI_InterlockedXor16_acq:
1566   case clang::ARM::BI_InterlockedXor_acq:
1567   case clang::ARM::BI_InterlockedXor64_acq:
1568     return MSVCIntrin::_InterlockedXor_acq;
1569   case clang::ARM::BI_InterlockedXor8_rel:
1570   case clang::ARM::BI_InterlockedXor16_rel:
1571   case clang::ARM::BI_InterlockedXor_rel:
1572   case clang::ARM::BI_InterlockedXor64_rel:
1573     return MSVCIntrin::_InterlockedXor_rel;
1574   case clang::ARM::BI_InterlockedXor8_nf:
1575   case clang::ARM::BI_InterlockedXor16_nf:
1576   case clang::ARM::BI_InterlockedXor_nf:
1577   case clang::ARM::BI_InterlockedXor64_nf:
1578     return MSVCIntrin::_InterlockedXor_nf;
1579   case clang::ARM::BI_InterlockedAnd8_acq:
1580   case clang::ARM::BI_InterlockedAnd16_acq:
1581   case clang::ARM::BI_InterlockedAnd_acq:
1582   case clang::ARM::BI_InterlockedAnd64_acq:
1583     return MSVCIntrin::_InterlockedAnd_acq;
1584   case clang::ARM::BI_InterlockedAnd8_rel:
1585   case clang::ARM::BI_InterlockedAnd16_rel:
1586   case clang::ARM::BI_InterlockedAnd_rel:
1587   case clang::ARM::BI_InterlockedAnd64_rel:
1588     return MSVCIntrin::_InterlockedAnd_rel;
1589   case clang::ARM::BI_InterlockedAnd8_nf:
1590   case clang::ARM::BI_InterlockedAnd16_nf:
1591   case clang::ARM::BI_InterlockedAnd_nf:
1592   case clang::ARM::BI_InterlockedAnd64_nf:
1593     return MSVCIntrin::_InterlockedAnd_nf;
1594   case clang::ARM::BI_InterlockedIncrement16_acq:
1595   case clang::ARM::BI_InterlockedIncrement_acq:
1596   case clang::ARM::BI_InterlockedIncrement64_acq:
1597     return MSVCIntrin::_InterlockedIncrement_acq;
1598   case clang::ARM::BI_InterlockedIncrement16_rel:
1599   case clang::ARM::BI_InterlockedIncrement_rel:
1600   case clang::ARM::BI_InterlockedIncrement64_rel:
1601     return MSVCIntrin::_InterlockedIncrement_rel;
1602   case clang::ARM::BI_InterlockedIncrement16_nf:
1603   case clang::ARM::BI_InterlockedIncrement_nf:
1604   case clang::ARM::BI_InterlockedIncrement64_nf:
1605     return MSVCIntrin::_InterlockedIncrement_nf;
1606   case clang::ARM::BI_InterlockedDecrement16_acq:
1607   case clang::ARM::BI_InterlockedDecrement_acq:
1608   case clang::ARM::BI_InterlockedDecrement64_acq:
1609     return MSVCIntrin::_InterlockedDecrement_acq;
1610   case clang::ARM::BI_InterlockedDecrement16_rel:
1611   case clang::ARM::BI_InterlockedDecrement_rel:
1612   case clang::ARM::BI_InterlockedDecrement64_rel:
1613     return MSVCIntrin::_InterlockedDecrement_rel;
1614   case clang::ARM::BI_InterlockedDecrement16_nf:
1615   case clang::ARM::BI_InterlockedDecrement_nf:
1616   case clang::ARM::BI_InterlockedDecrement64_nf:
1617     return MSVCIntrin::_InterlockedDecrement_nf;
1618   }
1619   llvm_unreachable("must return from switch");
1620 }
1621 
1622 static std::optional<CodeGenFunction::MSVCIntrin>
translateAarch64ToMsvcIntrin(unsigned BuiltinID)1623 translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1624   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1625   switch (BuiltinID) {
1626   default:
1627     return std::nullopt;
1628   case clang::AArch64::BI_BitScanForward:
1629   case clang::AArch64::BI_BitScanForward64:
1630     return MSVCIntrin::_BitScanForward;
1631   case clang::AArch64::BI_BitScanReverse:
1632   case clang::AArch64::BI_BitScanReverse64:
1633     return MSVCIntrin::_BitScanReverse;
1634   case clang::AArch64::BI_InterlockedAnd64:
1635     return MSVCIntrin::_InterlockedAnd;
1636   case clang::AArch64::BI_InterlockedExchange64:
1637     return MSVCIntrin::_InterlockedExchange;
1638   case clang::AArch64::BI_InterlockedExchangeAdd64:
1639     return MSVCIntrin::_InterlockedExchangeAdd;
1640   case clang::AArch64::BI_InterlockedExchangeSub64:
1641     return MSVCIntrin::_InterlockedExchangeSub;
1642   case clang::AArch64::BI_InterlockedOr64:
1643     return MSVCIntrin::_InterlockedOr;
1644   case clang::AArch64::BI_InterlockedXor64:
1645     return MSVCIntrin::_InterlockedXor;
1646   case clang::AArch64::BI_InterlockedDecrement64:
1647     return MSVCIntrin::_InterlockedDecrement;
1648   case clang::AArch64::BI_InterlockedIncrement64:
1649     return MSVCIntrin::_InterlockedIncrement;
1650   case clang::AArch64::BI_InterlockedExchangeAdd8_acq:
1651   case clang::AArch64::BI_InterlockedExchangeAdd16_acq:
1652   case clang::AArch64::BI_InterlockedExchangeAdd_acq:
1653   case clang::AArch64::BI_InterlockedExchangeAdd64_acq:
1654     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1655   case clang::AArch64::BI_InterlockedExchangeAdd8_rel:
1656   case clang::AArch64::BI_InterlockedExchangeAdd16_rel:
1657   case clang::AArch64::BI_InterlockedExchangeAdd_rel:
1658   case clang::AArch64::BI_InterlockedExchangeAdd64_rel:
1659     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1660   case clang::AArch64::BI_InterlockedExchangeAdd8_nf:
1661   case clang::AArch64::BI_InterlockedExchangeAdd16_nf:
1662   case clang::AArch64::BI_InterlockedExchangeAdd_nf:
1663   case clang::AArch64::BI_InterlockedExchangeAdd64_nf:
1664     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1665   case clang::AArch64::BI_InterlockedExchange8_acq:
1666   case clang::AArch64::BI_InterlockedExchange16_acq:
1667   case clang::AArch64::BI_InterlockedExchange_acq:
1668   case clang::AArch64::BI_InterlockedExchange64_acq:
1669     return MSVCIntrin::_InterlockedExchange_acq;
1670   case clang::AArch64::BI_InterlockedExchange8_rel:
1671   case clang::AArch64::BI_InterlockedExchange16_rel:
1672   case clang::AArch64::BI_InterlockedExchange_rel:
1673   case clang::AArch64::BI_InterlockedExchange64_rel:
1674     return MSVCIntrin::_InterlockedExchange_rel;
1675   case clang::AArch64::BI_InterlockedExchange8_nf:
1676   case clang::AArch64::BI_InterlockedExchange16_nf:
1677   case clang::AArch64::BI_InterlockedExchange_nf:
1678   case clang::AArch64::BI_InterlockedExchange64_nf:
1679     return MSVCIntrin::_InterlockedExchange_nf;
1680   case clang::AArch64::BI_InterlockedCompareExchange8_acq:
1681   case clang::AArch64::BI_InterlockedCompareExchange16_acq:
1682   case clang::AArch64::BI_InterlockedCompareExchange_acq:
1683   case clang::AArch64::BI_InterlockedCompareExchange64_acq:
1684     return MSVCIntrin::_InterlockedCompareExchange_acq;
1685   case clang::AArch64::BI_InterlockedCompareExchange8_rel:
1686   case clang::AArch64::BI_InterlockedCompareExchange16_rel:
1687   case clang::AArch64::BI_InterlockedCompareExchange_rel:
1688   case clang::AArch64::BI_InterlockedCompareExchange64_rel:
1689     return MSVCIntrin::_InterlockedCompareExchange_rel;
1690   case clang::AArch64::BI_InterlockedCompareExchange8_nf:
1691   case clang::AArch64::BI_InterlockedCompareExchange16_nf:
1692   case clang::AArch64::BI_InterlockedCompareExchange_nf:
1693   case clang::AArch64::BI_InterlockedCompareExchange64_nf:
1694     return MSVCIntrin::_InterlockedCompareExchange_nf;
1695   case clang::AArch64::BI_InterlockedCompareExchange128:
1696     return MSVCIntrin::_InterlockedCompareExchange128;
1697   case clang::AArch64::BI_InterlockedCompareExchange128_acq:
1698     return MSVCIntrin::_InterlockedCompareExchange128_acq;
1699   case clang::AArch64::BI_InterlockedCompareExchange128_nf:
1700     return MSVCIntrin::_InterlockedCompareExchange128_nf;
1701   case clang::AArch64::BI_InterlockedCompareExchange128_rel:
1702     return MSVCIntrin::_InterlockedCompareExchange128_rel;
1703   case clang::AArch64::BI_InterlockedOr8_acq:
1704   case clang::AArch64::BI_InterlockedOr16_acq:
1705   case clang::AArch64::BI_InterlockedOr_acq:
1706   case clang::AArch64::BI_InterlockedOr64_acq:
1707     return MSVCIntrin::_InterlockedOr_acq;
1708   case clang::AArch64::BI_InterlockedOr8_rel:
1709   case clang::AArch64::BI_InterlockedOr16_rel:
1710   case clang::AArch64::BI_InterlockedOr_rel:
1711   case clang::AArch64::BI_InterlockedOr64_rel:
1712     return MSVCIntrin::_InterlockedOr_rel;
1713   case clang::AArch64::BI_InterlockedOr8_nf:
1714   case clang::AArch64::BI_InterlockedOr16_nf:
1715   case clang::AArch64::BI_InterlockedOr_nf:
1716   case clang::AArch64::BI_InterlockedOr64_nf:
1717     return MSVCIntrin::_InterlockedOr_nf;
1718   case clang::AArch64::BI_InterlockedXor8_acq:
1719   case clang::AArch64::BI_InterlockedXor16_acq:
1720   case clang::AArch64::BI_InterlockedXor_acq:
1721   case clang::AArch64::BI_InterlockedXor64_acq:
1722     return MSVCIntrin::_InterlockedXor_acq;
1723   case clang::AArch64::BI_InterlockedXor8_rel:
1724   case clang::AArch64::BI_InterlockedXor16_rel:
1725   case clang::AArch64::BI_InterlockedXor_rel:
1726   case clang::AArch64::BI_InterlockedXor64_rel:
1727     return MSVCIntrin::_InterlockedXor_rel;
1728   case clang::AArch64::BI_InterlockedXor8_nf:
1729   case clang::AArch64::BI_InterlockedXor16_nf:
1730   case clang::AArch64::BI_InterlockedXor_nf:
1731   case clang::AArch64::BI_InterlockedXor64_nf:
1732     return MSVCIntrin::_InterlockedXor_nf;
1733   case clang::AArch64::BI_InterlockedAnd8_acq:
1734   case clang::AArch64::BI_InterlockedAnd16_acq:
1735   case clang::AArch64::BI_InterlockedAnd_acq:
1736   case clang::AArch64::BI_InterlockedAnd64_acq:
1737     return MSVCIntrin::_InterlockedAnd_acq;
1738   case clang::AArch64::BI_InterlockedAnd8_rel:
1739   case clang::AArch64::BI_InterlockedAnd16_rel:
1740   case clang::AArch64::BI_InterlockedAnd_rel:
1741   case clang::AArch64::BI_InterlockedAnd64_rel:
1742     return MSVCIntrin::_InterlockedAnd_rel;
1743   case clang::AArch64::BI_InterlockedAnd8_nf:
1744   case clang::AArch64::BI_InterlockedAnd16_nf:
1745   case clang::AArch64::BI_InterlockedAnd_nf:
1746   case clang::AArch64::BI_InterlockedAnd64_nf:
1747     return MSVCIntrin::_InterlockedAnd_nf;
1748   case clang::AArch64::BI_InterlockedIncrement16_acq:
1749   case clang::AArch64::BI_InterlockedIncrement_acq:
1750   case clang::AArch64::BI_InterlockedIncrement64_acq:
1751     return MSVCIntrin::_InterlockedIncrement_acq;
1752   case clang::AArch64::BI_InterlockedIncrement16_rel:
1753   case clang::AArch64::BI_InterlockedIncrement_rel:
1754   case clang::AArch64::BI_InterlockedIncrement64_rel:
1755     return MSVCIntrin::_InterlockedIncrement_rel;
1756   case clang::AArch64::BI_InterlockedIncrement16_nf:
1757   case clang::AArch64::BI_InterlockedIncrement_nf:
1758   case clang::AArch64::BI_InterlockedIncrement64_nf:
1759     return MSVCIntrin::_InterlockedIncrement_nf;
1760   case clang::AArch64::BI_InterlockedDecrement16_acq:
1761   case clang::AArch64::BI_InterlockedDecrement_acq:
1762   case clang::AArch64::BI_InterlockedDecrement64_acq:
1763     return MSVCIntrin::_InterlockedDecrement_acq;
1764   case clang::AArch64::BI_InterlockedDecrement16_rel:
1765   case clang::AArch64::BI_InterlockedDecrement_rel:
1766   case clang::AArch64::BI_InterlockedDecrement64_rel:
1767     return MSVCIntrin::_InterlockedDecrement_rel;
1768   case clang::AArch64::BI_InterlockedDecrement16_nf:
1769   case clang::AArch64::BI_InterlockedDecrement_nf:
1770   case clang::AArch64::BI_InterlockedDecrement64_nf:
1771     return MSVCIntrin::_InterlockedDecrement_nf;
1772   }
1773   llvm_unreachable("must return from switch");
1774 }
1775 
1776 static std::optional<CodeGenFunction::MSVCIntrin>
translateX86ToMsvcIntrin(unsigned BuiltinID)1777 translateX86ToMsvcIntrin(unsigned BuiltinID) {
1778   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1779   switch (BuiltinID) {
1780   default:
1781     return std::nullopt;
1782   case clang::X86::BI_BitScanForward:
1783   case clang::X86::BI_BitScanForward64:
1784     return MSVCIntrin::_BitScanForward;
1785   case clang::X86::BI_BitScanReverse:
1786   case clang::X86::BI_BitScanReverse64:
1787     return MSVCIntrin::_BitScanReverse;
1788   case clang::X86::BI_InterlockedAnd64:
1789     return MSVCIntrin::_InterlockedAnd;
1790   case clang::X86::BI_InterlockedCompareExchange128:
1791     return MSVCIntrin::_InterlockedCompareExchange128;
1792   case clang::X86::BI_InterlockedExchange64:
1793     return MSVCIntrin::_InterlockedExchange;
1794   case clang::X86::BI_InterlockedExchangeAdd64:
1795     return MSVCIntrin::_InterlockedExchangeAdd;
1796   case clang::X86::BI_InterlockedExchangeSub64:
1797     return MSVCIntrin::_InterlockedExchangeSub;
1798   case clang::X86::BI_InterlockedOr64:
1799     return MSVCIntrin::_InterlockedOr;
1800   case clang::X86::BI_InterlockedXor64:
1801     return MSVCIntrin::_InterlockedXor;
1802   case clang::X86::BI_InterlockedDecrement64:
1803     return MSVCIntrin::_InterlockedDecrement;
1804   case clang::X86::BI_InterlockedIncrement64:
1805     return MSVCIntrin::_InterlockedIncrement;
1806   }
1807   llvm_unreachable("must return from switch");
1808 }
1809 
1810 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,const CallExpr * E)1811 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1812                                             const CallExpr *E) {
1813   switch (BuiltinID) {
1814   case MSVCIntrin::_BitScanForward:
1815   case MSVCIntrin::_BitScanReverse: {
1816     Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1817     Value *ArgValue = EmitScalarExpr(E->getArg(1));
1818 
1819     llvm::Type *ArgType = ArgValue->getType();
1820     llvm::Type *IndexType = IndexAddress.getElementType();
1821     llvm::Type *ResultType = ConvertType(E->getType());
1822 
1823     Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1824     Value *ResZero = llvm::Constant::getNullValue(ResultType);
1825     Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1826 
1827     BasicBlock *Begin = Builder.GetInsertBlock();
1828     BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1829     Builder.SetInsertPoint(End);
1830     PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1831 
1832     Builder.SetInsertPoint(Begin);
1833     Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1834     BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1835     Builder.CreateCondBr(IsZero, End, NotZero);
1836     Result->addIncoming(ResZero, Begin);
1837 
1838     Builder.SetInsertPoint(NotZero);
1839 
1840     if (BuiltinID == MSVCIntrin::_BitScanForward) {
1841       Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1842       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1843       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1844       Builder.CreateStore(ZeroCount, IndexAddress, false);
1845     } else {
1846       unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1847       Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1848 
1849       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1850       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1851       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1852       Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1853       Builder.CreateStore(Index, IndexAddress, false);
1854     }
1855     Builder.CreateBr(End);
1856     Result->addIncoming(ResOne, NotZero);
1857 
1858     Builder.SetInsertPoint(End);
1859     return Result;
1860   }
1861   case MSVCIntrin::_InterlockedAnd:
1862     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1863   case MSVCIntrin::_InterlockedExchange:
1864     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1865   case MSVCIntrin::_InterlockedExchangeAdd:
1866     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1867   case MSVCIntrin::_InterlockedExchangeSub:
1868     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1869   case MSVCIntrin::_InterlockedOr:
1870     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1871   case MSVCIntrin::_InterlockedXor:
1872     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1873   case MSVCIntrin::_InterlockedExchangeAdd_acq:
1874     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1875                                  AtomicOrdering::Acquire);
1876   case MSVCIntrin::_InterlockedExchangeAdd_rel:
1877     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1878                                  AtomicOrdering::Release);
1879   case MSVCIntrin::_InterlockedExchangeAdd_nf:
1880     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1881                                  AtomicOrdering::Monotonic);
1882   case MSVCIntrin::_InterlockedExchange_acq:
1883     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1884                                  AtomicOrdering::Acquire);
1885   case MSVCIntrin::_InterlockedExchange_rel:
1886     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1887                                  AtomicOrdering::Release);
1888   case MSVCIntrin::_InterlockedExchange_nf:
1889     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1890                                  AtomicOrdering::Monotonic);
1891   case MSVCIntrin::_InterlockedCompareExchange_acq:
1892     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1893   case MSVCIntrin::_InterlockedCompareExchange_rel:
1894     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1895   case MSVCIntrin::_InterlockedCompareExchange_nf:
1896     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1897   case MSVCIntrin::_InterlockedCompareExchange128:
1898     return EmitAtomicCmpXchg128ForMSIntrin(
1899         *this, E, AtomicOrdering::SequentiallyConsistent);
1900   case MSVCIntrin::_InterlockedCompareExchange128_acq:
1901     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1902   case MSVCIntrin::_InterlockedCompareExchange128_rel:
1903     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1904   case MSVCIntrin::_InterlockedCompareExchange128_nf:
1905     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1906   case MSVCIntrin::_InterlockedOr_acq:
1907     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1908                                  AtomicOrdering::Acquire);
1909   case MSVCIntrin::_InterlockedOr_rel:
1910     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1911                                  AtomicOrdering::Release);
1912   case MSVCIntrin::_InterlockedOr_nf:
1913     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1914                                  AtomicOrdering::Monotonic);
1915   case MSVCIntrin::_InterlockedXor_acq:
1916     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1917                                  AtomicOrdering::Acquire);
1918   case MSVCIntrin::_InterlockedXor_rel:
1919     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1920                                  AtomicOrdering::Release);
1921   case MSVCIntrin::_InterlockedXor_nf:
1922     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1923                                  AtomicOrdering::Monotonic);
1924   case MSVCIntrin::_InterlockedAnd_acq:
1925     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1926                                  AtomicOrdering::Acquire);
1927   case MSVCIntrin::_InterlockedAnd_rel:
1928     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1929                                  AtomicOrdering::Release);
1930   case MSVCIntrin::_InterlockedAnd_nf:
1931     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1932                                  AtomicOrdering::Monotonic);
1933   case MSVCIntrin::_InterlockedIncrement_acq:
1934     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1935   case MSVCIntrin::_InterlockedIncrement_rel:
1936     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1937   case MSVCIntrin::_InterlockedIncrement_nf:
1938     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1939   case MSVCIntrin::_InterlockedDecrement_acq:
1940     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1941   case MSVCIntrin::_InterlockedDecrement_rel:
1942     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1943   case MSVCIntrin::_InterlockedDecrement_nf:
1944     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1945 
1946   case MSVCIntrin::_InterlockedDecrement:
1947     return EmitAtomicDecrementValue(*this, E);
1948   case MSVCIntrin::_InterlockedIncrement:
1949     return EmitAtomicIncrementValue(*this, E);
1950 
1951   case MSVCIntrin::__fastfail: {
1952     // Request immediate process termination from the kernel. The instruction
1953     // sequences to do this are documented on MSDN:
1954     // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1955     llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1956     StringRef Asm, Constraints;
1957     switch (ISA) {
1958     default:
1959       ErrorUnsupported(E, "__fastfail call for this architecture");
1960       break;
1961     case llvm::Triple::x86:
1962     case llvm::Triple::x86_64:
1963       Asm = "int $$0x29";
1964       Constraints = "{cx}";
1965       break;
1966     case llvm::Triple::thumb:
1967       Asm = "udf #251";
1968       Constraints = "{r0}";
1969       break;
1970     case llvm::Triple::aarch64:
1971       Asm = "brk #0xF003";
1972       Constraints = "{w0}";
1973     }
1974     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1975     llvm::InlineAsm *IA =
1976         llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1977     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1978         getLLVMContext(), llvm::AttributeList::FunctionIndex,
1979         llvm::Attribute::NoReturn);
1980     llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1981     CI->setAttributes(NoReturnAttr);
1982     return CI;
1983   }
1984   }
1985   llvm_unreachable("Incorrect MSVC intrinsic!");
1986 }
1987 
1988 namespace {
1989 // ARC cleanup for __builtin_os_log_format
1990 struct CallObjCArcUse final : EHScopeStack::Cleanup {
CallObjCArcUse__anon6c984ebf0511::CallObjCArcUse1991   CallObjCArcUse(llvm::Value *object) : object(object) {}
1992   llvm::Value *object;
1993 
Emit__anon6c984ebf0511::CallObjCArcUse1994   void Emit(CodeGenFunction &CGF, Flags flags) override {
1995     CGF.EmitARCIntrinsicUse(object);
1996   }
1997 };
1998 }
1999 
EmitCheckedArgForBuiltin(const Expr * E,BuiltinCheckKind Kind)2000 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
2001                                                  BuiltinCheckKind Kind) {
2002   assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
2003           && "Unsupported builtin check kind");
2004 
2005   Value *ArgValue = EmitScalarExpr(E);
2006   if (!SanOpts.has(SanitizerKind::Builtin))
2007     return ArgValue;
2008 
2009   SanitizerScope SanScope(this);
2010   Value *Cond = Builder.CreateICmpNE(
2011       ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
2012   EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
2013             SanitizerHandler::InvalidBuiltin,
2014             {EmitCheckSourceLocation(E->getExprLoc()),
2015              llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
2016             std::nullopt);
2017   return ArgValue;
2018 }
2019 
EmitAbs(CodeGenFunction & CGF,Value * ArgValue,bool HasNSW)2020 static Value *EmitAbs(CodeGenFunction &CGF, Value *ArgValue, bool HasNSW) {
2021   return CGF.Builder.CreateBinaryIntrinsic(
2022       Intrinsic::abs, ArgValue,
2023       ConstantInt::get(CGF.Builder.getInt1Ty(), HasNSW));
2024 }
2025 
EmitOverflowCheckedAbs(CodeGenFunction & CGF,const CallExpr * E,bool SanitizeOverflow)2026 static Value *EmitOverflowCheckedAbs(CodeGenFunction &CGF, const CallExpr *E,
2027                                      bool SanitizeOverflow) {
2028   Value *ArgValue = CGF.EmitScalarExpr(E->getArg(0));
2029 
2030   // Try to eliminate overflow check.
2031   if (const auto *VCI = dyn_cast<llvm::ConstantInt>(ArgValue)) {
2032     if (!VCI->isMinSignedValue())
2033       return EmitAbs(CGF, ArgValue, true);
2034   }
2035 
2036   CodeGenFunction::SanitizerScope SanScope(&CGF);
2037 
2038   Constant *Zero = Constant::getNullValue(ArgValue->getType());
2039   Value *ResultAndOverflow = CGF.Builder.CreateBinaryIntrinsic(
2040       Intrinsic::ssub_with_overflow, Zero, ArgValue);
2041   Value *Result = CGF.Builder.CreateExtractValue(ResultAndOverflow, 0);
2042   Value *NotOverflow = CGF.Builder.CreateNot(
2043       CGF.Builder.CreateExtractValue(ResultAndOverflow, 1));
2044 
2045   // TODO: support -ftrapv-handler.
2046   if (SanitizeOverflow) {
2047     CGF.EmitCheck({{NotOverflow, SanitizerKind::SignedIntegerOverflow}},
2048                   SanitizerHandler::NegateOverflow,
2049                   {CGF.EmitCheckSourceLocation(E->getArg(0)->getExprLoc()),
2050                    CGF.EmitCheckTypeDescriptor(E->getType())},
2051                   {ArgValue});
2052   } else
2053     CGF.EmitTrapCheck(NotOverflow, SanitizerHandler::SubOverflow);
2054 
2055   Value *CmpResult = CGF.Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2056   return CGF.Builder.CreateSelect(CmpResult, Result, ArgValue, "abs");
2057 }
2058 
2059 /// Get the argument type for arguments to os_log_helper.
getOSLogArgType(ASTContext & C,int Size)2060 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
2061   QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
2062   return C.getCanonicalType(UnsignedTy);
2063 }
2064 
generateBuiltinOSLogHelperFunction(const analyze_os_log::OSLogBufferLayout & Layout,CharUnits BufferAlignment)2065 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
2066     const analyze_os_log::OSLogBufferLayout &Layout,
2067     CharUnits BufferAlignment) {
2068   ASTContext &Ctx = getContext();
2069 
2070   llvm::SmallString<64> Name;
2071   {
2072     raw_svector_ostream OS(Name);
2073     OS << "__os_log_helper";
2074     OS << "_" << BufferAlignment.getQuantity();
2075     OS << "_" << int(Layout.getSummaryByte());
2076     OS << "_" << int(Layout.getNumArgsByte());
2077     for (const auto &Item : Layout.Items)
2078       OS << "_" << int(Item.getSizeByte()) << "_"
2079          << int(Item.getDescriptorByte());
2080   }
2081 
2082   if (llvm::Function *F = CGM.getModule().getFunction(Name))
2083     return F;
2084 
2085   llvm::SmallVector<QualType, 4> ArgTys;
2086   FunctionArgList Args;
2087   Args.push_back(ImplicitParamDecl::Create(
2088       Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
2089       ImplicitParamKind::Other));
2090   ArgTys.emplace_back(Ctx.VoidPtrTy);
2091 
2092   for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
2093     char Size = Layout.Items[I].getSizeByte();
2094     if (!Size)
2095       continue;
2096 
2097     QualType ArgTy = getOSLogArgType(Ctx, Size);
2098     Args.push_back(ImplicitParamDecl::Create(
2099         Ctx, nullptr, SourceLocation(),
2100         &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
2101         ImplicitParamKind::Other));
2102     ArgTys.emplace_back(ArgTy);
2103   }
2104 
2105   QualType ReturnTy = Ctx.VoidTy;
2106 
2107   // The helper function has linkonce_odr linkage to enable the linker to merge
2108   // identical functions. To ensure the merging always happens, 'noinline' is
2109   // attached to the function when compiling with -Oz.
2110   const CGFunctionInfo &FI =
2111       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
2112   llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
2113   llvm::Function *Fn = llvm::Function::Create(
2114       FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
2115   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
2116   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
2117   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
2118   Fn->setDoesNotThrow();
2119 
2120   // Attach 'noinline' at -Oz.
2121   if (CGM.getCodeGenOpts().OptimizeSize == 2)
2122     Fn->addFnAttr(llvm::Attribute::NoInline);
2123 
2124   auto NL = ApplyDebugLocation::CreateEmpty(*this);
2125   StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
2126 
2127   // Create a scope with an artificial location for the body of this function.
2128   auto AL = ApplyDebugLocation::CreateArtificial(*this);
2129 
2130   CharUnits Offset;
2131   Address BufAddr = makeNaturalAddressForPointer(
2132       Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), Ctx.VoidTy,
2133       BufferAlignment);
2134   Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
2135                       Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
2136   Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
2137                       Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
2138 
2139   unsigned I = 1;
2140   for (const auto &Item : Layout.Items) {
2141     Builder.CreateStore(
2142         Builder.getInt8(Item.getDescriptorByte()),
2143         Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
2144     Builder.CreateStore(
2145         Builder.getInt8(Item.getSizeByte()),
2146         Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
2147 
2148     CharUnits Size = Item.size();
2149     if (!Size.getQuantity())
2150       continue;
2151 
2152     Address Arg = GetAddrOfLocalVar(Args[I]);
2153     Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
2154     Addr = Addr.withElementType(Arg.getElementType());
2155     Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
2156     Offset += Size;
2157     ++I;
2158   }
2159 
2160   FinishFunction();
2161 
2162   return Fn;
2163 }
2164 
emitBuiltinOSLogFormat(const CallExpr & E)2165 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
2166   assert(E.getNumArgs() >= 2 &&
2167          "__builtin_os_log_format takes at least 2 arguments");
2168   ASTContext &Ctx = getContext();
2169   analyze_os_log::OSLogBufferLayout Layout;
2170   analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
2171   Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
2172   llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
2173 
2174   // Ignore argument 1, the format string. It is not currently used.
2175   CallArgList Args;
2176   Args.add(RValue::get(BufAddr.emitRawPointer(*this)), Ctx.VoidPtrTy);
2177 
2178   for (const auto &Item : Layout.Items) {
2179     int Size = Item.getSizeByte();
2180     if (!Size)
2181       continue;
2182 
2183     llvm::Value *ArgVal;
2184 
2185     if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
2186       uint64_t Val = 0;
2187       for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
2188         Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
2189       ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
2190     } else if (const Expr *TheExpr = Item.getExpr()) {
2191       ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
2192 
2193       // If a temporary object that requires destruction after the full
2194       // expression is passed, push a lifetime-extended cleanup to extend its
2195       // lifetime to the end of the enclosing block scope.
2196       auto LifetimeExtendObject = [&](const Expr *E) {
2197         E = E->IgnoreParenCasts();
2198         // Extend lifetimes of objects returned by function calls and message
2199         // sends.
2200 
2201         // FIXME: We should do this in other cases in which temporaries are
2202         //        created including arguments of non-ARC types (e.g., C++
2203         //        temporaries).
2204         if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
2205           return true;
2206         return false;
2207       };
2208 
2209       if (TheExpr->getType()->isObjCRetainableType() &&
2210           getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
2211         assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
2212                "Only scalar can be a ObjC retainable type");
2213         if (!isa<Constant>(ArgVal)) {
2214           CleanupKind Cleanup = getARCCleanupKind();
2215           QualType Ty = TheExpr->getType();
2216           RawAddress Alloca = RawAddress::invalid();
2217           RawAddress Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
2218           ArgVal = EmitARCRetain(Ty, ArgVal);
2219           Builder.CreateStore(ArgVal, Addr);
2220           pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
2221                                       CodeGenFunction::destroyARCStrongPrecise,
2222                                       Cleanup & EHCleanup);
2223 
2224           // Push a clang.arc.use call to ensure ARC optimizer knows that the
2225           // argument has to be alive.
2226           if (CGM.getCodeGenOpts().OptimizationLevel != 0)
2227             pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
2228         }
2229       }
2230     } else {
2231       ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
2232     }
2233 
2234     unsigned ArgValSize =
2235         CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
2236     llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
2237                                                      ArgValSize);
2238     ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
2239     CanQualType ArgTy = getOSLogArgType(Ctx, Size);
2240     // If ArgVal has type x86_fp80, zero-extend ArgVal.
2241     ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
2242     Args.add(RValue::get(ArgVal), ArgTy);
2243   }
2244 
2245   const CGFunctionInfo &FI =
2246       CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
2247   llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
2248       Layout, BufAddr.getAlignment());
2249   EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
2250   return RValue::get(BufAddr, *this);
2251 }
2252 
isSpecialUnsignedMultiplySignedResult(unsigned BuiltinID,WidthAndSignedness Op1Info,WidthAndSignedness Op2Info,WidthAndSignedness ResultInfo)2253 static bool isSpecialUnsignedMultiplySignedResult(
2254     unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
2255     WidthAndSignedness ResultInfo) {
2256   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
2257          Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
2258          !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
2259 }
2260 
EmitCheckedUnsignedMultiplySignedResult(CodeGenFunction & CGF,const clang::Expr * Op1,WidthAndSignedness Op1Info,const clang::Expr * Op2,WidthAndSignedness Op2Info,const clang::Expr * ResultArg,QualType ResultQTy,WidthAndSignedness ResultInfo)2261 static RValue EmitCheckedUnsignedMultiplySignedResult(
2262     CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
2263     const clang::Expr *Op2, WidthAndSignedness Op2Info,
2264     const clang::Expr *ResultArg, QualType ResultQTy,
2265     WidthAndSignedness ResultInfo) {
2266   assert(isSpecialUnsignedMultiplySignedResult(
2267              Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
2268          "Cannot specialize this multiply");
2269 
2270   llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
2271   llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
2272 
2273   llvm::Value *HasOverflow;
2274   llvm::Value *Result = EmitOverflowIntrinsic(
2275       CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
2276 
2277   // The intrinsic call will detect overflow when the value is > UINT_MAX,
2278   // however, since the original builtin had a signed result, we need to report
2279   // an overflow when the result is greater than INT_MAX.
2280   auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
2281   llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
2282 
2283   llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
2284   HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
2285 
2286   bool isVolatile =
2287       ResultArg->getType()->getPointeeType().isVolatileQualified();
2288   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
2289   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2290                           isVolatile);
2291   return RValue::get(HasOverflow);
2292 }
2293 
2294 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
isSpecialMixedSignMultiply(unsigned BuiltinID,WidthAndSignedness Op1Info,WidthAndSignedness Op2Info,WidthAndSignedness ResultInfo)2295 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
2296                                        WidthAndSignedness Op1Info,
2297                                        WidthAndSignedness Op2Info,
2298                                        WidthAndSignedness ResultInfo) {
2299   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
2300          std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
2301          Op1Info.Signed != Op2Info.Signed;
2302 }
2303 
2304 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
2305 /// the generic checked-binop irgen.
2306 static RValue
EmitCheckedMixedSignMultiply(CodeGenFunction & CGF,const clang::Expr * Op1,WidthAndSignedness Op1Info,const clang::Expr * Op2,WidthAndSignedness Op2Info,const clang::Expr * ResultArg,QualType ResultQTy,WidthAndSignedness ResultInfo)2307 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
2308                              WidthAndSignedness Op1Info, const clang::Expr *Op2,
2309                              WidthAndSignedness Op2Info,
2310                              const clang::Expr *ResultArg, QualType ResultQTy,
2311                              WidthAndSignedness ResultInfo) {
2312   assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
2313                                     Op2Info, ResultInfo) &&
2314          "Not a mixed-sign multipliction we can specialize");
2315 
2316   // Emit the signed and unsigned operands.
2317   const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
2318   const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
2319   llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
2320   llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
2321   unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
2322   unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
2323 
2324   // One of the operands may be smaller than the other. If so, [s|z]ext it.
2325   if (SignedOpWidth < UnsignedOpWidth)
2326     Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
2327   if (UnsignedOpWidth < SignedOpWidth)
2328     Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
2329 
2330   llvm::Type *OpTy = Signed->getType();
2331   llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
2332   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
2333   llvm::Type *ResTy = ResultPtr.getElementType();
2334   unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
2335 
2336   // Take the absolute value of the signed operand.
2337   llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
2338   llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
2339   llvm::Value *AbsSigned =
2340       CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
2341 
2342   // Perform a checked unsigned multiplication.
2343   llvm::Value *UnsignedOverflow;
2344   llvm::Value *UnsignedResult =
2345       EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
2346                             Unsigned, UnsignedOverflow);
2347 
2348   llvm::Value *Overflow, *Result;
2349   if (ResultInfo.Signed) {
2350     // Signed overflow occurs if the result is greater than INT_MAX or lesser
2351     // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
2352     auto IntMax =
2353         llvm::APInt::getSignedMaxValue(ResultInfo.Width).zext(OpWidth);
2354     llvm::Value *MaxResult =
2355         CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
2356                               CGF.Builder.CreateZExt(IsNegative, OpTy));
2357     llvm::Value *SignedOverflow =
2358         CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
2359     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
2360 
2361     // Prepare the signed result (possibly by negating it).
2362     llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
2363     llvm::Value *SignedResult =
2364         CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
2365     Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
2366   } else {
2367     // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
2368     llvm::Value *Underflow = CGF.Builder.CreateAnd(
2369         IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
2370     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
2371     if (ResultInfo.Width < OpWidth) {
2372       auto IntMax =
2373           llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
2374       llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2375           UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
2376       Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
2377     }
2378 
2379     // Negate the product if it would be negative in infinite precision.
2380     Result = CGF.Builder.CreateSelect(
2381         IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
2382 
2383     Result = CGF.Builder.CreateTrunc(Result, ResTy);
2384   }
2385   assert(Overflow && Result && "Missing overflow or result");
2386 
2387   bool isVolatile =
2388       ResultArg->getType()->getPointeeType().isVolatileQualified();
2389   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2390                           isVolatile);
2391   return RValue::get(Overflow);
2392 }
2393 
2394 static bool
TypeRequiresBuiltinLaunderImp(const ASTContext & Ctx,QualType Ty,llvm::SmallPtrSetImpl<const Decl * > & Seen)2395 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2396                               llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2397   if (const auto *Arr = Ctx.getAsArrayType(Ty))
2398     Ty = Ctx.getBaseElementType(Arr);
2399 
2400   const auto *Record = Ty->getAsCXXRecordDecl();
2401   if (!Record)
2402     return false;
2403 
2404   // We've already checked this type, or are in the process of checking it.
2405   if (!Seen.insert(Record).second)
2406     return false;
2407 
2408   assert(Record->hasDefinition() &&
2409          "Incomplete types should already be diagnosed");
2410 
2411   if (Record->isDynamicClass())
2412     return true;
2413 
2414   for (FieldDecl *F : Record->fields()) {
2415     if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2416       return true;
2417   }
2418   return false;
2419 }
2420 
2421 /// Determine if the specified type requires laundering by checking if it is a
2422 /// dynamic class type or contains a subobject which is a dynamic class type.
TypeRequiresBuiltinLaunder(CodeGenModule & CGM,QualType Ty)2423 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2424   if (!CGM.getCodeGenOpts().StrictVTablePointers)
2425     return false;
2426   llvm::SmallPtrSet<const Decl *, 16> Seen;
2427   return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2428 }
2429 
emitRotate(const CallExpr * E,bool IsRotateRight)2430 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2431   llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2432   llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2433 
2434   // The builtin's shift arg may have a different type than the source arg and
2435   // result, but the LLVM intrinsic uses the same type for all values.
2436   llvm::Type *Ty = Src->getType();
2437   ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2438 
2439   // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2440   unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2441   Function *F = CGM.getIntrinsic(IID, Ty);
2442   return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2443 }
2444 
2445 // Map math builtins for long-double to f128 version.
mutateLongDoubleBuiltin(unsigned BuiltinID)2446 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2447   switch (BuiltinID) {
2448 #define MUTATE_LDBL(func) \
2449   case Builtin::BI__builtin_##func##l: \
2450     return Builtin::BI__builtin_##func##f128;
2451   MUTATE_LDBL(sqrt)
2452   MUTATE_LDBL(cbrt)
2453   MUTATE_LDBL(fabs)
2454   MUTATE_LDBL(log)
2455   MUTATE_LDBL(log2)
2456   MUTATE_LDBL(log10)
2457   MUTATE_LDBL(log1p)
2458   MUTATE_LDBL(logb)
2459   MUTATE_LDBL(exp)
2460   MUTATE_LDBL(exp2)
2461   MUTATE_LDBL(expm1)
2462   MUTATE_LDBL(fdim)
2463   MUTATE_LDBL(hypot)
2464   MUTATE_LDBL(ilogb)
2465   MUTATE_LDBL(pow)
2466   MUTATE_LDBL(fmin)
2467   MUTATE_LDBL(fmax)
2468   MUTATE_LDBL(ceil)
2469   MUTATE_LDBL(trunc)
2470   MUTATE_LDBL(rint)
2471   MUTATE_LDBL(nearbyint)
2472   MUTATE_LDBL(round)
2473   MUTATE_LDBL(floor)
2474   MUTATE_LDBL(lround)
2475   MUTATE_LDBL(llround)
2476   MUTATE_LDBL(lrint)
2477   MUTATE_LDBL(llrint)
2478   MUTATE_LDBL(fmod)
2479   MUTATE_LDBL(modf)
2480   MUTATE_LDBL(nan)
2481   MUTATE_LDBL(nans)
2482   MUTATE_LDBL(inf)
2483   MUTATE_LDBL(fma)
2484   MUTATE_LDBL(sin)
2485   MUTATE_LDBL(cos)
2486   MUTATE_LDBL(tan)
2487   MUTATE_LDBL(sinh)
2488   MUTATE_LDBL(cosh)
2489   MUTATE_LDBL(tanh)
2490   MUTATE_LDBL(asin)
2491   MUTATE_LDBL(acos)
2492   MUTATE_LDBL(atan)
2493   MUTATE_LDBL(asinh)
2494   MUTATE_LDBL(acosh)
2495   MUTATE_LDBL(atanh)
2496   MUTATE_LDBL(atan2)
2497   MUTATE_LDBL(erf)
2498   MUTATE_LDBL(erfc)
2499   MUTATE_LDBL(ldexp)
2500   MUTATE_LDBL(frexp)
2501   MUTATE_LDBL(huge_val)
2502   MUTATE_LDBL(copysign)
2503   MUTATE_LDBL(nextafter)
2504   MUTATE_LDBL(nexttoward)
2505   MUTATE_LDBL(remainder)
2506   MUTATE_LDBL(remquo)
2507   MUTATE_LDBL(scalbln)
2508   MUTATE_LDBL(scalbn)
2509   MUTATE_LDBL(tgamma)
2510   MUTATE_LDBL(lgamma)
2511 #undef MUTATE_LDBL
2512   default:
2513     return BuiltinID;
2514   }
2515 }
2516 
tryUseTestFPKind(CodeGenFunction & CGF,unsigned BuiltinID,Value * V)2517 static Value *tryUseTestFPKind(CodeGenFunction &CGF, unsigned BuiltinID,
2518                                Value *V) {
2519   if (CGF.Builder.getIsFPConstrained() &&
2520       CGF.Builder.getDefaultConstrainedExcept() != fp::ebIgnore) {
2521     if (Value *Result =
2522             CGF.getTargetHooks().testFPKind(V, BuiltinID, CGF.Builder, CGF.CGM))
2523       return Result;
2524   }
2525   return nullptr;
2526 }
2527 
EmitHipStdParUnsupportedBuiltin(CodeGenFunction * CGF,const FunctionDecl * FD)2528 static RValue EmitHipStdParUnsupportedBuiltin(CodeGenFunction *CGF,
2529                                               const FunctionDecl *FD) {
2530   auto Name = FD->getNameAsString() + "__hipstdpar_unsupported";
2531   auto FnTy = CGF->CGM.getTypes().GetFunctionType(FD);
2532   auto UBF = CGF->CGM.getModule().getOrInsertFunction(Name, FnTy);
2533 
2534   SmallVector<Value *, 16> Args;
2535   for (auto &&FormalTy : FnTy->params())
2536     Args.push_back(llvm::PoisonValue::get(FormalTy));
2537 
2538   return RValue::get(CGF->Builder.CreateCall(UBF, Args));
2539 }
2540 
EmitBuiltinExpr(const GlobalDecl GD,unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)2541 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2542                                         const CallExpr *E,
2543                                         ReturnValueSlot ReturnValue) {
2544   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2545   // See if we can constant fold this builtin.  If so, don't emit it at all.
2546   // TODO: Extend this handling to all builtin calls that we can constant-fold.
2547   Expr::EvalResult Result;
2548   if (E->isPRValue() && E->EvaluateAsRValue(Result, CGM.getContext()) &&
2549       !Result.hasSideEffects()) {
2550     if (Result.Val.isInt())
2551       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2552                                                 Result.Val.getInt()));
2553     if (Result.Val.isFloat())
2554       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2555                                                Result.Val.getFloat()));
2556   }
2557 
2558   // If current long-double semantics is IEEE 128-bit, replace math builtins
2559   // of long-double with f128 equivalent.
2560   // TODO: This mutation should also be applied to other targets other than PPC,
2561   // after backend supports IEEE 128-bit style libcalls.
2562   if (getTarget().getTriple().isPPC64() &&
2563       &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2564     BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2565 
2566   // If the builtin has been declared explicitly with an assembler label,
2567   // disable the specialized emitting below. Ideally we should communicate the
2568   // rename in IR, or at least avoid generating the intrinsic calls that are
2569   // likely to get lowered to the renamed library functions.
2570   const unsigned BuiltinIDIfNoAsmLabel =
2571       FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2572 
2573   std::optional<bool> ErrnoOverriden;
2574   // ErrnoOverriden is true if math-errno is overriden via the
2575   // '#pragma float_control(precise, on)'. This pragma disables fast-math,
2576   // which implies math-errno.
2577   if (E->hasStoredFPFeatures()) {
2578     FPOptionsOverride OP = E->getFPFeatures();
2579     if (OP.hasMathErrnoOverride())
2580       ErrnoOverriden = OP.getMathErrnoOverride();
2581   }
2582   // True if 'attribute__((optnone))' is used. This attribute overrides
2583   // fast-math which implies math-errno.
2584   bool OptNone = CurFuncDecl && CurFuncDecl->hasAttr<OptimizeNoneAttr>();
2585 
2586   // True if we are compiling at -O2 and errno has been disabled
2587   // using the '#pragma float_control(precise, off)', and
2588   // attribute opt-none hasn't been seen.
2589   bool ErrnoOverridenToFalseWithOpt =
2590        ErrnoOverriden.has_value() && !ErrnoOverriden.value() && !OptNone &&
2591        CGM.getCodeGenOpts().OptimizationLevel != 0;
2592 
2593   // There are LLVM math intrinsics/instructions corresponding to math library
2594   // functions except the LLVM op will never set errno while the math library
2595   // might. Also, math builtins have the same semantics as their math library
2596   // twins. Thus, we can transform math library and builtin calls to their
2597   // LLVM counterparts if the call is marked 'const' (known to never set errno).
2598   // In case FP exceptions are enabled, the experimental versions of the
2599   // intrinsics model those.
2600   bool ConstAlways =
2601       getContext().BuiltinInfo.isConst(BuiltinID);
2602 
2603   // There's a special case with the fma builtins where they are always const
2604   // if the target environment is GNU or the target is OS is Windows and we're
2605   // targeting the MSVCRT.dll environment.
2606   // FIXME: This list can be become outdated. Need to find a way to get it some
2607   // other way.
2608   switch (BuiltinID) {
2609   case Builtin::BI__builtin_fma:
2610   case Builtin::BI__builtin_fmaf:
2611   case Builtin::BI__builtin_fmal:
2612   case Builtin::BI__builtin_fmaf16:
2613   case Builtin::BIfma:
2614   case Builtin::BIfmaf:
2615   case Builtin::BIfmal: {
2616     auto &Trip = CGM.getTriple();
2617     if (Trip.isGNUEnvironment() || Trip.isOSMSVCRT())
2618       ConstAlways = true;
2619     break;
2620   }
2621   default:
2622     break;
2623   }
2624 
2625   bool ConstWithoutErrnoAndExceptions =
2626       getContext().BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID);
2627   bool ConstWithoutExceptions =
2628       getContext().BuiltinInfo.isConstWithoutExceptions(BuiltinID);
2629 
2630   // ConstAttr is enabled in fast-math mode. In fast-math mode, math-errno is
2631   // disabled.
2632   // Math intrinsics are generated only when math-errno is disabled. Any pragmas
2633   // or attributes that affect math-errno should prevent or allow math
2634   // intrincs to be generated. Intrinsics are generated:
2635   //   1- In fast math mode, unless math-errno is overriden
2636   //      via '#pragma float_control(precise, on)', or via an
2637   //      'attribute__((optnone))'.
2638   //   2- If math-errno was enabled on command line but overriden
2639   //      to false via '#pragma float_control(precise, off))' and
2640   //      'attribute__((optnone))' hasn't been used.
2641   //   3- If we are compiling with optimization and errno has been disabled
2642   //      via '#pragma float_control(precise, off)', and
2643   //      'attribute__((optnone))' hasn't been used.
2644 
2645   bool ConstWithoutErrnoOrExceptions =
2646       ConstWithoutErrnoAndExceptions || ConstWithoutExceptions;
2647   bool GenerateIntrinsics =
2648       (ConstAlways && !OptNone) ||
2649       (!getLangOpts().MathErrno &&
2650        !(ErrnoOverriden.has_value() && ErrnoOverriden.value()) && !OptNone);
2651   if (!GenerateIntrinsics) {
2652     GenerateIntrinsics =
2653         ConstWithoutErrnoOrExceptions && !ConstWithoutErrnoAndExceptions;
2654     if (!GenerateIntrinsics)
2655       GenerateIntrinsics =
2656           ConstWithoutErrnoOrExceptions &&
2657           (!getLangOpts().MathErrno &&
2658            !(ErrnoOverriden.has_value() && ErrnoOverriden.value()) && !OptNone);
2659     if (!GenerateIntrinsics)
2660       GenerateIntrinsics =
2661           ConstWithoutErrnoOrExceptions && ErrnoOverridenToFalseWithOpt;
2662   }
2663   if (GenerateIntrinsics) {
2664     switch (BuiltinIDIfNoAsmLabel) {
2665     case Builtin::BIacos:
2666     case Builtin::BIacosf:
2667     case Builtin::BIacosl:
2668     case Builtin::BI__builtin_acos:
2669     case Builtin::BI__builtin_acosf:
2670     case Builtin::BI__builtin_acosf16:
2671     case Builtin::BI__builtin_acosl:
2672     case Builtin::BI__builtin_acosf128:
2673       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2674           *this, E, Intrinsic::acos, Intrinsic::experimental_constrained_acos));
2675 
2676     case Builtin::BIasin:
2677     case Builtin::BIasinf:
2678     case Builtin::BIasinl:
2679     case Builtin::BI__builtin_asin:
2680     case Builtin::BI__builtin_asinf:
2681     case Builtin::BI__builtin_asinf16:
2682     case Builtin::BI__builtin_asinl:
2683     case Builtin::BI__builtin_asinf128:
2684       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2685           *this, E, Intrinsic::asin, Intrinsic::experimental_constrained_asin));
2686 
2687     case Builtin::BIatan:
2688     case Builtin::BIatanf:
2689     case Builtin::BIatanl:
2690     case Builtin::BI__builtin_atan:
2691     case Builtin::BI__builtin_atanf:
2692     case Builtin::BI__builtin_atanf16:
2693     case Builtin::BI__builtin_atanl:
2694     case Builtin::BI__builtin_atanf128:
2695       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2696           *this, E, Intrinsic::atan, Intrinsic::experimental_constrained_atan));
2697 
2698     case Builtin::BIceil:
2699     case Builtin::BIceilf:
2700     case Builtin::BIceill:
2701     case Builtin::BI__builtin_ceil:
2702     case Builtin::BI__builtin_ceilf:
2703     case Builtin::BI__builtin_ceilf16:
2704     case Builtin::BI__builtin_ceill:
2705     case Builtin::BI__builtin_ceilf128:
2706       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2707                                    Intrinsic::ceil,
2708                                    Intrinsic::experimental_constrained_ceil));
2709 
2710     case Builtin::BIcopysign:
2711     case Builtin::BIcopysignf:
2712     case Builtin::BIcopysignl:
2713     case Builtin::BI__builtin_copysign:
2714     case Builtin::BI__builtin_copysignf:
2715     case Builtin::BI__builtin_copysignf16:
2716     case Builtin::BI__builtin_copysignl:
2717     case Builtin::BI__builtin_copysignf128:
2718       return RValue::get(
2719           emitBuiltinWithOneOverloadedType<2>(*this, E, Intrinsic::copysign));
2720 
2721     case Builtin::BIcos:
2722     case Builtin::BIcosf:
2723     case Builtin::BIcosl:
2724     case Builtin::BI__builtin_cos:
2725     case Builtin::BI__builtin_cosf:
2726     case Builtin::BI__builtin_cosf16:
2727     case Builtin::BI__builtin_cosl:
2728     case Builtin::BI__builtin_cosf128:
2729       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2730                                    Intrinsic::cos,
2731                                    Intrinsic::experimental_constrained_cos));
2732 
2733     case Builtin::BIcosh:
2734     case Builtin::BIcoshf:
2735     case Builtin::BIcoshl:
2736     case Builtin::BI__builtin_cosh:
2737     case Builtin::BI__builtin_coshf:
2738     case Builtin::BI__builtin_coshf16:
2739     case Builtin::BI__builtin_coshl:
2740     case Builtin::BI__builtin_coshf128:
2741       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2742           *this, E, Intrinsic::cosh, Intrinsic::experimental_constrained_cosh));
2743 
2744     case Builtin::BIexp:
2745     case Builtin::BIexpf:
2746     case Builtin::BIexpl:
2747     case Builtin::BI__builtin_exp:
2748     case Builtin::BI__builtin_expf:
2749     case Builtin::BI__builtin_expf16:
2750     case Builtin::BI__builtin_expl:
2751     case Builtin::BI__builtin_expf128:
2752       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2753                                    Intrinsic::exp,
2754                                    Intrinsic::experimental_constrained_exp));
2755 
2756     case Builtin::BIexp2:
2757     case Builtin::BIexp2f:
2758     case Builtin::BIexp2l:
2759     case Builtin::BI__builtin_exp2:
2760     case Builtin::BI__builtin_exp2f:
2761     case Builtin::BI__builtin_exp2f16:
2762     case Builtin::BI__builtin_exp2l:
2763     case Builtin::BI__builtin_exp2f128:
2764       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2765                                    Intrinsic::exp2,
2766                                    Intrinsic::experimental_constrained_exp2));
2767     case Builtin::BI__builtin_exp10:
2768     case Builtin::BI__builtin_exp10f:
2769     case Builtin::BI__builtin_exp10f16:
2770     case Builtin::BI__builtin_exp10l:
2771     case Builtin::BI__builtin_exp10f128: {
2772       // TODO: strictfp support
2773       if (Builder.getIsFPConstrained())
2774         break;
2775       return RValue::get(
2776           emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::exp10));
2777     }
2778     case Builtin::BIfabs:
2779     case Builtin::BIfabsf:
2780     case Builtin::BIfabsl:
2781     case Builtin::BI__builtin_fabs:
2782     case Builtin::BI__builtin_fabsf:
2783     case Builtin::BI__builtin_fabsf16:
2784     case Builtin::BI__builtin_fabsl:
2785     case Builtin::BI__builtin_fabsf128:
2786       return RValue::get(
2787           emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::fabs));
2788 
2789     case Builtin::BIfloor:
2790     case Builtin::BIfloorf:
2791     case Builtin::BIfloorl:
2792     case Builtin::BI__builtin_floor:
2793     case Builtin::BI__builtin_floorf:
2794     case Builtin::BI__builtin_floorf16:
2795     case Builtin::BI__builtin_floorl:
2796     case Builtin::BI__builtin_floorf128:
2797       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2798                                    Intrinsic::floor,
2799                                    Intrinsic::experimental_constrained_floor));
2800 
2801     case Builtin::BIfma:
2802     case Builtin::BIfmaf:
2803     case Builtin::BIfmal:
2804     case Builtin::BI__builtin_fma:
2805     case Builtin::BI__builtin_fmaf:
2806     case Builtin::BI__builtin_fmaf16:
2807     case Builtin::BI__builtin_fmal:
2808     case Builtin::BI__builtin_fmaf128:
2809       return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2810                                    Intrinsic::fma,
2811                                    Intrinsic::experimental_constrained_fma));
2812 
2813     case Builtin::BIfmax:
2814     case Builtin::BIfmaxf:
2815     case Builtin::BIfmaxl:
2816     case Builtin::BI__builtin_fmax:
2817     case Builtin::BI__builtin_fmaxf:
2818     case Builtin::BI__builtin_fmaxf16:
2819     case Builtin::BI__builtin_fmaxl:
2820     case Builtin::BI__builtin_fmaxf128:
2821       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2822                                    Intrinsic::maxnum,
2823                                    Intrinsic::experimental_constrained_maxnum));
2824 
2825     case Builtin::BIfmin:
2826     case Builtin::BIfminf:
2827     case Builtin::BIfminl:
2828     case Builtin::BI__builtin_fmin:
2829     case Builtin::BI__builtin_fminf:
2830     case Builtin::BI__builtin_fminf16:
2831     case Builtin::BI__builtin_fminl:
2832     case Builtin::BI__builtin_fminf128:
2833       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2834                                    Intrinsic::minnum,
2835                                    Intrinsic::experimental_constrained_minnum));
2836 
2837     // fmod() is a special-case. It maps to the frem instruction rather than an
2838     // LLVM intrinsic.
2839     case Builtin::BIfmod:
2840     case Builtin::BIfmodf:
2841     case Builtin::BIfmodl:
2842     case Builtin::BI__builtin_fmod:
2843     case Builtin::BI__builtin_fmodf:
2844     case Builtin::BI__builtin_fmodf16:
2845     case Builtin::BI__builtin_fmodl:
2846     case Builtin::BI__builtin_fmodf128: {
2847       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2848       Value *Arg1 = EmitScalarExpr(E->getArg(0));
2849       Value *Arg2 = EmitScalarExpr(E->getArg(1));
2850       return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2851     }
2852 
2853     case Builtin::BIlog:
2854     case Builtin::BIlogf:
2855     case Builtin::BIlogl:
2856     case Builtin::BI__builtin_log:
2857     case Builtin::BI__builtin_logf:
2858     case Builtin::BI__builtin_logf16:
2859     case Builtin::BI__builtin_logl:
2860     case Builtin::BI__builtin_logf128:
2861       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2862                                    Intrinsic::log,
2863                                    Intrinsic::experimental_constrained_log));
2864 
2865     case Builtin::BIlog10:
2866     case Builtin::BIlog10f:
2867     case Builtin::BIlog10l:
2868     case Builtin::BI__builtin_log10:
2869     case Builtin::BI__builtin_log10f:
2870     case Builtin::BI__builtin_log10f16:
2871     case Builtin::BI__builtin_log10l:
2872     case Builtin::BI__builtin_log10f128:
2873       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2874                                    Intrinsic::log10,
2875                                    Intrinsic::experimental_constrained_log10));
2876 
2877     case Builtin::BIlog2:
2878     case Builtin::BIlog2f:
2879     case Builtin::BIlog2l:
2880     case Builtin::BI__builtin_log2:
2881     case Builtin::BI__builtin_log2f:
2882     case Builtin::BI__builtin_log2f16:
2883     case Builtin::BI__builtin_log2l:
2884     case Builtin::BI__builtin_log2f128:
2885       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2886                                    Intrinsic::log2,
2887                                    Intrinsic::experimental_constrained_log2));
2888 
2889     case Builtin::BInearbyint:
2890     case Builtin::BInearbyintf:
2891     case Builtin::BInearbyintl:
2892     case Builtin::BI__builtin_nearbyint:
2893     case Builtin::BI__builtin_nearbyintf:
2894     case Builtin::BI__builtin_nearbyintl:
2895     case Builtin::BI__builtin_nearbyintf128:
2896       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2897                                 Intrinsic::nearbyint,
2898                                 Intrinsic::experimental_constrained_nearbyint));
2899 
2900     case Builtin::BIpow:
2901     case Builtin::BIpowf:
2902     case Builtin::BIpowl:
2903     case Builtin::BI__builtin_pow:
2904     case Builtin::BI__builtin_powf:
2905     case Builtin::BI__builtin_powf16:
2906     case Builtin::BI__builtin_powl:
2907     case Builtin::BI__builtin_powf128:
2908       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2909                                    Intrinsic::pow,
2910                                    Intrinsic::experimental_constrained_pow));
2911 
2912     case Builtin::BIrint:
2913     case Builtin::BIrintf:
2914     case Builtin::BIrintl:
2915     case Builtin::BI__builtin_rint:
2916     case Builtin::BI__builtin_rintf:
2917     case Builtin::BI__builtin_rintf16:
2918     case Builtin::BI__builtin_rintl:
2919     case Builtin::BI__builtin_rintf128:
2920       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2921                                    Intrinsic::rint,
2922                                    Intrinsic::experimental_constrained_rint));
2923 
2924     case Builtin::BIround:
2925     case Builtin::BIroundf:
2926     case Builtin::BIroundl:
2927     case Builtin::BI__builtin_round:
2928     case Builtin::BI__builtin_roundf:
2929     case Builtin::BI__builtin_roundf16:
2930     case Builtin::BI__builtin_roundl:
2931     case Builtin::BI__builtin_roundf128:
2932       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2933                                    Intrinsic::round,
2934                                    Intrinsic::experimental_constrained_round));
2935 
2936     case Builtin::BIroundeven:
2937     case Builtin::BIroundevenf:
2938     case Builtin::BIroundevenl:
2939     case Builtin::BI__builtin_roundeven:
2940     case Builtin::BI__builtin_roundevenf:
2941     case Builtin::BI__builtin_roundevenf16:
2942     case Builtin::BI__builtin_roundevenl:
2943     case Builtin::BI__builtin_roundevenf128:
2944       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2945                                    Intrinsic::roundeven,
2946                                    Intrinsic::experimental_constrained_roundeven));
2947 
2948     case Builtin::BIsin:
2949     case Builtin::BIsinf:
2950     case Builtin::BIsinl:
2951     case Builtin::BI__builtin_sin:
2952     case Builtin::BI__builtin_sinf:
2953     case Builtin::BI__builtin_sinf16:
2954     case Builtin::BI__builtin_sinl:
2955     case Builtin::BI__builtin_sinf128:
2956       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2957                                    Intrinsic::sin,
2958                                    Intrinsic::experimental_constrained_sin));
2959 
2960     case Builtin::BIsinh:
2961     case Builtin::BIsinhf:
2962     case Builtin::BIsinhl:
2963     case Builtin::BI__builtin_sinh:
2964     case Builtin::BI__builtin_sinhf:
2965     case Builtin::BI__builtin_sinhf16:
2966     case Builtin::BI__builtin_sinhl:
2967     case Builtin::BI__builtin_sinhf128:
2968       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2969           *this, E, Intrinsic::sinh, Intrinsic::experimental_constrained_sinh));
2970 
2971     case Builtin::BIsqrt:
2972     case Builtin::BIsqrtf:
2973     case Builtin::BIsqrtl:
2974     case Builtin::BI__builtin_sqrt:
2975     case Builtin::BI__builtin_sqrtf:
2976     case Builtin::BI__builtin_sqrtf16:
2977     case Builtin::BI__builtin_sqrtl:
2978     case Builtin::BI__builtin_sqrtf128:
2979     case Builtin::BI__builtin_elementwise_sqrt: {
2980       llvm::Value *Call = emitUnaryMaybeConstrainedFPBuiltin(
2981           *this, E, Intrinsic::sqrt, Intrinsic::experimental_constrained_sqrt);
2982       SetSqrtFPAccuracy(Call);
2983       return RValue::get(Call);
2984     }
2985 
2986     case Builtin::BItan:
2987     case Builtin::BItanf:
2988     case Builtin::BItanl:
2989     case Builtin::BI__builtin_tan:
2990     case Builtin::BI__builtin_tanf:
2991     case Builtin::BI__builtin_tanf16:
2992     case Builtin::BI__builtin_tanl:
2993     case Builtin::BI__builtin_tanf128:
2994       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2995           *this, E, Intrinsic::tan, Intrinsic::experimental_constrained_tan));
2996 
2997     case Builtin::BItanh:
2998     case Builtin::BItanhf:
2999     case Builtin::BItanhl:
3000     case Builtin::BI__builtin_tanh:
3001     case Builtin::BI__builtin_tanhf:
3002     case Builtin::BI__builtin_tanhf16:
3003     case Builtin::BI__builtin_tanhl:
3004     case Builtin::BI__builtin_tanhf128:
3005       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
3006           *this, E, Intrinsic::tanh, Intrinsic::experimental_constrained_tanh));
3007 
3008     case Builtin::BItrunc:
3009     case Builtin::BItruncf:
3010     case Builtin::BItruncl:
3011     case Builtin::BI__builtin_trunc:
3012     case Builtin::BI__builtin_truncf:
3013     case Builtin::BI__builtin_truncf16:
3014     case Builtin::BI__builtin_truncl:
3015     case Builtin::BI__builtin_truncf128:
3016       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
3017                                    Intrinsic::trunc,
3018                                    Intrinsic::experimental_constrained_trunc));
3019 
3020     case Builtin::BIlround:
3021     case Builtin::BIlroundf:
3022     case Builtin::BIlroundl:
3023     case Builtin::BI__builtin_lround:
3024     case Builtin::BI__builtin_lroundf:
3025     case Builtin::BI__builtin_lroundl:
3026     case Builtin::BI__builtin_lroundf128:
3027       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3028           *this, E, Intrinsic::lround,
3029           Intrinsic::experimental_constrained_lround));
3030 
3031     case Builtin::BIllround:
3032     case Builtin::BIllroundf:
3033     case Builtin::BIllroundl:
3034     case Builtin::BI__builtin_llround:
3035     case Builtin::BI__builtin_llroundf:
3036     case Builtin::BI__builtin_llroundl:
3037     case Builtin::BI__builtin_llroundf128:
3038       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3039           *this, E, Intrinsic::llround,
3040           Intrinsic::experimental_constrained_llround));
3041 
3042     case Builtin::BIlrint:
3043     case Builtin::BIlrintf:
3044     case Builtin::BIlrintl:
3045     case Builtin::BI__builtin_lrint:
3046     case Builtin::BI__builtin_lrintf:
3047     case Builtin::BI__builtin_lrintl:
3048     case Builtin::BI__builtin_lrintf128:
3049       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3050           *this, E, Intrinsic::lrint,
3051           Intrinsic::experimental_constrained_lrint));
3052 
3053     case Builtin::BIllrint:
3054     case Builtin::BIllrintf:
3055     case Builtin::BIllrintl:
3056     case Builtin::BI__builtin_llrint:
3057     case Builtin::BI__builtin_llrintf:
3058     case Builtin::BI__builtin_llrintl:
3059     case Builtin::BI__builtin_llrintf128:
3060       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3061           *this, E, Intrinsic::llrint,
3062           Intrinsic::experimental_constrained_llrint));
3063     case Builtin::BI__builtin_ldexp:
3064     case Builtin::BI__builtin_ldexpf:
3065     case Builtin::BI__builtin_ldexpl:
3066     case Builtin::BI__builtin_ldexpf16:
3067     case Builtin::BI__builtin_ldexpf128: {
3068       return RValue::get(emitBinaryExpMaybeConstrainedFPBuiltin(
3069           *this, E, Intrinsic::ldexp,
3070           Intrinsic::experimental_constrained_ldexp));
3071     }
3072     default:
3073       break;
3074     }
3075   }
3076 
3077   // Check NonnullAttribute/NullabilityArg and Alignment.
3078   auto EmitArgCheck = [&](TypeCheckKind Kind, Address A, const Expr *Arg,
3079                           unsigned ParmNum) {
3080     Value *Val = A.emitRawPointer(*this);
3081     EmitNonNullArgCheck(RValue::get(Val), Arg->getType(), Arg->getExprLoc(), FD,
3082                         ParmNum);
3083 
3084     if (SanOpts.has(SanitizerKind::Alignment)) {
3085       SanitizerSet SkippedChecks;
3086       SkippedChecks.set(SanitizerKind::All);
3087       SkippedChecks.clear(SanitizerKind::Alignment);
3088       SourceLocation Loc = Arg->getExprLoc();
3089       // Strip an implicit cast.
3090       if (auto *CE = dyn_cast<ImplicitCastExpr>(Arg))
3091         if (CE->getCastKind() == CK_BitCast)
3092           Arg = CE->getSubExpr();
3093       EmitTypeCheck(Kind, Loc, Val, Arg->getType(), A.getAlignment(),
3094                     SkippedChecks);
3095     }
3096   };
3097 
3098   switch (BuiltinIDIfNoAsmLabel) {
3099   default: break;
3100   case Builtin::BI__builtin___CFStringMakeConstantString:
3101   case Builtin::BI__builtin___NSStringMakeConstantString:
3102     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
3103   case Builtin::BI__builtin_stdarg_start:
3104   case Builtin::BI__builtin_va_start:
3105   case Builtin::BI__va_start:
3106   case Builtin::BI__builtin_va_end:
3107     EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
3108                        ? EmitScalarExpr(E->getArg(0))
3109                        : EmitVAListRef(E->getArg(0)).emitRawPointer(*this),
3110                    BuiltinID != Builtin::BI__builtin_va_end);
3111     return RValue::get(nullptr);
3112   case Builtin::BI__builtin_va_copy: {
3113     Value *DstPtr = EmitVAListRef(E->getArg(0)).emitRawPointer(*this);
3114     Value *SrcPtr = EmitVAListRef(E->getArg(1)).emitRawPointer(*this);
3115     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy, {DstPtr->getType()}),
3116                        {DstPtr, SrcPtr});
3117     return RValue::get(nullptr);
3118   }
3119   case Builtin::BIabs:
3120   case Builtin::BIlabs:
3121   case Builtin::BIllabs:
3122   case Builtin::BI__builtin_abs:
3123   case Builtin::BI__builtin_labs:
3124   case Builtin::BI__builtin_llabs: {
3125     bool SanitizeOverflow = SanOpts.has(SanitizerKind::SignedIntegerOverflow);
3126 
3127     Value *Result;
3128     switch (getLangOpts().getSignedOverflowBehavior()) {
3129     case LangOptions::SOB_Defined:
3130       Result = EmitAbs(*this, EmitScalarExpr(E->getArg(0)), false);
3131       break;
3132     case LangOptions::SOB_Undefined:
3133       if (!SanitizeOverflow) {
3134         Result = EmitAbs(*this, EmitScalarExpr(E->getArg(0)), true);
3135         break;
3136       }
3137       [[fallthrough]];
3138     case LangOptions::SOB_Trapping:
3139       // TODO: Somehow handle the corner case when the address of abs is taken.
3140       Result = EmitOverflowCheckedAbs(*this, E, SanitizeOverflow);
3141       break;
3142     }
3143     return RValue::get(Result);
3144   }
3145   case Builtin::BI__builtin_complex: {
3146     Value *Real = EmitScalarExpr(E->getArg(0));
3147     Value *Imag = EmitScalarExpr(E->getArg(1));
3148     return RValue::getComplex({Real, Imag});
3149   }
3150   case Builtin::BI__builtin_conj:
3151   case Builtin::BI__builtin_conjf:
3152   case Builtin::BI__builtin_conjl:
3153   case Builtin::BIconj:
3154   case Builtin::BIconjf:
3155   case Builtin::BIconjl: {
3156     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3157     Value *Real = ComplexVal.first;
3158     Value *Imag = ComplexVal.second;
3159     Imag = Builder.CreateFNeg(Imag, "neg");
3160     return RValue::getComplex(std::make_pair(Real, Imag));
3161   }
3162   case Builtin::BI__builtin_creal:
3163   case Builtin::BI__builtin_crealf:
3164   case Builtin::BI__builtin_creall:
3165   case Builtin::BIcreal:
3166   case Builtin::BIcrealf:
3167   case Builtin::BIcreall: {
3168     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3169     return RValue::get(ComplexVal.first);
3170   }
3171 
3172   case Builtin::BI__builtin_preserve_access_index: {
3173     // Only enabled preserved access index region when debuginfo
3174     // is available as debuginfo is needed to preserve user-level
3175     // access pattern.
3176     if (!getDebugInfo()) {
3177       CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
3178       return RValue::get(EmitScalarExpr(E->getArg(0)));
3179     }
3180 
3181     // Nested builtin_preserve_access_index() not supported
3182     if (IsInPreservedAIRegion) {
3183       CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
3184       return RValue::get(EmitScalarExpr(E->getArg(0)));
3185     }
3186 
3187     IsInPreservedAIRegion = true;
3188     Value *Res = EmitScalarExpr(E->getArg(0));
3189     IsInPreservedAIRegion = false;
3190     return RValue::get(Res);
3191   }
3192 
3193   case Builtin::BI__builtin_cimag:
3194   case Builtin::BI__builtin_cimagf:
3195   case Builtin::BI__builtin_cimagl:
3196   case Builtin::BIcimag:
3197   case Builtin::BIcimagf:
3198   case Builtin::BIcimagl: {
3199     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3200     return RValue::get(ComplexVal.second);
3201   }
3202 
3203   case Builtin::BI__builtin_clrsb:
3204   case Builtin::BI__builtin_clrsbl:
3205   case Builtin::BI__builtin_clrsbll: {
3206     // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
3207     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3208 
3209     llvm::Type *ArgType = ArgValue->getType();
3210     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
3211 
3212     llvm::Type *ResultType = ConvertType(E->getType());
3213     Value *Zero = llvm::Constant::getNullValue(ArgType);
3214     Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
3215     Value *Inverse = Builder.CreateNot(ArgValue, "not");
3216     Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
3217     Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
3218     Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
3219     Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3220                                    "cast");
3221     return RValue::get(Result);
3222   }
3223   case Builtin::BI__builtin_ctzs:
3224   case Builtin::BI__builtin_ctz:
3225   case Builtin::BI__builtin_ctzl:
3226   case Builtin::BI__builtin_ctzll:
3227   case Builtin::BI__builtin_ctzg: {
3228     bool HasFallback = BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_ctzg &&
3229                        E->getNumArgs() > 1;
3230 
3231     Value *ArgValue =
3232         HasFallback ? EmitScalarExpr(E->getArg(0))
3233                     : EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
3234 
3235     llvm::Type *ArgType = ArgValue->getType();
3236     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
3237 
3238     llvm::Type *ResultType = ConvertType(E->getType());
3239     Value *ZeroUndef =
3240         Builder.getInt1(HasFallback || getTarget().isCLZForZeroUndef());
3241     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
3242     if (Result->getType() != ResultType)
3243       Result =
3244           Builder.CreateIntCast(Result, ResultType, /*isSigned*/ false, "cast");
3245     if (!HasFallback)
3246       return RValue::get(Result);
3247 
3248     Value *Zero = Constant::getNullValue(ArgType);
3249     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
3250     Value *FallbackValue = EmitScalarExpr(E->getArg(1));
3251     Value *ResultOrFallback =
3252         Builder.CreateSelect(IsZero, FallbackValue, Result, "ctzg");
3253     return RValue::get(ResultOrFallback);
3254   }
3255   case Builtin::BI__builtin_clzs:
3256   case Builtin::BI__builtin_clz:
3257   case Builtin::BI__builtin_clzl:
3258   case Builtin::BI__builtin_clzll:
3259   case Builtin::BI__builtin_clzg: {
3260     bool HasFallback = BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_clzg &&
3261                        E->getNumArgs() > 1;
3262 
3263     Value *ArgValue =
3264         HasFallback ? EmitScalarExpr(E->getArg(0))
3265                     : EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
3266 
3267     llvm::Type *ArgType = ArgValue->getType();
3268     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
3269 
3270     llvm::Type *ResultType = ConvertType(E->getType());
3271     Value *ZeroUndef =
3272         Builder.getInt1(HasFallback || getTarget().isCLZForZeroUndef());
3273     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
3274     if (Result->getType() != ResultType)
3275       Result =
3276           Builder.CreateIntCast(Result, ResultType, /*isSigned*/ false, "cast");
3277     if (!HasFallback)
3278       return RValue::get(Result);
3279 
3280     Value *Zero = Constant::getNullValue(ArgType);
3281     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
3282     Value *FallbackValue = EmitScalarExpr(E->getArg(1));
3283     Value *ResultOrFallback =
3284         Builder.CreateSelect(IsZero, FallbackValue, Result, "clzg");
3285     return RValue::get(ResultOrFallback);
3286   }
3287   case Builtin::BI__builtin_ffs:
3288   case Builtin::BI__builtin_ffsl:
3289   case Builtin::BI__builtin_ffsll: {
3290     // ffs(x) -> x ? cttz(x) + 1 : 0
3291     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3292 
3293     llvm::Type *ArgType = ArgValue->getType();
3294     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
3295 
3296     llvm::Type *ResultType = ConvertType(E->getType());
3297     Value *Tmp =
3298         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
3299                           llvm::ConstantInt::get(ArgType, 1));
3300     Value *Zero = llvm::Constant::getNullValue(ArgType);
3301     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
3302     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
3303     if (Result->getType() != ResultType)
3304       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3305                                      "cast");
3306     return RValue::get(Result);
3307   }
3308   case Builtin::BI__builtin_parity:
3309   case Builtin::BI__builtin_parityl:
3310   case Builtin::BI__builtin_parityll: {
3311     // parity(x) -> ctpop(x) & 1
3312     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3313 
3314     llvm::Type *ArgType = ArgValue->getType();
3315     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
3316 
3317     llvm::Type *ResultType = ConvertType(E->getType());
3318     Value *Tmp = Builder.CreateCall(F, ArgValue);
3319     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
3320     if (Result->getType() != ResultType)
3321       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3322                                      "cast");
3323     return RValue::get(Result);
3324   }
3325   case Builtin::BI__lzcnt16:
3326   case Builtin::BI__lzcnt:
3327   case Builtin::BI__lzcnt64: {
3328     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3329 
3330     llvm::Type *ArgType = ArgValue->getType();
3331     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
3332 
3333     llvm::Type *ResultType = ConvertType(E->getType());
3334     Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
3335     if (Result->getType() != ResultType)
3336       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3337                                      "cast");
3338     return RValue::get(Result);
3339   }
3340   case Builtin::BI__popcnt16:
3341   case Builtin::BI__popcnt:
3342   case Builtin::BI__popcnt64:
3343   case Builtin::BI__builtin_popcount:
3344   case Builtin::BI__builtin_popcountl:
3345   case Builtin::BI__builtin_popcountll:
3346   case Builtin::BI__builtin_popcountg: {
3347     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3348 
3349     llvm::Type *ArgType = ArgValue->getType();
3350     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
3351 
3352     llvm::Type *ResultType = ConvertType(E->getType());
3353     Value *Result = Builder.CreateCall(F, ArgValue);
3354     if (Result->getType() != ResultType)
3355       Result =
3356           Builder.CreateIntCast(Result, ResultType, /*isSigned*/ false, "cast");
3357     return RValue::get(Result);
3358   }
3359   case Builtin::BI__builtin_unpredictable: {
3360     // Always return the argument of __builtin_unpredictable. LLVM does not
3361     // handle this builtin. Metadata for this builtin should be added directly
3362     // to instructions such as branches or switches that use it.
3363     return RValue::get(EmitScalarExpr(E->getArg(0)));
3364   }
3365   case Builtin::BI__builtin_expect: {
3366     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3367     llvm::Type *ArgType = ArgValue->getType();
3368 
3369     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
3370     // Don't generate llvm.expect on -O0 as the backend won't use it for
3371     // anything.
3372     // Note, we still IRGen ExpectedValue because it could have side-effects.
3373     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3374       return RValue::get(ArgValue);
3375 
3376     Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
3377     Value *Result =
3378         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
3379     return RValue::get(Result);
3380   }
3381   case Builtin::BI__builtin_expect_with_probability: {
3382     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3383     llvm::Type *ArgType = ArgValue->getType();
3384 
3385     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
3386     llvm::APFloat Probability(0.0);
3387     const Expr *ProbArg = E->getArg(2);
3388     bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
3389     assert(EvalSucceed && "probability should be able to evaluate as float");
3390     (void)EvalSucceed;
3391     bool LoseInfo = false;
3392     Probability.convert(llvm::APFloat::IEEEdouble(),
3393                         llvm::RoundingMode::Dynamic, &LoseInfo);
3394     llvm::Type *Ty = ConvertType(ProbArg->getType());
3395     Constant *Confidence = ConstantFP::get(Ty, Probability);
3396     // Don't generate llvm.expect.with.probability on -O0 as the backend
3397     // won't use it for anything.
3398     // Note, we still IRGen ExpectedValue because it could have side-effects.
3399     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3400       return RValue::get(ArgValue);
3401 
3402     Function *FnExpect =
3403         CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
3404     Value *Result = Builder.CreateCall(
3405         FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
3406     return RValue::get(Result);
3407   }
3408   case Builtin::BI__builtin_assume_aligned: {
3409     const Expr *Ptr = E->getArg(0);
3410     Value *PtrValue = EmitScalarExpr(Ptr);
3411     Value *OffsetValue =
3412       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
3413 
3414     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
3415     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
3416     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
3417       AlignmentCI = ConstantInt::get(AlignmentCI->getIntegerType(),
3418                                      llvm::Value::MaximumAlignment);
3419 
3420     emitAlignmentAssumption(PtrValue, Ptr,
3421                             /*The expr loc is sufficient.*/ SourceLocation(),
3422                             AlignmentCI, OffsetValue);
3423     return RValue::get(PtrValue);
3424   }
3425   case Builtin::BI__assume:
3426   case Builtin::BI__builtin_assume: {
3427     if (E->getArg(0)->HasSideEffects(getContext()))
3428       return RValue::get(nullptr);
3429 
3430     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3431     Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
3432     Builder.CreateCall(FnAssume, ArgValue);
3433     return RValue::get(nullptr);
3434   }
3435   case Builtin::BI__builtin_assume_separate_storage: {
3436     const Expr *Arg0 = E->getArg(0);
3437     const Expr *Arg1 = E->getArg(1);
3438 
3439     Value *Value0 = EmitScalarExpr(Arg0);
3440     Value *Value1 = EmitScalarExpr(Arg1);
3441 
3442     Value *Values[] = {Value0, Value1};
3443     OperandBundleDefT<Value *> OBD("separate_storage", Values);
3444     Builder.CreateAssumption(ConstantInt::getTrue(getLLVMContext()), {OBD});
3445     return RValue::get(nullptr);
3446   }
3447   case Builtin::BI__builtin_allow_runtime_check: {
3448     StringRef Kind =
3449         cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts())->getString();
3450     LLVMContext &Ctx = CGM.getLLVMContext();
3451     llvm::Value *Allow = Builder.CreateCall(
3452         CGM.getIntrinsic(llvm::Intrinsic::allow_runtime_check),
3453         llvm::MetadataAsValue::get(Ctx, llvm::MDString::get(Ctx, Kind)));
3454     return RValue::get(Allow);
3455   }
3456   case Builtin::BI__arithmetic_fence: {
3457     // Create the builtin call if FastMath is selected, and the target
3458     // supports the builtin, otherwise just return the argument.
3459     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3460     llvm::FastMathFlags FMF = Builder.getFastMathFlags();
3461     bool isArithmeticFenceEnabled =
3462         FMF.allowReassoc() &&
3463         getContext().getTargetInfo().checkArithmeticFenceSupported();
3464     QualType ArgType = E->getArg(0)->getType();
3465     if (ArgType->isComplexType()) {
3466       if (isArithmeticFenceEnabled) {
3467         QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
3468         ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3469         Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
3470                                                     ConvertType(ElementType));
3471         Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
3472                                                     ConvertType(ElementType));
3473         return RValue::getComplex(std::make_pair(Real, Imag));
3474       }
3475       ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3476       Value *Real = ComplexVal.first;
3477       Value *Imag = ComplexVal.second;
3478       return RValue::getComplex(std::make_pair(Real, Imag));
3479     }
3480     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3481     if (isArithmeticFenceEnabled)
3482       return RValue::get(
3483           Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
3484     return RValue::get(ArgValue);
3485   }
3486   case Builtin::BI__builtin_bswap16:
3487   case Builtin::BI__builtin_bswap32:
3488   case Builtin::BI__builtin_bswap64:
3489   case Builtin::BI_byteswap_ushort:
3490   case Builtin::BI_byteswap_ulong:
3491   case Builtin::BI_byteswap_uint64: {
3492     return RValue::get(
3493         emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::bswap));
3494   }
3495   case Builtin::BI__builtin_bitreverse8:
3496   case Builtin::BI__builtin_bitreverse16:
3497   case Builtin::BI__builtin_bitreverse32:
3498   case Builtin::BI__builtin_bitreverse64: {
3499     return RValue::get(
3500         emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::bitreverse));
3501   }
3502   case Builtin::BI__builtin_rotateleft8:
3503   case Builtin::BI__builtin_rotateleft16:
3504   case Builtin::BI__builtin_rotateleft32:
3505   case Builtin::BI__builtin_rotateleft64:
3506   case Builtin::BI_rotl8: // Microsoft variants of rotate left
3507   case Builtin::BI_rotl16:
3508   case Builtin::BI_rotl:
3509   case Builtin::BI_lrotl:
3510   case Builtin::BI_rotl64:
3511     return emitRotate(E, false);
3512 
3513   case Builtin::BI__builtin_rotateright8:
3514   case Builtin::BI__builtin_rotateright16:
3515   case Builtin::BI__builtin_rotateright32:
3516   case Builtin::BI__builtin_rotateright64:
3517   case Builtin::BI_rotr8: // Microsoft variants of rotate right
3518   case Builtin::BI_rotr16:
3519   case Builtin::BI_rotr:
3520   case Builtin::BI_lrotr:
3521   case Builtin::BI_rotr64:
3522     return emitRotate(E, true);
3523 
3524   case Builtin::BI__builtin_constant_p: {
3525     llvm::Type *ResultType = ConvertType(E->getType());
3526 
3527     const Expr *Arg = E->getArg(0);
3528     QualType ArgType = Arg->getType();
3529     // FIXME: The allowance for Obj-C pointers and block pointers is historical
3530     // and likely a mistake.
3531     if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
3532         !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
3533       // Per the GCC documentation, only numeric constants are recognized after
3534       // inlining.
3535       return RValue::get(ConstantInt::get(ResultType, 0));
3536 
3537     if (Arg->HasSideEffects(getContext()))
3538       // The argument is unevaluated, so be conservative if it might have
3539       // side-effects.
3540       return RValue::get(ConstantInt::get(ResultType, 0));
3541 
3542     Value *ArgValue = EmitScalarExpr(Arg);
3543     if (ArgType->isObjCObjectPointerType()) {
3544       // Convert Objective-C objects to id because we cannot distinguish between
3545       // LLVM types for Obj-C classes as they are opaque.
3546       ArgType = CGM.getContext().getObjCIdType();
3547       ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
3548     }
3549     Function *F =
3550         CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
3551     Value *Result = Builder.CreateCall(F, ArgValue);
3552     if (Result->getType() != ResultType)
3553       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
3554     return RValue::get(Result);
3555   }
3556   case Builtin::BI__builtin_dynamic_object_size:
3557   case Builtin::BI__builtin_object_size: {
3558     unsigned Type =
3559         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
3560     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
3561 
3562     // We pass this builtin onto the optimizer so that it can figure out the
3563     // object size in more complex cases.
3564     bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
3565     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
3566                                              /*EmittedE=*/nullptr, IsDynamic));
3567   }
3568   case Builtin::BI__builtin_prefetch: {
3569     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
3570     // FIXME: Technically these constants should of type 'int', yes?
3571     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
3572       llvm::ConstantInt::get(Int32Ty, 0);
3573     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
3574       llvm::ConstantInt::get(Int32Ty, 3);
3575     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
3576     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
3577     Builder.CreateCall(F, {Address, RW, Locality, Data});
3578     return RValue::get(nullptr);
3579   }
3580   case Builtin::BI__builtin_readcyclecounter: {
3581     Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
3582     return RValue::get(Builder.CreateCall(F));
3583   }
3584   case Builtin::BI__builtin_readsteadycounter: {
3585     Function *F = CGM.getIntrinsic(Intrinsic::readsteadycounter);
3586     return RValue::get(Builder.CreateCall(F));
3587   }
3588   case Builtin::BI__builtin___clear_cache: {
3589     Value *Begin = EmitScalarExpr(E->getArg(0));
3590     Value *End = EmitScalarExpr(E->getArg(1));
3591     Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
3592     return RValue::get(Builder.CreateCall(F, {Begin, End}));
3593   }
3594   case Builtin::BI__builtin_trap:
3595     EmitTrapCall(Intrinsic::trap);
3596     return RValue::get(nullptr);
3597   case Builtin::BI__builtin_verbose_trap: {
3598     llvm::DILocation *TrapLocation = Builder.getCurrentDebugLocation();
3599     if (getDebugInfo()) {
3600       TrapLocation = getDebugInfo()->CreateTrapFailureMessageFor(
3601           TrapLocation, *E->getArg(0)->tryEvaluateString(getContext()),
3602           *E->getArg(1)->tryEvaluateString(getContext()));
3603     }
3604     ApplyDebugLocation ApplyTrapDI(*this, TrapLocation);
3605     // Currently no attempt is made to prevent traps from being merged.
3606     EmitTrapCall(Intrinsic::trap);
3607     return RValue::get(nullptr);
3608   }
3609   case Builtin::BI__debugbreak:
3610     EmitTrapCall(Intrinsic::debugtrap);
3611     return RValue::get(nullptr);
3612   case Builtin::BI__builtin_unreachable: {
3613     EmitUnreachable(E->getExprLoc());
3614 
3615     // We do need to preserve an insertion point.
3616     EmitBlock(createBasicBlock("unreachable.cont"));
3617 
3618     return RValue::get(nullptr);
3619   }
3620 
3621   case Builtin::BI__builtin_powi:
3622   case Builtin::BI__builtin_powif:
3623   case Builtin::BI__builtin_powil: {
3624     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
3625     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
3626 
3627     if (Builder.getIsFPConstrained()) {
3628       // FIXME: llvm.powi has 2 mangling types,
3629       // llvm.experimental.constrained.powi has one.
3630       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3631       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
3632                                      Src0->getType());
3633       return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
3634     }
3635 
3636     Function *F = CGM.getIntrinsic(Intrinsic::powi,
3637                                    { Src0->getType(), Src1->getType() });
3638     return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
3639   }
3640   case Builtin::BI__builtin_frexpl: {
3641     // Linux PPC will not be adding additional PPCDoubleDouble support.
3642     // WIP to switch default to IEEE long double. Will emit libcall for
3643     // frexpl instead of legalizing this type in the BE.
3644     if (&getTarget().getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble())
3645       break;
3646     [[fallthrough]];
3647   }
3648   case Builtin::BI__builtin_frexp:
3649   case Builtin::BI__builtin_frexpf:
3650   case Builtin::BI__builtin_frexpf128:
3651   case Builtin::BI__builtin_frexpf16:
3652     return RValue::get(emitFrexpBuiltin(*this, E, Intrinsic::frexp));
3653   case Builtin::BI__builtin_isgreater:
3654   case Builtin::BI__builtin_isgreaterequal:
3655   case Builtin::BI__builtin_isless:
3656   case Builtin::BI__builtin_islessequal:
3657   case Builtin::BI__builtin_islessgreater:
3658   case Builtin::BI__builtin_isunordered: {
3659     // Ordered comparisons: we know the arguments to these are matching scalar
3660     // floating point values.
3661     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3662     Value *LHS = EmitScalarExpr(E->getArg(0));
3663     Value *RHS = EmitScalarExpr(E->getArg(1));
3664 
3665     switch (BuiltinID) {
3666     default: llvm_unreachable("Unknown ordered comparison");
3667     case Builtin::BI__builtin_isgreater:
3668       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
3669       break;
3670     case Builtin::BI__builtin_isgreaterequal:
3671       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
3672       break;
3673     case Builtin::BI__builtin_isless:
3674       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
3675       break;
3676     case Builtin::BI__builtin_islessequal:
3677       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
3678       break;
3679     case Builtin::BI__builtin_islessgreater:
3680       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
3681       break;
3682     case Builtin::BI__builtin_isunordered:
3683       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
3684       break;
3685     }
3686     // ZExt bool to int type.
3687     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3688   }
3689 
3690   case Builtin::BI__builtin_isnan: {
3691     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3692     Value *V = EmitScalarExpr(E->getArg(0));
3693     if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V))
3694       return RValue::get(Result);
3695     return RValue::get(
3696         Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcNan),
3697                            ConvertType(E->getType())));
3698   }
3699 
3700   case Builtin::BI__builtin_issignaling: {
3701     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3702     Value *V = EmitScalarExpr(E->getArg(0));
3703     return RValue::get(
3704         Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcSNan),
3705                            ConvertType(E->getType())));
3706   }
3707 
3708   case Builtin::BI__builtin_isinf: {
3709     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3710     Value *V = EmitScalarExpr(E->getArg(0));
3711     if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V))
3712       return RValue::get(Result);
3713     return RValue::get(
3714         Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcInf),
3715                            ConvertType(E->getType())));
3716   }
3717 
3718   case Builtin::BIfinite:
3719   case Builtin::BI__finite:
3720   case Builtin::BIfinitef:
3721   case Builtin::BI__finitef:
3722   case Builtin::BIfinitel:
3723   case Builtin::BI__finitel:
3724   case Builtin::BI__builtin_isfinite: {
3725     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3726     Value *V = EmitScalarExpr(E->getArg(0));
3727     if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V))
3728       return RValue::get(Result);
3729     return RValue::get(
3730         Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcFinite),
3731                            ConvertType(E->getType())));
3732   }
3733 
3734   case Builtin::BI__builtin_isnormal: {
3735     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3736     Value *V = EmitScalarExpr(E->getArg(0));
3737     return RValue::get(
3738         Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcNormal),
3739                            ConvertType(E->getType())));
3740   }
3741 
3742   case Builtin::BI__builtin_issubnormal: {
3743     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3744     Value *V = EmitScalarExpr(E->getArg(0));
3745     return RValue::get(
3746         Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcSubnormal),
3747                            ConvertType(E->getType())));
3748   }
3749 
3750   case Builtin::BI__builtin_iszero: {
3751     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3752     Value *V = EmitScalarExpr(E->getArg(0));
3753     return RValue::get(
3754         Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcZero),
3755                            ConvertType(E->getType())));
3756   }
3757 
3758   case Builtin::BI__builtin_isfpclass: {
3759     Expr::EvalResult Result;
3760     if (!E->getArg(1)->EvaluateAsInt(Result, CGM.getContext()))
3761       break;
3762     uint64_t Test = Result.Val.getInt().getLimitedValue();
3763     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3764     Value *V = EmitScalarExpr(E->getArg(0));
3765     return RValue::get(Builder.CreateZExt(Builder.createIsFPClass(V, Test),
3766                                           ConvertType(E->getType())));
3767   }
3768 
3769   case Builtin::BI__builtin_nondeterministic_value: {
3770     llvm::Type *Ty = ConvertType(E->getArg(0)->getType());
3771 
3772     Value *Result = PoisonValue::get(Ty);
3773     Result = Builder.CreateFreeze(Result);
3774 
3775     return RValue::get(Result);
3776   }
3777 
3778   case Builtin::BI__builtin_elementwise_abs: {
3779     Value *Result;
3780     QualType QT = E->getArg(0)->getType();
3781 
3782     if (auto *VecTy = QT->getAs<VectorType>())
3783       QT = VecTy->getElementType();
3784     if (QT->isIntegerType())
3785       Result = Builder.CreateBinaryIntrinsic(
3786           llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)),
3787           Builder.getFalse(), nullptr, "elt.abs");
3788     else
3789       Result = emitBuiltinWithOneOverloadedType<1>(
3790           *this, E, llvm::Intrinsic::fabs, "elt.abs");
3791 
3792     return RValue::get(Result);
3793   }
3794   case Builtin::BI__builtin_elementwise_acos:
3795     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3796         *this, E, llvm::Intrinsic::acos, "elt.acos"));
3797   case Builtin::BI__builtin_elementwise_asin:
3798     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3799         *this, E, llvm::Intrinsic::asin, "elt.asin"));
3800   case Builtin::BI__builtin_elementwise_atan:
3801     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3802         *this, E, llvm::Intrinsic::atan, "elt.atan"));
3803   case Builtin::BI__builtin_elementwise_ceil:
3804     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3805         *this, E, llvm::Intrinsic::ceil, "elt.ceil"));
3806   case Builtin::BI__builtin_elementwise_exp:
3807     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3808         *this, E, llvm::Intrinsic::exp, "elt.exp"));
3809   case Builtin::BI__builtin_elementwise_exp2:
3810     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3811         *this, E, llvm::Intrinsic::exp2, "elt.exp2"));
3812   case Builtin::BI__builtin_elementwise_log:
3813     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3814         *this, E, llvm::Intrinsic::log, "elt.log"));
3815   case Builtin::BI__builtin_elementwise_log2:
3816     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3817         *this, E, llvm::Intrinsic::log2, "elt.log2"));
3818   case Builtin::BI__builtin_elementwise_log10:
3819     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3820         *this, E, llvm::Intrinsic::log10, "elt.log10"));
3821   case Builtin::BI__builtin_elementwise_pow: {
3822     return RValue::get(
3823         emitBuiltinWithOneOverloadedType<2>(*this, E, llvm::Intrinsic::pow));
3824   }
3825   case Builtin::BI__builtin_elementwise_bitreverse:
3826     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3827         *this, E, llvm::Intrinsic::bitreverse, "elt.bitreverse"));
3828   case Builtin::BI__builtin_elementwise_cos:
3829     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3830         *this, E, llvm::Intrinsic::cos, "elt.cos"));
3831   case Builtin::BI__builtin_elementwise_cosh:
3832     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3833         *this, E, llvm::Intrinsic::cosh, "elt.cosh"));
3834   case Builtin::BI__builtin_elementwise_floor:
3835     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3836         *this, E, llvm::Intrinsic::floor, "elt.floor"));
3837   case Builtin::BI__builtin_elementwise_roundeven:
3838     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3839         *this, E, llvm::Intrinsic::roundeven, "elt.roundeven"));
3840   case Builtin::BI__builtin_elementwise_round:
3841     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3842         *this, E, llvm::Intrinsic::round, "elt.round"));
3843   case Builtin::BI__builtin_elementwise_rint:
3844     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3845         *this, E, llvm::Intrinsic::rint, "elt.rint"));
3846   case Builtin::BI__builtin_elementwise_nearbyint:
3847     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3848         *this, E, llvm::Intrinsic::nearbyint, "elt.nearbyint"));
3849   case Builtin::BI__builtin_elementwise_sin:
3850     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3851         *this, E, llvm::Intrinsic::sin, "elt.sin"));
3852   case Builtin::BI__builtin_elementwise_sinh:
3853     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3854         *this, E, llvm::Intrinsic::sinh, "elt.sinh"));
3855   case Builtin::BI__builtin_elementwise_tan:
3856     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3857         *this, E, llvm::Intrinsic::tan, "elt.tan"));
3858   case Builtin::BI__builtin_elementwise_tanh:
3859     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3860         *this, E, llvm::Intrinsic::tanh, "elt.tanh"));
3861   case Builtin::BI__builtin_elementwise_trunc:
3862     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3863         *this, E, llvm::Intrinsic::trunc, "elt.trunc"));
3864   case Builtin::BI__builtin_elementwise_canonicalize:
3865     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3866         *this, E, llvm::Intrinsic::canonicalize, "elt.canonicalize"));
3867   case Builtin::BI__builtin_elementwise_copysign:
3868     return RValue::get(emitBuiltinWithOneOverloadedType<2>(
3869         *this, E, llvm::Intrinsic::copysign));
3870   case Builtin::BI__builtin_elementwise_fma:
3871     return RValue::get(
3872         emitBuiltinWithOneOverloadedType<3>(*this, E, llvm::Intrinsic::fma));
3873   case Builtin::BI__builtin_elementwise_add_sat:
3874   case Builtin::BI__builtin_elementwise_sub_sat: {
3875     Value *Op0 = EmitScalarExpr(E->getArg(0));
3876     Value *Op1 = EmitScalarExpr(E->getArg(1));
3877     Value *Result;
3878     assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected");
3879     QualType Ty = E->getArg(0)->getType();
3880     if (auto *VecTy = Ty->getAs<VectorType>())
3881       Ty = VecTy->getElementType();
3882     bool IsSigned = Ty->isSignedIntegerType();
3883     unsigned Opc;
3884     if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat)
3885       Opc = IsSigned ? llvm::Intrinsic::sadd_sat : llvm::Intrinsic::uadd_sat;
3886     else
3887       Opc = IsSigned ? llvm::Intrinsic::ssub_sat : llvm::Intrinsic::usub_sat;
3888     Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat");
3889     return RValue::get(Result);
3890   }
3891 
3892   case Builtin::BI__builtin_elementwise_max: {
3893     Value *Op0 = EmitScalarExpr(E->getArg(0));
3894     Value *Op1 = EmitScalarExpr(E->getArg(1));
3895     Value *Result;
3896     if (Op0->getType()->isIntOrIntVectorTy()) {
3897       QualType Ty = E->getArg(0)->getType();
3898       if (auto *VecTy = Ty->getAs<VectorType>())
3899         Ty = VecTy->getElementType();
3900       Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3901                                                  ? llvm::Intrinsic::smax
3902                                                  : llvm::Intrinsic::umax,
3903                                              Op0, Op1, nullptr, "elt.max");
3904     } else
3905       Result = Builder.CreateMaxNum(Op0, Op1, "elt.max");
3906     return RValue::get(Result);
3907   }
3908   case Builtin::BI__builtin_elementwise_min: {
3909     Value *Op0 = EmitScalarExpr(E->getArg(0));
3910     Value *Op1 = EmitScalarExpr(E->getArg(1));
3911     Value *Result;
3912     if (Op0->getType()->isIntOrIntVectorTy()) {
3913       QualType Ty = E->getArg(0)->getType();
3914       if (auto *VecTy = Ty->getAs<VectorType>())
3915         Ty = VecTy->getElementType();
3916       Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3917                                                  ? llvm::Intrinsic::smin
3918                                                  : llvm::Intrinsic::umin,
3919                                              Op0, Op1, nullptr, "elt.min");
3920     } else
3921       Result = Builder.CreateMinNum(Op0, Op1, "elt.min");
3922     return RValue::get(Result);
3923   }
3924 
3925   case Builtin::BI__builtin_reduce_max: {
3926     auto GetIntrinsicID = [this](QualType QT) {
3927       if (auto *VecTy = QT->getAs<VectorType>())
3928         QT = VecTy->getElementType();
3929       else if (QT->isSizelessVectorType())
3930         QT = QT->getSizelessVectorEltType(CGM.getContext());
3931 
3932       if (QT->isSignedIntegerType())
3933         return llvm::Intrinsic::vector_reduce_smax;
3934       if (QT->isUnsignedIntegerType())
3935         return llvm::Intrinsic::vector_reduce_umax;
3936       assert(QT->isFloatingType() && "must have a float here");
3937       return llvm::Intrinsic::vector_reduce_fmax;
3938     };
3939     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3940         *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3941   }
3942 
3943   case Builtin::BI__builtin_reduce_min: {
3944     auto GetIntrinsicID = [this](QualType QT) {
3945       if (auto *VecTy = QT->getAs<VectorType>())
3946         QT = VecTy->getElementType();
3947       else if (QT->isSizelessVectorType())
3948         QT = QT->getSizelessVectorEltType(CGM.getContext());
3949 
3950       if (QT->isSignedIntegerType())
3951         return llvm::Intrinsic::vector_reduce_smin;
3952       if (QT->isUnsignedIntegerType())
3953         return llvm::Intrinsic::vector_reduce_umin;
3954       assert(QT->isFloatingType() && "must have a float here");
3955       return llvm::Intrinsic::vector_reduce_fmin;
3956     };
3957 
3958     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3959         *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3960   }
3961 
3962   case Builtin::BI__builtin_reduce_add:
3963     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3964         *this, E, llvm::Intrinsic::vector_reduce_add, "rdx.add"));
3965   case Builtin::BI__builtin_reduce_mul:
3966     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3967         *this, E, llvm::Intrinsic::vector_reduce_mul, "rdx.mul"));
3968   case Builtin::BI__builtin_reduce_xor:
3969     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3970         *this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor"));
3971   case Builtin::BI__builtin_reduce_or:
3972     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3973         *this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or"));
3974   case Builtin::BI__builtin_reduce_and:
3975     return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3976         *this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and"));
3977 
3978   case Builtin::BI__builtin_matrix_transpose: {
3979     auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>();
3980     Value *MatValue = EmitScalarExpr(E->getArg(0));
3981     MatrixBuilder MB(Builder);
3982     Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3983                                              MatrixTy->getNumColumns());
3984     return RValue::get(Result);
3985   }
3986 
3987   case Builtin::BI__builtin_matrix_column_major_load: {
3988     MatrixBuilder MB(Builder);
3989     // Emit everything that isn't dependent on the first parameter type
3990     Value *Stride = EmitScalarExpr(E->getArg(3));
3991     const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3992     auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3993     assert(PtrTy && "arg0 must be of pointer type");
3994     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3995 
3996     Address Src = EmitPointerWithAlignment(E->getArg(0));
3997     EmitNonNullArgCheck(RValue::get(Src.emitRawPointer(*this)),
3998                         E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD,
3999                         0);
4000     Value *Result = MB.CreateColumnMajorLoad(
4001         Src.getElementType(), Src.emitRawPointer(*this),
4002         Align(Src.getAlignment().getQuantity()), Stride, IsVolatile,
4003         ResultTy->getNumRows(), ResultTy->getNumColumns(), "matrix");
4004     return RValue::get(Result);
4005   }
4006 
4007   case Builtin::BI__builtin_matrix_column_major_store: {
4008     MatrixBuilder MB(Builder);
4009     Value *Matrix = EmitScalarExpr(E->getArg(0));
4010     Address Dst = EmitPointerWithAlignment(E->getArg(1));
4011     Value *Stride = EmitScalarExpr(E->getArg(2));
4012 
4013     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
4014     auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
4015     assert(PtrTy && "arg1 must be of pointer type");
4016     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
4017 
4018     EmitNonNullArgCheck(RValue::get(Dst.emitRawPointer(*this)),
4019                         E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD,
4020                         0);
4021     Value *Result = MB.CreateColumnMajorStore(
4022         Matrix, Dst.emitRawPointer(*this),
4023         Align(Dst.getAlignment().getQuantity()), Stride, IsVolatile,
4024         MatrixTy->getNumRows(), MatrixTy->getNumColumns());
4025     return RValue::get(Result);
4026   }
4027 
4028   case Builtin::BI__builtin_isinf_sign: {
4029     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
4030     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
4031     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
4032     Value *Arg = EmitScalarExpr(E->getArg(0));
4033     Value *AbsArg = EmitFAbs(*this, Arg);
4034     Value *IsInf = Builder.CreateFCmpOEQ(
4035         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
4036     Value *IsNeg = EmitSignBit(*this, Arg);
4037 
4038     llvm::Type *IntTy = ConvertType(E->getType());
4039     Value *Zero = Constant::getNullValue(IntTy);
4040     Value *One = ConstantInt::get(IntTy, 1);
4041     Value *NegativeOne = ConstantInt::get(IntTy, -1);
4042     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
4043     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
4044     return RValue::get(Result);
4045   }
4046 
4047   case Builtin::BI__builtin_flt_rounds: {
4048     Function *F = CGM.getIntrinsic(Intrinsic::get_rounding);
4049 
4050     llvm::Type *ResultType = ConvertType(E->getType());
4051     Value *Result = Builder.CreateCall(F);
4052     if (Result->getType() != ResultType)
4053       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
4054                                      "cast");
4055     return RValue::get(Result);
4056   }
4057 
4058   case Builtin::BI__builtin_set_flt_rounds: {
4059     Function *F = CGM.getIntrinsic(Intrinsic::set_rounding);
4060 
4061     Value *V = EmitScalarExpr(E->getArg(0));
4062     Builder.CreateCall(F, V);
4063     return RValue::get(nullptr);
4064   }
4065 
4066   case Builtin::BI__builtin_fpclassify: {
4067     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
4068     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
4069     Value *V = EmitScalarExpr(E->getArg(5));
4070     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
4071 
4072     // Create Result
4073     BasicBlock *Begin = Builder.GetInsertBlock();
4074     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
4075     Builder.SetInsertPoint(End);
4076     PHINode *Result =
4077       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
4078                         "fpclassify_result");
4079 
4080     // if (V==0) return FP_ZERO
4081     Builder.SetInsertPoint(Begin);
4082     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
4083                                           "iszero");
4084     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
4085     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
4086     Builder.CreateCondBr(IsZero, End, NotZero);
4087     Result->addIncoming(ZeroLiteral, Begin);
4088 
4089     // if (V != V) return FP_NAN
4090     Builder.SetInsertPoint(NotZero);
4091     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
4092     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
4093     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
4094     Builder.CreateCondBr(IsNan, End, NotNan);
4095     Result->addIncoming(NanLiteral, NotZero);
4096 
4097     // if (fabs(V) == infinity) return FP_INFINITY
4098     Builder.SetInsertPoint(NotNan);
4099     Value *VAbs = EmitFAbs(*this, V);
4100     Value *IsInf =
4101       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
4102                             "isinf");
4103     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
4104     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
4105     Builder.CreateCondBr(IsInf, End, NotInf);
4106     Result->addIncoming(InfLiteral, NotNan);
4107 
4108     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
4109     Builder.SetInsertPoint(NotInf);
4110     APFloat Smallest = APFloat::getSmallestNormalized(
4111         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
4112     Value *IsNormal =
4113       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
4114                             "isnormal");
4115     Value *NormalResult =
4116       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
4117                            EmitScalarExpr(E->getArg(3)));
4118     Builder.CreateBr(End);
4119     Result->addIncoming(NormalResult, NotInf);
4120 
4121     // return Result
4122     Builder.SetInsertPoint(End);
4123     return RValue::get(Result);
4124   }
4125 
4126   // An alloca will always return a pointer to the alloca (stack) address
4127   // space. This address space need not be the same as the AST / Language
4128   // default (e.g. in C / C++ auto vars are in the generic address space). At
4129   // the AST level this is handled within CreateTempAlloca et al., but for the
4130   // builtin / dynamic alloca we have to handle it here. We use an explicit cast
4131   // instead of passing an AS to CreateAlloca so as to not inhibit optimisation.
4132   case Builtin::BIalloca:
4133   case Builtin::BI_alloca:
4134   case Builtin::BI__builtin_alloca_uninitialized:
4135   case Builtin::BI__builtin_alloca: {
4136     Value *Size = EmitScalarExpr(E->getArg(0));
4137     const TargetInfo &TI = getContext().getTargetInfo();
4138     // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
4139     const Align SuitableAlignmentInBytes =
4140         CGM.getContext()
4141             .toCharUnitsFromBits(TI.getSuitableAlign())
4142             .getAsAlign();
4143     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
4144     AI->setAlignment(SuitableAlignmentInBytes);
4145     if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized)
4146       initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
4147     LangAS AAS = getASTAllocaAddressSpace();
4148     LangAS EAS = E->getType()->getPointeeType().getAddressSpace();
4149     if (AAS != EAS) {
4150       llvm::Type *Ty = CGM.getTypes().ConvertType(E->getType());
4151       return RValue::get(getTargetHooks().performAddrSpaceCast(*this, AI, AAS,
4152                                                                EAS, Ty));
4153     }
4154     return RValue::get(AI);
4155   }
4156 
4157   case Builtin::BI__builtin_alloca_with_align_uninitialized:
4158   case Builtin::BI__builtin_alloca_with_align: {
4159     Value *Size = EmitScalarExpr(E->getArg(0));
4160     Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
4161     auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
4162     unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
4163     const Align AlignmentInBytes =
4164         CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
4165     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
4166     AI->setAlignment(AlignmentInBytes);
4167     if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized)
4168       initializeAlloca(*this, AI, Size, AlignmentInBytes);
4169     LangAS AAS = getASTAllocaAddressSpace();
4170     LangAS EAS = E->getType()->getPointeeType().getAddressSpace();
4171     if (AAS != EAS) {
4172       llvm::Type *Ty = CGM.getTypes().ConvertType(E->getType());
4173       return RValue::get(getTargetHooks().performAddrSpaceCast(*this, AI, AAS,
4174                                                                EAS, Ty));
4175     }
4176     return RValue::get(AI);
4177   }
4178 
4179   case Builtin::BIbzero:
4180   case Builtin::BI__builtin_bzero: {
4181     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4182     Value *SizeVal = EmitScalarExpr(E->getArg(1));
4183     EmitNonNullArgCheck(Dest, E->getArg(0)->getType(),
4184                         E->getArg(0)->getExprLoc(), FD, 0);
4185     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
4186     return RValue::get(nullptr);
4187   }
4188 
4189   case Builtin::BIbcopy:
4190   case Builtin::BI__builtin_bcopy: {
4191     Address Src = EmitPointerWithAlignment(E->getArg(0));
4192     Address Dest = EmitPointerWithAlignment(E->getArg(1));
4193     Value *SizeVal = EmitScalarExpr(E->getArg(2));
4194     EmitNonNullArgCheck(RValue::get(Src.emitRawPointer(*this)),
4195                         E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD,
4196                         0);
4197     EmitNonNullArgCheck(RValue::get(Dest.emitRawPointer(*this)),
4198                         E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD,
4199                         0);
4200     Builder.CreateMemMove(Dest, Src, SizeVal, false);
4201     return RValue::get(nullptr);
4202   }
4203 
4204   case Builtin::BImemcpy:
4205   case Builtin::BI__builtin_memcpy:
4206   case Builtin::BImempcpy:
4207   case Builtin::BI__builtin_mempcpy: {
4208     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4209     Address Src = EmitPointerWithAlignment(E->getArg(1));
4210     Value *SizeVal = EmitScalarExpr(E->getArg(2));
4211     EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0);
4212     EmitArgCheck(TCK_Load, Src, E->getArg(1), 1);
4213     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
4214     if (BuiltinID == Builtin::BImempcpy ||
4215         BuiltinID == Builtin::BI__builtin_mempcpy)
4216       return RValue::get(Builder.CreateInBoundsGEP(
4217           Dest.getElementType(), Dest.emitRawPointer(*this), SizeVal));
4218     else
4219       return RValue::get(Dest, *this);
4220   }
4221 
4222   case Builtin::BI__builtin_memcpy_inline: {
4223     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4224     Address Src = EmitPointerWithAlignment(E->getArg(1));
4225     uint64_t Size =
4226         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
4227     EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0);
4228     EmitArgCheck(TCK_Load, Src, E->getArg(1), 1);
4229     Builder.CreateMemCpyInline(Dest, Src, Size);
4230     return RValue::get(nullptr);
4231   }
4232 
4233   case Builtin::BI__builtin_char_memchr:
4234     BuiltinID = Builtin::BI__builtin_memchr;
4235     break;
4236 
4237   case Builtin::BI__builtin___memcpy_chk: {
4238     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
4239     Expr::EvalResult SizeResult, DstSizeResult;
4240     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
4241         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
4242       break;
4243     llvm::APSInt Size = SizeResult.Val.getInt();
4244     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
4245     if (Size.ugt(DstSize))
4246       break;
4247     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4248     Address Src = EmitPointerWithAlignment(E->getArg(1));
4249     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
4250     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
4251     return RValue::get(Dest, *this);
4252   }
4253 
4254   case Builtin::BI__builtin_objc_memmove_collectable: {
4255     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
4256     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
4257     Value *SizeVal = EmitScalarExpr(E->getArg(2));
4258     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
4259                                                   DestAddr, SrcAddr, SizeVal);
4260     return RValue::get(DestAddr, *this);
4261   }
4262 
4263   case Builtin::BI__builtin___memmove_chk: {
4264     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
4265     Expr::EvalResult SizeResult, DstSizeResult;
4266     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
4267         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
4268       break;
4269     llvm::APSInt Size = SizeResult.Val.getInt();
4270     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
4271     if (Size.ugt(DstSize))
4272       break;
4273     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4274     Address Src = EmitPointerWithAlignment(E->getArg(1));
4275     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
4276     Builder.CreateMemMove(Dest, Src, SizeVal, false);
4277     return RValue::get(Dest, *this);
4278   }
4279 
4280   case Builtin::BImemmove:
4281   case Builtin::BI__builtin_memmove: {
4282     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4283     Address Src = EmitPointerWithAlignment(E->getArg(1));
4284     Value *SizeVal = EmitScalarExpr(E->getArg(2));
4285     EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0);
4286     EmitArgCheck(TCK_Load, Src, E->getArg(1), 1);
4287     Builder.CreateMemMove(Dest, Src, SizeVal, false);
4288     return RValue::get(Dest, *this);
4289   }
4290   case Builtin::BImemset:
4291   case Builtin::BI__builtin_memset: {
4292     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4293     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
4294                                          Builder.getInt8Ty());
4295     Value *SizeVal = EmitScalarExpr(E->getArg(2));
4296     EmitNonNullArgCheck(Dest, E->getArg(0)->getType(),
4297                         E->getArg(0)->getExprLoc(), FD, 0);
4298     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
4299     return RValue::get(Dest, *this);
4300   }
4301   case Builtin::BI__builtin_memset_inline: {
4302     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4303     Value *ByteVal =
4304         Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty());
4305     uint64_t Size =
4306         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
4307     EmitNonNullArgCheck(RValue::get(Dest.emitRawPointer(*this)),
4308                         E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD,
4309                         0);
4310     Builder.CreateMemSetInline(Dest, ByteVal, Size);
4311     return RValue::get(nullptr);
4312   }
4313   case Builtin::BI__builtin___memset_chk: {
4314     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
4315     Expr::EvalResult SizeResult, DstSizeResult;
4316     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
4317         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
4318       break;
4319     llvm::APSInt Size = SizeResult.Val.getInt();
4320     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
4321     if (Size.ugt(DstSize))
4322       break;
4323     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4324     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
4325                                          Builder.getInt8Ty());
4326     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
4327     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
4328     return RValue::get(Dest, *this);
4329   }
4330   case Builtin::BI__builtin_wmemchr: {
4331     // The MSVC runtime library does not provide a definition of wmemchr, so we
4332     // need an inline implementation.
4333     if (!getTarget().getTriple().isOSMSVCRT())
4334       break;
4335 
4336     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
4337     Value *Str = EmitScalarExpr(E->getArg(0));
4338     Value *Chr = EmitScalarExpr(E->getArg(1));
4339     Value *Size = EmitScalarExpr(E->getArg(2));
4340 
4341     BasicBlock *Entry = Builder.GetInsertBlock();
4342     BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
4343     BasicBlock *Next = createBasicBlock("wmemchr.next");
4344     BasicBlock *Exit = createBasicBlock("wmemchr.exit");
4345     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
4346     Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
4347 
4348     EmitBlock(CmpEq);
4349     PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
4350     StrPhi->addIncoming(Str, Entry);
4351     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
4352     SizePhi->addIncoming(Size, Entry);
4353     CharUnits WCharAlign =
4354         getContext().getTypeAlignInChars(getContext().WCharTy);
4355     Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
4356     Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
4357     Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
4358     Builder.CreateCondBr(StrEqChr, Exit, Next);
4359 
4360     EmitBlock(Next);
4361     Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
4362     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
4363     Value *NextSizeEq0 =
4364         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
4365     Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
4366     StrPhi->addIncoming(NextStr, Next);
4367     SizePhi->addIncoming(NextSize, Next);
4368 
4369     EmitBlock(Exit);
4370     PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
4371     Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
4372     Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
4373     Ret->addIncoming(FoundChr, CmpEq);
4374     return RValue::get(Ret);
4375   }
4376   case Builtin::BI__builtin_wmemcmp: {
4377     // The MSVC runtime library does not provide a definition of wmemcmp, so we
4378     // need an inline implementation.
4379     if (!getTarget().getTriple().isOSMSVCRT())
4380       break;
4381 
4382     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
4383 
4384     Value *Dst = EmitScalarExpr(E->getArg(0));
4385     Value *Src = EmitScalarExpr(E->getArg(1));
4386     Value *Size = EmitScalarExpr(E->getArg(2));
4387 
4388     BasicBlock *Entry = Builder.GetInsertBlock();
4389     BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
4390     BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
4391     BasicBlock *Next = createBasicBlock("wmemcmp.next");
4392     BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
4393     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
4394     Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
4395 
4396     EmitBlock(CmpGT);
4397     PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
4398     DstPhi->addIncoming(Dst, Entry);
4399     PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
4400     SrcPhi->addIncoming(Src, Entry);
4401     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
4402     SizePhi->addIncoming(Size, Entry);
4403     CharUnits WCharAlign =
4404         getContext().getTypeAlignInChars(getContext().WCharTy);
4405     Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
4406     Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
4407     Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
4408     Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
4409 
4410     EmitBlock(CmpLT);
4411     Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
4412     Builder.CreateCondBr(DstLtSrc, Exit, Next);
4413 
4414     EmitBlock(Next);
4415     Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
4416     Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
4417     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
4418     Value *NextSizeEq0 =
4419         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
4420     Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
4421     DstPhi->addIncoming(NextDst, Next);
4422     SrcPhi->addIncoming(NextSrc, Next);
4423     SizePhi->addIncoming(NextSize, Next);
4424 
4425     EmitBlock(Exit);
4426     PHINode *Ret = Builder.CreatePHI(IntTy, 4);
4427     Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
4428     Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
4429     Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
4430     Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
4431     return RValue::get(Ret);
4432   }
4433   case Builtin::BI__builtin_dwarf_cfa: {
4434     // The offset in bytes from the first argument to the CFA.
4435     //
4436     // Why on earth is this in the frontend?  Is there any reason at
4437     // all that the backend can't reasonably determine this while
4438     // lowering llvm.eh.dwarf.cfa()?
4439     //
4440     // TODO: If there's a satisfactory reason, add a target hook for
4441     // this instead of hard-coding 0, which is correct for most targets.
4442     int32_t Offset = 0;
4443 
4444     Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
4445     return RValue::get(Builder.CreateCall(F,
4446                                       llvm::ConstantInt::get(Int32Ty, Offset)));
4447   }
4448   case Builtin::BI__builtin_return_address: {
4449     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
4450                                                    getContext().UnsignedIntTy);
4451     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
4452     return RValue::get(Builder.CreateCall(F, Depth));
4453   }
4454   case Builtin::BI_ReturnAddress: {
4455     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
4456     return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
4457   }
4458   case Builtin::BI__builtin_frame_address: {
4459     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
4460                                                    getContext().UnsignedIntTy);
4461     Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
4462     return RValue::get(Builder.CreateCall(F, Depth));
4463   }
4464   case Builtin::BI__builtin_extract_return_addr: {
4465     Value *Address = EmitScalarExpr(E->getArg(0));
4466     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
4467     return RValue::get(Result);
4468   }
4469   case Builtin::BI__builtin_frob_return_addr: {
4470     Value *Address = EmitScalarExpr(E->getArg(0));
4471     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
4472     return RValue::get(Result);
4473   }
4474   case Builtin::BI__builtin_dwarf_sp_column: {
4475     llvm::IntegerType *Ty
4476       = cast<llvm::IntegerType>(ConvertType(E->getType()));
4477     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
4478     if (Column == -1) {
4479       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
4480       return RValue::get(llvm::UndefValue::get(Ty));
4481     }
4482     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
4483   }
4484   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
4485     Value *Address = EmitScalarExpr(E->getArg(0));
4486     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
4487       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
4488     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
4489   }
4490   case Builtin::BI__builtin_eh_return: {
4491     Value *Int = EmitScalarExpr(E->getArg(0));
4492     Value *Ptr = EmitScalarExpr(E->getArg(1));
4493 
4494     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
4495     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
4496            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
4497     Function *F =
4498         CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
4499                                                     : Intrinsic::eh_return_i64);
4500     Builder.CreateCall(F, {Int, Ptr});
4501     Builder.CreateUnreachable();
4502 
4503     // We do need to preserve an insertion point.
4504     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
4505 
4506     return RValue::get(nullptr);
4507   }
4508   case Builtin::BI__builtin_unwind_init: {
4509     Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
4510     Builder.CreateCall(F);
4511     return RValue::get(nullptr);
4512   }
4513   case Builtin::BI__builtin_extend_pointer: {
4514     // Extends a pointer to the size of an _Unwind_Word, which is
4515     // uint64_t on all platforms.  Generally this gets poked into a
4516     // register and eventually used as an address, so if the
4517     // addressing registers are wider than pointers and the platform
4518     // doesn't implicitly ignore high-order bits when doing
4519     // addressing, we need to make sure we zext / sext based on
4520     // the platform's expectations.
4521     //
4522     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
4523 
4524     // Cast the pointer to intptr_t.
4525     Value *Ptr = EmitScalarExpr(E->getArg(0));
4526     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
4527 
4528     // If that's 64 bits, we're done.
4529     if (IntPtrTy->getBitWidth() == 64)
4530       return RValue::get(Result);
4531 
4532     // Otherwise, ask the codegen data what to do.
4533     if (getTargetHooks().extendPointerWithSExt())
4534       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
4535     else
4536       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
4537   }
4538   case Builtin::BI__builtin_setjmp: {
4539     // Buffer is a void**.
4540     Address Buf = EmitPointerWithAlignment(E->getArg(0));
4541 
4542     // Store the frame pointer to the setjmp buffer.
4543     Value *FrameAddr = Builder.CreateCall(
4544         CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
4545         ConstantInt::get(Int32Ty, 0));
4546     Builder.CreateStore(FrameAddr, Buf);
4547 
4548     // Store the stack pointer to the setjmp buffer.
4549     Value *StackAddr = Builder.CreateStackSave();
4550     assert(Buf.emitRawPointer(*this)->getType() == StackAddr->getType());
4551 
4552     Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
4553     Builder.CreateStore(StackAddr, StackSaveSlot);
4554 
4555     // Call LLVM's EH setjmp, which is lightweight.
4556     Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
4557     return RValue::get(Builder.CreateCall(F, Buf.emitRawPointer(*this)));
4558   }
4559   case Builtin::BI__builtin_longjmp: {
4560     Value *Buf = EmitScalarExpr(E->getArg(0));
4561 
4562     // Call LLVM's EH longjmp, which is lightweight.
4563     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
4564 
4565     // longjmp doesn't return; mark this as unreachable.
4566     Builder.CreateUnreachable();
4567 
4568     // We do need to preserve an insertion point.
4569     EmitBlock(createBasicBlock("longjmp.cont"));
4570 
4571     return RValue::get(nullptr);
4572   }
4573   case Builtin::BI__builtin_launder: {
4574     const Expr *Arg = E->getArg(0);
4575     QualType ArgTy = Arg->getType()->getPointeeType();
4576     Value *Ptr = EmitScalarExpr(Arg);
4577     if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
4578       Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
4579 
4580     return RValue::get(Ptr);
4581   }
4582   case Builtin::BI__sync_fetch_and_add:
4583   case Builtin::BI__sync_fetch_and_sub:
4584   case Builtin::BI__sync_fetch_and_or:
4585   case Builtin::BI__sync_fetch_and_and:
4586   case Builtin::BI__sync_fetch_and_xor:
4587   case Builtin::BI__sync_fetch_and_nand:
4588   case Builtin::BI__sync_add_and_fetch:
4589   case Builtin::BI__sync_sub_and_fetch:
4590   case Builtin::BI__sync_and_and_fetch:
4591   case Builtin::BI__sync_or_and_fetch:
4592   case Builtin::BI__sync_xor_and_fetch:
4593   case Builtin::BI__sync_nand_and_fetch:
4594   case Builtin::BI__sync_val_compare_and_swap:
4595   case Builtin::BI__sync_bool_compare_and_swap:
4596   case Builtin::BI__sync_lock_test_and_set:
4597   case Builtin::BI__sync_lock_release:
4598   case Builtin::BI__sync_swap:
4599     llvm_unreachable("Shouldn't make it through sema");
4600   case Builtin::BI__sync_fetch_and_add_1:
4601   case Builtin::BI__sync_fetch_and_add_2:
4602   case Builtin::BI__sync_fetch_and_add_4:
4603   case Builtin::BI__sync_fetch_and_add_8:
4604   case Builtin::BI__sync_fetch_and_add_16:
4605     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
4606   case Builtin::BI__sync_fetch_and_sub_1:
4607   case Builtin::BI__sync_fetch_and_sub_2:
4608   case Builtin::BI__sync_fetch_and_sub_4:
4609   case Builtin::BI__sync_fetch_and_sub_8:
4610   case Builtin::BI__sync_fetch_and_sub_16:
4611     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
4612   case Builtin::BI__sync_fetch_and_or_1:
4613   case Builtin::BI__sync_fetch_and_or_2:
4614   case Builtin::BI__sync_fetch_and_or_4:
4615   case Builtin::BI__sync_fetch_and_or_8:
4616   case Builtin::BI__sync_fetch_and_or_16:
4617     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
4618   case Builtin::BI__sync_fetch_and_and_1:
4619   case Builtin::BI__sync_fetch_and_and_2:
4620   case Builtin::BI__sync_fetch_and_and_4:
4621   case Builtin::BI__sync_fetch_and_and_8:
4622   case Builtin::BI__sync_fetch_and_and_16:
4623     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
4624   case Builtin::BI__sync_fetch_and_xor_1:
4625   case Builtin::BI__sync_fetch_and_xor_2:
4626   case Builtin::BI__sync_fetch_and_xor_4:
4627   case Builtin::BI__sync_fetch_and_xor_8:
4628   case Builtin::BI__sync_fetch_and_xor_16:
4629     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
4630   case Builtin::BI__sync_fetch_and_nand_1:
4631   case Builtin::BI__sync_fetch_and_nand_2:
4632   case Builtin::BI__sync_fetch_and_nand_4:
4633   case Builtin::BI__sync_fetch_and_nand_8:
4634   case Builtin::BI__sync_fetch_and_nand_16:
4635     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
4636 
4637   // Clang extensions: not overloaded yet.
4638   case Builtin::BI__sync_fetch_and_min:
4639     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
4640   case Builtin::BI__sync_fetch_and_max:
4641     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
4642   case Builtin::BI__sync_fetch_and_umin:
4643     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
4644   case Builtin::BI__sync_fetch_and_umax:
4645     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
4646 
4647   case Builtin::BI__sync_add_and_fetch_1:
4648   case Builtin::BI__sync_add_and_fetch_2:
4649   case Builtin::BI__sync_add_and_fetch_4:
4650   case Builtin::BI__sync_add_and_fetch_8:
4651   case Builtin::BI__sync_add_and_fetch_16:
4652     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
4653                                 llvm::Instruction::Add);
4654   case Builtin::BI__sync_sub_and_fetch_1:
4655   case Builtin::BI__sync_sub_and_fetch_2:
4656   case Builtin::BI__sync_sub_and_fetch_4:
4657   case Builtin::BI__sync_sub_and_fetch_8:
4658   case Builtin::BI__sync_sub_and_fetch_16:
4659     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
4660                                 llvm::Instruction::Sub);
4661   case Builtin::BI__sync_and_and_fetch_1:
4662   case Builtin::BI__sync_and_and_fetch_2:
4663   case Builtin::BI__sync_and_and_fetch_4:
4664   case Builtin::BI__sync_and_and_fetch_8:
4665   case Builtin::BI__sync_and_and_fetch_16:
4666     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
4667                                 llvm::Instruction::And);
4668   case Builtin::BI__sync_or_and_fetch_1:
4669   case Builtin::BI__sync_or_and_fetch_2:
4670   case Builtin::BI__sync_or_and_fetch_4:
4671   case Builtin::BI__sync_or_and_fetch_8:
4672   case Builtin::BI__sync_or_and_fetch_16:
4673     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
4674                                 llvm::Instruction::Or);
4675   case Builtin::BI__sync_xor_and_fetch_1:
4676   case Builtin::BI__sync_xor_and_fetch_2:
4677   case Builtin::BI__sync_xor_and_fetch_4:
4678   case Builtin::BI__sync_xor_and_fetch_8:
4679   case Builtin::BI__sync_xor_and_fetch_16:
4680     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
4681                                 llvm::Instruction::Xor);
4682   case Builtin::BI__sync_nand_and_fetch_1:
4683   case Builtin::BI__sync_nand_and_fetch_2:
4684   case Builtin::BI__sync_nand_and_fetch_4:
4685   case Builtin::BI__sync_nand_and_fetch_8:
4686   case Builtin::BI__sync_nand_and_fetch_16:
4687     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
4688                                 llvm::Instruction::And, true);
4689 
4690   case Builtin::BI__sync_val_compare_and_swap_1:
4691   case Builtin::BI__sync_val_compare_and_swap_2:
4692   case Builtin::BI__sync_val_compare_and_swap_4:
4693   case Builtin::BI__sync_val_compare_and_swap_8:
4694   case Builtin::BI__sync_val_compare_and_swap_16:
4695     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
4696 
4697   case Builtin::BI__sync_bool_compare_and_swap_1:
4698   case Builtin::BI__sync_bool_compare_and_swap_2:
4699   case Builtin::BI__sync_bool_compare_and_swap_4:
4700   case Builtin::BI__sync_bool_compare_and_swap_8:
4701   case Builtin::BI__sync_bool_compare_and_swap_16:
4702     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
4703 
4704   case Builtin::BI__sync_swap_1:
4705   case Builtin::BI__sync_swap_2:
4706   case Builtin::BI__sync_swap_4:
4707   case Builtin::BI__sync_swap_8:
4708   case Builtin::BI__sync_swap_16:
4709     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4710 
4711   case Builtin::BI__sync_lock_test_and_set_1:
4712   case Builtin::BI__sync_lock_test_and_set_2:
4713   case Builtin::BI__sync_lock_test_and_set_4:
4714   case Builtin::BI__sync_lock_test_and_set_8:
4715   case Builtin::BI__sync_lock_test_and_set_16:
4716     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4717 
4718   case Builtin::BI__sync_lock_release_1:
4719   case Builtin::BI__sync_lock_release_2:
4720   case Builtin::BI__sync_lock_release_4:
4721   case Builtin::BI__sync_lock_release_8:
4722   case Builtin::BI__sync_lock_release_16: {
4723     Address Ptr = CheckAtomicAlignment(*this, E);
4724     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
4725 
4726     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
4727                                              getContext().getTypeSize(ElTy));
4728     llvm::StoreInst *Store =
4729         Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
4730     Store->setAtomic(llvm::AtomicOrdering::Release);
4731     return RValue::get(nullptr);
4732   }
4733 
4734   case Builtin::BI__sync_synchronize: {
4735     // We assume this is supposed to correspond to a C++0x-style
4736     // sequentially-consistent fence (i.e. this is only usable for
4737     // synchronization, not device I/O or anything like that). This intrinsic
4738     // is really badly designed in the sense that in theory, there isn't
4739     // any way to safely use it... but in practice, it mostly works
4740     // to use it with non-atomic loads and stores to get acquire/release
4741     // semantics.
4742     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
4743     return RValue::get(nullptr);
4744   }
4745 
4746   case Builtin::BI__builtin_nontemporal_load:
4747     return RValue::get(EmitNontemporalLoad(*this, E));
4748   case Builtin::BI__builtin_nontemporal_store:
4749     return RValue::get(EmitNontemporalStore(*this, E));
4750   case Builtin::BI__c11_atomic_is_lock_free:
4751   case Builtin::BI__atomic_is_lock_free: {
4752     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
4753     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
4754     // _Atomic(T) is always properly-aligned.
4755     const char *LibCallName = "__atomic_is_lock_free";
4756     CallArgList Args;
4757     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
4758              getContext().getSizeType());
4759     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
4760       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
4761                getContext().VoidPtrTy);
4762     else
4763       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
4764                getContext().VoidPtrTy);
4765     const CGFunctionInfo &FuncInfo =
4766         CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
4767     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
4768     llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
4769     return EmitCall(FuncInfo, CGCallee::forDirect(Func),
4770                     ReturnValueSlot(), Args);
4771   }
4772 
4773   case Builtin::BI__atomic_test_and_set: {
4774     // Look at the argument type to determine whether this is a volatile
4775     // operation. The parameter type is always volatile.
4776     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4777     bool Volatile =
4778         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4779 
4780     Address Ptr =
4781         EmitPointerWithAlignment(E->getArg(0)).withElementType(Int8Ty);
4782 
4783     Value *NewVal = Builder.getInt8(1);
4784     Value *Order = EmitScalarExpr(E->getArg(1));
4785     if (isa<llvm::ConstantInt>(Order)) {
4786       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4787       AtomicRMWInst *Result = nullptr;
4788       switch (ord) {
4789       case 0:  // memory_order_relaxed
4790       default: // invalid order
4791         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4792                                          llvm::AtomicOrdering::Monotonic);
4793         break;
4794       case 1: // memory_order_consume
4795       case 2: // memory_order_acquire
4796         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4797                                          llvm::AtomicOrdering::Acquire);
4798         break;
4799       case 3: // memory_order_release
4800         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4801                                          llvm::AtomicOrdering::Release);
4802         break;
4803       case 4: // memory_order_acq_rel
4804 
4805         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4806                                          llvm::AtomicOrdering::AcquireRelease);
4807         break;
4808       case 5: // memory_order_seq_cst
4809         Result = Builder.CreateAtomicRMW(
4810             llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4811             llvm::AtomicOrdering::SequentiallyConsistent);
4812         break;
4813       }
4814       Result->setVolatile(Volatile);
4815       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4816     }
4817 
4818     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4819 
4820     llvm::BasicBlock *BBs[5] = {
4821       createBasicBlock("monotonic", CurFn),
4822       createBasicBlock("acquire", CurFn),
4823       createBasicBlock("release", CurFn),
4824       createBasicBlock("acqrel", CurFn),
4825       createBasicBlock("seqcst", CurFn)
4826     };
4827     llvm::AtomicOrdering Orders[5] = {
4828         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
4829         llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
4830         llvm::AtomicOrdering::SequentiallyConsistent};
4831 
4832     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4833     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4834 
4835     Builder.SetInsertPoint(ContBB);
4836     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
4837 
4838     for (unsigned i = 0; i < 5; ++i) {
4839       Builder.SetInsertPoint(BBs[i]);
4840       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
4841                                                    Ptr, NewVal, Orders[i]);
4842       RMW->setVolatile(Volatile);
4843       Result->addIncoming(RMW, BBs[i]);
4844       Builder.CreateBr(ContBB);
4845     }
4846 
4847     SI->addCase(Builder.getInt32(0), BBs[0]);
4848     SI->addCase(Builder.getInt32(1), BBs[1]);
4849     SI->addCase(Builder.getInt32(2), BBs[1]);
4850     SI->addCase(Builder.getInt32(3), BBs[2]);
4851     SI->addCase(Builder.getInt32(4), BBs[3]);
4852     SI->addCase(Builder.getInt32(5), BBs[4]);
4853 
4854     Builder.SetInsertPoint(ContBB);
4855     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4856   }
4857 
4858   case Builtin::BI__atomic_clear: {
4859     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4860     bool Volatile =
4861         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4862 
4863     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
4864     Ptr = Ptr.withElementType(Int8Ty);
4865     Value *NewVal = Builder.getInt8(0);
4866     Value *Order = EmitScalarExpr(E->getArg(1));
4867     if (isa<llvm::ConstantInt>(Order)) {
4868       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4869       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4870       switch (ord) {
4871       case 0:  // memory_order_relaxed
4872       default: // invalid order
4873         Store->setOrdering(llvm::AtomicOrdering::Monotonic);
4874         break;
4875       case 3:  // memory_order_release
4876         Store->setOrdering(llvm::AtomicOrdering::Release);
4877         break;
4878       case 5:  // memory_order_seq_cst
4879         Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
4880         break;
4881       }
4882       return RValue::get(nullptr);
4883     }
4884 
4885     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4886 
4887     llvm::BasicBlock *BBs[3] = {
4888       createBasicBlock("monotonic", CurFn),
4889       createBasicBlock("release", CurFn),
4890       createBasicBlock("seqcst", CurFn)
4891     };
4892     llvm::AtomicOrdering Orders[3] = {
4893         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
4894         llvm::AtomicOrdering::SequentiallyConsistent};
4895 
4896     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4897     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4898 
4899     for (unsigned i = 0; i < 3; ++i) {
4900       Builder.SetInsertPoint(BBs[i]);
4901       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4902       Store->setOrdering(Orders[i]);
4903       Builder.CreateBr(ContBB);
4904     }
4905 
4906     SI->addCase(Builder.getInt32(0), BBs[0]);
4907     SI->addCase(Builder.getInt32(3), BBs[1]);
4908     SI->addCase(Builder.getInt32(5), BBs[2]);
4909 
4910     Builder.SetInsertPoint(ContBB);
4911     return RValue::get(nullptr);
4912   }
4913 
4914   case Builtin::BI__atomic_thread_fence:
4915   case Builtin::BI__atomic_signal_fence:
4916   case Builtin::BI__c11_atomic_thread_fence:
4917   case Builtin::BI__c11_atomic_signal_fence: {
4918     llvm::SyncScope::ID SSID;
4919     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
4920         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
4921       SSID = llvm::SyncScope::SingleThread;
4922     else
4923       SSID = llvm::SyncScope::System;
4924     Value *Order = EmitScalarExpr(E->getArg(0));
4925     if (isa<llvm::ConstantInt>(Order)) {
4926       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4927       switch (ord) {
4928       case 0:  // memory_order_relaxed
4929       default: // invalid order
4930         break;
4931       case 1:  // memory_order_consume
4932       case 2:  // memory_order_acquire
4933         Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4934         break;
4935       case 3:  // memory_order_release
4936         Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4937         break;
4938       case 4:  // memory_order_acq_rel
4939         Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4940         break;
4941       case 5:  // memory_order_seq_cst
4942         Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4943         break;
4944       }
4945       return RValue::get(nullptr);
4946     }
4947 
4948     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4949     AcquireBB = createBasicBlock("acquire", CurFn);
4950     ReleaseBB = createBasicBlock("release", CurFn);
4951     AcqRelBB = createBasicBlock("acqrel", CurFn);
4952     SeqCstBB = createBasicBlock("seqcst", CurFn);
4953     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4954 
4955     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4956     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4957 
4958     Builder.SetInsertPoint(AcquireBB);
4959     Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4960     Builder.CreateBr(ContBB);
4961     SI->addCase(Builder.getInt32(1), AcquireBB);
4962     SI->addCase(Builder.getInt32(2), AcquireBB);
4963 
4964     Builder.SetInsertPoint(ReleaseBB);
4965     Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4966     Builder.CreateBr(ContBB);
4967     SI->addCase(Builder.getInt32(3), ReleaseBB);
4968 
4969     Builder.SetInsertPoint(AcqRelBB);
4970     Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4971     Builder.CreateBr(ContBB);
4972     SI->addCase(Builder.getInt32(4), AcqRelBB);
4973 
4974     Builder.SetInsertPoint(SeqCstBB);
4975     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4976     Builder.CreateBr(ContBB);
4977     SI->addCase(Builder.getInt32(5), SeqCstBB);
4978 
4979     Builder.SetInsertPoint(ContBB);
4980     return RValue::get(nullptr);
4981   }
4982 
4983   case Builtin::BI__builtin_signbit:
4984   case Builtin::BI__builtin_signbitf:
4985   case Builtin::BI__builtin_signbitl: {
4986     return RValue::get(
4987         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4988                            ConvertType(E->getType())));
4989   }
4990   case Builtin::BI__warn_memset_zero_len:
4991     return RValue::getIgnored();
4992   case Builtin::BI__annotation: {
4993     // Re-encode each wide string to UTF8 and make an MDString.
4994     SmallVector<Metadata *, 1> Strings;
4995     for (const Expr *Arg : E->arguments()) {
4996       const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4997       assert(Str->getCharByteWidth() == 2);
4998       StringRef WideBytes = Str->getBytes();
4999       std::string StrUtf8;
5000       if (!convertUTF16ToUTF8String(
5001               ArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
5002         CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
5003         continue;
5004       }
5005       Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
5006     }
5007 
5008     // Build and MDTuple of MDStrings and emit the intrinsic call.
5009     llvm::Function *F =
5010         CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
5011     MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
5012     Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
5013     return RValue::getIgnored();
5014   }
5015   case Builtin::BI__builtin_annotation: {
5016     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
5017     llvm::Function *F =
5018         CGM.getIntrinsic(llvm::Intrinsic::annotation,
5019                          {AnnVal->getType(), CGM.ConstGlobalsPtrTy});
5020 
5021     // Get the annotation string, go through casts. Sema requires this to be a
5022     // non-wide string literal, potentially casted, so the cast<> is safe.
5023     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
5024     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
5025     return RValue::get(
5026         EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
5027   }
5028   case Builtin::BI__builtin_addcb:
5029   case Builtin::BI__builtin_addcs:
5030   case Builtin::BI__builtin_addc:
5031   case Builtin::BI__builtin_addcl:
5032   case Builtin::BI__builtin_addcll:
5033   case Builtin::BI__builtin_subcb:
5034   case Builtin::BI__builtin_subcs:
5035   case Builtin::BI__builtin_subc:
5036   case Builtin::BI__builtin_subcl:
5037   case Builtin::BI__builtin_subcll: {
5038 
5039     // We translate all of these builtins from expressions of the form:
5040     //   int x = ..., y = ..., carryin = ..., carryout, result;
5041     //   result = __builtin_addc(x, y, carryin, &carryout);
5042     //
5043     // to LLVM IR of the form:
5044     //
5045     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
5046     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
5047     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
5048     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
5049     //                                                       i32 %carryin)
5050     //   %result = extractvalue {i32, i1} %tmp2, 0
5051     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
5052     //   %tmp3 = or i1 %carry1, %carry2
5053     //   %tmp4 = zext i1 %tmp3 to i32
5054     //   store i32 %tmp4, i32* %carryout
5055 
5056     // Scalarize our inputs.
5057     llvm::Value *X = EmitScalarExpr(E->getArg(0));
5058     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
5059     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
5060     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
5061 
5062     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
5063     llvm::Intrinsic::ID IntrinsicId;
5064     switch (BuiltinID) {
5065     default: llvm_unreachable("Unknown multiprecision builtin id.");
5066     case Builtin::BI__builtin_addcb:
5067     case Builtin::BI__builtin_addcs:
5068     case Builtin::BI__builtin_addc:
5069     case Builtin::BI__builtin_addcl:
5070     case Builtin::BI__builtin_addcll:
5071       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
5072       break;
5073     case Builtin::BI__builtin_subcb:
5074     case Builtin::BI__builtin_subcs:
5075     case Builtin::BI__builtin_subc:
5076     case Builtin::BI__builtin_subcl:
5077     case Builtin::BI__builtin_subcll:
5078       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
5079       break;
5080     }
5081 
5082     // Construct our resulting LLVM IR expression.
5083     llvm::Value *Carry1;
5084     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
5085                                               X, Y, Carry1);
5086     llvm::Value *Carry2;
5087     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
5088                                               Sum1, Carryin, Carry2);
5089     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
5090                                                X->getType());
5091     Builder.CreateStore(CarryOut, CarryOutPtr);
5092     return RValue::get(Sum2);
5093   }
5094 
5095   case Builtin::BI__builtin_add_overflow:
5096   case Builtin::BI__builtin_sub_overflow:
5097   case Builtin::BI__builtin_mul_overflow: {
5098     const clang::Expr *LeftArg = E->getArg(0);
5099     const clang::Expr *RightArg = E->getArg(1);
5100     const clang::Expr *ResultArg = E->getArg(2);
5101 
5102     clang::QualType ResultQTy =
5103         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
5104 
5105     WidthAndSignedness LeftInfo =
5106         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
5107     WidthAndSignedness RightInfo =
5108         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
5109     WidthAndSignedness ResultInfo =
5110         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
5111 
5112     // Handle mixed-sign multiplication as a special case, because adding
5113     // runtime or backend support for our generic irgen would be too expensive.
5114     if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
5115       return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
5116                                           RightInfo, ResultArg, ResultQTy,
5117                                           ResultInfo);
5118 
5119     if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
5120                                               ResultInfo))
5121       return EmitCheckedUnsignedMultiplySignedResult(
5122           *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
5123           ResultInfo);
5124 
5125     WidthAndSignedness EncompassingInfo =
5126         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
5127 
5128     llvm::Type *EncompassingLLVMTy =
5129         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
5130 
5131     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
5132 
5133     llvm::Intrinsic::ID IntrinsicId;
5134     switch (BuiltinID) {
5135     default:
5136       llvm_unreachable("Unknown overflow builtin id.");
5137     case Builtin::BI__builtin_add_overflow:
5138       IntrinsicId = EncompassingInfo.Signed
5139                         ? llvm::Intrinsic::sadd_with_overflow
5140                         : llvm::Intrinsic::uadd_with_overflow;
5141       break;
5142     case Builtin::BI__builtin_sub_overflow:
5143       IntrinsicId = EncompassingInfo.Signed
5144                         ? llvm::Intrinsic::ssub_with_overflow
5145                         : llvm::Intrinsic::usub_with_overflow;
5146       break;
5147     case Builtin::BI__builtin_mul_overflow:
5148       IntrinsicId = EncompassingInfo.Signed
5149                         ? llvm::Intrinsic::smul_with_overflow
5150                         : llvm::Intrinsic::umul_with_overflow;
5151       break;
5152     }
5153 
5154     llvm::Value *Left = EmitScalarExpr(LeftArg);
5155     llvm::Value *Right = EmitScalarExpr(RightArg);
5156     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
5157 
5158     // Extend each operand to the encompassing type.
5159     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
5160     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
5161 
5162     // Perform the operation on the extended values.
5163     llvm::Value *Overflow, *Result;
5164     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
5165 
5166     if (EncompassingInfo.Width > ResultInfo.Width) {
5167       // The encompassing type is wider than the result type, so we need to
5168       // truncate it.
5169       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
5170 
5171       // To see if the truncation caused an overflow, we will extend
5172       // the result and then compare it to the original result.
5173       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
5174           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
5175       llvm::Value *TruncationOverflow =
5176           Builder.CreateICmpNE(Result, ResultTruncExt);
5177 
5178       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
5179       Result = ResultTrunc;
5180     }
5181 
5182     // Finally, store the result using the pointer.
5183     bool isVolatile =
5184       ResultArg->getType()->getPointeeType().isVolatileQualified();
5185     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
5186 
5187     return RValue::get(Overflow);
5188   }
5189 
5190   case Builtin::BI__builtin_uadd_overflow:
5191   case Builtin::BI__builtin_uaddl_overflow:
5192   case Builtin::BI__builtin_uaddll_overflow:
5193   case Builtin::BI__builtin_usub_overflow:
5194   case Builtin::BI__builtin_usubl_overflow:
5195   case Builtin::BI__builtin_usubll_overflow:
5196   case Builtin::BI__builtin_umul_overflow:
5197   case Builtin::BI__builtin_umull_overflow:
5198   case Builtin::BI__builtin_umulll_overflow:
5199   case Builtin::BI__builtin_sadd_overflow:
5200   case Builtin::BI__builtin_saddl_overflow:
5201   case Builtin::BI__builtin_saddll_overflow:
5202   case Builtin::BI__builtin_ssub_overflow:
5203   case Builtin::BI__builtin_ssubl_overflow:
5204   case Builtin::BI__builtin_ssubll_overflow:
5205   case Builtin::BI__builtin_smul_overflow:
5206   case Builtin::BI__builtin_smull_overflow:
5207   case Builtin::BI__builtin_smulll_overflow: {
5208 
5209     // We translate all of these builtins directly to the relevant llvm IR node.
5210 
5211     // Scalarize our inputs.
5212     llvm::Value *X = EmitScalarExpr(E->getArg(0));
5213     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
5214     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
5215 
5216     // Decide which of the overflow intrinsics we are lowering to:
5217     llvm::Intrinsic::ID IntrinsicId;
5218     switch (BuiltinID) {
5219     default: llvm_unreachable("Unknown overflow builtin id.");
5220     case Builtin::BI__builtin_uadd_overflow:
5221     case Builtin::BI__builtin_uaddl_overflow:
5222     case Builtin::BI__builtin_uaddll_overflow:
5223       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
5224       break;
5225     case Builtin::BI__builtin_usub_overflow:
5226     case Builtin::BI__builtin_usubl_overflow:
5227     case Builtin::BI__builtin_usubll_overflow:
5228       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
5229       break;
5230     case Builtin::BI__builtin_umul_overflow:
5231     case Builtin::BI__builtin_umull_overflow:
5232     case Builtin::BI__builtin_umulll_overflow:
5233       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
5234       break;
5235     case Builtin::BI__builtin_sadd_overflow:
5236     case Builtin::BI__builtin_saddl_overflow:
5237     case Builtin::BI__builtin_saddll_overflow:
5238       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
5239       break;
5240     case Builtin::BI__builtin_ssub_overflow:
5241     case Builtin::BI__builtin_ssubl_overflow:
5242     case Builtin::BI__builtin_ssubll_overflow:
5243       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
5244       break;
5245     case Builtin::BI__builtin_smul_overflow:
5246     case Builtin::BI__builtin_smull_overflow:
5247     case Builtin::BI__builtin_smulll_overflow:
5248       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
5249       break;
5250     }
5251 
5252 
5253     llvm::Value *Carry;
5254     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
5255     Builder.CreateStore(Sum, SumOutPtr);
5256 
5257     return RValue::get(Carry);
5258   }
5259   case Builtin::BIaddressof:
5260   case Builtin::BI__addressof:
5261   case Builtin::BI__builtin_addressof:
5262     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
5263   case Builtin::BI__builtin_function_start:
5264     return RValue::get(CGM.GetFunctionStart(
5265         E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())));
5266   case Builtin::BI__builtin_operator_new:
5267     return EmitBuiltinNewDeleteCall(
5268         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
5269   case Builtin::BI__builtin_operator_delete:
5270     EmitBuiltinNewDeleteCall(
5271         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
5272     return RValue::get(nullptr);
5273 
5274   case Builtin::BI__builtin_is_aligned:
5275     return EmitBuiltinIsAligned(E);
5276   case Builtin::BI__builtin_align_up:
5277     return EmitBuiltinAlignTo(E, true);
5278   case Builtin::BI__builtin_align_down:
5279     return EmitBuiltinAlignTo(E, false);
5280 
5281   case Builtin::BI__noop:
5282     // __noop always evaluates to an integer literal zero.
5283     return RValue::get(ConstantInt::get(IntTy, 0));
5284   case Builtin::BI__builtin_call_with_static_chain: {
5285     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
5286     const Expr *Chain = E->getArg(1);
5287     return EmitCall(Call->getCallee()->getType(),
5288                     EmitCallee(Call->getCallee()), Call, ReturnValue,
5289                     EmitScalarExpr(Chain));
5290   }
5291   case Builtin::BI_InterlockedExchange8:
5292   case Builtin::BI_InterlockedExchange16:
5293   case Builtin::BI_InterlockedExchange:
5294   case Builtin::BI_InterlockedExchangePointer:
5295     return RValue::get(
5296         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
5297   case Builtin::BI_InterlockedCompareExchangePointer:
5298   case Builtin::BI_InterlockedCompareExchangePointer_nf: {
5299     llvm::Type *RTy;
5300     llvm::IntegerType *IntType = IntegerType::get(
5301         getLLVMContext(), getContext().getTypeSize(E->getType()));
5302 
5303     Address DestAddr = CheckAtomicAlignment(*this, E);
5304 
5305     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
5306     RTy = Exchange->getType();
5307     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
5308 
5309     llvm::Value *Comparand =
5310       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
5311 
5312     auto Ordering =
5313       BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
5314       AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
5315 
5316     auto Result = Builder.CreateAtomicCmpXchg(DestAddr, Comparand, Exchange,
5317                                               Ordering, Ordering);
5318     Result->setVolatile(true);
5319 
5320     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
5321                                                                          0),
5322                                               RTy));
5323   }
5324   case Builtin::BI_InterlockedCompareExchange8:
5325   case Builtin::BI_InterlockedCompareExchange16:
5326   case Builtin::BI_InterlockedCompareExchange:
5327   case Builtin::BI_InterlockedCompareExchange64:
5328     return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
5329   case Builtin::BI_InterlockedIncrement16:
5330   case Builtin::BI_InterlockedIncrement:
5331     return RValue::get(
5332         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
5333   case Builtin::BI_InterlockedDecrement16:
5334   case Builtin::BI_InterlockedDecrement:
5335     return RValue::get(
5336         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
5337   case Builtin::BI_InterlockedAnd8:
5338   case Builtin::BI_InterlockedAnd16:
5339   case Builtin::BI_InterlockedAnd:
5340     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
5341   case Builtin::BI_InterlockedExchangeAdd8:
5342   case Builtin::BI_InterlockedExchangeAdd16:
5343   case Builtin::BI_InterlockedExchangeAdd:
5344     return RValue::get(
5345         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
5346   case Builtin::BI_InterlockedExchangeSub8:
5347   case Builtin::BI_InterlockedExchangeSub16:
5348   case Builtin::BI_InterlockedExchangeSub:
5349     return RValue::get(
5350         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
5351   case Builtin::BI_InterlockedOr8:
5352   case Builtin::BI_InterlockedOr16:
5353   case Builtin::BI_InterlockedOr:
5354     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
5355   case Builtin::BI_InterlockedXor8:
5356   case Builtin::BI_InterlockedXor16:
5357   case Builtin::BI_InterlockedXor:
5358     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
5359 
5360   case Builtin::BI_bittest64:
5361   case Builtin::BI_bittest:
5362   case Builtin::BI_bittestandcomplement64:
5363   case Builtin::BI_bittestandcomplement:
5364   case Builtin::BI_bittestandreset64:
5365   case Builtin::BI_bittestandreset:
5366   case Builtin::BI_bittestandset64:
5367   case Builtin::BI_bittestandset:
5368   case Builtin::BI_interlockedbittestandreset:
5369   case Builtin::BI_interlockedbittestandreset64:
5370   case Builtin::BI_interlockedbittestandset64:
5371   case Builtin::BI_interlockedbittestandset:
5372   case Builtin::BI_interlockedbittestandset_acq:
5373   case Builtin::BI_interlockedbittestandset_rel:
5374   case Builtin::BI_interlockedbittestandset_nf:
5375   case Builtin::BI_interlockedbittestandreset_acq:
5376   case Builtin::BI_interlockedbittestandreset_rel:
5377   case Builtin::BI_interlockedbittestandreset_nf:
5378     return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
5379 
5380     // These builtins exist to emit regular volatile loads and stores not
5381     // affected by the -fms-volatile setting.
5382   case Builtin::BI__iso_volatile_load8:
5383   case Builtin::BI__iso_volatile_load16:
5384   case Builtin::BI__iso_volatile_load32:
5385   case Builtin::BI__iso_volatile_load64:
5386     return RValue::get(EmitISOVolatileLoad(*this, E));
5387   case Builtin::BI__iso_volatile_store8:
5388   case Builtin::BI__iso_volatile_store16:
5389   case Builtin::BI__iso_volatile_store32:
5390   case Builtin::BI__iso_volatile_store64:
5391     return RValue::get(EmitISOVolatileStore(*this, E));
5392 
5393   case Builtin::BI__builtin_ptrauth_sign_constant:
5394     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
5395 
5396   case Builtin::BI__builtin_ptrauth_auth:
5397   case Builtin::BI__builtin_ptrauth_auth_and_resign:
5398   case Builtin::BI__builtin_ptrauth_blend_discriminator:
5399   case Builtin::BI__builtin_ptrauth_sign_generic_data:
5400   case Builtin::BI__builtin_ptrauth_sign_unauthenticated:
5401   case Builtin::BI__builtin_ptrauth_strip: {
5402     // Emit the arguments.
5403     SmallVector<llvm::Value *, 5> Args;
5404     for (auto argExpr : E->arguments())
5405       Args.push_back(EmitScalarExpr(argExpr));
5406 
5407     // Cast the value to intptr_t, saving its original type.
5408     llvm::Type *OrigValueType = Args[0]->getType();
5409     if (OrigValueType->isPointerTy())
5410       Args[0] = Builder.CreatePtrToInt(Args[0], IntPtrTy);
5411 
5412     switch (BuiltinID) {
5413     case Builtin::BI__builtin_ptrauth_auth_and_resign:
5414       if (Args[4]->getType()->isPointerTy())
5415         Args[4] = Builder.CreatePtrToInt(Args[4], IntPtrTy);
5416       [[fallthrough]];
5417 
5418     case Builtin::BI__builtin_ptrauth_auth:
5419     case Builtin::BI__builtin_ptrauth_sign_unauthenticated:
5420       if (Args[2]->getType()->isPointerTy())
5421         Args[2] = Builder.CreatePtrToInt(Args[2], IntPtrTy);
5422       break;
5423 
5424     case Builtin::BI__builtin_ptrauth_sign_generic_data:
5425       if (Args[1]->getType()->isPointerTy())
5426         Args[1] = Builder.CreatePtrToInt(Args[1], IntPtrTy);
5427       break;
5428 
5429     case Builtin::BI__builtin_ptrauth_blend_discriminator:
5430     case Builtin::BI__builtin_ptrauth_strip:
5431       break;
5432     }
5433 
5434     // Call the intrinsic.
5435     auto IntrinsicID = [&]() -> unsigned {
5436       switch (BuiltinID) {
5437       case Builtin::BI__builtin_ptrauth_auth:
5438         return llvm::Intrinsic::ptrauth_auth;
5439       case Builtin::BI__builtin_ptrauth_auth_and_resign:
5440         return llvm::Intrinsic::ptrauth_resign;
5441       case Builtin::BI__builtin_ptrauth_blend_discriminator:
5442         return llvm::Intrinsic::ptrauth_blend;
5443       case Builtin::BI__builtin_ptrauth_sign_generic_data:
5444         return llvm::Intrinsic::ptrauth_sign_generic;
5445       case Builtin::BI__builtin_ptrauth_sign_unauthenticated:
5446         return llvm::Intrinsic::ptrauth_sign;
5447       case Builtin::BI__builtin_ptrauth_strip:
5448         return llvm::Intrinsic::ptrauth_strip;
5449       }
5450       llvm_unreachable("bad ptrauth intrinsic");
5451     }();
5452     auto Intrinsic = CGM.getIntrinsic(IntrinsicID);
5453     llvm::Value *Result = EmitRuntimeCall(Intrinsic, Args);
5454 
5455     if (BuiltinID != Builtin::BI__builtin_ptrauth_sign_generic_data &&
5456         BuiltinID != Builtin::BI__builtin_ptrauth_blend_discriminator &&
5457         OrigValueType->isPointerTy()) {
5458       Result = Builder.CreateIntToPtr(Result, OrigValueType);
5459     }
5460     return RValue::get(Result);
5461   }
5462 
5463   case Builtin::BI__exception_code:
5464   case Builtin::BI_exception_code:
5465     return RValue::get(EmitSEHExceptionCode());
5466   case Builtin::BI__exception_info:
5467   case Builtin::BI_exception_info:
5468     return RValue::get(EmitSEHExceptionInfo());
5469   case Builtin::BI__abnormal_termination:
5470   case Builtin::BI_abnormal_termination:
5471     return RValue::get(EmitSEHAbnormalTermination());
5472   case Builtin::BI_setjmpex:
5473     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
5474         E->getArg(0)->getType()->isPointerType())
5475       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
5476     break;
5477   case Builtin::BI_setjmp:
5478     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
5479         E->getArg(0)->getType()->isPointerType()) {
5480       if (getTarget().getTriple().getArch() == llvm::Triple::x86)
5481         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
5482       else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
5483         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
5484       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
5485     }
5486     break;
5487 
5488   // C++ std:: builtins.
5489   case Builtin::BImove:
5490   case Builtin::BImove_if_noexcept:
5491   case Builtin::BIforward:
5492   case Builtin::BIforward_like:
5493   case Builtin::BIas_const:
5494     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
5495   case Builtin::BI__GetExceptionInfo: {
5496     if (llvm::GlobalVariable *GV =
5497             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
5498       return RValue::get(GV);
5499     break;
5500   }
5501 
5502   case Builtin::BI__fastfail:
5503     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
5504 
5505   case Builtin::BI__builtin_coro_id:
5506     return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
5507   case Builtin::BI__builtin_coro_promise:
5508     return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
5509   case Builtin::BI__builtin_coro_resume:
5510     EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
5511     return RValue::get(nullptr);
5512   case Builtin::BI__builtin_coro_frame:
5513     return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
5514   case Builtin::BI__builtin_coro_noop:
5515     return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
5516   case Builtin::BI__builtin_coro_free:
5517     return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
5518   case Builtin::BI__builtin_coro_destroy:
5519     EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
5520     return RValue::get(nullptr);
5521   case Builtin::BI__builtin_coro_done:
5522     return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
5523   case Builtin::BI__builtin_coro_alloc:
5524     return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
5525   case Builtin::BI__builtin_coro_begin:
5526     return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
5527   case Builtin::BI__builtin_coro_end:
5528     return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
5529   case Builtin::BI__builtin_coro_suspend:
5530     return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
5531   case Builtin::BI__builtin_coro_size:
5532     return EmitCoroutineIntrinsic(E, Intrinsic::coro_size);
5533   case Builtin::BI__builtin_coro_align:
5534     return EmitCoroutineIntrinsic(E, Intrinsic::coro_align);
5535 
5536   // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
5537   case Builtin::BIread_pipe:
5538   case Builtin::BIwrite_pipe: {
5539     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
5540           *Arg1 = EmitScalarExpr(E->getArg(1));
5541     CGOpenCLRuntime OpenCLRT(CGM);
5542     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5543     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5544 
5545     // Type of the generic packet parameter.
5546     unsigned GenericAS =
5547         getContext().getTargetAddressSpace(LangAS::opencl_generic);
5548     llvm::Type *I8PTy = llvm::PointerType::get(getLLVMContext(), GenericAS);
5549 
5550     // Testing which overloaded version we should generate the call for.
5551     if (2U == E->getNumArgs()) {
5552       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
5553                                                              : "__write_pipe_2";
5554       // Creating a generic function type to be able to call with any builtin or
5555       // user defined type.
5556       llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
5557       llvm::FunctionType *FTy = llvm::FunctionType::get(
5558           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5559       Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
5560       return RValue::get(
5561           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5562                           {Arg0, BCast, PacketSize, PacketAlign}));
5563     } else {
5564       assert(4 == E->getNumArgs() &&
5565              "Illegal number of parameters to pipe function");
5566       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
5567                                                              : "__write_pipe_4";
5568 
5569       llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
5570                               Int32Ty, Int32Ty};
5571       Value *Arg2 = EmitScalarExpr(E->getArg(2)),
5572             *Arg3 = EmitScalarExpr(E->getArg(3));
5573       llvm::FunctionType *FTy = llvm::FunctionType::get(
5574           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5575       Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
5576       // We know the third argument is an integer type, but we may need to cast
5577       // it to i32.
5578       if (Arg2->getType() != Int32Ty)
5579         Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
5580       return RValue::get(
5581           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5582                           {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
5583     }
5584   }
5585   // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
5586   // functions
5587   case Builtin::BIreserve_read_pipe:
5588   case Builtin::BIreserve_write_pipe:
5589   case Builtin::BIwork_group_reserve_read_pipe:
5590   case Builtin::BIwork_group_reserve_write_pipe:
5591   case Builtin::BIsub_group_reserve_read_pipe:
5592   case Builtin::BIsub_group_reserve_write_pipe: {
5593     // Composing the mangled name for the function.
5594     const char *Name;
5595     if (BuiltinID == Builtin::BIreserve_read_pipe)
5596       Name = "__reserve_read_pipe";
5597     else if (BuiltinID == Builtin::BIreserve_write_pipe)
5598       Name = "__reserve_write_pipe";
5599     else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
5600       Name = "__work_group_reserve_read_pipe";
5601     else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
5602       Name = "__work_group_reserve_write_pipe";
5603     else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
5604       Name = "__sub_group_reserve_read_pipe";
5605     else
5606       Name = "__sub_group_reserve_write_pipe";
5607 
5608     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
5609           *Arg1 = EmitScalarExpr(E->getArg(1));
5610     llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
5611     CGOpenCLRuntime OpenCLRT(CGM);
5612     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5613     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5614 
5615     // Building the generic function prototype.
5616     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
5617     llvm::FunctionType *FTy = llvm::FunctionType::get(
5618         ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5619     // We know the second argument is an integer type, but we may need to cast
5620     // it to i32.
5621     if (Arg1->getType() != Int32Ty)
5622       Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
5623     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5624                                        {Arg0, Arg1, PacketSize, PacketAlign}));
5625   }
5626   // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
5627   // functions
5628   case Builtin::BIcommit_read_pipe:
5629   case Builtin::BIcommit_write_pipe:
5630   case Builtin::BIwork_group_commit_read_pipe:
5631   case Builtin::BIwork_group_commit_write_pipe:
5632   case Builtin::BIsub_group_commit_read_pipe:
5633   case Builtin::BIsub_group_commit_write_pipe: {
5634     const char *Name;
5635     if (BuiltinID == Builtin::BIcommit_read_pipe)
5636       Name = "__commit_read_pipe";
5637     else if (BuiltinID == Builtin::BIcommit_write_pipe)
5638       Name = "__commit_write_pipe";
5639     else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
5640       Name = "__work_group_commit_read_pipe";
5641     else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
5642       Name = "__work_group_commit_write_pipe";
5643     else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
5644       Name = "__sub_group_commit_read_pipe";
5645     else
5646       Name = "__sub_group_commit_write_pipe";
5647 
5648     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
5649           *Arg1 = EmitScalarExpr(E->getArg(1));
5650     CGOpenCLRuntime OpenCLRT(CGM);
5651     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5652     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5653 
5654     // Building the generic function prototype.
5655     llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
5656     llvm::FunctionType *FTy =
5657         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
5658                                 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5659 
5660     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5661                                        {Arg0, Arg1, PacketSize, PacketAlign}));
5662   }
5663   // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
5664   case Builtin::BIget_pipe_num_packets:
5665   case Builtin::BIget_pipe_max_packets: {
5666     const char *BaseName;
5667     const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
5668     if (BuiltinID == Builtin::BIget_pipe_num_packets)
5669       BaseName = "__get_pipe_num_packets";
5670     else
5671       BaseName = "__get_pipe_max_packets";
5672     std::string Name = std::string(BaseName) +
5673                        std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
5674 
5675     // Building the generic function prototype.
5676     Value *Arg0 = EmitScalarExpr(E->getArg(0));
5677     CGOpenCLRuntime OpenCLRT(CGM);
5678     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5679     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5680     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
5681     llvm::FunctionType *FTy = llvm::FunctionType::get(
5682         Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5683 
5684     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5685                                        {Arg0, PacketSize, PacketAlign}));
5686   }
5687 
5688   // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
5689   case Builtin::BIto_global:
5690   case Builtin::BIto_local:
5691   case Builtin::BIto_private: {
5692     auto Arg0 = EmitScalarExpr(E->getArg(0));
5693     auto NewArgT = llvm::PointerType::get(
5694         getLLVMContext(),
5695         CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
5696     auto NewRetT = llvm::PointerType::get(
5697         getLLVMContext(),
5698         CGM.getContext().getTargetAddressSpace(
5699             E->getType()->getPointeeType().getAddressSpace()));
5700     auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
5701     llvm::Value *NewArg;
5702     if (Arg0->getType()->getPointerAddressSpace() !=
5703         NewArgT->getPointerAddressSpace())
5704       NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
5705     else
5706       NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
5707     auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
5708     auto NewCall =
5709         EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
5710     return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
5711       ConvertType(E->getType())));
5712   }
5713 
5714   // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
5715   // Table 6.13.17.1 specifies four overload forms of enqueue_kernel.
5716   // The code below expands the builtin call to a call to one of the following
5717   // functions that an OpenCL runtime library will have to provide:
5718   //   __enqueue_kernel_basic
5719   //   __enqueue_kernel_varargs
5720   //   __enqueue_kernel_basic_events
5721   //   __enqueue_kernel_events_varargs
5722   case Builtin::BIenqueue_kernel: {
5723     StringRef Name; // Generated function call name
5724     unsigned NumArgs = E->getNumArgs();
5725 
5726     llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
5727     llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5728         getContext().getTargetAddressSpace(LangAS::opencl_generic));
5729 
5730     llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
5731     llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
5732     LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
5733     llvm::Value *Range = NDRangeL.getAddress().emitRawPointer(*this);
5734     llvm::Type *RangeTy = NDRangeL.getAddress().getType();
5735 
5736     if (NumArgs == 4) {
5737       // The most basic form of the call with parameters:
5738       // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
5739       Name = "__enqueue_kernel_basic";
5740       llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
5741                               GenericVoidPtrTy};
5742       llvm::FunctionType *FTy = llvm::FunctionType::get(
5743           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5744 
5745       auto Info =
5746           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
5747       llvm::Value *Kernel =
5748           Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5749       llvm::Value *Block =
5750           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5751 
5752       AttrBuilder B(Builder.getContext());
5753       B.addByValAttr(NDRangeL.getAddress().getElementType());
5754       llvm::AttributeList ByValAttrSet =
5755           llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
5756 
5757       auto RTCall =
5758           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
5759                           {Queue, Flags, Range, Kernel, Block});
5760       RTCall->setAttributes(ByValAttrSet);
5761       return RValue::get(RTCall);
5762     }
5763     assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
5764 
5765     // Create a temporary array to hold the sizes of local pointer arguments
5766     // for the block. \p First is the position of the first size argument.
5767     auto CreateArrayForSizeVar = [=](unsigned First)
5768         -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
5769       llvm::APInt ArraySize(32, NumArgs - First);
5770       QualType SizeArrayTy = getContext().getConstantArrayType(
5771           getContext().getSizeType(), ArraySize, nullptr,
5772           ArraySizeModifier::Normal,
5773           /*IndexTypeQuals=*/0);
5774       auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
5775       llvm::Value *TmpPtr = Tmp.getPointer();
5776       llvm::Value *TmpSize = EmitLifetimeStart(
5777           CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
5778       llvm::Value *ElemPtr;
5779       // Each of the following arguments specifies the size of the corresponding
5780       // argument passed to the enqueued block.
5781       auto *Zero = llvm::ConstantInt::get(IntTy, 0);
5782       for (unsigned I = First; I < NumArgs; ++I) {
5783         auto *Index = llvm::ConstantInt::get(IntTy, I - First);
5784         auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
5785                                       {Zero, Index});
5786         if (I == First)
5787           ElemPtr = GEP;
5788         auto *V =
5789             Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
5790         Builder.CreateAlignedStore(
5791             V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
5792       }
5793       return std::tie(ElemPtr, TmpSize, TmpPtr);
5794     };
5795 
5796     // Could have events and/or varargs.
5797     if (E->getArg(3)->getType()->isBlockPointerType()) {
5798       // No events passed, but has variadic arguments.
5799       Name = "__enqueue_kernel_varargs";
5800       auto Info =
5801           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
5802       llvm::Value *Kernel =
5803           Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5804       auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5805       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5806       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
5807 
5808       // Create a vector of the arguments, as well as a constant value to
5809       // express to the runtime the number of variadic arguments.
5810       llvm::Value *const Args[] = {Queue,  Flags,
5811                                    Range,  Kernel,
5812                                    Block,  ConstantInt::get(IntTy, NumArgs - 4),
5813                                    ElemPtr};
5814       llvm::Type *const ArgTys[] = {
5815           QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
5816           GenericVoidPtrTy, IntTy, ElemPtr->getType()};
5817 
5818       llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
5819       auto Call = RValue::get(
5820           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
5821       if (TmpSize)
5822         EmitLifetimeEnd(TmpSize, TmpPtr);
5823       return Call;
5824     }
5825     // Any calls now have event arguments passed.
5826     if (NumArgs >= 7) {
5827       llvm::PointerType *PtrTy = llvm::PointerType::get(
5828           CGM.getLLVMContext(),
5829           CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
5830 
5831       llvm::Value *NumEvents =
5832           Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
5833 
5834       // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
5835       // to be a null pointer constant (including `0` literal), we can take it
5836       // into account and emit null pointer directly.
5837       llvm::Value *EventWaitList = nullptr;
5838       if (E->getArg(4)->isNullPointerConstant(
5839               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5840         EventWaitList = llvm::ConstantPointerNull::get(PtrTy);
5841       } else {
5842         EventWaitList =
5843             E->getArg(4)->getType()->isArrayType()
5844                 ? EmitArrayToPointerDecay(E->getArg(4)).emitRawPointer(*this)
5845                 : EmitScalarExpr(E->getArg(4));
5846         // Convert to generic address space.
5847         EventWaitList = Builder.CreatePointerCast(EventWaitList, PtrTy);
5848       }
5849       llvm::Value *EventRet = nullptr;
5850       if (E->getArg(5)->isNullPointerConstant(
5851               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5852         EventRet = llvm::ConstantPointerNull::get(PtrTy);
5853       } else {
5854         EventRet =
5855             Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), PtrTy);
5856       }
5857 
5858       auto Info =
5859           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
5860       llvm::Value *Kernel =
5861           Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5862       llvm::Value *Block =
5863           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5864 
5865       std::vector<llvm::Type *> ArgTys = {
5866           QueueTy, Int32Ty, RangeTy,          Int32Ty,
5867           PtrTy,   PtrTy,   GenericVoidPtrTy, GenericVoidPtrTy};
5868 
5869       std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
5870                                          NumEvents, EventWaitList, EventRet,
5871                                          Kernel,    Block};
5872 
5873       if (NumArgs == 7) {
5874         // Has events but no variadics.
5875         Name = "__enqueue_kernel_basic_events";
5876         llvm::FunctionType *FTy = llvm::FunctionType::get(
5877             Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5878         return RValue::get(
5879             EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5880                             llvm::ArrayRef<llvm::Value *>(Args)));
5881       }
5882       // Has event info and variadics
5883       // Pass the number of variadics to the runtime function too.
5884       Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
5885       ArgTys.push_back(Int32Ty);
5886       Name = "__enqueue_kernel_events_varargs";
5887 
5888       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5889       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
5890       Args.push_back(ElemPtr);
5891       ArgTys.push_back(ElemPtr->getType());
5892 
5893       llvm::FunctionType *FTy = llvm::FunctionType::get(
5894           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5895       auto Call =
5896           RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5897                                       llvm::ArrayRef<llvm::Value *>(Args)));
5898       if (TmpSize)
5899         EmitLifetimeEnd(TmpSize, TmpPtr);
5900       return Call;
5901     }
5902     llvm_unreachable("Unexpected enqueue_kernel signature");
5903   }
5904   // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
5905   // parameter.
5906   case Builtin::BIget_kernel_work_group_size: {
5907     llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5908         getContext().getTargetAddressSpace(LangAS::opencl_generic));
5909     auto Info =
5910         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5911     Value *Kernel =
5912         Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5913     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5914     return RValue::get(EmitRuntimeCall(
5915         CGM.CreateRuntimeFunction(
5916             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5917                                     false),
5918             "__get_kernel_work_group_size_impl"),
5919         {Kernel, Arg}));
5920   }
5921   case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
5922     llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5923         getContext().getTargetAddressSpace(LangAS::opencl_generic));
5924     auto Info =
5925         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5926     Value *Kernel =
5927         Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5928     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5929     return RValue::get(EmitRuntimeCall(
5930         CGM.CreateRuntimeFunction(
5931             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5932                                     false),
5933             "__get_kernel_preferred_work_group_size_multiple_impl"),
5934         {Kernel, Arg}));
5935   }
5936   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
5937   case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
5938     llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5939         getContext().getTargetAddressSpace(LangAS::opencl_generic));
5940     LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
5941     llvm::Value *NDRange = NDRangeL.getAddress().emitRawPointer(*this);
5942     auto Info =
5943         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
5944     Value *Kernel =
5945         Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5946     Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5947     const char *Name =
5948         BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
5949             ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
5950             : "__get_kernel_sub_group_count_for_ndrange_impl";
5951     return RValue::get(EmitRuntimeCall(
5952         CGM.CreateRuntimeFunction(
5953             llvm::FunctionType::get(
5954                 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
5955                 false),
5956             Name),
5957         {NDRange, Kernel, Block}));
5958   }
5959   case Builtin::BI__builtin_store_half:
5960   case Builtin::BI__builtin_store_halff: {
5961     Value *Val = EmitScalarExpr(E->getArg(0));
5962     Address Address = EmitPointerWithAlignment(E->getArg(1));
5963     Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
5964     Builder.CreateStore(HalfVal, Address);
5965     return RValue::get(nullptr);
5966   }
5967   case Builtin::BI__builtin_load_half: {
5968     Address Address = EmitPointerWithAlignment(E->getArg(0));
5969     Value *HalfVal = Builder.CreateLoad(Address);
5970     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
5971   }
5972   case Builtin::BI__builtin_load_halff: {
5973     Address Address = EmitPointerWithAlignment(E->getArg(0));
5974     Value *HalfVal = Builder.CreateLoad(Address);
5975     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
5976   }
5977   case Builtin::BI__builtin_printf:
5978   case Builtin::BIprintf:
5979     if (getTarget().getTriple().isNVPTX() ||
5980         getTarget().getTriple().isAMDGCN() ||
5981         (getTarget().getTriple().isSPIRV() &&
5982          getTarget().getTriple().getVendor() == Triple::VendorType::AMD)) {
5983       if (getLangOpts().OpenMPIsTargetDevice)
5984         return EmitOpenMPDevicePrintfCallExpr(E);
5985       if (getTarget().getTriple().isNVPTX())
5986         return EmitNVPTXDevicePrintfCallExpr(E);
5987       if ((getTarget().getTriple().isAMDGCN() ||
5988            getTarget().getTriple().isSPIRV()) &&
5989           getLangOpts().HIP)
5990         return EmitAMDGPUDevicePrintfCallExpr(E);
5991     }
5992 
5993     break;
5994   case Builtin::BI__builtin_canonicalize:
5995   case Builtin::BI__builtin_canonicalizef:
5996   case Builtin::BI__builtin_canonicalizef16:
5997   case Builtin::BI__builtin_canonicalizel:
5998     return RValue::get(
5999         emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::canonicalize));
6000 
6001   case Builtin::BI__builtin_thread_pointer: {
6002     if (!getContext().getTargetInfo().isTLSSupported())
6003       CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
6004     // Fall through - it's already mapped to the intrinsic by ClangBuiltin.
6005     break;
6006   }
6007   case Builtin::BI__builtin_os_log_format:
6008     return emitBuiltinOSLogFormat(*E);
6009 
6010   case Builtin::BI__xray_customevent: {
6011     if (!ShouldXRayInstrumentFunction())
6012       return RValue::getIgnored();
6013 
6014     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
6015             XRayInstrKind::Custom))
6016       return RValue::getIgnored();
6017 
6018     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
6019       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
6020         return RValue::getIgnored();
6021 
6022     Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
6023     auto FTy = F->getFunctionType();
6024     auto Arg0 = E->getArg(0);
6025     auto Arg0Val = EmitScalarExpr(Arg0);
6026     auto Arg0Ty = Arg0->getType();
6027     auto PTy0 = FTy->getParamType(0);
6028     if (PTy0 != Arg0Val->getType()) {
6029       if (Arg0Ty->isArrayType())
6030         Arg0Val = EmitArrayToPointerDecay(Arg0).emitRawPointer(*this);
6031       else
6032         Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
6033     }
6034     auto Arg1 = EmitScalarExpr(E->getArg(1));
6035     auto PTy1 = FTy->getParamType(1);
6036     if (PTy1 != Arg1->getType())
6037       Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
6038     return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
6039   }
6040 
6041   case Builtin::BI__xray_typedevent: {
6042     // TODO: There should be a way to always emit events even if the current
6043     // function is not instrumented. Losing events in a stream can cripple
6044     // a trace.
6045     if (!ShouldXRayInstrumentFunction())
6046       return RValue::getIgnored();
6047 
6048     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
6049             XRayInstrKind::Typed))
6050       return RValue::getIgnored();
6051 
6052     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
6053       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
6054         return RValue::getIgnored();
6055 
6056     Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
6057     auto FTy = F->getFunctionType();
6058     auto Arg0 = EmitScalarExpr(E->getArg(0));
6059     auto PTy0 = FTy->getParamType(0);
6060     if (PTy0 != Arg0->getType())
6061       Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
6062     auto Arg1 = E->getArg(1);
6063     auto Arg1Val = EmitScalarExpr(Arg1);
6064     auto Arg1Ty = Arg1->getType();
6065     auto PTy1 = FTy->getParamType(1);
6066     if (PTy1 != Arg1Val->getType()) {
6067       if (Arg1Ty->isArrayType())
6068         Arg1Val = EmitArrayToPointerDecay(Arg1).emitRawPointer(*this);
6069       else
6070         Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
6071     }
6072     auto Arg2 = EmitScalarExpr(E->getArg(2));
6073     auto PTy2 = FTy->getParamType(2);
6074     if (PTy2 != Arg2->getType())
6075       Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
6076     return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
6077   }
6078 
6079   case Builtin::BI__builtin_ms_va_start:
6080   case Builtin::BI__builtin_ms_va_end:
6081     return RValue::get(
6082         EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).emitRawPointer(*this),
6083                        BuiltinID == Builtin::BI__builtin_ms_va_start));
6084 
6085   case Builtin::BI__builtin_ms_va_copy: {
6086     // Lower this manually. We can't reliably determine whether or not any
6087     // given va_copy() is for a Win64 va_list from the calling convention
6088     // alone, because it's legal to do this from a System V ABI function.
6089     // With opaque pointer types, we won't have enough information in LLVM
6090     // IR to determine this from the argument types, either. Best to do it
6091     // now, while we have enough information.
6092     Address DestAddr = EmitMSVAListRef(E->getArg(0));
6093     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
6094 
6095     DestAddr = DestAddr.withElementType(Int8PtrTy);
6096     SrcAddr = SrcAddr.withElementType(Int8PtrTy);
6097 
6098     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
6099     return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
6100   }
6101 
6102   case Builtin::BI__builtin_get_device_side_mangled_name: {
6103     auto Name = CGM.getCUDARuntime().getDeviceSideName(
6104         cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
6105     auto Str = CGM.GetAddrOfConstantCString(Name, "");
6106     return RValue::get(Str.getPointer());
6107   }
6108   }
6109 
6110   // If this is an alias for a lib function (e.g. __builtin_sin), emit
6111   // the call using the normal call path, but using the unmangled
6112   // version of the function name.
6113   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
6114     return emitLibraryCall(*this, FD, E,
6115                            CGM.getBuiltinLibFunction(FD, BuiltinID));
6116 
6117   // If this is a predefined lib function (e.g. malloc), emit the call
6118   // using exactly the normal call path.
6119   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
6120     return emitLibraryCall(*this, FD, E, CGM.getRawFunctionPointer(FD));
6121 
6122   // Check that a call to a target specific builtin has the correct target
6123   // features.
6124   // This is down here to avoid non-target specific builtins, however, if
6125   // generic builtins start to require generic target features then we
6126   // can move this up to the beginning of the function.
6127   checkTargetFeatures(E, FD);
6128 
6129   if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
6130     LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
6131 
6132   // See if we have a target specific intrinsic.
6133   StringRef Name = getContext().BuiltinInfo.getName(BuiltinID);
6134   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
6135   StringRef Prefix =
6136       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
6137   if (!Prefix.empty()) {
6138     IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin(Prefix.data(), Name);
6139     if (IntrinsicID == Intrinsic::not_intrinsic && Prefix == "spv" &&
6140         getTarget().getTriple().getOS() == llvm::Triple::OSType::AMDHSA)
6141       IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin("amdgcn", Name);
6142     // NOTE we don't need to perform a compatibility flag check here since the
6143     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
6144     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
6145     if (IntrinsicID == Intrinsic::not_intrinsic)
6146       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
6147   }
6148 
6149   if (IntrinsicID != Intrinsic::not_intrinsic) {
6150     SmallVector<Value*, 16> Args;
6151 
6152     // Find out if any arguments are required to be integer constant
6153     // expressions.
6154     unsigned ICEArguments = 0;
6155     ASTContext::GetBuiltinTypeError Error;
6156     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6157     assert(Error == ASTContext::GE_None && "Should not codegen an error");
6158 
6159     Function *F = CGM.getIntrinsic(IntrinsicID);
6160     llvm::FunctionType *FTy = F->getFunctionType();
6161 
6162     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
6163       Value *ArgValue = EmitScalarOrConstFoldImmArg(ICEArguments, i, E);
6164       // If the intrinsic arg type is different from the builtin arg type
6165       // we need to do a bit cast.
6166       llvm::Type *PTy = FTy->getParamType(i);
6167       if (PTy != ArgValue->getType()) {
6168         // XXX - vector of pointers?
6169         if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
6170           if (PtrTy->getAddressSpace() !=
6171               ArgValue->getType()->getPointerAddressSpace()) {
6172             ArgValue = Builder.CreateAddrSpaceCast(
6173                 ArgValue, llvm::PointerType::get(getLLVMContext(),
6174                                                  PtrTy->getAddressSpace()));
6175           }
6176         }
6177 
6178         // Cast vector type (e.g., v256i32) to x86_amx, this only happen
6179         // in amx intrinsics.
6180         if (PTy->isX86_AMXTy())
6181           ArgValue = Builder.CreateIntrinsic(Intrinsic::x86_cast_vector_to_tile,
6182                                              {ArgValue->getType()}, {ArgValue});
6183         else
6184           ArgValue = Builder.CreateBitCast(ArgValue, PTy);
6185       }
6186 
6187       Args.push_back(ArgValue);
6188     }
6189 
6190     Value *V = Builder.CreateCall(F, Args);
6191     QualType BuiltinRetType = E->getType();
6192 
6193     llvm::Type *RetTy = VoidTy;
6194     if (!BuiltinRetType->isVoidType())
6195       RetTy = ConvertType(BuiltinRetType);
6196 
6197     if (RetTy != V->getType()) {
6198       // XXX - vector of pointers?
6199       if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
6200         if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
6201           V = Builder.CreateAddrSpaceCast(
6202               V, llvm::PointerType::get(getLLVMContext(),
6203                                         PtrTy->getAddressSpace()));
6204         }
6205       }
6206 
6207       // Cast x86_amx to vector type (e.g., v256i32), this only happen
6208       // in amx intrinsics.
6209       if (V->getType()->isX86_AMXTy())
6210         V = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector, {RetTy},
6211                                     {V});
6212       else
6213         V = Builder.CreateBitCast(V, RetTy);
6214     }
6215 
6216     if (RetTy->isVoidTy())
6217       return RValue::get(nullptr);
6218 
6219     return RValue::get(V);
6220   }
6221 
6222   // Some target-specific builtins can have aggregate return values, e.g.
6223   // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
6224   // ReturnValue to be non-null, so that the target-specific emission code can
6225   // always just emit into it.
6226   TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
6227   if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
6228     Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
6229     ReturnValue = ReturnValueSlot(DestPtr, false);
6230   }
6231 
6232   // Now see if we can emit a target-specific builtin.
6233   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
6234     switch (EvalKind) {
6235     case TEK_Scalar:
6236       if (V->getType()->isVoidTy())
6237         return RValue::get(nullptr);
6238       return RValue::get(V);
6239     case TEK_Aggregate:
6240       return RValue::getAggregate(ReturnValue.getAddress(),
6241                                   ReturnValue.isVolatile());
6242     case TEK_Complex:
6243       llvm_unreachable("No current target builtin returns complex");
6244     }
6245     llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
6246   }
6247 
6248   // EmitHLSLBuiltinExpr will check getLangOpts().HLSL
6249   if (Value *V = EmitHLSLBuiltinExpr(BuiltinID, E))
6250     return RValue::get(V);
6251 
6252   if (getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice)
6253     return EmitHipStdParUnsupportedBuiltin(this, FD);
6254 
6255   ErrorUnsupported(E, "builtin function");
6256 
6257   // Unknown builtin, for now just dump it out and return undef.
6258   return GetUndefRValue(E->getType());
6259 }
6260 
EmitTargetArchBuiltinExpr(CodeGenFunction * CGF,unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)6261 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
6262                                         unsigned BuiltinID, const CallExpr *E,
6263                                         ReturnValueSlot ReturnValue,
6264                                         llvm::Triple::ArchType Arch) {
6265   // When compiling in HipStdPar mode we have to be conservative in rejecting
6266   // target specific features in the FE, and defer the possible error to the
6267   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
6268   // referenced by an accelerator executable function, we emit an error.
6269   // Returning nullptr here leads to the builtin being handled in
6270   // EmitStdParUnsupportedBuiltin.
6271   if (CGF->getLangOpts().HIPStdPar && CGF->getLangOpts().CUDAIsDevice &&
6272       Arch != CGF->getTarget().getTriple().getArch())
6273     return nullptr;
6274 
6275   switch (Arch) {
6276   case llvm::Triple::arm:
6277   case llvm::Triple::armeb:
6278   case llvm::Triple::thumb:
6279   case llvm::Triple::thumbeb:
6280     return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
6281   case llvm::Triple::aarch64:
6282   case llvm::Triple::aarch64_32:
6283   case llvm::Triple::aarch64_be:
6284     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
6285   case llvm::Triple::bpfeb:
6286   case llvm::Triple::bpfel:
6287     return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
6288   case llvm::Triple::x86:
6289   case llvm::Triple::x86_64:
6290     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
6291   case llvm::Triple::ppc:
6292   case llvm::Triple::ppcle:
6293   case llvm::Triple::ppc64:
6294   case llvm::Triple::ppc64le:
6295     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
6296   case llvm::Triple::r600:
6297   case llvm::Triple::amdgcn:
6298     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
6299   case llvm::Triple::systemz:
6300     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
6301   case llvm::Triple::nvptx:
6302   case llvm::Triple::nvptx64:
6303     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
6304   case llvm::Triple::wasm32:
6305   case llvm::Triple::wasm64:
6306     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
6307   case llvm::Triple::hexagon:
6308     return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
6309   case llvm::Triple::riscv32:
6310   case llvm::Triple::riscv64:
6311     return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
6312   case llvm::Triple::spirv64:
6313     if (CGF->getTarget().getTriple().getOS() != llvm::Triple::OSType::AMDHSA)
6314       return nullptr;
6315     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
6316   default:
6317     return nullptr;
6318   }
6319 }
6320 
EmitTargetBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)6321 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
6322                                               const CallExpr *E,
6323                                               ReturnValueSlot ReturnValue) {
6324   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
6325     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
6326     return EmitTargetArchBuiltinExpr(
6327         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
6328         ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
6329   }
6330 
6331   return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
6332                                    getTarget().getTriple().getArch());
6333 }
6334 
GetNeonType(CodeGenFunction * CGF,NeonTypeFlags TypeFlags,bool HasLegalHalfType=true,bool V1Ty=false,bool AllowBFloatArgsAndRet=true)6335 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
6336                                           NeonTypeFlags TypeFlags,
6337                                           bool HasLegalHalfType = true,
6338                                           bool V1Ty = false,
6339                                           bool AllowBFloatArgsAndRet = true) {
6340   int IsQuad = TypeFlags.isQuad();
6341   switch (TypeFlags.getEltType()) {
6342   case NeonTypeFlags::Int8:
6343   case NeonTypeFlags::Poly8:
6344     return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
6345   case NeonTypeFlags::Int16:
6346   case NeonTypeFlags::Poly16:
6347     return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
6348   case NeonTypeFlags::BFloat16:
6349     if (AllowBFloatArgsAndRet)
6350       return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
6351     else
6352       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
6353   case NeonTypeFlags::Float16:
6354     if (HasLegalHalfType)
6355       return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
6356     else
6357       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
6358   case NeonTypeFlags::Int32:
6359     return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
6360   case NeonTypeFlags::Int64:
6361   case NeonTypeFlags::Poly64:
6362     return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
6363   case NeonTypeFlags::Poly128:
6364     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
6365     // There is a lot of i128 and f128 API missing.
6366     // so we use v16i8 to represent poly128 and get pattern matched.
6367     return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
6368   case NeonTypeFlags::Float32:
6369     return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
6370   case NeonTypeFlags::Float64:
6371     return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
6372   }
6373   llvm_unreachable("Unknown vector element type!");
6374 }
6375 
GetFloatNeonType(CodeGenFunction * CGF,NeonTypeFlags IntTypeFlags)6376 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
6377                                           NeonTypeFlags IntTypeFlags) {
6378   int IsQuad = IntTypeFlags.isQuad();
6379   switch (IntTypeFlags.getEltType()) {
6380   case NeonTypeFlags::Int16:
6381     return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
6382   case NeonTypeFlags::Int32:
6383     return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
6384   case NeonTypeFlags::Int64:
6385     return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
6386   default:
6387     llvm_unreachable("Type can't be converted to floating-point!");
6388   }
6389 }
6390 
EmitNeonSplat(Value * V,Constant * C,const ElementCount & Count)6391 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
6392                                       const ElementCount &Count) {
6393   Value *SV = llvm::ConstantVector::getSplat(Count, C);
6394   return Builder.CreateShuffleVector(V, V, SV, "lane");
6395 }
6396 
EmitNeonSplat(Value * V,Constant * C)6397 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
6398   ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
6399   return EmitNeonSplat(V, C, EC);
6400 }
6401 
EmitNeonCall(Function * F,SmallVectorImpl<Value * > & Ops,const char * name,unsigned shift,bool rightshift)6402 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
6403                                      const char *name,
6404                                      unsigned shift, bool rightshift) {
6405   unsigned j = 0;
6406   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6407        ai != ae; ++ai, ++j) {
6408     if (F->isConstrainedFPIntrinsic())
6409       if (ai->getType()->isMetadataTy())
6410         continue;
6411     if (shift > 0 && shift == j)
6412       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
6413     else
6414       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
6415   }
6416 
6417   if (F->isConstrainedFPIntrinsic())
6418     return Builder.CreateConstrainedFPCall(F, Ops, name);
6419   else
6420     return Builder.CreateCall(F, Ops, name);
6421 }
6422 
EmitNeonShiftVector(Value * V,llvm::Type * Ty,bool neg)6423 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
6424                                             bool neg) {
6425   int SV = cast<ConstantInt>(V)->getSExtValue();
6426   return ConstantInt::get(Ty, neg ? -SV : SV);
6427 }
6428 
6429 // Right-shift a vector by a constant.
EmitNeonRShiftImm(Value * Vec,Value * Shift,llvm::Type * Ty,bool usgn,const char * name)6430 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
6431                                           llvm::Type *Ty, bool usgn,
6432                                           const char *name) {
6433   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
6434 
6435   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
6436   int EltSize = VTy->getScalarSizeInBits();
6437 
6438   Vec = Builder.CreateBitCast(Vec, Ty);
6439 
6440   // lshr/ashr are undefined when the shift amount is equal to the vector
6441   // element size.
6442   if (ShiftAmt == EltSize) {
6443     if (usgn) {
6444       // Right-shifting an unsigned value by its size yields 0.
6445       return llvm::ConstantAggregateZero::get(VTy);
6446     } else {
6447       // Right-shifting a signed value by its size is equivalent
6448       // to a shift of size-1.
6449       --ShiftAmt;
6450       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
6451     }
6452   }
6453 
6454   Shift = EmitNeonShiftVector(Shift, Ty, false);
6455   if (usgn)
6456     return Builder.CreateLShr(Vec, Shift, name);
6457   else
6458     return Builder.CreateAShr(Vec, Shift, name);
6459 }
6460 
6461 enum {
6462   AddRetType = (1 << 0),
6463   Add1ArgType = (1 << 1),
6464   Add2ArgTypes = (1 << 2),
6465 
6466   VectorizeRetType = (1 << 3),
6467   VectorizeArgTypes = (1 << 4),
6468 
6469   InventFloatType = (1 << 5),
6470   UnsignedAlts = (1 << 6),
6471 
6472   Use64BitVectors = (1 << 7),
6473   Use128BitVectors = (1 << 8),
6474 
6475   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
6476   VectorRet = AddRetType | VectorizeRetType,
6477   VectorRetGetArgs01 =
6478       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
6479   FpCmpzModifiers =
6480       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
6481 };
6482 
6483 namespace {
6484 struct ARMVectorIntrinsicInfo {
6485   const char *NameHint;
6486   unsigned BuiltinID;
6487   unsigned LLVMIntrinsic;
6488   unsigned AltLLVMIntrinsic;
6489   uint64_t TypeModifier;
6490 
operator <__anon6c984ebf0d11::ARMVectorIntrinsicInfo6491   bool operator<(unsigned RHSBuiltinID) const {
6492     return BuiltinID < RHSBuiltinID;
6493   }
operator <__anon6c984ebf0d11::ARMVectorIntrinsicInfo6494   bool operator<(const ARMVectorIntrinsicInfo &TE) const {
6495     return BuiltinID < TE.BuiltinID;
6496   }
6497 };
6498 } // end anonymous namespace
6499 
6500 #define NEONMAP0(NameBase) \
6501   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
6502 
6503 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
6504   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
6505       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
6506 
6507 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
6508   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
6509       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
6510       TypeModifier }
6511 
6512 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
6513   NEONMAP1(__a32_vcvt_bf16_f32, arm_neon_vcvtfp2bf, 0),
6514   NEONMAP0(splat_lane_v),
6515   NEONMAP0(splat_laneq_v),
6516   NEONMAP0(splatq_lane_v),
6517   NEONMAP0(splatq_laneq_v),
6518   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
6519   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
6520   NEONMAP1(vabs_v, arm_neon_vabs, 0),
6521   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
6522   NEONMAP0(vadd_v),
6523   NEONMAP0(vaddhn_v),
6524   NEONMAP0(vaddq_v),
6525   NEONMAP1(vaesdq_u8, arm_neon_aesd, 0),
6526   NEONMAP1(vaeseq_u8, arm_neon_aese, 0),
6527   NEONMAP1(vaesimcq_u8, arm_neon_aesimc, 0),
6528   NEONMAP1(vaesmcq_u8, arm_neon_aesmc, 0),
6529   NEONMAP1(vbfdot_f32, arm_neon_bfdot, 0),
6530   NEONMAP1(vbfdotq_f32, arm_neon_bfdot, 0),
6531   NEONMAP1(vbfmlalbq_f32, arm_neon_bfmlalb, 0),
6532   NEONMAP1(vbfmlaltq_f32, arm_neon_bfmlalt, 0),
6533   NEONMAP1(vbfmmlaq_f32, arm_neon_bfmmla, 0),
6534   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
6535   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
6536   NEONMAP1(vcadd_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType),
6537   NEONMAP1(vcadd_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType),
6538   NEONMAP1(vcadd_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType),
6539   NEONMAP1(vcadd_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType),
6540   NEONMAP1(vcaddq_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType),
6541   NEONMAP1(vcaddq_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType),
6542   NEONMAP1(vcaddq_rot270_f64, arm_neon_vcadd_rot270, Add1ArgType),
6543   NEONMAP1(vcaddq_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType),
6544   NEONMAP1(vcaddq_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType),
6545   NEONMAP1(vcaddq_rot90_f64, arm_neon_vcadd_rot90, Add1ArgType),
6546   NEONMAP1(vcage_v, arm_neon_vacge, 0),
6547   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
6548   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
6549   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
6550   NEONMAP1(vcale_v, arm_neon_vacge, 0),
6551   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
6552   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
6553   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
6554   NEONMAP0(vceqz_v),
6555   NEONMAP0(vceqzq_v),
6556   NEONMAP0(vcgez_v),
6557   NEONMAP0(vcgezq_v),
6558   NEONMAP0(vcgtz_v),
6559   NEONMAP0(vcgtzq_v),
6560   NEONMAP0(vclez_v),
6561   NEONMAP0(vclezq_v),
6562   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
6563   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
6564   NEONMAP0(vcltz_v),
6565   NEONMAP0(vcltzq_v),
6566   NEONMAP1(vclz_v, ctlz, Add1ArgType),
6567   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
6568   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
6569   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
6570   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
6571   NEONMAP0(vcvt_f16_s16),
6572   NEONMAP0(vcvt_f16_u16),
6573   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
6574   NEONMAP0(vcvt_f32_v),
6575   NEONMAP1(vcvt_n_f16_s16, arm_neon_vcvtfxs2fp, 0),
6576   NEONMAP1(vcvt_n_f16_u16, arm_neon_vcvtfxu2fp, 0),
6577   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
6578   NEONMAP1(vcvt_n_s16_f16, arm_neon_vcvtfp2fxs, 0),
6579   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
6580   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
6581   NEONMAP1(vcvt_n_u16_f16, arm_neon_vcvtfp2fxu, 0),
6582   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
6583   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
6584   NEONMAP0(vcvt_s16_f16),
6585   NEONMAP0(vcvt_s32_v),
6586   NEONMAP0(vcvt_s64_v),
6587   NEONMAP0(vcvt_u16_f16),
6588   NEONMAP0(vcvt_u32_v),
6589   NEONMAP0(vcvt_u64_v),
6590   NEONMAP1(vcvta_s16_f16, arm_neon_vcvtas, 0),
6591   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
6592   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
6593   NEONMAP1(vcvta_u16_f16, arm_neon_vcvtau, 0),
6594   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
6595   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
6596   NEONMAP1(vcvtaq_s16_f16, arm_neon_vcvtas, 0),
6597   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
6598   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
6599   NEONMAP1(vcvtaq_u16_f16, arm_neon_vcvtau, 0),
6600   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
6601   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
6602   NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
6603   NEONMAP1(vcvtm_s16_f16, arm_neon_vcvtms, 0),
6604   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
6605   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
6606   NEONMAP1(vcvtm_u16_f16, arm_neon_vcvtmu, 0),
6607   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
6608   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
6609   NEONMAP1(vcvtmq_s16_f16, arm_neon_vcvtms, 0),
6610   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
6611   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
6612   NEONMAP1(vcvtmq_u16_f16, arm_neon_vcvtmu, 0),
6613   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
6614   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
6615   NEONMAP1(vcvtn_s16_f16, arm_neon_vcvtns, 0),
6616   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
6617   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
6618   NEONMAP1(vcvtn_u16_f16, arm_neon_vcvtnu, 0),
6619   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
6620   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
6621   NEONMAP1(vcvtnq_s16_f16, arm_neon_vcvtns, 0),
6622   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
6623   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
6624   NEONMAP1(vcvtnq_u16_f16, arm_neon_vcvtnu, 0),
6625   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
6626   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
6627   NEONMAP1(vcvtp_s16_f16, arm_neon_vcvtps, 0),
6628   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
6629   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
6630   NEONMAP1(vcvtp_u16_f16, arm_neon_vcvtpu, 0),
6631   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
6632   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
6633   NEONMAP1(vcvtpq_s16_f16, arm_neon_vcvtps, 0),
6634   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
6635   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
6636   NEONMAP1(vcvtpq_u16_f16, arm_neon_vcvtpu, 0),
6637   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
6638   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
6639   NEONMAP0(vcvtq_f16_s16),
6640   NEONMAP0(vcvtq_f16_u16),
6641   NEONMAP0(vcvtq_f32_v),
6642   NEONMAP1(vcvtq_n_f16_s16, arm_neon_vcvtfxs2fp, 0),
6643   NEONMAP1(vcvtq_n_f16_u16, arm_neon_vcvtfxu2fp, 0),
6644   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
6645   NEONMAP1(vcvtq_n_s16_f16, arm_neon_vcvtfp2fxs, 0),
6646   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
6647   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
6648   NEONMAP1(vcvtq_n_u16_f16, arm_neon_vcvtfp2fxu, 0),
6649   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
6650   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
6651   NEONMAP0(vcvtq_s16_f16),
6652   NEONMAP0(vcvtq_s32_v),
6653   NEONMAP0(vcvtq_s64_v),
6654   NEONMAP0(vcvtq_u16_f16),
6655   NEONMAP0(vcvtq_u32_v),
6656   NEONMAP0(vcvtq_u64_v),
6657   NEONMAP1(vdot_s32, arm_neon_sdot, 0),
6658   NEONMAP1(vdot_u32, arm_neon_udot, 0),
6659   NEONMAP1(vdotq_s32, arm_neon_sdot, 0),
6660   NEONMAP1(vdotq_u32, arm_neon_udot, 0),
6661   NEONMAP0(vext_v),
6662   NEONMAP0(vextq_v),
6663   NEONMAP0(vfma_v),
6664   NEONMAP0(vfmaq_v),
6665   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
6666   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
6667   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
6668   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
6669   NEONMAP0(vld1_dup_v),
6670   NEONMAP1(vld1_v, arm_neon_vld1, 0),
6671   NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
6672   NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
6673   NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
6674   NEONMAP0(vld1q_dup_v),
6675   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
6676   NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
6677   NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
6678   NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
6679   NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
6680   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
6681   NEONMAP1(vld2_v, arm_neon_vld2, 0),
6682   NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
6683   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
6684   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
6685   NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
6686   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
6687   NEONMAP1(vld3_v, arm_neon_vld3, 0),
6688   NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
6689   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
6690   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
6691   NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
6692   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
6693   NEONMAP1(vld4_v, arm_neon_vld4, 0),
6694   NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
6695   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
6696   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
6697   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
6698   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
6699   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
6700   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
6701   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
6702   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
6703   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
6704   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
6705   NEONMAP1(vmmlaq_s32, arm_neon_smmla, 0),
6706   NEONMAP1(vmmlaq_u32, arm_neon_ummla, 0),
6707   NEONMAP0(vmovl_v),
6708   NEONMAP0(vmovn_v),
6709   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
6710   NEONMAP0(vmull_v),
6711   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
6712   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
6713   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
6714   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
6715   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
6716   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
6717   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
6718   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
6719   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
6720   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
6721   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
6722   NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
6723   NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
6724   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
6725   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
6726   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
6727   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
6728   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
6729   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
6730   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
6731   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
6732   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
6733   NEONMAP1(vqrdmlah_s16, arm_neon_vqrdmlah, Add1ArgType),
6734   NEONMAP1(vqrdmlah_s32, arm_neon_vqrdmlah, Add1ArgType),
6735   NEONMAP1(vqrdmlahq_s16, arm_neon_vqrdmlah, Add1ArgType),
6736   NEONMAP1(vqrdmlahq_s32, arm_neon_vqrdmlah, Add1ArgType),
6737   NEONMAP1(vqrdmlsh_s16, arm_neon_vqrdmlsh, Add1ArgType),
6738   NEONMAP1(vqrdmlsh_s32, arm_neon_vqrdmlsh, Add1ArgType),
6739   NEONMAP1(vqrdmlshq_s16, arm_neon_vqrdmlsh, Add1ArgType),
6740   NEONMAP1(vqrdmlshq_s32, arm_neon_vqrdmlsh, Add1ArgType),
6741   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
6742   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
6743   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
6744   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
6745   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
6746   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
6747   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
6748   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
6749   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
6750   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
6751   NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
6752   NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
6753   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
6754   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
6755   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
6756   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
6757   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
6758   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
6759   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
6760   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
6761   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
6762   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
6763   NEONMAP0(vrndi_v),
6764   NEONMAP0(vrndiq_v),
6765   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
6766   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
6767   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
6768   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
6769   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
6770   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
6771   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
6772   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
6773   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
6774   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
6775   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
6776   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
6777   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
6778   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
6779   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
6780   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
6781   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
6782   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
6783   NEONMAP1(vsha1su0q_u32, arm_neon_sha1su0, 0),
6784   NEONMAP1(vsha1su1q_u32, arm_neon_sha1su1, 0),
6785   NEONMAP1(vsha256h2q_u32, arm_neon_sha256h2, 0),
6786   NEONMAP1(vsha256hq_u32, arm_neon_sha256h, 0),
6787   NEONMAP1(vsha256su0q_u32, arm_neon_sha256su0, 0),
6788   NEONMAP1(vsha256su1q_u32, arm_neon_sha256su1, 0),
6789   NEONMAP0(vshl_n_v),
6790   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
6791   NEONMAP0(vshll_n_v),
6792   NEONMAP0(vshlq_n_v),
6793   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
6794   NEONMAP0(vshr_n_v),
6795   NEONMAP0(vshrn_n_v),
6796   NEONMAP0(vshrq_n_v),
6797   NEONMAP1(vst1_v, arm_neon_vst1, 0),
6798   NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
6799   NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
6800   NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
6801   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
6802   NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
6803   NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
6804   NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
6805   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
6806   NEONMAP1(vst2_v, arm_neon_vst2, 0),
6807   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
6808   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
6809   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
6810   NEONMAP1(vst3_v, arm_neon_vst3, 0),
6811   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
6812   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
6813   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
6814   NEONMAP1(vst4_v, arm_neon_vst4, 0),
6815   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
6816   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
6817   NEONMAP0(vsubhn_v),
6818   NEONMAP0(vtrn_v),
6819   NEONMAP0(vtrnq_v),
6820   NEONMAP0(vtst_v),
6821   NEONMAP0(vtstq_v),
6822   NEONMAP1(vusdot_s32, arm_neon_usdot, 0),
6823   NEONMAP1(vusdotq_s32, arm_neon_usdot, 0),
6824   NEONMAP1(vusmmlaq_s32, arm_neon_usmmla, 0),
6825   NEONMAP0(vuzp_v),
6826   NEONMAP0(vuzpq_v),
6827   NEONMAP0(vzip_v),
6828   NEONMAP0(vzipq_v)
6829 };
6830 
6831 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
6832   NEONMAP1(__a64_vcvtq_low_bf16_f32, aarch64_neon_bfcvtn, 0),
6833   NEONMAP0(splat_lane_v),
6834   NEONMAP0(splat_laneq_v),
6835   NEONMAP0(splatq_lane_v),
6836   NEONMAP0(splatq_laneq_v),
6837   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
6838   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
6839   NEONMAP0(vadd_v),
6840   NEONMAP0(vaddhn_v),
6841   NEONMAP0(vaddq_p128),
6842   NEONMAP0(vaddq_v),
6843   NEONMAP1(vaesdq_u8, aarch64_crypto_aesd, 0),
6844   NEONMAP1(vaeseq_u8, aarch64_crypto_aese, 0),
6845   NEONMAP1(vaesimcq_u8, aarch64_crypto_aesimc, 0),
6846   NEONMAP1(vaesmcq_u8, aarch64_crypto_aesmc, 0),
6847   NEONMAP2(vbcaxq_s16, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6848   NEONMAP2(vbcaxq_s32, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6849   NEONMAP2(vbcaxq_s64, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6850   NEONMAP2(vbcaxq_s8, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6851   NEONMAP2(vbcaxq_u16, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6852   NEONMAP2(vbcaxq_u32, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6853   NEONMAP2(vbcaxq_u64, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6854   NEONMAP2(vbcaxq_u8, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6855   NEONMAP1(vbfdot_f32, aarch64_neon_bfdot, 0),
6856   NEONMAP1(vbfdotq_f32, aarch64_neon_bfdot, 0),
6857   NEONMAP1(vbfmlalbq_f32, aarch64_neon_bfmlalb, 0),
6858   NEONMAP1(vbfmlaltq_f32, aarch64_neon_bfmlalt, 0),
6859   NEONMAP1(vbfmmlaq_f32, aarch64_neon_bfmmla, 0),
6860   NEONMAP1(vcadd_rot270_f16, aarch64_neon_vcadd_rot270, Add1ArgType),
6861   NEONMAP1(vcadd_rot270_f32, aarch64_neon_vcadd_rot270, Add1ArgType),
6862   NEONMAP1(vcadd_rot90_f16, aarch64_neon_vcadd_rot90, Add1ArgType),
6863   NEONMAP1(vcadd_rot90_f32, aarch64_neon_vcadd_rot90, Add1ArgType),
6864   NEONMAP1(vcaddq_rot270_f16, aarch64_neon_vcadd_rot270, Add1ArgType),
6865   NEONMAP1(vcaddq_rot270_f32, aarch64_neon_vcadd_rot270, Add1ArgType),
6866   NEONMAP1(vcaddq_rot270_f64, aarch64_neon_vcadd_rot270, Add1ArgType),
6867   NEONMAP1(vcaddq_rot90_f16, aarch64_neon_vcadd_rot90, Add1ArgType),
6868   NEONMAP1(vcaddq_rot90_f32, aarch64_neon_vcadd_rot90, Add1ArgType),
6869   NEONMAP1(vcaddq_rot90_f64, aarch64_neon_vcadd_rot90, Add1ArgType),
6870   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
6871   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
6872   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
6873   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
6874   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
6875   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
6876   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
6877   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
6878   NEONMAP0(vceqz_v),
6879   NEONMAP0(vceqzq_v),
6880   NEONMAP0(vcgez_v),
6881   NEONMAP0(vcgezq_v),
6882   NEONMAP0(vcgtz_v),
6883   NEONMAP0(vcgtzq_v),
6884   NEONMAP0(vclez_v),
6885   NEONMAP0(vclezq_v),
6886   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
6887   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
6888   NEONMAP0(vcltz_v),
6889   NEONMAP0(vcltzq_v),
6890   NEONMAP1(vclz_v, ctlz, Add1ArgType),
6891   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
6892   NEONMAP1(vcmla_f16, aarch64_neon_vcmla_rot0, Add1ArgType),
6893   NEONMAP1(vcmla_f32, aarch64_neon_vcmla_rot0, Add1ArgType),
6894   NEONMAP1(vcmla_rot180_f16, aarch64_neon_vcmla_rot180, Add1ArgType),
6895   NEONMAP1(vcmla_rot180_f32, aarch64_neon_vcmla_rot180, Add1ArgType),
6896   NEONMAP1(vcmla_rot270_f16, aarch64_neon_vcmla_rot270, Add1ArgType),
6897   NEONMAP1(vcmla_rot270_f32, aarch64_neon_vcmla_rot270, Add1ArgType),
6898   NEONMAP1(vcmla_rot90_f16, aarch64_neon_vcmla_rot90, Add1ArgType),
6899   NEONMAP1(vcmla_rot90_f32, aarch64_neon_vcmla_rot90, Add1ArgType),
6900   NEONMAP1(vcmlaq_f16, aarch64_neon_vcmla_rot0, Add1ArgType),
6901   NEONMAP1(vcmlaq_f32, aarch64_neon_vcmla_rot0, Add1ArgType),
6902   NEONMAP1(vcmlaq_f64, aarch64_neon_vcmla_rot0, Add1ArgType),
6903   NEONMAP1(vcmlaq_rot180_f16, aarch64_neon_vcmla_rot180, Add1ArgType),
6904   NEONMAP1(vcmlaq_rot180_f32, aarch64_neon_vcmla_rot180, Add1ArgType),
6905   NEONMAP1(vcmlaq_rot180_f64, aarch64_neon_vcmla_rot180, Add1ArgType),
6906   NEONMAP1(vcmlaq_rot270_f16, aarch64_neon_vcmla_rot270, Add1ArgType),
6907   NEONMAP1(vcmlaq_rot270_f32, aarch64_neon_vcmla_rot270, Add1ArgType),
6908   NEONMAP1(vcmlaq_rot270_f64, aarch64_neon_vcmla_rot270, Add1ArgType),
6909   NEONMAP1(vcmlaq_rot90_f16, aarch64_neon_vcmla_rot90, Add1ArgType),
6910   NEONMAP1(vcmlaq_rot90_f32, aarch64_neon_vcmla_rot90, Add1ArgType),
6911   NEONMAP1(vcmlaq_rot90_f64, aarch64_neon_vcmla_rot90, Add1ArgType),
6912   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
6913   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
6914   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
6915   NEONMAP0(vcvt_f16_s16),
6916   NEONMAP0(vcvt_f16_u16),
6917   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
6918   NEONMAP0(vcvt_f32_v),
6919   NEONMAP1(vcvt_n_f16_s16, aarch64_neon_vcvtfxs2fp, 0),
6920   NEONMAP1(vcvt_n_f16_u16, aarch64_neon_vcvtfxu2fp, 0),
6921   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6922   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6923   NEONMAP1(vcvt_n_s16_f16, aarch64_neon_vcvtfp2fxs, 0),
6924   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6925   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6926   NEONMAP1(vcvt_n_u16_f16, aarch64_neon_vcvtfp2fxu, 0),
6927   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6928   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6929   NEONMAP0(vcvtq_f16_s16),
6930   NEONMAP0(vcvtq_f16_u16),
6931   NEONMAP0(vcvtq_f32_v),
6932   NEONMAP1(vcvtq_high_bf16_f32, aarch64_neon_bfcvtn2, 0),
6933   NEONMAP1(vcvtq_n_f16_s16, aarch64_neon_vcvtfxs2fp, 0),
6934   NEONMAP1(vcvtq_n_f16_u16, aarch64_neon_vcvtfxu2fp, 0),
6935   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6936   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6937   NEONMAP1(vcvtq_n_s16_f16, aarch64_neon_vcvtfp2fxs, 0),
6938   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6939   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6940   NEONMAP1(vcvtq_n_u16_f16, aarch64_neon_vcvtfp2fxu, 0),
6941   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6942   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6943   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
6944   NEONMAP1(vdot_s32, aarch64_neon_sdot, 0),
6945   NEONMAP1(vdot_u32, aarch64_neon_udot, 0),
6946   NEONMAP1(vdotq_s32, aarch64_neon_sdot, 0),
6947   NEONMAP1(vdotq_u32, aarch64_neon_udot, 0),
6948   NEONMAP2(veor3q_s16, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6949   NEONMAP2(veor3q_s32, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6950   NEONMAP2(veor3q_s64, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6951   NEONMAP2(veor3q_s8, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6952   NEONMAP2(veor3q_u16, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6953   NEONMAP2(veor3q_u32, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6954   NEONMAP2(veor3q_u64, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6955   NEONMAP2(veor3q_u8, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6956   NEONMAP0(vext_v),
6957   NEONMAP0(vextq_v),
6958   NEONMAP0(vfma_v),
6959   NEONMAP0(vfmaq_v),
6960   NEONMAP1(vfmlal_high_f16, aarch64_neon_fmlal2, 0),
6961   NEONMAP1(vfmlal_low_f16, aarch64_neon_fmlal, 0),
6962   NEONMAP1(vfmlalq_high_f16, aarch64_neon_fmlal2, 0),
6963   NEONMAP1(vfmlalq_low_f16, aarch64_neon_fmlal, 0),
6964   NEONMAP1(vfmlsl_high_f16, aarch64_neon_fmlsl2, 0),
6965   NEONMAP1(vfmlsl_low_f16, aarch64_neon_fmlsl, 0),
6966   NEONMAP1(vfmlslq_high_f16, aarch64_neon_fmlsl2, 0),
6967   NEONMAP1(vfmlslq_low_f16, aarch64_neon_fmlsl, 0),
6968   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6969   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6970   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6971   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6972   NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
6973   NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
6974   NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
6975   NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
6976   NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
6977   NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
6978   NEONMAP1(vmmlaq_s32, aarch64_neon_smmla, 0),
6979   NEONMAP1(vmmlaq_u32, aarch64_neon_ummla, 0),
6980   NEONMAP0(vmovl_v),
6981   NEONMAP0(vmovn_v),
6982   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
6983   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
6984   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
6985   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6986   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6987   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
6988   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
6989   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
6990   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6991   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6992   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
6993   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
6994   NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
6995   NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6996   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
6997   NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
6998   NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6999   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
7000   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
7001   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
7002   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
7003   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
7004   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
7005   NEONMAP1(vqrdmlah_s16, aarch64_neon_sqrdmlah, Add1ArgType),
7006   NEONMAP1(vqrdmlah_s32, aarch64_neon_sqrdmlah, Add1ArgType),
7007   NEONMAP1(vqrdmlahq_s16, aarch64_neon_sqrdmlah, Add1ArgType),
7008   NEONMAP1(vqrdmlahq_s32, aarch64_neon_sqrdmlah, Add1ArgType),
7009   NEONMAP1(vqrdmlsh_s16, aarch64_neon_sqrdmlsh, Add1ArgType),
7010   NEONMAP1(vqrdmlsh_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
7011   NEONMAP1(vqrdmlshq_s16, aarch64_neon_sqrdmlsh, Add1ArgType),
7012   NEONMAP1(vqrdmlshq_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
7013   NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
7014   NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
7015   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
7016   NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
7017   NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
7018   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
7019   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
7020   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
7021   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
7022   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
7023   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
7024   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
7025   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
7026   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
7027   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
7028   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
7029   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
7030   NEONMAP1(vrax1q_u64, aarch64_crypto_rax1, 0),
7031   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
7032   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
7033   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
7034   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
7035   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
7036   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
7037   NEONMAP1(vrnd32x_f32, aarch64_neon_frint32x, Add1ArgType),
7038   NEONMAP1(vrnd32x_f64, aarch64_neon_frint32x, Add1ArgType),
7039   NEONMAP1(vrnd32xq_f32, aarch64_neon_frint32x, Add1ArgType),
7040   NEONMAP1(vrnd32xq_f64, aarch64_neon_frint32x, Add1ArgType),
7041   NEONMAP1(vrnd32z_f32, aarch64_neon_frint32z, Add1ArgType),
7042   NEONMAP1(vrnd32z_f64, aarch64_neon_frint32z, Add1ArgType),
7043   NEONMAP1(vrnd32zq_f32, aarch64_neon_frint32z, Add1ArgType),
7044   NEONMAP1(vrnd32zq_f64, aarch64_neon_frint32z, Add1ArgType),
7045   NEONMAP1(vrnd64x_f32, aarch64_neon_frint64x, Add1ArgType),
7046   NEONMAP1(vrnd64x_f64, aarch64_neon_frint64x, Add1ArgType),
7047   NEONMAP1(vrnd64xq_f32, aarch64_neon_frint64x, Add1ArgType),
7048   NEONMAP1(vrnd64xq_f64, aarch64_neon_frint64x, Add1ArgType),
7049   NEONMAP1(vrnd64z_f32, aarch64_neon_frint64z, Add1ArgType),
7050   NEONMAP1(vrnd64z_f64, aarch64_neon_frint64z, Add1ArgType),
7051   NEONMAP1(vrnd64zq_f32, aarch64_neon_frint64z, Add1ArgType),
7052   NEONMAP1(vrnd64zq_f64, aarch64_neon_frint64z, Add1ArgType),
7053   NEONMAP0(vrndi_v),
7054   NEONMAP0(vrndiq_v),
7055   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
7056   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
7057   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
7058   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
7059   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
7060   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
7061   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
7062   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
7063   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
7064   NEONMAP1(vsha1su0q_u32, aarch64_crypto_sha1su0, 0),
7065   NEONMAP1(vsha1su1q_u32, aarch64_crypto_sha1su1, 0),
7066   NEONMAP1(vsha256h2q_u32, aarch64_crypto_sha256h2, 0),
7067   NEONMAP1(vsha256hq_u32, aarch64_crypto_sha256h, 0),
7068   NEONMAP1(vsha256su0q_u32, aarch64_crypto_sha256su0, 0),
7069   NEONMAP1(vsha256su1q_u32, aarch64_crypto_sha256su1, 0),
7070   NEONMAP1(vsha512h2q_u64, aarch64_crypto_sha512h2, 0),
7071   NEONMAP1(vsha512hq_u64, aarch64_crypto_sha512h, 0),
7072   NEONMAP1(vsha512su0q_u64, aarch64_crypto_sha512su0, 0),
7073   NEONMAP1(vsha512su1q_u64, aarch64_crypto_sha512su1, 0),
7074   NEONMAP0(vshl_n_v),
7075   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
7076   NEONMAP0(vshll_n_v),
7077   NEONMAP0(vshlq_n_v),
7078   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
7079   NEONMAP0(vshr_n_v),
7080   NEONMAP0(vshrn_n_v),
7081   NEONMAP0(vshrq_n_v),
7082   NEONMAP1(vsm3partw1q_u32, aarch64_crypto_sm3partw1, 0),
7083   NEONMAP1(vsm3partw2q_u32, aarch64_crypto_sm3partw2, 0),
7084   NEONMAP1(vsm3ss1q_u32, aarch64_crypto_sm3ss1, 0),
7085   NEONMAP1(vsm3tt1aq_u32, aarch64_crypto_sm3tt1a, 0),
7086   NEONMAP1(vsm3tt1bq_u32, aarch64_crypto_sm3tt1b, 0),
7087   NEONMAP1(vsm3tt2aq_u32, aarch64_crypto_sm3tt2a, 0),
7088   NEONMAP1(vsm3tt2bq_u32, aarch64_crypto_sm3tt2b, 0),
7089   NEONMAP1(vsm4ekeyq_u32, aarch64_crypto_sm4ekey, 0),
7090   NEONMAP1(vsm4eq_u32, aarch64_crypto_sm4e, 0),
7091   NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
7092   NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
7093   NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
7094   NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
7095   NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
7096   NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
7097   NEONMAP0(vsubhn_v),
7098   NEONMAP0(vtst_v),
7099   NEONMAP0(vtstq_v),
7100   NEONMAP1(vusdot_s32, aarch64_neon_usdot, 0),
7101   NEONMAP1(vusdotq_s32, aarch64_neon_usdot, 0),
7102   NEONMAP1(vusmmlaq_s32, aarch64_neon_usmmla, 0),
7103   NEONMAP1(vxarq_u64, aarch64_crypto_xar, 0),
7104 };
7105 
7106 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
7107   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
7108   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
7109   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
7110   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
7111   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
7112   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
7113   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
7114   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
7115   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
7116   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7117   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
7118   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
7119   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
7120   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
7121   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7122   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7123   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
7124   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
7125   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
7126   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
7127   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
7128   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
7129   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
7130   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
7131   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
7132   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
7133   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
7134   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
7135   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
7136   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
7137   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
7138   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
7139   NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
7140   NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
7141   NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
7142   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
7143   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
7144   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
7145   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
7146   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
7147   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
7148   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
7149   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
7150   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
7151   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
7152   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
7153   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
7154   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
7155   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
7156   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
7157   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
7158   NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
7159   NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
7160   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
7161   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7162   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7163   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7164   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7165   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
7166   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
7167   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7168   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7169   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
7170   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
7171   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7172   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7173   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7174   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
7175   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
7176   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
7177   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
7178   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
7179   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
7180   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
7181   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
7182   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
7183   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
7184   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7185   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7186   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7187   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7188   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7189   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7190   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7191   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7192   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
7193   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
7194   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
7195   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
7196   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
7197   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
7198   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
7199   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
7200   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
7201   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
7202   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
7203   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
7204   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
7205   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
7206   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
7207   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
7208   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
7209   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
7210   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
7211   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
7212   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
7213   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
7214   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
7215   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
7216   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
7217   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
7218   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
7219   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
7220   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
7221   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
7222   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
7223   NEONMAP1(vqrdmlahh_s16, aarch64_neon_sqrdmlah, Vectorize1ArgType | Use64BitVectors),
7224   NEONMAP1(vqrdmlahs_s32, aarch64_neon_sqrdmlah, Add1ArgType),
7225   NEONMAP1(vqrdmlshh_s16, aarch64_neon_sqrdmlsh, Vectorize1ArgType | Use64BitVectors),
7226   NEONMAP1(vqrdmlshs_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
7227   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
7228   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
7229   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
7230   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
7231   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
7232   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
7233   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
7234   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
7235   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
7236   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
7237   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
7238   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
7239   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
7240   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
7241   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
7242   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
7243   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
7244   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
7245   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
7246   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
7247   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
7248   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
7249   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
7250   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
7251   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
7252   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
7253   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
7254   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
7255   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
7256   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
7257   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
7258   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
7259   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
7260   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
7261   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
7262   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
7263   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
7264   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
7265   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
7266   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
7267   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
7268   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
7269   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
7270   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
7271   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
7272   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
7273   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
7274   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
7275   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
7276   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
7277   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
7278   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
7279   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
7280   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
7281   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
7282   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
7283   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
7284   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
7285   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
7286   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
7287   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
7288   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
7289   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
7290   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
7291   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
7292   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
7293   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
7294   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
7295   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
7296   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
7297   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
7298   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
7299   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
7300   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
7301   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
7302   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
7303   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
7304   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
7305   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
7306   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
7307   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
7308   // FP16 scalar intrinisics go here.
7309   NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
7310   NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
7311   NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
7312   NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
7313   NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
7314   NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
7315   NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
7316   NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
7317   NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
7318   NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
7319   NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
7320   NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
7321   NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
7322   NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
7323   NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
7324   NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
7325   NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
7326   NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
7327   NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
7328   NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
7329   NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
7330   NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
7331   NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
7332   NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
7333   NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
7334   NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
7335   NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
7336   NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
7337   NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
7338   NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
7339   NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
7340   NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
7341   NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
7342   NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
7343 };
7344 
7345 // Some intrinsics are equivalent for codegen.
7346 static const std::pair<unsigned, unsigned> NEONEquivalentIntrinsicMap[] = {
7347   { NEON::BI__builtin_neon_splat_lane_bf16, NEON::BI__builtin_neon_splat_lane_v, },
7348   { NEON::BI__builtin_neon_splat_laneq_bf16, NEON::BI__builtin_neon_splat_laneq_v, },
7349   { NEON::BI__builtin_neon_splatq_lane_bf16, NEON::BI__builtin_neon_splatq_lane_v, },
7350   { NEON::BI__builtin_neon_splatq_laneq_bf16, NEON::BI__builtin_neon_splatq_laneq_v, },
7351   { NEON::BI__builtin_neon_vabd_f16, NEON::BI__builtin_neon_vabd_v, },
7352   { NEON::BI__builtin_neon_vabdq_f16, NEON::BI__builtin_neon_vabdq_v, },
7353   { NEON::BI__builtin_neon_vabs_f16, NEON::BI__builtin_neon_vabs_v, },
7354   { NEON::BI__builtin_neon_vabsq_f16, NEON::BI__builtin_neon_vabsq_v, },
7355   { NEON::BI__builtin_neon_vcage_f16, NEON::BI__builtin_neon_vcage_v, },
7356   { NEON::BI__builtin_neon_vcageq_f16, NEON::BI__builtin_neon_vcageq_v, },
7357   { NEON::BI__builtin_neon_vcagt_f16, NEON::BI__builtin_neon_vcagt_v, },
7358   { NEON::BI__builtin_neon_vcagtq_f16, NEON::BI__builtin_neon_vcagtq_v, },
7359   { NEON::BI__builtin_neon_vcale_f16, NEON::BI__builtin_neon_vcale_v, },
7360   { NEON::BI__builtin_neon_vcaleq_f16, NEON::BI__builtin_neon_vcaleq_v, },
7361   { NEON::BI__builtin_neon_vcalt_f16, NEON::BI__builtin_neon_vcalt_v, },
7362   { NEON::BI__builtin_neon_vcaltq_f16, NEON::BI__builtin_neon_vcaltq_v, },
7363   { NEON::BI__builtin_neon_vceqz_f16, NEON::BI__builtin_neon_vceqz_v, },
7364   { NEON::BI__builtin_neon_vceqzq_f16, NEON::BI__builtin_neon_vceqzq_v, },
7365   { NEON::BI__builtin_neon_vcgez_f16, NEON::BI__builtin_neon_vcgez_v, },
7366   { NEON::BI__builtin_neon_vcgezq_f16, NEON::BI__builtin_neon_vcgezq_v, },
7367   { NEON::BI__builtin_neon_vcgtz_f16, NEON::BI__builtin_neon_vcgtz_v, },
7368   { NEON::BI__builtin_neon_vcgtzq_f16, NEON::BI__builtin_neon_vcgtzq_v, },
7369   { NEON::BI__builtin_neon_vclez_f16, NEON::BI__builtin_neon_vclez_v, },
7370   { NEON::BI__builtin_neon_vclezq_f16, NEON::BI__builtin_neon_vclezq_v, },
7371   { NEON::BI__builtin_neon_vcltz_f16, NEON::BI__builtin_neon_vcltz_v, },
7372   { NEON::BI__builtin_neon_vcltzq_f16, NEON::BI__builtin_neon_vcltzq_v, },
7373   { NEON::BI__builtin_neon_vfma_f16, NEON::BI__builtin_neon_vfma_v, },
7374   { NEON::BI__builtin_neon_vfma_lane_f16, NEON::BI__builtin_neon_vfma_lane_v, },
7375   { NEON::BI__builtin_neon_vfma_laneq_f16, NEON::BI__builtin_neon_vfma_laneq_v, },
7376   { NEON::BI__builtin_neon_vfmaq_f16, NEON::BI__builtin_neon_vfmaq_v, },
7377   { NEON::BI__builtin_neon_vfmaq_lane_f16, NEON::BI__builtin_neon_vfmaq_lane_v, },
7378   { NEON::BI__builtin_neon_vfmaq_laneq_f16, NEON::BI__builtin_neon_vfmaq_laneq_v, },
7379   { NEON::BI__builtin_neon_vld1_bf16_x2, NEON::BI__builtin_neon_vld1_x2_v },
7380   { NEON::BI__builtin_neon_vld1_bf16_x3, NEON::BI__builtin_neon_vld1_x3_v },
7381   { NEON::BI__builtin_neon_vld1_bf16_x4, NEON::BI__builtin_neon_vld1_x4_v },
7382   { NEON::BI__builtin_neon_vld1_bf16, NEON::BI__builtin_neon_vld1_v },
7383   { NEON::BI__builtin_neon_vld1_dup_bf16, NEON::BI__builtin_neon_vld1_dup_v },
7384   { NEON::BI__builtin_neon_vld1_lane_bf16, NEON::BI__builtin_neon_vld1_lane_v },
7385   { NEON::BI__builtin_neon_vld1q_bf16_x2, NEON::BI__builtin_neon_vld1q_x2_v },
7386   { NEON::BI__builtin_neon_vld1q_bf16_x3, NEON::BI__builtin_neon_vld1q_x3_v },
7387   { NEON::BI__builtin_neon_vld1q_bf16_x4, NEON::BI__builtin_neon_vld1q_x4_v },
7388   { NEON::BI__builtin_neon_vld1q_bf16, NEON::BI__builtin_neon_vld1q_v },
7389   { NEON::BI__builtin_neon_vld1q_dup_bf16, NEON::BI__builtin_neon_vld1q_dup_v },
7390   { NEON::BI__builtin_neon_vld1q_lane_bf16, NEON::BI__builtin_neon_vld1q_lane_v },
7391   { NEON::BI__builtin_neon_vld2_bf16, NEON::BI__builtin_neon_vld2_v },
7392   { NEON::BI__builtin_neon_vld2_dup_bf16, NEON::BI__builtin_neon_vld2_dup_v },
7393   { NEON::BI__builtin_neon_vld2_lane_bf16, NEON::BI__builtin_neon_vld2_lane_v },
7394   { NEON::BI__builtin_neon_vld2q_bf16, NEON::BI__builtin_neon_vld2q_v },
7395   { NEON::BI__builtin_neon_vld2q_dup_bf16, NEON::BI__builtin_neon_vld2q_dup_v },
7396   { NEON::BI__builtin_neon_vld2q_lane_bf16, NEON::BI__builtin_neon_vld2q_lane_v },
7397   { NEON::BI__builtin_neon_vld3_bf16, NEON::BI__builtin_neon_vld3_v },
7398   { NEON::BI__builtin_neon_vld3_dup_bf16, NEON::BI__builtin_neon_vld3_dup_v },
7399   { NEON::BI__builtin_neon_vld3_lane_bf16, NEON::BI__builtin_neon_vld3_lane_v },
7400   { NEON::BI__builtin_neon_vld3q_bf16, NEON::BI__builtin_neon_vld3q_v },
7401   { NEON::BI__builtin_neon_vld3q_dup_bf16, NEON::BI__builtin_neon_vld3q_dup_v },
7402   { NEON::BI__builtin_neon_vld3q_lane_bf16, NEON::BI__builtin_neon_vld3q_lane_v },
7403   { NEON::BI__builtin_neon_vld4_bf16, NEON::BI__builtin_neon_vld4_v },
7404   { NEON::BI__builtin_neon_vld4_dup_bf16, NEON::BI__builtin_neon_vld4_dup_v },
7405   { NEON::BI__builtin_neon_vld4_lane_bf16, NEON::BI__builtin_neon_vld4_lane_v },
7406   { NEON::BI__builtin_neon_vld4q_bf16, NEON::BI__builtin_neon_vld4q_v },
7407   { NEON::BI__builtin_neon_vld4q_dup_bf16, NEON::BI__builtin_neon_vld4q_dup_v },
7408   { NEON::BI__builtin_neon_vld4q_lane_bf16, NEON::BI__builtin_neon_vld4q_lane_v },
7409   { NEON::BI__builtin_neon_vmax_f16, NEON::BI__builtin_neon_vmax_v, },
7410   { NEON::BI__builtin_neon_vmaxnm_f16, NEON::BI__builtin_neon_vmaxnm_v, },
7411   { NEON::BI__builtin_neon_vmaxnmq_f16, NEON::BI__builtin_neon_vmaxnmq_v, },
7412   { NEON::BI__builtin_neon_vmaxq_f16, NEON::BI__builtin_neon_vmaxq_v, },
7413   { NEON::BI__builtin_neon_vmin_f16, NEON::BI__builtin_neon_vmin_v, },
7414   { NEON::BI__builtin_neon_vminnm_f16, NEON::BI__builtin_neon_vminnm_v, },
7415   { NEON::BI__builtin_neon_vminnmq_f16, NEON::BI__builtin_neon_vminnmq_v, },
7416   { NEON::BI__builtin_neon_vminq_f16, NEON::BI__builtin_neon_vminq_v, },
7417   { NEON::BI__builtin_neon_vmulx_f16, NEON::BI__builtin_neon_vmulx_v, },
7418   { NEON::BI__builtin_neon_vmulxq_f16, NEON::BI__builtin_neon_vmulxq_v, },
7419   { NEON::BI__builtin_neon_vpadd_f16, NEON::BI__builtin_neon_vpadd_v, },
7420   { NEON::BI__builtin_neon_vpaddq_f16, NEON::BI__builtin_neon_vpaddq_v, },
7421   { NEON::BI__builtin_neon_vpmax_f16, NEON::BI__builtin_neon_vpmax_v, },
7422   { NEON::BI__builtin_neon_vpmaxnm_f16, NEON::BI__builtin_neon_vpmaxnm_v, },
7423   { NEON::BI__builtin_neon_vpmaxnmq_f16, NEON::BI__builtin_neon_vpmaxnmq_v, },
7424   { NEON::BI__builtin_neon_vpmaxq_f16, NEON::BI__builtin_neon_vpmaxq_v, },
7425   { NEON::BI__builtin_neon_vpmin_f16, NEON::BI__builtin_neon_vpmin_v, },
7426   { NEON::BI__builtin_neon_vpminnm_f16, NEON::BI__builtin_neon_vpminnm_v, },
7427   { NEON::BI__builtin_neon_vpminnmq_f16, NEON::BI__builtin_neon_vpminnmq_v, },
7428   { NEON::BI__builtin_neon_vpminq_f16, NEON::BI__builtin_neon_vpminq_v, },
7429   { NEON::BI__builtin_neon_vrecpe_f16, NEON::BI__builtin_neon_vrecpe_v, },
7430   { NEON::BI__builtin_neon_vrecpeq_f16, NEON::BI__builtin_neon_vrecpeq_v, },
7431   { NEON::BI__builtin_neon_vrecps_f16, NEON::BI__builtin_neon_vrecps_v, },
7432   { NEON::BI__builtin_neon_vrecpsq_f16, NEON::BI__builtin_neon_vrecpsq_v, },
7433   { NEON::BI__builtin_neon_vrnd_f16, NEON::BI__builtin_neon_vrnd_v, },
7434   { NEON::BI__builtin_neon_vrnda_f16, NEON::BI__builtin_neon_vrnda_v, },
7435   { NEON::BI__builtin_neon_vrndaq_f16, NEON::BI__builtin_neon_vrndaq_v, },
7436   { NEON::BI__builtin_neon_vrndi_f16, NEON::BI__builtin_neon_vrndi_v, },
7437   { NEON::BI__builtin_neon_vrndiq_f16, NEON::BI__builtin_neon_vrndiq_v, },
7438   { NEON::BI__builtin_neon_vrndm_f16, NEON::BI__builtin_neon_vrndm_v, },
7439   { NEON::BI__builtin_neon_vrndmq_f16, NEON::BI__builtin_neon_vrndmq_v, },
7440   { NEON::BI__builtin_neon_vrndn_f16, NEON::BI__builtin_neon_vrndn_v, },
7441   { NEON::BI__builtin_neon_vrndnq_f16, NEON::BI__builtin_neon_vrndnq_v, },
7442   { NEON::BI__builtin_neon_vrndp_f16, NEON::BI__builtin_neon_vrndp_v, },
7443   { NEON::BI__builtin_neon_vrndpq_f16, NEON::BI__builtin_neon_vrndpq_v, },
7444   { NEON::BI__builtin_neon_vrndq_f16, NEON::BI__builtin_neon_vrndq_v, },
7445   { NEON::BI__builtin_neon_vrndx_f16, NEON::BI__builtin_neon_vrndx_v, },
7446   { NEON::BI__builtin_neon_vrndxq_f16, NEON::BI__builtin_neon_vrndxq_v, },
7447   { NEON::BI__builtin_neon_vrsqrte_f16, NEON::BI__builtin_neon_vrsqrte_v, },
7448   { NEON::BI__builtin_neon_vrsqrteq_f16, NEON::BI__builtin_neon_vrsqrteq_v, },
7449   { NEON::BI__builtin_neon_vrsqrts_f16, NEON::BI__builtin_neon_vrsqrts_v, },
7450   { NEON::BI__builtin_neon_vrsqrtsq_f16, NEON::BI__builtin_neon_vrsqrtsq_v, },
7451   { NEON::BI__builtin_neon_vsqrt_f16, NEON::BI__builtin_neon_vsqrt_v, },
7452   { NEON::BI__builtin_neon_vsqrtq_f16, NEON::BI__builtin_neon_vsqrtq_v, },
7453   { NEON::BI__builtin_neon_vst1_bf16_x2, NEON::BI__builtin_neon_vst1_x2_v },
7454   { NEON::BI__builtin_neon_vst1_bf16_x3, NEON::BI__builtin_neon_vst1_x3_v },
7455   { NEON::BI__builtin_neon_vst1_bf16_x4, NEON::BI__builtin_neon_vst1_x4_v },
7456   { NEON::BI__builtin_neon_vst1_bf16, NEON::BI__builtin_neon_vst1_v },
7457   { NEON::BI__builtin_neon_vst1_lane_bf16, NEON::BI__builtin_neon_vst1_lane_v },
7458   { NEON::BI__builtin_neon_vst1q_bf16_x2, NEON::BI__builtin_neon_vst1q_x2_v },
7459   { NEON::BI__builtin_neon_vst1q_bf16_x3, NEON::BI__builtin_neon_vst1q_x3_v },
7460   { NEON::BI__builtin_neon_vst1q_bf16_x4, NEON::BI__builtin_neon_vst1q_x4_v },
7461   { NEON::BI__builtin_neon_vst1q_bf16, NEON::BI__builtin_neon_vst1q_v },
7462   { NEON::BI__builtin_neon_vst1q_lane_bf16, NEON::BI__builtin_neon_vst1q_lane_v },
7463   { NEON::BI__builtin_neon_vst2_bf16, NEON::BI__builtin_neon_vst2_v },
7464   { NEON::BI__builtin_neon_vst2_lane_bf16, NEON::BI__builtin_neon_vst2_lane_v },
7465   { NEON::BI__builtin_neon_vst2q_bf16, NEON::BI__builtin_neon_vst2q_v },
7466   { NEON::BI__builtin_neon_vst2q_lane_bf16, NEON::BI__builtin_neon_vst2q_lane_v },
7467   { NEON::BI__builtin_neon_vst3_bf16, NEON::BI__builtin_neon_vst3_v },
7468   { NEON::BI__builtin_neon_vst3_lane_bf16, NEON::BI__builtin_neon_vst3_lane_v },
7469   { NEON::BI__builtin_neon_vst3q_bf16, NEON::BI__builtin_neon_vst3q_v },
7470   { NEON::BI__builtin_neon_vst3q_lane_bf16, NEON::BI__builtin_neon_vst3q_lane_v },
7471   { NEON::BI__builtin_neon_vst4_bf16, NEON::BI__builtin_neon_vst4_v },
7472   { NEON::BI__builtin_neon_vst4_lane_bf16, NEON::BI__builtin_neon_vst4_lane_v },
7473   { NEON::BI__builtin_neon_vst4q_bf16, NEON::BI__builtin_neon_vst4q_v },
7474   { NEON::BI__builtin_neon_vst4q_lane_bf16, NEON::BI__builtin_neon_vst4q_lane_v },
7475   // The mangling rules cause us to have one ID for each type for vldap1(q)_lane
7476   // and vstl1(q)_lane, but codegen is equivalent for all of them. Choose an
7477   // arbitrary one to be handled as tha canonical variation.
7478   { NEON::BI__builtin_neon_vldap1_lane_u64, NEON::BI__builtin_neon_vldap1_lane_s64 },
7479   { NEON::BI__builtin_neon_vldap1_lane_f64, NEON::BI__builtin_neon_vldap1_lane_s64 },
7480   { NEON::BI__builtin_neon_vldap1_lane_p64, NEON::BI__builtin_neon_vldap1_lane_s64 },
7481   { NEON::BI__builtin_neon_vldap1q_lane_u64, NEON::BI__builtin_neon_vldap1q_lane_s64 },
7482   { NEON::BI__builtin_neon_vldap1q_lane_f64, NEON::BI__builtin_neon_vldap1q_lane_s64 },
7483   { NEON::BI__builtin_neon_vldap1q_lane_p64, NEON::BI__builtin_neon_vldap1q_lane_s64 },
7484   { NEON::BI__builtin_neon_vstl1_lane_u64, NEON::BI__builtin_neon_vstl1_lane_s64 },
7485   { NEON::BI__builtin_neon_vstl1_lane_f64, NEON::BI__builtin_neon_vstl1_lane_s64 },
7486   { NEON::BI__builtin_neon_vstl1_lane_p64, NEON::BI__builtin_neon_vstl1_lane_s64 },
7487   { NEON::BI__builtin_neon_vstl1q_lane_u64, NEON::BI__builtin_neon_vstl1q_lane_s64 },
7488   { NEON::BI__builtin_neon_vstl1q_lane_f64, NEON::BI__builtin_neon_vstl1q_lane_s64 },
7489   { NEON::BI__builtin_neon_vstl1q_lane_p64, NEON::BI__builtin_neon_vstl1q_lane_s64 },
7490 };
7491 
7492 #undef NEONMAP0
7493 #undef NEONMAP1
7494 #undef NEONMAP2
7495 
7496 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier)                         \
7497   {                                                                            \
7498     #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0,   \
7499         TypeModifier                                                           \
7500   }
7501 
7502 #define SVEMAP2(NameBase, TypeModifier)                                        \
7503   { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
7504 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
7505 #define GET_SVE_LLVM_INTRINSIC_MAP
7506 #include "clang/Basic/arm_sve_builtin_cg.inc"
7507 #include "clang/Basic/BuiltinsAArch64NeonSVEBridge_cg.def"
7508 #undef GET_SVE_LLVM_INTRINSIC_MAP
7509 };
7510 
7511 #undef SVEMAP1
7512 #undef SVEMAP2
7513 
7514 #define SMEMAP1(NameBase, LLVMIntrinsic, TypeModifier)                         \
7515   {                                                                            \
7516     #NameBase, SME::BI__builtin_sme_##NameBase, Intrinsic::LLVMIntrinsic, 0,   \
7517         TypeModifier                                                           \
7518   }
7519 
7520 #define SMEMAP2(NameBase, TypeModifier)                                        \
7521   { #NameBase, SME::BI__builtin_sme_##NameBase, 0, 0, TypeModifier }
7522 static const ARMVectorIntrinsicInfo AArch64SMEIntrinsicMap[] = {
7523 #define GET_SME_LLVM_INTRINSIC_MAP
7524 #include "clang/Basic/arm_sme_builtin_cg.inc"
7525 #undef GET_SME_LLVM_INTRINSIC_MAP
7526 };
7527 
7528 #undef SMEMAP1
7529 #undef SMEMAP2
7530 
7531 static bool NEONSIMDIntrinsicsProvenSorted = false;
7532 
7533 static bool AArch64SIMDIntrinsicsProvenSorted = false;
7534 static bool AArch64SISDIntrinsicsProvenSorted = false;
7535 static bool AArch64SVEIntrinsicsProvenSorted = false;
7536 static bool AArch64SMEIntrinsicsProvenSorted = false;
7537 
7538 static const ARMVectorIntrinsicInfo *
findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,unsigned BuiltinID,bool & MapProvenSorted)7539 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
7540                             unsigned BuiltinID, bool &MapProvenSorted) {
7541 
7542 #ifndef NDEBUG
7543   if (!MapProvenSorted) {
7544     assert(llvm::is_sorted(IntrinsicMap));
7545     MapProvenSorted = true;
7546   }
7547 #endif
7548 
7549   const ARMVectorIntrinsicInfo *Builtin =
7550       llvm::lower_bound(IntrinsicMap, BuiltinID);
7551 
7552   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
7553     return Builtin;
7554 
7555   return nullptr;
7556 }
7557 
LookupNeonLLVMIntrinsic(unsigned IntrinsicID,unsigned Modifier,llvm::Type * ArgType,const CallExpr * E)7558 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
7559                                                    unsigned Modifier,
7560                                                    llvm::Type *ArgType,
7561                                                    const CallExpr *E) {
7562   int VectorSize = 0;
7563   if (Modifier & Use64BitVectors)
7564     VectorSize = 64;
7565   else if (Modifier & Use128BitVectors)
7566     VectorSize = 128;
7567 
7568   // Return type.
7569   SmallVector<llvm::Type *, 3> Tys;
7570   if (Modifier & AddRetType) {
7571     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
7572     if (Modifier & VectorizeRetType)
7573       Ty = llvm::FixedVectorType::get(
7574           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
7575 
7576     Tys.push_back(Ty);
7577   }
7578 
7579   // Arguments.
7580   if (Modifier & VectorizeArgTypes) {
7581     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
7582     ArgType = llvm::FixedVectorType::get(ArgType, Elts);
7583   }
7584 
7585   if (Modifier & (Add1ArgType | Add2ArgTypes))
7586     Tys.push_back(ArgType);
7587 
7588   if (Modifier & Add2ArgTypes)
7589     Tys.push_back(ArgType);
7590 
7591   if (Modifier & InventFloatType)
7592     Tys.push_back(FloatTy);
7593 
7594   return CGM.getIntrinsic(IntrinsicID, Tys);
7595 }
7596 
EmitCommonNeonSISDBuiltinExpr(CodeGenFunction & CGF,const ARMVectorIntrinsicInfo & SISDInfo,SmallVectorImpl<Value * > & Ops,const CallExpr * E)7597 static Value *EmitCommonNeonSISDBuiltinExpr(
7598     CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
7599     SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
7600   unsigned BuiltinID = SISDInfo.BuiltinID;
7601   unsigned int Int = SISDInfo.LLVMIntrinsic;
7602   unsigned Modifier = SISDInfo.TypeModifier;
7603   const char *s = SISDInfo.NameHint;
7604 
7605   switch (BuiltinID) {
7606   case NEON::BI__builtin_neon_vcled_s64:
7607   case NEON::BI__builtin_neon_vcled_u64:
7608   case NEON::BI__builtin_neon_vcles_f32:
7609   case NEON::BI__builtin_neon_vcled_f64:
7610   case NEON::BI__builtin_neon_vcltd_s64:
7611   case NEON::BI__builtin_neon_vcltd_u64:
7612   case NEON::BI__builtin_neon_vclts_f32:
7613   case NEON::BI__builtin_neon_vcltd_f64:
7614   case NEON::BI__builtin_neon_vcales_f32:
7615   case NEON::BI__builtin_neon_vcaled_f64:
7616   case NEON::BI__builtin_neon_vcalts_f32:
7617   case NEON::BI__builtin_neon_vcaltd_f64:
7618     // Only one direction of comparisons actually exist, cmle is actually a cmge
7619     // with swapped operands. The table gives us the right intrinsic but we
7620     // still need to do the swap.
7621     std::swap(Ops[0], Ops[1]);
7622     break;
7623   }
7624 
7625   assert(Int && "Generic code assumes a valid intrinsic");
7626 
7627   // Determine the type(s) of this overloaded AArch64 intrinsic.
7628   const Expr *Arg = E->getArg(0);
7629   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
7630   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
7631 
7632   int j = 0;
7633   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
7634   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
7635        ai != ae; ++ai, ++j) {
7636     llvm::Type *ArgTy = ai->getType();
7637     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
7638              ArgTy->getPrimitiveSizeInBits())
7639       continue;
7640 
7641     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
7642     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
7643     // it before inserting.
7644     Ops[j] = CGF.Builder.CreateTruncOrBitCast(
7645         Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
7646     Ops[j] =
7647         CGF.Builder.CreateInsertElement(PoisonValue::get(ArgTy), Ops[j], C0);
7648   }
7649 
7650   Value *Result = CGF.EmitNeonCall(F, Ops, s);
7651   llvm::Type *ResultType = CGF.ConvertType(E->getType());
7652   if (ResultType->getPrimitiveSizeInBits().getFixedValue() <
7653       Result->getType()->getPrimitiveSizeInBits().getFixedValue())
7654     return CGF.Builder.CreateExtractElement(Result, C0);
7655 
7656   return CGF.Builder.CreateBitCast(Result, ResultType, s);
7657 }
7658 
EmitCommonNeonBuiltinExpr(unsigned BuiltinID,unsigned LLVMIntrinsic,unsigned AltLLVMIntrinsic,const char * NameHint,unsigned Modifier,const CallExpr * E,SmallVectorImpl<llvm::Value * > & Ops,Address PtrOp0,Address PtrOp1,llvm::Triple::ArchType Arch)7659 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
7660     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
7661     const char *NameHint, unsigned Modifier, const CallExpr *E,
7662     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
7663     llvm::Triple::ArchType Arch) {
7664   // Get the last argument, which specifies the vector type.
7665   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
7666   std::optional<llvm::APSInt> NeonTypeConst =
7667       Arg->getIntegerConstantExpr(getContext());
7668   if (!NeonTypeConst)
7669     return nullptr;
7670 
7671   // Determine the type of this overloaded NEON intrinsic.
7672   NeonTypeFlags Type(NeonTypeConst->getZExtValue());
7673   bool Usgn = Type.isUnsigned();
7674   bool Quad = Type.isQuad();
7675   const bool HasLegalHalfType = getTarget().hasLegalHalfType();
7676   const bool AllowBFloatArgsAndRet =
7677       getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
7678 
7679   llvm::FixedVectorType *VTy =
7680       GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
7681   llvm::Type *Ty = VTy;
7682   if (!Ty)
7683     return nullptr;
7684 
7685   auto getAlignmentValue32 = [&](Address addr) -> Value* {
7686     return Builder.getInt32(addr.getAlignment().getQuantity());
7687   };
7688 
7689   unsigned Int = LLVMIntrinsic;
7690   if ((Modifier & UnsignedAlts) && !Usgn)
7691     Int = AltLLVMIntrinsic;
7692 
7693   switch (BuiltinID) {
7694   default: break;
7695   case NEON::BI__builtin_neon_splat_lane_v:
7696   case NEON::BI__builtin_neon_splat_laneq_v:
7697   case NEON::BI__builtin_neon_splatq_lane_v:
7698   case NEON::BI__builtin_neon_splatq_laneq_v: {
7699     auto NumElements = VTy->getElementCount();
7700     if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
7701       NumElements = NumElements * 2;
7702     if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
7703       NumElements = NumElements.divideCoefficientBy(2);
7704 
7705     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
7706     return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
7707   }
7708   case NEON::BI__builtin_neon_vpadd_v:
7709   case NEON::BI__builtin_neon_vpaddq_v:
7710     // We don't allow fp/int overloading of intrinsics.
7711     if (VTy->getElementType()->isFloatingPointTy() &&
7712         Int == Intrinsic::aarch64_neon_addp)
7713       Int = Intrinsic::aarch64_neon_faddp;
7714     break;
7715   case NEON::BI__builtin_neon_vabs_v:
7716   case NEON::BI__builtin_neon_vabsq_v:
7717     if (VTy->getElementType()->isFloatingPointTy())
7718       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
7719     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
7720   case NEON::BI__builtin_neon_vadd_v:
7721   case NEON::BI__builtin_neon_vaddq_v: {
7722     llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
7723     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
7724     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
7725     Ops[0] =  Builder.CreateXor(Ops[0], Ops[1]);
7726     return Builder.CreateBitCast(Ops[0], Ty);
7727   }
7728   case NEON::BI__builtin_neon_vaddhn_v: {
7729     llvm::FixedVectorType *SrcTy =
7730         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7731 
7732     // %sum = add <4 x i32> %lhs, %rhs
7733     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7734     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
7735     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
7736 
7737     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
7738     Constant *ShiftAmt =
7739         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
7740     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
7741 
7742     // %res = trunc <4 x i32> %high to <4 x i16>
7743     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
7744   }
7745   case NEON::BI__builtin_neon_vcale_v:
7746   case NEON::BI__builtin_neon_vcaleq_v:
7747   case NEON::BI__builtin_neon_vcalt_v:
7748   case NEON::BI__builtin_neon_vcaltq_v:
7749     std::swap(Ops[0], Ops[1]);
7750     [[fallthrough]];
7751   case NEON::BI__builtin_neon_vcage_v:
7752   case NEON::BI__builtin_neon_vcageq_v:
7753   case NEON::BI__builtin_neon_vcagt_v:
7754   case NEON::BI__builtin_neon_vcagtq_v: {
7755     llvm::Type *Ty;
7756     switch (VTy->getScalarSizeInBits()) {
7757     default: llvm_unreachable("unexpected type");
7758     case 32:
7759       Ty = FloatTy;
7760       break;
7761     case 64:
7762       Ty = DoubleTy;
7763       break;
7764     case 16:
7765       Ty = HalfTy;
7766       break;
7767     }
7768     auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
7769     llvm::Type *Tys[] = { VTy, VecFlt };
7770     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7771     return EmitNeonCall(F, Ops, NameHint);
7772   }
7773   case NEON::BI__builtin_neon_vceqz_v:
7774   case NEON::BI__builtin_neon_vceqzq_v:
7775     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
7776                                          ICmpInst::ICMP_EQ, "vceqz");
7777   case NEON::BI__builtin_neon_vcgez_v:
7778   case NEON::BI__builtin_neon_vcgezq_v:
7779     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
7780                                          ICmpInst::ICMP_SGE, "vcgez");
7781   case NEON::BI__builtin_neon_vclez_v:
7782   case NEON::BI__builtin_neon_vclezq_v:
7783     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
7784                                          ICmpInst::ICMP_SLE, "vclez");
7785   case NEON::BI__builtin_neon_vcgtz_v:
7786   case NEON::BI__builtin_neon_vcgtzq_v:
7787     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
7788                                          ICmpInst::ICMP_SGT, "vcgtz");
7789   case NEON::BI__builtin_neon_vcltz_v:
7790   case NEON::BI__builtin_neon_vcltzq_v:
7791     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
7792                                          ICmpInst::ICMP_SLT, "vcltz");
7793   case NEON::BI__builtin_neon_vclz_v:
7794   case NEON::BI__builtin_neon_vclzq_v:
7795     // We generate target-independent intrinsic, which needs a second argument
7796     // for whether or not clz of zero is undefined; on ARM it isn't.
7797     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
7798     break;
7799   case NEON::BI__builtin_neon_vcvt_f32_v:
7800   case NEON::BI__builtin_neon_vcvtq_f32_v:
7801     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7802     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
7803                      HasLegalHalfType);
7804     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
7805                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
7806   case NEON::BI__builtin_neon_vcvt_f16_s16:
7807   case NEON::BI__builtin_neon_vcvt_f16_u16:
7808   case NEON::BI__builtin_neon_vcvtq_f16_s16:
7809   case NEON::BI__builtin_neon_vcvtq_f16_u16:
7810     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7811     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
7812                      HasLegalHalfType);
7813     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
7814                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
7815   case NEON::BI__builtin_neon_vcvt_n_f16_s16:
7816   case NEON::BI__builtin_neon_vcvt_n_f16_u16:
7817   case NEON::BI__builtin_neon_vcvtq_n_f16_s16:
7818   case NEON::BI__builtin_neon_vcvtq_n_f16_u16: {
7819     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
7820     Function *F = CGM.getIntrinsic(Int, Tys);
7821     return EmitNeonCall(F, Ops, "vcvt_n");
7822   }
7823   case NEON::BI__builtin_neon_vcvt_n_f32_v:
7824   case NEON::BI__builtin_neon_vcvt_n_f64_v:
7825   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
7826   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
7827     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
7828     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7829     Function *F = CGM.getIntrinsic(Int, Tys);
7830     return EmitNeonCall(F, Ops, "vcvt_n");
7831   }
7832   case NEON::BI__builtin_neon_vcvt_n_s16_f16:
7833   case NEON::BI__builtin_neon_vcvt_n_s32_v:
7834   case NEON::BI__builtin_neon_vcvt_n_u16_f16:
7835   case NEON::BI__builtin_neon_vcvt_n_u32_v:
7836   case NEON::BI__builtin_neon_vcvt_n_s64_v:
7837   case NEON::BI__builtin_neon_vcvt_n_u64_v:
7838   case NEON::BI__builtin_neon_vcvtq_n_s16_f16:
7839   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
7840   case NEON::BI__builtin_neon_vcvtq_n_u16_f16:
7841   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
7842   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
7843   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
7844     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7845     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7846     return EmitNeonCall(F, Ops, "vcvt_n");
7847   }
7848   case NEON::BI__builtin_neon_vcvt_s32_v:
7849   case NEON::BI__builtin_neon_vcvt_u32_v:
7850   case NEON::BI__builtin_neon_vcvt_s64_v:
7851   case NEON::BI__builtin_neon_vcvt_u64_v:
7852   case NEON::BI__builtin_neon_vcvt_s16_f16:
7853   case NEON::BI__builtin_neon_vcvt_u16_f16:
7854   case NEON::BI__builtin_neon_vcvtq_s32_v:
7855   case NEON::BI__builtin_neon_vcvtq_u32_v:
7856   case NEON::BI__builtin_neon_vcvtq_s64_v:
7857   case NEON::BI__builtin_neon_vcvtq_u64_v:
7858   case NEON::BI__builtin_neon_vcvtq_s16_f16:
7859   case NEON::BI__builtin_neon_vcvtq_u16_f16: {
7860     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
7861     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
7862                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
7863   }
7864   case NEON::BI__builtin_neon_vcvta_s16_f16:
7865   case NEON::BI__builtin_neon_vcvta_s32_v:
7866   case NEON::BI__builtin_neon_vcvta_s64_v:
7867   case NEON::BI__builtin_neon_vcvta_u16_f16:
7868   case NEON::BI__builtin_neon_vcvta_u32_v:
7869   case NEON::BI__builtin_neon_vcvta_u64_v:
7870   case NEON::BI__builtin_neon_vcvtaq_s16_f16:
7871   case NEON::BI__builtin_neon_vcvtaq_s32_v:
7872   case NEON::BI__builtin_neon_vcvtaq_s64_v:
7873   case NEON::BI__builtin_neon_vcvtaq_u16_f16:
7874   case NEON::BI__builtin_neon_vcvtaq_u32_v:
7875   case NEON::BI__builtin_neon_vcvtaq_u64_v:
7876   case NEON::BI__builtin_neon_vcvtn_s16_f16:
7877   case NEON::BI__builtin_neon_vcvtn_s32_v:
7878   case NEON::BI__builtin_neon_vcvtn_s64_v:
7879   case NEON::BI__builtin_neon_vcvtn_u16_f16:
7880   case NEON::BI__builtin_neon_vcvtn_u32_v:
7881   case NEON::BI__builtin_neon_vcvtn_u64_v:
7882   case NEON::BI__builtin_neon_vcvtnq_s16_f16:
7883   case NEON::BI__builtin_neon_vcvtnq_s32_v:
7884   case NEON::BI__builtin_neon_vcvtnq_s64_v:
7885   case NEON::BI__builtin_neon_vcvtnq_u16_f16:
7886   case NEON::BI__builtin_neon_vcvtnq_u32_v:
7887   case NEON::BI__builtin_neon_vcvtnq_u64_v:
7888   case NEON::BI__builtin_neon_vcvtp_s16_f16:
7889   case NEON::BI__builtin_neon_vcvtp_s32_v:
7890   case NEON::BI__builtin_neon_vcvtp_s64_v:
7891   case NEON::BI__builtin_neon_vcvtp_u16_f16:
7892   case NEON::BI__builtin_neon_vcvtp_u32_v:
7893   case NEON::BI__builtin_neon_vcvtp_u64_v:
7894   case NEON::BI__builtin_neon_vcvtpq_s16_f16:
7895   case NEON::BI__builtin_neon_vcvtpq_s32_v:
7896   case NEON::BI__builtin_neon_vcvtpq_s64_v:
7897   case NEON::BI__builtin_neon_vcvtpq_u16_f16:
7898   case NEON::BI__builtin_neon_vcvtpq_u32_v:
7899   case NEON::BI__builtin_neon_vcvtpq_u64_v:
7900   case NEON::BI__builtin_neon_vcvtm_s16_f16:
7901   case NEON::BI__builtin_neon_vcvtm_s32_v:
7902   case NEON::BI__builtin_neon_vcvtm_s64_v:
7903   case NEON::BI__builtin_neon_vcvtm_u16_f16:
7904   case NEON::BI__builtin_neon_vcvtm_u32_v:
7905   case NEON::BI__builtin_neon_vcvtm_u64_v:
7906   case NEON::BI__builtin_neon_vcvtmq_s16_f16:
7907   case NEON::BI__builtin_neon_vcvtmq_s32_v:
7908   case NEON::BI__builtin_neon_vcvtmq_s64_v:
7909   case NEON::BI__builtin_neon_vcvtmq_u16_f16:
7910   case NEON::BI__builtin_neon_vcvtmq_u32_v:
7911   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
7912     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7913     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
7914   }
7915   case NEON::BI__builtin_neon_vcvtx_f32_v: {
7916     llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
7917     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
7918 
7919   }
7920   case NEON::BI__builtin_neon_vext_v:
7921   case NEON::BI__builtin_neon_vextq_v: {
7922     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
7923     SmallVector<int, 16> Indices;
7924     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7925       Indices.push_back(i+CV);
7926 
7927     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7928     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7929     return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
7930   }
7931   case NEON::BI__builtin_neon_vfma_v:
7932   case NEON::BI__builtin_neon_vfmaq_v: {
7933     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7934     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7935     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7936 
7937     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7938     return emitCallMaybeConstrainedFPBuiltin(
7939         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
7940         {Ops[1], Ops[2], Ops[0]});
7941   }
7942   case NEON::BI__builtin_neon_vld1_v:
7943   case NEON::BI__builtin_neon_vld1q_v: {
7944     llvm::Type *Tys[] = {Ty, Int8PtrTy};
7945     Ops.push_back(getAlignmentValue32(PtrOp0));
7946     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
7947   }
7948   case NEON::BI__builtin_neon_vld1_x2_v:
7949   case NEON::BI__builtin_neon_vld1q_x2_v:
7950   case NEON::BI__builtin_neon_vld1_x3_v:
7951   case NEON::BI__builtin_neon_vld1q_x3_v:
7952   case NEON::BI__builtin_neon_vld1_x4_v:
7953   case NEON::BI__builtin_neon_vld1q_x4_v: {
7954     llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
7955     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7956     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
7957     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7958   }
7959   case NEON::BI__builtin_neon_vld2_v:
7960   case NEON::BI__builtin_neon_vld2q_v:
7961   case NEON::BI__builtin_neon_vld3_v:
7962   case NEON::BI__builtin_neon_vld3q_v:
7963   case NEON::BI__builtin_neon_vld4_v:
7964   case NEON::BI__builtin_neon_vld4q_v:
7965   case NEON::BI__builtin_neon_vld2_dup_v:
7966   case NEON::BI__builtin_neon_vld2q_dup_v:
7967   case NEON::BI__builtin_neon_vld3_dup_v:
7968   case NEON::BI__builtin_neon_vld3q_dup_v:
7969   case NEON::BI__builtin_neon_vld4_dup_v:
7970   case NEON::BI__builtin_neon_vld4q_dup_v: {
7971     llvm::Type *Tys[] = {Ty, Int8PtrTy};
7972     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7973     Value *Align = getAlignmentValue32(PtrOp1);
7974     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
7975     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7976   }
7977   case NEON::BI__builtin_neon_vld1_dup_v:
7978   case NEON::BI__builtin_neon_vld1q_dup_v: {
7979     Value *V = PoisonValue::get(Ty);
7980     PtrOp0 = PtrOp0.withElementType(VTy->getElementType());
7981     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
7982     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
7983     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
7984     return EmitNeonSplat(Ops[0], CI);
7985   }
7986   case NEON::BI__builtin_neon_vld2_lane_v:
7987   case NEON::BI__builtin_neon_vld2q_lane_v:
7988   case NEON::BI__builtin_neon_vld3_lane_v:
7989   case NEON::BI__builtin_neon_vld3q_lane_v:
7990   case NEON::BI__builtin_neon_vld4_lane_v:
7991   case NEON::BI__builtin_neon_vld4q_lane_v: {
7992     llvm::Type *Tys[] = {Ty, Int8PtrTy};
7993     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7994     for (unsigned I = 2; I < Ops.size() - 1; ++I)
7995       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
7996     Ops.push_back(getAlignmentValue32(PtrOp1));
7997     Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), NameHint);
7998     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7999   }
8000   case NEON::BI__builtin_neon_vmovl_v: {
8001     llvm::FixedVectorType *DTy =
8002         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
8003     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
8004     if (Usgn)
8005       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
8006     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
8007   }
8008   case NEON::BI__builtin_neon_vmovn_v: {
8009     llvm::FixedVectorType *QTy =
8010         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
8011     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
8012     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
8013   }
8014   case NEON::BI__builtin_neon_vmull_v:
8015     // FIXME: the integer vmull operations could be emitted in terms of pure
8016     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
8017     // hoisting the exts outside loops. Until global ISel comes along that can
8018     // see through such movement this leads to bad CodeGen. So we need an
8019     // intrinsic for now.
8020     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
8021     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
8022     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
8023   case NEON::BI__builtin_neon_vpadal_v:
8024   case NEON::BI__builtin_neon_vpadalq_v: {
8025     // The source operand type has twice as many elements of half the size.
8026     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
8027     llvm::Type *EltTy =
8028       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
8029     auto *NarrowTy =
8030         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
8031     llvm::Type *Tys[2] = { Ty, NarrowTy };
8032     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
8033   }
8034   case NEON::BI__builtin_neon_vpaddl_v:
8035   case NEON::BI__builtin_neon_vpaddlq_v: {
8036     // The source operand type has twice as many elements of half the size.
8037     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
8038     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
8039     auto *NarrowTy =
8040         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
8041     llvm::Type *Tys[2] = { Ty, NarrowTy };
8042     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
8043   }
8044   case NEON::BI__builtin_neon_vqdmlal_v:
8045   case NEON::BI__builtin_neon_vqdmlsl_v: {
8046     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
8047     Ops[1] =
8048         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
8049     Ops.resize(2);
8050     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
8051   }
8052   case NEON::BI__builtin_neon_vqdmulhq_lane_v:
8053   case NEON::BI__builtin_neon_vqdmulh_lane_v:
8054   case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
8055   case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
8056     auto *RTy = cast<llvm::FixedVectorType>(Ty);
8057     if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
8058         BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
8059       RTy = llvm::FixedVectorType::get(RTy->getElementType(),
8060                                        RTy->getNumElements() * 2);
8061     llvm::Type *Tys[2] = {
8062         RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
8063                                              /*isQuad*/ false))};
8064     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
8065   }
8066   case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
8067   case NEON::BI__builtin_neon_vqdmulh_laneq_v:
8068   case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
8069   case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
8070     llvm::Type *Tys[2] = {
8071         Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
8072                                             /*isQuad*/ true))};
8073     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
8074   }
8075   case NEON::BI__builtin_neon_vqshl_n_v:
8076   case NEON::BI__builtin_neon_vqshlq_n_v:
8077     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
8078                         1, false);
8079   case NEON::BI__builtin_neon_vqshlu_n_v:
8080   case NEON::BI__builtin_neon_vqshluq_n_v:
8081     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
8082                         1, false);
8083   case NEON::BI__builtin_neon_vrecpe_v:
8084   case NEON::BI__builtin_neon_vrecpeq_v:
8085   case NEON::BI__builtin_neon_vrsqrte_v:
8086   case NEON::BI__builtin_neon_vrsqrteq_v:
8087     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
8088     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
8089   case NEON::BI__builtin_neon_vrndi_v:
8090   case NEON::BI__builtin_neon_vrndiq_v:
8091     Int = Builder.getIsFPConstrained()
8092               ? Intrinsic::experimental_constrained_nearbyint
8093               : Intrinsic::nearbyint;
8094     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
8095   case NEON::BI__builtin_neon_vrshr_n_v:
8096   case NEON::BI__builtin_neon_vrshrq_n_v:
8097     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
8098                         1, true);
8099   case NEON::BI__builtin_neon_vsha512hq_u64:
8100   case NEON::BI__builtin_neon_vsha512h2q_u64:
8101   case NEON::BI__builtin_neon_vsha512su0q_u64:
8102   case NEON::BI__builtin_neon_vsha512su1q_u64: {
8103     Function *F = CGM.getIntrinsic(Int);
8104     return EmitNeonCall(F, Ops, "");
8105   }
8106   case NEON::BI__builtin_neon_vshl_n_v:
8107   case NEON::BI__builtin_neon_vshlq_n_v:
8108     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
8109     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
8110                              "vshl_n");
8111   case NEON::BI__builtin_neon_vshll_n_v: {
8112     llvm::FixedVectorType *SrcTy =
8113         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
8114     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
8115     if (Usgn)
8116       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
8117     else
8118       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
8119     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
8120     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
8121   }
8122   case NEON::BI__builtin_neon_vshrn_n_v: {
8123     llvm::FixedVectorType *SrcTy =
8124         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
8125     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
8126     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
8127     if (Usgn)
8128       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
8129     else
8130       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
8131     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
8132   }
8133   case NEON::BI__builtin_neon_vshr_n_v:
8134   case NEON::BI__builtin_neon_vshrq_n_v:
8135     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
8136   case NEON::BI__builtin_neon_vst1_v:
8137   case NEON::BI__builtin_neon_vst1q_v:
8138   case NEON::BI__builtin_neon_vst2_v:
8139   case NEON::BI__builtin_neon_vst2q_v:
8140   case NEON::BI__builtin_neon_vst3_v:
8141   case NEON::BI__builtin_neon_vst3q_v:
8142   case NEON::BI__builtin_neon_vst4_v:
8143   case NEON::BI__builtin_neon_vst4q_v:
8144   case NEON::BI__builtin_neon_vst2_lane_v:
8145   case NEON::BI__builtin_neon_vst2q_lane_v:
8146   case NEON::BI__builtin_neon_vst3_lane_v:
8147   case NEON::BI__builtin_neon_vst3q_lane_v:
8148   case NEON::BI__builtin_neon_vst4_lane_v:
8149   case NEON::BI__builtin_neon_vst4q_lane_v: {
8150     llvm::Type *Tys[] = {Int8PtrTy, Ty};
8151     Ops.push_back(getAlignmentValue32(PtrOp0));
8152     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
8153   }
8154   case NEON::BI__builtin_neon_vsm3partw1q_u32:
8155   case NEON::BI__builtin_neon_vsm3partw2q_u32:
8156   case NEON::BI__builtin_neon_vsm3ss1q_u32:
8157   case NEON::BI__builtin_neon_vsm4ekeyq_u32:
8158   case NEON::BI__builtin_neon_vsm4eq_u32: {
8159     Function *F = CGM.getIntrinsic(Int);
8160     return EmitNeonCall(F, Ops, "");
8161   }
8162   case NEON::BI__builtin_neon_vsm3tt1aq_u32:
8163   case NEON::BI__builtin_neon_vsm3tt1bq_u32:
8164   case NEON::BI__builtin_neon_vsm3tt2aq_u32:
8165   case NEON::BI__builtin_neon_vsm3tt2bq_u32: {
8166     Function *F = CGM.getIntrinsic(Int);
8167     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
8168     return EmitNeonCall(F, Ops, "");
8169   }
8170   case NEON::BI__builtin_neon_vst1_x2_v:
8171   case NEON::BI__builtin_neon_vst1q_x2_v:
8172   case NEON::BI__builtin_neon_vst1_x3_v:
8173   case NEON::BI__builtin_neon_vst1q_x3_v:
8174   case NEON::BI__builtin_neon_vst1_x4_v:
8175   case NEON::BI__builtin_neon_vst1q_x4_v: {
8176     // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
8177     // in AArch64 it comes last. We may want to stick to one or another.
8178     if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
8179         Arch == llvm::Triple::aarch64_32) {
8180       llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
8181       std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
8182       return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
8183     }
8184     llvm::Type *Tys[2] = {UnqualPtrTy, VTy};
8185     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
8186   }
8187   case NEON::BI__builtin_neon_vsubhn_v: {
8188     llvm::FixedVectorType *SrcTy =
8189         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
8190 
8191     // %sum = add <4 x i32> %lhs, %rhs
8192     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
8193     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
8194     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
8195 
8196     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
8197     Constant *ShiftAmt =
8198         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
8199     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
8200 
8201     // %res = trunc <4 x i32> %high to <4 x i16>
8202     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
8203   }
8204   case NEON::BI__builtin_neon_vtrn_v:
8205   case NEON::BI__builtin_neon_vtrnq_v: {
8206     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8207     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8208     Value *SV = nullptr;
8209 
8210     for (unsigned vi = 0; vi != 2; ++vi) {
8211       SmallVector<int, 16> Indices;
8212       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
8213         Indices.push_back(i+vi);
8214         Indices.push_back(i+e+vi);
8215       }
8216       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
8217       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
8218       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
8219     }
8220     return SV;
8221   }
8222   case NEON::BI__builtin_neon_vtst_v:
8223   case NEON::BI__builtin_neon_vtstq_v: {
8224     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8225     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8226     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
8227     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
8228                                 ConstantAggregateZero::get(Ty));
8229     return Builder.CreateSExt(Ops[0], Ty, "vtst");
8230   }
8231   case NEON::BI__builtin_neon_vuzp_v:
8232   case NEON::BI__builtin_neon_vuzpq_v: {
8233     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8234     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8235     Value *SV = nullptr;
8236 
8237     for (unsigned vi = 0; vi != 2; ++vi) {
8238       SmallVector<int, 16> Indices;
8239       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
8240         Indices.push_back(2*i+vi);
8241 
8242       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
8243       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
8244       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
8245     }
8246     return SV;
8247   }
8248   case NEON::BI__builtin_neon_vxarq_u64: {
8249     Function *F = CGM.getIntrinsic(Int);
8250     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
8251     return EmitNeonCall(F, Ops, "");
8252   }
8253   case NEON::BI__builtin_neon_vzip_v:
8254   case NEON::BI__builtin_neon_vzipq_v: {
8255     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8256     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8257     Value *SV = nullptr;
8258 
8259     for (unsigned vi = 0; vi != 2; ++vi) {
8260       SmallVector<int, 16> Indices;
8261       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
8262         Indices.push_back((i + vi*e) >> 1);
8263         Indices.push_back(((i + vi*e) >> 1)+e);
8264       }
8265       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
8266       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
8267       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
8268     }
8269     return SV;
8270   }
8271   case NEON::BI__builtin_neon_vdot_s32:
8272   case NEON::BI__builtin_neon_vdot_u32:
8273   case NEON::BI__builtin_neon_vdotq_s32:
8274   case NEON::BI__builtin_neon_vdotq_u32: {
8275     auto *InputTy =
8276         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8277     llvm::Type *Tys[2] = { Ty, InputTy };
8278     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
8279   }
8280   case NEON::BI__builtin_neon_vfmlal_low_f16:
8281   case NEON::BI__builtin_neon_vfmlalq_low_f16: {
8282     auto *InputTy =
8283         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8284     llvm::Type *Tys[2] = { Ty, InputTy };
8285     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
8286   }
8287   case NEON::BI__builtin_neon_vfmlsl_low_f16:
8288   case NEON::BI__builtin_neon_vfmlslq_low_f16: {
8289     auto *InputTy =
8290         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8291     llvm::Type *Tys[2] = { Ty, InputTy };
8292     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
8293   }
8294   case NEON::BI__builtin_neon_vfmlal_high_f16:
8295   case NEON::BI__builtin_neon_vfmlalq_high_f16: {
8296     auto *InputTy =
8297         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8298     llvm::Type *Tys[2] = { Ty, InputTy };
8299     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
8300   }
8301   case NEON::BI__builtin_neon_vfmlsl_high_f16:
8302   case NEON::BI__builtin_neon_vfmlslq_high_f16: {
8303     auto *InputTy =
8304         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8305     llvm::Type *Tys[2] = { Ty, InputTy };
8306     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
8307   }
8308   case NEON::BI__builtin_neon_vmmlaq_s32:
8309   case NEON::BI__builtin_neon_vmmlaq_u32: {
8310     auto *InputTy =
8311         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8312     llvm::Type *Tys[2] = { Ty, InputTy };
8313     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vmmla");
8314   }
8315   case NEON::BI__builtin_neon_vusmmlaq_s32: {
8316     auto *InputTy =
8317         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8318     llvm::Type *Tys[2] = { Ty, InputTy };
8319     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
8320   }
8321   case NEON::BI__builtin_neon_vusdot_s32:
8322   case NEON::BI__builtin_neon_vusdotq_s32: {
8323     auto *InputTy =
8324         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8325     llvm::Type *Tys[2] = { Ty, InputTy };
8326     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
8327   }
8328   case NEON::BI__builtin_neon_vbfdot_f32:
8329   case NEON::BI__builtin_neon_vbfdotq_f32: {
8330     llvm::Type *InputTy =
8331         llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
8332     llvm::Type *Tys[2] = { Ty, InputTy };
8333     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
8334   }
8335   case NEON::BI__builtin_neon___a32_vcvt_bf16_f32: {
8336     llvm::Type *Tys[1] = { Ty };
8337     Function *F = CGM.getIntrinsic(Int, Tys);
8338     return EmitNeonCall(F, Ops, "vcvtfp2bf");
8339   }
8340 
8341   }
8342 
8343   assert(Int && "Expected valid intrinsic number");
8344 
8345   // Determine the type(s) of this overloaded AArch64 intrinsic.
8346   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
8347 
8348   Value *Result = EmitNeonCall(F, Ops, NameHint);
8349   llvm::Type *ResultType = ConvertType(E->getType());
8350   // AArch64 intrinsic one-element vector type cast to
8351   // scalar type expected by the builtin
8352   return Builder.CreateBitCast(Result, ResultType, NameHint);
8353 }
8354 
EmitAArch64CompareBuiltinExpr(Value * Op,llvm::Type * Ty,const CmpInst::Predicate Fp,const CmpInst::Predicate Ip,const Twine & Name)8355 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
8356     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
8357     const CmpInst::Predicate Ip, const Twine &Name) {
8358   llvm::Type *OTy = Op->getType();
8359 
8360   // FIXME: this is utterly horrific. We should not be looking at previous
8361   // codegen context to find out what needs doing. Unfortunately TableGen
8362   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
8363   // (etc).
8364   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
8365     OTy = BI->getOperand(0)->getType();
8366 
8367   Op = Builder.CreateBitCast(Op, OTy);
8368   if (OTy->getScalarType()->isFloatingPointTy()) {
8369     if (Fp == CmpInst::FCMP_OEQ)
8370       Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
8371     else
8372       Op = Builder.CreateFCmpS(Fp, Op, Constant::getNullValue(OTy));
8373   } else {
8374     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
8375   }
8376   return Builder.CreateSExt(Op, Ty, Name);
8377 }
8378 
packTBLDVectorList(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Value * ExtOp,Value * IndexOp,llvm::Type * ResTy,unsigned IntID,const char * Name)8379 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
8380                                  Value *ExtOp, Value *IndexOp,
8381                                  llvm::Type *ResTy, unsigned IntID,
8382                                  const char *Name) {
8383   SmallVector<Value *, 2> TblOps;
8384   if (ExtOp)
8385     TblOps.push_back(ExtOp);
8386 
8387   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
8388   SmallVector<int, 16> Indices;
8389   auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
8390   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
8391     Indices.push_back(2*i);
8392     Indices.push_back(2*i+1);
8393   }
8394 
8395   int PairPos = 0, End = Ops.size() - 1;
8396   while (PairPos < End) {
8397     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
8398                                                      Ops[PairPos+1], Indices,
8399                                                      Name));
8400     PairPos += 2;
8401   }
8402 
8403   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
8404   // of the 128-bit lookup table with zero.
8405   if (PairPos == End) {
8406     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
8407     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
8408                                                      ZeroTbl, Indices, Name));
8409   }
8410 
8411   Function *TblF;
8412   TblOps.push_back(IndexOp);
8413   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
8414 
8415   return CGF.EmitNeonCall(TblF, TblOps, Name);
8416 }
8417 
GetValueForARMHint(unsigned BuiltinID)8418 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
8419   unsigned Value;
8420   switch (BuiltinID) {
8421   default:
8422     return nullptr;
8423   case clang::ARM::BI__builtin_arm_nop:
8424     Value = 0;
8425     break;
8426   case clang::ARM::BI__builtin_arm_yield:
8427   case clang::ARM::BI__yield:
8428     Value = 1;
8429     break;
8430   case clang::ARM::BI__builtin_arm_wfe:
8431   case clang::ARM::BI__wfe:
8432     Value = 2;
8433     break;
8434   case clang::ARM::BI__builtin_arm_wfi:
8435   case clang::ARM::BI__wfi:
8436     Value = 3;
8437     break;
8438   case clang::ARM::BI__builtin_arm_sev:
8439   case clang::ARM::BI__sev:
8440     Value = 4;
8441     break;
8442   case clang::ARM::BI__builtin_arm_sevl:
8443   case clang::ARM::BI__sevl:
8444     Value = 5;
8445     break;
8446   }
8447 
8448   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
8449                             llvm::ConstantInt::get(Int32Ty, Value));
8450 }
8451 
8452 enum SpecialRegisterAccessKind {
8453   NormalRead,
8454   VolatileRead,
8455   Write,
8456 };
8457 
8458 // Generates the IR for __builtin_read_exec_*.
8459 // Lowers the builtin to amdgcn_ballot intrinsic.
EmitAMDGCNBallotForExec(CodeGenFunction & CGF,const CallExpr * E,llvm::Type * RegisterType,llvm::Type * ValueType,bool isExecHi)8460 static Value *EmitAMDGCNBallotForExec(CodeGenFunction &CGF, const CallExpr *E,
8461                                       llvm::Type *RegisterType,
8462                                       llvm::Type *ValueType, bool isExecHi) {
8463   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8464   CodeGen::CodeGenModule &CGM = CGF.CGM;
8465 
8466   Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ballot, {RegisterType});
8467   llvm::Value *Call = Builder.CreateCall(F, {Builder.getInt1(true)});
8468 
8469   if (isExecHi) {
8470     Value *Rt2 = Builder.CreateLShr(Call, 32);
8471     Rt2 = Builder.CreateTrunc(Rt2, CGF.Int32Ty);
8472     return Rt2;
8473   }
8474 
8475   return Call;
8476 }
8477 
8478 // Generates the IR for the read/write special register builtin,
8479 // ValueType is the type of the value that is to be written or read,
8480 // RegisterType is the type of the register being written to or read from.
EmitSpecialRegisterBuiltin(CodeGenFunction & CGF,const CallExpr * E,llvm::Type * RegisterType,llvm::Type * ValueType,SpecialRegisterAccessKind AccessKind,StringRef SysReg="")8481 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
8482                                          const CallExpr *E,
8483                                          llvm::Type *RegisterType,
8484                                          llvm::Type *ValueType,
8485                                          SpecialRegisterAccessKind AccessKind,
8486                                          StringRef SysReg = "") {
8487   // write and register intrinsics only support 32, 64 and 128 bit operations.
8488   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64) ||
8489           RegisterType->isIntegerTy(128)) &&
8490          "Unsupported size for register.");
8491 
8492   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8493   CodeGen::CodeGenModule &CGM = CGF.CGM;
8494   LLVMContext &Context = CGM.getLLVMContext();
8495 
8496   if (SysReg.empty()) {
8497     const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
8498     SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
8499   }
8500 
8501   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
8502   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
8503   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
8504 
8505   llvm::Type *Types[] = { RegisterType };
8506 
8507   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
8508   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
8509             && "Can't fit 64-bit value in 32-bit register");
8510 
8511   if (AccessKind != Write) {
8512     assert(AccessKind == NormalRead || AccessKind == VolatileRead);
8513     llvm::Function *F = CGM.getIntrinsic(
8514         AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
8515                                    : llvm::Intrinsic::read_register,
8516         Types);
8517     llvm::Value *Call = Builder.CreateCall(F, Metadata);
8518 
8519     if (MixedTypes)
8520       // Read into 64 bit register and then truncate result to 32 bit.
8521       return Builder.CreateTrunc(Call, ValueType);
8522 
8523     if (ValueType->isPointerTy())
8524       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
8525       return Builder.CreateIntToPtr(Call, ValueType);
8526 
8527     return Call;
8528   }
8529 
8530   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
8531   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
8532   if (MixedTypes) {
8533     // Extend 32 bit write value to 64 bit to pass to write.
8534     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
8535     return Builder.CreateCall(F, { Metadata, ArgValue });
8536   }
8537 
8538   if (ValueType->isPointerTy()) {
8539     // Have VoidPtrTy ArgValue but want to return an i32/i64.
8540     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
8541     return Builder.CreateCall(F, { Metadata, ArgValue });
8542   }
8543 
8544   return Builder.CreateCall(F, { Metadata, ArgValue });
8545 }
8546 
8547 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
8548 /// argument that specifies the vector type.
HasExtraNeonArgument(unsigned BuiltinID)8549 static bool HasExtraNeonArgument(unsigned BuiltinID) {
8550   switch (BuiltinID) {
8551   default: break;
8552   case NEON::BI__builtin_neon_vget_lane_i8:
8553   case NEON::BI__builtin_neon_vget_lane_i16:
8554   case NEON::BI__builtin_neon_vget_lane_bf16:
8555   case NEON::BI__builtin_neon_vget_lane_i32:
8556   case NEON::BI__builtin_neon_vget_lane_i64:
8557   case NEON::BI__builtin_neon_vget_lane_f32:
8558   case NEON::BI__builtin_neon_vgetq_lane_i8:
8559   case NEON::BI__builtin_neon_vgetq_lane_i16:
8560   case NEON::BI__builtin_neon_vgetq_lane_bf16:
8561   case NEON::BI__builtin_neon_vgetq_lane_i32:
8562   case NEON::BI__builtin_neon_vgetq_lane_i64:
8563   case NEON::BI__builtin_neon_vgetq_lane_f32:
8564   case NEON::BI__builtin_neon_vduph_lane_bf16:
8565   case NEON::BI__builtin_neon_vduph_laneq_bf16:
8566   case NEON::BI__builtin_neon_vset_lane_i8:
8567   case NEON::BI__builtin_neon_vset_lane_i16:
8568   case NEON::BI__builtin_neon_vset_lane_bf16:
8569   case NEON::BI__builtin_neon_vset_lane_i32:
8570   case NEON::BI__builtin_neon_vset_lane_i64:
8571   case NEON::BI__builtin_neon_vset_lane_f32:
8572   case NEON::BI__builtin_neon_vsetq_lane_i8:
8573   case NEON::BI__builtin_neon_vsetq_lane_i16:
8574   case NEON::BI__builtin_neon_vsetq_lane_bf16:
8575   case NEON::BI__builtin_neon_vsetq_lane_i32:
8576   case NEON::BI__builtin_neon_vsetq_lane_i64:
8577   case NEON::BI__builtin_neon_vsetq_lane_f32:
8578   case NEON::BI__builtin_neon_vsha1h_u32:
8579   case NEON::BI__builtin_neon_vsha1cq_u32:
8580   case NEON::BI__builtin_neon_vsha1pq_u32:
8581   case NEON::BI__builtin_neon_vsha1mq_u32:
8582   case NEON::BI__builtin_neon_vcvth_bf16_f32:
8583   case clang::ARM::BI_MoveToCoprocessor:
8584   case clang::ARM::BI_MoveToCoprocessor2:
8585     return false;
8586   }
8587   return true;
8588 }
8589 
EmitARMBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)8590 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
8591                                            const CallExpr *E,
8592                                            ReturnValueSlot ReturnValue,
8593                                            llvm::Triple::ArchType Arch) {
8594   if (auto Hint = GetValueForARMHint(BuiltinID))
8595     return Hint;
8596 
8597   if (BuiltinID == clang::ARM::BI__emit) {
8598     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
8599     llvm::FunctionType *FTy =
8600         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
8601 
8602     Expr::EvalResult Result;
8603     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
8604       llvm_unreachable("Sema will ensure that the parameter is constant");
8605 
8606     llvm::APSInt Value = Result.Val.getInt();
8607     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
8608 
8609     llvm::InlineAsm *Emit =
8610         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
8611                                  /*hasSideEffects=*/true)
8612                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
8613                                  /*hasSideEffects=*/true);
8614 
8615     return Builder.CreateCall(Emit);
8616   }
8617 
8618   if (BuiltinID == clang::ARM::BI__builtin_arm_dbg) {
8619     Value *Option = EmitScalarExpr(E->getArg(0));
8620     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
8621   }
8622 
8623   if (BuiltinID == clang::ARM::BI__builtin_arm_prefetch) {
8624     Value *Address = EmitScalarExpr(E->getArg(0));
8625     Value *RW      = EmitScalarExpr(E->getArg(1));
8626     Value *IsData  = EmitScalarExpr(E->getArg(2));
8627 
8628     // Locality is not supported on ARM target
8629     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
8630 
8631     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
8632     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
8633   }
8634 
8635   if (BuiltinID == clang::ARM::BI__builtin_arm_rbit) {
8636     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8637     return Builder.CreateCall(
8638         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
8639   }
8640 
8641   if (BuiltinID == clang::ARM::BI__builtin_arm_clz ||
8642       BuiltinID == clang::ARM::BI__builtin_arm_clz64) {
8643     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8644     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Arg->getType());
8645     Value *Res = Builder.CreateCall(F, {Arg, Builder.getInt1(false)});
8646     if (BuiltinID == clang::ARM::BI__builtin_arm_clz64)
8647       Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
8648     return Res;
8649   }
8650 
8651 
8652   if (BuiltinID == clang::ARM::BI__builtin_arm_cls) {
8653     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8654     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
8655   }
8656   if (BuiltinID == clang::ARM::BI__builtin_arm_cls64) {
8657     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8658     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
8659                               "cls");
8660   }
8661 
8662   if (BuiltinID == clang::ARM::BI__clear_cache) {
8663     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
8664     const FunctionDecl *FD = E->getDirectCallee();
8665     Value *Ops[2];
8666     for (unsigned i = 0; i < 2; i++)
8667       Ops[i] = EmitScalarExpr(E->getArg(i));
8668     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
8669     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
8670     StringRef Name = FD->getName();
8671     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
8672   }
8673 
8674   if (BuiltinID == clang::ARM::BI__builtin_arm_mcrr ||
8675       BuiltinID == clang::ARM::BI__builtin_arm_mcrr2) {
8676     Function *F;
8677 
8678     switch (BuiltinID) {
8679     default: llvm_unreachable("unexpected builtin");
8680     case clang::ARM::BI__builtin_arm_mcrr:
8681       F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
8682       break;
8683     case clang::ARM::BI__builtin_arm_mcrr2:
8684       F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
8685       break;
8686     }
8687 
8688     // MCRR{2} instruction has 5 operands but
8689     // the intrinsic has 4 because Rt and Rt2
8690     // are represented as a single unsigned 64
8691     // bit integer in the intrinsic definition
8692     // but internally it's represented as 2 32
8693     // bit integers.
8694 
8695     Value *Coproc = EmitScalarExpr(E->getArg(0));
8696     Value *Opc1 = EmitScalarExpr(E->getArg(1));
8697     Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
8698     Value *CRm = EmitScalarExpr(E->getArg(3));
8699 
8700     Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
8701     Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
8702     Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
8703     Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
8704 
8705     return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
8706   }
8707 
8708   if (BuiltinID == clang::ARM::BI__builtin_arm_mrrc ||
8709       BuiltinID == clang::ARM::BI__builtin_arm_mrrc2) {
8710     Function *F;
8711 
8712     switch (BuiltinID) {
8713     default: llvm_unreachable("unexpected builtin");
8714     case clang::ARM::BI__builtin_arm_mrrc:
8715       F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
8716       break;
8717     case clang::ARM::BI__builtin_arm_mrrc2:
8718       F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
8719       break;
8720     }
8721 
8722     Value *Coproc = EmitScalarExpr(E->getArg(0));
8723     Value *Opc1 = EmitScalarExpr(E->getArg(1));
8724     Value *CRm  = EmitScalarExpr(E->getArg(2));
8725     Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
8726 
8727     // Returns an unsigned 64 bit integer, represented
8728     // as two 32 bit integers.
8729 
8730     Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
8731     Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
8732     Rt = Builder.CreateZExt(Rt, Int64Ty);
8733     Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
8734 
8735     Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
8736     RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
8737     RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
8738 
8739     return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
8740   }
8741 
8742   if (BuiltinID == clang::ARM::BI__builtin_arm_ldrexd ||
8743       ((BuiltinID == clang::ARM::BI__builtin_arm_ldrex ||
8744         BuiltinID == clang::ARM::BI__builtin_arm_ldaex) &&
8745        getContext().getTypeSize(E->getType()) == 64) ||
8746       BuiltinID == clang::ARM::BI__ldrexd) {
8747     Function *F;
8748 
8749     switch (BuiltinID) {
8750     default: llvm_unreachable("unexpected builtin");
8751     case clang::ARM::BI__builtin_arm_ldaex:
8752       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
8753       break;
8754     case clang::ARM::BI__builtin_arm_ldrexd:
8755     case clang::ARM::BI__builtin_arm_ldrex:
8756     case clang::ARM::BI__ldrexd:
8757       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
8758       break;
8759     }
8760 
8761     Value *LdPtr = EmitScalarExpr(E->getArg(0));
8762     Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd");
8763 
8764     Value *Val0 = Builder.CreateExtractValue(Val, 1);
8765     Value *Val1 = Builder.CreateExtractValue(Val, 0);
8766     Val0 = Builder.CreateZExt(Val0, Int64Ty);
8767     Val1 = Builder.CreateZExt(Val1, Int64Ty);
8768 
8769     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
8770     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
8771     Val = Builder.CreateOr(Val, Val1);
8772     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
8773   }
8774 
8775   if (BuiltinID == clang::ARM::BI__builtin_arm_ldrex ||
8776       BuiltinID == clang::ARM::BI__builtin_arm_ldaex) {
8777     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
8778 
8779     QualType Ty = E->getType();
8780     llvm::Type *RealResTy = ConvertType(Ty);
8781     llvm::Type *IntTy =
8782         llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
8783 
8784     Function *F = CGM.getIntrinsic(
8785         BuiltinID == clang::ARM::BI__builtin_arm_ldaex ? Intrinsic::arm_ldaex
8786                                                        : Intrinsic::arm_ldrex,
8787         UnqualPtrTy);
8788     CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
8789     Val->addParamAttr(
8790         0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
8791 
8792     if (RealResTy->isPointerTy())
8793       return Builder.CreateIntToPtr(Val, RealResTy);
8794     else {
8795       llvm::Type *IntResTy = llvm::IntegerType::get(
8796           getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
8797       return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
8798                                    RealResTy);
8799     }
8800   }
8801 
8802   if (BuiltinID == clang::ARM::BI__builtin_arm_strexd ||
8803       ((BuiltinID == clang::ARM::BI__builtin_arm_stlex ||
8804         BuiltinID == clang::ARM::BI__builtin_arm_strex) &&
8805        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
8806     Function *F = CGM.getIntrinsic(
8807         BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlexd
8808                                                        : Intrinsic::arm_strexd);
8809     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
8810 
8811     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
8812     Value *Val = EmitScalarExpr(E->getArg(0));
8813     Builder.CreateStore(Val, Tmp);
8814 
8815     Address LdPtr = Tmp.withElementType(STy);
8816     Val = Builder.CreateLoad(LdPtr);
8817 
8818     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
8819     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
8820     Value *StPtr = EmitScalarExpr(E->getArg(1));
8821     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
8822   }
8823 
8824   if (BuiltinID == clang::ARM::BI__builtin_arm_strex ||
8825       BuiltinID == clang::ARM::BI__builtin_arm_stlex) {
8826     Value *StoreVal = EmitScalarExpr(E->getArg(0));
8827     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
8828 
8829     QualType Ty = E->getArg(0)->getType();
8830     llvm::Type *StoreTy =
8831         llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
8832 
8833     if (StoreVal->getType()->isPointerTy())
8834       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
8835     else {
8836       llvm::Type *IntTy = llvm::IntegerType::get(
8837           getLLVMContext(),
8838           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
8839       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
8840       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
8841     }
8842 
8843     Function *F = CGM.getIntrinsic(
8844         BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlex
8845                                                        : Intrinsic::arm_strex,
8846         StoreAddr->getType());
8847 
8848     CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
8849     CI->addParamAttr(
8850         1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
8851     return CI;
8852   }
8853 
8854   if (BuiltinID == clang::ARM::BI__builtin_arm_clrex) {
8855     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
8856     return Builder.CreateCall(F);
8857   }
8858 
8859   // CRC32
8860   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
8861   switch (BuiltinID) {
8862   case clang::ARM::BI__builtin_arm_crc32b:
8863     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
8864   case clang::ARM::BI__builtin_arm_crc32cb:
8865     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
8866   case clang::ARM::BI__builtin_arm_crc32h:
8867     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
8868   case clang::ARM::BI__builtin_arm_crc32ch:
8869     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
8870   case clang::ARM::BI__builtin_arm_crc32w:
8871   case clang::ARM::BI__builtin_arm_crc32d:
8872     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
8873   case clang::ARM::BI__builtin_arm_crc32cw:
8874   case clang::ARM::BI__builtin_arm_crc32cd:
8875     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
8876   }
8877 
8878   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
8879     Value *Arg0 = EmitScalarExpr(E->getArg(0));
8880     Value *Arg1 = EmitScalarExpr(E->getArg(1));
8881 
8882     // crc32{c,}d intrinsics are implemented as two calls to crc32{c,}w
8883     // intrinsics, hence we need different codegen for these cases.
8884     if (BuiltinID == clang::ARM::BI__builtin_arm_crc32d ||
8885         BuiltinID == clang::ARM::BI__builtin_arm_crc32cd) {
8886       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
8887       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
8888       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
8889       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
8890 
8891       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8892       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
8893       return Builder.CreateCall(F, {Res, Arg1b});
8894     } else {
8895       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
8896 
8897       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8898       return Builder.CreateCall(F, {Arg0, Arg1});
8899     }
8900   }
8901 
8902   if (BuiltinID == clang::ARM::BI__builtin_arm_rsr ||
8903       BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8904       BuiltinID == clang::ARM::BI__builtin_arm_rsrp ||
8905       BuiltinID == clang::ARM::BI__builtin_arm_wsr ||
8906       BuiltinID == clang::ARM::BI__builtin_arm_wsr64 ||
8907       BuiltinID == clang::ARM::BI__builtin_arm_wsrp) {
8908 
8909     SpecialRegisterAccessKind AccessKind = Write;
8910     if (BuiltinID == clang::ARM::BI__builtin_arm_rsr ||
8911         BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8912         BuiltinID == clang::ARM::BI__builtin_arm_rsrp)
8913       AccessKind = VolatileRead;
8914 
8915     bool IsPointerBuiltin = BuiltinID == clang::ARM::BI__builtin_arm_rsrp ||
8916                             BuiltinID == clang::ARM::BI__builtin_arm_wsrp;
8917 
8918     bool Is64Bit = BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8919                    BuiltinID == clang::ARM::BI__builtin_arm_wsr64;
8920 
8921     llvm::Type *ValueType;
8922     llvm::Type *RegisterType;
8923     if (IsPointerBuiltin) {
8924       ValueType = VoidPtrTy;
8925       RegisterType = Int32Ty;
8926     } else if (Is64Bit) {
8927       ValueType = RegisterType = Int64Ty;
8928     } else {
8929       ValueType = RegisterType = Int32Ty;
8930     }
8931 
8932     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
8933                                       AccessKind);
8934   }
8935 
8936   if (BuiltinID == ARM::BI__builtin_sponentry) {
8937     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
8938     return Builder.CreateCall(F);
8939   }
8940 
8941   // Handle MSVC intrinsics before argument evaluation to prevent double
8942   // evaluation.
8943   if (std::optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
8944     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
8945 
8946   // Deal with MVE builtins
8947   if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
8948     return Result;
8949   // Handle CDE builtins
8950   if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
8951     return Result;
8952 
8953   // Some intrinsics are equivalent - if they are use the base intrinsic ID.
8954   auto It = llvm::find_if(NEONEquivalentIntrinsicMap, [BuiltinID](auto &P) {
8955     return P.first == BuiltinID;
8956   });
8957   if (It != end(NEONEquivalentIntrinsicMap))
8958     BuiltinID = It->second;
8959 
8960   // Find out if any arguments are required to be integer constant
8961   // expressions.
8962   unsigned ICEArguments = 0;
8963   ASTContext::GetBuiltinTypeError Error;
8964   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8965   assert(Error == ASTContext::GE_None && "Should not codegen an error");
8966 
8967   auto getAlignmentValue32 = [&](Address addr) -> Value* {
8968     return Builder.getInt32(addr.getAlignment().getQuantity());
8969   };
8970 
8971   Address PtrOp0 = Address::invalid();
8972   Address PtrOp1 = Address::invalid();
8973   SmallVector<Value*, 4> Ops;
8974   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
8975   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
8976   for (unsigned i = 0, e = NumArgs; i != e; i++) {
8977     if (i == 0) {
8978       switch (BuiltinID) {
8979       case NEON::BI__builtin_neon_vld1_v:
8980       case NEON::BI__builtin_neon_vld1q_v:
8981       case NEON::BI__builtin_neon_vld1q_lane_v:
8982       case NEON::BI__builtin_neon_vld1_lane_v:
8983       case NEON::BI__builtin_neon_vld1_dup_v:
8984       case NEON::BI__builtin_neon_vld1q_dup_v:
8985       case NEON::BI__builtin_neon_vst1_v:
8986       case NEON::BI__builtin_neon_vst1q_v:
8987       case NEON::BI__builtin_neon_vst1q_lane_v:
8988       case NEON::BI__builtin_neon_vst1_lane_v:
8989       case NEON::BI__builtin_neon_vst2_v:
8990       case NEON::BI__builtin_neon_vst2q_v:
8991       case NEON::BI__builtin_neon_vst2_lane_v:
8992       case NEON::BI__builtin_neon_vst2q_lane_v:
8993       case NEON::BI__builtin_neon_vst3_v:
8994       case NEON::BI__builtin_neon_vst3q_v:
8995       case NEON::BI__builtin_neon_vst3_lane_v:
8996       case NEON::BI__builtin_neon_vst3q_lane_v:
8997       case NEON::BI__builtin_neon_vst4_v:
8998       case NEON::BI__builtin_neon_vst4q_v:
8999       case NEON::BI__builtin_neon_vst4_lane_v:
9000       case NEON::BI__builtin_neon_vst4q_lane_v:
9001         // Get the alignment for the argument in addition to the value;
9002         // we'll use it later.
9003         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
9004         Ops.push_back(PtrOp0.emitRawPointer(*this));
9005         continue;
9006       }
9007     }
9008     if (i == 1) {
9009       switch (BuiltinID) {
9010       case NEON::BI__builtin_neon_vld2_v:
9011       case NEON::BI__builtin_neon_vld2q_v:
9012       case NEON::BI__builtin_neon_vld3_v:
9013       case NEON::BI__builtin_neon_vld3q_v:
9014       case NEON::BI__builtin_neon_vld4_v:
9015       case NEON::BI__builtin_neon_vld4q_v:
9016       case NEON::BI__builtin_neon_vld2_lane_v:
9017       case NEON::BI__builtin_neon_vld2q_lane_v:
9018       case NEON::BI__builtin_neon_vld3_lane_v:
9019       case NEON::BI__builtin_neon_vld3q_lane_v:
9020       case NEON::BI__builtin_neon_vld4_lane_v:
9021       case NEON::BI__builtin_neon_vld4q_lane_v:
9022       case NEON::BI__builtin_neon_vld2_dup_v:
9023       case NEON::BI__builtin_neon_vld2q_dup_v:
9024       case NEON::BI__builtin_neon_vld3_dup_v:
9025       case NEON::BI__builtin_neon_vld3q_dup_v:
9026       case NEON::BI__builtin_neon_vld4_dup_v:
9027       case NEON::BI__builtin_neon_vld4q_dup_v:
9028         // Get the alignment for the argument in addition to the value;
9029         // we'll use it later.
9030         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
9031         Ops.push_back(PtrOp1.emitRawPointer(*this));
9032         continue;
9033       }
9034     }
9035 
9036     Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
9037   }
9038 
9039   switch (BuiltinID) {
9040   default: break;
9041 
9042   case NEON::BI__builtin_neon_vget_lane_i8:
9043   case NEON::BI__builtin_neon_vget_lane_i16:
9044   case NEON::BI__builtin_neon_vget_lane_i32:
9045   case NEON::BI__builtin_neon_vget_lane_i64:
9046   case NEON::BI__builtin_neon_vget_lane_bf16:
9047   case NEON::BI__builtin_neon_vget_lane_f32:
9048   case NEON::BI__builtin_neon_vgetq_lane_i8:
9049   case NEON::BI__builtin_neon_vgetq_lane_i16:
9050   case NEON::BI__builtin_neon_vgetq_lane_i32:
9051   case NEON::BI__builtin_neon_vgetq_lane_i64:
9052   case NEON::BI__builtin_neon_vgetq_lane_bf16:
9053   case NEON::BI__builtin_neon_vgetq_lane_f32:
9054   case NEON::BI__builtin_neon_vduph_lane_bf16:
9055   case NEON::BI__builtin_neon_vduph_laneq_bf16:
9056     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
9057 
9058   case NEON::BI__builtin_neon_vrndns_f32: {
9059     Value *Arg = EmitScalarExpr(E->getArg(0));
9060     llvm::Type *Tys[] = {Arg->getType()};
9061     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
9062     return Builder.CreateCall(F, {Arg}, "vrndn"); }
9063 
9064   case NEON::BI__builtin_neon_vset_lane_i8:
9065   case NEON::BI__builtin_neon_vset_lane_i16:
9066   case NEON::BI__builtin_neon_vset_lane_i32:
9067   case NEON::BI__builtin_neon_vset_lane_i64:
9068   case NEON::BI__builtin_neon_vset_lane_bf16:
9069   case NEON::BI__builtin_neon_vset_lane_f32:
9070   case NEON::BI__builtin_neon_vsetq_lane_i8:
9071   case NEON::BI__builtin_neon_vsetq_lane_i16:
9072   case NEON::BI__builtin_neon_vsetq_lane_i32:
9073   case NEON::BI__builtin_neon_vsetq_lane_i64:
9074   case NEON::BI__builtin_neon_vsetq_lane_bf16:
9075   case NEON::BI__builtin_neon_vsetq_lane_f32:
9076     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9077 
9078   case NEON::BI__builtin_neon_vsha1h_u32:
9079     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
9080                         "vsha1h");
9081   case NEON::BI__builtin_neon_vsha1cq_u32:
9082     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
9083                         "vsha1h");
9084   case NEON::BI__builtin_neon_vsha1pq_u32:
9085     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
9086                         "vsha1h");
9087   case NEON::BI__builtin_neon_vsha1mq_u32:
9088     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
9089                         "vsha1h");
9090 
9091   case NEON::BI__builtin_neon_vcvth_bf16_f32: {
9092     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
9093                         "vcvtbfp2bf");
9094   }
9095 
9096   // The ARM _MoveToCoprocessor builtins put the input register value as
9097   // the first argument, but the LLVM intrinsic expects it as the third one.
9098   case clang::ARM::BI_MoveToCoprocessor:
9099   case clang::ARM::BI_MoveToCoprocessor2: {
9100     Function *F = CGM.getIntrinsic(BuiltinID == clang::ARM::BI_MoveToCoprocessor
9101                                        ? Intrinsic::arm_mcr
9102                                        : Intrinsic::arm_mcr2);
9103     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
9104                                   Ops[3], Ops[4], Ops[5]});
9105   }
9106   }
9107 
9108   // Get the last argument, which specifies the vector type.
9109   assert(HasExtraArg);
9110   const Expr *Arg = E->getArg(E->getNumArgs()-1);
9111   std::optional<llvm::APSInt> Result =
9112       Arg->getIntegerConstantExpr(getContext());
9113   if (!Result)
9114     return nullptr;
9115 
9116   if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f ||
9117       BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_d) {
9118     // Determine the overloaded type of this builtin.
9119     llvm::Type *Ty;
9120     if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f)
9121       Ty = FloatTy;
9122     else
9123       Ty = DoubleTy;
9124 
9125     // Determine whether this is an unsigned conversion or not.
9126     bool usgn = Result->getZExtValue() == 1;
9127     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
9128 
9129     // Call the appropriate intrinsic.
9130     Function *F = CGM.getIntrinsic(Int, Ty);
9131     return Builder.CreateCall(F, Ops, "vcvtr");
9132   }
9133 
9134   // Determine the type of this overloaded NEON intrinsic.
9135   NeonTypeFlags Type = Result->getZExtValue();
9136   bool usgn = Type.isUnsigned();
9137   bool rightShift = false;
9138 
9139   llvm::FixedVectorType *VTy =
9140       GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
9141                   getTarget().hasBFloat16Type());
9142   llvm::Type *Ty = VTy;
9143   if (!Ty)
9144     return nullptr;
9145 
9146   // Many NEON builtins have identical semantics and uses in ARM and
9147   // AArch64. Emit these in a single function.
9148   auto IntrinsicMap = ArrayRef(ARMSIMDIntrinsicMap);
9149   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
9150       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
9151   if (Builtin)
9152     return EmitCommonNeonBuiltinExpr(
9153         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
9154         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
9155 
9156   unsigned Int;
9157   switch (BuiltinID) {
9158   default: return nullptr;
9159   case NEON::BI__builtin_neon_vld1q_lane_v:
9160     // Handle 64-bit integer elements as a special case.  Use shuffles of
9161     // one-element vectors to avoid poor code for i64 in the backend.
9162     if (VTy->getElementType()->isIntegerTy(64)) {
9163       // Extract the other lane.
9164       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9165       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
9166       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
9167       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
9168       // Load the value as a one-element vector.
9169       Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
9170       llvm::Type *Tys[] = {Ty, Int8PtrTy};
9171       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
9172       Value *Align = getAlignmentValue32(PtrOp0);
9173       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
9174       // Combine them.
9175       int Indices[] = {1 - Lane, Lane};
9176       return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
9177     }
9178     [[fallthrough]];
9179   case NEON::BI__builtin_neon_vld1_lane_v: {
9180     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9181     PtrOp0 = PtrOp0.withElementType(VTy->getElementType());
9182     Value *Ld = Builder.CreateLoad(PtrOp0);
9183     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
9184   }
9185   case NEON::BI__builtin_neon_vqrshrn_n_v:
9186     Int =
9187       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
9188     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
9189                         1, true);
9190   case NEON::BI__builtin_neon_vqrshrun_n_v:
9191     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
9192                         Ops, "vqrshrun_n", 1, true);
9193   case NEON::BI__builtin_neon_vqshrn_n_v:
9194     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
9195     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
9196                         1, true);
9197   case NEON::BI__builtin_neon_vqshrun_n_v:
9198     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
9199                         Ops, "vqshrun_n", 1, true);
9200   case NEON::BI__builtin_neon_vrecpe_v:
9201   case NEON::BI__builtin_neon_vrecpeq_v:
9202     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
9203                         Ops, "vrecpe");
9204   case NEON::BI__builtin_neon_vrshrn_n_v:
9205     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
9206                         Ops, "vrshrn_n", 1, true);
9207   case NEON::BI__builtin_neon_vrsra_n_v:
9208   case NEON::BI__builtin_neon_vrsraq_n_v:
9209     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9210     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9211     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
9212     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
9213     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
9214     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
9215   case NEON::BI__builtin_neon_vsri_n_v:
9216   case NEON::BI__builtin_neon_vsriq_n_v:
9217     rightShift = true;
9218     [[fallthrough]];
9219   case NEON::BI__builtin_neon_vsli_n_v:
9220   case NEON::BI__builtin_neon_vsliq_n_v:
9221     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
9222     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
9223                         Ops, "vsli_n");
9224   case NEON::BI__builtin_neon_vsra_n_v:
9225   case NEON::BI__builtin_neon_vsraq_n_v:
9226     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9227     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
9228     return Builder.CreateAdd(Ops[0], Ops[1]);
9229   case NEON::BI__builtin_neon_vst1q_lane_v:
9230     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
9231     // a one-element vector and avoid poor code for i64 in the backend.
9232     if (VTy->getElementType()->isIntegerTy(64)) {
9233       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9234       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
9235       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
9236       Ops[2] = getAlignmentValue32(PtrOp0);
9237       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
9238       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
9239                                                  Tys), Ops);
9240     }
9241     [[fallthrough]];
9242   case NEON::BI__builtin_neon_vst1_lane_v: {
9243     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9244     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
9245     return Builder.CreateStore(Ops[1],
9246                                PtrOp0.withElementType(Ops[1]->getType()));
9247   }
9248   case NEON::BI__builtin_neon_vtbl1_v:
9249     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
9250                         Ops, "vtbl1");
9251   case NEON::BI__builtin_neon_vtbl2_v:
9252     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
9253                         Ops, "vtbl2");
9254   case NEON::BI__builtin_neon_vtbl3_v:
9255     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
9256                         Ops, "vtbl3");
9257   case NEON::BI__builtin_neon_vtbl4_v:
9258     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
9259                         Ops, "vtbl4");
9260   case NEON::BI__builtin_neon_vtbx1_v:
9261     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
9262                         Ops, "vtbx1");
9263   case NEON::BI__builtin_neon_vtbx2_v:
9264     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
9265                         Ops, "vtbx2");
9266   case NEON::BI__builtin_neon_vtbx3_v:
9267     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
9268                         Ops, "vtbx3");
9269   case NEON::BI__builtin_neon_vtbx4_v:
9270     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
9271                         Ops, "vtbx4");
9272   }
9273 }
9274 
9275 template<typename Integer>
GetIntegerConstantValue(const Expr * E,ASTContext & Context)9276 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
9277   return E->getIntegerConstantExpr(Context)->getExtValue();
9278 }
9279 
SignOrZeroExtend(CGBuilderTy & Builder,llvm::Value * V,llvm::Type * T,bool Unsigned)9280 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
9281                                      llvm::Type *T, bool Unsigned) {
9282   // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
9283   // which finds it convenient to specify signed/unsigned as a boolean flag.
9284   return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
9285 }
9286 
MVEImmediateShr(CGBuilderTy & Builder,llvm::Value * V,uint32_t Shift,bool Unsigned)9287 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
9288                                     uint32_t Shift, bool Unsigned) {
9289   // MVE helper function for integer shift right. This must handle signed vs
9290   // unsigned, and also deal specially with the case where the shift count is
9291   // equal to the lane size. In LLVM IR, an LShr with that parameter would be
9292   // undefined behavior, but in MVE it's legal, so we must convert it to code
9293   // that is not undefined in IR.
9294   unsigned LaneBits = cast<llvm::VectorType>(V->getType())
9295                           ->getElementType()
9296                           ->getPrimitiveSizeInBits();
9297   if (Shift == LaneBits) {
9298     // An unsigned shift of the full lane size always generates zero, so we can
9299     // simply emit a zero vector. A signed shift of the full lane size does the
9300     // same thing as shifting by one bit fewer.
9301     if (Unsigned)
9302       return llvm::Constant::getNullValue(V->getType());
9303     else
9304       --Shift;
9305   }
9306   return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
9307 }
9308 
ARMMVEVectorSplat(CGBuilderTy & Builder,llvm::Value * V)9309 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
9310   // MVE-specific helper function for a vector splat, which infers the element
9311   // count of the output vector by knowing that MVE vectors are all 128 bits
9312   // wide.
9313   unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
9314   return Builder.CreateVectorSplat(Elements, V);
9315 }
9316 
ARMMVEVectorReinterpret(CGBuilderTy & Builder,CodeGenFunction * CGF,llvm::Value * V,llvm::Type * DestType)9317 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
9318                                             CodeGenFunction *CGF,
9319                                             llvm::Value *V,
9320                                             llvm::Type *DestType) {
9321   // Convert one MVE vector type into another by reinterpreting its in-register
9322   // format.
9323   //
9324   // Little-endian, this is identical to a bitcast (which reinterprets the
9325   // memory format). But big-endian, they're not necessarily the same, because
9326   // the register and memory formats map to each other differently depending on
9327   // the lane size.
9328   //
9329   // We generate a bitcast whenever we can (if we're little-endian, or if the
9330   // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
9331   // that performs the different kind of reinterpretation.
9332   if (CGF->getTarget().isBigEndian() &&
9333       V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
9334     return Builder.CreateCall(
9335         CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
9336                               {DestType, V->getType()}),
9337         V);
9338   } else {
9339     return Builder.CreateBitCast(V, DestType);
9340   }
9341 }
9342 
VectorUnzip(CGBuilderTy & Builder,llvm::Value * V,bool Odd)9343 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
9344   // Make a shufflevector that extracts every other element of a vector (evens
9345   // or odds, as desired).
9346   SmallVector<int, 16> Indices;
9347   unsigned InputElements =
9348       cast<llvm::FixedVectorType>(V->getType())->getNumElements();
9349   for (unsigned i = 0; i < InputElements; i += 2)
9350     Indices.push_back(i + Odd);
9351   return Builder.CreateShuffleVector(V, Indices);
9352 }
9353 
VectorZip(CGBuilderTy & Builder,llvm::Value * V0,llvm::Value * V1)9354 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
9355                               llvm::Value *V1) {
9356   // Make a shufflevector that interleaves two vectors element by element.
9357   assert(V0->getType() == V1->getType() && "Can't zip different vector types");
9358   SmallVector<int, 16> Indices;
9359   unsigned InputElements =
9360       cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
9361   for (unsigned i = 0; i < InputElements; i++) {
9362     Indices.push_back(i);
9363     Indices.push_back(i + InputElements);
9364   }
9365   return Builder.CreateShuffleVector(V0, V1, Indices);
9366 }
9367 
9368 template<unsigned HighBit, unsigned OtherBits>
ARMMVEConstantSplat(CGBuilderTy & Builder,llvm::Type * VT)9369 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
9370   // MVE-specific helper function to make a vector splat of a constant such as
9371   // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
9372   llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
9373   unsigned LaneBits = T->getPrimitiveSizeInBits();
9374   uint32_t Value = HighBit << (LaneBits - 1);
9375   if (OtherBits)
9376     Value |= (1UL << (LaneBits - 1)) - 1;
9377   llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
9378   return ARMMVEVectorSplat(Builder, Lane);
9379 }
9380 
ARMMVEVectorElementReverse(CGBuilderTy & Builder,llvm::Value * V,unsigned ReverseWidth)9381 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
9382                                                llvm::Value *V,
9383                                                unsigned ReverseWidth) {
9384   // MVE-specific helper function which reverses the elements of a
9385   // vector within every (ReverseWidth)-bit collection of lanes.
9386   SmallVector<int, 16> Indices;
9387   unsigned LaneSize = V->getType()->getScalarSizeInBits();
9388   unsigned Elements = 128 / LaneSize;
9389   unsigned Mask = ReverseWidth / LaneSize - 1;
9390   for (unsigned i = 0; i < Elements; i++)
9391     Indices.push_back(i ^ Mask);
9392   return Builder.CreateShuffleVector(V, Indices);
9393 }
9394 
EmitARMMVEBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)9395 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
9396                                               const CallExpr *E,
9397                                               ReturnValueSlot ReturnValue,
9398                                               llvm::Triple::ArchType Arch) {
9399   enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
9400   Intrinsic::ID IRIntr;
9401   unsigned NumVectors;
9402 
9403   // Code autogenerated by Tablegen will handle all the simple builtins.
9404   switch (BuiltinID) {
9405     #include "clang/Basic/arm_mve_builtin_cg.inc"
9406 
9407     // If we didn't match an MVE builtin id at all, go back to the
9408     // main EmitARMBuiltinExpr.
9409   default:
9410     return nullptr;
9411   }
9412 
9413   // Anything that breaks from that switch is an MVE builtin that
9414   // needs handwritten code to generate.
9415 
9416   switch (CustomCodeGenType) {
9417 
9418   case CustomCodeGen::VLD24: {
9419     llvm::SmallVector<Value *, 4> Ops;
9420     llvm::SmallVector<llvm::Type *, 4> Tys;
9421 
9422     auto MvecCType = E->getType();
9423     auto MvecLType = ConvertType(MvecCType);
9424     assert(MvecLType->isStructTy() &&
9425            "Return type for vld[24]q should be a struct");
9426     assert(MvecLType->getStructNumElements() == 1 &&
9427            "Return-type struct for vld[24]q should have one element");
9428     auto MvecLTypeInner = MvecLType->getStructElementType(0);
9429     assert(MvecLTypeInner->isArrayTy() &&
9430            "Return-type struct for vld[24]q should contain an array");
9431     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
9432            "Array member of return-type struct vld[24]q has wrong length");
9433     auto VecLType = MvecLTypeInner->getArrayElementType();
9434 
9435     Tys.push_back(VecLType);
9436 
9437     auto Addr = E->getArg(0);
9438     Ops.push_back(EmitScalarExpr(Addr));
9439     Tys.push_back(ConvertType(Addr->getType()));
9440 
9441     Function *F = CGM.getIntrinsic(IRIntr, ArrayRef(Tys));
9442     Value *LoadResult = Builder.CreateCall(F, Ops);
9443     Value *MvecOut = PoisonValue::get(MvecLType);
9444     for (unsigned i = 0; i < NumVectors; ++i) {
9445       Value *Vec = Builder.CreateExtractValue(LoadResult, i);
9446       MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
9447     }
9448 
9449     if (ReturnValue.isNull())
9450       return MvecOut;
9451     else
9452       return Builder.CreateStore(MvecOut, ReturnValue.getAddress());
9453   }
9454 
9455   case CustomCodeGen::VST24: {
9456     llvm::SmallVector<Value *, 4> Ops;
9457     llvm::SmallVector<llvm::Type *, 4> Tys;
9458 
9459     auto Addr = E->getArg(0);
9460     Ops.push_back(EmitScalarExpr(Addr));
9461     Tys.push_back(ConvertType(Addr->getType()));
9462 
9463     auto MvecCType = E->getArg(1)->getType();
9464     auto MvecLType = ConvertType(MvecCType);
9465     assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
9466     assert(MvecLType->getStructNumElements() == 1 &&
9467            "Data-type struct for vst2q should have one element");
9468     auto MvecLTypeInner = MvecLType->getStructElementType(0);
9469     assert(MvecLTypeInner->isArrayTy() &&
9470            "Data-type struct for vst2q should contain an array");
9471     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
9472            "Array member of return-type struct vld[24]q has wrong length");
9473     auto VecLType = MvecLTypeInner->getArrayElementType();
9474 
9475     Tys.push_back(VecLType);
9476 
9477     AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
9478     EmitAggExpr(E->getArg(1), MvecSlot);
9479     auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
9480     for (unsigned i = 0; i < NumVectors; i++)
9481       Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
9482 
9483     Function *F = CGM.getIntrinsic(IRIntr, ArrayRef(Tys));
9484     Value *ToReturn = nullptr;
9485     for (unsigned i = 0; i < NumVectors; i++) {
9486       Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
9487       ToReturn = Builder.CreateCall(F, Ops);
9488       Ops.pop_back();
9489     }
9490     return ToReturn;
9491   }
9492   }
9493   llvm_unreachable("unknown custom codegen type.");
9494 }
9495 
EmitARMCDEBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)9496 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
9497                                               const CallExpr *E,
9498                                               ReturnValueSlot ReturnValue,
9499                                               llvm::Triple::ArchType Arch) {
9500   switch (BuiltinID) {
9501   default:
9502     return nullptr;
9503 #include "clang/Basic/arm_cde_builtin_cg.inc"
9504   }
9505 }
9506 
EmitAArch64TblBuiltinExpr(CodeGenFunction & CGF,unsigned BuiltinID,const CallExpr * E,SmallVectorImpl<Value * > & Ops,llvm::Triple::ArchType Arch)9507 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
9508                                       const CallExpr *E,
9509                                       SmallVectorImpl<Value *> &Ops,
9510                                       llvm::Triple::ArchType Arch) {
9511   unsigned int Int = 0;
9512   const char *s = nullptr;
9513 
9514   switch (BuiltinID) {
9515   default:
9516     return nullptr;
9517   case NEON::BI__builtin_neon_vtbl1_v:
9518   case NEON::BI__builtin_neon_vqtbl1_v:
9519   case NEON::BI__builtin_neon_vqtbl1q_v:
9520   case NEON::BI__builtin_neon_vtbl2_v:
9521   case NEON::BI__builtin_neon_vqtbl2_v:
9522   case NEON::BI__builtin_neon_vqtbl2q_v:
9523   case NEON::BI__builtin_neon_vtbl3_v:
9524   case NEON::BI__builtin_neon_vqtbl3_v:
9525   case NEON::BI__builtin_neon_vqtbl3q_v:
9526   case NEON::BI__builtin_neon_vtbl4_v:
9527   case NEON::BI__builtin_neon_vqtbl4_v:
9528   case NEON::BI__builtin_neon_vqtbl4q_v:
9529     break;
9530   case NEON::BI__builtin_neon_vtbx1_v:
9531   case NEON::BI__builtin_neon_vqtbx1_v:
9532   case NEON::BI__builtin_neon_vqtbx1q_v:
9533   case NEON::BI__builtin_neon_vtbx2_v:
9534   case NEON::BI__builtin_neon_vqtbx2_v:
9535   case NEON::BI__builtin_neon_vqtbx2q_v:
9536   case NEON::BI__builtin_neon_vtbx3_v:
9537   case NEON::BI__builtin_neon_vqtbx3_v:
9538   case NEON::BI__builtin_neon_vqtbx3q_v:
9539   case NEON::BI__builtin_neon_vtbx4_v:
9540   case NEON::BI__builtin_neon_vqtbx4_v:
9541   case NEON::BI__builtin_neon_vqtbx4q_v:
9542     break;
9543   }
9544 
9545   assert(E->getNumArgs() >= 3);
9546 
9547   // Get the last argument, which specifies the vector type.
9548   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
9549   std::optional<llvm::APSInt> Result =
9550       Arg->getIntegerConstantExpr(CGF.getContext());
9551   if (!Result)
9552     return nullptr;
9553 
9554   // Determine the type of this overloaded NEON intrinsic.
9555   NeonTypeFlags Type = Result->getZExtValue();
9556   llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
9557   if (!Ty)
9558     return nullptr;
9559 
9560   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9561 
9562   // AArch64 scalar builtins are not overloaded, they do not have an extra
9563   // argument that specifies the vector type, need to handle each case.
9564   switch (BuiltinID) {
9565   case NEON::BI__builtin_neon_vtbl1_v: {
9566     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 1), nullptr, Ops[1],
9567                               Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
9568   }
9569   case NEON::BI__builtin_neon_vtbl2_v: {
9570     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 2), nullptr, Ops[2],
9571                               Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
9572   }
9573   case NEON::BI__builtin_neon_vtbl3_v: {
9574     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 3), nullptr, Ops[3],
9575                               Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
9576   }
9577   case NEON::BI__builtin_neon_vtbl4_v: {
9578     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 4), nullptr, Ops[4],
9579                               Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
9580   }
9581   case NEON::BI__builtin_neon_vtbx1_v: {
9582     Value *TblRes =
9583         packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 1), nullptr, Ops[2], Ty,
9584                            Intrinsic::aarch64_neon_tbl1, "vtbl1");
9585 
9586     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
9587     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
9588     CmpRes = Builder.CreateSExt(CmpRes, Ty);
9589 
9590     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
9591     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
9592     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
9593   }
9594   case NEON::BI__builtin_neon_vtbx2_v: {
9595     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 2), Ops[0], Ops[3],
9596                               Ty, Intrinsic::aarch64_neon_tbx1, "vtbx1");
9597   }
9598   case NEON::BI__builtin_neon_vtbx3_v: {
9599     Value *TblRes =
9600         packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 3), nullptr, Ops[4], Ty,
9601                            Intrinsic::aarch64_neon_tbl2, "vtbl2");
9602 
9603     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
9604     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
9605                                            TwentyFourV);
9606     CmpRes = Builder.CreateSExt(CmpRes, Ty);
9607 
9608     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
9609     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
9610     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
9611   }
9612   case NEON::BI__builtin_neon_vtbx4_v: {
9613     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 4), Ops[0], Ops[5],
9614                               Ty, Intrinsic::aarch64_neon_tbx2, "vtbx2");
9615   }
9616   case NEON::BI__builtin_neon_vqtbl1_v:
9617   case NEON::BI__builtin_neon_vqtbl1q_v:
9618     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
9619   case NEON::BI__builtin_neon_vqtbl2_v:
9620   case NEON::BI__builtin_neon_vqtbl2q_v: {
9621     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
9622   case NEON::BI__builtin_neon_vqtbl3_v:
9623   case NEON::BI__builtin_neon_vqtbl3q_v:
9624     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
9625   case NEON::BI__builtin_neon_vqtbl4_v:
9626   case NEON::BI__builtin_neon_vqtbl4q_v:
9627     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
9628   case NEON::BI__builtin_neon_vqtbx1_v:
9629   case NEON::BI__builtin_neon_vqtbx1q_v:
9630     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
9631   case NEON::BI__builtin_neon_vqtbx2_v:
9632   case NEON::BI__builtin_neon_vqtbx2q_v:
9633     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
9634   case NEON::BI__builtin_neon_vqtbx3_v:
9635   case NEON::BI__builtin_neon_vqtbx3q_v:
9636     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
9637   case NEON::BI__builtin_neon_vqtbx4_v:
9638   case NEON::BI__builtin_neon_vqtbx4q_v:
9639     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
9640   }
9641   }
9642 
9643   if (!Int)
9644     return nullptr;
9645 
9646   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
9647   return CGF.EmitNeonCall(F, Ops, s);
9648 }
9649 
vectorWrapScalar16(Value * Op)9650 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
9651   auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
9652   Op = Builder.CreateBitCast(Op, Int16Ty);
9653   Value *V = PoisonValue::get(VTy);
9654   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
9655   Op = Builder.CreateInsertElement(V, Op, CI);
9656   return Op;
9657 }
9658 
9659 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
9660 /// access builtin.  Only required if it can't be inferred from the base pointer
9661 /// operand.
SVEBuiltinMemEltTy(const SVETypeFlags & TypeFlags)9662 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) {
9663   switch (TypeFlags.getMemEltType()) {
9664   case SVETypeFlags::MemEltTyDefault:
9665     return getEltType(TypeFlags);
9666   case SVETypeFlags::MemEltTyInt8:
9667     return Builder.getInt8Ty();
9668   case SVETypeFlags::MemEltTyInt16:
9669     return Builder.getInt16Ty();
9670   case SVETypeFlags::MemEltTyInt32:
9671     return Builder.getInt32Ty();
9672   case SVETypeFlags::MemEltTyInt64:
9673     return Builder.getInt64Ty();
9674   }
9675   llvm_unreachable("Unknown MemEltType");
9676 }
9677 
getEltType(const SVETypeFlags & TypeFlags)9678 llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) {
9679   switch (TypeFlags.getEltType()) {
9680   default:
9681     llvm_unreachable("Invalid SVETypeFlag!");
9682 
9683   case SVETypeFlags::EltTyInt8:
9684     return Builder.getInt8Ty();
9685   case SVETypeFlags::EltTyInt16:
9686     return Builder.getInt16Ty();
9687   case SVETypeFlags::EltTyInt32:
9688     return Builder.getInt32Ty();
9689   case SVETypeFlags::EltTyInt64:
9690     return Builder.getInt64Ty();
9691   case SVETypeFlags::EltTyInt128:
9692     return Builder.getInt128Ty();
9693 
9694   case SVETypeFlags::EltTyFloat16:
9695     return Builder.getHalfTy();
9696   case SVETypeFlags::EltTyFloat32:
9697     return Builder.getFloatTy();
9698   case SVETypeFlags::EltTyFloat64:
9699     return Builder.getDoubleTy();
9700 
9701   case SVETypeFlags::EltTyBFloat16:
9702     return Builder.getBFloatTy();
9703 
9704   case SVETypeFlags::EltTyBool8:
9705   case SVETypeFlags::EltTyBool16:
9706   case SVETypeFlags::EltTyBool32:
9707   case SVETypeFlags::EltTyBool64:
9708     return Builder.getInt1Ty();
9709   }
9710 }
9711 
9712 // Return the llvm predicate vector type corresponding to the specified element
9713 // TypeFlags.
9714 llvm::ScalableVectorType *
getSVEPredType(const SVETypeFlags & TypeFlags)9715 CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) {
9716   switch (TypeFlags.getEltType()) {
9717   default: llvm_unreachable("Unhandled SVETypeFlag!");
9718 
9719   case SVETypeFlags::EltTyInt8:
9720     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
9721   case SVETypeFlags::EltTyInt16:
9722     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9723   case SVETypeFlags::EltTyInt32:
9724     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9725   case SVETypeFlags::EltTyInt64:
9726     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9727 
9728   case SVETypeFlags::EltTyBFloat16:
9729     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9730   case SVETypeFlags::EltTyFloat16:
9731     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9732   case SVETypeFlags::EltTyFloat32:
9733     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9734   case SVETypeFlags::EltTyFloat64:
9735     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9736 
9737   case SVETypeFlags::EltTyBool8:
9738     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
9739   case SVETypeFlags::EltTyBool16:
9740     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9741   case SVETypeFlags::EltTyBool32:
9742     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9743   case SVETypeFlags::EltTyBool64:
9744     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9745   }
9746 }
9747 
9748 // Return the llvm vector type corresponding to the specified element TypeFlags.
9749 llvm::ScalableVectorType *
getSVEType(const SVETypeFlags & TypeFlags)9750 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
9751   switch (TypeFlags.getEltType()) {
9752   default:
9753     llvm_unreachable("Invalid SVETypeFlag!");
9754 
9755   case SVETypeFlags::EltTyInt8:
9756     return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
9757   case SVETypeFlags::EltTyInt16:
9758     return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
9759   case SVETypeFlags::EltTyInt32:
9760     return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
9761   case SVETypeFlags::EltTyInt64:
9762     return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
9763 
9764   case SVETypeFlags::EltTyFloat16:
9765     return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
9766   case SVETypeFlags::EltTyBFloat16:
9767     return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
9768   case SVETypeFlags::EltTyFloat32:
9769     return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
9770   case SVETypeFlags::EltTyFloat64:
9771     return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
9772 
9773   case SVETypeFlags::EltTyBool8:
9774     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
9775   case SVETypeFlags::EltTyBool16:
9776     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9777   case SVETypeFlags::EltTyBool32:
9778     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9779   case SVETypeFlags::EltTyBool64:
9780     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9781   }
9782 }
9783 
9784 llvm::Value *
EmitSVEAllTruePred(const SVETypeFlags & TypeFlags)9785 CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) {
9786   Function *Ptrue =
9787       CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
9788   return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
9789 }
9790 
9791 constexpr unsigned SVEBitsPerBlock = 128;
9792 
getSVEVectorForElementType(llvm::Type * EltTy)9793 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
9794   unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
9795   return llvm::ScalableVectorType::get(EltTy, NumElts);
9796 }
9797 
9798 // Reinterpret the input predicate so that it can be used to correctly isolate
9799 // the elements of the specified datatype.
EmitSVEPredicateCast(Value * Pred,llvm::ScalableVectorType * VTy)9800 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
9801                                              llvm::ScalableVectorType *VTy) {
9802 
9803   if (isa<TargetExtType>(Pred->getType()) &&
9804       cast<TargetExtType>(Pred->getType())->getName() == "aarch64.svcount")
9805     return Pred;
9806 
9807   auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
9808   if (Pred->getType() == RTy)
9809     return Pred;
9810 
9811   unsigned IntID;
9812   llvm::Type *IntrinsicTy;
9813   switch (VTy->getMinNumElements()) {
9814   default:
9815     llvm_unreachable("unsupported element count!");
9816   case 1:
9817   case 2:
9818   case 4:
9819   case 8:
9820     IntID = Intrinsic::aarch64_sve_convert_from_svbool;
9821     IntrinsicTy = RTy;
9822     break;
9823   case 16:
9824     IntID = Intrinsic::aarch64_sve_convert_to_svbool;
9825     IntrinsicTy = Pred->getType();
9826     break;
9827   }
9828 
9829   Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
9830   Value *C = Builder.CreateCall(F, Pred);
9831   assert(C->getType() == RTy && "Unexpected return type!");
9832   return C;
9833 }
9834 
EmitSVEGatherLoad(const SVETypeFlags & TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)9835 Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
9836                                           SmallVectorImpl<Value *> &Ops,
9837                                           unsigned IntID) {
9838   auto *ResultTy = getSVEType(TypeFlags);
9839   auto *OverloadedTy =
9840       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
9841 
9842   Function *F = nullptr;
9843   if (Ops[1]->getType()->isVectorTy())
9844     // This is the "vector base, scalar offset" case. In order to uniquely
9845     // map this built-in to an LLVM IR intrinsic, we need both the return type
9846     // and the type of the vector base.
9847     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
9848   else
9849     // This is the "scalar base, vector offset case". The type of the offset
9850     // is encoded in the name of the intrinsic. We only need to specify the
9851     // return type in order to uniquely map this built-in to an LLVM IR
9852     // intrinsic.
9853     F = CGM.getIntrinsic(IntID, OverloadedTy);
9854 
9855   // At the ACLE level there's only one predicate type, svbool_t, which is
9856   // mapped to <n x 16 x i1>. However, this might be incompatible with the
9857   // actual type being loaded. For example, when loading doubles (i64) the
9858   // predicate should be <n x 2 x i1> instead. At the IR level the type of
9859   // the predicate and the data being loaded must match. Cast to the type
9860   // expected by the intrinsic. The intrinsic itself should be defined in
9861   // a way than enforces relations between parameter types.
9862   Ops[0] = EmitSVEPredicateCast(
9863       Ops[0], cast<llvm::ScalableVectorType>(F->getArg(0)->getType()));
9864 
9865   // Pass 0 when the offset is missing. This can only be applied when using
9866   // the "vector base" addressing mode for which ACLE allows no offset. The
9867   // corresponding LLVM IR always requires an offset.
9868   if (Ops.size() == 2) {
9869     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
9870     Ops.push_back(ConstantInt::get(Int64Ty, 0));
9871   }
9872 
9873   // For "vector base, scalar index" scale the index so that it becomes a
9874   // scalar offset.
9875   if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
9876     unsigned BytesPerElt =
9877         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
9878     Ops[2] = Builder.CreateShl(Ops[2], Log2_32(BytesPerElt));
9879   }
9880 
9881   Value *Call = Builder.CreateCall(F, Ops);
9882 
9883   // The following sext/zext is only needed when ResultTy != OverloadedTy. In
9884   // other cases it's folded into a nop.
9885   return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
9886                                   : Builder.CreateSExt(Call, ResultTy);
9887 }
9888 
EmitSVEScatterStore(const SVETypeFlags & TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)9889 Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
9890                                             SmallVectorImpl<Value *> &Ops,
9891                                             unsigned IntID) {
9892   auto *SrcDataTy = getSVEType(TypeFlags);
9893   auto *OverloadedTy =
9894       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
9895 
9896   // In ACLE the source data is passed in the last argument, whereas in LLVM IR
9897   // it's the first argument. Move it accordingly.
9898   Ops.insert(Ops.begin(), Ops.pop_back_val());
9899 
9900   Function *F = nullptr;
9901   if (Ops[2]->getType()->isVectorTy())
9902     // This is the "vector base, scalar offset" case. In order to uniquely
9903     // map this built-in to an LLVM IR intrinsic, we need both the return type
9904     // and the type of the vector base.
9905     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
9906   else
9907     // This is the "scalar base, vector offset case". The type of the offset
9908     // is encoded in the name of the intrinsic. We only need to specify the
9909     // return type in order to uniquely map this built-in to an LLVM IR
9910     // intrinsic.
9911     F = CGM.getIntrinsic(IntID, OverloadedTy);
9912 
9913   // Pass 0 when the offset is missing. This can only be applied when using
9914   // the "vector base" addressing mode for which ACLE allows no offset. The
9915   // corresponding LLVM IR always requires an offset.
9916   if (Ops.size() == 3) {
9917     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
9918     Ops.push_back(ConstantInt::get(Int64Ty, 0));
9919   }
9920 
9921   // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
9922   // folded into a nop.
9923   Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
9924 
9925   // At the ACLE level there's only one predicate type, svbool_t, which is
9926   // mapped to <n x 16 x i1>. However, this might be incompatible with the
9927   // actual type being stored. For example, when storing doubles (i64) the
9928   // predicated should be <n x 2 x i1> instead. At the IR level the type of
9929   // the predicate and the data being stored must match. Cast to the type
9930   // expected by the intrinsic. The intrinsic itself should be defined in
9931   // a way that enforces relations between parameter types.
9932   Ops[1] = EmitSVEPredicateCast(
9933       Ops[1], cast<llvm::ScalableVectorType>(F->getArg(1)->getType()));
9934 
9935   // For "vector base, scalar index" scale the index so that it becomes a
9936   // scalar offset.
9937   if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
9938     unsigned BytesPerElt =
9939         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
9940     Ops[3] = Builder.CreateShl(Ops[3], Log2_32(BytesPerElt));
9941   }
9942 
9943   return Builder.CreateCall(F, Ops);
9944 }
9945 
EmitSVEGatherPrefetch(const SVETypeFlags & TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)9946 Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
9947                                               SmallVectorImpl<Value *> &Ops,
9948                                               unsigned IntID) {
9949   // The gather prefetches are overloaded on the vector input - this can either
9950   // be the vector of base addresses or vector of offsets.
9951   auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
9952   if (!OverloadedTy)
9953     OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
9954 
9955   // Cast the predicate from svbool_t to the right number of elements.
9956   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
9957 
9958   // vector + imm addressing modes
9959   if (Ops[1]->getType()->isVectorTy()) {
9960     if (Ops.size() == 3) {
9961       // Pass 0 for 'vector+imm' when the index is omitted.
9962       Ops.push_back(ConstantInt::get(Int64Ty, 0));
9963 
9964       // The sv_prfop is the last operand in the builtin and IR intrinsic.
9965       std::swap(Ops[2], Ops[3]);
9966     } else {
9967       // Index needs to be passed as scaled offset.
9968       llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
9969       unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
9970       if (BytesPerElt > 1)
9971         Ops[2] = Builder.CreateShl(Ops[2], Log2_32(BytesPerElt));
9972     }
9973   }
9974 
9975   Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
9976   return Builder.CreateCall(F, Ops);
9977 }
9978 
EmitSVEStructLoad(const SVETypeFlags & TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)9979 Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
9980                                           SmallVectorImpl<Value*> &Ops,
9981                                           unsigned IntID) {
9982   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
9983 
9984   unsigned N;
9985   switch (IntID) {
9986   case Intrinsic::aarch64_sve_ld2_sret:
9987   case Intrinsic::aarch64_sve_ld1_pn_x2:
9988   case Intrinsic::aarch64_sve_ldnt1_pn_x2:
9989   case Intrinsic::aarch64_sve_ld2q_sret:
9990     N = 2;
9991     break;
9992   case Intrinsic::aarch64_sve_ld3_sret:
9993   case Intrinsic::aarch64_sve_ld3q_sret:
9994     N = 3;
9995     break;
9996   case Intrinsic::aarch64_sve_ld4_sret:
9997   case Intrinsic::aarch64_sve_ld1_pn_x4:
9998   case Intrinsic::aarch64_sve_ldnt1_pn_x4:
9999   case Intrinsic::aarch64_sve_ld4q_sret:
10000     N = 4;
10001     break;
10002   default:
10003     llvm_unreachable("unknown intrinsic!");
10004   }
10005   auto RetTy = llvm::VectorType::get(VTy->getElementType(),
10006                                      VTy->getElementCount() * N);
10007 
10008   Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
10009   Value *BasePtr = Ops[1];
10010 
10011   // Does the load have an offset?
10012   if (Ops.size() > 2)
10013     BasePtr = Builder.CreateGEP(VTy, BasePtr, Ops[2]);
10014 
10015   Function *F = CGM.getIntrinsic(IntID, {VTy});
10016   Value *Call = Builder.CreateCall(F, {Predicate, BasePtr});
10017   unsigned MinElts = VTy->getMinNumElements();
10018   Value *Ret = llvm::PoisonValue::get(RetTy);
10019   for (unsigned I = 0; I < N; I++) {
10020     Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
10021     Value *SRet = Builder.CreateExtractValue(Call, I);
10022     Ret = Builder.CreateInsertVector(RetTy, Ret, SRet, Idx);
10023   }
10024   return Ret;
10025 }
10026 
EmitSVEStructStore(const SVETypeFlags & TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)10027 Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags,
10028                                            SmallVectorImpl<Value*> &Ops,
10029                                            unsigned IntID) {
10030   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
10031 
10032   unsigned N;
10033   switch (IntID) {
10034   case Intrinsic::aarch64_sve_st2:
10035   case Intrinsic::aarch64_sve_st1_pn_x2:
10036   case Intrinsic::aarch64_sve_stnt1_pn_x2:
10037   case Intrinsic::aarch64_sve_st2q:
10038     N = 2;
10039     break;
10040   case Intrinsic::aarch64_sve_st3:
10041   case Intrinsic::aarch64_sve_st3q:
10042     N = 3;
10043     break;
10044   case Intrinsic::aarch64_sve_st4:
10045   case Intrinsic::aarch64_sve_st1_pn_x4:
10046   case Intrinsic::aarch64_sve_stnt1_pn_x4:
10047   case Intrinsic::aarch64_sve_st4q:
10048     N = 4;
10049     break;
10050   default:
10051     llvm_unreachable("unknown intrinsic!");
10052   }
10053 
10054   Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
10055   Value *BasePtr = Ops[1];
10056 
10057   // Does the store have an offset?
10058   if (Ops.size() > (2 + N))
10059     BasePtr = Builder.CreateGEP(VTy, BasePtr, Ops[2]);
10060 
10061   // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
10062   // need to break up the tuple vector.
10063   SmallVector<llvm::Value*, 5> Operands;
10064   for (unsigned I = Ops.size() - N; I < Ops.size(); ++I)
10065     Operands.push_back(Ops[I]);
10066   Operands.append({Predicate, BasePtr});
10067   Function *F = CGM.getIntrinsic(IntID, { VTy });
10068 
10069   return Builder.CreateCall(F, Operands);
10070 }
10071 
10072 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
10073 // svpmullt_pair intrinsics, with the exception that their results are bitcast
10074 // to a wider type.
EmitSVEPMull(const SVETypeFlags & TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID)10075 Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags,
10076                                      SmallVectorImpl<Value *> &Ops,
10077                                      unsigned BuiltinID) {
10078   // Splat scalar operand to vector (intrinsics with _n infix)
10079   if (TypeFlags.hasSplatOperand()) {
10080     unsigned OpNo = TypeFlags.getSplatOperand();
10081     Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
10082   }
10083 
10084   // The pair-wise function has a narrower overloaded type.
10085   Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
10086   Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
10087 
10088   // Now bitcast to the wider result type.
10089   llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
10090   return EmitSVEReinterpret(Call, Ty);
10091 }
10092 
EmitSVEMovl(const SVETypeFlags & TypeFlags,ArrayRef<Value * > Ops,unsigned BuiltinID)10093 Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags,
10094                                     ArrayRef<Value *> Ops, unsigned BuiltinID) {
10095   llvm::Type *OverloadedTy = getSVEType(TypeFlags);
10096   Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
10097   return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
10098 }
10099 
EmitSVEPrefetchLoad(const SVETypeFlags & TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID)10100 Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
10101                                             SmallVectorImpl<Value *> &Ops,
10102                                             unsigned BuiltinID) {
10103   auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
10104   auto *VectorTy = getSVEVectorForElementType(MemEltTy);
10105   auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
10106 
10107   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
10108   Value *BasePtr = Ops[1];
10109 
10110   // Implement the index operand if not omitted.
10111   if (Ops.size() > 3)
10112     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
10113 
10114   Value *PrfOp = Ops.back();
10115 
10116   Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
10117   return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
10118 }
10119 
EmitSVEMaskedLoad(const CallExpr * E,llvm::Type * ReturnTy,SmallVectorImpl<Value * > & Ops,unsigned IntrinsicID,bool IsZExtReturn)10120 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
10121                                           llvm::Type *ReturnTy,
10122                                           SmallVectorImpl<Value *> &Ops,
10123                                           unsigned IntrinsicID,
10124                                           bool IsZExtReturn) {
10125   QualType LangPTy = E->getArg(1)->getType();
10126   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
10127       LangPTy->castAs<PointerType>()->getPointeeType());
10128 
10129   // The vector type that is returned may be different from the
10130   // eventual type loaded from memory.
10131   auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
10132   llvm::ScalableVectorType *MemoryTy = nullptr;
10133   llvm::ScalableVectorType *PredTy = nullptr;
10134   bool IsQuadLoad = false;
10135   switch (IntrinsicID) {
10136   case Intrinsic::aarch64_sve_ld1uwq:
10137   case Intrinsic::aarch64_sve_ld1udq:
10138     MemoryTy = llvm::ScalableVectorType::get(MemEltTy, 1);
10139     PredTy = llvm::ScalableVectorType::get(
10140         llvm::Type::getInt1Ty(getLLVMContext()), 1);
10141     IsQuadLoad = true;
10142     break;
10143   default:
10144     MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
10145     PredTy = MemoryTy;
10146     break;
10147   }
10148 
10149   Value *Predicate = EmitSVEPredicateCast(Ops[0], PredTy);
10150   Value *BasePtr = Ops[1];
10151 
10152   // Does the load have an offset?
10153   if (Ops.size() > 2)
10154     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
10155 
10156   Function *F = CGM.getIntrinsic(IntrinsicID, IsQuadLoad ? VectorTy : MemoryTy);
10157   auto *Load =
10158       cast<llvm::Instruction>(Builder.CreateCall(F, {Predicate, BasePtr}));
10159   auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
10160   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
10161 
10162   if (IsQuadLoad)
10163     return Load;
10164 
10165   return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
10166                       : Builder.CreateSExt(Load, VectorTy);
10167 }
10168 
EmitSVEMaskedStore(const CallExpr * E,SmallVectorImpl<Value * > & Ops,unsigned IntrinsicID)10169 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
10170                                            SmallVectorImpl<Value *> &Ops,
10171                                            unsigned IntrinsicID) {
10172   QualType LangPTy = E->getArg(1)->getType();
10173   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
10174       LangPTy->castAs<PointerType>()->getPointeeType());
10175 
10176   // The vector type that is stored may be different from the
10177   // eventual type stored to memory.
10178   auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
10179   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
10180 
10181   auto PredTy = MemoryTy;
10182   auto AddrMemoryTy = MemoryTy;
10183   bool IsQuadStore = false;
10184 
10185   switch (IntrinsicID) {
10186   case Intrinsic::aarch64_sve_st1wq:
10187   case Intrinsic::aarch64_sve_st1dq:
10188     AddrMemoryTy = llvm::ScalableVectorType::get(MemEltTy, 1);
10189     PredTy =
10190         llvm::ScalableVectorType::get(IntegerType::get(getLLVMContext(), 1), 1);
10191     IsQuadStore = true;
10192     break;
10193   default:
10194     break;
10195   }
10196   Value *Predicate = EmitSVEPredicateCast(Ops[0], PredTy);
10197   Value *BasePtr = Ops[1];
10198 
10199   // Does the store have an offset?
10200   if (Ops.size() == 4)
10201     BasePtr = Builder.CreateGEP(AddrMemoryTy, BasePtr, Ops[2]);
10202 
10203   // Last value is always the data
10204   Value *Val =
10205       IsQuadStore ? Ops.back() : Builder.CreateTrunc(Ops.back(), MemoryTy);
10206 
10207   Function *F =
10208       CGM.getIntrinsic(IntrinsicID, IsQuadStore ? VectorTy : MemoryTy);
10209   auto *Store =
10210       cast<llvm::Instruction>(Builder.CreateCall(F, {Val, Predicate, BasePtr}));
10211   auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
10212   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
10213   return Store;
10214 }
10215 
EmitSMELd1St1(const SVETypeFlags & TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)10216 Value *CodeGenFunction::EmitSMELd1St1(const SVETypeFlags &TypeFlags,
10217                                       SmallVectorImpl<Value *> &Ops,
10218                                       unsigned IntID) {
10219   Ops[2] = EmitSVEPredicateCast(
10220       Ops[2], getSVEVectorForElementType(SVEBuiltinMemEltTy(TypeFlags)));
10221 
10222   SmallVector<Value *> NewOps;
10223   NewOps.push_back(Ops[2]);
10224 
10225   llvm::Value *BasePtr = Ops[3];
10226 
10227   // If the intrinsic contains the vnum parameter, multiply it with the vector
10228   // size in bytes.
10229   if (Ops.size() == 5) {
10230     Function *StreamingVectorLength =
10231         CGM.getIntrinsic(Intrinsic::aarch64_sme_cntsb);
10232     llvm::Value *StreamingVectorLengthCall =
10233         Builder.CreateCall(StreamingVectorLength);
10234     llvm::Value *Mulvl =
10235         Builder.CreateMul(StreamingVectorLengthCall, Ops[4], "mulvl");
10236     // The type of the ptr parameter is void *, so use Int8Ty here.
10237     BasePtr = Builder.CreateGEP(Int8Ty, Ops[3], Mulvl);
10238   }
10239   NewOps.push_back(BasePtr);
10240   NewOps.push_back(Ops[0]);
10241   NewOps.push_back(Ops[1]);
10242   Function *F = CGM.getIntrinsic(IntID);
10243   return Builder.CreateCall(F, NewOps);
10244 }
10245 
EmitSMEReadWrite(const SVETypeFlags & TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)10246 Value *CodeGenFunction::EmitSMEReadWrite(const SVETypeFlags &TypeFlags,
10247                                          SmallVectorImpl<Value *> &Ops,
10248                                          unsigned IntID) {
10249   auto *VecTy = getSVEType(TypeFlags);
10250   Function *F = CGM.getIntrinsic(IntID, VecTy);
10251   if (TypeFlags.isReadZA())
10252     Ops[1] = EmitSVEPredicateCast(Ops[1], VecTy);
10253   else if (TypeFlags.isWriteZA())
10254     Ops[2] = EmitSVEPredicateCast(Ops[2], VecTy);
10255   return Builder.CreateCall(F, Ops);
10256 }
10257 
EmitSMEZero(const SVETypeFlags & TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)10258 Value *CodeGenFunction::EmitSMEZero(const SVETypeFlags &TypeFlags,
10259                                     SmallVectorImpl<Value *> &Ops,
10260                                     unsigned IntID) {
10261   // svzero_za() intrinsic zeros the entire za tile and has no paramters.
10262   if (Ops.size() == 0)
10263     Ops.push_back(llvm::ConstantInt::get(Int32Ty, 255));
10264   Function *F = CGM.getIntrinsic(IntID, {});
10265   return Builder.CreateCall(F, Ops);
10266 }
10267 
EmitSMELdrStr(const SVETypeFlags & TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)10268 Value *CodeGenFunction::EmitSMELdrStr(const SVETypeFlags &TypeFlags,
10269                                       SmallVectorImpl<Value *> &Ops,
10270                                       unsigned IntID) {
10271   if (Ops.size() == 2)
10272     Ops.push_back(Builder.getInt32(0));
10273   else
10274     Ops[2] = Builder.CreateIntCast(Ops[2], Int32Ty, true);
10275   Function *F = CGM.getIntrinsic(IntID, {});
10276   return Builder.CreateCall(F, Ops);
10277 }
10278 
10279 // Limit the usage of scalable llvm IR generated by the ACLE by using the
10280 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
EmitSVEDupX(Value * Scalar,llvm::Type * Ty)10281 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
10282   return Builder.CreateVectorSplat(
10283       cast<llvm::VectorType>(Ty)->getElementCount(), Scalar);
10284 }
10285 
EmitSVEDupX(Value * Scalar)10286 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
10287   return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
10288 }
10289 
EmitSVEReinterpret(Value * Val,llvm::Type * Ty)10290 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
10291   // FIXME: For big endian this needs an additional REV, or needs a separate
10292   // intrinsic that is code-generated as a no-op, because the LLVM bitcast
10293   // instruction is defined as 'bitwise' equivalent from memory point of
10294   // view (when storing/reloading), whereas the svreinterpret builtin
10295   // implements bitwise equivalent cast from register point of view.
10296   // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
10297   return Builder.CreateBitCast(Val, Ty);
10298 }
10299 
InsertExplicitZeroOperand(CGBuilderTy & Builder,llvm::Type * Ty,SmallVectorImpl<Value * > & Ops)10300 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
10301                                       SmallVectorImpl<Value *> &Ops) {
10302   auto *SplatZero = Constant::getNullValue(Ty);
10303   Ops.insert(Ops.begin(), SplatZero);
10304 }
10305 
InsertExplicitUndefOperand(CGBuilderTy & Builder,llvm::Type * Ty,SmallVectorImpl<Value * > & Ops)10306 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
10307                                        SmallVectorImpl<Value *> &Ops) {
10308   auto *SplatUndef = UndefValue::get(Ty);
10309   Ops.insert(Ops.begin(), SplatUndef);
10310 }
10311 
10312 SmallVector<llvm::Type *, 2>
getSVEOverloadTypes(const SVETypeFlags & TypeFlags,llvm::Type * ResultType,ArrayRef<Value * > Ops)10313 CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags,
10314                                      llvm::Type *ResultType,
10315                                      ArrayRef<Value *> Ops) {
10316   if (TypeFlags.isOverloadNone())
10317     return {};
10318 
10319   llvm::Type *DefaultType = getSVEType(TypeFlags);
10320 
10321   if (TypeFlags.isOverloadWhileOrMultiVecCvt())
10322     return {DefaultType, Ops[1]->getType()};
10323 
10324   if (TypeFlags.isOverloadWhileRW())
10325     return {getSVEPredType(TypeFlags), Ops[0]->getType()};
10326 
10327   if (TypeFlags.isOverloadCvt())
10328     return {Ops[0]->getType(), Ops.back()->getType()};
10329 
10330   if (TypeFlags.isReductionQV() && !ResultType->isScalableTy() &&
10331       ResultType->isVectorTy())
10332     return {ResultType, Ops[1]->getType()};
10333 
10334   assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
10335   return {DefaultType};
10336 }
10337 
EmitSVETupleSetOrGet(const SVETypeFlags & TypeFlags,llvm::Type * Ty,ArrayRef<Value * > Ops)10338 Value *CodeGenFunction::EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
10339                                              llvm::Type *Ty,
10340                                              ArrayRef<Value *> Ops) {
10341   assert((TypeFlags.isTupleSet() || TypeFlags.isTupleGet()) &&
10342          "Expects TypleFlags.isTupleSet() or TypeFlags.isTupleGet()");
10343 
10344   unsigned I = cast<ConstantInt>(Ops[1])->getSExtValue();
10345   auto *SingleVecTy = dyn_cast<llvm::ScalableVectorType>(
10346       TypeFlags.isTupleSet() ? Ops[2]->getType() : Ty);
10347 
10348   if (!SingleVecTy)
10349     return nullptr;
10350 
10351   Value *Idx = ConstantInt::get(CGM.Int64Ty,
10352                                 I * SingleVecTy->getMinNumElements());
10353 
10354   if (TypeFlags.isTupleSet())
10355     return Builder.CreateInsertVector(Ty, Ops[0], Ops[2], Idx);
10356   return Builder.CreateExtractVector(Ty, Ops[0], Idx);
10357 }
10358 
EmitSVETupleCreate(const SVETypeFlags & TypeFlags,llvm::Type * Ty,ArrayRef<Value * > Ops)10359 Value *CodeGenFunction::EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
10360                                              llvm::Type *Ty,
10361                                              ArrayRef<Value *> Ops) {
10362   assert(TypeFlags.isTupleCreate() && "Expects TypleFlag isTupleCreate");
10363 
10364   auto *SrcTy = dyn_cast<llvm::ScalableVectorType>(Ops[0]->getType());
10365 
10366   if (!SrcTy)
10367     return nullptr;
10368 
10369   unsigned MinElts = SrcTy->getMinNumElements();
10370   Value *Call = llvm::PoisonValue::get(Ty);
10371   for (unsigned I = 0; I < Ops.size(); I++) {
10372     Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
10373     Call = Builder.CreateInsertVector(Ty, Call, Ops[I], Idx);
10374   }
10375 
10376   return Call;
10377 }
10378 
FormSVEBuiltinResult(Value * Call)10379 Value *CodeGenFunction::FormSVEBuiltinResult(Value *Call) {
10380   // Multi-vector results should be broken up into a single (wide) result
10381   // vector.
10382   auto *StructTy = dyn_cast<StructType>(Call->getType());
10383   if (!StructTy)
10384     return Call;
10385 
10386   auto *VTy = dyn_cast<ScalableVectorType>(StructTy->getTypeAtIndex(0U));
10387   if (!VTy)
10388     return Call;
10389   unsigned N = StructTy->getNumElements();
10390 
10391   // We may need to emit a cast to a svbool_t
10392   bool IsPredTy = VTy->getElementType()->isIntegerTy(1);
10393   unsigned MinElts = IsPredTy ? 16 : VTy->getMinNumElements();
10394 
10395   ScalableVectorType *WideVTy =
10396       ScalableVectorType::get(VTy->getElementType(), MinElts * N);
10397   Value *Ret = llvm::PoisonValue::get(WideVTy);
10398   for (unsigned I = 0; I < N; ++I) {
10399     Value *SRet = Builder.CreateExtractValue(Call, I);
10400     assert(SRet->getType() == VTy && "Unexpected type for result value");
10401     Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
10402 
10403     if (IsPredTy)
10404       SRet = EmitSVEPredicateCast(
10405           SRet, ScalableVectorType::get(Builder.getInt1Ty(), 16));
10406 
10407     Ret = Builder.CreateInsertVector(WideVTy, Ret, SRet, Idx);
10408   }
10409   Call = Ret;
10410 
10411   return Call;
10412 }
10413 
GetAArch64SVEProcessedOperands(unsigned BuiltinID,const CallExpr * E,SmallVectorImpl<Value * > & Ops,SVETypeFlags TypeFlags)10414 void CodeGenFunction::GetAArch64SVEProcessedOperands(
10415     unsigned BuiltinID, const CallExpr *E, SmallVectorImpl<Value *> &Ops,
10416     SVETypeFlags TypeFlags) {
10417   // Find out if any arguments are required to be integer constant expressions.
10418   unsigned ICEArguments = 0;
10419   ASTContext::GetBuiltinTypeError Error;
10420   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
10421   assert(Error == ASTContext::GE_None && "Should not codegen an error");
10422 
10423   // Tuple set/get only requires one insert/extract vector, which is
10424   // created by EmitSVETupleSetOrGet.
10425   bool IsTupleGetOrSet = TypeFlags.isTupleSet() || TypeFlags.isTupleGet();
10426 
10427   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
10428     bool IsICE = ICEArguments & (1 << i);
10429     Value *Arg = EmitScalarExpr(E->getArg(i));
10430 
10431     if (IsICE) {
10432       // If this is required to be a constant, constant fold it so that we know
10433       // that the generated intrinsic gets a ConstantInt.
10434       std::optional<llvm::APSInt> Result =
10435           E->getArg(i)->getIntegerConstantExpr(getContext());
10436       assert(Result && "Expected argument to be a constant");
10437 
10438       // Immediates for SVE llvm intrinsics are always 32bit.  We can safely
10439       // truncate because the immediate has been range checked and no valid
10440       // immediate requires more than a handful of bits.
10441       *Result = Result->extOrTrunc(32);
10442       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
10443       continue;
10444     }
10445 
10446     if (IsTupleGetOrSet || !isa<ScalableVectorType>(Arg->getType())) {
10447       Ops.push_back(Arg);
10448       continue;
10449     }
10450 
10451     auto *VTy = cast<ScalableVectorType>(Arg->getType());
10452     unsigned MinElts = VTy->getMinNumElements();
10453     bool IsPred = VTy->getElementType()->isIntegerTy(1);
10454     unsigned N = (MinElts * VTy->getScalarSizeInBits()) / (IsPred ? 16 : 128);
10455 
10456     if (N == 1) {
10457       Ops.push_back(Arg);
10458       continue;
10459     }
10460 
10461     for (unsigned I = 0; I < N; ++I) {
10462       Value *Idx = ConstantInt::get(CGM.Int64Ty, (I * MinElts) / N);
10463       auto *NewVTy =
10464           ScalableVectorType::get(VTy->getElementType(), MinElts / N);
10465       Ops.push_back(Builder.CreateExtractVector(NewVTy, Arg, Idx));
10466     }
10467   }
10468 }
10469 
EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,const CallExpr * E)10470 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
10471                                                   const CallExpr *E) {
10472   llvm::Type *Ty = ConvertType(E->getType());
10473   if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
10474       BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64_x4) {
10475     Value *Val = EmitScalarExpr(E->getArg(0));
10476     return EmitSVEReinterpret(Val, Ty);
10477   }
10478 
10479   auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
10480                                               AArch64SVEIntrinsicsProvenSorted);
10481 
10482   llvm::SmallVector<Value *, 4> Ops;
10483   SVETypeFlags TypeFlags(Builtin->TypeModifier);
10484   GetAArch64SVEProcessedOperands(BuiltinID, E, Ops, TypeFlags);
10485 
10486   if (TypeFlags.isLoad())
10487     return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
10488                              TypeFlags.isZExtReturn());
10489   else if (TypeFlags.isStore())
10490     return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
10491   else if (TypeFlags.isGatherLoad())
10492     return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10493   else if (TypeFlags.isScatterStore())
10494     return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10495   else if (TypeFlags.isPrefetch())
10496     return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10497   else if (TypeFlags.isGatherPrefetch())
10498     return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10499   else if (TypeFlags.isStructLoad())
10500     return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10501   else if (TypeFlags.isStructStore())
10502     return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10503   else if (TypeFlags.isTupleSet() || TypeFlags.isTupleGet())
10504     return EmitSVETupleSetOrGet(TypeFlags, Ty, Ops);
10505   else if (TypeFlags.isTupleCreate())
10506     return EmitSVETupleCreate(TypeFlags, Ty, Ops);
10507   else if (TypeFlags.isUndef())
10508     return UndefValue::get(Ty);
10509   else if (Builtin->LLVMIntrinsic != 0) {
10510     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
10511       InsertExplicitZeroOperand(Builder, Ty, Ops);
10512 
10513     if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
10514       InsertExplicitUndefOperand(Builder, Ty, Ops);
10515 
10516     // Some ACLE builtins leave out the argument to specify the predicate
10517     // pattern, which is expected to be expanded to an SV_ALL pattern.
10518     if (TypeFlags.isAppendSVALL())
10519       Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
10520     if (TypeFlags.isInsertOp1SVALL())
10521       Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
10522 
10523     // Predicates must match the main datatype.
10524     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
10525       if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
10526         if (PredTy->getElementType()->isIntegerTy(1))
10527           Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
10528 
10529     // Splat scalar operand to vector (intrinsics with _n infix)
10530     if (TypeFlags.hasSplatOperand()) {
10531       unsigned OpNo = TypeFlags.getSplatOperand();
10532       Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
10533     }
10534 
10535     if (TypeFlags.isReverseCompare())
10536       std::swap(Ops[1], Ops[2]);
10537     else if (TypeFlags.isReverseUSDOT())
10538       std::swap(Ops[1], Ops[2]);
10539     else if (TypeFlags.isReverseMergeAnyBinOp() &&
10540              TypeFlags.getMergeType() == SVETypeFlags::MergeAny)
10541       std::swap(Ops[1], Ops[2]);
10542     else if (TypeFlags.isReverseMergeAnyAccOp() &&
10543              TypeFlags.getMergeType() == SVETypeFlags::MergeAny)
10544       std::swap(Ops[1], Ops[3]);
10545 
10546     // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
10547     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
10548       llvm::Type *OpndTy = Ops[1]->getType();
10549       auto *SplatZero = Constant::getNullValue(OpndTy);
10550       Ops[1] = Builder.CreateSelect(Ops[0], Ops[1], SplatZero);
10551     }
10552 
10553     Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
10554                                    getSVEOverloadTypes(TypeFlags, Ty, Ops));
10555     Value *Call = Builder.CreateCall(F, Ops);
10556 
10557     // Predicate results must be converted to svbool_t.
10558     if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
10559       if (PredTy->getScalarType()->isIntegerTy(1))
10560         Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
10561 
10562     return FormSVEBuiltinResult(Call);
10563   }
10564 
10565   switch (BuiltinID) {
10566   default:
10567     return nullptr;
10568 
10569   case SVE::BI__builtin_sve_svreinterpret_b: {
10570     auto SVCountTy =
10571         llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10572     Function *CastFromSVCountF =
10573         CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_to_svbool, SVCountTy);
10574     return Builder.CreateCall(CastFromSVCountF, Ops[0]);
10575   }
10576   case SVE::BI__builtin_sve_svreinterpret_c: {
10577     auto SVCountTy =
10578         llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10579     Function *CastToSVCountF =
10580         CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, SVCountTy);
10581     return Builder.CreateCall(CastToSVCountF, Ops[0]);
10582   }
10583 
10584   case SVE::BI__builtin_sve_svpsel_lane_b8:
10585   case SVE::BI__builtin_sve_svpsel_lane_b16:
10586   case SVE::BI__builtin_sve_svpsel_lane_b32:
10587   case SVE::BI__builtin_sve_svpsel_lane_b64:
10588   case SVE::BI__builtin_sve_svpsel_lane_c8:
10589   case SVE::BI__builtin_sve_svpsel_lane_c16:
10590   case SVE::BI__builtin_sve_svpsel_lane_c32:
10591   case SVE::BI__builtin_sve_svpsel_lane_c64: {
10592     bool IsSVCount = isa<TargetExtType>(Ops[0]->getType());
10593     assert(((!IsSVCount || cast<TargetExtType>(Ops[0]->getType())->getName() ==
10594                                "aarch64.svcount")) &&
10595            "Unexpected TargetExtType");
10596     auto SVCountTy =
10597         llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10598     Function *CastFromSVCountF =
10599         CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_to_svbool, SVCountTy);
10600     Function *CastToSVCountF =
10601         CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, SVCountTy);
10602 
10603     auto OverloadedTy = getSVEType(SVETypeFlags(Builtin->TypeModifier));
10604     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_psel, OverloadedTy);
10605     llvm::Value *Ops0 =
10606         IsSVCount ? Builder.CreateCall(CastFromSVCountF, Ops[0]) : Ops[0];
10607     llvm::Value *Ops1 = EmitSVEPredicateCast(Ops[1], OverloadedTy);
10608     llvm::Value *PSel = Builder.CreateCall(F, {Ops0, Ops1, Ops[2]});
10609     return IsSVCount ? Builder.CreateCall(CastToSVCountF, PSel) : PSel;
10610   }
10611   case SVE::BI__builtin_sve_svmov_b_z: {
10612     // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
10613     SVETypeFlags TypeFlags(Builtin->TypeModifier);
10614     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
10615     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
10616     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
10617   }
10618 
10619   case SVE::BI__builtin_sve_svnot_b_z: {
10620     // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
10621     SVETypeFlags TypeFlags(Builtin->TypeModifier);
10622     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
10623     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
10624     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
10625   }
10626 
10627   case SVE::BI__builtin_sve_svmovlb_u16:
10628   case SVE::BI__builtin_sve_svmovlb_u32:
10629   case SVE::BI__builtin_sve_svmovlb_u64:
10630     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
10631 
10632   case SVE::BI__builtin_sve_svmovlb_s16:
10633   case SVE::BI__builtin_sve_svmovlb_s32:
10634   case SVE::BI__builtin_sve_svmovlb_s64:
10635     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
10636 
10637   case SVE::BI__builtin_sve_svmovlt_u16:
10638   case SVE::BI__builtin_sve_svmovlt_u32:
10639   case SVE::BI__builtin_sve_svmovlt_u64:
10640     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
10641 
10642   case SVE::BI__builtin_sve_svmovlt_s16:
10643   case SVE::BI__builtin_sve_svmovlt_s32:
10644   case SVE::BI__builtin_sve_svmovlt_s64:
10645     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
10646 
10647   case SVE::BI__builtin_sve_svpmullt_u16:
10648   case SVE::BI__builtin_sve_svpmullt_u64:
10649   case SVE::BI__builtin_sve_svpmullt_n_u16:
10650   case SVE::BI__builtin_sve_svpmullt_n_u64:
10651     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
10652 
10653   case SVE::BI__builtin_sve_svpmullb_u16:
10654   case SVE::BI__builtin_sve_svpmullb_u64:
10655   case SVE::BI__builtin_sve_svpmullb_n_u16:
10656   case SVE::BI__builtin_sve_svpmullb_n_u64:
10657     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
10658 
10659   case SVE::BI__builtin_sve_svdup_n_b8:
10660   case SVE::BI__builtin_sve_svdup_n_b16:
10661   case SVE::BI__builtin_sve_svdup_n_b32:
10662   case SVE::BI__builtin_sve_svdup_n_b64: {
10663     Value *CmpNE =
10664         Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
10665     llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
10666     Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
10667     return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
10668   }
10669 
10670   case SVE::BI__builtin_sve_svdupq_n_b8:
10671   case SVE::BI__builtin_sve_svdupq_n_b16:
10672   case SVE::BI__builtin_sve_svdupq_n_b32:
10673   case SVE::BI__builtin_sve_svdupq_n_b64:
10674   case SVE::BI__builtin_sve_svdupq_n_u8:
10675   case SVE::BI__builtin_sve_svdupq_n_s8:
10676   case SVE::BI__builtin_sve_svdupq_n_u64:
10677   case SVE::BI__builtin_sve_svdupq_n_f64:
10678   case SVE::BI__builtin_sve_svdupq_n_s64:
10679   case SVE::BI__builtin_sve_svdupq_n_u16:
10680   case SVE::BI__builtin_sve_svdupq_n_f16:
10681   case SVE::BI__builtin_sve_svdupq_n_bf16:
10682   case SVE::BI__builtin_sve_svdupq_n_s16:
10683   case SVE::BI__builtin_sve_svdupq_n_u32:
10684   case SVE::BI__builtin_sve_svdupq_n_f32:
10685   case SVE::BI__builtin_sve_svdupq_n_s32: {
10686     // These builtins are implemented by storing each element to an array and using
10687     // ld1rq to materialize a vector.
10688     unsigned NumOpnds = Ops.size();
10689 
10690     bool IsBoolTy =
10691         cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
10692 
10693     // For svdupq_n_b* the element type of is an integer of type 128/numelts,
10694     // so that the compare can use the width that is natural for the expected
10695     // number of predicate lanes.
10696     llvm::Type *EltTy = Ops[0]->getType();
10697     if (IsBoolTy)
10698       EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
10699 
10700     SmallVector<llvm::Value *, 16> VecOps;
10701     for (unsigned I = 0; I < NumOpnds; ++I)
10702         VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy));
10703     Value *Vec = BuildVector(VecOps);
10704 
10705     llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
10706     Value *InsertSubVec = Builder.CreateInsertVector(
10707         OverloadedTy, PoisonValue::get(OverloadedTy), Vec, Builder.getInt64(0));
10708 
10709     Function *F =
10710         CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy);
10711     Value *DupQLane =
10712         Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)});
10713 
10714     if (!IsBoolTy)
10715       return DupQLane;
10716 
10717     SVETypeFlags TypeFlags(Builtin->TypeModifier);
10718     Value *Pred = EmitSVEAllTruePred(TypeFlags);
10719 
10720     // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
10721     F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
10722                                        : Intrinsic::aarch64_sve_cmpne_wide,
10723                          OverloadedTy);
10724     Value *Call = Builder.CreateCall(
10725         F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))});
10726     return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
10727   }
10728 
10729   case SVE::BI__builtin_sve_svpfalse_b:
10730     return ConstantInt::getFalse(Ty);
10731 
10732   case SVE::BI__builtin_sve_svpfalse_c: {
10733     auto SVBoolTy = ScalableVectorType::get(Builder.getInt1Ty(), 16);
10734     Function *CastToSVCountF =
10735         CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, Ty);
10736     return Builder.CreateCall(CastToSVCountF, ConstantInt::getFalse(SVBoolTy));
10737   }
10738 
10739   case SVE::BI__builtin_sve_svlen_bf16:
10740   case SVE::BI__builtin_sve_svlen_f16:
10741   case SVE::BI__builtin_sve_svlen_f32:
10742   case SVE::BI__builtin_sve_svlen_f64:
10743   case SVE::BI__builtin_sve_svlen_s8:
10744   case SVE::BI__builtin_sve_svlen_s16:
10745   case SVE::BI__builtin_sve_svlen_s32:
10746   case SVE::BI__builtin_sve_svlen_s64:
10747   case SVE::BI__builtin_sve_svlen_u8:
10748   case SVE::BI__builtin_sve_svlen_u16:
10749   case SVE::BI__builtin_sve_svlen_u32:
10750   case SVE::BI__builtin_sve_svlen_u64: {
10751     SVETypeFlags TF(Builtin->TypeModifier);
10752     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
10753     auto *NumEls =
10754         llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
10755 
10756     Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
10757     return Builder.CreateMul(NumEls, Builder.CreateCall(F));
10758   }
10759 
10760   case SVE::BI__builtin_sve_svtbl2_u8:
10761   case SVE::BI__builtin_sve_svtbl2_s8:
10762   case SVE::BI__builtin_sve_svtbl2_u16:
10763   case SVE::BI__builtin_sve_svtbl2_s16:
10764   case SVE::BI__builtin_sve_svtbl2_u32:
10765   case SVE::BI__builtin_sve_svtbl2_s32:
10766   case SVE::BI__builtin_sve_svtbl2_u64:
10767   case SVE::BI__builtin_sve_svtbl2_s64:
10768   case SVE::BI__builtin_sve_svtbl2_f16:
10769   case SVE::BI__builtin_sve_svtbl2_bf16:
10770   case SVE::BI__builtin_sve_svtbl2_f32:
10771   case SVE::BI__builtin_sve_svtbl2_f64: {
10772     SVETypeFlags TF(Builtin->TypeModifier);
10773     auto VTy = cast<llvm::ScalableVectorType>(getSVEType(TF));
10774     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
10775     return Builder.CreateCall(F, Ops);
10776   }
10777 
10778   case SVE::BI__builtin_sve_svset_neonq_s8:
10779   case SVE::BI__builtin_sve_svset_neonq_s16:
10780   case SVE::BI__builtin_sve_svset_neonq_s32:
10781   case SVE::BI__builtin_sve_svset_neonq_s64:
10782   case SVE::BI__builtin_sve_svset_neonq_u8:
10783   case SVE::BI__builtin_sve_svset_neonq_u16:
10784   case SVE::BI__builtin_sve_svset_neonq_u32:
10785   case SVE::BI__builtin_sve_svset_neonq_u64:
10786   case SVE::BI__builtin_sve_svset_neonq_f16:
10787   case SVE::BI__builtin_sve_svset_neonq_f32:
10788   case SVE::BI__builtin_sve_svset_neonq_f64:
10789   case SVE::BI__builtin_sve_svset_neonq_bf16: {
10790     return Builder.CreateInsertVector(Ty, Ops[0], Ops[1], Builder.getInt64(0));
10791   }
10792 
10793   case SVE::BI__builtin_sve_svget_neonq_s8:
10794   case SVE::BI__builtin_sve_svget_neonq_s16:
10795   case SVE::BI__builtin_sve_svget_neonq_s32:
10796   case SVE::BI__builtin_sve_svget_neonq_s64:
10797   case SVE::BI__builtin_sve_svget_neonq_u8:
10798   case SVE::BI__builtin_sve_svget_neonq_u16:
10799   case SVE::BI__builtin_sve_svget_neonq_u32:
10800   case SVE::BI__builtin_sve_svget_neonq_u64:
10801   case SVE::BI__builtin_sve_svget_neonq_f16:
10802   case SVE::BI__builtin_sve_svget_neonq_f32:
10803   case SVE::BI__builtin_sve_svget_neonq_f64:
10804   case SVE::BI__builtin_sve_svget_neonq_bf16: {
10805     return Builder.CreateExtractVector(Ty, Ops[0], Builder.getInt64(0));
10806   }
10807 
10808   case SVE::BI__builtin_sve_svdup_neonq_s8:
10809   case SVE::BI__builtin_sve_svdup_neonq_s16:
10810   case SVE::BI__builtin_sve_svdup_neonq_s32:
10811   case SVE::BI__builtin_sve_svdup_neonq_s64:
10812   case SVE::BI__builtin_sve_svdup_neonq_u8:
10813   case SVE::BI__builtin_sve_svdup_neonq_u16:
10814   case SVE::BI__builtin_sve_svdup_neonq_u32:
10815   case SVE::BI__builtin_sve_svdup_neonq_u64:
10816   case SVE::BI__builtin_sve_svdup_neonq_f16:
10817   case SVE::BI__builtin_sve_svdup_neonq_f32:
10818   case SVE::BI__builtin_sve_svdup_neonq_f64:
10819   case SVE::BI__builtin_sve_svdup_neonq_bf16: {
10820     Value *Insert = Builder.CreateInsertVector(Ty, PoisonValue::get(Ty), Ops[0],
10821                                                Builder.getInt64(0));
10822     return Builder.CreateIntrinsic(Intrinsic::aarch64_sve_dupq_lane, {Ty},
10823                                    {Insert, Builder.getInt64(0)});
10824   }
10825   }
10826 
10827   /// Should not happen
10828   return nullptr;
10829 }
10830 
swapCommutativeSMEOperands(unsigned BuiltinID,SmallVectorImpl<Value * > & Ops)10831 static void swapCommutativeSMEOperands(unsigned BuiltinID,
10832                                        SmallVectorImpl<Value *> &Ops) {
10833   unsigned MultiVec;
10834   switch (BuiltinID) {
10835   default:
10836     return;
10837   case SME::BI__builtin_sme_svsumla_za32_s8_vg4x1:
10838     MultiVec = 1;
10839     break;
10840   case SME::BI__builtin_sme_svsumla_za32_s8_vg4x2:
10841   case SME::BI__builtin_sme_svsudot_za32_s8_vg1x2:
10842     MultiVec = 2;
10843     break;
10844   case SME::BI__builtin_sme_svsudot_za32_s8_vg1x4:
10845   case SME::BI__builtin_sme_svsumla_za32_s8_vg4x4:
10846     MultiVec = 4;
10847     break;
10848   }
10849 
10850   if (MultiVec > 0)
10851     for (unsigned I = 0; I < MultiVec; ++I)
10852       std::swap(Ops[I + 1], Ops[I + 1 + MultiVec]);
10853 }
10854 
EmitAArch64SMEBuiltinExpr(unsigned BuiltinID,const CallExpr * E)10855 Value *CodeGenFunction::EmitAArch64SMEBuiltinExpr(unsigned BuiltinID,
10856                                                   const CallExpr *E) {
10857   auto *Builtin = findARMVectorIntrinsicInMap(AArch64SMEIntrinsicMap, BuiltinID,
10858                                               AArch64SMEIntrinsicsProvenSorted);
10859 
10860   llvm::SmallVector<Value *, 4> Ops;
10861   SVETypeFlags TypeFlags(Builtin->TypeModifier);
10862   GetAArch64SVEProcessedOperands(BuiltinID, E, Ops, TypeFlags);
10863 
10864   if (TypeFlags.isLoad() || TypeFlags.isStore())
10865     return EmitSMELd1St1(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10866   else if (TypeFlags.isReadZA() || TypeFlags.isWriteZA())
10867     return EmitSMEReadWrite(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10868   else if (BuiltinID == SME::BI__builtin_sme_svzero_mask_za ||
10869            BuiltinID == SME::BI__builtin_sme_svzero_za)
10870     return EmitSMEZero(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10871   else if (BuiltinID == SME::BI__builtin_sme_svldr_vnum_za ||
10872            BuiltinID == SME::BI__builtin_sme_svstr_vnum_za ||
10873            BuiltinID == SME::BI__builtin_sme_svldr_za ||
10874            BuiltinID == SME::BI__builtin_sme_svstr_za)
10875     return EmitSMELdrStr(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10876 
10877   // Handle builtins which require their multi-vector operands to be swapped
10878   swapCommutativeSMEOperands(BuiltinID, Ops);
10879 
10880   // Should not happen!
10881   if (Builtin->LLVMIntrinsic == 0)
10882     return nullptr;
10883 
10884   // Predicates must match the main datatype.
10885   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
10886     if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
10887       if (PredTy->getElementType()->isIntegerTy(1))
10888         Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
10889 
10890   Function *F =
10891       TypeFlags.isOverloadNone()
10892           ? CGM.getIntrinsic(Builtin->LLVMIntrinsic)
10893           : CGM.getIntrinsic(Builtin->LLVMIntrinsic, {getSVEType(TypeFlags)});
10894   Value *Call = Builder.CreateCall(F, Ops);
10895 
10896   return FormSVEBuiltinResult(Call);
10897 }
10898 
EmitAArch64BuiltinExpr(unsigned BuiltinID,const CallExpr * E,llvm::Triple::ArchType Arch)10899 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
10900                                                const CallExpr *E,
10901                                                llvm::Triple::ArchType Arch) {
10902   if (BuiltinID >= clang::AArch64::FirstSVEBuiltin &&
10903       BuiltinID <= clang::AArch64::LastSVEBuiltin)
10904     return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
10905 
10906   if (BuiltinID >= clang::AArch64::FirstSMEBuiltin &&
10907       BuiltinID <= clang::AArch64::LastSMEBuiltin)
10908     return EmitAArch64SMEBuiltinExpr(BuiltinID, E);
10909 
10910   if (BuiltinID == Builtin::BI__builtin_cpu_supports)
10911     return EmitAArch64CpuSupports(E);
10912 
10913   unsigned HintID = static_cast<unsigned>(-1);
10914   switch (BuiltinID) {
10915   default: break;
10916   case clang::AArch64::BI__builtin_arm_nop:
10917     HintID = 0;
10918     break;
10919   case clang::AArch64::BI__builtin_arm_yield:
10920   case clang::AArch64::BI__yield:
10921     HintID = 1;
10922     break;
10923   case clang::AArch64::BI__builtin_arm_wfe:
10924   case clang::AArch64::BI__wfe:
10925     HintID = 2;
10926     break;
10927   case clang::AArch64::BI__builtin_arm_wfi:
10928   case clang::AArch64::BI__wfi:
10929     HintID = 3;
10930     break;
10931   case clang::AArch64::BI__builtin_arm_sev:
10932   case clang::AArch64::BI__sev:
10933     HintID = 4;
10934     break;
10935   case clang::AArch64::BI__builtin_arm_sevl:
10936   case clang::AArch64::BI__sevl:
10937     HintID = 5;
10938     break;
10939   }
10940 
10941   if (HintID != static_cast<unsigned>(-1)) {
10942     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
10943     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
10944   }
10945 
10946   if (BuiltinID == clang::AArch64::BI__builtin_arm_trap) {
10947     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_break);
10948     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10949     return Builder.CreateCall(F, Builder.CreateZExt(Arg, CGM.Int32Ty));
10950   }
10951 
10952   if (BuiltinID == clang::AArch64::BI__builtin_arm_get_sme_state) {
10953     // Create call to __arm_sme_state and store the results to the two pointers.
10954     CallInst *CI = EmitRuntimeCall(CGM.CreateRuntimeFunction(
10955         llvm::FunctionType::get(StructType::get(CGM.Int64Ty, CGM.Int64Ty), {},
10956                                 false),
10957         "__arm_sme_state"));
10958     auto Attrs = AttributeList().addFnAttribute(getLLVMContext(),
10959                                                 "aarch64_pstate_sm_compatible");
10960     CI->setAttributes(Attrs);
10961     CI->setCallingConv(
10962         llvm::CallingConv::
10963             AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2);
10964     Builder.CreateStore(Builder.CreateExtractValue(CI, 0),
10965                         EmitPointerWithAlignment(E->getArg(0)));
10966     return Builder.CreateStore(Builder.CreateExtractValue(CI, 1),
10967                                EmitPointerWithAlignment(E->getArg(1)));
10968   }
10969 
10970   if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit) {
10971     assert((getContext().getTypeSize(E->getType()) == 32) &&
10972            "rbit of unusual size!");
10973     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10974     return Builder.CreateCall(
10975         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
10976   }
10977   if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit64) {
10978     assert((getContext().getTypeSize(E->getType()) == 64) &&
10979            "rbit of unusual size!");
10980     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10981     return Builder.CreateCall(
10982         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
10983   }
10984 
10985   if (BuiltinID == clang::AArch64::BI__builtin_arm_clz ||
10986       BuiltinID == clang::AArch64::BI__builtin_arm_clz64) {
10987     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10988     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Arg->getType());
10989     Value *Res = Builder.CreateCall(F, {Arg, Builder.getInt1(false)});
10990     if (BuiltinID == clang::AArch64::BI__builtin_arm_clz64)
10991       Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
10992     return Res;
10993   }
10994 
10995   if (BuiltinID == clang::AArch64::BI__builtin_arm_cls) {
10996     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10997     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
10998                               "cls");
10999   }
11000   if (BuiltinID == clang::AArch64::BI__builtin_arm_cls64) {
11001     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11002     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
11003                               "cls");
11004   }
11005 
11006   if (BuiltinID == clang::AArch64::BI__builtin_arm_rint32zf ||
11007       BuiltinID == clang::AArch64::BI__builtin_arm_rint32z) {
11008     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11009     llvm::Type *Ty = Arg->getType();
11010     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
11011                               Arg, "frint32z");
11012   }
11013 
11014   if (BuiltinID == clang::AArch64::BI__builtin_arm_rint64zf ||
11015       BuiltinID == clang::AArch64::BI__builtin_arm_rint64z) {
11016     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11017     llvm::Type *Ty = Arg->getType();
11018     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
11019                               Arg, "frint64z");
11020   }
11021 
11022   if (BuiltinID == clang::AArch64::BI__builtin_arm_rint32xf ||
11023       BuiltinID == clang::AArch64::BI__builtin_arm_rint32x) {
11024     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11025     llvm::Type *Ty = Arg->getType();
11026     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
11027                               Arg, "frint32x");
11028   }
11029 
11030   if (BuiltinID == clang::AArch64::BI__builtin_arm_rint64xf ||
11031       BuiltinID == clang::AArch64::BI__builtin_arm_rint64x) {
11032     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11033     llvm::Type *Ty = Arg->getType();
11034     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
11035                               Arg, "frint64x");
11036   }
11037 
11038   if (BuiltinID == clang::AArch64::BI__builtin_arm_jcvt) {
11039     assert((getContext().getTypeSize(E->getType()) == 32) &&
11040            "__jcvt of unusual size!");
11041     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11042     return Builder.CreateCall(
11043         CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
11044   }
11045 
11046   if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b ||
11047       BuiltinID == clang::AArch64::BI__builtin_arm_st64b ||
11048       BuiltinID == clang::AArch64::BI__builtin_arm_st64bv ||
11049       BuiltinID == clang::AArch64::BI__builtin_arm_st64bv0) {
11050     llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
11051     llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
11052 
11053     if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b) {
11054       // Load from the address via an LLVM intrinsic, receiving a
11055       // tuple of 8 i64 words, and store each one to ValPtr.
11056       Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
11057       llvm::Value *Val = Builder.CreateCall(F, MemAddr);
11058       llvm::Value *ToRet;
11059       for (size_t i = 0; i < 8; i++) {
11060         llvm::Value *ValOffsetPtr =
11061             Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
11062         Address Addr =
11063             Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
11064         ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
11065       }
11066       return ToRet;
11067     } else {
11068       // Load 8 i64 words from ValPtr, and store them to the address
11069       // via an LLVM intrinsic.
11070       SmallVector<llvm::Value *, 9> Args;
11071       Args.push_back(MemAddr);
11072       for (size_t i = 0; i < 8; i++) {
11073         llvm::Value *ValOffsetPtr =
11074             Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
11075         Address Addr =
11076             Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
11077         Args.push_back(Builder.CreateLoad(Addr));
11078       }
11079 
11080       auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_st64b
11081                        ? Intrinsic::aarch64_st64b
11082                    : BuiltinID == clang::AArch64::BI__builtin_arm_st64bv
11083                        ? Intrinsic::aarch64_st64bv
11084                        : Intrinsic::aarch64_st64bv0);
11085       Function *F = CGM.getIntrinsic(Intr);
11086       return Builder.CreateCall(F, Args);
11087     }
11088   }
11089 
11090   if (BuiltinID == clang::AArch64::BI__builtin_arm_rndr ||
11091       BuiltinID == clang::AArch64::BI__builtin_arm_rndrrs) {
11092 
11093     auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_rndr
11094                      ? Intrinsic::aarch64_rndr
11095                      : Intrinsic::aarch64_rndrrs);
11096     Function *F = CGM.getIntrinsic(Intr);
11097     llvm::Value *Val = Builder.CreateCall(F);
11098     Value *RandomValue = Builder.CreateExtractValue(Val, 0);
11099     Value *Status = Builder.CreateExtractValue(Val, 1);
11100 
11101     Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
11102     Builder.CreateStore(RandomValue, MemAddress);
11103     Status = Builder.CreateZExt(Status, Int32Ty);
11104     return Status;
11105   }
11106 
11107   if (BuiltinID == clang::AArch64::BI__clear_cache) {
11108     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
11109     const FunctionDecl *FD = E->getDirectCallee();
11110     Value *Ops[2];
11111     for (unsigned i = 0; i < 2; i++)
11112       Ops[i] = EmitScalarExpr(E->getArg(i));
11113     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
11114     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
11115     StringRef Name = FD->getName();
11116     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
11117   }
11118 
11119   if ((BuiltinID == clang::AArch64::BI__builtin_arm_ldrex ||
11120        BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) &&
11121       getContext().getTypeSize(E->getType()) == 128) {
11122     Function *F =
11123         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex
11124                              ? Intrinsic::aarch64_ldaxp
11125                              : Intrinsic::aarch64_ldxp);
11126 
11127     Value *LdPtr = EmitScalarExpr(E->getArg(0));
11128     Value *Val = Builder.CreateCall(F, LdPtr, "ldxp");
11129 
11130     Value *Val0 = Builder.CreateExtractValue(Val, 1);
11131     Value *Val1 = Builder.CreateExtractValue(Val, 0);
11132     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
11133     Val0 = Builder.CreateZExt(Val0, Int128Ty);
11134     Val1 = Builder.CreateZExt(Val1, Int128Ty);
11135 
11136     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
11137     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
11138     Val = Builder.CreateOr(Val, Val1);
11139     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
11140   } else if (BuiltinID == clang::AArch64::BI__builtin_arm_ldrex ||
11141              BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) {
11142     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
11143 
11144     QualType Ty = E->getType();
11145     llvm::Type *RealResTy = ConvertType(Ty);
11146     llvm::Type *IntTy =
11147         llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
11148 
11149     Function *F =
11150         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex
11151                              ? Intrinsic::aarch64_ldaxr
11152                              : Intrinsic::aarch64_ldxr,
11153                          UnqualPtrTy);
11154     CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
11155     Val->addParamAttr(
11156         0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
11157 
11158     if (RealResTy->isPointerTy())
11159       return Builder.CreateIntToPtr(Val, RealResTy);
11160 
11161     llvm::Type *IntResTy = llvm::IntegerType::get(
11162         getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
11163     return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
11164                                  RealResTy);
11165   }
11166 
11167   if ((BuiltinID == clang::AArch64::BI__builtin_arm_strex ||
11168        BuiltinID == clang::AArch64::BI__builtin_arm_stlex) &&
11169       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
11170     Function *F =
11171         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex
11172                              ? Intrinsic::aarch64_stlxp
11173                              : Intrinsic::aarch64_stxp);
11174     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
11175 
11176     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
11177     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
11178 
11179     Tmp = Tmp.withElementType(STy);
11180     llvm::Value *Val = Builder.CreateLoad(Tmp);
11181 
11182     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
11183     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
11184     Value *StPtr = EmitScalarExpr(E->getArg(1));
11185     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
11186   }
11187 
11188   if (BuiltinID == clang::AArch64::BI__builtin_arm_strex ||
11189       BuiltinID == clang::AArch64::BI__builtin_arm_stlex) {
11190     Value *StoreVal = EmitScalarExpr(E->getArg(0));
11191     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
11192 
11193     QualType Ty = E->getArg(0)->getType();
11194     llvm::Type *StoreTy =
11195         llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
11196 
11197     if (StoreVal->getType()->isPointerTy())
11198       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
11199     else {
11200       llvm::Type *IntTy = llvm::IntegerType::get(
11201           getLLVMContext(),
11202           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
11203       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
11204       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
11205     }
11206 
11207     Function *F =
11208         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex
11209                              ? Intrinsic::aarch64_stlxr
11210                              : Intrinsic::aarch64_stxr,
11211                          StoreAddr->getType());
11212     CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
11213     CI->addParamAttr(
11214         1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
11215     return CI;
11216   }
11217 
11218   if (BuiltinID == clang::AArch64::BI__getReg) {
11219     Expr::EvalResult Result;
11220     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
11221       llvm_unreachable("Sema will ensure that the parameter is constant");
11222 
11223     llvm::APSInt Value = Result.Val.getInt();
11224     LLVMContext &Context = CGM.getLLVMContext();
11225     std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10);
11226 
11227     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
11228     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11229     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11230 
11231     llvm::Function *F =
11232         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
11233     return Builder.CreateCall(F, Metadata);
11234   }
11235 
11236   if (BuiltinID == clang::AArch64::BI__break) {
11237     Expr::EvalResult Result;
11238     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
11239       llvm_unreachable("Sema will ensure that the parameter is constant");
11240 
11241     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::aarch64_break);
11242     return Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0))});
11243   }
11244 
11245   if (BuiltinID == clang::AArch64::BI__builtin_arm_clrex) {
11246     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
11247     return Builder.CreateCall(F);
11248   }
11249 
11250   if (BuiltinID == clang::AArch64::BI_ReadWriteBarrier)
11251     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
11252                                llvm::SyncScope::SingleThread);
11253 
11254   // CRC32
11255   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
11256   switch (BuiltinID) {
11257   case clang::AArch64::BI__builtin_arm_crc32b:
11258     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
11259   case clang::AArch64::BI__builtin_arm_crc32cb:
11260     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
11261   case clang::AArch64::BI__builtin_arm_crc32h:
11262     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
11263   case clang::AArch64::BI__builtin_arm_crc32ch:
11264     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
11265   case clang::AArch64::BI__builtin_arm_crc32w:
11266     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
11267   case clang::AArch64::BI__builtin_arm_crc32cw:
11268     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
11269   case clang::AArch64::BI__builtin_arm_crc32d:
11270     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
11271   case clang::AArch64::BI__builtin_arm_crc32cd:
11272     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
11273   }
11274 
11275   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
11276     Value *Arg0 = EmitScalarExpr(E->getArg(0));
11277     Value *Arg1 = EmitScalarExpr(E->getArg(1));
11278     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
11279 
11280     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
11281     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
11282 
11283     return Builder.CreateCall(F, {Arg0, Arg1});
11284   }
11285 
11286   // Memory Operations (MOPS)
11287   if (BuiltinID == AArch64::BI__builtin_arm_mops_memset_tag) {
11288     Value *Dst = EmitScalarExpr(E->getArg(0));
11289     Value *Val = EmitScalarExpr(E->getArg(1));
11290     Value *Size = EmitScalarExpr(E->getArg(2));
11291     Dst = Builder.CreatePointerCast(Dst, Int8PtrTy);
11292     Val = Builder.CreateTrunc(Val, Int8Ty);
11293     Size = Builder.CreateIntCast(Size, Int64Ty, false);
11294     return Builder.CreateCall(
11295         CGM.getIntrinsic(Intrinsic::aarch64_mops_memset_tag), {Dst, Val, Size});
11296   }
11297 
11298   // Memory Tagging Extensions (MTE) Intrinsics
11299   Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
11300   switch (BuiltinID) {
11301   case clang::AArch64::BI__builtin_arm_irg:
11302     MTEIntrinsicID = Intrinsic::aarch64_irg; break;
11303   case clang::AArch64::BI__builtin_arm_addg:
11304     MTEIntrinsicID = Intrinsic::aarch64_addg; break;
11305   case clang::AArch64::BI__builtin_arm_gmi:
11306     MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
11307   case clang::AArch64::BI__builtin_arm_ldg:
11308     MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
11309   case clang::AArch64::BI__builtin_arm_stg:
11310     MTEIntrinsicID = Intrinsic::aarch64_stg; break;
11311   case clang::AArch64::BI__builtin_arm_subp:
11312     MTEIntrinsicID = Intrinsic::aarch64_subp; break;
11313   }
11314 
11315   if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
11316     llvm::Type *T = ConvertType(E->getType());
11317 
11318     if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
11319       Value *Pointer = EmitScalarExpr(E->getArg(0));
11320       Value *Mask = EmitScalarExpr(E->getArg(1));
11321 
11322       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
11323       Mask = Builder.CreateZExt(Mask, Int64Ty);
11324       Value *RV = Builder.CreateCall(
11325                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
11326        return Builder.CreatePointerCast(RV, T);
11327     }
11328     if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
11329       Value *Pointer = EmitScalarExpr(E->getArg(0));
11330       Value *TagOffset = EmitScalarExpr(E->getArg(1));
11331 
11332       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
11333       TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
11334       Value *RV = Builder.CreateCall(
11335                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
11336       return Builder.CreatePointerCast(RV, T);
11337     }
11338     if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
11339       Value *Pointer = EmitScalarExpr(E->getArg(0));
11340       Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
11341 
11342       ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
11343       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
11344       return Builder.CreateCall(
11345                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
11346     }
11347     // Although it is possible to supply a different return
11348     // address (first arg) to this intrinsic, for now we set
11349     // return address same as input address.
11350     if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
11351       Value *TagAddress = EmitScalarExpr(E->getArg(0));
11352       TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
11353       Value *RV = Builder.CreateCall(
11354                     CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
11355       return Builder.CreatePointerCast(RV, T);
11356     }
11357     // Although it is possible to supply a different tag (to set)
11358     // to this intrinsic (as first arg), for now we supply
11359     // the tag that is in input address arg (common use case).
11360     if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
11361         Value *TagAddress = EmitScalarExpr(E->getArg(0));
11362         TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
11363         return Builder.CreateCall(
11364                  CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
11365     }
11366     if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
11367       Value *PointerA = EmitScalarExpr(E->getArg(0));
11368       Value *PointerB = EmitScalarExpr(E->getArg(1));
11369       PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
11370       PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
11371       return Builder.CreateCall(
11372                        CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
11373     }
11374   }
11375 
11376   if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
11377       BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 ||
11378       BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
11379       BuiltinID == clang::AArch64::BI__builtin_arm_rsrp ||
11380       BuiltinID == clang::AArch64::BI__builtin_arm_wsr ||
11381       BuiltinID == clang::AArch64::BI__builtin_arm_wsr64 ||
11382       BuiltinID == clang::AArch64::BI__builtin_arm_wsr128 ||
11383       BuiltinID == clang::AArch64::BI__builtin_arm_wsrp) {
11384 
11385     SpecialRegisterAccessKind AccessKind = Write;
11386     if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
11387         BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 ||
11388         BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
11389         BuiltinID == clang::AArch64::BI__builtin_arm_rsrp)
11390       AccessKind = VolatileRead;
11391 
11392     bool IsPointerBuiltin = BuiltinID == clang::AArch64::BI__builtin_arm_rsrp ||
11393                             BuiltinID == clang::AArch64::BI__builtin_arm_wsrp;
11394 
11395     bool Is32Bit = BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
11396                    BuiltinID == clang::AArch64::BI__builtin_arm_wsr;
11397 
11398     bool Is128Bit = BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
11399                     BuiltinID == clang::AArch64::BI__builtin_arm_wsr128;
11400 
11401     llvm::Type *ValueType;
11402     llvm::Type *RegisterType = Int64Ty;
11403     if (Is32Bit) {
11404       ValueType = Int32Ty;
11405     } else if (Is128Bit) {
11406       llvm::Type *Int128Ty =
11407           llvm::IntegerType::getInt128Ty(CGM.getLLVMContext());
11408       ValueType = Int128Ty;
11409       RegisterType = Int128Ty;
11410     } else if (IsPointerBuiltin) {
11411       ValueType = VoidPtrTy;
11412     } else {
11413       ValueType = Int64Ty;
11414     };
11415 
11416     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
11417                                       AccessKind);
11418   }
11419 
11420   if (BuiltinID == clang::AArch64::BI_ReadStatusReg ||
11421       BuiltinID == clang::AArch64::BI_WriteStatusReg) {
11422     LLVMContext &Context = CGM.getLLVMContext();
11423 
11424     unsigned SysReg =
11425       E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
11426 
11427     std::string SysRegStr;
11428     llvm::raw_string_ostream(SysRegStr) <<
11429                        ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
11430                        ((SysReg >> 11) & 7)               << ":" <<
11431                        ((SysReg >> 7)  & 15)              << ":" <<
11432                        ((SysReg >> 3)  & 15)              << ":" <<
11433                        ( SysReg        & 7);
11434 
11435     llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
11436     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11437     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11438 
11439     llvm::Type *RegisterType = Int64Ty;
11440     llvm::Type *Types[] = { RegisterType };
11441 
11442     if (BuiltinID == clang::AArch64::BI_ReadStatusReg) {
11443       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
11444 
11445       return Builder.CreateCall(F, Metadata);
11446     }
11447 
11448     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
11449     llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
11450 
11451     return Builder.CreateCall(F, { Metadata, ArgValue });
11452   }
11453 
11454   if (BuiltinID == clang::AArch64::BI_AddressOfReturnAddress) {
11455     llvm::Function *F =
11456         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
11457     return Builder.CreateCall(F);
11458   }
11459 
11460   if (BuiltinID == clang::AArch64::BI__builtin_sponentry) {
11461     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
11462     return Builder.CreateCall(F);
11463   }
11464 
11465   if (BuiltinID == clang::AArch64::BI__mulh ||
11466       BuiltinID == clang::AArch64::BI__umulh) {
11467     llvm::Type *ResType = ConvertType(E->getType());
11468     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
11469 
11470     bool IsSigned = BuiltinID == clang::AArch64::BI__mulh;
11471     Value *LHS =
11472         Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned);
11473     Value *RHS =
11474         Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned);
11475 
11476     Value *MulResult, *HigherBits;
11477     if (IsSigned) {
11478       MulResult = Builder.CreateNSWMul(LHS, RHS);
11479       HigherBits = Builder.CreateAShr(MulResult, 64);
11480     } else {
11481       MulResult = Builder.CreateNUWMul(LHS, RHS);
11482       HigherBits = Builder.CreateLShr(MulResult, 64);
11483     }
11484     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
11485 
11486     return HigherBits;
11487   }
11488 
11489   if (BuiltinID == AArch64::BI__writex18byte ||
11490       BuiltinID == AArch64::BI__writex18word ||
11491       BuiltinID == AArch64::BI__writex18dword ||
11492       BuiltinID == AArch64::BI__writex18qword) {
11493     // Read x18 as i8*
11494     LLVMContext &Context = CGM.getLLVMContext();
11495     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")};
11496     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11497     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11498     llvm::Function *F =
11499         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
11500     llvm::Value *X18 = Builder.CreateCall(F, Metadata);
11501     X18 = Builder.CreateIntToPtr(X18, Int8PtrTy);
11502 
11503     // Store val at x18 + offset
11504     Value *Offset = Builder.CreateZExt(EmitScalarExpr(E->getArg(0)), Int64Ty);
11505     Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset);
11506     Value *Val = EmitScalarExpr(E->getArg(1));
11507     StoreInst *Store = Builder.CreateAlignedStore(Val, Ptr, CharUnits::One());
11508     return Store;
11509   }
11510 
11511   if (BuiltinID == AArch64::BI__readx18byte ||
11512       BuiltinID == AArch64::BI__readx18word ||
11513       BuiltinID == AArch64::BI__readx18dword ||
11514       BuiltinID == AArch64::BI__readx18qword) {
11515     llvm::Type *IntTy = ConvertType(E->getType());
11516 
11517     // Read x18 as i8*
11518     LLVMContext &Context = CGM.getLLVMContext();
11519     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")};
11520     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11521     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11522     llvm::Function *F =
11523         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
11524     llvm::Value *X18 = Builder.CreateCall(F, Metadata);
11525     X18 = Builder.CreateIntToPtr(X18, Int8PtrTy);
11526 
11527     // Load x18 + offset
11528     Value *Offset = Builder.CreateZExt(EmitScalarExpr(E->getArg(0)), Int64Ty);
11529     Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset);
11530     LoadInst *Load = Builder.CreateAlignedLoad(IntTy, Ptr, CharUnits::One());
11531     return Load;
11532   }
11533 
11534   if (BuiltinID == AArch64::BI_CopyDoubleFromInt64 ||
11535       BuiltinID == AArch64::BI_CopyFloatFromInt32 ||
11536       BuiltinID == AArch64::BI_CopyInt32FromFloat ||
11537       BuiltinID == AArch64::BI_CopyInt64FromDouble) {
11538     Value *Arg = EmitScalarExpr(E->getArg(0));
11539     llvm::Type *RetTy = ConvertType(E->getType());
11540     return Builder.CreateBitCast(Arg, RetTy);
11541   }
11542 
11543   if (BuiltinID == AArch64::BI_CountLeadingOnes ||
11544       BuiltinID == AArch64::BI_CountLeadingOnes64 ||
11545       BuiltinID == AArch64::BI_CountLeadingZeros ||
11546       BuiltinID == AArch64::BI_CountLeadingZeros64) {
11547     Value *Arg = EmitScalarExpr(E->getArg(0));
11548     llvm::Type *ArgType = Arg->getType();
11549 
11550     if (BuiltinID == AArch64::BI_CountLeadingOnes ||
11551         BuiltinID == AArch64::BI_CountLeadingOnes64)
11552       Arg = Builder.CreateXor(Arg, Constant::getAllOnesValue(ArgType));
11553 
11554     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
11555     Value *Result = Builder.CreateCall(F, {Arg, Builder.getInt1(false)});
11556 
11557     if (BuiltinID == AArch64::BI_CountLeadingOnes64 ||
11558         BuiltinID == AArch64::BI_CountLeadingZeros64)
11559       Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11560     return Result;
11561   }
11562 
11563   if (BuiltinID == AArch64::BI_CountLeadingSigns ||
11564       BuiltinID == AArch64::BI_CountLeadingSigns64) {
11565     Value *Arg = EmitScalarExpr(E->getArg(0));
11566 
11567     Function *F = (BuiltinID == AArch64::BI_CountLeadingSigns)
11568                       ? CGM.getIntrinsic(Intrinsic::aarch64_cls)
11569                       : CGM.getIntrinsic(Intrinsic::aarch64_cls64);
11570 
11571     Value *Result = Builder.CreateCall(F, Arg, "cls");
11572     if (BuiltinID == AArch64::BI_CountLeadingSigns64)
11573       Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11574     return Result;
11575   }
11576 
11577   if (BuiltinID == AArch64::BI_CountOneBits ||
11578       BuiltinID == AArch64::BI_CountOneBits64) {
11579     Value *ArgValue = EmitScalarExpr(E->getArg(0));
11580     llvm::Type *ArgType = ArgValue->getType();
11581     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
11582 
11583     Value *Result = Builder.CreateCall(F, ArgValue);
11584     if (BuiltinID == AArch64::BI_CountOneBits64)
11585       Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11586     return Result;
11587   }
11588 
11589   if (BuiltinID == AArch64::BI__prefetch) {
11590     Value *Address = EmitScalarExpr(E->getArg(0));
11591     Value *RW = llvm::ConstantInt::get(Int32Ty, 0);
11592     Value *Locality = ConstantInt::get(Int32Ty, 3);
11593     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
11594     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
11595     return Builder.CreateCall(F, {Address, RW, Locality, Data});
11596   }
11597 
11598   if (BuiltinID == AArch64::BI__hlt) {
11599     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hlt);
11600     Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0))});
11601 
11602     // Return 0 for convenience, even though MSVC returns some other undefined
11603     // value.
11604     return ConstantInt::get(Builder.getInt32Ty(), 0);
11605   }
11606 
11607   // Handle MSVC intrinsics before argument evaluation to prevent double
11608   // evaluation.
11609   if (std::optional<MSVCIntrin> MsvcIntId =
11610           translateAarch64ToMsvcIntrin(BuiltinID))
11611     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
11612 
11613   // Some intrinsics are equivalent - if they are use the base intrinsic ID.
11614   auto It = llvm::find_if(NEONEquivalentIntrinsicMap, [BuiltinID](auto &P) {
11615     return P.first == BuiltinID;
11616   });
11617   if (It != end(NEONEquivalentIntrinsicMap))
11618     BuiltinID = It->second;
11619 
11620   // Find out if any arguments are required to be integer constant
11621   // expressions.
11622   unsigned ICEArguments = 0;
11623   ASTContext::GetBuiltinTypeError Error;
11624   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
11625   assert(Error == ASTContext::GE_None && "Should not codegen an error");
11626 
11627   llvm::SmallVector<Value*, 4> Ops;
11628   Address PtrOp0 = Address::invalid();
11629   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
11630     if (i == 0) {
11631       switch (BuiltinID) {
11632       case NEON::BI__builtin_neon_vld1_v:
11633       case NEON::BI__builtin_neon_vld1q_v:
11634       case NEON::BI__builtin_neon_vld1_dup_v:
11635       case NEON::BI__builtin_neon_vld1q_dup_v:
11636       case NEON::BI__builtin_neon_vld1_lane_v:
11637       case NEON::BI__builtin_neon_vld1q_lane_v:
11638       case NEON::BI__builtin_neon_vst1_v:
11639       case NEON::BI__builtin_neon_vst1q_v:
11640       case NEON::BI__builtin_neon_vst1_lane_v:
11641       case NEON::BI__builtin_neon_vst1q_lane_v:
11642       case NEON::BI__builtin_neon_vldap1_lane_s64:
11643       case NEON::BI__builtin_neon_vldap1q_lane_s64:
11644       case NEON::BI__builtin_neon_vstl1_lane_s64:
11645       case NEON::BI__builtin_neon_vstl1q_lane_s64:
11646         // Get the alignment for the argument in addition to the value;
11647         // we'll use it later.
11648         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
11649         Ops.push_back(PtrOp0.emitRawPointer(*this));
11650         continue;
11651       }
11652     }
11653     Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
11654   }
11655 
11656   auto SISDMap = ArrayRef(AArch64SISDIntrinsicMap);
11657   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
11658       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
11659 
11660   if (Builtin) {
11661     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
11662     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
11663     assert(Result && "SISD intrinsic should have been handled");
11664     return Result;
11665   }
11666 
11667   const Expr *Arg = E->getArg(E->getNumArgs()-1);
11668   NeonTypeFlags Type(0);
11669   if (std::optional<llvm::APSInt> Result =
11670           Arg->getIntegerConstantExpr(getContext()))
11671     // Determine the type of this overloaded NEON intrinsic.
11672     Type = NeonTypeFlags(Result->getZExtValue());
11673 
11674   bool usgn = Type.isUnsigned();
11675   bool quad = Type.isQuad();
11676 
11677   // Handle non-overloaded intrinsics first.
11678   switch (BuiltinID) {
11679   default: break;
11680   case NEON::BI__builtin_neon_vabsh_f16:
11681     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11682     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
11683   case NEON::BI__builtin_neon_vaddq_p128: {
11684     llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
11685     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11686     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11687     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11688     Ops[0] =  Builder.CreateXor(Ops[0], Ops[1]);
11689     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
11690     return Builder.CreateBitCast(Ops[0], Int128Ty);
11691   }
11692   case NEON::BI__builtin_neon_vldrq_p128: {
11693     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
11694     Value *Ptr = EmitScalarExpr(E->getArg(0));
11695     return Builder.CreateAlignedLoad(Int128Ty, Ptr,
11696                                      CharUnits::fromQuantity(16));
11697   }
11698   case NEON::BI__builtin_neon_vstrq_p128: {
11699     Value *Ptr = Ops[0];
11700     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
11701   }
11702   case NEON::BI__builtin_neon_vcvts_f32_u32:
11703   case NEON::BI__builtin_neon_vcvtd_f64_u64:
11704     usgn = true;
11705     [[fallthrough]];
11706   case NEON::BI__builtin_neon_vcvts_f32_s32:
11707   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
11708     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11709     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
11710     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
11711     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
11712     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
11713     if (usgn)
11714       return Builder.CreateUIToFP(Ops[0], FTy);
11715     return Builder.CreateSIToFP(Ops[0], FTy);
11716   }
11717   case NEON::BI__builtin_neon_vcvth_f16_u16:
11718   case NEON::BI__builtin_neon_vcvth_f16_u32:
11719   case NEON::BI__builtin_neon_vcvth_f16_u64:
11720     usgn = true;
11721     [[fallthrough]];
11722   case NEON::BI__builtin_neon_vcvth_f16_s16:
11723   case NEON::BI__builtin_neon_vcvth_f16_s32:
11724   case NEON::BI__builtin_neon_vcvth_f16_s64: {
11725     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11726     llvm::Type *FTy = HalfTy;
11727     llvm::Type *InTy;
11728     if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
11729       InTy = Int64Ty;
11730     else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
11731       InTy = Int32Ty;
11732     else
11733       InTy = Int16Ty;
11734     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
11735     if (usgn)
11736       return Builder.CreateUIToFP(Ops[0], FTy);
11737     return Builder.CreateSIToFP(Ops[0], FTy);
11738   }
11739   case NEON::BI__builtin_neon_vcvtah_u16_f16:
11740   case NEON::BI__builtin_neon_vcvtmh_u16_f16:
11741   case NEON::BI__builtin_neon_vcvtnh_u16_f16:
11742   case NEON::BI__builtin_neon_vcvtph_u16_f16:
11743   case NEON::BI__builtin_neon_vcvth_u16_f16:
11744   case NEON::BI__builtin_neon_vcvtah_s16_f16:
11745   case NEON::BI__builtin_neon_vcvtmh_s16_f16:
11746   case NEON::BI__builtin_neon_vcvtnh_s16_f16:
11747   case NEON::BI__builtin_neon_vcvtph_s16_f16:
11748   case NEON::BI__builtin_neon_vcvth_s16_f16: {
11749     unsigned Int;
11750     llvm::Type* InTy = Int32Ty;
11751     llvm::Type* FTy  = HalfTy;
11752     llvm::Type *Tys[2] = {InTy, FTy};
11753     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11754     switch (BuiltinID) {
11755     default: llvm_unreachable("missing builtin ID in switch!");
11756     case NEON::BI__builtin_neon_vcvtah_u16_f16:
11757       Int = Intrinsic::aarch64_neon_fcvtau; break;
11758     case NEON::BI__builtin_neon_vcvtmh_u16_f16:
11759       Int = Intrinsic::aarch64_neon_fcvtmu; break;
11760     case NEON::BI__builtin_neon_vcvtnh_u16_f16:
11761       Int = Intrinsic::aarch64_neon_fcvtnu; break;
11762     case NEON::BI__builtin_neon_vcvtph_u16_f16:
11763       Int = Intrinsic::aarch64_neon_fcvtpu; break;
11764     case NEON::BI__builtin_neon_vcvth_u16_f16:
11765       Int = Intrinsic::aarch64_neon_fcvtzu; break;
11766     case NEON::BI__builtin_neon_vcvtah_s16_f16:
11767       Int = Intrinsic::aarch64_neon_fcvtas; break;
11768     case NEON::BI__builtin_neon_vcvtmh_s16_f16:
11769       Int = Intrinsic::aarch64_neon_fcvtms; break;
11770     case NEON::BI__builtin_neon_vcvtnh_s16_f16:
11771       Int = Intrinsic::aarch64_neon_fcvtns; break;
11772     case NEON::BI__builtin_neon_vcvtph_s16_f16:
11773       Int = Intrinsic::aarch64_neon_fcvtps; break;
11774     case NEON::BI__builtin_neon_vcvth_s16_f16:
11775       Int = Intrinsic::aarch64_neon_fcvtzs; break;
11776     }
11777     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
11778     return Builder.CreateTrunc(Ops[0], Int16Ty);
11779   }
11780   case NEON::BI__builtin_neon_vcaleh_f16:
11781   case NEON::BI__builtin_neon_vcalth_f16:
11782   case NEON::BI__builtin_neon_vcageh_f16:
11783   case NEON::BI__builtin_neon_vcagth_f16: {
11784     unsigned Int;
11785     llvm::Type* InTy = Int32Ty;
11786     llvm::Type* FTy  = HalfTy;
11787     llvm::Type *Tys[2] = {InTy, FTy};
11788     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11789     switch (BuiltinID) {
11790     default: llvm_unreachable("missing builtin ID in switch!");
11791     case NEON::BI__builtin_neon_vcageh_f16:
11792       Int = Intrinsic::aarch64_neon_facge; break;
11793     case NEON::BI__builtin_neon_vcagth_f16:
11794       Int = Intrinsic::aarch64_neon_facgt; break;
11795     case NEON::BI__builtin_neon_vcaleh_f16:
11796       Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
11797     case NEON::BI__builtin_neon_vcalth_f16:
11798       Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
11799     }
11800     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
11801     return Builder.CreateTrunc(Ops[0], Int16Ty);
11802   }
11803   case NEON::BI__builtin_neon_vcvth_n_s16_f16:
11804   case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
11805     unsigned Int;
11806     llvm::Type* InTy = Int32Ty;
11807     llvm::Type* FTy  = HalfTy;
11808     llvm::Type *Tys[2] = {InTy, FTy};
11809     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11810     switch (BuiltinID) {
11811     default: llvm_unreachable("missing builtin ID in switch!");
11812     case NEON::BI__builtin_neon_vcvth_n_s16_f16:
11813       Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
11814     case NEON::BI__builtin_neon_vcvth_n_u16_f16:
11815       Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
11816     }
11817     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
11818     return Builder.CreateTrunc(Ops[0], Int16Ty);
11819   }
11820   case NEON::BI__builtin_neon_vcvth_n_f16_s16:
11821   case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
11822     unsigned Int;
11823     llvm::Type* FTy  = HalfTy;
11824     llvm::Type* InTy = Int32Ty;
11825     llvm::Type *Tys[2] = {FTy, InTy};
11826     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11827     switch (BuiltinID) {
11828     default: llvm_unreachable("missing builtin ID in switch!");
11829     case NEON::BI__builtin_neon_vcvth_n_f16_s16:
11830       Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
11831       Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
11832       break;
11833     case NEON::BI__builtin_neon_vcvth_n_f16_u16:
11834       Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
11835       Ops[0] = Builder.CreateZExt(Ops[0], InTy);
11836       break;
11837     }
11838     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
11839   }
11840   case NEON::BI__builtin_neon_vpaddd_s64: {
11841     auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
11842     Value *Vec = EmitScalarExpr(E->getArg(0));
11843     // The vector is v2f64, so make sure it's bitcast to that.
11844     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
11845     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
11846     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
11847     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
11848     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
11849     // Pairwise addition of a v2f64 into a scalar f64.
11850     return Builder.CreateAdd(Op0, Op1, "vpaddd");
11851   }
11852   case NEON::BI__builtin_neon_vpaddd_f64: {
11853     auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
11854     Value *Vec = EmitScalarExpr(E->getArg(0));
11855     // The vector is v2f64, so make sure it's bitcast to that.
11856     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
11857     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
11858     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
11859     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
11860     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
11861     // Pairwise addition of a v2f64 into a scalar f64.
11862     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
11863   }
11864   case NEON::BI__builtin_neon_vpadds_f32: {
11865     auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
11866     Value *Vec = EmitScalarExpr(E->getArg(0));
11867     // The vector is v2f32, so make sure it's bitcast to that.
11868     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
11869     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
11870     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
11871     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
11872     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
11873     // Pairwise addition of a v2f32 into a scalar f32.
11874     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
11875   }
11876   case NEON::BI__builtin_neon_vceqzd_s64:
11877   case NEON::BI__builtin_neon_vceqzd_f64:
11878   case NEON::BI__builtin_neon_vceqzs_f32:
11879   case NEON::BI__builtin_neon_vceqzh_f16:
11880     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11881     return EmitAArch64CompareBuiltinExpr(
11882         Ops[0], ConvertType(E->getCallReturnType(getContext())),
11883         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
11884   case NEON::BI__builtin_neon_vcgezd_s64:
11885   case NEON::BI__builtin_neon_vcgezd_f64:
11886   case NEON::BI__builtin_neon_vcgezs_f32:
11887   case NEON::BI__builtin_neon_vcgezh_f16:
11888     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11889     return EmitAArch64CompareBuiltinExpr(
11890         Ops[0], ConvertType(E->getCallReturnType(getContext())),
11891         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
11892   case NEON::BI__builtin_neon_vclezd_s64:
11893   case NEON::BI__builtin_neon_vclezd_f64:
11894   case NEON::BI__builtin_neon_vclezs_f32:
11895   case NEON::BI__builtin_neon_vclezh_f16:
11896     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11897     return EmitAArch64CompareBuiltinExpr(
11898         Ops[0], ConvertType(E->getCallReturnType(getContext())),
11899         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
11900   case NEON::BI__builtin_neon_vcgtzd_s64:
11901   case NEON::BI__builtin_neon_vcgtzd_f64:
11902   case NEON::BI__builtin_neon_vcgtzs_f32:
11903   case NEON::BI__builtin_neon_vcgtzh_f16:
11904     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11905     return EmitAArch64CompareBuiltinExpr(
11906         Ops[0], ConvertType(E->getCallReturnType(getContext())),
11907         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
11908   case NEON::BI__builtin_neon_vcltzd_s64:
11909   case NEON::BI__builtin_neon_vcltzd_f64:
11910   case NEON::BI__builtin_neon_vcltzs_f32:
11911   case NEON::BI__builtin_neon_vcltzh_f16:
11912     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11913     return EmitAArch64CompareBuiltinExpr(
11914         Ops[0], ConvertType(E->getCallReturnType(getContext())),
11915         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
11916 
11917   case NEON::BI__builtin_neon_vceqzd_u64: {
11918     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11919     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
11920     Ops[0] =
11921         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
11922     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
11923   }
11924   case NEON::BI__builtin_neon_vceqd_f64:
11925   case NEON::BI__builtin_neon_vcled_f64:
11926   case NEON::BI__builtin_neon_vcltd_f64:
11927   case NEON::BI__builtin_neon_vcged_f64:
11928   case NEON::BI__builtin_neon_vcgtd_f64: {
11929     llvm::CmpInst::Predicate P;
11930     switch (BuiltinID) {
11931     default: llvm_unreachable("missing builtin ID in switch!");
11932     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
11933     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
11934     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
11935     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
11936     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
11937     }
11938     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11939     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11940     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
11941     if (P == llvm::FCmpInst::FCMP_OEQ)
11942       Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
11943     else
11944       Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
11945     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
11946   }
11947   case NEON::BI__builtin_neon_vceqs_f32:
11948   case NEON::BI__builtin_neon_vcles_f32:
11949   case NEON::BI__builtin_neon_vclts_f32:
11950   case NEON::BI__builtin_neon_vcges_f32:
11951   case NEON::BI__builtin_neon_vcgts_f32: {
11952     llvm::CmpInst::Predicate P;
11953     switch (BuiltinID) {
11954     default: llvm_unreachable("missing builtin ID in switch!");
11955     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
11956     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
11957     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
11958     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
11959     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
11960     }
11961     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11962     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
11963     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
11964     if (P == llvm::FCmpInst::FCMP_OEQ)
11965       Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
11966     else
11967       Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
11968     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
11969   }
11970   case NEON::BI__builtin_neon_vceqh_f16:
11971   case NEON::BI__builtin_neon_vcleh_f16:
11972   case NEON::BI__builtin_neon_vclth_f16:
11973   case NEON::BI__builtin_neon_vcgeh_f16:
11974   case NEON::BI__builtin_neon_vcgth_f16: {
11975     llvm::CmpInst::Predicate P;
11976     switch (BuiltinID) {
11977     default: llvm_unreachable("missing builtin ID in switch!");
11978     case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
11979     case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
11980     case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
11981     case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
11982     case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
11983     }
11984     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11985     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
11986     Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
11987     if (P == llvm::FCmpInst::FCMP_OEQ)
11988       Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
11989     else
11990       Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
11991     return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
11992   }
11993   case NEON::BI__builtin_neon_vceqd_s64:
11994   case NEON::BI__builtin_neon_vceqd_u64:
11995   case NEON::BI__builtin_neon_vcgtd_s64:
11996   case NEON::BI__builtin_neon_vcgtd_u64:
11997   case NEON::BI__builtin_neon_vcltd_s64:
11998   case NEON::BI__builtin_neon_vcltd_u64:
11999   case NEON::BI__builtin_neon_vcged_u64:
12000   case NEON::BI__builtin_neon_vcged_s64:
12001   case NEON::BI__builtin_neon_vcled_u64:
12002   case NEON::BI__builtin_neon_vcled_s64: {
12003     llvm::CmpInst::Predicate P;
12004     switch (BuiltinID) {
12005     default: llvm_unreachable("missing builtin ID in switch!");
12006     case NEON::BI__builtin_neon_vceqd_s64:
12007     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
12008     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
12009     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
12010     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
12011     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
12012     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
12013     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
12014     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
12015     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
12016     }
12017     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12018     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
12019     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
12020     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
12021     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
12022   }
12023   case NEON::BI__builtin_neon_vtstd_s64:
12024   case NEON::BI__builtin_neon_vtstd_u64: {
12025     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12026     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
12027     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
12028     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
12029     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
12030                                 llvm::Constant::getNullValue(Int64Ty));
12031     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
12032   }
12033   case NEON::BI__builtin_neon_vset_lane_i8:
12034   case NEON::BI__builtin_neon_vset_lane_i16:
12035   case NEON::BI__builtin_neon_vset_lane_i32:
12036   case NEON::BI__builtin_neon_vset_lane_i64:
12037   case NEON::BI__builtin_neon_vset_lane_bf16:
12038   case NEON::BI__builtin_neon_vset_lane_f32:
12039   case NEON::BI__builtin_neon_vsetq_lane_i8:
12040   case NEON::BI__builtin_neon_vsetq_lane_i16:
12041   case NEON::BI__builtin_neon_vsetq_lane_i32:
12042   case NEON::BI__builtin_neon_vsetq_lane_i64:
12043   case NEON::BI__builtin_neon_vsetq_lane_bf16:
12044   case NEON::BI__builtin_neon_vsetq_lane_f32:
12045     Ops.push_back(EmitScalarExpr(E->getArg(2)));
12046     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
12047   case NEON::BI__builtin_neon_vset_lane_f64:
12048     // The vector type needs a cast for the v1f64 variant.
12049     Ops[1] =
12050         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
12051     Ops.push_back(EmitScalarExpr(E->getArg(2)));
12052     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
12053   case NEON::BI__builtin_neon_vsetq_lane_f64:
12054     // The vector type needs a cast for the v2f64 variant.
12055     Ops[1] =
12056         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
12057     Ops.push_back(EmitScalarExpr(E->getArg(2)));
12058     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
12059 
12060   case NEON::BI__builtin_neon_vget_lane_i8:
12061   case NEON::BI__builtin_neon_vdupb_lane_i8:
12062     Ops[0] =
12063         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
12064     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12065                                         "vget_lane");
12066   case NEON::BI__builtin_neon_vgetq_lane_i8:
12067   case NEON::BI__builtin_neon_vdupb_laneq_i8:
12068     Ops[0] =
12069         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
12070     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12071                                         "vgetq_lane");
12072   case NEON::BI__builtin_neon_vget_lane_i16:
12073   case NEON::BI__builtin_neon_vduph_lane_i16:
12074     Ops[0] =
12075         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
12076     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12077                                         "vget_lane");
12078   case NEON::BI__builtin_neon_vgetq_lane_i16:
12079   case NEON::BI__builtin_neon_vduph_laneq_i16:
12080     Ops[0] =
12081         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
12082     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12083                                         "vgetq_lane");
12084   case NEON::BI__builtin_neon_vget_lane_i32:
12085   case NEON::BI__builtin_neon_vdups_lane_i32:
12086     Ops[0] =
12087         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
12088     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12089                                         "vget_lane");
12090   case NEON::BI__builtin_neon_vdups_lane_f32:
12091     Ops[0] =
12092         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
12093     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12094                                         "vdups_lane");
12095   case NEON::BI__builtin_neon_vgetq_lane_i32:
12096   case NEON::BI__builtin_neon_vdups_laneq_i32:
12097     Ops[0] =
12098         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
12099     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12100                                         "vgetq_lane");
12101   case NEON::BI__builtin_neon_vget_lane_i64:
12102   case NEON::BI__builtin_neon_vdupd_lane_i64:
12103     Ops[0] =
12104         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
12105     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12106                                         "vget_lane");
12107   case NEON::BI__builtin_neon_vdupd_lane_f64:
12108     Ops[0] =
12109         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
12110     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12111                                         "vdupd_lane");
12112   case NEON::BI__builtin_neon_vgetq_lane_i64:
12113   case NEON::BI__builtin_neon_vdupd_laneq_i64:
12114     Ops[0] =
12115         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
12116     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12117                                         "vgetq_lane");
12118   case NEON::BI__builtin_neon_vget_lane_f32:
12119     Ops[0] =
12120         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
12121     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12122                                         "vget_lane");
12123   case NEON::BI__builtin_neon_vget_lane_f64:
12124     Ops[0] =
12125         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
12126     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12127                                         "vget_lane");
12128   case NEON::BI__builtin_neon_vgetq_lane_f32:
12129   case NEON::BI__builtin_neon_vdups_laneq_f32:
12130     Ops[0] =
12131         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
12132     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12133                                         "vgetq_lane");
12134   case NEON::BI__builtin_neon_vgetq_lane_f64:
12135   case NEON::BI__builtin_neon_vdupd_laneq_f64:
12136     Ops[0] =
12137         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
12138     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12139                                         "vgetq_lane");
12140   case NEON::BI__builtin_neon_vaddh_f16:
12141     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12142     return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
12143   case NEON::BI__builtin_neon_vsubh_f16:
12144     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12145     return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
12146   case NEON::BI__builtin_neon_vmulh_f16:
12147     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12148     return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
12149   case NEON::BI__builtin_neon_vdivh_f16:
12150     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12151     return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
12152   case NEON::BI__builtin_neon_vfmah_f16:
12153     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
12154     return emitCallMaybeConstrainedFPBuiltin(
12155         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
12156         {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
12157   case NEON::BI__builtin_neon_vfmsh_f16: {
12158     Value* Neg = Builder.CreateFNeg(EmitScalarExpr(E->getArg(1)), "vsubh");
12159 
12160     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
12161     return emitCallMaybeConstrainedFPBuiltin(
12162         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
12163         {Neg, EmitScalarExpr(E->getArg(2)), Ops[0]});
12164   }
12165   case NEON::BI__builtin_neon_vaddd_s64:
12166   case NEON::BI__builtin_neon_vaddd_u64:
12167     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
12168   case NEON::BI__builtin_neon_vsubd_s64:
12169   case NEON::BI__builtin_neon_vsubd_u64:
12170     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
12171   case NEON::BI__builtin_neon_vqdmlalh_s16:
12172   case NEON::BI__builtin_neon_vqdmlslh_s16: {
12173     SmallVector<Value *, 2> ProductOps;
12174     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
12175     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
12176     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
12177     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
12178                           ProductOps, "vqdmlXl");
12179     Constant *CI = ConstantInt::get(SizeTy, 0);
12180     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
12181 
12182     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
12183                                         ? Intrinsic::aarch64_neon_sqadd
12184                                         : Intrinsic::aarch64_neon_sqsub;
12185     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
12186   }
12187   case NEON::BI__builtin_neon_vqshlud_n_s64: {
12188     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12189     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
12190     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
12191                         Ops, "vqshlu_n");
12192   }
12193   case NEON::BI__builtin_neon_vqshld_n_u64:
12194   case NEON::BI__builtin_neon_vqshld_n_s64: {
12195     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
12196                                    ? Intrinsic::aarch64_neon_uqshl
12197                                    : Intrinsic::aarch64_neon_sqshl;
12198     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12199     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
12200     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
12201   }
12202   case NEON::BI__builtin_neon_vrshrd_n_u64:
12203   case NEON::BI__builtin_neon_vrshrd_n_s64: {
12204     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
12205                                    ? Intrinsic::aarch64_neon_urshl
12206                                    : Intrinsic::aarch64_neon_srshl;
12207     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12208     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
12209     Ops[1] = ConstantInt::get(Int64Ty, -SV);
12210     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
12211   }
12212   case NEON::BI__builtin_neon_vrsrad_n_u64:
12213   case NEON::BI__builtin_neon_vrsrad_n_s64: {
12214     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
12215                                    ? Intrinsic::aarch64_neon_urshl
12216                                    : Intrinsic::aarch64_neon_srshl;
12217     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
12218     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
12219     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
12220                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
12221     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
12222   }
12223   case NEON::BI__builtin_neon_vshld_n_s64:
12224   case NEON::BI__builtin_neon_vshld_n_u64: {
12225     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12226     return Builder.CreateShl(
12227         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
12228   }
12229   case NEON::BI__builtin_neon_vshrd_n_s64: {
12230     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12231     return Builder.CreateAShr(
12232         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
12233                                                    Amt->getZExtValue())),
12234         "shrd_n");
12235   }
12236   case NEON::BI__builtin_neon_vshrd_n_u64: {
12237     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12238     uint64_t ShiftAmt = Amt->getZExtValue();
12239     // Right-shifting an unsigned value by its size yields 0.
12240     if (ShiftAmt == 64)
12241       return ConstantInt::get(Int64Ty, 0);
12242     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
12243                               "shrd_n");
12244   }
12245   case NEON::BI__builtin_neon_vsrad_n_s64: {
12246     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
12247     Ops[1] = Builder.CreateAShr(
12248         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
12249                                                    Amt->getZExtValue())),
12250         "shrd_n");
12251     return Builder.CreateAdd(Ops[0], Ops[1]);
12252   }
12253   case NEON::BI__builtin_neon_vsrad_n_u64: {
12254     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
12255     uint64_t ShiftAmt = Amt->getZExtValue();
12256     // Right-shifting an unsigned value by its size yields 0.
12257     // As Op + 0 = Op, return Ops[0] directly.
12258     if (ShiftAmt == 64)
12259       return Ops[0];
12260     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
12261                                 "shrd_n");
12262     return Builder.CreateAdd(Ops[0], Ops[1]);
12263   }
12264   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
12265   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
12266   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
12267   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
12268     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
12269                                           "lane");
12270     SmallVector<Value *, 2> ProductOps;
12271     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
12272     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
12273     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
12274     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
12275                           ProductOps, "vqdmlXl");
12276     Constant *CI = ConstantInt::get(SizeTy, 0);
12277     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
12278     Ops.pop_back();
12279 
12280     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
12281                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
12282                           ? Intrinsic::aarch64_neon_sqadd
12283                           : Intrinsic::aarch64_neon_sqsub;
12284     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
12285   }
12286   case NEON::BI__builtin_neon_vqdmlals_s32:
12287   case NEON::BI__builtin_neon_vqdmlsls_s32: {
12288     SmallVector<Value *, 2> ProductOps;
12289     ProductOps.push_back(Ops[1]);
12290     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
12291     Ops[1] =
12292         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
12293                      ProductOps, "vqdmlXl");
12294 
12295     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
12296                                         ? Intrinsic::aarch64_neon_sqadd
12297                                         : Intrinsic::aarch64_neon_sqsub;
12298     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
12299   }
12300   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
12301   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
12302   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
12303   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
12304     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
12305                                           "lane");
12306     SmallVector<Value *, 2> ProductOps;
12307     ProductOps.push_back(Ops[1]);
12308     ProductOps.push_back(Ops[2]);
12309     Ops[1] =
12310         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
12311                      ProductOps, "vqdmlXl");
12312     Ops.pop_back();
12313 
12314     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
12315                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
12316                           ? Intrinsic::aarch64_neon_sqadd
12317                           : Intrinsic::aarch64_neon_sqsub;
12318     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
12319   }
12320   case NEON::BI__builtin_neon_vget_lane_bf16:
12321   case NEON::BI__builtin_neon_vduph_lane_bf16:
12322   case NEON::BI__builtin_neon_vduph_lane_f16: {
12323     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12324                                         "vget_lane");
12325   }
12326   case NEON::BI__builtin_neon_vgetq_lane_bf16:
12327   case NEON::BI__builtin_neon_vduph_laneq_bf16:
12328   case NEON::BI__builtin_neon_vduph_laneq_f16: {
12329     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12330                                         "vgetq_lane");
12331   }
12332 
12333   case clang::AArch64::BI_InterlockedAdd:
12334   case clang::AArch64::BI_InterlockedAdd64: {
12335     Address DestAddr = CheckAtomicAlignment(*this, E);
12336     Value *Val = EmitScalarExpr(E->getArg(1));
12337     AtomicRMWInst *RMWI =
12338         Builder.CreateAtomicRMW(AtomicRMWInst::Add, DestAddr, Val,
12339                                 llvm::AtomicOrdering::SequentiallyConsistent);
12340     return Builder.CreateAdd(RMWI, Val);
12341   }
12342   }
12343 
12344   llvm::FixedVectorType *VTy = GetNeonType(this, Type);
12345   llvm::Type *Ty = VTy;
12346   if (!Ty)
12347     return nullptr;
12348 
12349   // Not all intrinsics handled by the common case work for AArch64 yet, so only
12350   // defer to common code if it's been added to our special map.
12351   Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
12352                                         AArch64SIMDIntrinsicsProvenSorted);
12353 
12354   if (Builtin)
12355     return EmitCommonNeonBuiltinExpr(
12356         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
12357         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
12358         /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
12359 
12360   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
12361     return V;
12362 
12363   unsigned Int;
12364   switch (BuiltinID) {
12365   default: return nullptr;
12366   case NEON::BI__builtin_neon_vbsl_v:
12367   case NEON::BI__builtin_neon_vbslq_v: {
12368     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
12369     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
12370     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
12371     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
12372 
12373     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
12374     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
12375     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
12376     return Builder.CreateBitCast(Ops[0], Ty);
12377   }
12378   case NEON::BI__builtin_neon_vfma_lane_v:
12379   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
12380     // The ARM builtins (and instructions) have the addend as the first
12381     // operand, but the 'fma' intrinsics have it last. Swap it around here.
12382     Value *Addend = Ops[0];
12383     Value *Multiplicand = Ops[1];
12384     Value *LaneSource = Ops[2];
12385     Ops[0] = Multiplicand;
12386     Ops[1] = LaneSource;
12387     Ops[2] = Addend;
12388 
12389     // Now adjust things to handle the lane access.
12390     auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
12391                          ? llvm::FixedVectorType::get(VTy->getElementType(),
12392                                                       VTy->getNumElements() / 2)
12393                          : VTy;
12394     llvm::Constant *cst = cast<Constant>(Ops[3]);
12395     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
12396     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
12397     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
12398 
12399     Ops.pop_back();
12400     Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
12401                                        : Intrinsic::fma;
12402     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
12403   }
12404   case NEON::BI__builtin_neon_vfma_laneq_v: {
12405     auto *VTy = cast<llvm::FixedVectorType>(Ty);
12406     // v1f64 fma should be mapped to Neon scalar f64 fma
12407     if (VTy && VTy->getElementType() == DoubleTy) {
12408       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
12409       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
12410       llvm::FixedVectorType *VTy =
12411           GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
12412       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
12413       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
12414       Value *Result;
12415       Result = emitCallMaybeConstrainedFPBuiltin(
12416           *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
12417           DoubleTy, {Ops[1], Ops[2], Ops[0]});
12418       return Builder.CreateBitCast(Result, Ty);
12419     }
12420     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12421     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12422 
12423     auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
12424                                            VTy->getNumElements() * 2);
12425     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
12426     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
12427                                                cast<ConstantInt>(Ops[3]));
12428     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
12429 
12430     return emitCallMaybeConstrainedFPBuiltin(
12431         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
12432         {Ops[2], Ops[1], Ops[0]});
12433   }
12434   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
12435     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12436     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12437 
12438     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12439     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
12440     return emitCallMaybeConstrainedFPBuiltin(
12441         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
12442         {Ops[2], Ops[1], Ops[0]});
12443   }
12444   case NEON::BI__builtin_neon_vfmah_lane_f16:
12445   case NEON::BI__builtin_neon_vfmas_lane_f32:
12446   case NEON::BI__builtin_neon_vfmah_laneq_f16:
12447   case NEON::BI__builtin_neon_vfmas_laneq_f32:
12448   case NEON::BI__builtin_neon_vfmad_lane_f64:
12449   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
12450     Ops.push_back(EmitScalarExpr(E->getArg(3)));
12451     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
12452     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
12453     return emitCallMaybeConstrainedFPBuiltin(
12454         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
12455         {Ops[1], Ops[2], Ops[0]});
12456   }
12457   case NEON::BI__builtin_neon_vmull_v:
12458     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12459     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
12460     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
12461     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
12462   case NEON::BI__builtin_neon_vmax_v:
12463   case NEON::BI__builtin_neon_vmaxq_v:
12464     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12465     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
12466     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
12467     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
12468   case NEON::BI__builtin_neon_vmaxh_f16: {
12469     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12470     Int = Intrinsic::aarch64_neon_fmax;
12471     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
12472   }
12473   case NEON::BI__builtin_neon_vmin_v:
12474   case NEON::BI__builtin_neon_vminq_v:
12475     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12476     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
12477     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
12478     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
12479   case NEON::BI__builtin_neon_vminh_f16: {
12480     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12481     Int = Intrinsic::aarch64_neon_fmin;
12482     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
12483   }
12484   case NEON::BI__builtin_neon_vabd_v:
12485   case NEON::BI__builtin_neon_vabdq_v:
12486     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12487     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
12488     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
12489     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
12490   case NEON::BI__builtin_neon_vpadal_v:
12491   case NEON::BI__builtin_neon_vpadalq_v: {
12492     unsigned ArgElts = VTy->getNumElements();
12493     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
12494     unsigned BitWidth = EltTy->getBitWidth();
12495     auto *ArgTy = llvm::FixedVectorType::get(
12496         llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
12497     llvm::Type* Tys[2] = { VTy, ArgTy };
12498     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
12499     SmallVector<llvm::Value*, 1> TmpOps;
12500     TmpOps.push_back(Ops[1]);
12501     Function *F = CGM.getIntrinsic(Int, Tys);
12502     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
12503     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
12504     return Builder.CreateAdd(tmp, addend);
12505   }
12506   case NEON::BI__builtin_neon_vpmin_v:
12507   case NEON::BI__builtin_neon_vpminq_v:
12508     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12509     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
12510     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
12511     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
12512   case NEON::BI__builtin_neon_vpmax_v:
12513   case NEON::BI__builtin_neon_vpmaxq_v:
12514     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12515     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
12516     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
12517     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
12518   case NEON::BI__builtin_neon_vminnm_v:
12519   case NEON::BI__builtin_neon_vminnmq_v:
12520     Int = Intrinsic::aarch64_neon_fminnm;
12521     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
12522   case NEON::BI__builtin_neon_vminnmh_f16:
12523     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12524     Int = Intrinsic::aarch64_neon_fminnm;
12525     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
12526   case NEON::BI__builtin_neon_vmaxnm_v:
12527   case NEON::BI__builtin_neon_vmaxnmq_v:
12528     Int = Intrinsic::aarch64_neon_fmaxnm;
12529     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
12530   case NEON::BI__builtin_neon_vmaxnmh_f16:
12531     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12532     Int = Intrinsic::aarch64_neon_fmaxnm;
12533     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
12534   case NEON::BI__builtin_neon_vrecpss_f32: {
12535     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12536     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
12537                         Ops, "vrecps");
12538   }
12539   case NEON::BI__builtin_neon_vrecpsd_f64:
12540     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12541     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
12542                         Ops, "vrecps");
12543   case NEON::BI__builtin_neon_vrecpsh_f16:
12544     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12545     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
12546                         Ops, "vrecps");
12547   case NEON::BI__builtin_neon_vqshrun_n_v:
12548     Int = Intrinsic::aarch64_neon_sqshrun;
12549     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
12550   case NEON::BI__builtin_neon_vqrshrun_n_v:
12551     Int = Intrinsic::aarch64_neon_sqrshrun;
12552     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
12553   case NEON::BI__builtin_neon_vqshrn_n_v:
12554     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
12555     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
12556   case NEON::BI__builtin_neon_vrshrn_n_v:
12557     Int = Intrinsic::aarch64_neon_rshrn;
12558     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
12559   case NEON::BI__builtin_neon_vqrshrn_n_v:
12560     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
12561     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
12562   case NEON::BI__builtin_neon_vrndah_f16: {
12563     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12564     Int = Builder.getIsFPConstrained()
12565               ? Intrinsic::experimental_constrained_round
12566               : Intrinsic::round;
12567     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
12568   }
12569   case NEON::BI__builtin_neon_vrnda_v:
12570   case NEON::BI__builtin_neon_vrndaq_v: {
12571     Int = Builder.getIsFPConstrained()
12572               ? Intrinsic::experimental_constrained_round
12573               : Intrinsic::round;
12574     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
12575   }
12576   case NEON::BI__builtin_neon_vrndih_f16: {
12577     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12578     Int = Builder.getIsFPConstrained()
12579               ? Intrinsic::experimental_constrained_nearbyint
12580               : Intrinsic::nearbyint;
12581     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
12582   }
12583   case NEON::BI__builtin_neon_vrndmh_f16: {
12584     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12585     Int = Builder.getIsFPConstrained()
12586               ? Intrinsic::experimental_constrained_floor
12587               : Intrinsic::floor;
12588     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
12589   }
12590   case NEON::BI__builtin_neon_vrndm_v:
12591   case NEON::BI__builtin_neon_vrndmq_v: {
12592     Int = Builder.getIsFPConstrained()
12593               ? Intrinsic::experimental_constrained_floor
12594               : Intrinsic::floor;
12595     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
12596   }
12597   case NEON::BI__builtin_neon_vrndnh_f16: {
12598     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12599     Int = Builder.getIsFPConstrained()
12600               ? Intrinsic::experimental_constrained_roundeven
12601               : Intrinsic::roundeven;
12602     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
12603   }
12604   case NEON::BI__builtin_neon_vrndn_v:
12605   case NEON::BI__builtin_neon_vrndnq_v: {
12606     Int = Builder.getIsFPConstrained()
12607               ? Intrinsic::experimental_constrained_roundeven
12608               : Intrinsic::roundeven;
12609     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
12610   }
12611   case NEON::BI__builtin_neon_vrndns_f32: {
12612     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12613     Int = Builder.getIsFPConstrained()
12614               ? Intrinsic::experimental_constrained_roundeven
12615               : Intrinsic::roundeven;
12616     return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
12617   }
12618   case NEON::BI__builtin_neon_vrndph_f16: {
12619     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12620     Int = Builder.getIsFPConstrained()
12621               ? Intrinsic::experimental_constrained_ceil
12622               : Intrinsic::ceil;
12623     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
12624   }
12625   case NEON::BI__builtin_neon_vrndp_v:
12626   case NEON::BI__builtin_neon_vrndpq_v: {
12627     Int = Builder.getIsFPConstrained()
12628               ? Intrinsic::experimental_constrained_ceil
12629               : Intrinsic::ceil;
12630     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
12631   }
12632   case NEON::BI__builtin_neon_vrndxh_f16: {
12633     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12634     Int = Builder.getIsFPConstrained()
12635               ? Intrinsic::experimental_constrained_rint
12636               : Intrinsic::rint;
12637     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
12638   }
12639   case NEON::BI__builtin_neon_vrndx_v:
12640   case NEON::BI__builtin_neon_vrndxq_v: {
12641     Int = Builder.getIsFPConstrained()
12642               ? Intrinsic::experimental_constrained_rint
12643               : Intrinsic::rint;
12644     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
12645   }
12646   case NEON::BI__builtin_neon_vrndh_f16: {
12647     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12648     Int = Builder.getIsFPConstrained()
12649               ? Intrinsic::experimental_constrained_trunc
12650               : Intrinsic::trunc;
12651     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
12652   }
12653   case NEON::BI__builtin_neon_vrnd32x_f32:
12654   case NEON::BI__builtin_neon_vrnd32xq_f32:
12655   case NEON::BI__builtin_neon_vrnd32x_f64:
12656   case NEON::BI__builtin_neon_vrnd32xq_f64: {
12657     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12658     Int = Intrinsic::aarch64_neon_frint32x;
12659     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
12660   }
12661   case NEON::BI__builtin_neon_vrnd32z_f32:
12662   case NEON::BI__builtin_neon_vrnd32zq_f32:
12663   case NEON::BI__builtin_neon_vrnd32z_f64:
12664   case NEON::BI__builtin_neon_vrnd32zq_f64: {
12665     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12666     Int = Intrinsic::aarch64_neon_frint32z;
12667     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
12668   }
12669   case NEON::BI__builtin_neon_vrnd64x_f32:
12670   case NEON::BI__builtin_neon_vrnd64xq_f32:
12671   case NEON::BI__builtin_neon_vrnd64x_f64:
12672   case NEON::BI__builtin_neon_vrnd64xq_f64: {
12673     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12674     Int = Intrinsic::aarch64_neon_frint64x;
12675     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
12676   }
12677   case NEON::BI__builtin_neon_vrnd64z_f32:
12678   case NEON::BI__builtin_neon_vrnd64zq_f32:
12679   case NEON::BI__builtin_neon_vrnd64z_f64:
12680   case NEON::BI__builtin_neon_vrnd64zq_f64: {
12681     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12682     Int = Intrinsic::aarch64_neon_frint64z;
12683     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
12684   }
12685   case NEON::BI__builtin_neon_vrnd_v:
12686   case NEON::BI__builtin_neon_vrndq_v: {
12687     Int = Builder.getIsFPConstrained()
12688               ? Intrinsic::experimental_constrained_trunc
12689               : Intrinsic::trunc;
12690     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
12691   }
12692   case NEON::BI__builtin_neon_vcvt_f64_v:
12693   case NEON::BI__builtin_neon_vcvtq_f64_v:
12694     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12695     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
12696     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
12697                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
12698   case NEON::BI__builtin_neon_vcvt_f64_f32: {
12699     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
12700            "unexpected vcvt_f64_f32 builtin");
12701     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
12702     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
12703 
12704     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
12705   }
12706   case NEON::BI__builtin_neon_vcvt_f32_f64: {
12707     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
12708            "unexpected vcvt_f32_f64 builtin");
12709     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
12710     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
12711 
12712     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
12713   }
12714   case NEON::BI__builtin_neon_vcvt_s32_v:
12715   case NEON::BI__builtin_neon_vcvt_u32_v:
12716   case NEON::BI__builtin_neon_vcvt_s64_v:
12717   case NEON::BI__builtin_neon_vcvt_u64_v:
12718   case NEON::BI__builtin_neon_vcvt_s16_f16:
12719   case NEON::BI__builtin_neon_vcvt_u16_f16:
12720   case NEON::BI__builtin_neon_vcvtq_s32_v:
12721   case NEON::BI__builtin_neon_vcvtq_u32_v:
12722   case NEON::BI__builtin_neon_vcvtq_s64_v:
12723   case NEON::BI__builtin_neon_vcvtq_u64_v:
12724   case NEON::BI__builtin_neon_vcvtq_s16_f16:
12725   case NEON::BI__builtin_neon_vcvtq_u16_f16: {
12726     Int =
12727         usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
12728     llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
12729     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
12730   }
12731   case NEON::BI__builtin_neon_vcvta_s16_f16:
12732   case NEON::BI__builtin_neon_vcvta_u16_f16:
12733   case NEON::BI__builtin_neon_vcvta_s32_v:
12734   case NEON::BI__builtin_neon_vcvtaq_s16_f16:
12735   case NEON::BI__builtin_neon_vcvtaq_s32_v:
12736   case NEON::BI__builtin_neon_vcvta_u32_v:
12737   case NEON::BI__builtin_neon_vcvtaq_u16_f16:
12738   case NEON::BI__builtin_neon_vcvtaq_u32_v:
12739   case NEON::BI__builtin_neon_vcvta_s64_v:
12740   case NEON::BI__builtin_neon_vcvtaq_s64_v:
12741   case NEON::BI__builtin_neon_vcvta_u64_v:
12742   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
12743     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
12744     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12745     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
12746   }
12747   case NEON::BI__builtin_neon_vcvtm_s16_f16:
12748   case NEON::BI__builtin_neon_vcvtm_s32_v:
12749   case NEON::BI__builtin_neon_vcvtmq_s16_f16:
12750   case NEON::BI__builtin_neon_vcvtmq_s32_v:
12751   case NEON::BI__builtin_neon_vcvtm_u16_f16:
12752   case NEON::BI__builtin_neon_vcvtm_u32_v:
12753   case NEON::BI__builtin_neon_vcvtmq_u16_f16:
12754   case NEON::BI__builtin_neon_vcvtmq_u32_v:
12755   case NEON::BI__builtin_neon_vcvtm_s64_v:
12756   case NEON::BI__builtin_neon_vcvtmq_s64_v:
12757   case NEON::BI__builtin_neon_vcvtm_u64_v:
12758   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
12759     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
12760     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12761     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
12762   }
12763   case NEON::BI__builtin_neon_vcvtn_s16_f16:
12764   case NEON::BI__builtin_neon_vcvtn_s32_v:
12765   case NEON::BI__builtin_neon_vcvtnq_s16_f16:
12766   case NEON::BI__builtin_neon_vcvtnq_s32_v:
12767   case NEON::BI__builtin_neon_vcvtn_u16_f16:
12768   case NEON::BI__builtin_neon_vcvtn_u32_v:
12769   case NEON::BI__builtin_neon_vcvtnq_u16_f16:
12770   case NEON::BI__builtin_neon_vcvtnq_u32_v:
12771   case NEON::BI__builtin_neon_vcvtn_s64_v:
12772   case NEON::BI__builtin_neon_vcvtnq_s64_v:
12773   case NEON::BI__builtin_neon_vcvtn_u64_v:
12774   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
12775     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
12776     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12777     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
12778   }
12779   case NEON::BI__builtin_neon_vcvtp_s16_f16:
12780   case NEON::BI__builtin_neon_vcvtp_s32_v:
12781   case NEON::BI__builtin_neon_vcvtpq_s16_f16:
12782   case NEON::BI__builtin_neon_vcvtpq_s32_v:
12783   case NEON::BI__builtin_neon_vcvtp_u16_f16:
12784   case NEON::BI__builtin_neon_vcvtp_u32_v:
12785   case NEON::BI__builtin_neon_vcvtpq_u16_f16:
12786   case NEON::BI__builtin_neon_vcvtpq_u32_v:
12787   case NEON::BI__builtin_neon_vcvtp_s64_v:
12788   case NEON::BI__builtin_neon_vcvtpq_s64_v:
12789   case NEON::BI__builtin_neon_vcvtp_u64_v:
12790   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
12791     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
12792     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12793     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
12794   }
12795   case NEON::BI__builtin_neon_vmulx_v:
12796   case NEON::BI__builtin_neon_vmulxq_v: {
12797     Int = Intrinsic::aarch64_neon_fmulx;
12798     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
12799   }
12800   case NEON::BI__builtin_neon_vmulxh_lane_f16:
12801   case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
12802     // vmulx_lane should be mapped to Neon scalar mulx after
12803     // extracting the scalar element
12804     Ops.push_back(EmitScalarExpr(E->getArg(2)));
12805     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
12806     Ops.pop_back();
12807     Int = Intrinsic::aarch64_neon_fmulx;
12808     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
12809   }
12810   case NEON::BI__builtin_neon_vmul_lane_v:
12811   case NEON::BI__builtin_neon_vmul_laneq_v: {
12812     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
12813     bool Quad = false;
12814     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
12815       Quad = true;
12816     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
12817     llvm::FixedVectorType *VTy =
12818         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
12819     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
12820     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
12821     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
12822     return Builder.CreateBitCast(Result, Ty);
12823   }
12824   case NEON::BI__builtin_neon_vnegd_s64:
12825     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
12826   case NEON::BI__builtin_neon_vnegh_f16:
12827     return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
12828   case NEON::BI__builtin_neon_vpmaxnm_v:
12829   case NEON::BI__builtin_neon_vpmaxnmq_v: {
12830     Int = Intrinsic::aarch64_neon_fmaxnmp;
12831     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
12832   }
12833   case NEON::BI__builtin_neon_vpminnm_v:
12834   case NEON::BI__builtin_neon_vpminnmq_v: {
12835     Int = Intrinsic::aarch64_neon_fminnmp;
12836     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
12837   }
12838   case NEON::BI__builtin_neon_vsqrth_f16: {
12839     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12840     Int = Builder.getIsFPConstrained()
12841               ? Intrinsic::experimental_constrained_sqrt
12842               : Intrinsic::sqrt;
12843     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
12844   }
12845   case NEON::BI__builtin_neon_vsqrt_v:
12846   case NEON::BI__builtin_neon_vsqrtq_v: {
12847     Int = Builder.getIsFPConstrained()
12848               ? Intrinsic::experimental_constrained_sqrt
12849               : Intrinsic::sqrt;
12850     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12851     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
12852   }
12853   case NEON::BI__builtin_neon_vrbit_v:
12854   case NEON::BI__builtin_neon_vrbitq_v: {
12855     Int = Intrinsic::bitreverse;
12856     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
12857   }
12858   case NEON::BI__builtin_neon_vaddv_u8:
12859     // FIXME: These are handled by the AArch64 scalar code.
12860     usgn = true;
12861     [[fallthrough]];
12862   case NEON::BI__builtin_neon_vaddv_s8: {
12863     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12864     Ty = Int32Ty;
12865     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12866     llvm::Type *Tys[2] = { Ty, VTy };
12867     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12868     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12869     return Builder.CreateTrunc(Ops[0], Int8Ty);
12870   }
12871   case NEON::BI__builtin_neon_vaddv_u16:
12872     usgn = true;
12873     [[fallthrough]];
12874   case NEON::BI__builtin_neon_vaddv_s16: {
12875     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12876     Ty = Int32Ty;
12877     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12878     llvm::Type *Tys[2] = { Ty, VTy };
12879     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12880     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12881     return Builder.CreateTrunc(Ops[0], Int16Ty);
12882   }
12883   case NEON::BI__builtin_neon_vaddvq_u8:
12884     usgn = true;
12885     [[fallthrough]];
12886   case NEON::BI__builtin_neon_vaddvq_s8: {
12887     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12888     Ty = Int32Ty;
12889     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12890     llvm::Type *Tys[2] = { Ty, VTy };
12891     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12892     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12893     return Builder.CreateTrunc(Ops[0], Int8Ty);
12894   }
12895   case NEON::BI__builtin_neon_vaddvq_u16:
12896     usgn = true;
12897     [[fallthrough]];
12898   case NEON::BI__builtin_neon_vaddvq_s16: {
12899     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12900     Ty = Int32Ty;
12901     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12902     llvm::Type *Tys[2] = { Ty, VTy };
12903     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12904     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12905     return Builder.CreateTrunc(Ops[0], Int16Ty);
12906   }
12907   case NEON::BI__builtin_neon_vmaxv_u8: {
12908     Int = Intrinsic::aarch64_neon_umaxv;
12909     Ty = Int32Ty;
12910     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12911     llvm::Type *Tys[2] = { Ty, VTy };
12912     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12913     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12914     return Builder.CreateTrunc(Ops[0], Int8Ty);
12915   }
12916   case NEON::BI__builtin_neon_vmaxv_u16: {
12917     Int = Intrinsic::aarch64_neon_umaxv;
12918     Ty = Int32Ty;
12919     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12920     llvm::Type *Tys[2] = { Ty, VTy };
12921     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12922     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12923     return Builder.CreateTrunc(Ops[0], Int16Ty);
12924   }
12925   case NEON::BI__builtin_neon_vmaxvq_u8: {
12926     Int = Intrinsic::aarch64_neon_umaxv;
12927     Ty = Int32Ty;
12928     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12929     llvm::Type *Tys[2] = { Ty, VTy };
12930     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12931     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12932     return Builder.CreateTrunc(Ops[0], Int8Ty);
12933   }
12934   case NEON::BI__builtin_neon_vmaxvq_u16: {
12935     Int = Intrinsic::aarch64_neon_umaxv;
12936     Ty = Int32Ty;
12937     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12938     llvm::Type *Tys[2] = { Ty, VTy };
12939     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12940     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12941     return Builder.CreateTrunc(Ops[0], Int16Ty);
12942   }
12943   case NEON::BI__builtin_neon_vmaxv_s8: {
12944     Int = Intrinsic::aarch64_neon_smaxv;
12945     Ty = Int32Ty;
12946     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12947     llvm::Type *Tys[2] = { Ty, VTy };
12948     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12949     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12950     return Builder.CreateTrunc(Ops[0], Int8Ty);
12951   }
12952   case NEON::BI__builtin_neon_vmaxv_s16: {
12953     Int = Intrinsic::aarch64_neon_smaxv;
12954     Ty = Int32Ty;
12955     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12956     llvm::Type *Tys[2] = { Ty, VTy };
12957     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12958     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12959     return Builder.CreateTrunc(Ops[0], Int16Ty);
12960   }
12961   case NEON::BI__builtin_neon_vmaxvq_s8: {
12962     Int = Intrinsic::aarch64_neon_smaxv;
12963     Ty = Int32Ty;
12964     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12965     llvm::Type *Tys[2] = { Ty, VTy };
12966     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12967     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12968     return Builder.CreateTrunc(Ops[0], Int8Ty);
12969   }
12970   case NEON::BI__builtin_neon_vmaxvq_s16: {
12971     Int = Intrinsic::aarch64_neon_smaxv;
12972     Ty = Int32Ty;
12973     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12974     llvm::Type *Tys[2] = { Ty, VTy };
12975     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12976     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12977     return Builder.CreateTrunc(Ops[0], Int16Ty);
12978   }
12979   case NEON::BI__builtin_neon_vmaxv_f16: {
12980     Int = Intrinsic::aarch64_neon_fmaxv;
12981     Ty = HalfTy;
12982     VTy = llvm::FixedVectorType::get(HalfTy, 4);
12983     llvm::Type *Tys[2] = { Ty, VTy };
12984     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12985     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12986     return Builder.CreateTrunc(Ops[0], HalfTy);
12987   }
12988   case NEON::BI__builtin_neon_vmaxvq_f16: {
12989     Int = Intrinsic::aarch64_neon_fmaxv;
12990     Ty = HalfTy;
12991     VTy = llvm::FixedVectorType::get(HalfTy, 8);
12992     llvm::Type *Tys[2] = { Ty, VTy };
12993     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12994     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12995     return Builder.CreateTrunc(Ops[0], HalfTy);
12996   }
12997   case NEON::BI__builtin_neon_vminv_u8: {
12998     Int = Intrinsic::aarch64_neon_uminv;
12999     Ty = Int32Ty;
13000     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
13001     llvm::Type *Tys[2] = { Ty, VTy };
13002     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13003     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13004     return Builder.CreateTrunc(Ops[0], Int8Ty);
13005   }
13006   case NEON::BI__builtin_neon_vminv_u16: {
13007     Int = Intrinsic::aarch64_neon_uminv;
13008     Ty = Int32Ty;
13009     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
13010     llvm::Type *Tys[2] = { Ty, VTy };
13011     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13012     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13013     return Builder.CreateTrunc(Ops[0], Int16Ty);
13014   }
13015   case NEON::BI__builtin_neon_vminvq_u8: {
13016     Int = Intrinsic::aarch64_neon_uminv;
13017     Ty = Int32Ty;
13018     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
13019     llvm::Type *Tys[2] = { Ty, VTy };
13020     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13021     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13022     return Builder.CreateTrunc(Ops[0], Int8Ty);
13023   }
13024   case NEON::BI__builtin_neon_vminvq_u16: {
13025     Int = Intrinsic::aarch64_neon_uminv;
13026     Ty = Int32Ty;
13027     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
13028     llvm::Type *Tys[2] = { Ty, VTy };
13029     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13030     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13031     return Builder.CreateTrunc(Ops[0], Int16Ty);
13032   }
13033   case NEON::BI__builtin_neon_vminv_s8: {
13034     Int = Intrinsic::aarch64_neon_sminv;
13035     Ty = Int32Ty;
13036     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
13037     llvm::Type *Tys[2] = { Ty, VTy };
13038     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13039     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13040     return Builder.CreateTrunc(Ops[0], Int8Ty);
13041   }
13042   case NEON::BI__builtin_neon_vminv_s16: {
13043     Int = Intrinsic::aarch64_neon_sminv;
13044     Ty = Int32Ty;
13045     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
13046     llvm::Type *Tys[2] = { Ty, VTy };
13047     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13048     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13049     return Builder.CreateTrunc(Ops[0], Int16Ty);
13050   }
13051   case NEON::BI__builtin_neon_vminvq_s8: {
13052     Int = Intrinsic::aarch64_neon_sminv;
13053     Ty = Int32Ty;
13054     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
13055     llvm::Type *Tys[2] = { Ty, VTy };
13056     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13057     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13058     return Builder.CreateTrunc(Ops[0], Int8Ty);
13059   }
13060   case NEON::BI__builtin_neon_vminvq_s16: {
13061     Int = Intrinsic::aarch64_neon_sminv;
13062     Ty = Int32Ty;
13063     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
13064     llvm::Type *Tys[2] = { Ty, VTy };
13065     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13066     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13067     return Builder.CreateTrunc(Ops[0], Int16Ty);
13068   }
13069   case NEON::BI__builtin_neon_vminv_f16: {
13070     Int = Intrinsic::aarch64_neon_fminv;
13071     Ty = HalfTy;
13072     VTy = llvm::FixedVectorType::get(HalfTy, 4);
13073     llvm::Type *Tys[2] = { Ty, VTy };
13074     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13075     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13076     return Builder.CreateTrunc(Ops[0], HalfTy);
13077   }
13078   case NEON::BI__builtin_neon_vminvq_f16: {
13079     Int = Intrinsic::aarch64_neon_fminv;
13080     Ty = HalfTy;
13081     VTy = llvm::FixedVectorType::get(HalfTy, 8);
13082     llvm::Type *Tys[2] = { Ty, VTy };
13083     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13084     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13085     return Builder.CreateTrunc(Ops[0], HalfTy);
13086   }
13087   case NEON::BI__builtin_neon_vmaxnmv_f16: {
13088     Int = Intrinsic::aarch64_neon_fmaxnmv;
13089     Ty = HalfTy;
13090     VTy = llvm::FixedVectorType::get(HalfTy, 4);
13091     llvm::Type *Tys[2] = { Ty, VTy };
13092     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13093     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
13094     return Builder.CreateTrunc(Ops[0], HalfTy);
13095   }
13096   case NEON::BI__builtin_neon_vmaxnmvq_f16: {
13097     Int = Intrinsic::aarch64_neon_fmaxnmv;
13098     Ty = HalfTy;
13099     VTy = llvm::FixedVectorType::get(HalfTy, 8);
13100     llvm::Type *Tys[2] = { Ty, VTy };
13101     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13102     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
13103     return Builder.CreateTrunc(Ops[0], HalfTy);
13104   }
13105   case NEON::BI__builtin_neon_vminnmv_f16: {
13106     Int = Intrinsic::aarch64_neon_fminnmv;
13107     Ty = HalfTy;
13108     VTy = llvm::FixedVectorType::get(HalfTy, 4);
13109     llvm::Type *Tys[2] = { Ty, VTy };
13110     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13111     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
13112     return Builder.CreateTrunc(Ops[0], HalfTy);
13113   }
13114   case NEON::BI__builtin_neon_vminnmvq_f16: {
13115     Int = Intrinsic::aarch64_neon_fminnmv;
13116     Ty = HalfTy;
13117     VTy = llvm::FixedVectorType::get(HalfTy, 8);
13118     llvm::Type *Tys[2] = { Ty, VTy };
13119     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13120     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
13121     return Builder.CreateTrunc(Ops[0], HalfTy);
13122   }
13123   case NEON::BI__builtin_neon_vmul_n_f64: {
13124     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
13125     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
13126     return Builder.CreateFMul(Ops[0], RHS);
13127   }
13128   case NEON::BI__builtin_neon_vaddlv_u8: {
13129     Int = Intrinsic::aarch64_neon_uaddlv;
13130     Ty = Int32Ty;
13131     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
13132     llvm::Type *Tys[2] = { Ty, VTy };
13133     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13134     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13135     return Builder.CreateTrunc(Ops[0], Int16Ty);
13136   }
13137   case NEON::BI__builtin_neon_vaddlv_u16: {
13138     Int = Intrinsic::aarch64_neon_uaddlv;
13139     Ty = Int32Ty;
13140     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
13141     llvm::Type *Tys[2] = { Ty, VTy };
13142     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13143     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13144   }
13145   case NEON::BI__builtin_neon_vaddlvq_u8: {
13146     Int = Intrinsic::aarch64_neon_uaddlv;
13147     Ty = Int32Ty;
13148     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
13149     llvm::Type *Tys[2] = { Ty, VTy };
13150     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13151     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13152     return Builder.CreateTrunc(Ops[0], Int16Ty);
13153   }
13154   case NEON::BI__builtin_neon_vaddlvq_u16: {
13155     Int = Intrinsic::aarch64_neon_uaddlv;
13156     Ty = Int32Ty;
13157     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
13158     llvm::Type *Tys[2] = { Ty, VTy };
13159     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13160     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13161   }
13162   case NEON::BI__builtin_neon_vaddlv_s8: {
13163     Int = Intrinsic::aarch64_neon_saddlv;
13164     Ty = Int32Ty;
13165     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
13166     llvm::Type *Tys[2] = { Ty, VTy };
13167     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13168     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13169     return Builder.CreateTrunc(Ops[0], Int16Ty);
13170   }
13171   case NEON::BI__builtin_neon_vaddlv_s16: {
13172     Int = Intrinsic::aarch64_neon_saddlv;
13173     Ty = Int32Ty;
13174     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
13175     llvm::Type *Tys[2] = { Ty, VTy };
13176     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13177     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13178   }
13179   case NEON::BI__builtin_neon_vaddlvq_s8: {
13180     Int = Intrinsic::aarch64_neon_saddlv;
13181     Ty = Int32Ty;
13182     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
13183     llvm::Type *Tys[2] = { Ty, VTy };
13184     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13185     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13186     return Builder.CreateTrunc(Ops[0], Int16Ty);
13187   }
13188   case NEON::BI__builtin_neon_vaddlvq_s16: {
13189     Int = Intrinsic::aarch64_neon_saddlv;
13190     Ty = Int32Ty;
13191     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
13192     llvm::Type *Tys[2] = { Ty, VTy };
13193     Ops.push_back(EmitScalarExpr(E->getArg(0)));
13194     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13195   }
13196   case NEON::BI__builtin_neon_vsri_n_v:
13197   case NEON::BI__builtin_neon_vsriq_n_v: {
13198     Int = Intrinsic::aarch64_neon_vsri;
13199     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
13200     return EmitNeonCall(Intrin, Ops, "vsri_n");
13201   }
13202   case NEON::BI__builtin_neon_vsli_n_v:
13203   case NEON::BI__builtin_neon_vsliq_n_v: {
13204     Int = Intrinsic::aarch64_neon_vsli;
13205     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
13206     return EmitNeonCall(Intrin, Ops, "vsli_n");
13207   }
13208   case NEON::BI__builtin_neon_vsra_n_v:
13209   case NEON::BI__builtin_neon_vsraq_n_v:
13210     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
13211     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
13212     return Builder.CreateAdd(Ops[0], Ops[1]);
13213   case NEON::BI__builtin_neon_vrsra_n_v:
13214   case NEON::BI__builtin_neon_vrsraq_n_v: {
13215     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
13216     SmallVector<llvm::Value*,2> TmpOps;
13217     TmpOps.push_back(Ops[1]);
13218     TmpOps.push_back(Ops[2]);
13219     Function* F = CGM.getIntrinsic(Int, Ty);
13220     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
13221     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
13222     return Builder.CreateAdd(Ops[0], tmp);
13223   }
13224   case NEON::BI__builtin_neon_vld1_v:
13225   case NEON::BI__builtin_neon_vld1q_v: {
13226     return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
13227   }
13228   case NEON::BI__builtin_neon_vst1_v:
13229   case NEON::BI__builtin_neon_vst1q_v:
13230     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
13231     return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
13232   case NEON::BI__builtin_neon_vld1_lane_v:
13233   case NEON::BI__builtin_neon_vld1q_lane_v: {
13234     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13235     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
13236                                        PtrOp0.getAlignment());
13237     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
13238   }
13239   case NEON::BI__builtin_neon_vldap1_lane_s64:
13240   case NEON::BI__builtin_neon_vldap1q_lane_s64: {
13241     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13242     llvm::LoadInst *LI = Builder.CreateAlignedLoad(
13243         VTy->getElementType(), Ops[0], PtrOp0.getAlignment());
13244     LI->setAtomic(llvm::AtomicOrdering::Acquire);
13245     Ops[0] = LI;
13246     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vldap1_lane");
13247   }
13248   case NEON::BI__builtin_neon_vld1_dup_v:
13249   case NEON::BI__builtin_neon_vld1q_dup_v: {
13250     Value *V = PoisonValue::get(Ty);
13251     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
13252                                        PtrOp0.getAlignment());
13253     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
13254     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
13255     return EmitNeonSplat(Ops[0], CI);
13256   }
13257   case NEON::BI__builtin_neon_vst1_lane_v:
13258   case NEON::BI__builtin_neon_vst1q_lane_v:
13259     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13260     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
13261     return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
13262   case NEON::BI__builtin_neon_vstl1_lane_s64:
13263   case NEON::BI__builtin_neon_vstl1q_lane_s64: {
13264     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13265     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
13266     llvm::StoreInst *SI =
13267         Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
13268     SI->setAtomic(llvm::AtomicOrdering::Release);
13269     return SI;
13270   }
13271   case NEON::BI__builtin_neon_vld2_v:
13272   case NEON::BI__builtin_neon_vld2q_v: {
13273     llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13274     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
13275     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
13276     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13277   }
13278   case NEON::BI__builtin_neon_vld3_v:
13279   case NEON::BI__builtin_neon_vld3q_v: {
13280     llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13281     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
13282     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
13283     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13284   }
13285   case NEON::BI__builtin_neon_vld4_v:
13286   case NEON::BI__builtin_neon_vld4q_v: {
13287     llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13288     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
13289     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
13290     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13291   }
13292   case NEON::BI__builtin_neon_vld2_dup_v:
13293   case NEON::BI__builtin_neon_vld2q_dup_v: {
13294     llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13295     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
13296     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
13297     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13298   }
13299   case NEON::BI__builtin_neon_vld3_dup_v:
13300   case NEON::BI__builtin_neon_vld3q_dup_v: {
13301     llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13302     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
13303     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
13304     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13305   }
13306   case NEON::BI__builtin_neon_vld4_dup_v:
13307   case NEON::BI__builtin_neon_vld4q_dup_v: {
13308     llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13309     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
13310     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
13311     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13312   }
13313   case NEON::BI__builtin_neon_vld2_lane_v:
13314   case NEON::BI__builtin_neon_vld2q_lane_v: {
13315     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
13316     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
13317     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
13318     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13319     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13320     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
13321     Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld2_lane");
13322     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13323   }
13324   case NEON::BI__builtin_neon_vld3_lane_v:
13325   case NEON::BI__builtin_neon_vld3q_lane_v: {
13326     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
13327     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
13328     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
13329     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13330     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13331     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
13332     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
13333     Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld3_lane");
13334     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13335   }
13336   case NEON::BI__builtin_neon_vld4_lane_v:
13337   case NEON::BI__builtin_neon_vld4q_lane_v: {
13338     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
13339     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
13340     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
13341     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13342     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13343     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
13344     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
13345     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
13346     Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld4_lane");
13347     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13348   }
13349   case NEON::BI__builtin_neon_vst2_v:
13350   case NEON::BI__builtin_neon_vst2q_v: {
13351     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13352     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
13353     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
13354                         Ops, "");
13355   }
13356   case NEON::BI__builtin_neon_vst2_lane_v:
13357   case NEON::BI__builtin_neon_vst2q_lane_v: {
13358     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13359     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
13360     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
13361     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
13362                         Ops, "");
13363   }
13364   case NEON::BI__builtin_neon_vst3_v:
13365   case NEON::BI__builtin_neon_vst3q_v: {
13366     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13367     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
13368     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
13369                         Ops, "");
13370   }
13371   case NEON::BI__builtin_neon_vst3_lane_v:
13372   case NEON::BI__builtin_neon_vst3q_lane_v: {
13373     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13374     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
13375     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
13376     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
13377                         Ops, "");
13378   }
13379   case NEON::BI__builtin_neon_vst4_v:
13380   case NEON::BI__builtin_neon_vst4q_v: {
13381     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13382     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
13383     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
13384                         Ops, "");
13385   }
13386   case NEON::BI__builtin_neon_vst4_lane_v:
13387   case NEON::BI__builtin_neon_vst4q_lane_v: {
13388     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13389     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
13390     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
13391     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
13392                         Ops, "");
13393   }
13394   case NEON::BI__builtin_neon_vtrn_v:
13395   case NEON::BI__builtin_neon_vtrnq_v: {
13396     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13397     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13398     Value *SV = nullptr;
13399 
13400     for (unsigned vi = 0; vi != 2; ++vi) {
13401       SmallVector<int, 16> Indices;
13402       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
13403         Indices.push_back(i+vi);
13404         Indices.push_back(i+e+vi);
13405       }
13406       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
13407       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
13408       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
13409     }
13410     return SV;
13411   }
13412   case NEON::BI__builtin_neon_vuzp_v:
13413   case NEON::BI__builtin_neon_vuzpq_v: {
13414     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13415     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13416     Value *SV = nullptr;
13417 
13418     for (unsigned vi = 0; vi != 2; ++vi) {
13419       SmallVector<int, 16> Indices;
13420       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
13421         Indices.push_back(2*i+vi);
13422 
13423       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
13424       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
13425       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
13426     }
13427     return SV;
13428   }
13429   case NEON::BI__builtin_neon_vzip_v:
13430   case NEON::BI__builtin_neon_vzipq_v: {
13431     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13432     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13433     Value *SV = nullptr;
13434 
13435     for (unsigned vi = 0; vi != 2; ++vi) {
13436       SmallVector<int, 16> Indices;
13437       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
13438         Indices.push_back((i + vi*e) >> 1);
13439         Indices.push_back(((i + vi*e) >> 1)+e);
13440       }
13441       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
13442       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
13443       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
13444     }
13445     return SV;
13446   }
13447   case NEON::BI__builtin_neon_vqtbl1q_v: {
13448     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
13449                         Ops, "vtbl1");
13450   }
13451   case NEON::BI__builtin_neon_vqtbl2q_v: {
13452     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
13453                         Ops, "vtbl2");
13454   }
13455   case NEON::BI__builtin_neon_vqtbl3q_v: {
13456     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
13457                         Ops, "vtbl3");
13458   }
13459   case NEON::BI__builtin_neon_vqtbl4q_v: {
13460     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
13461                         Ops, "vtbl4");
13462   }
13463   case NEON::BI__builtin_neon_vqtbx1q_v: {
13464     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
13465                         Ops, "vtbx1");
13466   }
13467   case NEON::BI__builtin_neon_vqtbx2q_v: {
13468     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
13469                         Ops, "vtbx2");
13470   }
13471   case NEON::BI__builtin_neon_vqtbx3q_v: {
13472     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
13473                         Ops, "vtbx3");
13474   }
13475   case NEON::BI__builtin_neon_vqtbx4q_v: {
13476     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
13477                         Ops, "vtbx4");
13478   }
13479   case NEON::BI__builtin_neon_vsqadd_v:
13480   case NEON::BI__builtin_neon_vsqaddq_v: {
13481     Int = Intrinsic::aarch64_neon_usqadd;
13482     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
13483   }
13484   case NEON::BI__builtin_neon_vuqadd_v:
13485   case NEON::BI__builtin_neon_vuqaddq_v: {
13486     Int = Intrinsic::aarch64_neon_suqadd;
13487     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
13488   }
13489   }
13490 }
13491 
EmitBPFBuiltinExpr(unsigned BuiltinID,const CallExpr * E)13492 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
13493                                            const CallExpr *E) {
13494   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
13495           BuiltinID == BPF::BI__builtin_btf_type_id ||
13496           BuiltinID == BPF::BI__builtin_preserve_type_info ||
13497           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
13498          "unexpected BPF builtin");
13499 
13500   // A sequence number, injected into IR builtin functions, to
13501   // prevent CSE given the only difference of the function
13502   // may just be the debuginfo metadata.
13503   static uint32_t BuiltinSeqNum;
13504 
13505   switch (BuiltinID) {
13506   default:
13507     llvm_unreachable("Unexpected BPF builtin");
13508   case BPF::BI__builtin_preserve_field_info: {
13509     const Expr *Arg = E->getArg(0);
13510     bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
13511 
13512     if (!getDebugInfo()) {
13513       CGM.Error(E->getExprLoc(),
13514                 "using __builtin_preserve_field_info() without -g");
13515       return IsBitField ? EmitLValue(Arg).getRawBitFieldPointer(*this)
13516                         : EmitLValue(Arg).emitRawPointer(*this);
13517     }
13518 
13519     // Enable underlying preserve_*_access_index() generation.
13520     bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
13521     IsInPreservedAIRegion = true;
13522     Value *FieldAddr = IsBitField ? EmitLValue(Arg).getRawBitFieldPointer(*this)
13523                                   : EmitLValue(Arg).emitRawPointer(*this);
13524     IsInPreservedAIRegion = OldIsInPreservedAIRegion;
13525 
13526     ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
13527     Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
13528 
13529     // Built the IR for the preserve_field_info intrinsic.
13530     llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
13531         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
13532         {FieldAddr->getType()});
13533     return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
13534   }
13535   case BPF::BI__builtin_btf_type_id:
13536   case BPF::BI__builtin_preserve_type_info: {
13537     if (!getDebugInfo()) {
13538       CGM.Error(E->getExprLoc(), "using builtin function without -g");
13539       return nullptr;
13540     }
13541 
13542     const Expr *Arg0 = E->getArg(0);
13543     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
13544         Arg0->getType(), Arg0->getExprLoc());
13545 
13546     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
13547     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
13548     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
13549 
13550     llvm::Function *FnDecl;
13551     if (BuiltinID == BPF::BI__builtin_btf_type_id)
13552       FnDecl = llvm::Intrinsic::getDeclaration(
13553           &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
13554     else
13555       FnDecl = llvm::Intrinsic::getDeclaration(
13556           &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
13557     CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
13558     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
13559     return Fn;
13560   }
13561   case BPF::BI__builtin_preserve_enum_value: {
13562     if (!getDebugInfo()) {
13563       CGM.Error(E->getExprLoc(), "using builtin function without -g");
13564       return nullptr;
13565     }
13566 
13567     const Expr *Arg0 = E->getArg(0);
13568     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
13569         Arg0->getType(), Arg0->getExprLoc());
13570 
13571     // Find enumerator
13572     const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
13573     const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
13574     const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
13575     const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
13576 
13577     auto InitVal = Enumerator->getInitVal();
13578     std::string InitValStr;
13579     if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX))
13580       InitValStr = std::to_string(InitVal.getSExtValue());
13581     else
13582       InitValStr = std::to_string(InitVal.getZExtValue());
13583     std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
13584     Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
13585 
13586     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
13587     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
13588     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
13589 
13590     llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
13591         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
13592     CallInst *Fn =
13593         Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
13594     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
13595     return Fn;
13596   }
13597   }
13598 }
13599 
13600 llvm::Value *CodeGenFunction::
BuildVector(ArrayRef<llvm::Value * > Ops)13601 BuildVector(ArrayRef<llvm::Value*> Ops) {
13602   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
13603          "Not a power-of-two sized vector!");
13604   bool AllConstants = true;
13605   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
13606     AllConstants &= isa<Constant>(Ops[i]);
13607 
13608   // If this is a constant vector, create a ConstantVector.
13609   if (AllConstants) {
13610     SmallVector<llvm::Constant*, 16> CstOps;
13611     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
13612       CstOps.push_back(cast<Constant>(Ops[i]));
13613     return llvm::ConstantVector::get(CstOps);
13614   }
13615 
13616   // Otherwise, insertelement the values to build the vector.
13617   Value *Result = llvm::PoisonValue::get(
13618       llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
13619 
13620   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
13621     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt64(i));
13622 
13623   return Result;
13624 }
13625 
13626 // Convert the mask from an integer type to a vector of i1.
getMaskVecValue(CodeGenFunction & CGF,Value * Mask,unsigned NumElts)13627 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
13628                               unsigned NumElts) {
13629 
13630   auto *MaskTy = llvm::FixedVectorType::get(
13631       CGF.Builder.getInt1Ty(),
13632       cast<IntegerType>(Mask->getType())->getBitWidth());
13633   Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
13634 
13635   // If we have less than 8 elements, then the starting mask was an i8 and
13636   // we need to extract down to the right number of elements.
13637   if (NumElts < 8) {
13638     int Indices[4];
13639     for (unsigned i = 0; i != NumElts; ++i)
13640       Indices[i] = i;
13641     MaskVec = CGF.Builder.CreateShuffleVector(
13642         MaskVec, MaskVec, ArrayRef(Indices, NumElts), "extract");
13643   }
13644   return MaskVec;
13645 }
13646 
EmitX86MaskedStore(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Align Alignment)13647 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
13648                                  Align Alignment) {
13649   Value *Ptr = Ops[0];
13650 
13651   Value *MaskVec = getMaskVecValue(
13652       CGF, Ops[2],
13653       cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
13654 
13655   return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
13656 }
13657 
EmitX86MaskedLoad(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Align Alignment)13658 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
13659                                 Align Alignment) {
13660   llvm::Type *Ty = Ops[1]->getType();
13661   Value *Ptr = Ops[0];
13662 
13663   Value *MaskVec = getMaskVecValue(
13664       CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements());
13665 
13666   return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]);
13667 }
13668 
EmitX86ExpandLoad(CodeGenFunction & CGF,ArrayRef<Value * > Ops)13669 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
13670                                 ArrayRef<Value *> Ops) {
13671   auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
13672   Value *Ptr = Ops[0];
13673 
13674   Value *MaskVec = getMaskVecValue(
13675       CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
13676 
13677   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
13678                                            ResultTy);
13679   return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
13680 }
13681 
EmitX86CompressExpand(CodeGenFunction & CGF,ArrayRef<Value * > Ops,bool IsCompress)13682 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
13683                                     ArrayRef<Value *> Ops,
13684                                     bool IsCompress) {
13685   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
13686 
13687   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
13688 
13689   Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
13690                                  : Intrinsic::x86_avx512_mask_expand;
13691   llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
13692   return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
13693 }
13694 
EmitX86CompressStore(CodeGenFunction & CGF,ArrayRef<Value * > Ops)13695 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
13696                                    ArrayRef<Value *> Ops) {
13697   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
13698   Value *Ptr = Ops[0];
13699 
13700   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
13701 
13702   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
13703                                            ResultTy);
13704   return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
13705 }
13706 
EmitX86MaskLogic(CodeGenFunction & CGF,Instruction::BinaryOps Opc,ArrayRef<Value * > Ops,bool InvertLHS=false)13707 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
13708                               ArrayRef<Value *> Ops,
13709                               bool InvertLHS = false) {
13710   unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13711   Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
13712   Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
13713 
13714   if (InvertLHS)
13715     LHS = CGF.Builder.CreateNot(LHS);
13716 
13717   return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
13718                                    Ops[0]->getType());
13719 }
13720 
EmitX86FunnelShift(CodeGenFunction & CGF,Value * Op0,Value * Op1,Value * Amt,bool IsRight)13721 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
13722                                  Value *Amt, bool IsRight) {
13723   llvm::Type *Ty = Op0->getType();
13724 
13725   // Amount may be scalar immediate, in which case create a splat vector.
13726   // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
13727   // we only care about the lowest log2 bits anyway.
13728   if (Amt->getType() != Ty) {
13729     unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
13730     Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
13731     Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
13732   }
13733 
13734   unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
13735   Function *F = CGF.CGM.getIntrinsic(IID, Ty);
13736   return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
13737 }
13738 
EmitX86vpcom(CodeGenFunction & CGF,ArrayRef<Value * > Ops,bool IsSigned)13739 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
13740                            bool IsSigned) {
13741   Value *Op0 = Ops[0];
13742   Value *Op1 = Ops[1];
13743   llvm::Type *Ty = Op0->getType();
13744   uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13745 
13746   CmpInst::Predicate Pred;
13747   switch (Imm) {
13748   case 0x0:
13749     Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
13750     break;
13751   case 0x1:
13752     Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
13753     break;
13754   case 0x2:
13755     Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13756     break;
13757   case 0x3:
13758     Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
13759     break;
13760   case 0x4:
13761     Pred = ICmpInst::ICMP_EQ;
13762     break;
13763   case 0x5:
13764     Pred = ICmpInst::ICMP_NE;
13765     break;
13766   case 0x6:
13767     return llvm::Constant::getNullValue(Ty); // FALSE
13768   case 0x7:
13769     return llvm::Constant::getAllOnesValue(Ty); // TRUE
13770   default:
13771     llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
13772   }
13773 
13774   Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
13775   Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
13776   return Res;
13777 }
13778 
EmitX86Select(CodeGenFunction & CGF,Value * Mask,Value * Op0,Value * Op1)13779 static Value *EmitX86Select(CodeGenFunction &CGF,
13780                             Value *Mask, Value *Op0, Value *Op1) {
13781 
13782   // If the mask is all ones just return first argument.
13783   if (const auto *C = dyn_cast<Constant>(Mask))
13784     if (C->isAllOnesValue())
13785       return Op0;
13786 
13787   Mask = getMaskVecValue(
13788       CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
13789 
13790   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
13791 }
13792 
EmitX86ScalarSelect(CodeGenFunction & CGF,Value * Mask,Value * Op0,Value * Op1)13793 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
13794                                   Value *Mask, Value *Op0, Value *Op1) {
13795   // If the mask is all ones just return first argument.
13796   if (const auto *C = dyn_cast<Constant>(Mask))
13797     if (C->isAllOnesValue())
13798       return Op0;
13799 
13800   auto *MaskTy = llvm::FixedVectorType::get(
13801       CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
13802   Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
13803   Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
13804   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
13805 }
13806 
EmitX86MaskedCompareResult(CodeGenFunction & CGF,Value * Cmp,unsigned NumElts,Value * MaskIn)13807 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
13808                                          unsigned NumElts, Value *MaskIn) {
13809   if (MaskIn) {
13810     const auto *C = dyn_cast<Constant>(MaskIn);
13811     if (!C || !C->isAllOnesValue())
13812       Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
13813   }
13814 
13815   if (NumElts < 8) {
13816     int Indices[8];
13817     for (unsigned i = 0; i != NumElts; ++i)
13818       Indices[i] = i;
13819     for (unsigned i = NumElts; i != 8; ++i)
13820       Indices[i] = i % NumElts + NumElts;
13821     Cmp = CGF.Builder.CreateShuffleVector(
13822         Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
13823   }
13824 
13825   return CGF.Builder.CreateBitCast(Cmp,
13826                                    IntegerType::get(CGF.getLLVMContext(),
13827                                                     std::max(NumElts, 8U)));
13828 }
13829 
EmitX86MaskedCompare(CodeGenFunction & CGF,unsigned CC,bool Signed,ArrayRef<Value * > Ops)13830 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
13831                                    bool Signed, ArrayRef<Value *> Ops) {
13832   assert((Ops.size() == 2 || Ops.size() == 4) &&
13833          "Unexpected number of arguments");
13834   unsigned NumElts =
13835       cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13836   Value *Cmp;
13837 
13838   if (CC == 3) {
13839     Cmp = Constant::getNullValue(
13840         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
13841   } else if (CC == 7) {
13842     Cmp = Constant::getAllOnesValue(
13843         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
13844   } else {
13845     ICmpInst::Predicate Pred;
13846     switch (CC) {
13847     default: llvm_unreachable("Unknown condition code");
13848     case 0: Pred = ICmpInst::ICMP_EQ;  break;
13849     case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
13850     case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
13851     case 4: Pred = ICmpInst::ICMP_NE;  break;
13852     case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
13853     case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
13854     }
13855     Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
13856   }
13857 
13858   Value *MaskIn = nullptr;
13859   if (Ops.size() == 4)
13860     MaskIn = Ops[3];
13861 
13862   return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
13863 }
13864 
EmitX86ConvertToMask(CodeGenFunction & CGF,Value * In)13865 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
13866   Value *Zero = Constant::getNullValue(In->getType());
13867   return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
13868 }
13869 
EmitX86ConvertIntToFp(CodeGenFunction & CGF,const CallExpr * E,ArrayRef<Value * > Ops,bool IsSigned)13870 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
13871                                     ArrayRef<Value *> Ops, bool IsSigned) {
13872   unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
13873   llvm::Type *Ty = Ops[1]->getType();
13874 
13875   Value *Res;
13876   if (Rnd != 4) {
13877     Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
13878                                  : Intrinsic::x86_avx512_uitofp_round;
13879     Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
13880     Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
13881   } else {
13882     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
13883     Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
13884                    : CGF.Builder.CreateUIToFP(Ops[0], Ty);
13885   }
13886 
13887   return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
13888 }
13889 
13890 // Lowers X86 FMA intrinsics to IR.
EmitX86FMAExpr(CodeGenFunction & CGF,const CallExpr * E,ArrayRef<Value * > Ops,unsigned BuiltinID,bool IsAddSub)13891 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
13892                              ArrayRef<Value *> Ops, unsigned BuiltinID,
13893                              bool IsAddSub) {
13894 
13895   bool Subtract = false;
13896   Intrinsic::ID IID = Intrinsic::not_intrinsic;
13897   switch (BuiltinID) {
13898   default: break;
13899   case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
13900     Subtract = true;
13901     [[fallthrough]];
13902   case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
13903   case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
13904   case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
13905     IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512;
13906     break;
13907   case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
13908     Subtract = true;
13909     [[fallthrough]];
13910   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
13911   case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
13912   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
13913     IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512;
13914     break;
13915   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
13916     Subtract = true;
13917     [[fallthrough]];
13918   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
13919   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
13920   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
13921     IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
13922   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
13923     Subtract = true;
13924     [[fallthrough]];
13925   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
13926   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
13927   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
13928     IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
13929   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
13930     Subtract = true;
13931     [[fallthrough]];
13932   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
13933   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
13934   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
13935     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
13936     break;
13937   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
13938     Subtract = true;
13939     [[fallthrough]];
13940   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
13941   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
13942   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
13943     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
13944     break;
13945   }
13946 
13947   Value *A = Ops[0];
13948   Value *B = Ops[1];
13949   Value *C = Ops[2];
13950 
13951   if (Subtract)
13952     C = CGF.Builder.CreateFNeg(C);
13953 
13954   Value *Res;
13955 
13956   // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
13957   if (IID != Intrinsic::not_intrinsic &&
13958       (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
13959        IsAddSub)) {
13960     Function *Intr = CGF.CGM.getIntrinsic(IID);
13961     Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
13962   } else {
13963     llvm::Type *Ty = A->getType();
13964     Function *FMA;
13965     if (CGF.Builder.getIsFPConstrained()) {
13966       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
13967       FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
13968       Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
13969     } else {
13970       FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
13971       Res = CGF.Builder.CreateCall(FMA, {A, B, C});
13972     }
13973   }
13974 
13975   // Handle any required masking.
13976   Value *MaskFalseVal = nullptr;
13977   switch (BuiltinID) {
13978   case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
13979   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
13980   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
13981   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
13982   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
13983   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
13984     MaskFalseVal = Ops[0];
13985     break;
13986   case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
13987   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
13988   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
13989   case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
13990   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
13991   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
13992     MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
13993     break;
13994   case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
13995   case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
13996   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
13997   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
13998   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
13999   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
14000   case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
14001   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
14002   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
14003   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
14004   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
14005   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
14006     MaskFalseVal = Ops[2];
14007     break;
14008   }
14009 
14010   if (MaskFalseVal)
14011     return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
14012 
14013   return Res;
14014 }
14015 
EmitScalarFMAExpr(CodeGenFunction & CGF,const CallExpr * E,MutableArrayRef<Value * > Ops,Value * Upper,bool ZeroMask=false,unsigned PTIdx=0,bool NegAcc=false)14016 static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
14017                                 MutableArrayRef<Value *> Ops, Value *Upper,
14018                                 bool ZeroMask = false, unsigned PTIdx = 0,
14019                                 bool NegAcc = false) {
14020   unsigned Rnd = 4;
14021   if (Ops.size() > 4)
14022     Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
14023 
14024   if (NegAcc)
14025     Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
14026 
14027   Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
14028   Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14029   Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14030   Value *Res;
14031   if (Rnd != 4) {
14032     Intrinsic::ID IID;
14033 
14034     switch (Ops[0]->getType()->getPrimitiveSizeInBits()) {
14035     case 16:
14036       IID = Intrinsic::x86_avx512fp16_vfmadd_f16;
14037       break;
14038     case 32:
14039       IID = Intrinsic::x86_avx512_vfmadd_f32;
14040       break;
14041     case 64:
14042       IID = Intrinsic::x86_avx512_vfmadd_f64;
14043       break;
14044     default:
14045       llvm_unreachable("Unexpected size");
14046     }
14047     Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
14048                                  {Ops[0], Ops[1], Ops[2], Ops[4]});
14049   } else if (CGF.Builder.getIsFPConstrained()) {
14050     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
14051     Function *FMA = CGF.CGM.getIntrinsic(
14052         Intrinsic::experimental_constrained_fma, Ops[0]->getType());
14053     Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
14054   } else {
14055     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
14056     Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
14057   }
14058   // If we have more than 3 arguments, we need to do masking.
14059   if (Ops.size() > 3) {
14060     Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
14061                                : Ops[PTIdx];
14062 
14063     // If we negated the accumulator and the its the PassThru value we need to
14064     // bypass the negate. Conveniently Upper should be the same thing in this
14065     // case.
14066     if (NegAcc && PTIdx == 2)
14067       PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
14068 
14069     Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
14070   }
14071   return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
14072 }
14073 
EmitX86Muldq(CodeGenFunction & CGF,bool IsSigned,ArrayRef<Value * > Ops)14074 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
14075                            ArrayRef<Value *> Ops) {
14076   llvm::Type *Ty = Ops[0]->getType();
14077   // Arguments have a vXi32 type so cast to vXi64.
14078   Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
14079                                   Ty->getPrimitiveSizeInBits() / 64);
14080   Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
14081   Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
14082 
14083   if (IsSigned) {
14084     // Shift left then arithmetic shift right.
14085     Constant *ShiftAmt = ConstantInt::get(Ty, 32);
14086     LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
14087     LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
14088     RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
14089     RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
14090   } else {
14091     // Clear the upper bits.
14092     Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
14093     LHS = CGF.Builder.CreateAnd(LHS, Mask);
14094     RHS = CGF.Builder.CreateAnd(RHS, Mask);
14095   }
14096 
14097   return CGF.Builder.CreateMul(LHS, RHS);
14098 }
14099 
14100 // Emit a masked pternlog intrinsic. This only exists because the header has to
14101 // use a macro and we aren't able to pass the input argument to a pternlog
14102 // builtin and a select builtin without evaluating it twice.
EmitX86Ternlog(CodeGenFunction & CGF,bool ZeroMask,ArrayRef<Value * > Ops)14103 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
14104                              ArrayRef<Value *> Ops) {
14105   llvm::Type *Ty = Ops[0]->getType();
14106 
14107   unsigned VecWidth = Ty->getPrimitiveSizeInBits();
14108   unsigned EltWidth = Ty->getScalarSizeInBits();
14109   Intrinsic::ID IID;
14110   if (VecWidth == 128 && EltWidth == 32)
14111     IID = Intrinsic::x86_avx512_pternlog_d_128;
14112   else if (VecWidth == 256 && EltWidth == 32)
14113     IID = Intrinsic::x86_avx512_pternlog_d_256;
14114   else if (VecWidth == 512 && EltWidth == 32)
14115     IID = Intrinsic::x86_avx512_pternlog_d_512;
14116   else if (VecWidth == 128 && EltWidth == 64)
14117     IID = Intrinsic::x86_avx512_pternlog_q_128;
14118   else if (VecWidth == 256 && EltWidth == 64)
14119     IID = Intrinsic::x86_avx512_pternlog_q_256;
14120   else if (VecWidth == 512 && EltWidth == 64)
14121     IID = Intrinsic::x86_avx512_pternlog_q_512;
14122   else
14123     llvm_unreachable("Unexpected intrinsic");
14124 
14125   Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
14126                                           Ops.drop_back());
14127   Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
14128   return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
14129 }
14130 
EmitX86SExtMask(CodeGenFunction & CGF,Value * Op,llvm::Type * DstTy)14131 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
14132                               llvm::Type *DstTy) {
14133   unsigned NumberOfElements =
14134       cast<llvm::FixedVectorType>(DstTy)->getNumElements();
14135   Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
14136   return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
14137 }
14138 
EmitX86CpuIs(const CallExpr * E)14139 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
14140   const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
14141   StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
14142   return EmitX86CpuIs(CPUStr);
14143 }
14144 
14145 // Convert F16 halfs to floats.
EmitX86CvtF16ToFloatExpr(CodeGenFunction & CGF,ArrayRef<Value * > Ops,llvm::Type * DstTy)14146 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
14147                                        ArrayRef<Value *> Ops,
14148                                        llvm::Type *DstTy) {
14149   assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
14150          "Unknown cvtph2ps intrinsic");
14151 
14152   // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
14153   if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
14154     Function *F =
14155         CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
14156     return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
14157   }
14158 
14159   unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
14160   Value *Src = Ops[0];
14161 
14162   // Extract the subvector.
14163   if (NumDstElts !=
14164       cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
14165     assert(NumDstElts == 4 && "Unexpected vector size");
14166     Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
14167   }
14168 
14169   // Bitcast from vXi16 to vXf16.
14170   auto *HalfTy = llvm::FixedVectorType::get(
14171       llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
14172   Src = CGF.Builder.CreateBitCast(Src, HalfTy);
14173 
14174   // Perform the fp-extension.
14175   Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
14176 
14177   if (Ops.size() >= 3)
14178     Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
14179   return Res;
14180 }
14181 
EmitX86CpuIs(StringRef CPUStr)14182 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
14183 
14184   llvm::Type *Int32Ty = Builder.getInt32Ty();
14185 
14186   // Matching the struct layout from the compiler-rt/libgcc structure that is
14187   // filled in:
14188   // unsigned int __cpu_vendor;
14189   // unsigned int __cpu_type;
14190   // unsigned int __cpu_subtype;
14191   // unsigned int __cpu_features[1];
14192   llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
14193                                           llvm::ArrayType::get(Int32Ty, 1));
14194 
14195   // Grab the global __cpu_model.
14196   llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
14197   cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
14198 
14199   // Calculate the index needed to access the correct field based on the
14200   // range. Also adjust the expected value.
14201   unsigned Index;
14202   unsigned Value;
14203   std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
14204 #define X86_VENDOR(ENUM, STRING)                                               \
14205   .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
14206 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS)                                        \
14207   .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
14208 #define X86_CPU_TYPE(ENUM, STR)                                                \
14209   .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
14210 #define X86_CPU_SUBTYPE_ALIAS(ENUM, ALIAS)                                     \
14211   .Case(ALIAS, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
14212 #define X86_CPU_SUBTYPE(ENUM, STR)                                             \
14213   .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
14214 #include "llvm/TargetParser/X86TargetParser.def"
14215                                .Default({0, 0});
14216   assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
14217 
14218   // Grab the appropriate field from __cpu_model.
14219   llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
14220                          ConstantInt::get(Int32Ty, Index)};
14221   llvm::Value *CpuValue = Builder.CreateInBoundsGEP(STy, CpuModel, Idxs);
14222   CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
14223                                        CharUnits::fromQuantity(4));
14224 
14225   // Check the value of the field against the requested value.
14226   return Builder.CreateICmpEQ(CpuValue,
14227                                   llvm::ConstantInt::get(Int32Ty, Value));
14228 }
14229 
EmitX86CpuSupports(const CallExpr * E)14230 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
14231   const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
14232   StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
14233   if (!getContext().getTargetInfo().validateCpuSupports(FeatureStr))
14234     return Builder.getFalse();
14235   return EmitX86CpuSupports(FeatureStr);
14236 }
14237 
EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs)14238 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
14239   return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs));
14240 }
14241 
14242 llvm::Value *
EmitX86CpuSupports(std::array<uint32_t,4> FeatureMask)14243 CodeGenFunction::EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask) {
14244   Value *Result = Builder.getTrue();
14245   if (FeatureMask[0] != 0) {
14246     // Matching the struct layout from the compiler-rt/libgcc structure that is
14247     // filled in:
14248     // unsigned int __cpu_vendor;
14249     // unsigned int __cpu_type;
14250     // unsigned int __cpu_subtype;
14251     // unsigned int __cpu_features[1];
14252     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
14253                                             llvm::ArrayType::get(Int32Ty, 1));
14254 
14255     // Grab the global __cpu_model.
14256     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
14257     cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
14258 
14259     // Grab the first (0th) element from the field __cpu_features off of the
14260     // global in the struct STy.
14261     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
14262                      Builder.getInt32(0)};
14263     Value *CpuFeatures = Builder.CreateInBoundsGEP(STy, CpuModel, Idxs);
14264     Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
14265                                                 CharUnits::fromQuantity(4));
14266 
14267     // Check the value of the bit corresponding to the feature requested.
14268     Value *Mask = Builder.getInt32(FeatureMask[0]);
14269     Value *Bitset = Builder.CreateAnd(Features, Mask);
14270     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
14271     Result = Builder.CreateAnd(Result, Cmp);
14272   }
14273 
14274   llvm::Type *ATy = llvm::ArrayType::get(Int32Ty, 3);
14275   llvm::Constant *CpuFeatures2 =
14276       CGM.CreateRuntimeVariable(ATy, "__cpu_features2");
14277   cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
14278   for (int i = 1; i != 4; ++i) {
14279     const uint32_t M = FeatureMask[i];
14280     if (!M)
14281       continue;
14282     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(i - 1)};
14283     Value *Features = Builder.CreateAlignedLoad(
14284         Int32Ty, Builder.CreateInBoundsGEP(ATy, CpuFeatures2, Idxs),
14285         CharUnits::fromQuantity(4));
14286     // Check the value of the bit corresponding to the feature requested.
14287     Value *Mask = Builder.getInt32(M);
14288     Value *Bitset = Builder.CreateAnd(Features, Mask);
14289     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
14290     Result = Builder.CreateAnd(Result, Cmp);
14291   }
14292 
14293   return Result;
14294 }
14295 
EmitAArch64CpuInit()14296 Value *CodeGenFunction::EmitAArch64CpuInit() {
14297   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14298   llvm::FunctionCallee Func =
14299       CGM.CreateRuntimeFunction(FTy, "__init_cpu_features_resolver");
14300   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
14301   cast<llvm::GlobalValue>(Func.getCallee())
14302       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
14303   return Builder.CreateCall(Func);
14304 }
14305 
EmitX86CpuInit()14306 Value *CodeGenFunction::EmitX86CpuInit() {
14307   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
14308                                                     /*Variadic*/ false);
14309   llvm::FunctionCallee Func =
14310       CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
14311   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
14312   cast<llvm::GlobalValue>(Func.getCallee())
14313       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
14314   return Builder.CreateCall(Func);
14315 }
14316 
EmitAArch64CpuSupports(const CallExpr * E)14317 Value *CodeGenFunction::EmitAArch64CpuSupports(const CallExpr *E) {
14318   const Expr *ArgExpr = E->getArg(0)->IgnoreParenCasts();
14319   StringRef ArgStr = cast<StringLiteral>(ArgExpr)->getString();
14320   llvm::SmallVector<StringRef, 8> Features;
14321   ArgStr.split(Features, "+");
14322   for (auto &Feature : Features) {
14323     Feature = Feature.trim();
14324     if (!llvm::AArch64::parseFMVExtension(Feature))
14325       return Builder.getFalse();
14326     if (Feature != "default")
14327       Features.push_back(Feature);
14328   }
14329   return EmitAArch64CpuSupports(Features);
14330 }
14331 
14332 llvm::Value *
EmitAArch64CpuSupports(ArrayRef<StringRef> FeaturesStrs)14333 CodeGenFunction::EmitAArch64CpuSupports(ArrayRef<StringRef> FeaturesStrs) {
14334   uint64_t FeaturesMask = llvm::AArch64::getCpuSupportsMask(FeaturesStrs);
14335   Value *Result = Builder.getTrue();
14336   if (FeaturesMask != 0) {
14337     // Get features from structure in runtime library
14338     // struct {
14339     //   unsigned long long features;
14340     // } __aarch64_cpu_features;
14341     llvm::Type *STy = llvm::StructType::get(Int64Ty);
14342     llvm::Constant *AArch64CPUFeatures =
14343         CGM.CreateRuntimeVariable(STy, "__aarch64_cpu_features");
14344     cast<llvm::GlobalValue>(AArch64CPUFeatures)->setDSOLocal(true);
14345     llvm::Value *CpuFeatures = Builder.CreateGEP(
14346         STy, AArch64CPUFeatures,
14347         {ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 0)});
14348     Value *Features = Builder.CreateAlignedLoad(Int64Ty, CpuFeatures,
14349                                                 CharUnits::fromQuantity(8));
14350     Value *Mask = Builder.getInt64(FeaturesMask);
14351     Value *Bitset = Builder.CreateAnd(Features, Mask);
14352     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
14353     Result = Builder.CreateAnd(Result, Cmp);
14354   }
14355   return Result;
14356 }
14357 
EmitX86BuiltinExpr(unsigned BuiltinID,const CallExpr * E)14358 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
14359                                            const CallExpr *E) {
14360   if (BuiltinID == Builtin::BI__builtin_cpu_is)
14361     return EmitX86CpuIs(E);
14362   if (BuiltinID == Builtin::BI__builtin_cpu_supports)
14363     return EmitX86CpuSupports(E);
14364   if (BuiltinID == Builtin::BI__builtin_cpu_init)
14365     return EmitX86CpuInit();
14366 
14367   // Handle MSVC intrinsics before argument evaluation to prevent double
14368   // evaluation.
14369   if (std::optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
14370     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
14371 
14372   SmallVector<Value*, 4> Ops;
14373   bool IsMaskFCmp = false;
14374   bool IsConjFMA = false;
14375 
14376   // Find out if any arguments are required to be integer constant expressions.
14377   unsigned ICEArguments = 0;
14378   ASTContext::GetBuiltinTypeError Error;
14379   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
14380   assert(Error == ASTContext::GE_None && "Should not codegen an error");
14381 
14382   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
14383     Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
14384   }
14385 
14386   // These exist so that the builtin that takes an immediate can be bounds
14387   // checked by clang to avoid passing bad immediates to the backend. Since
14388   // AVX has a larger immediate than SSE we would need separate builtins to
14389   // do the different bounds checking. Rather than create a clang specific
14390   // SSE only builtin, this implements eight separate builtins to match gcc
14391   // implementation.
14392   auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
14393     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
14394     llvm::Function *F = CGM.getIntrinsic(ID);
14395     return Builder.CreateCall(F, Ops);
14396   };
14397 
14398   // For the vector forms of FP comparisons, translate the builtins directly to
14399   // IR.
14400   // TODO: The builtins could be removed if the SSE header files used vector
14401   // extension comparisons directly (vector ordered/unordered may need
14402   // additional support via __builtin_isnan()).
14403   auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
14404                                          bool IsSignaling) {
14405     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14406     Value *Cmp;
14407     if (IsSignaling)
14408       Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14409     else
14410       Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14411     llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
14412     llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
14413     Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
14414     return Builder.CreateBitCast(Sext, FPVecTy);
14415   };
14416 
14417   switch (BuiltinID) {
14418   default: return nullptr;
14419   case X86::BI_mm_prefetch: {
14420     Value *Address = Ops[0];
14421     ConstantInt *C = cast<ConstantInt>(Ops[1]);
14422     Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
14423     Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
14424     Value *Data = ConstantInt::get(Int32Ty, 1);
14425     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
14426     return Builder.CreateCall(F, {Address, RW, Locality, Data});
14427   }
14428   case X86::BI_mm_clflush: {
14429     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
14430                               Ops[0]);
14431   }
14432   case X86::BI_mm_lfence: {
14433     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
14434   }
14435   case X86::BI_mm_mfence: {
14436     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
14437   }
14438   case X86::BI_mm_sfence: {
14439     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
14440   }
14441   case X86::BI_mm_pause: {
14442     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
14443   }
14444   case X86::BI__rdtsc: {
14445     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
14446   }
14447   case X86::BI__builtin_ia32_rdtscp: {
14448     Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
14449     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14450                                       Ops[0]);
14451     return Builder.CreateExtractValue(Call, 0);
14452   }
14453   case X86::BI__builtin_ia32_lzcnt_u16:
14454   case X86::BI__builtin_ia32_lzcnt_u32:
14455   case X86::BI__builtin_ia32_lzcnt_u64: {
14456     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
14457     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
14458   }
14459   case X86::BI__builtin_ia32_tzcnt_u16:
14460   case X86::BI__builtin_ia32_tzcnt_u32:
14461   case X86::BI__builtin_ia32_tzcnt_u64: {
14462     Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
14463     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
14464   }
14465   case X86::BI__builtin_ia32_undef128:
14466   case X86::BI__builtin_ia32_undef256:
14467   case X86::BI__builtin_ia32_undef512:
14468     // The x86 definition of "undef" is not the same as the LLVM definition
14469     // (PR32176). We leave optimizing away an unnecessary zero constant to the
14470     // IR optimizer and backend.
14471     // TODO: If we had a "freeze" IR instruction to generate a fixed undef
14472     // value, we should use that here instead of a zero.
14473     return llvm::Constant::getNullValue(ConvertType(E->getType()));
14474   case X86::BI__builtin_ia32_vec_init_v8qi:
14475   case X86::BI__builtin_ia32_vec_init_v4hi:
14476   case X86::BI__builtin_ia32_vec_init_v2si:
14477     return Builder.CreateBitCast(BuildVector(Ops),
14478                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
14479   case X86::BI__builtin_ia32_vec_ext_v2si:
14480   case X86::BI__builtin_ia32_vec_ext_v16qi:
14481   case X86::BI__builtin_ia32_vec_ext_v8hi:
14482   case X86::BI__builtin_ia32_vec_ext_v4si:
14483   case X86::BI__builtin_ia32_vec_ext_v4sf:
14484   case X86::BI__builtin_ia32_vec_ext_v2di:
14485   case X86::BI__builtin_ia32_vec_ext_v32qi:
14486   case X86::BI__builtin_ia32_vec_ext_v16hi:
14487   case X86::BI__builtin_ia32_vec_ext_v8si:
14488   case X86::BI__builtin_ia32_vec_ext_v4di: {
14489     unsigned NumElts =
14490         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14491     uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
14492     Index &= NumElts - 1;
14493     // These builtins exist so we can ensure the index is an ICE and in range.
14494     // Otherwise we could just do this in the header file.
14495     return Builder.CreateExtractElement(Ops[0], Index);
14496   }
14497   case X86::BI__builtin_ia32_vec_set_v16qi:
14498   case X86::BI__builtin_ia32_vec_set_v8hi:
14499   case X86::BI__builtin_ia32_vec_set_v4si:
14500   case X86::BI__builtin_ia32_vec_set_v2di:
14501   case X86::BI__builtin_ia32_vec_set_v32qi:
14502   case X86::BI__builtin_ia32_vec_set_v16hi:
14503   case X86::BI__builtin_ia32_vec_set_v8si:
14504   case X86::BI__builtin_ia32_vec_set_v4di: {
14505     unsigned NumElts =
14506         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14507     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
14508     Index &= NumElts - 1;
14509     // These builtins exist so we can ensure the index is an ICE and in range.
14510     // Otherwise we could just do this in the header file.
14511     return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
14512   }
14513   case X86::BI_mm_setcsr:
14514   case X86::BI__builtin_ia32_ldmxcsr: {
14515     RawAddress Tmp = CreateMemTemp(E->getArg(0)->getType());
14516     Builder.CreateStore(Ops[0], Tmp);
14517     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
14518                               Tmp.getPointer());
14519   }
14520   case X86::BI_mm_getcsr:
14521   case X86::BI__builtin_ia32_stmxcsr: {
14522     RawAddress Tmp = CreateMemTemp(E->getType());
14523     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
14524                        Tmp.getPointer());
14525     return Builder.CreateLoad(Tmp, "stmxcsr");
14526   }
14527   case X86::BI__builtin_ia32_xsave:
14528   case X86::BI__builtin_ia32_xsave64:
14529   case X86::BI__builtin_ia32_xrstor:
14530   case X86::BI__builtin_ia32_xrstor64:
14531   case X86::BI__builtin_ia32_xsaveopt:
14532   case X86::BI__builtin_ia32_xsaveopt64:
14533   case X86::BI__builtin_ia32_xrstors:
14534   case X86::BI__builtin_ia32_xrstors64:
14535   case X86::BI__builtin_ia32_xsavec:
14536   case X86::BI__builtin_ia32_xsavec64:
14537   case X86::BI__builtin_ia32_xsaves:
14538   case X86::BI__builtin_ia32_xsaves64:
14539   case X86::BI__builtin_ia32_xsetbv:
14540   case X86::BI_xsetbv: {
14541     Intrinsic::ID ID;
14542 #define INTRINSIC_X86_XSAVE_ID(NAME) \
14543     case X86::BI__builtin_ia32_##NAME: \
14544       ID = Intrinsic::x86_##NAME; \
14545       break
14546     switch (BuiltinID) {
14547     default: llvm_unreachable("Unsupported intrinsic!");
14548     INTRINSIC_X86_XSAVE_ID(xsave);
14549     INTRINSIC_X86_XSAVE_ID(xsave64);
14550     INTRINSIC_X86_XSAVE_ID(xrstor);
14551     INTRINSIC_X86_XSAVE_ID(xrstor64);
14552     INTRINSIC_X86_XSAVE_ID(xsaveopt);
14553     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
14554     INTRINSIC_X86_XSAVE_ID(xrstors);
14555     INTRINSIC_X86_XSAVE_ID(xrstors64);
14556     INTRINSIC_X86_XSAVE_ID(xsavec);
14557     INTRINSIC_X86_XSAVE_ID(xsavec64);
14558     INTRINSIC_X86_XSAVE_ID(xsaves);
14559     INTRINSIC_X86_XSAVE_ID(xsaves64);
14560     INTRINSIC_X86_XSAVE_ID(xsetbv);
14561     case X86::BI_xsetbv:
14562       ID = Intrinsic::x86_xsetbv;
14563       break;
14564     }
14565 #undef INTRINSIC_X86_XSAVE_ID
14566     Value *Mhi = Builder.CreateTrunc(
14567       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
14568     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
14569     Ops[1] = Mhi;
14570     Ops.push_back(Mlo);
14571     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14572   }
14573   case X86::BI__builtin_ia32_xgetbv:
14574   case X86::BI_xgetbv:
14575     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
14576   case X86::BI__builtin_ia32_storedqudi128_mask:
14577   case X86::BI__builtin_ia32_storedqusi128_mask:
14578   case X86::BI__builtin_ia32_storedquhi128_mask:
14579   case X86::BI__builtin_ia32_storedquqi128_mask:
14580   case X86::BI__builtin_ia32_storeupd128_mask:
14581   case X86::BI__builtin_ia32_storeups128_mask:
14582   case X86::BI__builtin_ia32_storedqudi256_mask:
14583   case X86::BI__builtin_ia32_storedqusi256_mask:
14584   case X86::BI__builtin_ia32_storedquhi256_mask:
14585   case X86::BI__builtin_ia32_storedquqi256_mask:
14586   case X86::BI__builtin_ia32_storeupd256_mask:
14587   case X86::BI__builtin_ia32_storeups256_mask:
14588   case X86::BI__builtin_ia32_storedqudi512_mask:
14589   case X86::BI__builtin_ia32_storedqusi512_mask:
14590   case X86::BI__builtin_ia32_storedquhi512_mask:
14591   case X86::BI__builtin_ia32_storedquqi512_mask:
14592   case X86::BI__builtin_ia32_storeupd512_mask:
14593   case X86::BI__builtin_ia32_storeups512_mask:
14594     return EmitX86MaskedStore(*this, Ops, Align(1));
14595 
14596   case X86::BI__builtin_ia32_storesh128_mask:
14597   case X86::BI__builtin_ia32_storess128_mask:
14598   case X86::BI__builtin_ia32_storesd128_mask:
14599     return EmitX86MaskedStore(*this, Ops, Align(1));
14600 
14601   case X86::BI__builtin_ia32_vpopcntb_128:
14602   case X86::BI__builtin_ia32_vpopcntd_128:
14603   case X86::BI__builtin_ia32_vpopcntq_128:
14604   case X86::BI__builtin_ia32_vpopcntw_128:
14605   case X86::BI__builtin_ia32_vpopcntb_256:
14606   case X86::BI__builtin_ia32_vpopcntd_256:
14607   case X86::BI__builtin_ia32_vpopcntq_256:
14608   case X86::BI__builtin_ia32_vpopcntw_256:
14609   case X86::BI__builtin_ia32_vpopcntb_512:
14610   case X86::BI__builtin_ia32_vpopcntd_512:
14611   case X86::BI__builtin_ia32_vpopcntq_512:
14612   case X86::BI__builtin_ia32_vpopcntw_512: {
14613     llvm::Type *ResultType = ConvertType(E->getType());
14614     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
14615     return Builder.CreateCall(F, Ops);
14616   }
14617   case X86::BI__builtin_ia32_cvtmask2b128:
14618   case X86::BI__builtin_ia32_cvtmask2b256:
14619   case X86::BI__builtin_ia32_cvtmask2b512:
14620   case X86::BI__builtin_ia32_cvtmask2w128:
14621   case X86::BI__builtin_ia32_cvtmask2w256:
14622   case X86::BI__builtin_ia32_cvtmask2w512:
14623   case X86::BI__builtin_ia32_cvtmask2d128:
14624   case X86::BI__builtin_ia32_cvtmask2d256:
14625   case X86::BI__builtin_ia32_cvtmask2d512:
14626   case X86::BI__builtin_ia32_cvtmask2q128:
14627   case X86::BI__builtin_ia32_cvtmask2q256:
14628   case X86::BI__builtin_ia32_cvtmask2q512:
14629     return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
14630 
14631   case X86::BI__builtin_ia32_cvtb2mask128:
14632   case X86::BI__builtin_ia32_cvtb2mask256:
14633   case X86::BI__builtin_ia32_cvtb2mask512:
14634   case X86::BI__builtin_ia32_cvtw2mask128:
14635   case X86::BI__builtin_ia32_cvtw2mask256:
14636   case X86::BI__builtin_ia32_cvtw2mask512:
14637   case X86::BI__builtin_ia32_cvtd2mask128:
14638   case X86::BI__builtin_ia32_cvtd2mask256:
14639   case X86::BI__builtin_ia32_cvtd2mask512:
14640   case X86::BI__builtin_ia32_cvtq2mask128:
14641   case X86::BI__builtin_ia32_cvtq2mask256:
14642   case X86::BI__builtin_ia32_cvtq2mask512:
14643     return EmitX86ConvertToMask(*this, Ops[0]);
14644 
14645   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
14646   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
14647   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
14648   case X86::BI__builtin_ia32_vcvtw2ph512_mask:
14649   case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
14650   case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
14651     return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
14652   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
14653   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
14654   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
14655   case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
14656   case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
14657   case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
14658     return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
14659 
14660   case X86::BI__builtin_ia32_vfmaddss3:
14661   case X86::BI__builtin_ia32_vfmaddsd3:
14662   case X86::BI__builtin_ia32_vfmaddsh3_mask:
14663   case X86::BI__builtin_ia32_vfmaddss3_mask:
14664   case X86::BI__builtin_ia32_vfmaddsd3_mask:
14665     return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
14666   case X86::BI__builtin_ia32_vfmaddss:
14667   case X86::BI__builtin_ia32_vfmaddsd:
14668     return EmitScalarFMAExpr(*this, E, Ops,
14669                              Constant::getNullValue(Ops[0]->getType()));
14670   case X86::BI__builtin_ia32_vfmaddsh3_maskz:
14671   case X86::BI__builtin_ia32_vfmaddss3_maskz:
14672   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
14673     return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
14674   case X86::BI__builtin_ia32_vfmaddsh3_mask3:
14675   case X86::BI__builtin_ia32_vfmaddss3_mask3:
14676   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
14677     return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
14678   case X86::BI__builtin_ia32_vfmsubsh3_mask3:
14679   case X86::BI__builtin_ia32_vfmsubss3_mask3:
14680   case X86::BI__builtin_ia32_vfmsubsd3_mask3:
14681     return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
14682                              /*NegAcc*/ true);
14683   case X86::BI__builtin_ia32_vfmaddph:
14684   case X86::BI__builtin_ia32_vfmaddps:
14685   case X86::BI__builtin_ia32_vfmaddpd:
14686   case X86::BI__builtin_ia32_vfmaddph256:
14687   case X86::BI__builtin_ia32_vfmaddps256:
14688   case X86::BI__builtin_ia32_vfmaddpd256:
14689   case X86::BI__builtin_ia32_vfmaddph512_mask:
14690   case X86::BI__builtin_ia32_vfmaddph512_maskz:
14691   case X86::BI__builtin_ia32_vfmaddph512_mask3:
14692   case X86::BI__builtin_ia32_vfmaddps512_mask:
14693   case X86::BI__builtin_ia32_vfmaddps512_maskz:
14694   case X86::BI__builtin_ia32_vfmaddps512_mask3:
14695   case X86::BI__builtin_ia32_vfmsubps512_mask3:
14696   case X86::BI__builtin_ia32_vfmaddpd512_mask:
14697   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
14698   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
14699   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
14700   case X86::BI__builtin_ia32_vfmsubph512_mask3:
14701     return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
14702   case X86::BI__builtin_ia32_vfmaddsubph512_mask:
14703   case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
14704   case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
14705   case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
14706   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
14707   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
14708   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
14709   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
14710   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
14711   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
14712   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
14713   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
14714     return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
14715 
14716   case X86::BI__builtin_ia32_movdqa32store128_mask:
14717   case X86::BI__builtin_ia32_movdqa64store128_mask:
14718   case X86::BI__builtin_ia32_storeaps128_mask:
14719   case X86::BI__builtin_ia32_storeapd128_mask:
14720   case X86::BI__builtin_ia32_movdqa32store256_mask:
14721   case X86::BI__builtin_ia32_movdqa64store256_mask:
14722   case X86::BI__builtin_ia32_storeaps256_mask:
14723   case X86::BI__builtin_ia32_storeapd256_mask:
14724   case X86::BI__builtin_ia32_movdqa32store512_mask:
14725   case X86::BI__builtin_ia32_movdqa64store512_mask:
14726   case X86::BI__builtin_ia32_storeaps512_mask:
14727   case X86::BI__builtin_ia32_storeapd512_mask:
14728     return EmitX86MaskedStore(
14729         *this, Ops,
14730         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
14731 
14732   case X86::BI__builtin_ia32_loadups128_mask:
14733   case X86::BI__builtin_ia32_loadups256_mask:
14734   case X86::BI__builtin_ia32_loadups512_mask:
14735   case X86::BI__builtin_ia32_loadupd128_mask:
14736   case X86::BI__builtin_ia32_loadupd256_mask:
14737   case X86::BI__builtin_ia32_loadupd512_mask:
14738   case X86::BI__builtin_ia32_loaddquqi128_mask:
14739   case X86::BI__builtin_ia32_loaddquqi256_mask:
14740   case X86::BI__builtin_ia32_loaddquqi512_mask:
14741   case X86::BI__builtin_ia32_loaddquhi128_mask:
14742   case X86::BI__builtin_ia32_loaddquhi256_mask:
14743   case X86::BI__builtin_ia32_loaddquhi512_mask:
14744   case X86::BI__builtin_ia32_loaddqusi128_mask:
14745   case X86::BI__builtin_ia32_loaddqusi256_mask:
14746   case X86::BI__builtin_ia32_loaddqusi512_mask:
14747   case X86::BI__builtin_ia32_loaddqudi128_mask:
14748   case X86::BI__builtin_ia32_loaddqudi256_mask:
14749   case X86::BI__builtin_ia32_loaddqudi512_mask:
14750     return EmitX86MaskedLoad(*this, Ops, Align(1));
14751 
14752   case X86::BI__builtin_ia32_loadsh128_mask:
14753   case X86::BI__builtin_ia32_loadss128_mask:
14754   case X86::BI__builtin_ia32_loadsd128_mask:
14755     return EmitX86MaskedLoad(*this, Ops, Align(1));
14756 
14757   case X86::BI__builtin_ia32_loadaps128_mask:
14758   case X86::BI__builtin_ia32_loadaps256_mask:
14759   case X86::BI__builtin_ia32_loadaps512_mask:
14760   case X86::BI__builtin_ia32_loadapd128_mask:
14761   case X86::BI__builtin_ia32_loadapd256_mask:
14762   case X86::BI__builtin_ia32_loadapd512_mask:
14763   case X86::BI__builtin_ia32_movdqa32load128_mask:
14764   case X86::BI__builtin_ia32_movdqa32load256_mask:
14765   case X86::BI__builtin_ia32_movdqa32load512_mask:
14766   case X86::BI__builtin_ia32_movdqa64load128_mask:
14767   case X86::BI__builtin_ia32_movdqa64load256_mask:
14768   case X86::BI__builtin_ia32_movdqa64load512_mask:
14769     return EmitX86MaskedLoad(
14770         *this, Ops,
14771         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
14772 
14773   case X86::BI__builtin_ia32_expandloaddf128_mask:
14774   case X86::BI__builtin_ia32_expandloaddf256_mask:
14775   case X86::BI__builtin_ia32_expandloaddf512_mask:
14776   case X86::BI__builtin_ia32_expandloadsf128_mask:
14777   case X86::BI__builtin_ia32_expandloadsf256_mask:
14778   case X86::BI__builtin_ia32_expandloadsf512_mask:
14779   case X86::BI__builtin_ia32_expandloaddi128_mask:
14780   case X86::BI__builtin_ia32_expandloaddi256_mask:
14781   case X86::BI__builtin_ia32_expandloaddi512_mask:
14782   case X86::BI__builtin_ia32_expandloadsi128_mask:
14783   case X86::BI__builtin_ia32_expandloadsi256_mask:
14784   case X86::BI__builtin_ia32_expandloadsi512_mask:
14785   case X86::BI__builtin_ia32_expandloadhi128_mask:
14786   case X86::BI__builtin_ia32_expandloadhi256_mask:
14787   case X86::BI__builtin_ia32_expandloadhi512_mask:
14788   case X86::BI__builtin_ia32_expandloadqi128_mask:
14789   case X86::BI__builtin_ia32_expandloadqi256_mask:
14790   case X86::BI__builtin_ia32_expandloadqi512_mask:
14791     return EmitX86ExpandLoad(*this, Ops);
14792 
14793   case X86::BI__builtin_ia32_compressstoredf128_mask:
14794   case X86::BI__builtin_ia32_compressstoredf256_mask:
14795   case X86::BI__builtin_ia32_compressstoredf512_mask:
14796   case X86::BI__builtin_ia32_compressstoresf128_mask:
14797   case X86::BI__builtin_ia32_compressstoresf256_mask:
14798   case X86::BI__builtin_ia32_compressstoresf512_mask:
14799   case X86::BI__builtin_ia32_compressstoredi128_mask:
14800   case X86::BI__builtin_ia32_compressstoredi256_mask:
14801   case X86::BI__builtin_ia32_compressstoredi512_mask:
14802   case X86::BI__builtin_ia32_compressstoresi128_mask:
14803   case X86::BI__builtin_ia32_compressstoresi256_mask:
14804   case X86::BI__builtin_ia32_compressstoresi512_mask:
14805   case X86::BI__builtin_ia32_compressstorehi128_mask:
14806   case X86::BI__builtin_ia32_compressstorehi256_mask:
14807   case X86::BI__builtin_ia32_compressstorehi512_mask:
14808   case X86::BI__builtin_ia32_compressstoreqi128_mask:
14809   case X86::BI__builtin_ia32_compressstoreqi256_mask:
14810   case X86::BI__builtin_ia32_compressstoreqi512_mask:
14811     return EmitX86CompressStore(*this, Ops);
14812 
14813   case X86::BI__builtin_ia32_expanddf128_mask:
14814   case X86::BI__builtin_ia32_expanddf256_mask:
14815   case X86::BI__builtin_ia32_expanddf512_mask:
14816   case X86::BI__builtin_ia32_expandsf128_mask:
14817   case X86::BI__builtin_ia32_expandsf256_mask:
14818   case X86::BI__builtin_ia32_expandsf512_mask:
14819   case X86::BI__builtin_ia32_expanddi128_mask:
14820   case X86::BI__builtin_ia32_expanddi256_mask:
14821   case X86::BI__builtin_ia32_expanddi512_mask:
14822   case X86::BI__builtin_ia32_expandsi128_mask:
14823   case X86::BI__builtin_ia32_expandsi256_mask:
14824   case X86::BI__builtin_ia32_expandsi512_mask:
14825   case X86::BI__builtin_ia32_expandhi128_mask:
14826   case X86::BI__builtin_ia32_expandhi256_mask:
14827   case X86::BI__builtin_ia32_expandhi512_mask:
14828   case X86::BI__builtin_ia32_expandqi128_mask:
14829   case X86::BI__builtin_ia32_expandqi256_mask:
14830   case X86::BI__builtin_ia32_expandqi512_mask:
14831     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
14832 
14833   case X86::BI__builtin_ia32_compressdf128_mask:
14834   case X86::BI__builtin_ia32_compressdf256_mask:
14835   case X86::BI__builtin_ia32_compressdf512_mask:
14836   case X86::BI__builtin_ia32_compresssf128_mask:
14837   case X86::BI__builtin_ia32_compresssf256_mask:
14838   case X86::BI__builtin_ia32_compresssf512_mask:
14839   case X86::BI__builtin_ia32_compressdi128_mask:
14840   case X86::BI__builtin_ia32_compressdi256_mask:
14841   case X86::BI__builtin_ia32_compressdi512_mask:
14842   case X86::BI__builtin_ia32_compresssi128_mask:
14843   case X86::BI__builtin_ia32_compresssi256_mask:
14844   case X86::BI__builtin_ia32_compresssi512_mask:
14845   case X86::BI__builtin_ia32_compresshi128_mask:
14846   case X86::BI__builtin_ia32_compresshi256_mask:
14847   case X86::BI__builtin_ia32_compresshi512_mask:
14848   case X86::BI__builtin_ia32_compressqi128_mask:
14849   case X86::BI__builtin_ia32_compressqi256_mask:
14850   case X86::BI__builtin_ia32_compressqi512_mask:
14851     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
14852 
14853   case X86::BI__builtin_ia32_gather3div2df:
14854   case X86::BI__builtin_ia32_gather3div2di:
14855   case X86::BI__builtin_ia32_gather3div4df:
14856   case X86::BI__builtin_ia32_gather3div4di:
14857   case X86::BI__builtin_ia32_gather3div4sf:
14858   case X86::BI__builtin_ia32_gather3div4si:
14859   case X86::BI__builtin_ia32_gather3div8sf:
14860   case X86::BI__builtin_ia32_gather3div8si:
14861   case X86::BI__builtin_ia32_gather3siv2df:
14862   case X86::BI__builtin_ia32_gather3siv2di:
14863   case X86::BI__builtin_ia32_gather3siv4df:
14864   case X86::BI__builtin_ia32_gather3siv4di:
14865   case X86::BI__builtin_ia32_gather3siv4sf:
14866   case X86::BI__builtin_ia32_gather3siv4si:
14867   case X86::BI__builtin_ia32_gather3siv8sf:
14868   case X86::BI__builtin_ia32_gather3siv8si:
14869   case X86::BI__builtin_ia32_gathersiv8df:
14870   case X86::BI__builtin_ia32_gathersiv16sf:
14871   case X86::BI__builtin_ia32_gatherdiv8df:
14872   case X86::BI__builtin_ia32_gatherdiv16sf:
14873   case X86::BI__builtin_ia32_gathersiv8di:
14874   case X86::BI__builtin_ia32_gathersiv16si:
14875   case X86::BI__builtin_ia32_gatherdiv8di:
14876   case X86::BI__builtin_ia32_gatherdiv16si: {
14877     Intrinsic::ID IID;
14878     switch (BuiltinID) {
14879     default: llvm_unreachable("Unexpected builtin");
14880     case X86::BI__builtin_ia32_gather3div2df:
14881       IID = Intrinsic::x86_avx512_mask_gather3div2_df;
14882       break;
14883     case X86::BI__builtin_ia32_gather3div2di:
14884       IID = Intrinsic::x86_avx512_mask_gather3div2_di;
14885       break;
14886     case X86::BI__builtin_ia32_gather3div4df:
14887       IID = Intrinsic::x86_avx512_mask_gather3div4_df;
14888       break;
14889     case X86::BI__builtin_ia32_gather3div4di:
14890       IID = Intrinsic::x86_avx512_mask_gather3div4_di;
14891       break;
14892     case X86::BI__builtin_ia32_gather3div4sf:
14893       IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
14894       break;
14895     case X86::BI__builtin_ia32_gather3div4si:
14896       IID = Intrinsic::x86_avx512_mask_gather3div4_si;
14897       break;
14898     case X86::BI__builtin_ia32_gather3div8sf:
14899       IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
14900       break;
14901     case X86::BI__builtin_ia32_gather3div8si:
14902       IID = Intrinsic::x86_avx512_mask_gather3div8_si;
14903       break;
14904     case X86::BI__builtin_ia32_gather3siv2df:
14905       IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
14906       break;
14907     case X86::BI__builtin_ia32_gather3siv2di:
14908       IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
14909       break;
14910     case X86::BI__builtin_ia32_gather3siv4df:
14911       IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
14912       break;
14913     case X86::BI__builtin_ia32_gather3siv4di:
14914       IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
14915       break;
14916     case X86::BI__builtin_ia32_gather3siv4sf:
14917       IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
14918       break;
14919     case X86::BI__builtin_ia32_gather3siv4si:
14920       IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
14921       break;
14922     case X86::BI__builtin_ia32_gather3siv8sf:
14923       IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
14924       break;
14925     case X86::BI__builtin_ia32_gather3siv8si:
14926       IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
14927       break;
14928     case X86::BI__builtin_ia32_gathersiv8df:
14929       IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
14930       break;
14931     case X86::BI__builtin_ia32_gathersiv16sf:
14932       IID = Intrinsic::x86_avx512_mask_gather_dps_512;
14933       break;
14934     case X86::BI__builtin_ia32_gatherdiv8df:
14935       IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
14936       break;
14937     case X86::BI__builtin_ia32_gatherdiv16sf:
14938       IID = Intrinsic::x86_avx512_mask_gather_qps_512;
14939       break;
14940     case X86::BI__builtin_ia32_gathersiv8di:
14941       IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
14942       break;
14943     case X86::BI__builtin_ia32_gathersiv16si:
14944       IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
14945       break;
14946     case X86::BI__builtin_ia32_gatherdiv8di:
14947       IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
14948       break;
14949     case X86::BI__builtin_ia32_gatherdiv16si:
14950       IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
14951       break;
14952     }
14953 
14954     unsigned MinElts = std::min(
14955         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
14956         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
14957     Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
14958     Function *Intr = CGM.getIntrinsic(IID);
14959     return Builder.CreateCall(Intr, Ops);
14960   }
14961 
14962   case X86::BI__builtin_ia32_scattersiv8df:
14963   case X86::BI__builtin_ia32_scattersiv16sf:
14964   case X86::BI__builtin_ia32_scatterdiv8df:
14965   case X86::BI__builtin_ia32_scatterdiv16sf:
14966   case X86::BI__builtin_ia32_scattersiv8di:
14967   case X86::BI__builtin_ia32_scattersiv16si:
14968   case X86::BI__builtin_ia32_scatterdiv8di:
14969   case X86::BI__builtin_ia32_scatterdiv16si:
14970   case X86::BI__builtin_ia32_scatterdiv2df:
14971   case X86::BI__builtin_ia32_scatterdiv2di:
14972   case X86::BI__builtin_ia32_scatterdiv4df:
14973   case X86::BI__builtin_ia32_scatterdiv4di:
14974   case X86::BI__builtin_ia32_scatterdiv4sf:
14975   case X86::BI__builtin_ia32_scatterdiv4si:
14976   case X86::BI__builtin_ia32_scatterdiv8sf:
14977   case X86::BI__builtin_ia32_scatterdiv8si:
14978   case X86::BI__builtin_ia32_scattersiv2df:
14979   case X86::BI__builtin_ia32_scattersiv2di:
14980   case X86::BI__builtin_ia32_scattersiv4df:
14981   case X86::BI__builtin_ia32_scattersiv4di:
14982   case X86::BI__builtin_ia32_scattersiv4sf:
14983   case X86::BI__builtin_ia32_scattersiv4si:
14984   case X86::BI__builtin_ia32_scattersiv8sf:
14985   case X86::BI__builtin_ia32_scattersiv8si: {
14986     Intrinsic::ID IID;
14987     switch (BuiltinID) {
14988     default: llvm_unreachable("Unexpected builtin");
14989     case X86::BI__builtin_ia32_scattersiv8df:
14990       IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
14991       break;
14992     case X86::BI__builtin_ia32_scattersiv16sf:
14993       IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
14994       break;
14995     case X86::BI__builtin_ia32_scatterdiv8df:
14996       IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
14997       break;
14998     case X86::BI__builtin_ia32_scatterdiv16sf:
14999       IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
15000       break;
15001     case X86::BI__builtin_ia32_scattersiv8di:
15002       IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
15003       break;
15004     case X86::BI__builtin_ia32_scattersiv16si:
15005       IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
15006       break;
15007     case X86::BI__builtin_ia32_scatterdiv8di:
15008       IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
15009       break;
15010     case X86::BI__builtin_ia32_scatterdiv16si:
15011       IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
15012       break;
15013     case X86::BI__builtin_ia32_scatterdiv2df:
15014       IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
15015       break;
15016     case X86::BI__builtin_ia32_scatterdiv2di:
15017       IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
15018       break;
15019     case X86::BI__builtin_ia32_scatterdiv4df:
15020       IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
15021       break;
15022     case X86::BI__builtin_ia32_scatterdiv4di:
15023       IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
15024       break;
15025     case X86::BI__builtin_ia32_scatterdiv4sf:
15026       IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
15027       break;
15028     case X86::BI__builtin_ia32_scatterdiv4si:
15029       IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
15030       break;
15031     case X86::BI__builtin_ia32_scatterdiv8sf:
15032       IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
15033       break;
15034     case X86::BI__builtin_ia32_scatterdiv8si:
15035       IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
15036       break;
15037     case X86::BI__builtin_ia32_scattersiv2df:
15038       IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
15039       break;
15040     case X86::BI__builtin_ia32_scattersiv2di:
15041       IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
15042       break;
15043     case X86::BI__builtin_ia32_scattersiv4df:
15044       IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
15045       break;
15046     case X86::BI__builtin_ia32_scattersiv4di:
15047       IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
15048       break;
15049     case X86::BI__builtin_ia32_scattersiv4sf:
15050       IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
15051       break;
15052     case X86::BI__builtin_ia32_scattersiv4si:
15053       IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
15054       break;
15055     case X86::BI__builtin_ia32_scattersiv8sf:
15056       IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
15057       break;
15058     case X86::BI__builtin_ia32_scattersiv8si:
15059       IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
15060       break;
15061     }
15062 
15063     unsigned MinElts = std::min(
15064         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
15065         cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
15066     Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
15067     Function *Intr = CGM.getIntrinsic(IID);
15068     return Builder.CreateCall(Intr, Ops);
15069   }
15070 
15071   case X86::BI__builtin_ia32_vextractf128_pd256:
15072   case X86::BI__builtin_ia32_vextractf128_ps256:
15073   case X86::BI__builtin_ia32_vextractf128_si256:
15074   case X86::BI__builtin_ia32_extract128i256:
15075   case X86::BI__builtin_ia32_extractf64x4_mask:
15076   case X86::BI__builtin_ia32_extractf32x4_mask:
15077   case X86::BI__builtin_ia32_extracti64x4_mask:
15078   case X86::BI__builtin_ia32_extracti32x4_mask:
15079   case X86::BI__builtin_ia32_extractf32x8_mask:
15080   case X86::BI__builtin_ia32_extracti32x8_mask:
15081   case X86::BI__builtin_ia32_extractf32x4_256_mask:
15082   case X86::BI__builtin_ia32_extracti32x4_256_mask:
15083   case X86::BI__builtin_ia32_extractf64x2_256_mask:
15084   case X86::BI__builtin_ia32_extracti64x2_256_mask:
15085   case X86::BI__builtin_ia32_extractf64x2_512_mask:
15086   case X86::BI__builtin_ia32_extracti64x2_512_mask: {
15087     auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
15088     unsigned NumElts = DstTy->getNumElements();
15089     unsigned SrcNumElts =
15090         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15091     unsigned SubVectors = SrcNumElts / NumElts;
15092     unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
15093     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
15094     Index &= SubVectors - 1; // Remove any extra bits.
15095     Index *= NumElts;
15096 
15097     int Indices[16];
15098     for (unsigned i = 0; i != NumElts; ++i)
15099       Indices[i] = i + Index;
15100 
15101     Value *Res = Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15102                                              "extract");
15103 
15104     if (Ops.size() == 4)
15105       Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
15106 
15107     return Res;
15108   }
15109   case X86::BI__builtin_ia32_vinsertf128_pd256:
15110   case X86::BI__builtin_ia32_vinsertf128_ps256:
15111   case X86::BI__builtin_ia32_vinsertf128_si256:
15112   case X86::BI__builtin_ia32_insert128i256:
15113   case X86::BI__builtin_ia32_insertf64x4:
15114   case X86::BI__builtin_ia32_insertf32x4:
15115   case X86::BI__builtin_ia32_inserti64x4:
15116   case X86::BI__builtin_ia32_inserti32x4:
15117   case X86::BI__builtin_ia32_insertf32x8:
15118   case X86::BI__builtin_ia32_inserti32x8:
15119   case X86::BI__builtin_ia32_insertf32x4_256:
15120   case X86::BI__builtin_ia32_inserti32x4_256:
15121   case X86::BI__builtin_ia32_insertf64x2_256:
15122   case X86::BI__builtin_ia32_inserti64x2_256:
15123   case X86::BI__builtin_ia32_insertf64x2_512:
15124   case X86::BI__builtin_ia32_inserti64x2_512: {
15125     unsigned DstNumElts =
15126         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15127     unsigned SrcNumElts =
15128         cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
15129     unsigned SubVectors = DstNumElts / SrcNumElts;
15130     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
15131     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
15132     Index &= SubVectors - 1; // Remove any extra bits.
15133     Index *= SrcNumElts;
15134 
15135     int Indices[16];
15136     for (unsigned i = 0; i != DstNumElts; ++i)
15137       Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
15138 
15139     Value *Op1 = Builder.CreateShuffleVector(
15140         Ops[1], ArrayRef(Indices, DstNumElts), "widen");
15141 
15142     for (unsigned i = 0; i != DstNumElts; ++i) {
15143       if (i >= Index && i < (Index + SrcNumElts))
15144         Indices[i] = (i - Index) + DstNumElts;
15145       else
15146         Indices[i] = i;
15147     }
15148 
15149     return Builder.CreateShuffleVector(Ops[0], Op1,
15150                                        ArrayRef(Indices, DstNumElts), "insert");
15151   }
15152   case X86::BI__builtin_ia32_pmovqd512_mask:
15153   case X86::BI__builtin_ia32_pmovwb512_mask: {
15154     Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
15155     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
15156   }
15157   case X86::BI__builtin_ia32_pmovdb512_mask:
15158   case X86::BI__builtin_ia32_pmovdw512_mask:
15159   case X86::BI__builtin_ia32_pmovqw512_mask: {
15160     if (const auto *C = dyn_cast<Constant>(Ops[2]))
15161       if (C->isAllOnesValue())
15162         return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
15163 
15164     Intrinsic::ID IID;
15165     switch (BuiltinID) {
15166     default: llvm_unreachable("Unsupported intrinsic!");
15167     case X86::BI__builtin_ia32_pmovdb512_mask:
15168       IID = Intrinsic::x86_avx512_mask_pmov_db_512;
15169       break;
15170     case X86::BI__builtin_ia32_pmovdw512_mask:
15171       IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
15172       break;
15173     case X86::BI__builtin_ia32_pmovqw512_mask:
15174       IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
15175       break;
15176     }
15177 
15178     Function *Intr = CGM.getIntrinsic(IID);
15179     return Builder.CreateCall(Intr, Ops);
15180   }
15181   case X86::BI__builtin_ia32_pblendw128:
15182   case X86::BI__builtin_ia32_blendpd:
15183   case X86::BI__builtin_ia32_blendps:
15184   case X86::BI__builtin_ia32_blendpd256:
15185   case X86::BI__builtin_ia32_blendps256:
15186   case X86::BI__builtin_ia32_pblendw256:
15187   case X86::BI__builtin_ia32_pblendd128:
15188   case X86::BI__builtin_ia32_pblendd256: {
15189     unsigned NumElts =
15190         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15191     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
15192 
15193     int Indices[16];
15194     // If there are more than 8 elements, the immediate is used twice so make
15195     // sure we handle that.
15196     for (unsigned i = 0; i != NumElts; ++i)
15197       Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
15198 
15199     return Builder.CreateShuffleVector(Ops[0], Ops[1],
15200                                        ArrayRef(Indices, NumElts), "blend");
15201   }
15202   case X86::BI__builtin_ia32_pshuflw:
15203   case X86::BI__builtin_ia32_pshuflw256:
15204   case X86::BI__builtin_ia32_pshuflw512: {
15205     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15206     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15207     unsigned NumElts = Ty->getNumElements();
15208 
15209     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
15210     Imm = (Imm & 0xff) * 0x01010101;
15211 
15212     int Indices[32];
15213     for (unsigned l = 0; l != NumElts; l += 8) {
15214       for (unsigned i = 0; i != 4; ++i) {
15215         Indices[l + i] = l + (Imm & 3);
15216         Imm >>= 2;
15217       }
15218       for (unsigned i = 4; i != 8; ++i)
15219         Indices[l + i] = l + i;
15220     }
15221 
15222     return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15223                                        "pshuflw");
15224   }
15225   case X86::BI__builtin_ia32_pshufhw:
15226   case X86::BI__builtin_ia32_pshufhw256:
15227   case X86::BI__builtin_ia32_pshufhw512: {
15228     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15229     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15230     unsigned NumElts = Ty->getNumElements();
15231 
15232     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
15233     Imm = (Imm & 0xff) * 0x01010101;
15234 
15235     int Indices[32];
15236     for (unsigned l = 0; l != NumElts; l += 8) {
15237       for (unsigned i = 0; i != 4; ++i)
15238         Indices[l + i] = l + i;
15239       for (unsigned i = 4; i != 8; ++i) {
15240         Indices[l + i] = l + 4 + (Imm & 3);
15241         Imm >>= 2;
15242       }
15243     }
15244 
15245     return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15246                                        "pshufhw");
15247   }
15248   case X86::BI__builtin_ia32_pshufd:
15249   case X86::BI__builtin_ia32_pshufd256:
15250   case X86::BI__builtin_ia32_pshufd512:
15251   case X86::BI__builtin_ia32_vpermilpd:
15252   case X86::BI__builtin_ia32_vpermilps:
15253   case X86::BI__builtin_ia32_vpermilpd256:
15254   case X86::BI__builtin_ia32_vpermilps256:
15255   case X86::BI__builtin_ia32_vpermilpd512:
15256   case X86::BI__builtin_ia32_vpermilps512: {
15257     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15258     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15259     unsigned NumElts = Ty->getNumElements();
15260     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
15261     unsigned NumLaneElts = NumElts / NumLanes;
15262 
15263     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
15264     Imm = (Imm & 0xff) * 0x01010101;
15265 
15266     int Indices[16];
15267     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
15268       for (unsigned i = 0; i != NumLaneElts; ++i) {
15269         Indices[i + l] = (Imm % NumLaneElts) + l;
15270         Imm /= NumLaneElts;
15271       }
15272     }
15273 
15274     return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15275                                        "permil");
15276   }
15277   case X86::BI__builtin_ia32_shufpd:
15278   case X86::BI__builtin_ia32_shufpd256:
15279   case X86::BI__builtin_ia32_shufpd512:
15280   case X86::BI__builtin_ia32_shufps:
15281   case X86::BI__builtin_ia32_shufps256:
15282   case X86::BI__builtin_ia32_shufps512: {
15283     uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
15284     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15285     unsigned NumElts = Ty->getNumElements();
15286     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
15287     unsigned NumLaneElts = NumElts / NumLanes;
15288 
15289     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
15290     Imm = (Imm & 0xff) * 0x01010101;
15291 
15292     int Indices[16];
15293     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
15294       for (unsigned i = 0; i != NumLaneElts; ++i) {
15295         unsigned Index = Imm % NumLaneElts;
15296         Imm /= NumLaneElts;
15297         if (i >= (NumLaneElts / 2))
15298           Index += NumElts;
15299         Indices[l + i] = l + Index;
15300       }
15301     }
15302 
15303     return Builder.CreateShuffleVector(Ops[0], Ops[1],
15304                                        ArrayRef(Indices, NumElts), "shufp");
15305   }
15306   case X86::BI__builtin_ia32_permdi256:
15307   case X86::BI__builtin_ia32_permdf256:
15308   case X86::BI__builtin_ia32_permdi512:
15309   case X86::BI__builtin_ia32_permdf512: {
15310     unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15311     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15312     unsigned NumElts = Ty->getNumElements();
15313 
15314     // These intrinsics operate on 256-bit lanes of four 64-bit elements.
15315     int Indices[8];
15316     for (unsigned l = 0; l != NumElts; l += 4)
15317       for (unsigned i = 0; i != 4; ++i)
15318         Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
15319 
15320     return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15321                                        "perm");
15322   }
15323   case X86::BI__builtin_ia32_palignr128:
15324   case X86::BI__builtin_ia32_palignr256:
15325   case X86::BI__builtin_ia32_palignr512: {
15326     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
15327 
15328     unsigned NumElts =
15329         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15330     assert(NumElts % 16 == 0);
15331 
15332     // If palignr is shifting the pair of vectors more than the size of two
15333     // lanes, emit zero.
15334     if (ShiftVal >= 32)
15335       return llvm::Constant::getNullValue(ConvertType(E->getType()));
15336 
15337     // If palignr is shifting the pair of input vectors more than one lane,
15338     // but less than two lanes, convert to shifting in zeroes.
15339     if (ShiftVal > 16) {
15340       ShiftVal -= 16;
15341       Ops[1] = Ops[0];
15342       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
15343     }
15344 
15345     int Indices[64];
15346     // 256-bit palignr operates on 128-bit lanes so we need to handle that
15347     for (unsigned l = 0; l != NumElts; l += 16) {
15348       for (unsigned i = 0; i != 16; ++i) {
15349         unsigned Idx = ShiftVal + i;
15350         if (Idx >= 16)
15351           Idx += NumElts - 16; // End of lane, switch operand.
15352         Indices[l + i] = Idx + l;
15353       }
15354     }
15355 
15356     return Builder.CreateShuffleVector(Ops[1], Ops[0],
15357                                        ArrayRef(Indices, NumElts), "palignr");
15358   }
15359   case X86::BI__builtin_ia32_alignd128:
15360   case X86::BI__builtin_ia32_alignd256:
15361   case X86::BI__builtin_ia32_alignd512:
15362   case X86::BI__builtin_ia32_alignq128:
15363   case X86::BI__builtin_ia32_alignq256:
15364   case X86::BI__builtin_ia32_alignq512: {
15365     unsigned NumElts =
15366         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15367     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
15368 
15369     // Mask the shift amount to width of a vector.
15370     ShiftVal &= NumElts - 1;
15371 
15372     int Indices[16];
15373     for (unsigned i = 0; i != NumElts; ++i)
15374       Indices[i] = i + ShiftVal;
15375 
15376     return Builder.CreateShuffleVector(Ops[1], Ops[0],
15377                                        ArrayRef(Indices, NumElts), "valign");
15378   }
15379   case X86::BI__builtin_ia32_shuf_f32x4_256:
15380   case X86::BI__builtin_ia32_shuf_f64x2_256:
15381   case X86::BI__builtin_ia32_shuf_i32x4_256:
15382   case X86::BI__builtin_ia32_shuf_i64x2_256:
15383   case X86::BI__builtin_ia32_shuf_f32x4:
15384   case X86::BI__builtin_ia32_shuf_f64x2:
15385   case X86::BI__builtin_ia32_shuf_i32x4:
15386   case X86::BI__builtin_ia32_shuf_i64x2: {
15387     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
15388     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15389     unsigned NumElts = Ty->getNumElements();
15390     unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
15391     unsigned NumLaneElts = NumElts / NumLanes;
15392 
15393     int Indices[16];
15394     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
15395       unsigned Index = (Imm % NumLanes) * NumLaneElts;
15396       Imm /= NumLanes; // Discard the bits we just used.
15397       if (l >= (NumElts / 2))
15398         Index += NumElts; // Switch to other source.
15399       for (unsigned i = 0; i != NumLaneElts; ++i) {
15400         Indices[l + i] = Index + i;
15401       }
15402     }
15403 
15404     return Builder.CreateShuffleVector(Ops[0], Ops[1],
15405                                        ArrayRef(Indices, NumElts), "shuf");
15406   }
15407 
15408   case X86::BI__builtin_ia32_vperm2f128_pd256:
15409   case X86::BI__builtin_ia32_vperm2f128_ps256:
15410   case X86::BI__builtin_ia32_vperm2f128_si256:
15411   case X86::BI__builtin_ia32_permti256: {
15412     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
15413     unsigned NumElts =
15414         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15415 
15416     // This takes a very simple approach since there are two lanes and a
15417     // shuffle can have 2 inputs. So we reserve the first input for the first
15418     // lane and the second input for the second lane. This may result in
15419     // duplicate sources, but this can be dealt with in the backend.
15420 
15421     Value *OutOps[2];
15422     int Indices[8];
15423     for (unsigned l = 0; l != 2; ++l) {
15424       // Determine the source for this lane.
15425       if (Imm & (1 << ((l * 4) + 3)))
15426         OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
15427       else if (Imm & (1 << ((l * 4) + 1)))
15428         OutOps[l] = Ops[1];
15429       else
15430         OutOps[l] = Ops[0];
15431 
15432       for (unsigned i = 0; i != NumElts/2; ++i) {
15433         // Start with ith element of the source for this lane.
15434         unsigned Idx = (l * NumElts) + i;
15435         // If bit 0 of the immediate half is set, switch to the high half of
15436         // the source.
15437         if (Imm & (1 << (l * 4)))
15438           Idx += NumElts/2;
15439         Indices[(l * (NumElts/2)) + i] = Idx;
15440       }
15441     }
15442 
15443     return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
15444                                        ArrayRef(Indices, NumElts), "vperm");
15445   }
15446 
15447   case X86::BI__builtin_ia32_pslldqi128_byteshift:
15448   case X86::BI__builtin_ia32_pslldqi256_byteshift:
15449   case X86::BI__builtin_ia32_pslldqi512_byteshift: {
15450     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15451     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
15452     // Builtin type is vXi64 so multiply by 8 to get bytes.
15453     unsigned NumElts = ResultType->getNumElements() * 8;
15454 
15455     // If pslldq is shifting the vector more than 15 bytes, emit zero.
15456     if (ShiftVal >= 16)
15457       return llvm::Constant::getNullValue(ResultType);
15458 
15459     int Indices[64];
15460     // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
15461     for (unsigned l = 0; l != NumElts; l += 16) {
15462       for (unsigned i = 0; i != 16; ++i) {
15463         unsigned Idx = NumElts + i - ShiftVal;
15464         if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
15465         Indices[l + i] = Idx + l;
15466       }
15467     }
15468 
15469     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
15470     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
15471     Value *Zero = llvm::Constant::getNullValue(VecTy);
15472     Value *SV = Builder.CreateShuffleVector(
15473         Zero, Cast, ArrayRef(Indices, NumElts), "pslldq");
15474     return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
15475   }
15476   case X86::BI__builtin_ia32_psrldqi128_byteshift:
15477   case X86::BI__builtin_ia32_psrldqi256_byteshift:
15478   case X86::BI__builtin_ia32_psrldqi512_byteshift: {
15479     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15480     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
15481     // Builtin type is vXi64 so multiply by 8 to get bytes.
15482     unsigned NumElts = ResultType->getNumElements() * 8;
15483 
15484     // If psrldq is shifting the vector more than 15 bytes, emit zero.
15485     if (ShiftVal >= 16)
15486       return llvm::Constant::getNullValue(ResultType);
15487 
15488     int Indices[64];
15489     // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
15490     for (unsigned l = 0; l != NumElts; l += 16) {
15491       for (unsigned i = 0; i != 16; ++i) {
15492         unsigned Idx = i + ShiftVal;
15493         if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
15494         Indices[l + i] = Idx + l;
15495       }
15496     }
15497 
15498     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
15499     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
15500     Value *Zero = llvm::Constant::getNullValue(VecTy);
15501     Value *SV = Builder.CreateShuffleVector(
15502         Cast, Zero, ArrayRef(Indices, NumElts), "psrldq");
15503     return Builder.CreateBitCast(SV, ResultType, "cast");
15504   }
15505   case X86::BI__builtin_ia32_kshiftliqi:
15506   case X86::BI__builtin_ia32_kshiftlihi:
15507   case X86::BI__builtin_ia32_kshiftlisi:
15508   case X86::BI__builtin_ia32_kshiftlidi: {
15509     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15510     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15511 
15512     if (ShiftVal >= NumElts)
15513       return llvm::Constant::getNullValue(Ops[0]->getType());
15514 
15515     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
15516 
15517     int Indices[64];
15518     for (unsigned i = 0; i != NumElts; ++i)
15519       Indices[i] = NumElts + i - ShiftVal;
15520 
15521     Value *Zero = llvm::Constant::getNullValue(In->getType());
15522     Value *SV = Builder.CreateShuffleVector(
15523         Zero, In, ArrayRef(Indices, NumElts), "kshiftl");
15524     return Builder.CreateBitCast(SV, Ops[0]->getType());
15525   }
15526   case X86::BI__builtin_ia32_kshiftriqi:
15527   case X86::BI__builtin_ia32_kshiftrihi:
15528   case X86::BI__builtin_ia32_kshiftrisi:
15529   case X86::BI__builtin_ia32_kshiftridi: {
15530     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15531     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15532 
15533     if (ShiftVal >= NumElts)
15534       return llvm::Constant::getNullValue(Ops[0]->getType());
15535 
15536     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
15537 
15538     int Indices[64];
15539     for (unsigned i = 0; i != NumElts; ++i)
15540       Indices[i] = i + ShiftVal;
15541 
15542     Value *Zero = llvm::Constant::getNullValue(In->getType());
15543     Value *SV = Builder.CreateShuffleVector(
15544         In, Zero, ArrayRef(Indices, NumElts), "kshiftr");
15545     return Builder.CreateBitCast(SV, Ops[0]->getType());
15546   }
15547   case X86::BI__builtin_ia32_movnti:
15548   case X86::BI__builtin_ia32_movnti64:
15549   case X86::BI__builtin_ia32_movntsd:
15550   case X86::BI__builtin_ia32_movntss: {
15551     llvm::MDNode *Node = llvm::MDNode::get(
15552         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
15553 
15554     Value *Ptr = Ops[0];
15555     Value *Src = Ops[1];
15556 
15557     // Extract the 0'th element of the source vector.
15558     if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
15559         BuiltinID == X86::BI__builtin_ia32_movntss)
15560       Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
15561 
15562     // Unaligned nontemporal store of the scalar value.
15563     StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, Ptr);
15564     SI->setMetadata(llvm::LLVMContext::MD_nontemporal, Node);
15565     SI->setAlignment(llvm::Align(1));
15566     return SI;
15567   }
15568   // Rotate is a special case of funnel shift - 1st 2 args are the same.
15569   case X86::BI__builtin_ia32_vprotb:
15570   case X86::BI__builtin_ia32_vprotw:
15571   case X86::BI__builtin_ia32_vprotd:
15572   case X86::BI__builtin_ia32_vprotq:
15573   case X86::BI__builtin_ia32_vprotbi:
15574   case X86::BI__builtin_ia32_vprotwi:
15575   case X86::BI__builtin_ia32_vprotdi:
15576   case X86::BI__builtin_ia32_vprotqi:
15577   case X86::BI__builtin_ia32_prold128:
15578   case X86::BI__builtin_ia32_prold256:
15579   case X86::BI__builtin_ia32_prold512:
15580   case X86::BI__builtin_ia32_prolq128:
15581   case X86::BI__builtin_ia32_prolq256:
15582   case X86::BI__builtin_ia32_prolq512:
15583   case X86::BI__builtin_ia32_prolvd128:
15584   case X86::BI__builtin_ia32_prolvd256:
15585   case X86::BI__builtin_ia32_prolvd512:
15586   case X86::BI__builtin_ia32_prolvq128:
15587   case X86::BI__builtin_ia32_prolvq256:
15588   case X86::BI__builtin_ia32_prolvq512:
15589     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
15590   case X86::BI__builtin_ia32_prord128:
15591   case X86::BI__builtin_ia32_prord256:
15592   case X86::BI__builtin_ia32_prord512:
15593   case X86::BI__builtin_ia32_prorq128:
15594   case X86::BI__builtin_ia32_prorq256:
15595   case X86::BI__builtin_ia32_prorq512:
15596   case X86::BI__builtin_ia32_prorvd128:
15597   case X86::BI__builtin_ia32_prorvd256:
15598   case X86::BI__builtin_ia32_prorvd512:
15599   case X86::BI__builtin_ia32_prorvq128:
15600   case X86::BI__builtin_ia32_prorvq256:
15601   case X86::BI__builtin_ia32_prorvq512:
15602     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
15603   case X86::BI__builtin_ia32_selectb_128:
15604   case X86::BI__builtin_ia32_selectb_256:
15605   case X86::BI__builtin_ia32_selectb_512:
15606   case X86::BI__builtin_ia32_selectw_128:
15607   case X86::BI__builtin_ia32_selectw_256:
15608   case X86::BI__builtin_ia32_selectw_512:
15609   case X86::BI__builtin_ia32_selectd_128:
15610   case X86::BI__builtin_ia32_selectd_256:
15611   case X86::BI__builtin_ia32_selectd_512:
15612   case X86::BI__builtin_ia32_selectq_128:
15613   case X86::BI__builtin_ia32_selectq_256:
15614   case X86::BI__builtin_ia32_selectq_512:
15615   case X86::BI__builtin_ia32_selectph_128:
15616   case X86::BI__builtin_ia32_selectph_256:
15617   case X86::BI__builtin_ia32_selectph_512:
15618   case X86::BI__builtin_ia32_selectpbf_128:
15619   case X86::BI__builtin_ia32_selectpbf_256:
15620   case X86::BI__builtin_ia32_selectpbf_512:
15621   case X86::BI__builtin_ia32_selectps_128:
15622   case X86::BI__builtin_ia32_selectps_256:
15623   case X86::BI__builtin_ia32_selectps_512:
15624   case X86::BI__builtin_ia32_selectpd_128:
15625   case X86::BI__builtin_ia32_selectpd_256:
15626   case X86::BI__builtin_ia32_selectpd_512:
15627     return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
15628   case X86::BI__builtin_ia32_selectsh_128:
15629   case X86::BI__builtin_ia32_selectsbf_128:
15630   case X86::BI__builtin_ia32_selectss_128:
15631   case X86::BI__builtin_ia32_selectsd_128: {
15632     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
15633     Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
15634     A = EmitX86ScalarSelect(*this, Ops[0], A, B);
15635     return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
15636   }
15637   case X86::BI__builtin_ia32_cmpb128_mask:
15638   case X86::BI__builtin_ia32_cmpb256_mask:
15639   case X86::BI__builtin_ia32_cmpb512_mask:
15640   case X86::BI__builtin_ia32_cmpw128_mask:
15641   case X86::BI__builtin_ia32_cmpw256_mask:
15642   case X86::BI__builtin_ia32_cmpw512_mask:
15643   case X86::BI__builtin_ia32_cmpd128_mask:
15644   case X86::BI__builtin_ia32_cmpd256_mask:
15645   case X86::BI__builtin_ia32_cmpd512_mask:
15646   case X86::BI__builtin_ia32_cmpq128_mask:
15647   case X86::BI__builtin_ia32_cmpq256_mask:
15648   case X86::BI__builtin_ia32_cmpq512_mask: {
15649     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
15650     return EmitX86MaskedCompare(*this, CC, true, Ops);
15651   }
15652   case X86::BI__builtin_ia32_ucmpb128_mask:
15653   case X86::BI__builtin_ia32_ucmpb256_mask:
15654   case X86::BI__builtin_ia32_ucmpb512_mask:
15655   case X86::BI__builtin_ia32_ucmpw128_mask:
15656   case X86::BI__builtin_ia32_ucmpw256_mask:
15657   case X86::BI__builtin_ia32_ucmpw512_mask:
15658   case X86::BI__builtin_ia32_ucmpd128_mask:
15659   case X86::BI__builtin_ia32_ucmpd256_mask:
15660   case X86::BI__builtin_ia32_ucmpd512_mask:
15661   case X86::BI__builtin_ia32_ucmpq128_mask:
15662   case X86::BI__builtin_ia32_ucmpq256_mask:
15663   case X86::BI__builtin_ia32_ucmpq512_mask: {
15664     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
15665     return EmitX86MaskedCompare(*this, CC, false, Ops);
15666   }
15667   case X86::BI__builtin_ia32_vpcomb:
15668   case X86::BI__builtin_ia32_vpcomw:
15669   case X86::BI__builtin_ia32_vpcomd:
15670   case X86::BI__builtin_ia32_vpcomq:
15671     return EmitX86vpcom(*this, Ops, true);
15672   case X86::BI__builtin_ia32_vpcomub:
15673   case X86::BI__builtin_ia32_vpcomuw:
15674   case X86::BI__builtin_ia32_vpcomud:
15675   case X86::BI__builtin_ia32_vpcomuq:
15676     return EmitX86vpcom(*this, Ops, false);
15677 
15678   case X86::BI__builtin_ia32_kortestcqi:
15679   case X86::BI__builtin_ia32_kortestchi:
15680   case X86::BI__builtin_ia32_kortestcsi:
15681   case X86::BI__builtin_ia32_kortestcdi: {
15682     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
15683     Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
15684     Value *Cmp = Builder.CreateICmpEQ(Or, C);
15685     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
15686   }
15687   case X86::BI__builtin_ia32_kortestzqi:
15688   case X86::BI__builtin_ia32_kortestzhi:
15689   case X86::BI__builtin_ia32_kortestzsi:
15690   case X86::BI__builtin_ia32_kortestzdi: {
15691     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
15692     Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
15693     Value *Cmp = Builder.CreateICmpEQ(Or, C);
15694     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
15695   }
15696 
15697   case X86::BI__builtin_ia32_ktestcqi:
15698   case X86::BI__builtin_ia32_ktestzqi:
15699   case X86::BI__builtin_ia32_ktestchi:
15700   case X86::BI__builtin_ia32_ktestzhi:
15701   case X86::BI__builtin_ia32_ktestcsi:
15702   case X86::BI__builtin_ia32_ktestzsi:
15703   case X86::BI__builtin_ia32_ktestcdi:
15704   case X86::BI__builtin_ia32_ktestzdi: {
15705     Intrinsic::ID IID;
15706     switch (BuiltinID) {
15707     default: llvm_unreachable("Unsupported intrinsic!");
15708     case X86::BI__builtin_ia32_ktestcqi:
15709       IID = Intrinsic::x86_avx512_ktestc_b;
15710       break;
15711     case X86::BI__builtin_ia32_ktestzqi:
15712       IID = Intrinsic::x86_avx512_ktestz_b;
15713       break;
15714     case X86::BI__builtin_ia32_ktestchi:
15715       IID = Intrinsic::x86_avx512_ktestc_w;
15716       break;
15717     case X86::BI__builtin_ia32_ktestzhi:
15718       IID = Intrinsic::x86_avx512_ktestz_w;
15719       break;
15720     case X86::BI__builtin_ia32_ktestcsi:
15721       IID = Intrinsic::x86_avx512_ktestc_d;
15722       break;
15723     case X86::BI__builtin_ia32_ktestzsi:
15724       IID = Intrinsic::x86_avx512_ktestz_d;
15725       break;
15726     case X86::BI__builtin_ia32_ktestcdi:
15727       IID = Intrinsic::x86_avx512_ktestc_q;
15728       break;
15729     case X86::BI__builtin_ia32_ktestzdi:
15730       IID = Intrinsic::x86_avx512_ktestz_q;
15731       break;
15732     }
15733 
15734     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15735     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
15736     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
15737     Function *Intr = CGM.getIntrinsic(IID);
15738     return Builder.CreateCall(Intr, {LHS, RHS});
15739   }
15740 
15741   case X86::BI__builtin_ia32_kaddqi:
15742   case X86::BI__builtin_ia32_kaddhi:
15743   case X86::BI__builtin_ia32_kaddsi:
15744   case X86::BI__builtin_ia32_kadddi: {
15745     Intrinsic::ID IID;
15746     switch (BuiltinID) {
15747     default: llvm_unreachable("Unsupported intrinsic!");
15748     case X86::BI__builtin_ia32_kaddqi:
15749       IID = Intrinsic::x86_avx512_kadd_b;
15750       break;
15751     case X86::BI__builtin_ia32_kaddhi:
15752       IID = Intrinsic::x86_avx512_kadd_w;
15753       break;
15754     case X86::BI__builtin_ia32_kaddsi:
15755       IID = Intrinsic::x86_avx512_kadd_d;
15756       break;
15757     case X86::BI__builtin_ia32_kadddi:
15758       IID = Intrinsic::x86_avx512_kadd_q;
15759       break;
15760     }
15761 
15762     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15763     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
15764     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
15765     Function *Intr = CGM.getIntrinsic(IID);
15766     Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
15767     return Builder.CreateBitCast(Res, Ops[0]->getType());
15768   }
15769   case X86::BI__builtin_ia32_kandqi:
15770   case X86::BI__builtin_ia32_kandhi:
15771   case X86::BI__builtin_ia32_kandsi:
15772   case X86::BI__builtin_ia32_kanddi:
15773     return EmitX86MaskLogic(*this, Instruction::And, Ops);
15774   case X86::BI__builtin_ia32_kandnqi:
15775   case X86::BI__builtin_ia32_kandnhi:
15776   case X86::BI__builtin_ia32_kandnsi:
15777   case X86::BI__builtin_ia32_kandndi:
15778     return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
15779   case X86::BI__builtin_ia32_korqi:
15780   case X86::BI__builtin_ia32_korhi:
15781   case X86::BI__builtin_ia32_korsi:
15782   case X86::BI__builtin_ia32_kordi:
15783     return EmitX86MaskLogic(*this, Instruction::Or, Ops);
15784   case X86::BI__builtin_ia32_kxnorqi:
15785   case X86::BI__builtin_ia32_kxnorhi:
15786   case X86::BI__builtin_ia32_kxnorsi:
15787   case X86::BI__builtin_ia32_kxnordi:
15788     return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
15789   case X86::BI__builtin_ia32_kxorqi:
15790   case X86::BI__builtin_ia32_kxorhi:
15791   case X86::BI__builtin_ia32_kxorsi:
15792   case X86::BI__builtin_ia32_kxordi:
15793     return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
15794   case X86::BI__builtin_ia32_knotqi:
15795   case X86::BI__builtin_ia32_knothi:
15796   case X86::BI__builtin_ia32_knotsi:
15797   case X86::BI__builtin_ia32_knotdi: {
15798     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15799     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
15800     return Builder.CreateBitCast(Builder.CreateNot(Res),
15801                                  Ops[0]->getType());
15802   }
15803   case X86::BI__builtin_ia32_kmovb:
15804   case X86::BI__builtin_ia32_kmovw:
15805   case X86::BI__builtin_ia32_kmovd:
15806   case X86::BI__builtin_ia32_kmovq: {
15807     // Bitcast to vXi1 type and then back to integer. This gets the mask
15808     // register type into the IR, but might be optimized out depending on
15809     // what's around it.
15810     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15811     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
15812     return Builder.CreateBitCast(Res, Ops[0]->getType());
15813   }
15814 
15815   case X86::BI__builtin_ia32_kunpckdi:
15816   case X86::BI__builtin_ia32_kunpcksi:
15817   case X86::BI__builtin_ia32_kunpckhi: {
15818     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15819     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
15820     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
15821     int Indices[64];
15822     for (unsigned i = 0; i != NumElts; ++i)
15823       Indices[i] = i;
15824 
15825     // First extract half of each vector. This gives better codegen than
15826     // doing it in a single shuffle.
15827     LHS = Builder.CreateShuffleVector(LHS, LHS, ArrayRef(Indices, NumElts / 2));
15828     RHS = Builder.CreateShuffleVector(RHS, RHS, ArrayRef(Indices, NumElts / 2));
15829     // Concat the vectors.
15830     // NOTE: Operands are swapped to match the intrinsic definition.
15831     Value *Res =
15832         Builder.CreateShuffleVector(RHS, LHS, ArrayRef(Indices, NumElts));
15833     return Builder.CreateBitCast(Res, Ops[0]->getType());
15834   }
15835 
15836   case X86::BI__builtin_ia32_vplzcntd_128:
15837   case X86::BI__builtin_ia32_vplzcntd_256:
15838   case X86::BI__builtin_ia32_vplzcntd_512:
15839   case X86::BI__builtin_ia32_vplzcntq_128:
15840   case X86::BI__builtin_ia32_vplzcntq_256:
15841   case X86::BI__builtin_ia32_vplzcntq_512: {
15842     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
15843     return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
15844   }
15845   case X86::BI__builtin_ia32_sqrtss:
15846   case X86::BI__builtin_ia32_sqrtsd: {
15847     Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
15848     Function *F;
15849     if (Builder.getIsFPConstrained()) {
15850       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
15851       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
15852                            A->getType());
15853       A = Builder.CreateConstrainedFPCall(F, {A});
15854     } else {
15855       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
15856       A = Builder.CreateCall(F, {A});
15857     }
15858     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
15859   }
15860   case X86::BI__builtin_ia32_sqrtsh_round_mask:
15861   case X86::BI__builtin_ia32_sqrtsd_round_mask:
15862   case X86::BI__builtin_ia32_sqrtss_round_mask: {
15863     unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
15864     // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
15865     // otherwise keep the intrinsic.
15866     if (CC != 4) {
15867       Intrinsic::ID IID;
15868 
15869       switch (BuiltinID) {
15870       default:
15871         llvm_unreachable("Unsupported intrinsic!");
15872       case X86::BI__builtin_ia32_sqrtsh_round_mask:
15873         IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh;
15874         break;
15875       case X86::BI__builtin_ia32_sqrtsd_round_mask:
15876         IID = Intrinsic::x86_avx512_mask_sqrt_sd;
15877         break;
15878       case X86::BI__builtin_ia32_sqrtss_round_mask:
15879         IID = Intrinsic::x86_avx512_mask_sqrt_ss;
15880         break;
15881       }
15882       return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15883     }
15884     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
15885     Function *F;
15886     if (Builder.getIsFPConstrained()) {
15887       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
15888       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
15889                            A->getType());
15890       A = Builder.CreateConstrainedFPCall(F, A);
15891     } else {
15892       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
15893       A = Builder.CreateCall(F, A);
15894     }
15895     Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
15896     A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
15897     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
15898   }
15899   case X86::BI__builtin_ia32_sqrtpd256:
15900   case X86::BI__builtin_ia32_sqrtpd:
15901   case X86::BI__builtin_ia32_sqrtps256:
15902   case X86::BI__builtin_ia32_sqrtps:
15903   case X86::BI__builtin_ia32_sqrtph256:
15904   case X86::BI__builtin_ia32_sqrtph:
15905   case X86::BI__builtin_ia32_sqrtph512:
15906   case X86::BI__builtin_ia32_sqrtps512:
15907   case X86::BI__builtin_ia32_sqrtpd512: {
15908     if (Ops.size() == 2) {
15909       unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15910       // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
15911       // otherwise keep the intrinsic.
15912       if (CC != 4) {
15913         Intrinsic::ID IID;
15914 
15915         switch (BuiltinID) {
15916         default:
15917           llvm_unreachable("Unsupported intrinsic!");
15918         case X86::BI__builtin_ia32_sqrtph512:
15919           IID = Intrinsic::x86_avx512fp16_sqrt_ph_512;
15920           break;
15921         case X86::BI__builtin_ia32_sqrtps512:
15922           IID = Intrinsic::x86_avx512_sqrt_ps_512;
15923           break;
15924         case X86::BI__builtin_ia32_sqrtpd512:
15925           IID = Intrinsic::x86_avx512_sqrt_pd_512;
15926           break;
15927         }
15928         return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15929       }
15930     }
15931     if (Builder.getIsFPConstrained()) {
15932       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
15933       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
15934                                      Ops[0]->getType());
15935       return Builder.CreateConstrainedFPCall(F, Ops[0]);
15936     } else {
15937       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
15938       return Builder.CreateCall(F, Ops[0]);
15939     }
15940   }
15941 
15942   case X86::BI__builtin_ia32_pmuludq128:
15943   case X86::BI__builtin_ia32_pmuludq256:
15944   case X86::BI__builtin_ia32_pmuludq512:
15945     return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
15946 
15947   case X86::BI__builtin_ia32_pmuldq128:
15948   case X86::BI__builtin_ia32_pmuldq256:
15949   case X86::BI__builtin_ia32_pmuldq512:
15950     return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
15951 
15952   case X86::BI__builtin_ia32_pternlogd512_mask:
15953   case X86::BI__builtin_ia32_pternlogq512_mask:
15954   case X86::BI__builtin_ia32_pternlogd128_mask:
15955   case X86::BI__builtin_ia32_pternlogd256_mask:
15956   case X86::BI__builtin_ia32_pternlogq128_mask:
15957   case X86::BI__builtin_ia32_pternlogq256_mask:
15958     return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
15959 
15960   case X86::BI__builtin_ia32_pternlogd512_maskz:
15961   case X86::BI__builtin_ia32_pternlogq512_maskz:
15962   case X86::BI__builtin_ia32_pternlogd128_maskz:
15963   case X86::BI__builtin_ia32_pternlogd256_maskz:
15964   case X86::BI__builtin_ia32_pternlogq128_maskz:
15965   case X86::BI__builtin_ia32_pternlogq256_maskz:
15966     return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
15967 
15968   case X86::BI__builtin_ia32_vpshldd128:
15969   case X86::BI__builtin_ia32_vpshldd256:
15970   case X86::BI__builtin_ia32_vpshldd512:
15971   case X86::BI__builtin_ia32_vpshldq128:
15972   case X86::BI__builtin_ia32_vpshldq256:
15973   case X86::BI__builtin_ia32_vpshldq512:
15974   case X86::BI__builtin_ia32_vpshldw128:
15975   case X86::BI__builtin_ia32_vpshldw256:
15976   case X86::BI__builtin_ia32_vpshldw512:
15977     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
15978 
15979   case X86::BI__builtin_ia32_vpshrdd128:
15980   case X86::BI__builtin_ia32_vpshrdd256:
15981   case X86::BI__builtin_ia32_vpshrdd512:
15982   case X86::BI__builtin_ia32_vpshrdq128:
15983   case X86::BI__builtin_ia32_vpshrdq256:
15984   case X86::BI__builtin_ia32_vpshrdq512:
15985   case X86::BI__builtin_ia32_vpshrdw128:
15986   case X86::BI__builtin_ia32_vpshrdw256:
15987   case X86::BI__builtin_ia32_vpshrdw512:
15988     // Ops 0 and 1 are swapped.
15989     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
15990 
15991   case X86::BI__builtin_ia32_vpshldvd128:
15992   case X86::BI__builtin_ia32_vpshldvd256:
15993   case X86::BI__builtin_ia32_vpshldvd512:
15994   case X86::BI__builtin_ia32_vpshldvq128:
15995   case X86::BI__builtin_ia32_vpshldvq256:
15996   case X86::BI__builtin_ia32_vpshldvq512:
15997   case X86::BI__builtin_ia32_vpshldvw128:
15998   case X86::BI__builtin_ia32_vpshldvw256:
15999   case X86::BI__builtin_ia32_vpshldvw512:
16000     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
16001 
16002   case X86::BI__builtin_ia32_vpshrdvd128:
16003   case X86::BI__builtin_ia32_vpshrdvd256:
16004   case X86::BI__builtin_ia32_vpshrdvd512:
16005   case X86::BI__builtin_ia32_vpshrdvq128:
16006   case X86::BI__builtin_ia32_vpshrdvq256:
16007   case X86::BI__builtin_ia32_vpshrdvq512:
16008   case X86::BI__builtin_ia32_vpshrdvw128:
16009   case X86::BI__builtin_ia32_vpshrdvw256:
16010   case X86::BI__builtin_ia32_vpshrdvw512:
16011     // Ops 0 and 1 are swapped.
16012     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
16013 
16014   // Reductions
16015   case X86::BI__builtin_ia32_reduce_fadd_pd512:
16016   case X86::BI__builtin_ia32_reduce_fadd_ps512:
16017   case X86::BI__builtin_ia32_reduce_fadd_ph512:
16018   case X86::BI__builtin_ia32_reduce_fadd_ph256:
16019   case X86::BI__builtin_ia32_reduce_fadd_ph128: {
16020     Function *F =
16021         CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
16022     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
16023     Builder.getFastMathFlags().setAllowReassoc();
16024     return Builder.CreateCall(F, {Ops[0], Ops[1]});
16025   }
16026   case X86::BI__builtin_ia32_reduce_fmul_pd512:
16027   case X86::BI__builtin_ia32_reduce_fmul_ps512:
16028   case X86::BI__builtin_ia32_reduce_fmul_ph512:
16029   case X86::BI__builtin_ia32_reduce_fmul_ph256:
16030   case X86::BI__builtin_ia32_reduce_fmul_ph128: {
16031     Function *F =
16032         CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
16033     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
16034     Builder.getFastMathFlags().setAllowReassoc();
16035     return Builder.CreateCall(F, {Ops[0], Ops[1]});
16036   }
16037   case X86::BI__builtin_ia32_reduce_fmax_pd512:
16038   case X86::BI__builtin_ia32_reduce_fmax_ps512:
16039   case X86::BI__builtin_ia32_reduce_fmax_ph512:
16040   case X86::BI__builtin_ia32_reduce_fmax_ph256:
16041   case X86::BI__builtin_ia32_reduce_fmax_ph128: {
16042     Function *F =
16043         CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
16044     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
16045     Builder.getFastMathFlags().setNoNaNs();
16046     return Builder.CreateCall(F, {Ops[0]});
16047   }
16048   case X86::BI__builtin_ia32_reduce_fmin_pd512:
16049   case X86::BI__builtin_ia32_reduce_fmin_ps512:
16050   case X86::BI__builtin_ia32_reduce_fmin_ph512:
16051   case X86::BI__builtin_ia32_reduce_fmin_ph256:
16052   case X86::BI__builtin_ia32_reduce_fmin_ph128: {
16053     Function *F =
16054         CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
16055     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
16056     Builder.getFastMathFlags().setNoNaNs();
16057     return Builder.CreateCall(F, {Ops[0]});
16058   }
16059 
16060   case X86::BI__builtin_ia32_rdrand16_step:
16061   case X86::BI__builtin_ia32_rdrand32_step:
16062   case X86::BI__builtin_ia32_rdrand64_step:
16063   case X86::BI__builtin_ia32_rdseed16_step:
16064   case X86::BI__builtin_ia32_rdseed32_step:
16065   case X86::BI__builtin_ia32_rdseed64_step: {
16066     Intrinsic::ID ID;
16067     switch (BuiltinID) {
16068     default: llvm_unreachable("Unsupported intrinsic!");
16069     case X86::BI__builtin_ia32_rdrand16_step:
16070       ID = Intrinsic::x86_rdrand_16;
16071       break;
16072     case X86::BI__builtin_ia32_rdrand32_step:
16073       ID = Intrinsic::x86_rdrand_32;
16074       break;
16075     case X86::BI__builtin_ia32_rdrand64_step:
16076       ID = Intrinsic::x86_rdrand_64;
16077       break;
16078     case X86::BI__builtin_ia32_rdseed16_step:
16079       ID = Intrinsic::x86_rdseed_16;
16080       break;
16081     case X86::BI__builtin_ia32_rdseed32_step:
16082       ID = Intrinsic::x86_rdseed_32;
16083       break;
16084     case X86::BI__builtin_ia32_rdseed64_step:
16085       ID = Intrinsic::x86_rdseed_64;
16086       break;
16087     }
16088 
16089     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
16090     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
16091                                       Ops[0]);
16092     return Builder.CreateExtractValue(Call, 1);
16093   }
16094   case X86::BI__builtin_ia32_addcarryx_u32:
16095   case X86::BI__builtin_ia32_addcarryx_u64:
16096   case X86::BI__builtin_ia32_subborrow_u32:
16097   case X86::BI__builtin_ia32_subborrow_u64: {
16098     Intrinsic::ID IID;
16099     switch (BuiltinID) {
16100     default: llvm_unreachable("Unsupported intrinsic!");
16101     case X86::BI__builtin_ia32_addcarryx_u32:
16102       IID = Intrinsic::x86_addcarry_32;
16103       break;
16104     case X86::BI__builtin_ia32_addcarryx_u64:
16105       IID = Intrinsic::x86_addcarry_64;
16106       break;
16107     case X86::BI__builtin_ia32_subborrow_u32:
16108       IID = Intrinsic::x86_subborrow_32;
16109       break;
16110     case X86::BI__builtin_ia32_subborrow_u64:
16111       IID = Intrinsic::x86_subborrow_64;
16112       break;
16113     }
16114 
16115     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
16116                                      { Ops[0], Ops[1], Ops[2] });
16117     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
16118                                       Ops[3]);
16119     return Builder.CreateExtractValue(Call, 0);
16120   }
16121 
16122   case X86::BI__builtin_ia32_fpclassps128_mask:
16123   case X86::BI__builtin_ia32_fpclassps256_mask:
16124   case X86::BI__builtin_ia32_fpclassps512_mask:
16125   case X86::BI__builtin_ia32_fpclassph128_mask:
16126   case X86::BI__builtin_ia32_fpclassph256_mask:
16127   case X86::BI__builtin_ia32_fpclassph512_mask:
16128   case X86::BI__builtin_ia32_fpclasspd128_mask:
16129   case X86::BI__builtin_ia32_fpclasspd256_mask:
16130   case X86::BI__builtin_ia32_fpclasspd512_mask: {
16131     unsigned NumElts =
16132         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16133     Value *MaskIn = Ops[2];
16134     Ops.erase(&Ops[2]);
16135 
16136     Intrinsic::ID ID;
16137     switch (BuiltinID) {
16138     default: llvm_unreachable("Unsupported intrinsic!");
16139     case X86::BI__builtin_ia32_fpclassph128_mask:
16140       ID = Intrinsic::x86_avx512fp16_fpclass_ph_128;
16141       break;
16142     case X86::BI__builtin_ia32_fpclassph256_mask:
16143       ID = Intrinsic::x86_avx512fp16_fpclass_ph_256;
16144       break;
16145     case X86::BI__builtin_ia32_fpclassph512_mask:
16146       ID = Intrinsic::x86_avx512fp16_fpclass_ph_512;
16147       break;
16148     case X86::BI__builtin_ia32_fpclassps128_mask:
16149       ID = Intrinsic::x86_avx512_fpclass_ps_128;
16150       break;
16151     case X86::BI__builtin_ia32_fpclassps256_mask:
16152       ID = Intrinsic::x86_avx512_fpclass_ps_256;
16153       break;
16154     case X86::BI__builtin_ia32_fpclassps512_mask:
16155       ID = Intrinsic::x86_avx512_fpclass_ps_512;
16156       break;
16157     case X86::BI__builtin_ia32_fpclasspd128_mask:
16158       ID = Intrinsic::x86_avx512_fpclass_pd_128;
16159       break;
16160     case X86::BI__builtin_ia32_fpclasspd256_mask:
16161       ID = Intrinsic::x86_avx512_fpclass_pd_256;
16162       break;
16163     case X86::BI__builtin_ia32_fpclasspd512_mask:
16164       ID = Intrinsic::x86_avx512_fpclass_pd_512;
16165       break;
16166     }
16167 
16168     Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
16169     return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
16170   }
16171 
16172   case X86::BI__builtin_ia32_vp2intersect_q_512:
16173   case X86::BI__builtin_ia32_vp2intersect_q_256:
16174   case X86::BI__builtin_ia32_vp2intersect_q_128:
16175   case X86::BI__builtin_ia32_vp2intersect_d_512:
16176   case X86::BI__builtin_ia32_vp2intersect_d_256:
16177   case X86::BI__builtin_ia32_vp2intersect_d_128: {
16178     unsigned NumElts =
16179         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16180     Intrinsic::ID ID;
16181 
16182     switch (BuiltinID) {
16183     default: llvm_unreachable("Unsupported intrinsic!");
16184     case X86::BI__builtin_ia32_vp2intersect_q_512:
16185       ID = Intrinsic::x86_avx512_vp2intersect_q_512;
16186       break;
16187     case X86::BI__builtin_ia32_vp2intersect_q_256:
16188       ID = Intrinsic::x86_avx512_vp2intersect_q_256;
16189       break;
16190     case X86::BI__builtin_ia32_vp2intersect_q_128:
16191       ID = Intrinsic::x86_avx512_vp2intersect_q_128;
16192       break;
16193     case X86::BI__builtin_ia32_vp2intersect_d_512:
16194       ID = Intrinsic::x86_avx512_vp2intersect_d_512;
16195       break;
16196     case X86::BI__builtin_ia32_vp2intersect_d_256:
16197       ID = Intrinsic::x86_avx512_vp2intersect_d_256;
16198       break;
16199     case X86::BI__builtin_ia32_vp2intersect_d_128:
16200       ID = Intrinsic::x86_avx512_vp2intersect_d_128;
16201       break;
16202     }
16203 
16204     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
16205     Value *Result = Builder.CreateExtractValue(Call, 0);
16206     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
16207     Builder.CreateDefaultAlignedStore(Result, Ops[2]);
16208 
16209     Result = Builder.CreateExtractValue(Call, 1);
16210     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
16211     return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
16212   }
16213 
16214   case X86::BI__builtin_ia32_vpmultishiftqb128:
16215   case X86::BI__builtin_ia32_vpmultishiftqb256:
16216   case X86::BI__builtin_ia32_vpmultishiftqb512: {
16217     Intrinsic::ID ID;
16218     switch (BuiltinID) {
16219     default: llvm_unreachable("Unsupported intrinsic!");
16220     case X86::BI__builtin_ia32_vpmultishiftqb128:
16221       ID = Intrinsic::x86_avx512_pmultishift_qb_128;
16222       break;
16223     case X86::BI__builtin_ia32_vpmultishiftqb256:
16224       ID = Intrinsic::x86_avx512_pmultishift_qb_256;
16225       break;
16226     case X86::BI__builtin_ia32_vpmultishiftqb512:
16227       ID = Intrinsic::x86_avx512_pmultishift_qb_512;
16228       break;
16229     }
16230 
16231     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
16232   }
16233 
16234   case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
16235   case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
16236   case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
16237     unsigned NumElts =
16238         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16239     Value *MaskIn = Ops[2];
16240     Ops.erase(&Ops[2]);
16241 
16242     Intrinsic::ID ID;
16243     switch (BuiltinID) {
16244     default: llvm_unreachable("Unsupported intrinsic!");
16245     case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
16246       ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
16247       break;
16248     case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
16249       ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
16250       break;
16251     case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
16252       ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
16253       break;
16254     }
16255 
16256     Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
16257     return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
16258   }
16259 
16260   // packed comparison intrinsics
16261   case X86::BI__builtin_ia32_cmpeqps:
16262   case X86::BI__builtin_ia32_cmpeqpd:
16263     return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
16264   case X86::BI__builtin_ia32_cmpltps:
16265   case X86::BI__builtin_ia32_cmpltpd:
16266     return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
16267   case X86::BI__builtin_ia32_cmpleps:
16268   case X86::BI__builtin_ia32_cmplepd:
16269     return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
16270   case X86::BI__builtin_ia32_cmpunordps:
16271   case X86::BI__builtin_ia32_cmpunordpd:
16272     return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
16273   case X86::BI__builtin_ia32_cmpneqps:
16274   case X86::BI__builtin_ia32_cmpneqpd:
16275     return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
16276   case X86::BI__builtin_ia32_cmpnltps:
16277   case X86::BI__builtin_ia32_cmpnltpd:
16278     return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
16279   case X86::BI__builtin_ia32_cmpnleps:
16280   case X86::BI__builtin_ia32_cmpnlepd:
16281     return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
16282   case X86::BI__builtin_ia32_cmpordps:
16283   case X86::BI__builtin_ia32_cmpordpd:
16284     return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
16285   case X86::BI__builtin_ia32_cmpph128_mask:
16286   case X86::BI__builtin_ia32_cmpph256_mask:
16287   case X86::BI__builtin_ia32_cmpph512_mask:
16288   case X86::BI__builtin_ia32_cmpps128_mask:
16289   case X86::BI__builtin_ia32_cmpps256_mask:
16290   case X86::BI__builtin_ia32_cmpps512_mask:
16291   case X86::BI__builtin_ia32_cmppd128_mask:
16292   case X86::BI__builtin_ia32_cmppd256_mask:
16293   case X86::BI__builtin_ia32_cmppd512_mask:
16294     IsMaskFCmp = true;
16295     [[fallthrough]];
16296   case X86::BI__builtin_ia32_cmpps:
16297   case X86::BI__builtin_ia32_cmpps256:
16298   case X86::BI__builtin_ia32_cmppd:
16299   case X86::BI__builtin_ia32_cmppd256: {
16300     // Lowering vector comparisons to fcmp instructions, while
16301     // ignoring signalling behaviour requested
16302     // ignoring rounding mode requested
16303     // This is only possible if fp-model is not strict and FENV_ACCESS is off.
16304 
16305     // The third argument is the comparison condition, and integer in the
16306     // range [0, 31]
16307     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
16308 
16309     // Lowering to IR fcmp instruction.
16310     // Ignoring requested signaling behaviour,
16311     // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
16312     FCmpInst::Predicate Pred;
16313     bool IsSignaling;
16314     // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
16315     // behavior is inverted. We'll handle that after the switch.
16316     switch (CC & 0xf) {
16317     case 0x00: Pred = FCmpInst::FCMP_OEQ;   IsSignaling = false; break;
16318     case 0x01: Pred = FCmpInst::FCMP_OLT;   IsSignaling = true;  break;
16319     case 0x02: Pred = FCmpInst::FCMP_OLE;   IsSignaling = true;  break;
16320     case 0x03: Pred = FCmpInst::FCMP_UNO;   IsSignaling = false; break;
16321     case 0x04: Pred = FCmpInst::FCMP_UNE;   IsSignaling = false; break;
16322     case 0x05: Pred = FCmpInst::FCMP_UGE;   IsSignaling = true;  break;
16323     case 0x06: Pred = FCmpInst::FCMP_UGT;   IsSignaling = true;  break;
16324     case 0x07: Pred = FCmpInst::FCMP_ORD;   IsSignaling = false; break;
16325     case 0x08: Pred = FCmpInst::FCMP_UEQ;   IsSignaling = false; break;
16326     case 0x09: Pred = FCmpInst::FCMP_ULT;   IsSignaling = true;  break;
16327     case 0x0a: Pred = FCmpInst::FCMP_ULE;   IsSignaling = true;  break;
16328     case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
16329     case 0x0c: Pred = FCmpInst::FCMP_ONE;   IsSignaling = false; break;
16330     case 0x0d: Pred = FCmpInst::FCMP_OGE;   IsSignaling = true;  break;
16331     case 0x0e: Pred = FCmpInst::FCMP_OGT;   IsSignaling = true;  break;
16332     case 0x0f: Pred = FCmpInst::FCMP_TRUE;  IsSignaling = false; break;
16333     default: llvm_unreachable("Unhandled CC");
16334     }
16335 
16336     // Invert the signalling behavior for 16-31.
16337     if (CC & 0x10)
16338       IsSignaling = !IsSignaling;
16339 
16340     // If the predicate is true or false and we're using constrained intrinsics,
16341     // we don't have a compare intrinsic we can use. Just use the legacy X86
16342     // specific intrinsic.
16343     // If the intrinsic is mask enabled and we're using constrained intrinsics,
16344     // use the legacy X86 specific intrinsic.
16345     if (Builder.getIsFPConstrained() &&
16346         (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
16347          IsMaskFCmp)) {
16348 
16349       Intrinsic::ID IID;
16350       switch (BuiltinID) {
16351       default: llvm_unreachable("Unexpected builtin");
16352       case X86::BI__builtin_ia32_cmpps:
16353         IID = Intrinsic::x86_sse_cmp_ps;
16354         break;
16355       case X86::BI__builtin_ia32_cmpps256:
16356         IID = Intrinsic::x86_avx_cmp_ps_256;
16357         break;
16358       case X86::BI__builtin_ia32_cmppd:
16359         IID = Intrinsic::x86_sse2_cmp_pd;
16360         break;
16361       case X86::BI__builtin_ia32_cmppd256:
16362         IID = Intrinsic::x86_avx_cmp_pd_256;
16363         break;
16364       case X86::BI__builtin_ia32_cmpph128_mask:
16365         IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_128;
16366         break;
16367       case X86::BI__builtin_ia32_cmpph256_mask:
16368         IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_256;
16369         break;
16370       case X86::BI__builtin_ia32_cmpph512_mask:
16371         IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_512;
16372         break;
16373       case X86::BI__builtin_ia32_cmpps512_mask:
16374         IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
16375         break;
16376       case X86::BI__builtin_ia32_cmppd512_mask:
16377         IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
16378         break;
16379       case X86::BI__builtin_ia32_cmpps128_mask:
16380         IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
16381         break;
16382       case X86::BI__builtin_ia32_cmpps256_mask:
16383         IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
16384         break;
16385       case X86::BI__builtin_ia32_cmppd128_mask:
16386         IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
16387         break;
16388       case X86::BI__builtin_ia32_cmppd256_mask:
16389         IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
16390         break;
16391       }
16392 
16393       Function *Intr = CGM.getIntrinsic(IID);
16394       if (IsMaskFCmp) {
16395         unsigned NumElts =
16396             cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16397         Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
16398         Value *Cmp = Builder.CreateCall(Intr, Ops);
16399         return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
16400       }
16401 
16402       return Builder.CreateCall(Intr, Ops);
16403     }
16404 
16405     // Builtins without the _mask suffix return a vector of integers
16406     // of the same width as the input vectors
16407     if (IsMaskFCmp) {
16408       // We ignore SAE if strict FP is disabled. We only keep precise
16409       // exception behavior under strict FP.
16410       // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
16411       // object will be required.
16412       unsigned NumElts =
16413           cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16414       Value *Cmp;
16415       if (IsSignaling)
16416         Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
16417       else
16418         Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
16419       return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
16420     }
16421 
16422     return getVectorFCmpIR(Pred, IsSignaling);
16423   }
16424 
16425   // SSE scalar comparison intrinsics
16426   case X86::BI__builtin_ia32_cmpeqss:
16427     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
16428   case X86::BI__builtin_ia32_cmpltss:
16429     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
16430   case X86::BI__builtin_ia32_cmpless:
16431     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
16432   case X86::BI__builtin_ia32_cmpunordss:
16433     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
16434   case X86::BI__builtin_ia32_cmpneqss:
16435     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
16436   case X86::BI__builtin_ia32_cmpnltss:
16437     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
16438   case X86::BI__builtin_ia32_cmpnless:
16439     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
16440   case X86::BI__builtin_ia32_cmpordss:
16441     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
16442   case X86::BI__builtin_ia32_cmpeqsd:
16443     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
16444   case X86::BI__builtin_ia32_cmpltsd:
16445     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
16446   case X86::BI__builtin_ia32_cmplesd:
16447     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
16448   case X86::BI__builtin_ia32_cmpunordsd:
16449     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
16450   case X86::BI__builtin_ia32_cmpneqsd:
16451     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
16452   case X86::BI__builtin_ia32_cmpnltsd:
16453     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
16454   case X86::BI__builtin_ia32_cmpnlesd:
16455     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
16456   case X86::BI__builtin_ia32_cmpordsd:
16457     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
16458 
16459   // f16c half2float intrinsics
16460   case X86::BI__builtin_ia32_vcvtph2ps:
16461   case X86::BI__builtin_ia32_vcvtph2ps256:
16462   case X86::BI__builtin_ia32_vcvtph2ps_mask:
16463   case X86::BI__builtin_ia32_vcvtph2ps256_mask:
16464   case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
16465     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
16466     return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
16467   }
16468 
16469   // AVX512 bf16 intrinsics
16470   case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
16471     Ops[2] = getMaskVecValue(
16472         *this, Ops[2],
16473         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
16474     Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
16475     return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16476   }
16477   case X86::BI__builtin_ia32_cvtsbf162ss_32:
16478     return Builder.CreateFPExt(Ops[0], Builder.getFloatTy());
16479 
16480   case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
16481   case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
16482     Intrinsic::ID IID;
16483     switch (BuiltinID) {
16484     default: llvm_unreachable("Unsupported intrinsic!");
16485     case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
16486       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
16487       break;
16488     case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
16489       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
16490       break;
16491     }
16492     Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
16493     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
16494   }
16495 
16496   case X86::BI__cpuid:
16497   case X86::BI__cpuidex: {
16498     Value *FuncId = EmitScalarExpr(E->getArg(1));
16499     Value *SubFuncId = BuiltinID == X86::BI__cpuidex
16500                            ? EmitScalarExpr(E->getArg(2))
16501                            : llvm::ConstantInt::get(Int32Ty, 0);
16502 
16503     llvm::StructType *CpuidRetTy =
16504         llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, Int32Ty);
16505     llvm::FunctionType *FTy =
16506         llvm::FunctionType::get(CpuidRetTy, {Int32Ty, Int32Ty}, false);
16507 
16508     StringRef Asm, Constraints;
16509     if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
16510       Asm = "cpuid";
16511       Constraints = "={ax},={bx},={cx},={dx},{ax},{cx}";
16512     } else {
16513       // x86-64 uses %rbx as the base register, so preserve it.
16514       Asm = "xchgq %rbx, ${1:q}\n"
16515             "cpuid\n"
16516             "xchgq %rbx, ${1:q}";
16517       Constraints = "={ax},=r,={cx},={dx},0,2";
16518     }
16519 
16520     llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, Asm, Constraints,
16521                                                /*hasSideEffects=*/false);
16522     Value *IACall = Builder.CreateCall(IA, {FuncId, SubFuncId});
16523     Value *BasePtr = EmitScalarExpr(E->getArg(0));
16524     Value *Store = nullptr;
16525     for (unsigned i = 0; i < 4; i++) {
16526       Value *Extracted = Builder.CreateExtractValue(IACall, i);
16527       Value *StorePtr = Builder.CreateConstInBoundsGEP1_32(Int32Ty, BasePtr, i);
16528       Store = Builder.CreateAlignedStore(Extracted, StorePtr, getIntAlign());
16529     }
16530 
16531     // Return the last store instruction to signal that we have emitted the
16532     // the intrinsic.
16533     return Store;
16534   }
16535 
16536   case X86::BI__emul:
16537   case X86::BI__emulu: {
16538     llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
16539     bool isSigned = (BuiltinID == X86::BI__emul);
16540     Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
16541     Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
16542     return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
16543   }
16544   case X86::BI__mulh:
16545   case X86::BI__umulh:
16546   case X86::BI_mul128:
16547   case X86::BI_umul128: {
16548     llvm::Type *ResType = ConvertType(E->getType());
16549     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
16550 
16551     bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
16552     Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
16553     Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
16554 
16555     Value *MulResult, *HigherBits;
16556     if (IsSigned) {
16557       MulResult = Builder.CreateNSWMul(LHS, RHS);
16558       HigherBits = Builder.CreateAShr(MulResult, 64);
16559     } else {
16560       MulResult = Builder.CreateNUWMul(LHS, RHS);
16561       HigherBits = Builder.CreateLShr(MulResult, 64);
16562     }
16563     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
16564 
16565     if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
16566       return HigherBits;
16567 
16568     Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
16569     Builder.CreateStore(HigherBits, HighBitsAddress);
16570     return Builder.CreateIntCast(MulResult, ResType, IsSigned);
16571   }
16572 
16573   case X86::BI__faststorefence: {
16574     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
16575                                llvm::SyncScope::System);
16576   }
16577   case X86::BI__shiftleft128:
16578   case X86::BI__shiftright128: {
16579     llvm::Function *F = CGM.getIntrinsic(
16580         BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
16581         Int64Ty);
16582     // Flip low/high ops and zero-extend amount to matching type.
16583     // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
16584     // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
16585     std::swap(Ops[0], Ops[1]);
16586     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
16587     return Builder.CreateCall(F, Ops);
16588   }
16589   case X86::BI_ReadWriteBarrier:
16590   case X86::BI_ReadBarrier:
16591   case X86::BI_WriteBarrier: {
16592     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
16593                                llvm::SyncScope::SingleThread);
16594   }
16595 
16596   case X86::BI_AddressOfReturnAddress: {
16597     Function *F =
16598         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
16599     return Builder.CreateCall(F);
16600   }
16601   case X86::BI__stosb: {
16602     // We treat __stosb as a volatile memset - it may not generate "rep stosb"
16603     // instruction, but it will create a memset that won't be optimized away.
16604     return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
16605   }
16606   case X86::BI__ud2:
16607     // llvm.trap makes a ud2a instruction on x86.
16608     return EmitTrapCall(Intrinsic::trap);
16609   case X86::BI__int2c: {
16610     // This syscall signals a driver assertion failure in x86 NT kernels.
16611     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
16612     llvm::InlineAsm *IA =
16613         llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
16614     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
16615         getLLVMContext(), llvm::AttributeList::FunctionIndex,
16616         llvm::Attribute::NoReturn);
16617     llvm::CallInst *CI = Builder.CreateCall(IA);
16618     CI->setAttributes(NoReturnAttr);
16619     return CI;
16620   }
16621   case X86::BI__readfsbyte:
16622   case X86::BI__readfsword:
16623   case X86::BI__readfsdword:
16624   case X86::BI__readfsqword: {
16625     llvm::Type *IntTy = ConvertType(E->getType());
16626     Value *Ptr = Builder.CreateIntToPtr(
16627         Ops[0], llvm::PointerType::get(getLLVMContext(), 257));
16628     LoadInst *Load = Builder.CreateAlignedLoad(
16629         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
16630     Load->setVolatile(true);
16631     return Load;
16632   }
16633   case X86::BI__readgsbyte:
16634   case X86::BI__readgsword:
16635   case X86::BI__readgsdword:
16636   case X86::BI__readgsqword: {
16637     llvm::Type *IntTy = ConvertType(E->getType());
16638     Value *Ptr = Builder.CreateIntToPtr(
16639         Ops[0], llvm::PointerType::get(getLLVMContext(), 256));
16640     LoadInst *Load = Builder.CreateAlignedLoad(
16641         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
16642     Load->setVolatile(true);
16643     return Load;
16644   }
16645   case X86::BI__builtin_ia32_encodekey128_u32: {
16646     Intrinsic::ID IID = Intrinsic::x86_encodekey128;
16647 
16648     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
16649 
16650     for (int i = 0; i < 3; ++i) {
16651       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
16652       Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16);
16653       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
16654     }
16655 
16656     return Builder.CreateExtractValue(Call, 0);
16657   }
16658   case X86::BI__builtin_ia32_encodekey256_u32: {
16659     Intrinsic::ID IID = Intrinsic::x86_encodekey256;
16660 
16661     Value *Call =
16662         Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
16663 
16664     for (int i = 0; i < 4; ++i) {
16665       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
16666       Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16);
16667       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
16668     }
16669 
16670     return Builder.CreateExtractValue(Call, 0);
16671   }
16672   case X86::BI__builtin_ia32_aesenc128kl_u8:
16673   case X86::BI__builtin_ia32_aesdec128kl_u8:
16674   case X86::BI__builtin_ia32_aesenc256kl_u8:
16675   case X86::BI__builtin_ia32_aesdec256kl_u8: {
16676     Intrinsic::ID IID;
16677     StringRef BlockName;
16678     switch (BuiltinID) {
16679     default:
16680       llvm_unreachable("Unexpected builtin");
16681     case X86::BI__builtin_ia32_aesenc128kl_u8:
16682       IID = Intrinsic::x86_aesenc128kl;
16683       BlockName = "aesenc128kl";
16684       break;
16685     case X86::BI__builtin_ia32_aesdec128kl_u8:
16686       IID = Intrinsic::x86_aesdec128kl;
16687       BlockName = "aesdec128kl";
16688       break;
16689     case X86::BI__builtin_ia32_aesenc256kl_u8:
16690       IID = Intrinsic::x86_aesenc256kl;
16691       BlockName = "aesenc256kl";
16692       break;
16693     case X86::BI__builtin_ia32_aesdec256kl_u8:
16694       IID = Intrinsic::x86_aesdec256kl;
16695       BlockName = "aesdec256kl";
16696       break;
16697     }
16698 
16699     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
16700 
16701     BasicBlock *NoError =
16702         createBasicBlock(BlockName + "_no_error", this->CurFn);
16703     BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
16704     BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
16705 
16706     Value *Ret = Builder.CreateExtractValue(Call, 0);
16707     Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
16708     Value *Out = Builder.CreateExtractValue(Call, 1);
16709     Builder.CreateCondBr(Succ, NoError, Error);
16710 
16711     Builder.SetInsertPoint(NoError);
16712     Builder.CreateDefaultAlignedStore(Out, Ops[0]);
16713     Builder.CreateBr(End);
16714 
16715     Builder.SetInsertPoint(Error);
16716     Constant *Zero = llvm::Constant::getNullValue(Out->getType());
16717     Builder.CreateDefaultAlignedStore(Zero, Ops[0]);
16718     Builder.CreateBr(End);
16719 
16720     Builder.SetInsertPoint(End);
16721     return Builder.CreateExtractValue(Call, 0);
16722   }
16723   case X86::BI__builtin_ia32_aesencwide128kl_u8:
16724   case X86::BI__builtin_ia32_aesdecwide128kl_u8:
16725   case X86::BI__builtin_ia32_aesencwide256kl_u8:
16726   case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
16727     Intrinsic::ID IID;
16728     StringRef BlockName;
16729     switch (BuiltinID) {
16730     case X86::BI__builtin_ia32_aesencwide128kl_u8:
16731       IID = Intrinsic::x86_aesencwide128kl;
16732       BlockName = "aesencwide128kl";
16733       break;
16734     case X86::BI__builtin_ia32_aesdecwide128kl_u8:
16735       IID = Intrinsic::x86_aesdecwide128kl;
16736       BlockName = "aesdecwide128kl";
16737       break;
16738     case X86::BI__builtin_ia32_aesencwide256kl_u8:
16739       IID = Intrinsic::x86_aesencwide256kl;
16740       BlockName = "aesencwide256kl";
16741       break;
16742     case X86::BI__builtin_ia32_aesdecwide256kl_u8:
16743       IID = Intrinsic::x86_aesdecwide256kl;
16744       BlockName = "aesdecwide256kl";
16745       break;
16746     }
16747 
16748     llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
16749     Value *InOps[9];
16750     InOps[0] = Ops[2];
16751     for (int i = 0; i != 8; ++i) {
16752       Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i);
16753       InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
16754     }
16755 
16756     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
16757 
16758     BasicBlock *NoError =
16759         createBasicBlock(BlockName + "_no_error", this->CurFn);
16760     BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
16761     BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
16762 
16763     Value *Ret = Builder.CreateExtractValue(Call, 0);
16764     Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
16765     Builder.CreateCondBr(Succ, NoError, Error);
16766 
16767     Builder.SetInsertPoint(NoError);
16768     for (int i = 0; i != 8; ++i) {
16769       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
16770       Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i);
16771       Builder.CreateAlignedStore(Extract, Ptr, Align(16));
16772     }
16773     Builder.CreateBr(End);
16774 
16775     Builder.SetInsertPoint(Error);
16776     for (int i = 0; i != 8; ++i) {
16777       Value *Out = Builder.CreateExtractValue(Call, i + 1);
16778       Constant *Zero = llvm::Constant::getNullValue(Out->getType());
16779       Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i);
16780       Builder.CreateAlignedStore(Zero, Ptr, Align(16));
16781     }
16782     Builder.CreateBr(End);
16783 
16784     Builder.SetInsertPoint(End);
16785     return Builder.CreateExtractValue(Call, 0);
16786   }
16787   case X86::BI__builtin_ia32_vfcmaddcph512_mask:
16788     IsConjFMA = true;
16789     [[fallthrough]];
16790   case X86::BI__builtin_ia32_vfmaddcph512_mask: {
16791     Intrinsic::ID IID = IsConjFMA
16792                             ? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512
16793                             : Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512;
16794     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16795     return EmitX86Select(*this, Ops[3], Call, Ops[0]);
16796   }
16797   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
16798     IsConjFMA = true;
16799     [[fallthrough]];
16800   case X86::BI__builtin_ia32_vfmaddcsh_round_mask: {
16801     Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
16802                                   : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
16803     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16804     Value *And = Builder.CreateAnd(Ops[3], llvm::ConstantInt::get(Int8Ty, 1));
16805     return EmitX86Select(*this, And, Call, Ops[0]);
16806   }
16807   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
16808     IsConjFMA = true;
16809     [[fallthrough]];
16810   case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: {
16811     Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
16812                                   : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
16813     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16814     static constexpr int Mask[] = {0, 5, 6, 7};
16815     return Builder.CreateShuffleVector(Call, Ops[2], Mask);
16816   }
16817   case X86::BI__builtin_ia32_prefetchi:
16818     return Builder.CreateCall(
16819         CGM.getIntrinsic(Intrinsic::prefetch, Ops[0]->getType()),
16820         {Ops[0], llvm::ConstantInt::get(Int32Ty, 0), Ops[1],
16821          llvm::ConstantInt::get(Int32Ty, 0)});
16822   }
16823 }
16824 
EmitPPCBuiltinExpr(unsigned BuiltinID,const CallExpr * E)16825 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
16826                                            const CallExpr *E) {
16827   // Do not emit the builtin arguments in the arguments of a function call,
16828   // because the evaluation order of function arguments is not specified in C++.
16829   // This is important when testing to ensure the arguments are emitted in the
16830   // same order every time. Eg:
16831   // Instead of:
16832   //   return Builder.CreateFDiv(EmitScalarExpr(E->getArg(0)),
16833   //                             EmitScalarExpr(E->getArg(1)), "swdiv");
16834   // Use:
16835   //   Value *Op0 = EmitScalarExpr(E->getArg(0));
16836   //   Value *Op1 = EmitScalarExpr(E->getArg(1));
16837   //   return Builder.CreateFDiv(Op0, Op1, "swdiv")
16838 
16839   Intrinsic::ID ID = Intrinsic::not_intrinsic;
16840 
16841 #include "llvm/TargetParser/PPCTargetParser.def"
16842   auto GenAIXPPCBuiltinCpuExpr = [&](unsigned SupportMethod, unsigned FieldIdx,
16843                                      unsigned Mask, CmpInst::Predicate CompOp,
16844                                      unsigned OpValue) -> Value * {
16845     if (SupportMethod == BUILTIN_PPC_FALSE)
16846       return llvm::ConstantInt::getFalse(ConvertType(E->getType()));
16847 
16848     if (SupportMethod == BUILTIN_PPC_TRUE)
16849       return llvm::ConstantInt::getTrue(ConvertType(E->getType()));
16850 
16851     assert(SupportMethod <= SYS_CALL && "Invalid value for SupportMethod.");
16852 
16853     llvm::Value *FieldValue = nullptr;
16854     if (SupportMethod == USE_SYS_CONF) {
16855       llvm::Type *STy = llvm::StructType::get(PPC_SYSTEMCONFIG_TYPE);
16856       llvm::Constant *SysConf =
16857           CGM.CreateRuntimeVariable(STy, "_system_configuration");
16858 
16859       // Grab the appropriate field from _system_configuration.
16860       llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
16861                              ConstantInt::get(Int32Ty, FieldIdx)};
16862 
16863       FieldValue = Builder.CreateInBoundsGEP(STy, SysConf, Idxs);
16864       FieldValue = Builder.CreateAlignedLoad(Int32Ty, FieldValue,
16865                                              CharUnits::fromQuantity(4));
16866     } else if (SupportMethod == SYS_CALL) {
16867       llvm::FunctionType *FTy =
16868           llvm::FunctionType::get(Int64Ty, Int32Ty, false);
16869       llvm::FunctionCallee Func =
16870           CGM.CreateRuntimeFunction(FTy, "getsystemcfg");
16871 
16872       FieldValue =
16873           Builder.CreateCall(Func, {ConstantInt::get(Int32Ty, FieldIdx)});
16874     }
16875     assert(FieldValue &&
16876            "SupportMethod value is not defined in PPCTargetParser.def.");
16877 
16878     if (Mask)
16879       FieldValue = Builder.CreateAnd(FieldValue, Mask);
16880 
16881     llvm::Type *ValueType = FieldValue->getType();
16882     bool IsValueType64Bit = ValueType->isIntegerTy(64);
16883     assert(
16884         (IsValueType64Bit || ValueType->isIntegerTy(32)) &&
16885         "Only 32/64-bit integers are supported in GenAIXPPCBuiltinCpuExpr().");
16886 
16887     return Builder.CreateICmp(
16888         CompOp, FieldValue,
16889         ConstantInt::get(IsValueType64Bit ? Int64Ty : Int32Ty, OpValue));
16890   };
16891 
16892   switch (BuiltinID) {
16893   default: return nullptr;
16894 
16895   case Builtin::BI__builtin_cpu_is: {
16896     const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
16897     StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
16898     llvm::Triple Triple = getTarget().getTriple();
16899 
16900     unsigned LinuxSupportMethod, LinuxIDValue, AIXSupportMethod, AIXIDValue;
16901     typedef std::tuple<unsigned, unsigned, unsigned, unsigned> CPUInfo;
16902 
16903     std::tie(LinuxSupportMethod, LinuxIDValue, AIXSupportMethod, AIXIDValue) =
16904         static_cast<CPUInfo>(StringSwitch<CPUInfo>(CPUStr)
16905 #define PPC_CPU(NAME, Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD,       \
16906                 AIXID)                                                         \
16907   .Case(NAME, {Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, AIXID})
16908 #include "llvm/TargetParser/PPCTargetParser.def"
16909                                  .Default({BUILTIN_PPC_UNSUPPORTED, 0,
16910                                            BUILTIN_PPC_UNSUPPORTED, 0}));
16911 
16912     if (Triple.isOSAIX()) {
16913       assert((AIXSupportMethod != BUILTIN_PPC_UNSUPPORTED) &&
16914              "Invalid CPU name. Missed by SemaChecking?");
16915       return GenAIXPPCBuiltinCpuExpr(AIXSupportMethod, AIX_SYSCON_IMPL_IDX, 0,
16916                                      ICmpInst::ICMP_EQ, AIXIDValue);
16917     }
16918 
16919     assert(Triple.isOSLinux() &&
16920            "__builtin_cpu_is() is only supported for AIX and Linux.");
16921 
16922     assert((LinuxSupportMethod != BUILTIN_PPC_UNSUPPORTED) &&
16923            "Invalid CPU name. Missed by SemaChecking?");
16924 
16925     if (LinuxSupportMethod == BUILTIN_PPC_FALSE)
16926       return llvm::ConstantInt::getFalse(ConvertType(E->getType()));
16927 
16928     Value *Op0 = llvm::ConstantInt::get(Int32Ty, PPC_FAWORD_CPUID);
16929     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_fixed_addr_ld);
16930     Value *TheCall = Builder.CreateCall(F, {Op0}, "cpu_is");
16931     return Builder.CreateICmpEQ(TheCall,
16932                                 llvm::ConstantInt::get(Int32Ty, LinuxIDValue));
16933   }
16934   case Builtin::BI__builtin_cpu_supports: {
16935     llvm::Triple Triple = getTarget().getTriple();
16936     const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
16937     StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
16938     if (Triple.isOSAIX()) {
16939       unsigned SupportMethod, FieldIdx, Mask, Value;
16940       CmpInst::Predicate CompOp;
16941       typedef std::tuple<unsigned, unsigned, unsigned, CmpInst::Predicate,
16942                          unsigned>
16943           CPUSupportType;
16944       std::tie(SupportMethod, FieldIdx, Mask, CompOp, Value) =
16945           static_cast<CPUSupportType>(StringSwitch<CPUSupportType>(CPUStr)
16946 #define PPC_AIX_FEATURE(NAME, DESC, SUPPORT_METHOD, INDEX, MASK, COMP_OP,      \
16947                         VALUE)                                                 \
16948   .Case(NAME, {SUPPORT_METHOD, INDEX, MASK, COMP_OP, VALUE})
16949 #include "llvm/TargetParser/PPCTargetParser.def"
16950                                           .Default({BUILTIN_PPC_FALSE, 0, 0,
16951                                                     CmpInst::Predicate(), 0}));
16952       return GenAIXPPCBuiltinCpuExpr(SupportMethod, FieldIdx, Mask, CompOp,
16953                                      Value);
16954     }
16955 
16956     assert(Triple.isOSLinux() &&
16957            "__builtin_cpu_supports() is only supported for AIX and Linux.");
16958     unsigned FeatureWord;
16959     unsigned BitMask;
16960     std::tie(FeatureWord, BitMask) =
16961         StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
16962 #define PPC_LNX_FEATURE(Name, Description, EnumName, Bitmask, FA_WORD)         \
16963   .Case(Name, {FA_WORD, Bitmask})
16964 #include "llvm/TargetParser/PPCTargetParser.def"
16965             .Default({0, 0});
16966     if (!BitMask)
16967       return Builder.getFalse();
16968     Value *Op0 = llvm::ConstantInt::get(Int32Ty, FeatureWord);
16969     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_fixed_addr_ld);
16970     Value *TheCall = Builder.CreateCall(F, {Op0}, "cpu_supports");
16971     Value *Mask =
16972         Builder.CreateAnd(TheCall, llvm::ConstantInt::get(Int32Ty, BitMask));
16973     return Builder.CreateICmpNE(Mask, llvm::Constant::getNullValue(Int32Ty));
16974 #undef PPC_FAWORD_HWCAP
16975 #undef PPC_FAWORD_HWCAP2
16976 #undef PPC_FAWORD_CPUID
16977   }
16978 
16979   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
16980   // call __builtin_readcyclecounter.
16981   case PPC::BI__builtin_ppc_get_timebase:
16982     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
16983 
16984   // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
16985   case PPC::BI__builtin_altivec_lvx:
16986   case PPC::BI__builtin_altivec_lvxl:
16987   case PPC::BI__builtin_altivec_lvebx:
16988   case PPC::BI__builtin_altivec_lvehx:
16989   case PPC::BI__builtin_altivec_lvewx:
16990   case PPC::BI__builtin_altivec_lvsl:
16991   case PPC::BI__builtin_altivec_lvsr:
16992   case PPC::BI__builtin_vsx_lxvd2x:
16993   case PPC::BI__builtin_vsx_lxvw4x:
16994   case PPC::BI__builtin_vsx_lxvd2x_be:
16995   case PPC::BI__builtin_vsx_lxvw4x_be:
16996   case PPC::BI__builtin_vsx_lxvl:
16997   case PPC::BI__builtin_vsx_lxvll:
16998   {
16999     SmallVector<Value *, 2> Ops;
17000     Ops.push_back(EmitScalarExpr(E->getArg(0)));
17001     Ops.push_back(EmitScalarExpr(E->getArg(1)));
17002     if (!(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
17003           BuiltinID == PPC::BI__builtin_vsx_lxvll)) {
17004       Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
17005       Ops.pop_back();
17006     }
17007 
17008     switch (BuiltinID) {
17009     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
17010     case PPC::BI__builtin_altivec_lvx:
17011       ID = Intrinsic::ppc_altivec_lvx;
17012       break;
17013     case PPC::BI__builtin_altivec_lvxl:
17014       ID = Intrinsic::ppc_altivec_lvxl;
17015       break;
17016     case PPC::BI__builtin_altivec_lvebx:
17017       ID = Intrinsic::ppc_altivec_lvebx;
17018       break;
17019     case PPC::BI__builtin_altivec_lvehx:
17020       ID = Intrinsic::ppc_altivec_lvehx;
17021       break;
17022     case PPC::BI__builtin_altivec_lvewx:
17023       ID = Intrinsic::ppc_altivec_lvewx;
17024       break;
17025     case PPC::BI__builtin_altivec_lvsl:
17026       ID = Intrinsic::ppc_altivec_lvsl;
17027       break;
17028     case PPC::BI__builtin_altivec_lvsr:
17029       ID = Intrinsic::ppc_altivec_lvsr;
17030       break;
17031     case PPC::BI__builtin_vsx_lxvd2x:
17032       ID = Intrinsic::ppc_vsx_lxvd2x;
17033       break;
17034     case PPC::BI__builtin_vsx_lxvw4x:
17035       ID = Intrinsic::ppc_vsx_lxvw4x;
17036       break;
17037     case PPC::BI__builtin_vsx_lxvd2x_be:
17038       ID = Intrinsic::ppc_vsx_lxvd2x_be;
17039       break;
17040     case PPC::BI__builtin_vsx_lxvw4x_be:
17041       ID = Intrinsic::ppc_vsx_lxvw4x_be;
17042       break;
17043     case PPC::BI__builtin_vsx_lxvl:
17044       ID = Intrinsic::ppc_vsx_lxvl;
17045       break;
17046     case PPC::BI__builtin_vsx_lxvll:
17047       ID = Intrinsic::ppc_vsx_lxvll;
17048       break;
17049     }
17050     llvm::Function *F = CGM.getIntrinsic(ID);
17051     return Builder.CreateCall(F, Ops, "");
17052   }
17053 
17054   // vec_st, vec_xst_be
17055   case PPC::BI__builtin_altivec_stvx:
17056   case PPC::BI__builtin_altivec_stvxl:
17057   case PPC::BI__builtin_altivec_stvebx:
17058   case PPC::BI__builtin_altivec_stvehx:
17059   case PPC::BI__builtin_altivec_stvewx:
17060   case PPC::BI__builtin_vsx_stxvd2x:
17061   case PPC::BI__builtin_vsx_stxvw4x:
17062   case PPC::BI__builtin_vsx_stxvd2x_be:
17063   case PPC::BI__builtin_vsx_stxvw4x_be:
17064   case PPC::BI__builtin_vsx_stxvl:
17065   case PPC::BI__builtin_vsx_stxvll:
17066   {
17067     SmallVector<Value *, 3> Ops;
17068     Ops.push_back(EmitScalarExpr(E->getArg(0)));
17069     Ops.push_back(EmitScalarExpr(E->getArg(1)));
17070     Ops.push_back(EmitScalarExpr(E->getArg(2)));
17071     if (!(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
17072           BuiltinID == PPC::BI__builtin_vsx_stxvll)) {
17073       Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
17074       Ops.pop_back();
17075     }
17076 
17077     switch (BuiltinID) {
17078     default: llvm_unreachable("Unsupported st intrinsic!");
17079     case PPC::BI__builtin_altivec_stvx:
17080       ID = Intrinsic::ppc_altivec_stvx;
17081       break;
17082     case PPC::BI__builtin_altivec_stvxl:
17083       ID = Intrinsic::ppc_altivec_stvxl;
17084       break;
17085     case PPC::BI__builtin_altivec_stvebx:
17086       ID = Intrinsic::ppc_altivec_stvebx;
17087       break;
17088     case PPC::BI__builtin_altivec_stvehx:
17089       ID = Intrinsic::ppc_altivec_stvehx;
17090       break;
17091     case PPC::BI__builtin_altivec_stvewx:
17092       ID = Intrinsic::ppc_altivec_stvewx;
17093       break;
17094     case PPC::BI__builtin_vsx_stxvd2x:
17095       ID = Intrinsic::ppc_vsx_stxvd2x;
17096       break;
17097     case PPC::BI__builtin_vsx_stxvw4x:
17098       ID = Intrinsic::ppc_vsx_stxvw4x;
17099       break;
17100     case PPC::BI__builtin_vsx_stxvd2x_be:
17101       ID = Intrinsic::ppc_vsx_stxvd2x_be;
17102       break;
17103     case PPC::BI__builtin_vsx_stxvw4x_be:
17104       ID = Intrinsic::ppc_vsx_stxvw4x_be;
17105       break;
17106     case PPC::BI__builtin_vsx_stxvl:
17107       ID = Intrinsic::ppc_vsx_stxvl;
17108       break;
17109     case PPC::BI__builtin_vsx_stxvll:
17110       ID = Intrinsic::ppc_vsx_stxvll;
17111       break;
17112     }
17113     llvm::Function *F = CGM.getIntrinsic(ID);
17114     return Builder.CreateCall(F, Ops, "");
17115   }
17116   case PPC::BI__builtin_vsx_ldrmb: {
17117     // Essentially boils down to performing an unaligned VMX load sequence so
17118     // as to avoid crossing a page boundary and then shuffling the elements
17119     // into the right side of the vector register.
17120     Value *Op0 = EmitScalarExpr(E->getArg(0));
17121     Value *Op1 = EmitScalarExpr(E->getArg(1));
17122     int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
17123     llvm::Type *ResTy = ConvertType(E->getType());
17124     bool IsLE = getTarget().isLittleEndian();
17125 
17126     // If the user wants the entire vector, just load the entire vector.
17127     if (NumBytes == 16) {
17128       Value *LD =
17129           Builder.CreateLoad(Address(Op0, ResTy, CharUnits::fromQuantity(1)));
17130       if (!IsLE)
17131         return LD;
17132 
17133       // Reverse the bytes on LE.
17134       SmallVector<int, 16> RevMask;
17135       for (int Idx = 0; Idx < 16; Idx++)
17136         RevMask.push_back(15 - Idx);
17137       return Builder.CreateShuffleVector(LD, LD, RevMask);
17138     }
17139 
17140     llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
17141     llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
17142                                                 : Intrinsic::ppc_altivec_lvsl);
17143     llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
17144     Value *HiMem = Builder.CreateGEP(
17145         Int8Ty, Op0, ConstantInt::get(Op1->getType(), NumBytes - 1));
17146     Value *LoLd = Builder.CreateCall(Lvx, Op0, "ld.lo");
17147     Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
17148     Value *Mask1 = Builder.CreateCall(Lvs, Op0, "mask1");
17149 
17150     Op0 = IsLE ? HiLd : LoLd;
17151     Op1 = IsLE ? LoLd : HiLd;
17152     Value *AllElts = Builder.CreateCall(Vperm, {Op0, Op1, Mask1}, "shuffle1");
17153     Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
17154 
17155     if (IsLE) {
17156       SmallVector<int, 16> Consts;
17157       for (int Idx = 0; Idx < 16; Idx++) {
17158         int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
17159                                             : 16 - (NumBytes - Idx);
17160         Consts.push_back(Val);
17161       }
17162       return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
17163                                          Zero, Consts);
17164     }
17165     SmallVector<Constant *, 16> Consts;
17166     for (int Idx = 0; Idx < 16; Idx++)
17167       Consts.push_back(Builder.getInt8(NumBytes + Idx));
17168     Value *Mask2 = ConstantVector::get(Consts);
17169     return Builder.CreateBitCast(
17170         Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
17171   }
17172   case PPC::BI__builtin_vsx_strmb: {
17173     Value *Op0 = EmitScalarExpr(E->getArg(0));
17174     Value *Op1 = EmitScalarExpr(E->getArg(1));
17175     Value *Op2 = EmitScalarExpr(E->getArg(2));
17176     int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
17177     bool IsLE = getTarget().isLittleEndian();
17178     auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
17179       // Storing the whole vector, simply store it on BE and reverse bytes and
17180       // store on LE.
17181       if (Width == 16) {
17182         Value *StVec = Op2;
17183         if (IsLE) {
17184           SmallVector<int, 16> RevMask;
17185           for (int Idx = 0; Idx < 16; Idx++)
17186             RevMask.push_back(15 - Idx);
17187           StVec = Builder.CreateShuffleVector(Op2, Op2, RevMask);
17188         }
17189         return Builder.CreateStore(
17190             StVec, Address(Op0, Op2->getType(), CharUnits::fromQuantity(1)));
17191       }
17192       auto *ConvTy = Int64Ty;
17193       unsigned NumElts = 0;
17194       switch (Width) {
17195       default:
17196         llvm_unreachable("width for stores must be a power of 2");
17197       case 8:
17198         ConvTy = Int64Ty;
17199         NumElts = 2;
17200         break;
17201       case 4:
17202         ConvTy = Int32Ty;
17203         NumElts = 4;
17204         break;
17205       case 2:
17206         ConvTy = Int16Ty;
17207         NumElts = 8;
17208         break;
17209       case 1:
17210         ConvTy = Int8Ty;
17211         NumElts = 16;
17212         break;
17213       }
17214       Value *Vec = Builder.CreateBitCast(
17215           Op2, llvm::FixedVectorType::get(ConvTy, NumElts));
17216       Value *Ptr =
17217           Builder.CreateGEP(Int8Ty, Op0, ConstantInt::get(Int64Ty, Offset));
17218       Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
17219       if (IsLE && Width > 1) {
17220         Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
17221         Elt = Builder.CreateCall(F, Elt);
17222       }
17223       return Builder.CreateStore(
17224           Elt, Address(Ptr, ConvTy, CharUnits::fromQuantity(1)));
17225     };
17226     unsigned Stored = 0;
17227     unsigned RemainingBytes = NumBytes;
17228     Value *Result;
17229     if (NumBytes == 16)
17230       return StoreSubVec(16, 0, 0);
17231     if (NumBytes >= 8) {
17232       Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
17233       RemainingBytes -= 8;
17234       Stored += 8;
17235     }
17236     if (RemainingBytes >= 4) {
17237       Result = StoreSubVec(4, NumBytes - Stored - 4,
17238                            IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
17239       RemainingBytes -= 4;
17240       Stored += 4;
17241     }
17242     if (RemainingBytes >= 2) {
17243       Result = StoreSubVec(2, NumBytes - Stored - 2,
17244                            IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
17245       RemainingBytes -= 2;
17246       Stored += 2;
17247     }
17248     if (RemainingBytes)
17249       Result =
17250           StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
17251     return Result;
17252   }
17253   // Square root
17254   case PPC::BI__builtin_vsx_xvsqrtsp:
17255   case PPC::BI__builtin_vsx_xvsqrtdp: {
17256     llvm::Type *ResultType = ConvertType(E->getType());
17257     Value *X = EmitScalarExpr(E->getArg(0));
17258     if (Builder.getIsFPConstrained()) {
17259       llvm::Function *F = CGM.getIntrinsic(
17260           Intrinsic::experimental_constrained_sqrt, ResultType);
17261       return Builder.CreateConstrainedFPCall(F, X);
17262     } else {
17263       llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
17264       return Builder.CreateCall(F, X);
17265     }
17266   }
17267   // Count leading zeros
17268   case PPC::BI__builtin_altivec_vclzb:
17269   case PPC::BI__builtin_altivec_vclzh:
17270   case PPC::BI__builtin_altivec_vclzw:
17271   case PPC::BI__builtin_altivec_vclzd: {
17272     llvm::Type *ResultType = ConvertType(E->getType());
17273     Value *X = EmitScalarExpr(E->getArg(0));
17274     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
17275     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
17276     return Builder.CreateCall(F, {X, Undef});
17277   }
17278   case PPC::BI__builtin_altivec_vctzb:
17279   case PPC::BI__builtin_altivec_vctzh:
17280   case PPC::BI__builtin_altivec_vctzw:
17281   case PPC::BI__builtin_altivec_vctzd: {
17282     llvm::Type *ResultType = ConvertType(E->getType());
17283     Value *X = EmitScalarExpr(E->getArg(0));
17284     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
17285     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
17286     return Builder.CreateCall(F, {X, Undef});
17287   }
17288   case PPC::BI__builtin_altivec_vinsd:
17289   case PPC::BI__builtin_altivec_vinsw:
17290   case PPC::BI__builtin_altivec_vinsd_elt:
17291   case PPC::BI__builtin_altivec_vinsw_elt: {
17292     llvm::Type *ResultType = ConvertType(E->getType());
17293     Value *Op0 = EmitScalarExpr(E->getArg(0));
17294     Value *Op1 = EmitScalarExpr(E->getArg(1));
17295     Value *Op2 = EmitScalarExpr(E->getArg(2));
17296 
17297     bool IsUnaligned = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
17298                         BuiltinID == PPC::BI__builtin_altivec_vinsd);
17299 
17300     bool Is32bit = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
17301                     BuiltinID == PPC::BI__builtin_altivec_vinsw_elt);
17302 
17303     // The third argument must be a compile time constant.
17304     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17305     assert(ArgCI &&
17306            "Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
17307 
17308     // Valid value for the third argument is dependent on the input type and
17309     // builtin called.
17310     int ValidMaxValue = 0;
17311     if (IsUnaligned)
17312       ValidMaxValue = (Is32bit) ? 12 : 8;
17313     else
17314       ValidMaxValue = (Is32bit) ? 3 : 1;
17315 
17316     // Get value of third argument.
17317     int64_t ConstArg = ArgCI->getSExtValue();
17318 
17319     // Compose range checking error message.
17320     std::string RangeErrMsg = IsUnaligned ? "byte" : "element";
17321     RangeErrMsg += " number " + llvm::to_string(ConstArg);
17322     RangeErrMsg += " is outside of the valid range [0, ";
17323     RangeErrMsg += llvm::to_string(ValidMaxValue) + "]";
17324 
17325     // Issue error if third argument is not within the valid range.
17326     if (ConstArg < 0 || ConstArg > ValidMaxValue)
17327       CGM.Error(E->getExprLoc(), RangeErrMsg);
17328 
17329     // Input to vec_replace_elt is an element index, convert to byte index.
17330     if (!IsUnaligned) {
17331       ConstArg *= Is32bit ? 4 : 8;
17332       // Fix the constant according to endianess.
17333       if (getTarget().isLittleEndian())
17334         ConstArg = (Is32bit ? 12 : 8) - ConstArg;
17335     }
17336 
17337     ID = Is32bit ? Intrinsic::ppc_altivec_vinsw : Intrinsic::ppc_altivec_vinsd;
17338     Op2 = ConstantInt::getSigned(Int32Ty, ConstArg);
17339     // Casting input to vector int as per intrinsic definition.
17340     Op0 =
17341         Is32bit
17342             ? Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4))
17343             : Builder.CreateBitCast(Op0,
17344                                     llvm::FixedVectorType::get(Int64Ty, 2));
17345     return Builder.CreateBitCast(
17346         Builder.CreateCall(CGM.getIntrinsic(ID), {Op0, Op1, Op2}), ResultType);
17347   }
17348   case PPC::BI__builtin_altivec_vpopcntb:
17349   case PPC::BI__builtin_altivec_vpopcnth:
17350   case PPC::BI__builtin_altivec_vpopcntw:
17351   case PPC::BI__builtin_altivec_vpopcntd: {
17352     llvm::Type *ResultType = ConvertType(E->getType());
17353     Value *X = EmitScalarExpr(E->getArg(0));
17354     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
17355     return Builder.CreateCall(F, X);
17356   }
17357   case PPC::BI__builtin_altivec_vadduqm:
17358   case PPC::BI__builtin_altivec_vsubuqm: {
17359     Value *Op0 = EmitScalarExpr(E->getArg(0));
17360     Value *Op1 = EmitScalarExpr(E->getArg(1));
17361     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
17362     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int128Ty, 1));
17363     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int128Ty, 1));
17364     if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
17365       return Builder.CreateAdd(Op0, Op1, "vadduqm");
17366     else
17367       return Builder.CreateSub(Op0, Op1, "vsubuqm");
17368   }
17369   case PPC::BI__builtin_altivec_vaddcuq_c:
17370   case PPC::BI__builtin_altivec_vsubcuq_c: {
17371     SmallVector<Value *, 2> Ops;
17372     Value *Op0 = EmitScalarExpr(E->getArg(0));
17373     Value *Op1 = EmitScalarExpr(E->getArg(1));
17374     llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
17375         llvm::IntegerType::get(getLLVMContext(), 128), 1);
17376     Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
17377     Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
17378     ID = (BuiltinID == PPC::BI__builtin_altivec_vaddcuq_c)
17379              ? Intrinsic::ppc_altivec_vaddcuq
17380              : Intrinsic::ppc_altivec_vsubcuq;
17381     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
17382   }
17383   case PPC::BI__builtin_altivec_vaddeuqm_c:
17384   case PPC::BI__builtin_altivec_vaddecuq_c:
17385   case PPC::BI__builtin_altivec_vsubeuqm_c:
17386   case PPC::BI__builtin_altivec_vsubecuq_c: {
17387     SmallVector<Value *, 3> Ops;
17388     Value *Op0 = EmitScalarExpr(E->getArg(0));
17389     Value *Op1 = EmitScalarExpr(E->getArg(1));
17390     Value *Op2 = EmitScalarExpr(E->getArg(2));
17391     llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
17392         llvm::IntegerType::get(getLLVMContext(), 128), 1);
17393     Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
17394     Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
17395     Ops.push_back(Builder.CreateBitCast(Op2, V1I128Ty));
17396     switch (BuiltinID) {
17397     default:
17398       llvm_unreachable("Unsupported intrinsic!");
17399     case PPC::BI__builtin_altivec_vaddeuqm_c:
17400       ID = Intrinsic::ppc_altivec_vaddeuqm;
17401       break;
17402     case PPC::BI__builtin_altivec_vaddecuq_c:
17403       ID = Intrinsic::ppc_altivec_vaddecuq;
17404       break;
17405     case PPC::BI__builtin_altivec_vsubeuqm_c:
17406       ID = Intrinsic::ppc_altivec_vsubeuqm;
17407       break;
17408     case PPC::BI__builtin_altivec_vsubecuq_c:
17409       ID = Intrinsic::ppc_altivec_vsubecuq;
17410       break;
17411     }
17412     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
17413   }
17414   case PPC::BI__builtin_ppc_rldimi:
17415   case PPC::BI__builtin_ppc_rlwimi: {
17416     Value *Op0 = EmitScalarExpr(E->getArg(0));
17417     Value *Op1 = EmitScalarExpr(E->getArg(1));
17418     Value *Op2 = EmitScalarExpr(E->getArg(2));
17419     Value *Op3 = EmitScalarExpr(E->getArg(3));
17420     // rldimi is 64-bit instruction, expand the intrinsic before isel to
17421     // leverage peephole and avoid legalization efforts.
17422     if (BuiltinID == PPC::BI__builtin_ppc_rldimi &&
17423         !getTarget().getTriple().isPPC64()) {
17424       Function *F = CGM.getIntrinsic(Intrinsic::fshl, Op0->getType());
17425       Op2 = Builder.CreateZExt(Op2, Int64Ty);
17426       Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op2});
17427       return Builder.CreateOr(Builder.CreateAnd(Shift, Op3),
17428                               Builder.CreateAnd(Op1, Builder.CreateNot(Op3)));
17429     }
17430     return Builder.CreateCall(
17431         CGM.getIntrinsic(BuiltinID == PPC::BI__builtin_ppc_rldimi
17432                              ? Intrinsic::ppc_rldimi
17433                              : Intrinsic::ppc_rlwimi),
17434         {Op0, Op1, Op2, Op3});
17435   }
17436   case PPC::BI__builtin_ppc_rlwnm: {
17437     Value *Op0 = EmitScalarExpr(E->getArg(0));
17438     Value *Op1 = EmitScalarExpr(E->getArg(1));
17439     Value *Op2 = EmitScalarExpr(E->getArg(2));
17440     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_rlwnm),
17441                               {Op0, Op1, Op2});
17442   }
17443   case PPC::BI__builtin_ppc_poppar4:
17444   case PPC::BI__builtin_ppc_poppar8: {
17445     Value *Op0 = EmitScalarExpr(E->getArg(0));
17446     llvm::Type *ArgType = Op0->getType();
17447     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
17448     Value *Tmp = Builder.CreateCall(F, Op0);
17449 
17450     llvm::Type *ResultType = ConvertType(E->getType());
17451     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
17452     if (Result->getType() != ResultType)
17453       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
17454                                      "cast");
17455     return Result;
17456   }
17457   case PPC::BI__builtin_ppc_cmpb: {
17458     Value *Op0 = EmitScalarExpr(E->getArg(0));
17459     Value *Op1 = EmitScalarExpr(E->getArg(1));
17460     if (getTarget().getTriple().isPPC64()) {
17461       Function *F =
17462           CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
17463       return Builder.CreateCall(F, {Op0, Op1}, "cmpb");
17464     }
17465     // For 32 bit, emit the code as below:
17466     // %conv = trunc i64 %a to i32
17467     // %conv1 = trunc i64 %b to i32
17468     // %shr = lshr i64 %a, 32
17469     // %conv2 = trunc i64 %shr to i32
17470     // %shr3 = lshr i64 %b, 32
17471     // %conv4 = trunc i64 %shr3 to i32
17472     // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
17473     // %conv5 = zext i32 %0 to i64
17474     // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
17475     // %conv614 = zext i32 %1 to i64
17476     // %shl = shl nuw i64 %conv614, 32
17477     // %or = or i64 %shl, %conv5
17478     // ret i64 %or
17479     Function *F =
17480         CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
17481     Value *ArgOneLo = Builder.CreateTrunc(Op0, Int32Ty);
17482     Value *ArgTwoLo = Builder.CreateTrunc(Op1, Int32Ty);
17483     Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
17484     Value *ArgOneHi =
17485         Builder.CreateTrunc(Builder.CreateLShr(Op0, ShiftAmt), Int32Ty);
17486     Value *ArgTwoHi =
17487         Builder.CreateTrunc(Builder.CreateLShr(Op1, ShiftAmt), Int32Ty);
17488     Value *ResLo = Builder.CreateZExt(
17489         Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
17490     Value *ResHiShift = Builder.CreateZExt(
17491         Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
17492     Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
17493     return Builder.CreateOr(ResLo, ResHi);
17494   }
17495   // Copy sign
17496   case PPC::BI__builtin_vsx_xvcpsgnsp:
17497   case PPC::BI__builtin_vsx_xvcpsgndp: {
17498     llvm::Type *ResultType = ConvertType(E->getType());
17499     Value *X = EmitScalarExpr(E->getArg(0));
17500     Value *Y = EmitScalarExpr(E->getArg(1));
17501     ID = Intrinsic::copysign;
17502     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
17503     return Builder.CreateCall(F, {X, Y});
17504   }
17505   // Rounding/truncation
17506   case PPC::BI__builtin_vsx_xvrspip:
17507   case PPC::BI__builtin_vsx_xvrdpip:
17508   case PPC::BI__builtin_vsx_xvrdpim:
17509   case PPC::BI__builtin_vsx_xvrspim:
17510   case PPC::BI__builtin_vsx_xvrdpi:
17511   case PPC::BI__builtin_vsx_xvrspi:
17512   case PPC::BI__builtin_vsx_xvrdpic:
17513   case PPC::BI__builtin_vsx_xvrspic:
17514   case PPC::BI__builtin_vsx_xvrdpiz:
17515   case PPC::BI__builtin_vsx_xvrspiz: {
17516     llvm::Type *ResultType = ConvertType(E->getType());
17517     Value *X = EmitScalarExpr(E->getArg(0));
17518     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
17519         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
17520       ID = Builder.getIsFPConstrained()
17521                ? Intrinsic::experimental_constrained_floor
17522                : Intrinsic::floor;
17523     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
17524              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
17525       ID = Builder.getIsFPConstrained()
17526                ? Intrinsic::experimental_constrained_round
17527                : Intrinsic::round;
17528     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
17529              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
17530       ID = Builder.getIsFPConstrained()
17531                ? Intrinsic::experimental_constrained_rint
17532                : Intrinsic::rint;
17533     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
17534              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
17535       ID = Builder.getIsFPConstrained()
17536                ? Intrinsic::experimental_constrained_ceil
17537                : Intrinsic::ceil;
17538     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
17539              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
17540       ID = Builder.getIsFPConstrained()
17541                ? Intrinsic::experimental_constrained_trunc
17542                : Intrinsic::trunc;
17543     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
17544     return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
17545                                         : Builder.CreateCall(F, X);
17546   }
17547 
17548   // Absolute value
17549   case PPC::BI__builtin_vsx_xvabsdp:
17550   case PPC::BI__builtin_vsx_xvabssp: {
17551     llvm::Type *ResultType = ConvertType(E->getType());
17552     Value *X = EmitScalarExpr(E->getArg(0));
17553     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
17554     return Builder.CreateCall(F, X);
17555   }
17556 
17557   // Fastmath by default
17558   case PPC::BI__builtin_ppc_recipdivf:
17559   case PPC::BI__builtin_ppc_recipdivd:
17560   case PPC::BI__builtin_ppc_rsqrtf:
17561   case PPC::BI__builtin_ppc_rsqrtd: {
17562     FastMathFlags FMF = Builder.getFastMathFlags();
17563     Builder.getFastMathFlags().setFast();
17564     llvm::Type *ResultType = ConvertType(E->getType());
17565     Value *X = EmitScalarExpr(E->getArg(0));
17566 
17567     if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
17568         BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
17569       Value *Y = EmitScalarExpr(E->getArg(1));
17570       Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
17571       Builder.getFastMathFlags() &= (FMF);
17572       return FDiv;
17573     }
17574     auto *One = ConstantFP::get(ResultType, 1.0);
17575     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
17576     Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
17577     Builder.getFastMathFlags() &= (FMF);
17578     return FDiv;
17579   }
17580   case PPC::BI__builtin_ppc_alignx: {
17581     Value *Op0 = EmitScalarExpr(E->getArg(0));
17582     Value *Op1 = EmitScalarExpr(E->getArg(1));
17583     ConstantInt *AlignmentCI = cast<ConstantInt>(Op0);
17584     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
17585       AlignmentCI = ConstantInt::get(AlignmentCI->getIntegerType(),
17586                                      llvm::Value::MaximumAlignment);
17587 
17588     emitAlignmentAssumption(Op1, E->getArg(1),
17589                             /*The expr loc is sufficient.*/ SourceLocation(),
17590                             AlignmentCI, nullptr);
17591     return Op1;
17592   }
17593   case PPC::BI__builtin_ppc_rdlam: {
17594     Value *Op0 = EmitScalarExpr(E->getArg(0));
17595     Value *Op1 = EmitScalarExpr(E->getArg(1));
17596     Value *Op2 = EmitScalarExpr(E->getArg(2));
17597     llvm::Type *Ty = Op0->getType();
17598     Value *ShiftAmt = Builder.CreateIntCast(Op1, Ty, false);
17599     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
17600     Value *Rotate = Builder.CreateCall(F, {Op0, Op0, ShiftAmt});
17601     return Builder.CreateAnd(Rotate, Op2);
17602   }
17603   case PPC::BI__builtin_ppc_load2r: {
17604     Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r);
17605     Value *Op0 = EmitScalarExpr(E->getArg(0));
17606     Value *LoadIntrinsic = Builder.CreateCall(F, {Op0});
17607     return Builder.CreateTrunc(LoadIntrinsic, Int16Ty);
17608   }
17609   // FMA variations
17610   case PPC::BI__builtin_ppc_fnmsub:
17611   case PPC::BI__builtin_ppc_fnmsubs:
17612   case PPC::BI__builtin_vsx_xvmaddadp:
17613   case PPC::BI__builtin_vsx_xvmaddasp:
17614   case PPC::BI__builtin_vsx_xvnmaddadp:
17615   case PPC::BI__builtin_vsx_xvnmaddasp:
17616   case PPC::BI__builtin_vsx_xvmsubadp:
17617   case PPC::BI__builtin_vsx_xvmsubasp:
17618   case PPC::BI__builtin_vsx_xvnmsubadp:
17619   case PPC::BI__builtin_vsx_xvnmsubasp: {
17620     llvm::Type *ResultType = ConvertType(E->getType());
17621     Value *X = EmitScalarExpr(E->getArg(0));
17622     Value *Y = EmitScalarExpr(E->getArg(1));
17623     Value *Z = EmitScalarExpr(E->getArg(2));
17624     llvm::Function *F;
17625     if (Builder.getIsFPConstrained())
17626       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17627     else
17628       F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17629     switch (BuiltinID) {
17630       case PPC::BI__builtin_vsx_xvmaddadp:
17631       case PPC::BI__builtin_vsx_xvmaddasp:
17632         if (Builder.getIsFPConstrained())
17633           return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
17634         else
17635           return Builder.CreateCall(F, {X, Y, Z});
17636       case PPC::BI__builtin_vsx_xvnmaddadp:
17637       case PPC::BI__builtin_vsx_xvnmaddasp:
17638         if (Builder.getIsFPConstrained())
17639           return Builder.CreateFNeg(
17640               Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
17641         else
17642           return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
17643       case PPC::BI__builtin_vsx_xvmsubadp:
17644       case PPC::BI__builtin_vsx_xvmsubasp:
17645         if (Builder.getIsFPConstrained())
17646           return Builder.CreateConstrainedFPCall(
17647               F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17648         else
17649           return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17650       case PPC::BI__builtin_ppc_fnmsub:
17651       case PPC::BI__builtin_ppc_fnmsubs:
17652       case PPC::BI__builtin_vsx_xvnmsubadp:
17653       case PPC::BI__builtin_vsx_xvnmsubasp:
17654         if (Builder.getIsFPConstrained())
17655           return Builder.CreateFNeg(
17656               Builder.CreateConstrainedFPCall(
17657                   F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
17658               "neg");
17659         else
17660           return Builder.CreateCall(
17661               CGM.getIntrinsic(Intrinsic::ppc_fnmsub, ResultType), {X, Y, Z});
17662       }
17663     llvm_unreachable("Unknown FMA operation");
17664     return nullptr; // Suppress no-return warning
17665   }
17666 
17667   case PPC::BI__builtin_vsx_insertword: {
17668     Value *Op0 = EmitScalarExpr(E->getArg(0));
17669     Value *Op1 = EmitScalarExpr(E->getArg(1));
17670     Value *Op2 = EmitScalarExpr(E->getArg(2));
17671     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
17672 
17673     // Third argument is a compile time constant int. It must be clamped to
17674     // to the range [0, 12].
17675     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17676     assert(ArgCI &&
17677            "Third arg to xxinsertw intrinsic must be constant integer");
17678     const int64_t MaxIndex = 12;
17679     int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
17680 
17681     // The builtin semantics don't exactly match the xxinsertw instructions
17682     // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
17683     // word from the first argument, and inserts it in the second argument. The
17684     // instruction extracts the word from its second input register and inserts
17685     // it into its first input register, so swap the first and second arguments.
17686     std::swap(Op0, Op1);
17687 
17688     // Need to cast the second argument from a vector of unsigned int to a
17689     // vector of long long.
17690     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
17691 
17692     if (getTarget().isLittleEndian()) {
17693       // Reverse the double words in the vector we will extract from.
17694       Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
17695       Op0 = Builder.CreateShuffleVector(Op0, Op0, ArrayRef<int>{1, 0});
17696 
17697       // Reverse the index.
17698       Index = MaxIndex - Index;
17699     }
17700 
17701     // Intrinsic expects the first arg to be a vector of int.
17702     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
17703     Op2 = ConstantInt::getSigned(Int32Ty, Index);
17704     return Builder.CreateCall(F, {Op0, Op1, Op2});
17705   }
17706 
17707   case PPC::BI__builtin_vsx_extractuword: {
17708     Value *Op0 = EmitScalarExpr(E->getArg(0));
17709     Value *Op1 = EmitScalarExpr(E->getArg(1));
17710     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
17711 
17712     // Intrinsic expects the first argument to be a vector of doublewords.
17713     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
17714 
17715     // The second argument is a compile time constant int that needs to
17716     // be clamped to the range [0, 12].
17717     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op1);
17718     assert(ArgCI &&
17719            "Second Arg to xxextractuw intrinsic must be a constant integer!");
17720     const int64_t MaxIndex = 12;
17721     int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
17722 
17723     if (getTarget().isLittleEndian()) {
17724       // Reverse the index.
17725       Index = MaxIndex - Index;
17726       Op1 = ConstantInt::getSigned(Int32Ty, Index);
17727 
17728       // Emit the call, then reverse the double words of the results vector.
17729       Value *Call = Builder.CreateCall(F, {Op0, Op1});
17730 
17731       Value *ShuffleCall =
17732           Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
17733       return ShuffleCall;
17734     } else {
17735       Op1 = ConstantInt::getSigned(Int32Ty, Index);
17736       return Builder.CreateCall(F, {Op0, Op1});
17737     }
17738   }
17739 
17740   case PPC::BI__builtin_vsx_xxpermdi: {
17741     Value *Op0 = EmitScalarExpr(E->getArg(0));
17742     Value *Op1 = EmitScalarExpr(E->getArg(1));
17743     Value *Op2 = EmitScalarExpr(E->getArg(2));
17744     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17745     assert(ArgCI && "Third arg must be constant integer!");
17746 
17747     unsigned Index = ArgCI->getZExtValue();
17748     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
17749     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
17750 
17751     // Account for endianness by treating this as just a shuffle. So we use the
17752     // same indices for both LE and BE in order to produce expected results in
17753     // both cases.
17754     int ElemIdx0 = (Index & 2) >> 1;
17755     int ElemIdx1 = 2 + (Index & 1);
17756 
17757     int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
17758     Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
17759     QualType BIRetType = E->getType();
17760     auto RetTy = ConvertType(BIRetType);
17761     return Builder.CreateBitCast(ShuffleCall, RetTy);
17762   }
17763 
17764   case PPC::BI__builtin_vsx_xxsldwi: {
17765     Value *Op0 = EmitScalarExpr(E->getArg(0));
17766     Value *Op1 = EmitScalarExpr(E->getArg(1));
17767     Value *Op2 = EmitScalarExpr(E->getArg(2));
17768     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17769     assert(ArgCI && "Third argument must be a compile time constant");
17770     unsigned Index = ArgCI->getZExtValue() & 0x3;
17771     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
17772     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int32Ty, 4));
17773 
17774     // Create a shuffle mask
17775     int ElemIdx0;
17776     int ElemIdx1;
17777     int ElemIdx2;
17778     int ElemIdx3;
17779     if (getTarget().isLittleEndian()) {
17780       // Little endian element N comes from element 8+N-Index of the
17781       // concatenated wide vector (of course, using modulo arithmetic on
17782       // the total number of elements).
17783       ElemIdx0 = (8 - Index) % 8;
17784       ElemIdx1 = (9 - Index) % 8;
17785       ElemIdx2 = (10 - Index) % 8;
17786       ElemIdx3 = (11 - Index) % 8;
17787     } else {
17788       // Big endian ElemIdx<N> = Index + N
17789       ElemIdx0 = Index;
17790       ElemIdx1 = Index + 1;
17791       ElemIdx2 = Index + 2;
17792       ElemIdx3 = Index + 3;
17793     }
17794 
17795     int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
17796     Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
17797     QualType BIRetType = E->getType();
17798     auto RetTy = ConvertType(BIRetType);
17799     return Builder.CreateBitCast(ShuffleCall, RetTy);
17800   }
17801 
17802   case PPC::BI__builtin_pack_vector_int128: {
17803     Value *Op0 = EmitScalarExpr(E->getArg(0));
17804     Value *Op1 = EmitScalarExpr(E->getArg(1));
17805     bool isLittleEndian = getTarget().isLittleEndian();
17806     Value *PoisonValue =
17807         llvm::PoisonValue::get(llvm::FixedVectorType::get(Op0->getType(), 2));
17808     Value *Res = Builder.CreateInsertElement(
17809         PoisonValue, Op0, (uint64_t)(isLittleEndian ? 1 : 0));
17810     Res = Builder.CreateInsertElement(Res, Op1,
17811                                       (uint64_t)(isLittleEndian ? 0 : 1));
17812     return Builder.CreateBitCast(Res, ConvertType(E->getType()));
17813   }
17814 
17815   case PPC::BI__builtin_unpack_vector_int128: {
17816     Value *Op0 = EmitScalarExpr(E->getArg(0));
17817     Value *Op1 = EmitScalarExpr(E->getArg(1));
17818     ConstantInt *Index = cast<ConstantInt>(Op1);
17819     Value *Unpacked = Builder.CreateBitCast(
17820         Op0, llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
17821 
17822     if (getTarget().isLittleEndian())
17823       Index =
17824           ConstantInt::get(Index->getIntegerType(), 1 - Index->getZExtValue());
17825 
17826     return Builder.CreateExtractElement(Unpacked, Index);
17827   }
17828 
17829   case PPC::BI__builtin_ppc_sthcx: {
17830     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
17831     Value *Op0 = EmitScalarExpr(E->getArg(0));
17832     Value *Op1 = Builder.CreateSExt(EmitScalarExpr(E->getArg(1)), Int32Ty);
17833     return Builder.CreateCall(F, {Op0, Op1});
17834   }
17835 
17836   // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
17837   // Some of the MMA instructions accumulate their result into an existing
17838   // accumulator whereas the others generate a new accumulator. So we need to
17839   // use custom code generation to expand a builtin call with a pointer to a
17840   // load (if the corresponding instruction accumulates its result) followed by
17841   // the call to the intrinsic and a store of the result.
17842 #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate, Feature) \
17843   case PPC::BI__builtin_##Name:
17844 #include "clang/Basic/BuiltinsPPC.def"
17845   {
17846     SmallVector<Value *, 4> Ops;
17847     for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
17848       if (E->getArg(i)->getType()->isArrayType())
17849         Ops.push_back(
17850             EmitArrayToPointerDecay(E->getArg(i)).emitRawPointer(*this));
17851       else
17852         Ops.push_back(EmitScalarExpr(E->getArg(i)));
17853     // The first argument of these two builtins is a pointer used to store their
17854     // result. However, the llvm intrinsics return their result in multiple
17855     // return values. So, here we emit code extracting these values from the
17856     // intrinsic results and storing them using that pointer.
17857     if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
17858         BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
17859         BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
17860       unsigned NumVecs = 2;
17861       auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
17862       if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
17863         NumVecs = 4;
17864         Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
17865       }
17866       llvm::Function *F = CGM.getIntrinsic(Intrinsic);
17867       Address Addr = EmitPointerWithAlignment(E->getArg(1));
17868       Value *Vec = Builder.CreateLoad(Addr);
17869       Value *Call = Builder.CreateCall(F, {Vec});
17870       llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
17871       Value *Ptr = Ops[0];
17872       for (unsigned i=0; i<NumVecs; i++) {
17873         Value *Vec = Builder.CreateExtractValue(Call, i);
17874         llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
17875         Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
17876         Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
17877       }
17878       return Call;
17879     }
17880     if (BuiltinID == PPC::BI__builtin_vsx_build_pair ||
17881         BuiltinID == PPC::BI__builtin_mma_build_acc) {
17882       // Reverse the order of the operands for LE, so the
17883       // same builtin call can be used on both LE and BE
17884       // without the need for the programmer to swap operands.
17885       // The operands are reversed starting from the second argument,
17886       // the first operand is the pointer to the pair/accumulator
17887       // that is being built.
17888       if (getTarget().isLittleEndian())
17889         std::reverse(Ops.begin() + 1, Ops.end());
17890     }
17891     bool Accumulate;
17892     switch (BuiltinID) {
17893   #define CUSTOM_BUILTIN(Name, Intr, Types, Acc, Feature) \
17894     case PPC::BI__builtin_##Name: \
17895       ID = Intrinsic::ppc_##Intr; \
17896       Accumulate = Acc; \
17897       break;
17898   #include "clang/Basic/BuiltinsPPC.def"
17899     }
17900     if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
17901         BuiltinID == PPC::BI__builtin_vsx_stxvp ||
17902         BuiltinID == PPC::BI__builtin_mma_lxvp ||
17903         BuiltinID == PPC::BI__builtin_mma_stxvp) {
17904       if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
17905           BuiltinID == PPC::BI__builtin_mma_lxvp) {
17906         Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
17907       } else {
17908         Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
17909       }
17910       Ops.pop_back();
17911       llvm::Function *F = CGM.getIntrinsic(ID);
17912       return Builder.CreateCall(F, Ops, "");
17913     }
17914     SmallVector<Value*, 4> CallOps;
17915     if (Accumulate) {
17916       Address Addr = EmitPointerWithAlignment(E->getArg(0));
17917       Value *Acc = Builder.CreateLoad(Addr);
17918       CallOps.push_back(Acc);
17919     }
17920     for (unsigned i=1; i<Ops.size(); i++)
17921       CallOps.push_back(Ops[i]);
17922     llvm::Function *F = CGM.getIntrinsic(ID);
17923     Value *Call = Builder.CreateCall(F, CallOps);
17924     return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
17925   }
17926 
17927   case PPC::BI__builtin_ppc_compare_and_swap:
17928   case PPC::BI__builtin_ppc_compare_and_swaplp: {
17929     Address Addr = EmitPointerWithAlignment(E->getArg(0));
17930     Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
17931     Value *OldVal = Builder.CreateLoad(OldValAddr);
17932     QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
17933     LValue LV = MakeAddrLValue(Addr, AtomicTy);
17934     Value *Op2 = EmitScalarExpr(E->getArg(2));
17935     auto Pair = EmitAtomicCompareExchange(
17936         LV, RValue::get(OldVal), RValue::get(Op2), E->getExprLoc(),
17937         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
17938     // Unlike c11's atomic_compare_exchange, according to
17939     // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
17940     // > In either case, the contents of the memory location specified by addr
17941     // > are copied into the memory location specified by old_val_addr.
17942     // But it hasn't specified storing to OldValAddr is atomic or not and
17943     // which order to use. Now following XL's codegen, treat it as a normal
17944     // store.
17945     Value *LoadedVal = Pair.first.getScalarVal();
17946     Builder.CreateStore(LoadedVal, OldValAddr);
17947     return Builder.CreateZExt(Pair.second, Builder.getInt32Ty());
17948   }
17949   case PPC::BI__builtin_ppc_fetch_and_add:
17950   case PPC::BI__builtin_ppc_fetch_and_addlp: {
17951     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
17952                                  llvm::AtomicOrdering::Monotonic);
17953   }
17954   case PPC::BI__builtin_ppc_fetch_and_and:
17955   case PPC::BI__builtin_ppc_fetch_and_andlp: {
17956     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
17957                                  llvm::AtomicOrdering::Monotonic);
17958   }
17959 
17960   case PPC::BI__builtin_ppc_fetch_and_or:
17961   case PPC::BI__builtin_ppc_fetch_and_orlp: {
17962     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
17963                                  llvm::AtomicOrdering::Monotonic);
17964   }
17965   case PPC::BI__builtin_ppc_fetch_and_swap:
17966   case PPC::BI__builtin_ppc_fetch_and_swaplp: {
17967     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
17968                                  llvm::AtomicOrdering::Monotonic);
17969   }
17970   case PPC::BI__builtin_ppc_ldarx:
17971   case PPC::BI__builtin_ppc_lwarx:
17972   case PPC::BI__builtin_ppc_lharx:
17973   case PPC::BI__builtin_ppc_lbarx:
17974     return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
17975   case PPC::BI__builtin_ppc_mfspr: {
17976     Value *Op0 = EmitScalarExpr(E->getArg(0));
17977     llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
17978                               ? Int32Ty
17979                               : Int64Ty;
17980     Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
17981     return Builder.CreateCall(F, {Op0});
17982   }
17983   case PPC::BI__builtin_ppc_mtspr: {
17984     Value *Op0 = EmitScalarExpr(E->getArg(0));
17985     Value *Op1 = EmitScalarExpr(E->getArg(1));
17986     llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
17987                               ? Int32Ty
17988                               : Int64Ty;
17989     Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
17990     return Builder.CreateCall(F, {Op0, Op1});
17991   }
17992   case PPC::BI__builtin_ppc_popcntb: {
17993     Value *ArgValue = EmitScalarExpr(E->getArg(0));
17994     llvm::Type *ArgType = ArgValue->getType();
17995     Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
17996     return Builder.CreateCall(F, {ArgValue}, "popcntb");
17997   }
17998   case PPC::BI__builtin_ppc_mtfsf: {
17999     // The builtin takes a uint32 that needs to be cast to an
18000     // f64 to be passed to the intrinsic.
18001     Value *Op0 = EmitScalarExpr(E->getArg(0));
18002     Value *Op1 = EmitScalarExpr(E->getArg(1));
18003     Value *Cast = Builder.CreateUIToFP(Op1, DoubleTy);
18004     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
18005     return Builder.CreateCall(F, {Op0, Cast}, "");
18006   }
18007 
18008   case PPC::BI__builtin_ppc_swdiv_nochk:
18009   case PPC::BI__builtin_ppc_swdivs_nochk: {
18010     Value *Op0 = EmitScalarExpr(E->getArg(0));
18011     Value *Op1 = EmitScalarExpr(E->getArg(1));
18012     FastMathFlags FMF = Builder.getFastMathFlags();
18013     Builder.getFastMathFlags().setFast();
18014     Value *FDiv = Builder.CreateFDiv(Op0, Op1, "swdiv_nochk");
18015     Builder.getFastMathFlags() &= (FMF);
18016     return FDiv;
18017   }
18018   case PPC::BI__builtin_ppc_fric:
18019     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18020                            *this, E, Intrinsic::rint,
18021                            Intrinsic::experimental_constrained_rint))
18022         .getScalarVal();
18023   case PPC::BI__builtin_ppc_frim:
18024   case PPC::BI__builtin_ppc_frims:
18025     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18026                            *this, E, Intrinsic::floor,
18027                            Intrinsic::experimental_constrained_floor))
18028         .getScalarVal();
18029   case PPC::BI__builtin_ppc_frin:
18030   case PPC::BI__builtin_ppc_frins:
18031     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18032                            *this, E, Intrinsic::round,
18033                            Intrinsic::experimental_constrained_round))
18034         .getScalarVal();
18035   case PPC::BI__builtin_ppc_frip:
18036   case PPC::BI__builtin_ppc_frips:
18037     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18038                            *this, E, Intrinsic::ceil,
18039                            Intrinsic::experimental_constrained_ceil))
18040         .getScalarVal();
18041   case PPC::BI__builtin_ppc_friz:
18042   case PPC::BI__builtin_ppc_frizs:
18043     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18044                            *this, E, Intrinsic::trunc,
18045                            Intrinsic::experimental_constrained_trunc))
18046         .getScalarVal();
18047   case PPC::BI__builtin_ppc_fsqrt:
18048   case PPC::BI__builtin_ppc_fsqrts:
18049     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18050                            *this, E, Intrinsic::sqrt,
18051                            Intrinsic::experimental_constrained_sqrt))
18052         .getScalarVal();
18053   case PPC::BI__builtin_ppc_test_data_class: {
18054     Value *Op0 = EmitScalarExpr(E->getArg(0));
18055     Value *Op1 = EmitScalarExpr(E->getArg(1));
18056     return Builder.CreateCall(
18057         CGM.getIntrinsic(Intrinsic::ppc_test_data_class, Op0->getType()),
18058         {Op0, Op1}, "test_data_class");
18059   }
18060   case PPC::BI__builtin_ppc_maxfe: {
18061     Value *Op0 = EmitScalarExpr(E->getArg(0));
18062     Value *Op1 = EmitScalarExpr(E->getArg(1));
18063     Value *Op2 = EmitScalarExpr(E->getArg(2));
18064     Value *Op3 = EmitScalarExpr(E->getArg(3));
18065     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfe),
18066                               {Op0, Op1, Op2, Op3});
18067   }
18068   case PPC::BI__builtin_ppc_maxfl: {
18069     Value *Op0 = EmitScalarExpr(E->getArg(0));
18070     Value *Op1 = EmitScalarExpr(E->getArg(1));
18071     Value *Op2 = EmitScalarExpr(E->getArg(2));
18072     Value *Op3 = EmitScalarExpr(E->getArg(3));
18073     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfl),
18074                               {Op0, Op1, Op2, Op3});
18075   }
18076   case PPC::BI__builtin_ppc_maxfs: {
18077     Value *Op0 = EmitScalarExpr(E->getArg(0));
18078     Value *Op1 = EmitScalarExpr(E->getArg(1));
18079     Value *Op2 = EmitScalarExpr(E->getArg(2));
18080     Value *Op3 = EmitScalarExpr(E->getArg(3));
18081     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfs),
18082                               {Op0, Op1, Op2, Op3});
18083   }
18084   case PPC::BI__builtin_ppc_minfe: {
18085     Value *Op0 = EmitScalarExpr(E->getArg(0));
18086     Value *Op1 = EmitScalarExpr(E->getArg(1));
18087     Value *Op2 = EmitScalarExpr(E->getArg(2));
18088     Value *Op3 = EmitScalarExpr(E->getArg(3));
18089     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfe),
18090                               {Op0, Op1, Op2, Op3});
18091   }
18092   case PPC::BI__builtin_ppc_minfl: {
18093     Value *Op0 = EmitScalarExpr(E->getArg(0));
18094     Value *Op1 = EmitScalarExpr(E->getArg(1));
18095     Value *Op2 = EmitScalarExpr(E->getArg(2));
18096     Value *Op3 = EmitScalarExpr(E->getArg(3));
18097     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfl),
18098                               {Op0, Op1, Op2, Op3});
18099   }
18100   case PPC::BI__builtin_ppc_minfs: {
18101     Value *Op0 = EmitScalarExpr(E->getArg(0));
18102     Value *Op1 = EmitScalarExpr(E->getArg(1));
18103     Value *Op2 = EmitScalarExpr(E->getArg(2));
18104     Value *Op3 = EmitScalarExpr(E->getArg(3));
18105     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfs),
18106                               {Op0, Op1, Op2, Op3});
18107   }
18108   case PPC::BI__builtin_ppc_swdiv:
18109   case PPC::BI__builtin_ppc_swdivs: {
18110     Value *Op0 = EmitScalarExpr(E->getArg(0));
18111     Value *Op1 = EmitScalarExpr(E->getArg(1));
18112     return Builder.CreateFDiv(Op0, Op1, "swdiv");
18113   }
18114   case PPC::BI__builtin_ppc_set_fpscr_rn:
18115     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_setrnd),
18116                               {EmitScalarExpr(E->getArg(0))});
18117   case PPC::BI__builtin_ppc_mffs:
18118     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_readflm));
18119   }
18120 }
18121 
18122 namespace {
18123 // If \p E is not null pointer, insert address space cast to match return
18124 // type of \p E if necessary.
EmitAMDGPUDispatchPtr(CodeGenFunction & CGF,const CallExpr * E=nullptr)18125 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
18126                              const CallExpr *E = nullptr) {
18127   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
18128   auto *Call = CGF.Builder.CreateCall(F);
18129   Call->addRetAttr(
18130       Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
18131   Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4)));
18132   if (!E)
18133     return Call;
18134   QualType BuiltinRetType = E->getType();
18135   auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
18136   if (RetTy == Call->getType())
18137     return Call;
18138   return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
18139 }
18140 
EmitAMDGPUImplicitArgPtr(CodeGenFunction & CGF)18141 Value *EmitAMDGPUImplicitArgPtr(CodeGenFunction &CGF) {
18142   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_implicitarg_ptr);
18143   auto *Call = CGF.Builder.CreateCall(F);
18144   Call->addRetAttr(
18145       Attribute::getWithDereferenceableBytes(Call->getContext(), 256));
18146   Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(8)));
18147   return Call;
18148 }
18149 
18150 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
18151 /// Emit code based on Code Object ABI version.
18152 /// COV_4    : Emit code to use dispatch ptr
18153 /// COV_5+   : Emit code to use implicitarg ptr
18154 /// COV_NONE : Emit code to load a global variable "__oclc_ABI_version"
18155 ///            and use its value for COV_4 or COV_5+ approach. It is used for
18156 ///            compiling device libraries in an ABI-agnostic way.
18157 ///
18158 /// Note: "__oclc_ABI_version" is supposed to be emitted and intialized by
18159 ///       clang during compilation of user code.
EmitAMDGPUWorkGroupSize(CodeGenFunction & CGF,unsigned Index)18160 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
18161   llvm::LoadInst *LD;
18162 
18163   auto Cov = CGF.getTarget().getTargetOpts().CodeObjectVersion;
18164 
18165   if (Cov == CodeObjectVersionKind::COV_None) {
18166     StringRef Name = "__oclc_ABI_version";
18167     auto *ABIVersionC = CGF.CGM.getModule().getNamedGlobal(Name);
18168     if (!ABIVersionC)
18169       ABIVersionC = new llvm::GlobalVariable(
18170           CGF.CGM.getModule(), CGF.Int32Ty, false,
18171           llvm::GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
18172           llvm::GlobalVariable::NotThreadLocal,
18173           CGF.CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant));
18174 
18175     // This load will be eliminated by the IPSCCP because it is constant
18176     // weak_odr without externally_initialized. Either changing it to weak or
18177     // adding externally_initialized will keep the load.
18178     Value *ABIVersion = CGF.Builder.CreateAlignedLoad(CGF.Int32Ty, ABIVersionC,
18179                                                       CGF.CGM.getIntAlign());
18180 
18181     Value *IsCOV5 = CGF.Builder.CreateICmpSGE(
18182         ABIVersion,
18183         llvm::ConstantInt::get(CGF.Int32Ty, CodeObjectVersionKind::COV_5));
18184 
18185     // Indexing the implicit kernarg segment.
18186     Value *ImplicitGEP = CGF.Builder.CreateConstGEP1_32(
18187         CGF.Int8Ty, EmitAMDGPUImplicitArgPtr(CGF), 12 + Index * 2);
18188 
18189     // Indexing the HSA kernel_dispatch_packet struct.
18190     Value *DispatchGEP = CGF.Builder.CreateConstGEP1_32(
18191         CGF.Int8Ty, EmitAMDGPUDispatchPtr(CGF), 4 + Index * 2);
18192 
18193     auto Result = CGF.Builder.CreateSelect(IsCOV5, ImplicitGEP, DispatchGEP);
18194     LD = CGF.Builder.CreateLoad(
18195         Address(Result, CGF.Int16Ty, CharUnits::fromQuantity(2)));
18196   } else {
18197     Value *GEP = nullptr;
18198     if (Cov >= CodeObjectVersionKind::COV_5) {
18199       // Indexing the implicit kernarg segment.
18200       GEP = CGF.Builder.CreateConstGEP1_32(
18201           CGF.Int8Ty, EmitAMDGPUImplicitArgPtr(CGF), 12 + Index * 2);
18202     } else {
18203       // Indexing the HSA kernel_dispatch_packet struct.
18204       GEP = CGF.Builder.CreateConstGEP1_32(
18205           CGF.Int8Ty, EmitAMDGPUDispatchPtr(CGF), 4 + Index * 2);
18206     }
18207     LD = CGF.Builder.CreateLoad(
18208         Address(GEP, CGF.Int16Ty, CharUnits::fromQuantity(2)));
18209   }
18210 
18211   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
18212   llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
18213       APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
18214   LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
18215   LD->setMetadata(llvm::LLVMContext::MD_noundef,
18216                   llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
18217   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
18218                   llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
18219   return LD;
18220 }
18221 
18222 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
EmitAMDGPUGridSize(CodeGenFunction & CGF,unsigned Index)18223 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
18224   const unsigned XOffset = 12;
18225   auto *DP = EmitAMDGPUDispatchPtr(CGF);
18226   // Indexing the HSA kernel_dispatch_packet struct.
18227   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
18228   auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
18229   auto *LD = CGF.Builder.CreateLoad(
18230       Address(GEP, CGF.Int32Ty, CharUnits::fromQuantity(4)));
18231   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
18232                   llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
18233   return LD;
18234 }
18235 } // namespace
18236 
18237 // For processing memory ordering and memory scope arguments of various
18238 // amdgcn builtins.
18239 // \p Order takes a C++11 comptabile memory-ordering specifier and converts
18240 // it into LLVM's memory ordering specifier using atomic C ABI, and writes
18241 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN
18242 // specific SyncScopeID and writes it to \p SSID.
ProcessOrderScopeAMDGCN(Value * Order,Value * Scope,llvm::AtomicOrdering & AO,llvm::SyncScope::ID & SSID)18243 void CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
18244                                               llvm::AtomicOrdering &AO,
18245                                               llvm::SyncScope::ID &SSID) {
18246   int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
18247 
18248   // Map C11/C++11 memory ordering to LLVM memory ordering
18249   assert(llvm::isValidAtomicOrderingCABI(ord));
18250   switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
18251   case llvm::AtomicOrderingCABI::acquire:
18252   case llvm::AtomicOrderingCABI::consume:
18253     AO = llvm::AtomicOrdering::Acquire;
18254     break;
18255   case llvm::AtomicOrderingCABI::release:
18256     AO = llvm::AtomicOrdering::Release;
18257     break;
18258   case llvm::AtomicOrderingCABI::acq_rel:
18259     AO = llvm::AtomicOrdering::AcquireRelease;
18260     break;
18261   case llvm::AtomicOrderingCABI::seq_cst:
18262     AO = llvm::AtomicOrdering::SequentiallyConsistent;
18263     break;
18264   case llvm::AtomicOrderingCABI::relaxed:
18265     AO = llvm::AtomicOrdering::Monotonic;
18266     break;
18267   }
18268 
18269   // Some of the atomic builtins take the scope as a string name.
18270   StringRef scp;
18271   if (llvm::getConstantStringInfo(Scope, scp)) {
18272     SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
18273     return;
18274   }
18275 
18276   // Older builtins had an enum argument for the memory scope.
18277   int scope = cast<llvm::ConstantInt>(Scope)->getZExtValue();
18278   switch (scope) {
18279   case 0: // __MEMORY_SCOPE_SYSTEM
18280     SSID = llvm::SyncScope::System;
18281     break;
18282   case 1: // __MEMORY_SCOPE_DEVICE
18283     SSID = getLLVMContext().getOrInsertSyncScopeID("agent");
18284     break;
18285   case 2: // __MEMORY_SCOPE_WRKGRP
18286     SSID = getLLVMContext().getOrInsertSyncScopeID("workgroup");
18287     break;
18288   case 3: // __MEMORY_SCOPE_WVFRNT
18289     SSID = getLLVMContext().getOrInsertSyncScopeID("wavefront");
18290     break;
18291   case 4: // __MEMORY_SCOPE_SINGLE
18292     SSID = llvm::SyncScope::SingleThread;
18293     break;
18294   default:
18295     SSID = llvm::SyncScope::System;
18296     break;
18297   }
18298 }
18299 
EmitScalarOrConstFoldImmArg(unsigned ICEArguments,unsigned Idx,const CallExpr * E)18300 llvm::Value *CodeGenFunction::EmitScalarOrConstFoldImmArg(unsigned ICEArguments,
18301                                                           unsigned Idx,
18302                                                           const CallExpr *E) {
18303   llvm::Value *Arg = nullptr;
18304   if ((ICEArguments & (1 << Idx)) == 0) {
18305     Arg = EmitScalarExpr(E->getArg(Idx));
18306   } else {
18307     // If this is required to be a constant, constant fold it so that we
18308     // know that the generated intrinsic gets a ConstantInt.
18309     std::optional<llvm::APSInt> Result =
18310         E->getArg(Idx)->getIntegerConstantExpr(getContext());
18311     assert(Result && "Expected argument to be a constant");
18312     Arg = llvm::ConstantInt::get(getLLVMContext(), *Result);
18313   }
18314   return Arg;
18315 }
18316 
getDotProductIntrinsic(QualType QT,int elementCount)18317 Intrinsic::ID getDotProductIntrinsic(QualType QT, int elementCount) {
18318   if (QT->hasFloatingRepresentation()) {
18319     switch (elementCount) {
18320     case 2:
18321       return Intrinsic::dx_dot2;
18322     case 3:
18323       return Intrinsic::dx_dot3;
18324     case 4:
18325       return Intrinsic::dx_dot4;
18326     }
18327   }
18328   if (QT->hasSignedIntegerRepresentation())
18329     return Intrinsic::dx_sdot;
18330 
18331   assert(QT->hasUnsignedIntegerRepresentation());
18332   return Intrinsic::dx_udot;
18333 }
18334 
EmitHLSLBuiltinExpr(unsigned BuiltinID,const CallExpr * E)18335 Value *CodeGenFunction::EmitHLSLBuiltinExpr(unsigned BuiltinID,
18336                                             const CallExpr *E) {
18337   if (!getLangOpts().HLSL)
18338     return nullptr;
18339 
18340   switch (BuiltinID) {
18341   case Builtin::BI__builtin_hlsl_elementwise_all: {
18342     Value *Op0 = EmitScalarExpr(E->getArg(0));
18343     return Builder.CreateIntrinsic(
18344         /*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()),
18345         CGM.getHLSLRuntime().getAllIntrinsic(), ArrayRef<Value *>{Op0}, nullptr,
18346         "hlsl.all");
18347   }
18348   case Builtin::BI__builtin_hlsl_elementwise_any: {
18349     Value *Op0 = EmitScalarExpr(E->getArg(0));
18350     return Builder.CreateIntrinsic(
18351         /*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()),
18352         CGM.getHLSLRuntime().getAnyIntrinsic(), ArrayRef<Value *>{Op0}, nullptr,
18353         "hlsl.any");
18354   }
18355   case Builtin::BI__builtin_hlsl_elementwise_clamp: {
18356     Value *OpX = EmitScalarExpr(E->getArg(0));
18357     Value *OpMin = EmitScalarExpr(E->getArg(1));
18358     Value *OpMax = EmitScalarExpr(E->getArg(2));
18359 
18360     QualType Ty = E->getArg(0)->getType();
18361     bool IsUnsigned = false;
18362     if (auto *VecTy = Ty->getAs<VectorType>())
18363       Ty = VecTy->getElementType();
18364     IsUnsigned = Ty->isUnsignedIntegerType();
18365     return Builder.CreateIntrinsic(
18366         /*ReturnType=*/OpX->getType(),
18367         IsUnsigned ? Intrinsic::dx_uclamp : Intrinsic::dx_clamp,
18368         ArrayRef<Value *>{OpX, OpMin, OpMax}, nullptr, "dx.clamp");
18369   }
18370   case Builtin::BI__builtin_hlsl_dot: {
18371     Value *Op0 = EmitScalarExpr(E->getArg(0));
18372     Value *Op1 = EmitScalarExpr(E->getArg(1));
18373     llvm::Type *T0 = Op0->getType();
18374     llvm::Type *T1 = Op1->getType();
18375     if (!T0->isVectorTy() && !T1->isVectorTy()) {
18376       if (T0->isFloatingPointTy())
18377         return Builder.CreateFMul(Op0, Op1, "dx.dot");
18378 
18379       if (T0->isIntegerTy())
18380         return Builder.CreateMul(Op0, Op1, "dx.dot");
18381 
18382       // Bools should have been promoted
18383       llvm_unreachable(
18384           "Scalar dot product is only supported on ints and floats.");
18385     }
18386     // A VectorSplat should have happened
18387     assert(T0->isVectorTy() && T1->isVectorTy() &&
18388            "Dot product of vector and scalar is not supported.");
18389 
18390     // A vector sext or sitofp should have happened
18391     assert(T0->getScalarType() == T1->getScalarType() &&
18392            "Dot product of vectors need the same element types.");
18393 
18394     auto *VecTy0 = E->getArg(0)->getType()->getAs<VectorType>();
18395     [[maybe_unused]] auto *VecTy1 =
18396         E->getArg(1)->getType()->getAs<VectorType>();
18397     // A HLSLVectorTruncation should have happend
18398     assert(VecTy0->getNumElements() == VecTy1->getNumElements() &&
18399            "Dot product requires vectors to be of the same size.");
18400 
18401     return Builder.CreateIntrinsic(
18402         /*ReturnType=*/T0->getScalarType(),
18403         getDotProductIntrinsic(E->getArg(0)->getType(),
18404                                VecTy0->getNumElements()),
18405         ArrayRef<Value *>{Op0, Op1}, nullptr, "dx.dot");
18406   } break;
18407   case Builtin::BI__builtin_hlsl_lerp: {
18408     Value *X = EmitScalarExpr(E->getArg(0));
18409     Value *Y = EmitScalarExpr(E->getArg(1));
18410     Value *S = EmitScalarExpr(E->getArg(2));
18411     if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18412       llvm_unreachable("lerp operand must have a float representation");
18413     return Builder.CreateIntrinsic(
18414         /*ReturnType=*/X->getType(), CGM.getHLSLRuntime().getLerpIntrinsic(),
18415         ArrayRef<Value *>{X, Y, S}, nullptr, "hlsl.lerp");
18416   }
18417   case Builtin::BI__builtin_hlsl_elementwise_frac: {
18418     Value *Op0 = EmitScalarExpr(E->getArg(0));
18419     if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18420       llvm_unreachable("frac operand must have a float representation");
18421     return Builder.CreateIntrinsic(
18422         /*ReturnType=*/Op0->getType(), Intrinsic::dx_frac,
18423         ArrayRef<Value *>{Op0}, nullptr, "dx.frac");
18424   }
18425   case Builtin::BI__builtin_hlsl_elementwise_isinf: {
18426     Value *Op0 = EmitScalarExpr(E->getArg(0));
18427     llvm::Type *Xty = Op0->getType();
18428     llvm::Type *retType = llvm::Type::getInt1Ty(this->getLLVMContext());
18429     if (Xty->isVectorTy()) {
18430       auto *XVecTy = E->getArg(0)->getType()->getAs<VectorType>();
18431       retType = llvm::VectorType::get(
18432           retType, ElementCount::getFixed(XVecTy->getNumElements()));
18433     }
18434     if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18435       llvm_unreachable("isinf operand must have a float representation");
18436     return Builder.CreateIntrinsic(retType, Intrinsic::dx_isinf,
18437                                    ArrayRef<Value *>{Op0}, nullptr, "dx.isinf");
18438   }
18439   case Builtin::BI__builtin_hlsl_mad: {
18440     Value *M = EmitScalarExpr(E->getArg(0));
18441     Value *A = EmitScalarExpr(E->getArg(1));
18442     Value *B = EmitScalarExpr(E->getArg(2));
18443     if (E->getArg(0)->getType()->hasFloatingRepresentation())
18444       return Builder.CreateIntrinsic(
18445           /*ReturnType*/ M->getType(), Intrinsic::fmuladd,
18446           ArrayRef<Value *>{M, A, B}, nullptr, "hlsl.fmad");
18447 
18448     if (E->getArg(0)->getType()->hasSignedIntegerRepresentation()) {
18449       if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil)
18450         return Builder.CreateIntrinsic(
18451             /*ReturnType*/ M->getType(), Intrinsic::dx_imad,
18452             ArrayRef<Value *>{M, A, B}, nullptr, "dx.imad");
18453 
18454       Value *Mul = Builder.CreateNSWMul(M, A);
18455       return Builder.CreateNSWAdd(Mul, B);
18456     }
18457     assert(E->getArg(0)->getType()->hasUnsignedIntegerRepresentation());
18458     if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil)
18459       return Builder.CreateIntrinsic(
18460           /*ReturnType=*/M->getType(), Intrinsic::dx_umad,
18461           ArrayRef<Value *>{M, A, B}, nullptr, "dx.umad");
18462 
18463     Value *Mul = Builder.CreateNUWMul(M, A);
18464     return Builder.CreateNUWAdd(Mul, B);
18465   }
18466   case Builtin::BI__builtin_hlsl_elementwise_rcp: {
18467     Value *Op0 = EmitScalarExpr(E->getArg(0));
18468     if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18469       llvm_unreachable("rcp operand must have a float representation");
18470     llvm::Type *Ty = Op0->getType();
18471     llvm::Type *EltTy = Ty->getScalarType();
18472     Constant *One = Ty->isVectorTy()
18473                         ? ConstantVector::getSplat(
18474                               ElementCount::getFixed(
18475                                   cast<FixedVectorType>(Ty)->getNumElements()),
18476                               ConstantFP::get(EltTy, 1.0))
18477                         : ConstantFP::get(EltTy, 1.0);
18478     return Builder.CreateFDiv(One, Op0, "hlsl.rcp");
18479   }
18480   case Builtin::BI__builtin_hlsl_elementwise_rsqrt: {
18481     Value *Op0 = EmitScalarExpr(E->getArg(0));
18482     if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18483       llvm_unreachable("rsqrt operand must have a float representation");
18484     return Builder.CreateIntrinsic(
18485         /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getRsqrtIntrinsic(),
18486         ArrayRef<Value *>{Op0}, nullptr, "hlsl.rsqrt");
18487   }
18488   case Builtin::BI__builtin_hlsl_wave_get_lane_index: {
18489     return EmitRuntimeCall(CGM.CreateRuntimeFunction(
18490         llvm::FunctionType::get(IntTy, {}, false), "__hlsl_wave_get_lane_index",
18491         {}, false, true));
18492   }
18493   }
18494   return nullptr;
18495 }
18496 
AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction * Inst,const CallExpr * E)18497 void CodeGenFunction::AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst,
18498                                                      const CallExpr *E) {
18499   constexpr const char *Tag = "amdgpu-as";
18500 
18501   LLVMContext &Ctx = Inst->getContext();
18502   SmallVector<MMRAMetadata::TagT, 3> MMRAs;
18503   for (unsigned K = 2; K < E->getNumArgs(); ++K) {
18504     llvm::Value *V = EmitScalarExpr(E->getArg(K));
18505     StringRef AS;
18506     if (llvm::getConstantStringInfo(V, AS)) {
18507       MMRAs.push_back({Tag, AS});
18508       // TODO: Delete the resulting unused constant?
18509       continue;
18510     }
18511     CGM.Error(E->getExprLoc(),
18512               "expected an address space name as a string literal");
18513   }
18514 
18515   llvm::sort(MMRAs);
18516   MMRAs.erase(llvm::unique(MMRAs), MMRAs.end());
18517   Inst->setMetadata(LLVMContext::MD_mmra, MMRAMetadata::getMD(Ctx, MMRAs));
18518 }
18519 
EmitAMDGPUBuiltinExpr(unsigned BuiltinID,const CallExpr * E)18520 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
18521                                               const CallExpr *E) {
18522   llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
18523   llvm::SyncScope::ID SSID;
18524   switch (BuiltinID) {
18525   case AMDGPU::BI__builtin_amdgcn_div_scale:
18526   case AMDGPU::BI__builtin_amdgcn_div_scalef: {
18527     // Translate from the intrinsics's struct return to the builtin's out
18528     // argument.
18529 
18530     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
18531 
18532     llvm::Value *X = EmitScalarExpr(E->getArg(0));
18533     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
18534     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
18535 
18536     llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
18537                                            X->getType());
18538 
18539     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
18540 
18541     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
18542     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
18543 
18544     llvm::Type *RealFlagType = FlagOutPtr.getElementType();
18545 
18546     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
18547     Builder.CreateStore(FlagExt, FlagOutPtr);
18548     return Result;
18549   }
18550   case AMDGPU::BI__builtin_amdgcn_div_fmas:
18551   case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
18552     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18553     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18554     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
18555     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
18556 
18557     llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
18558                                       Src0->getType());
18559     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
18560     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
18561   }
18562 
18563   case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
18564     return emitBuiltinWithOneOverloadedType<2>(*this, E,
18565                                                Intrinsic::amdgcn_ds_swizzle);
18566   case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
18567     return emitBuiltinWithOneOverloadedType<2>(*this, E,
18568                                                Intrinsic::amdgcn_mov_dpp8);
18569   case AMDGPU::BI__builtin_amdgcn_mov_dpp:
18570   case AMDGPU::BI__builtin_amdgcn_update_dpp: {
18571     llvm::SmallVector<llvm::Value *, 6> Args;
18572     // Find out if any arguments are required to be integer constant
18573     // expressions.
18574     unsigned ICEArguments = 0;
18575     ASTContext::GetBuiltinTypeError Error;
18576     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
18577     assert(Error == ASTContext::GE_None && "Should not codegen an error");
18578     for (unsigned I = 0; I != E->getNumArgs(); ++I) {
18579       Args.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, I, E));
18580     }
18581     assert(Args.size() == 5 || Args.size() == 6);
18582     if (Args.size() == 5)
18583       Args.insert(Args.begin(), llvm::PoisonValue::get(Args[0]->getType()));
18584     Function *F =
18585         CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
18586     return Builder.CreateCall(F, Args);
18587   }
18588   case AMDGPU::BI__builtin_amdgcn_permlane16:
18589   case AMDGPU::BI__builtin_amdgcn_permlanex16:
18590     return emitBuiltinWithOneOverloadedType<6>(
18591         *this, E,
18592         BuiltinID == AMDGPU::BI__builtin_amdgcn_permlane16
18593             ? Intrinsic::amdgcn_permlane16
18594             : Intrinsic::amdgcn_permlanex16);
18595   case AMDGPU::BI__builtin_amdgcn_permlane64:
18596     return emitBuiltinWithOneOverloadedType<1>(*this, E,
18597                                                Intrinsic::amdgcn_permlane64);
18598   case AMDGPU::BI__builtin_amdgcn_readlane:
18599     return emitBuiltinWithOneOverloadedType<2>(*this, E,
18600                                                Intrinsic::amdgcn_readlane);
18601   case AMDGPU::BI__builtin_amdgcn_readfirstlane:
18602     return emitBuiltinWithOneOverloadedType<1>(*this, E,
18603                                                Intrinsic::amdgcn_readfirstlane);
18604   case AMDGPU::BI__builtin_amdgcn_div_fixup:
18605   case AMDGPU::BI__builtin_amdgcn_div_fixupf:
18606   case AMDGPU::BI__builtin_amdgcn_div_fixuph:
18607     return emitBuiltinWithOneOverloadedType<3>(*this, E,
18608                                                Intrinsic::amdgcn_div_fixup);
18609   case AMDGPU::BI__builtin_amdgcn_trig_preop:
18610   case AMDGPU::BI__builtin_amdgcn_trig_preopf:
18611     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
18612   case AMDGPU::BI__builtin_amdgcn_rcp:
18613   case AMDGPU::BI__builtin_amdgcn_rcpf:
18614   case AMDGPU::BI__builtin_amdgcn_rcph:
18615     return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_rcp);
18616   case AMDGPU::BI__builtin_amdgcn_sqrt:
18617   case AMDGPU::BI__builtin_amdgcn_sqrtf:
18618   case AMDGPU::BI__builtin_amdgcn_sqrth:
18619     return emitBuiltinWithOneOverloadedType<1>(*this, E,
18620                                                Intrinsic::amdgcn_sqrt);
18621   case AMDGPU::BI__builtin_amdgcn_rsq:
18622   case AMDGPU::BI__builtin_amdgcn_rsqf:
18623   case AMDGPU::BI__builtin_amdgcn_rsqh:
18624     return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_rsq);
18625   case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
18626   case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
18627     return emitBuiltinWithOneOverloadedType<1>(*this, E,
18628                                                Intrinsic::amdgcn_rsq_clamp);
18629   case AMDGPU::BI__builtin_amdgcn_sinf:
18630   case AMDGPU::BI__builtin_amdgcn_sinh:
18631     return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_sin);
18632   case AMDGPU::BI__builtin_amdgcn_cosf:
18633   case AMDGPU::BI__builtin_amdgcn_cosh:
18634     return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_cos);
18635   case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
18636     return EmitAMDGPUDispatchPtr(*this, E);
18637   case AMDGPU::BI__builtin_amdgcn_logf:
18638     return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_log);
18639   case AMDGPU::BI__builtin_amdgcn_exp2f:
18640     return emitBuiltinWithOneOverloadedType<1>(*this, E,
18641                                                Intrinsic::amdgcn_exp2);
18642   case AMDGPU::BI__builtin_amdgcn_log_clampf:
18643     return emitBuiltinWithOneOverloadedType<1>(*this, E,
18644                                                Intrinsic::amdgcn_log_clamp);
18645   case AMDGPU::BI__builtin_amdgcn_ldexp:
18646   case AMDGPU::BI__builtin_amdgcn_ldexpf: {
18647     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18648     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18649     llvm::Function *F =
18650         CGM.getIntrinsic(Intrinsic::ldexp, {Src0->getType(), Src1->getType()});
18651     return Builder.CreateCall(F, {Src0, Src1});
18652   }
18653   case AMDGPU::BI__builtin_amdgcn_ldexph: {
18654     // The raw instruction has a different behavior for out of bounds exponent
18655     // values (implicit truncation instead of saturate to short_min/short_max).
18656     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18657     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18658     llvm::Function *F =
18659         CGM.getIntrinsic(Intrinsic::ldexp, {Src0->getType(), Int16Ty});
18660     return Builder.CreateCall(F, {Src0, Builder.CreateTrunc(Src1, Int16Ty)});
18661   }
18662   case AMDGPU::BI__builtin_amdgcn_frexp_mant:
18663   case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
18664   case AMDGPU::BI__builtin_amdgcn_frexp_manth:
18665     return emitBuiltinWithOneOverloadedType<1>(*this, E,
18666                                                Intrinsic::amdgcn_frexp_mant);
18667   case AMDGPU::BI__builtin_amdgcn_frexp_exp:
18668   case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
18669     Value *Src0 = EmitScalarExpr(E->getArg(0));
18670     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
18671                                 { Builder.getInt32Ty(), Src0->getType() });
18672     return Builder.CreateCall(F, Src0);
18673   }
18674   case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
18675     Value *Src0 = EmitScalarExpr(E->getArg(0));
18676     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
18677                                 { Builder.getInt16Ty(), Src0->getType() });
18678     return Builder.CreateCall(F, Src0);
18679   }
18680   case AMDGPU::BI__builtin_amdgcn_fract:
18681   case AMDGPU::BI__builtin_amdgcn_fractf:
18682   case AMDGPU::BI__builtin_amdgcn_fracth:
18683     return emitBuiltinWithOneOverloadedType<1>(*this, E,
18684                                                Intrinsic::amdgcn_fract);
18685   case AMDGPU::BI__builtin_amdgcn_lerp:
18686     return emitBuiltinWithOneOverloadedType<3>(*this, E,
18687                                                Intrinsic::amdgcn_lerp);
18688   case AMDGPU::BI__builtin_amdgcn_ubfe:
18689     return emitBuiltinWithOneOverloadedType<3>(*this, E,
18690                                                Intrinsic::amdgcn_ubfe);
18691   case AMDGPU::BI__builtin_amdgcn_sbfe:
18692     return emitBuiltinWithOneOverloadedType<3>(*this, E,
18693                                                Intrinsic::amdgcn_sbfe);
18694   case AMDGPU::BI__builtin_amdgcn_ballot_w32:
18695   case AMDGPU::BI__builtin_amdgcn_ballot_w64: {
18696     llvm::Type *ResultType = ConvertType(E->getType());
18697     llvm::Value *Src = EmitScalarExpr(E->getArg(0));
18698     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ballot, { ResultType });
18699     return Builder.CreateCall(F, { Src });
18700   }
18701   case AMDGPU::BI__builtin_amdgcn_uicmp:
18702   case AMDGPU::BI__builtin_amdgcn_uicmpl:
18703   case AMDGPU::BI__builtin_amdgcn_sicmp:
18704   case AMDGPU::BI__builtin_amdgcn_sicmpl: {
18705     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18706     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18707     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
18708 
18709     // FIXME-GFX10: How should 32 bit mask be handled?
18710     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
18711       { Builder.getInt64Ty(), Src0->getType() });
18712     return Builder.CreateCall(F, { Src0, Src1, Src2 });
18713   }
18714   case AMDGPU::BI__builtin_amdgcn_fcmp:
18715   case AMDGPU::BI__builtin_amdgcn_fcmpf: {
18716     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18717     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18718     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
18719 
18720     // FIXME-GFX10: How should 32 bit mask be handled?
18721     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
18722       { Builder.getInt64Ty(), Src0->getType() });
18723     return Builder.CreateCall(F, { Src0, Src1, Src2 });
18724   }
18725   case AMDGPU::BI__builtin_amdgcn_class:
18726   case AMDGPU::BI__builtin_amdgcn_classf:
18727   case AMDGPU::BI__builtin_amdgcn_classh:
18728     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
18729   case AMDGPU::BI__builtin_amdgcn_fmed3f:
18730   case AMDGPU::BI__builtin_amdgcn_fmed3h:
18731     return emitBuiltinWithOneOverloadedType<3>(*this, E,
18732                                                Intrinsic::amdgcn_fmed3);
18733   case AMDGPU::BI__builtin_amdgcn_ds_append:
18734   case AMDGPU::BI__builtin_amdgcn_ds_consume: {
18735     Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
18736       Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
18737     Value *Src0 = EmitScalarExpr(E->getArg(0));
18738     Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
18739     return Builder.CreateCall(F, { Src0, Builder.getFalse() });
18740   }
18741   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
18742   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
18743   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
18744   case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
18745   case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
18746   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
18747   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
18748   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
18749   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
18750   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16: {
18751     Intrinsic::ID IID;
18752     llvm::Type *ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
18753     switch (BuiltinID) {
18754     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
18755       ArgTy = llvm::Type::getFloatTy(getLLVMContext());
18756       IID = Intrinsic::amdgcn_global_atomic_fadd;
18757       break;
18758     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
18759       ArgTy = llvm::FixedVectorType::get(
18760           llvm::Type::getHalfTy(getLLVMContext()), 2);
18761       IID = Intrinsic::amdgcn_global_atomic_fadd;
18762       break;
18763     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
18764       IID = Intrinsic::amdgcn_global_atomic_fadd;
18765       break;
18766     case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
18767       IID = Intrinsic::amdgcn_global_atomic_fmin;
18768       break;
18769     case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
18770       IID = Intrinsic::amdgcn_global_atomic_fmax;
18771       break;
18772     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
18773       IID = Intrinsic::amdgcn_flat_atomic_fadd;
18774       break;
18775     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
18776       IID = Intrinsic::amdgcn_flat_atomic_fmin;
18777       break;
18778     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
18779       IID = Intrinsic::amdgcn_flat_atomic_fmax;
18780       break;
18781     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
18782       ArgTy = llvm::Type::getFloatTy(getLLVMContext());
18783       IID = Intrinsic::amdgcn_flat_atomic_fadd;
18784       break;
18785     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16:
18786       ArgTy = llvm::FixedVectorType::get(
18787           llvm::Type::getHalfTy(getLLVMContext()), 2);
18788       IID = Intrinsic::amdgcn_flat_atomic_fadd;
18789       break;
18790     }
18791     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
18792     llvm::Value *Val = EmitScalarExpr(E->getArg(1));
18793     llvm::Function *F =
18794         CGM.getIntrinsic(IID, {ArgTy, Addr->getType(), Val->getType()});
18795     return Builder.CreateCall(F, {Addr, Val});
18796   }
18797   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
18798   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16: {
18799     Intrinsic::ID IID;
18800     switch (BuiltinID) {
18801     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
18802       IID = Intrinsic::amdgcn_global_atomic_fadd_v2bf16;
18803       break;
18804     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16:
18805       IID = Intrinsic::amdgcn_flat_atomic_fadd_v2bf16;
18806       break;
18807     }
18808     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
18809     llvm::Value *Val = EmitScalarExpr(E->getArg(1));
18810     llvm::Function *F = CGM.getIntrinsic(IID, {Addr->getType()});
18811     return Builder.CreateCall(F, {Addr, Val});
18812   }
18813   case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_i32:
18814   case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_v2i32:
18815   case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4i16:
18816   case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4f16:
18817   case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4bf16:
18818   case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8i16:
18819   case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8f16:
18820   case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8bf16: {
18821 
18822     Intrinsic::ID IID;
18823     switch (BuiltinID) {
18824     case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_i32:
18825     case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_v2i32:
18826       IID = Intrinsic::amdgcn_global_load_tr_b64;
18827       break;
18828     case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4i16:
18829     case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4f16:
18830     case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4bf16:
18831     case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8i16:
18832     case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8f16:
18833     case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8bf16:
18834       IID = Intrinsic::amdgcn_global_load_tr_b128;
18835       break;
18836     }
18837     llvm::Type *LoadTy = ConvertType(E->getType());
18838     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
18839     llvm::Function *F = CGM.getIntrinsic(IID, {LoadTy});
18840     return Builder.CreateCall(F, {Addr});
18841   }
18842   case AMDGPU::BI__builtin_amdgcn_get_fpenv: {
18843     Function *F = CGM.getIntrinsic(Intrinsic::get_fpenv,
18844                                    {llvm::Type::getInt64Ty(getLLVMContext())});
18845     return Builder.CreateCall(F);
18846   }
18847   case AMDGPU::BI__builtin_amdgcn_set_fpenv: {
18848     Function *F = CGM.getIntrinsic(Intrinsic::set_fpenv,
18849                                    {llvm::Type::getInt64Ty(getLLVMContext())});
18850     llvm::Value *Env = EmitScalarExpr(E->getArg(0));
18851     return Builder.CreateCall(F, {Env});
18852   }
18853   case AMDGPU::BI__builtin_amdgcn_read_exec:
18854     return EmitAMDGCNBallotForExec(*this, E, Int64Ty, Int64Ty, false);
18855   case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
18856     return EmitAMDGCNBallotForExec(*this, E, Int32Ty, Int32Ty, false);
18857   case AMDGPU::BI__builtin_amdgcn_read_exec_hi:
18858     return EmitAMDGCNBallotForExec(*this, E, Int64Ty, Int64Ty, true);
18859   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray:
18860   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h:
18861   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l:
18862   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: {
18863     llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0));
18864     llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1));
18865     llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2));
18866     llvm::Value *RayDir = EmitScalarExpr(E->getArg(3));
18867     llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4));
18868     llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5));
18869 
18870     // The builtins take these arguments as vec4 where the last element is
18871     // ignored. The intrinsic takes them as vec3.
18872     RayOrigin = Builder.CreateShuffleVector(RayOrigin, RayOrigin,
18873                                             ArrayRef<int>{0, 1, 2});
18874     RayDir =
18875         Builder.CreateShuffleVector(RayDir, RayDir, ArrayRef<int>{0, 1, 2});
18876     RayInverseDir = Builder.CreateShuffleVector(RayInverseDir, RayInverseDir,
18877                                                 ArrayRef<int>{0, 1, 2});
18878 
18879     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray,
18880                                    {NodePtr->getType(), RayDir->getType()});
18881     return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir,
18882                                   RayInverseDir, TextureDescr});
18883   }
18884 
18885   case AMDGPU::BI__builtin_amdgcn_ds_bvh_stack_rtn: {
18886     SmallVector<Value *, 4> Args;
18887     for (int i = 0, e = E->getNumArgs(); i != e; ++i)
18888       Args.push_back(EmitScalarExpr(E->getArg(i)));
18889 
18890     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ds_bvh_stack_rtn);
18891     Value *Call = Builder.CreateCall(F, Args);
18892     Value *Rtn = Builder.CreateExtractValue(Call, 0);
18893     Value *A = Builder.CreateExtractValue(Call, 1);
18894     llvm::Type *RetTy = ConvertType(E->getType());
18895     Value *I0 = Builder.CreateInsertElement(PoisonValue::get(RetTy), Rtn,
18896                                             (uint64_t)0);
18897     return Builder.CreateInsertElement(I0, A, 1);
18898   }
18899 
18900   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32:
18901   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w32:
18902   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64:
18903   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w64:
18904   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32:
18905   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w32:
18906   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64:
18907   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w64:
18908   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32:
18909   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64:
18910   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32:
18911   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64:
18912   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32:
18913   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64:
18914   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32:
18915   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64:
18916   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32_gfx12:
18917   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64_gfx12:
18918   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32_gfx12:
18919   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64_gfx12:
18920   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12:
18921   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64_gfx12:
18922   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12:
18923   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64_gfx12:
18924   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32_gfx12:
18925   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64_gfx12:
18926   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12:
18927   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64_gfx12:
18928   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w32_gfx12:
18929   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w64_gfx12:
18930   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w32_gfx12:
18931   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w64_gfx12:
18932   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w32_gfx12:
18933   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w64_gfx12:
18934   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w32_gfx12:
18935   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w64_gfx12:
18936   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w32_gfx12:
18937   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w64_gfx12:
18938   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w32:
18939   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w64:
18940   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w32:
18941   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w64:
18942   case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w32:
18943   case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w64:
18944   case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w32:
18945   case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w64:
18946   case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w32:
18947   case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w64:
18948   case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w32:
18949   case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w64:
18950   case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w32:
18951   case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w64:
18952   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w32:
18953   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w64:
18954   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w32:
18955   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w64:
18956   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w32:
18957   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w64:
18958   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w32:
18959   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w64: {
18960 
18961     // These operations perform a matrix multiplication and accumulation of
18962     // the form:
18963     //             D = A * B + C
18964     // We need to specify one type for matrices AB and one for matrices CD.
18965     // Sparse matrix operations can have different types for A and B as well as
18966     // an additional type for sparsity index.
18967     // Destination type should be put before types used for source operands.
18968     SmallVector<unsigned, 2> ArgsForMatchingMatrixTypes;
18969     // On GFX12, the intrinsics with 16-bit accumulator use a packed layout.
18970     // There is no need for the variable opsel argument, so always set it to
18971     // "false".
18972     bool AppendFalseForOpselArg = false;
18973     unsigned BuiltinWMMAOp;
18974 
18975     switch (BuiltinID) {
18976     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32:
18977     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64:
18978     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12:
18979     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64_gfx12:
18980       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18981       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_f16;
18982       break;
18983     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32:
18984     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64:
18985     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12:
18986     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64_gfx12:
18987       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18988       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf16;
18989       break;
18990     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32_gfx12:
18991     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64_gfx12:
18992       AppendFalseForOpselArg = true;
18993       [[fallthrough]];
18994     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32:
18995     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64:
18996       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18997       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f16_16x16x16_f16;
18998       break;
18999     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32_gfx12:
19000     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64_gfx12:
19001       AppendFalseForOpselArg = true;
19002       [[fallthrough]];
19003     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32:
19004     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64:
19005       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19006       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16;
19007       break;
19008     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w32:
19009     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w64:
19010       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19011       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f16_16x16x16_f16_tied;
19012       break;
19013     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w32:
19014     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w64:
19015       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19016       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16_tied;
19017       break;
19018     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32:
19019     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64:
19020     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12:
19021     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64_gfx12:
19022       ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB
19023       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu8;
19024       break;
19025     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32:
19026     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64:
19027     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32_gfx12:
19028     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64_gfx12:
19029       ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB
19030       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu4;
19031       break;
19032     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w32_gfx12:
19033     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w64_gfx12:
19034       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19035       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_fp8_fp8;
19036       break;
19037     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w32_gfx12:
19038     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w64_gfx12:
19039       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19040       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_fp8_bf8;
19041       break;
19042     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w32_gfx12:
19043     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w64_gfx12:
19044       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19045       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf8_fp8;
19046       break;
19047     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w32_gfx12:
19048     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w64_gfx12:
19049       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19050       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf8_bf8;
19051       break;
19052     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w32_gfx12:
19053     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w64_gfx12:
19054       ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB
19055       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x32_iu4;
19056       break;
19057     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w32:
19058     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w64:
19059       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19060       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_f16;
19061       break;
19062     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w32:
19063     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w64:
19064       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19065       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16;
19066       break;
19067     case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w32:
19068     case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w64:
19069       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19070       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f16_16x16x32_f16;
19071       break;
19072     case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w32:
19073     case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w64:
19074       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19075       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16;
19076       break;
19077     case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w32:
19078     case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w64:
19079       ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index
19080       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8;
19081       break;
19082     case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w32:
19083     case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w64:
19084       ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index
19085       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4;
19086       break;
19087     case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w32:
19088     case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w64:
19089       ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index
19090       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4;
19091       break;
19092     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w32:
19093     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w64:
19094       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19095       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8;
19096       break;
19097     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w32:
19098     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w64:
19099       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19100       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8;
19101       break;
19102     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w32:
19103     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w64:
19104       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19105       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8;
19106       break;
19107     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w32:
19108     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w64:
19109       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19110       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8;
19111       break;
19112     }
19113 
19114     SmallVector<Value *, 6> Args;
19115     for (int i = 0, e = E->getNumArgs(); i != e; ++i)
19116       Args.push_back(EmitScalarExpr(E->getArg(i)));
19117     if (AppendFalseForOpselArg)
19118       Args.push_back(Builder.getFalse());
19119 
19120     SmallVector<llvm::Type *, 6> ArgTypes;
19121     for (auto ArgIdx : ArgsForMatchingMatrixTypes)
19122       ArgTypes.push_back(Args[ArgIdx]->getType());
19123 
19124     Function *F = CGM.getIntrinsic(BuiltinWMMAOp, ArgTypes);
19125     return Builder.CreateCall(F, Args);
19126   }
19127 
19128   // amdgcn workitem
19129   case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
19130     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
19131   case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
19132     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
19133   case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
19134     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
19135 
19136   // amdgcn workgroup size
19137   case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
19138     return EmitAMDGPUWorkGroupSize(*this, 0);
19139   case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
19140     return EmitAMDGPUWorkGroupSize(*this, 1);
19141   case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
19142     return EmitAMDGPUWorkGroupSize(*this, 2);
19143 
19144   // amdgcn grid size
19145   case AMDGPU::BI__builtin_amdgcn_grid_size_x:
19146     return EmitAMDGPUGridSize(*this, 0);
19147   case AMDGPU::BI__builtin_amdgcn_grid_size_y:
19148     return EmitAMDGPUGridSize(*this, 1);
19149   case AMDGPU::BI__builtin_amdgcn_grid_size_z:
19150     return EmitAMDGPUGridSize(*this, 2);
19151 
19152   // r600 intrinsics
19153   case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
19154   case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
19155     return emitBuiltinWithOneOverloadedType<1>(*this, E,
19156                                                Intrinsic::r600_recipsqrt_ieee);
19157   case AMDGPU::BI__builtin_r600_read_tidig_x:
19158     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
19159   case AMDGPU::BI__builtin_r600_read_tidig_y:
19160     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
19161   case AMDGPU::BI__builtin_r600_read_tidig_z:
19162     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
19163   case AMDGPU::BI__builtin_amdgcn_alignbit: {
19164     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
19165     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
19166     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
19167     Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
19168     return Builder.CreateCall(F, { Src0, Src1, Src2 });
19169   }
19170   case AMDGPU::BI__builtin_amdgcn_fence: {
19171     ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
19172                             EmitScalarExpr(E->getArg(1)), AO, SSID);
19173     FenceInst *Fence = Builder.CreateFence(AO, SSID);
19174     if (E->getNumArgs() > 2)
19175       AddAMDGPUFenceAddressSpaceMMRA(Fence, E);
19176     return Fence;
19177   }
19178   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
19179   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
19180   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
19181   case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
19182   case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
19183   case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
19184   case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2f16:
19185   case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16:
19186   case AMDGPU::BI__builtin_amdgcn_ds_faddf:
19187   case AMDGPU::BI__builtin_amdgcn_ds_fminf:
19188   case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
19189     llvm::AtomicRMWInst::BinOp BinOp;
19190     switch (BuiltinID) {
19191     case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
19192     case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
19193       BinOp = llvm::AtomicRMWInst::UIncWrap;
19194       break;
19195     case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
19196     case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
19197       BinOp = llvm::AtomicRMWInst::UDecWrap;
19198       break;
19199     case AMDGPU::BI__builtin_amdgcn_ds_faddf:
19200     case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
19201     case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
19202     case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2f16:
19203     case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16:
19204       BinOp = llvm::AtomicRMWInst::FAdd;
19205       break;
19206     case AMDGPU::BI__builtin_amdgcn_ds_fminf:
19207       BinOp = llvm::AtomicRMWInst::FMin;
19208       break;
19209     case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
19210       BinOp = llvm::AtomicRMWInst::FMax;
19211       break;
19212     }
19213 
19214     Address Ptr = CheckAtomicAlignment(*this, E);
19215     Value *Val = EmitScalarExpr(E->getArg(1));
19216     llvm::Type *OrigTy = Val->getType();
19217     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
19218 
19219     bool Volatile;
19220 
19221     if (BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_faddf ||
19222         BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_fminf ||
19223         BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_fmaxf) {
19224       // __builtin_amdgcn_ds_faddf/fminf/fmaxf has an explicit volatile argument
19225       Volatile =
19226           cast<ConstantInt>(EmitScalarExpr(E->getArg(4)))->getZExtValue();
19227     } else {
19228       // Infer volatile from the passed type.
19229       Volatile =
19230           PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
19231     }
19232 
19233     if (E->getNumArgs() >= 4) {
19234       // Some of the builtins have explicit ordering and scope arguments.
19235       ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
19236                               EmitScalarExpr(E->getArg(3)), AO, SSID);
19237     } else {
19238       // The ds_atomic_fadd_* builtins do not have syncscope/order arguments.
19239       SSID = llvm::SyncScope::System;
19240       AO = AtomicOrdering::SequentiallyConsistent;
19241 
19242       // The v2bf16 builtin uses i16 instead of a natural bfloat type.
19243       if (BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16) {
19244         llvm::Type *V2BF16Ty = FixedVectorType::get(
19245             llvm::Type::getBFloatTy(Builder.getContext()), 2);
19246         Val = Builder.CreateBitCast(Val, V2BF16Ty);
19247       }
19248     }
19249 
19250     llvm::AtomicRMWInst *RMW =
19251         Builder.CreateAtomicRMW(BinOp, Ptr, Val, AO, SSID);
19252     if (Volatile)
19253       RMW->setVolatile(true);
19254     return Builder.CreateBitCast(RMW, OrigTy);
19255   }
19256   case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtn:
19257   case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtnl: {
19258     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
19259     llvm::Type *ResultType = ConvertType(E->getType());
19260     // s_sendmsg_rtn is mangled using return type only.
19261     Function *F =
19262         CGM.getIntrinsic(Intrinsic::amdgcn_s_sendmsg_rtn, {ResultType});
19263     return Builder.CreateCall(F, {Arg});
19264   }
19265   case AMDGPU::BI__builtin_amdgcn_make_buffer_rsrc:
19266     return emitBuiltinWithOneOverloadedType<4>(
19267         *this, E, Intrinsic::amdgcn_make_buffer_rsrc);
19268   case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b8:
19269   case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b16:
19270   case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b32:
19271   case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b64:
19272   case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b96:
19273   case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b128:
19274     return emitBuiltinWithOneOverloadedType<5>(
19275         *this, E, Intrinsic::amdgcn_raw_ptr_buffer_store);
19276   case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b8:
19277   case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b16:
19278   case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b32:
19279   case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b64:
19280   case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b96:
19281   case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b128: {
19282     llvm::Type *RetTy = nullptr;
19283     switch (BuiltinID) {
19284     case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b8:
19285       RetTy = Int8Ty;
19286       break;
19287     case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b16:
19288       RetTy = Int16Ty;
19289       break;
19290     case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b32:
19291       RetTy = Int32Ty;
19292       break;
19293     case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b64:
19294       RetTy = llvm::FixedVectorType::get(Int32Ty, /*NumElements=*/2);
19295       break;
19296     case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b96:
19297       RetTy = llvm::FixedVectorType::get(Int32Ty, /*NumElements=*/3);
19298       break;
19299     case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b128:
19300       RetTy = llvm::FixedVectorType::get(Int32Ty, /*NumElements=*/4);
19301       break;
19302     }
19303     Function *F =
19304         CGM.getIntrinsic(Intrinsic::amdgcn_raw_ptr_buffer_load, RetTy);
19305     return Builder.CreateCall(
19306         F, {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)),
19307             EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3))});
19308   }
19309   default:
19310     return nullptr;
19311   }
19312 }
19313 
19314 /// Handle a SystemZ function in which the final argument is a pointer
19315 /// to an int that receives the post-instruction CC value.  At the LLVM level
19316 /// this is represented as a function that returns a {result, cc} pair.
EmitSystemZIntrinsicWithCC(CodeGenFunction & CGF,unsigned IntrinsicID,const CallExpr * E)19317 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
19318                                          unsigned IntrinsicID,
19319                                          const CallExpr *E) {
19320   unsigned NumArgs = E->getNumArgs() - 1;
19321   SmallVector<Value *, 8> Args(NumArgs);
19322   for (unsigned I = 0; I < NumArgs; ++I)
19323     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
19324   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
19325   Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
19326   Value *Call = CGF.Builder.CreateCall(F, Args);
19327   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
19328   CGF.Builder.CreateStore(CC, CCPtr);
19329   return CGF.Builder.CreateExtractValue(Call, 0);
19330 }
19331 
EmitSystemZBuiltinExpr(unsigned BuiltinID,const CallExpr * E)19332 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
19333                                                const CallExpr *E) {
19334   switch (BuiltinID) {
19335   case SystemZ::BI__builtin_tbegin: {
19336     Value *TDB = EmitScalarExpr(E->getArg(0));
19337     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
19338     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
19339     return Builder.CreateCall(F, {TDB, Control});
19340   }
19341   case SystemZ::BI__builtin_tbegin_nofloat: {
19342     Value *TDB = EmitScalarExpr(E->getArg(0));
19343     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
19344     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
19345     return Builder.CreateCall(F, {TDB, Control});
19346   }
19347   case SystemZ::BI__builtin_tbeginc: {
19348     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
19349     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
19350     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
19351     return Builder.CreateCall(F, {TDB, Control});
19352   }
19353   case SystemZ::BI__builtin_tabort: {
19354     Value *Data = EmitScalarExpr(E->getArg(0));
19355     Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
19356     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
19357   }
19358   case SystemZ::BI__builtin_non_tx_store: {
19359     Value *Address = EmitScalarExpr(E->getArg(0));
19360     Value *Data = EmitScalarExpr(E->getArg(1));
19361     Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
19362     return Builder.CreateCall(F, {Data, Address});
19363   }
19364 
19365   // Vector builtins.  Note that most vector builtins are mapped automatically
19366   // to target-specific LLVM intrinsics.  The ones handled specially here can
19367   // be represented via standard LLVM IR, which is preferable to enable common
19368   // LLVM optimizations.
19369 
19370   case SystemZ::BI__builtin_s390_vpopctb:
19371   case SystemZ::BI__builtin_s390_vpopcth:
19372   case SystemZ::BI__builtin_s390_vpopctf:
19373   case SystemZ::BI__builtin_s390_vpopctg: {
19374     llvm::Type *ResultType = ConvertType(E->getType());
19375     Value *X = EmitScalarExpr(E->getArg(0));
19376     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
19377     return Builder.CreateCall(F, X);
19378   }
19379 
19380   case SystemZ::BI__builtin_s390_vclzb:
19381   case SystemZ::BI__builtin_s390_vclzh:
19382   case SystemZ::BI__builtin_s390_vclzf:
19383   case SystemZ::BI__builtin_s390_vclzg: {
19384     llvm::Type *ResultType = ConvertType(E->getType());
19385     Value *X = EmitScalarExpr(E->getArg(0));
19386     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
19387     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
19388     return Builder.CreateCall(F, {X, Undef});
19389   }
19390 
19391   case SystemZ::BI__builtin_s390_vctzb:
19392   case SystemZ::BI__builtin_s390_vctzh:
19393   case SystemZ::BI__builtin_s390_vctzf:
19394   case SystemZ::BI__builtin_s390_vctzg: {
19395     llvm::Type *ResultType = ConvertType(E->getType());
19396     Value *X = EmitScalarExpr(E->getArg(0));
19397     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
19398     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
19399     return Builder.CreateCall(F, {X, Undef});
19400   }
19401 
19402   case SystemZ::BI__builtin_s390_verllb:
19403   case SystemZ::BI__builtin_s390_verllh:
19404   case SystemZ::BI__builtin_s390_verllf:
19405   case SystemZ::BI__builtin_s390_verllg: {
19406     llvm::Type *ResultType = ConvertType(E->getType());
19407     llvm::Value *Src = EmitScalarExpr(E->getArg(0));
19408     llvm::Value *Amt = EmitScalarExpr(E->getArg(1));
19409     // Splat scalar rotate amount to vector type.
19410     unsigned NumElts = cast<llvm::FixedVectorType>(ResultType)->getNumElements();
19411     Amt = Builder.CreateIntCast(Amt, ResultType->getScalarType(), false);
19412     Amt = Builder.CreateVectorSplat(NumElts, Amt);
19413     Function *F = CGM.getIntrinsic(Intrinsic::fshl, ResultType);
19414     return Builder.CreateCall(F, { Src, Src, Amt });
19415   }
19416 
19417   case SystemZ::BI__builtin_s390_verllvb:
19418   case SystemZ::BI__builtin_s390_verllvh:
19419   case SystemZ::BI__builtin_s390_verllvf:
19420   case SystemZ::BI__builtin_s390_verllvg: {
19421     llvm::Type *ResultType = ConvertType(E->getType());
19422     llvm::Value *Src = EmitScalarExpr(E->getArg(0));
19423     llvm::Value *Amt = EmitScalarExpr(E->getArg(1));
19424     Function *F = CGM.getIntrinsic(Intrinsic::fshl, ResultType);
19425     return Builder.CreateCall(F, { Src, Src, Amt });
19426   }
19427 
19428   case SystemZ::BI__builtin_s390_vfsqsb:
19429   case SystemZ::BI__builtin_s390_vfsqdb: {
19430     llvm::Type *ResultType = ConvertType(E->getType());
19431     Value *X = EmitScalarExpr(E->getArg(0));
19432     if (Builder.getIsFPConstrained()) {
19433       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
19434       return Builder.CreateConstrainedFPCall(F, { X });
19435     } else {
19436       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
19437       return Builder.CreateCall(F, X);
19438     }
19439   }
19440   case SystemZ::BI__builtin_s390_vfmasb:
19441   case SystemZ::BI__builtin_s390_vfmadb: {
19442     llvm::Type *ResultType = ConvertType(E->getType());
19443     Value *X = EmitScalarExpr(E->getArg(0));
19444     Value *Y = EmitScalarExpr(E->getArg(1));
19445     Value *Z = EmitScalarExpr(E->getArg(2));
19446     if (Builder.getIsFPConstrained()) {
19447       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
19448       return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
19449     } else {
19450       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
19451       return Builder.CreateCall(F, {X, Y, Z});
19452     }
19453   }
19454   case SystemZ::BI__builtin_s390_vfmssb:
19455   case SystemZ::BI__builtin_s390_vfmsdb: {
19456     llvm::Type *ResultType = ConvertType(E->getType());
19457     Value *X = EmitScalarExpr(E->getArg(0));
19458     Value *Y = EmitScalarExpr(E->getArg(1));
19459     Value *Z = EmitScalarExpr(E->getArg(2));
19460     if (Builder.getIsFPConstrained()) {
19461       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
19462       return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
19463     } else {
19464       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
19465       return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
19466     }
19467   }
19468   case SystemZ::BI__builtin_s390_vfnmasb:
19469   case SystemZ::BI__builtin_s390_vfnmadb: {
19470     llvm::Type *ResultType = ConvertType(E->getType());
19471     Value *X = EmitScalarExpr(E->getArg(0));
19472     Value *Y = EmitScalarExpr(E->getArg(1));
19473     Value *Z = EmitScalarExpr(E->getArg(2));
19474     if (Builder.getIsFPConstrained()) {
19475       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
19476       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y,  Z}), "neg");
19477     } else {
19478       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
19479       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
19480     }
19481   }
19482   case SystemZ::BI__builtin_s390_vfnmssb:
19483   case SystemZ::BI__builtin_s390_vfnmsdb: {
19484     llvm::Type *ResultType = ConvertType(E->getType());
19485     Value *X = EmitScalarExpr(E->getArg(0));
19486     Value *Y = EmitScalarExpr(E->getArg(1));
19487     Value *Z = EmitScalarExpr(E->getArg(2));
19488     if (Builder.getIsFPConstrained()) {
19489       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
19490       Value *NegZ = Builder.CreateFNeg(Z, "sub");
19491       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
19492     } else {
19493       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
19494       Value *NegZ = Builder.CreateFNeg(Z, "neg");
19495       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
19496     }
19497   }
19498   case SystemZ::BI__builtin_s390_vflpsb:
19499   case SystemZ::BI__builtin_s390_vflpdb: {
19500     llvm::Type *ResultType = ConvertType(E->getType());
19501     Value *X = EmitScalarExpr(E->getArg(0));
19502     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
19503     return Builder.CreateCall(F, X);
19504   }
19505   case SystemZ::BI__builtin_s390_vflnsb:
19506   case SystemZ::BI__builtin_s390_vflndb: {
19507     llvm::Type *ResultType = ConvertType(E->getType());
19508     Value *X = EmitScalarExpr(E->getArg(0));
19509     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
19510     return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
19511   }
19512   case SystemZ::BI__builtin_s390_vfisb:
19513   case SystemZ::BI__builtin_s390_vfidb: {
19514     llvm::Type *ResultType = ConvertType(E->getType());
19515     Value *X = EmitScalarExpr(E->getArg(0));
19516     // Constant-fold the M4 and M5 mask arguments.
19517     llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
19518     llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
19519     // Check whether this instance can be represented via a LLVM standard
19520     // intrinsic.  We only support some combinations of M4 and M5.
19521     Intrinsic::ID ID = Intrinsic::not_intrinsic;
19522     Intrinsic::ID CI;
19523     switch (M4.getZExtValue()) {
19524     default: break;
19525     case 0:  // IEEE-inexact exception allowed
19526       switch (M5.getZExtValue()) {
19527       default: break;
19528       case 0: ID = Intrinsic::rint;
19529               CI = Intrinsic::experimental_constrained_rint; break;
19530       }
19531       break;
19532     case 4:  // IEEE-inexact exception suppressed
19533       switch (M5.getZExtValue()) {
19534       default: break;
19535       case 0: ID = Intrinsic::nearbyint;
19536               CI = Intrinsic::experimental_constrained_nearbyint; break;
19537       case 1: ID = Intrinsic::round;
19538               CI = Intrinsic::experimental_constrained_round; break;
19539       case 5: ID = Intrinsic::trunc;
19540               CI = Intrinsic::experimental_constrained_trunc; break;
19541       case 6: ID = Intrinsic::ceil;
19542               CI = Intrinsic::experimental_constrained_ceil; break;
19543       case 7: ID = Intrinsic::floor;
19544               CI = Intrinsic::experimental_constrained_floor; break;
19545       }
19546       break;
19547     }
19548     if (ID != Intrinsic::not_intrinsic) {
19549       if (Builder.getIsFPConstrained()) {
19550         Function *F = CGM.getIntrinsic(CI, ResultType);
19551         return Builder.CreateConstrainedFPCall(F, X);
19552       } else {
19553         Function *F = CGM.getIntrinsic(ID, ResultType);
19554         return Builder.CreateCall(F, X);
19555       }
19556     }
19557     switch (BuiltinID) { // FIXME: constrained version?
19558       case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
19559       case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
19560       default: llvm_unreachable("Unknown BuiltinID");
19561     }
19562     Function *F = CGM.getIntrinsic(ID);
19563     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
19564     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
19565     return Builder.CreateCall(F, {X, M4Value, M5Value});
19566   }
19567   case SystemZ::BI__builtin_s390_vfmaxsb:
19568   case SystemZ::BI__builtin_s390_vfmaxdb: {
19569     llvm::Type *ResultType = ConvertType(E->getType());
19570     Value *X = EmitScalarExpr(E->getArg(0));
19571     Value *Y = EmitScalarExpr(E->getArg(1));
19572     // Constant-fold the M4 mask argument.
19573     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
19574     // Check whether this instance can be represented via a LLVM standard
19575     // intrinsic.  We only support some values of M4.
19576     Intrinsic::ID ID = Intrinsic::not_intrinsic;
19577     Intrinsic::ID CI;
19578     switch (M4.getZExtValue()) {
19579     default: break;
19580     case 4: ID = Intrinsic::maxnum;
19581             CI = Intrinsic::experimental_constrained_maxnum; break;
19582     }
19583     if (ID != Intrinsic::not_intrinsic) {
19584       if (Builder.getIsFPConstrained()) {
19585         Function *F = CGM.getIntrinsic(CI, ResultType);
19586         return Builder.CreateConstrainedFPCall(F, {X, Y});
19587       } else {
19588         Function *F = CGM.getIntrinsic(ID, ResultType);
19589         return Builder.CreateCall(F, {X, Y});
19590       }
19591     }
19592     switch (BuiltinID) {
19593       case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
19594       case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
19595       default: llvm_unreachable("Unknown BuiltinID");
19596     }
19597     Function *F = CGM.getIntrinsic(ID);
19598     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
19599     return Builder.CreateCall(F, {X, Y, M4Value});
19600   }
19601   case SystemZ::BI__builtin_s390_vfminsb:
19602   case SystemZ::BI__builtin_s390_vfmindb: {
19603     llvm::Type *ResultType = ConvertType(E->getType());
19604     Value *X = EmitScalarExpr(E->getArg(0));
19605     Value *Y = EmitScalarExpr(E->getArg(1));
19606     // Constant-fold the M4 mask argument.
19607     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
19608     // Check whether this instance can be represented via a LLVM standard
19609     // intrinsic.  We only support some values of M4.
19610     Intrinsic::ID ID = Intrinsic::not_intrinsic;
19611     Intrinsic::ID CI;
19612     switch (M4.getZExtValue()) {
19613     default: break;
19614     case 4: ID = Intrinsic::minnum;
19615             CI = Intrinsic::experimental_constrained_minnum; break;
19616     }
19617     if (ID != Intrinsic::not_intrinsic) {
19618       if (Builder.getIsFPConstrained()) {
19619         Function *F = CGM.getIntrinsic(CI, ResultType);
19620         return Builder.CreateConstrainedFPCall(F, {X, Y});
19621       } else {
19622         Function *F = CGM.getIntrinsic(ID, ResultType);
19623         return Builder.CreateCall(F, {X, Y});
19624       }
19625     }
19626     switch (BuiltinID) {
19627       case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
19628       case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
19629       default: llvm_unreachable("Unknown BuiltinID");
19630     }
19631     Function *F = CGM.getIntrinsic(ID);
19632     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
19633     return Builder.CreateCall(F, {X, Y, M4Value});
19634   }
19635 
19636   case SystemZ::BI__builtin_s390_vlbrh:
19637   case SystemZ::BI__builtin_s390_vlbrf:
19638   case SystemZ::BI__builtin_s390_vlbrg: {
19639     llvm::Type *ResultType = ConvertType(E->getType());
19640     Value *X = EmitScalarExpr(E->getArg(0));
19641     Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
19642     return Builder.CreateCall(F, X);
19643   }
19644 
19645   // Vector intrinsics that output the post-instruction CC value.
19646 
19647 #define INTRINSIC_WITH_CC(NAME) \
19648     case SystemZ::BI__builtin_##NAME: \
19649       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
19650 
19651   INTRINSIC_WITH_CC(s390_vpkshs);
19652   INTRINSIC_WITH_CC(s390_vpksfs);
19653   INTRINSIC_WITH_CC(s390_vpksgs);
19654 
19655   INTRINSIC_WITH_CC(s390_vpklshs);
19656   INTRINSIC_WITH_CC(s390_vpklsfs);
19657   INTRINSIC_WITH_CC(s390_vpklsgs);
19658 
19659   INTRINSIC_WITH_CC(s390_vceqbs);
19660   INTRINSIC_WITH_CC(s390_vceqhs);
19661   INTRINSIC_WITH_CC(s390_vceqfs);
19662   INTRINSIC_WITH_CC(s390_vceqgs);
19663 
19664   INTRINSIC_WITH_CC(s390_vchbs);
19665   INTRINSIC_WITH_CC(s390_vchhs);
19666   INTRINSIC_WITH_CC(s390_vchfs);
19667   INTRINSIC_WITH_CC(s390_vchgs);
19668 
19669   INTRINSIC_WITH_CC(s390_vchlbs);
19670   INTRINSIC_WITH_CC(s390_vchlhs);
19671   INTRINSIC_WITH_CC(s390_vchlfs);
19672   INTRINSIC_WITH_CC(s390_vchlgs);
19673 
19674   INTRINSIC_WITH_CC(s390_vfaebs);
19675   INTRINSIC_WITH_CC(s390_vfaehs);
19676   INTRINSIC_WITH_CC(s390_vfaefs);
19677 
19678   INTRINSIC_WITH_CC(s390_vfaezbs);
19679   INTRINSIC_WITH_CC(s390_vfaezhs);
19680   INTRINSIC_WITH_CC(s390_vfaezfs);
19681 
19682   INTRINSIC_WITH_CC(s390_vfeebs);
19683   INTRINSIC_WITH_CC(s390_vfeehs);
19684   INTRINSIC_WITH_CC(s390_vfeefs);
19685 
19686   INTRINSIC_WITH_CC(s390_vfeezbs);
19687   INTRINSIC_WITH_CC(s390_vfeezhs);
19688   INTRINSIC_WITH_CC(s390_vfeezfs);
19689 
19690   INTRINSIC_WITH_CC(s390_vfenebs);
19691   INTRINSIC_WITH_CC(s390_vfenehs);
19692   INTRINSIC_WITH_CC(s390_vfenefs);
19693 
19694   INTRINSIC_WITH_CC(s390_vfenezbs);
19695   INTRINSIC_WITH_CC(s390_vfenezhs);
19696   INTRINSIC_WITH_CC(s390_vfenezfs);
19697 
19698   INTRINSIC_WITH_CC(s390_vistrbs);
19699   INTRINSIC_WITH_CC(s390_vistrhs);
19700   INTRINSIC_WITH_CC(s390_vistrfs);
19701 
19702   INTRINSIC_WITH_CC(s390_vstrcbs);
19703   INTRINSIC_WITH_CC(s390_vstrchs);
19704   INTRINSIC_WITH_CC(s390_vstrcfs);
19705 
19706   INTRINSIC_WITH_CC(s390_vstrczbs);
19707   INTRINSIC_WITH_CC(s390_vstrczhs);
19708   INTRINSIC_WITH_CC(s390_vstrczfs);
19709 
19710   INTRINSIC_WITH_CC(s390_vfcesbs);
19711   INTRINSIC_WITH_CC(s390_vfcedbs);
19712   INTRINSIC_WITH_CC(s390_vfchsbs);
19713   INTRINSIC_WITH_CC(s390_vfchdbs);
19714   INTRINSIC_WITH_CC(s390_vfchesbs);
19715   INTRINSIC_WITH_CC(s390_vfchedbs);
19716 
19717   INTRINSIC_WITH_CC(s390_vftcisb);
19718   INTRINSIC_WITH_CC(s390_vftcidb);
19719 
19720   INTRINSIC_WITH_CC(s390_vstrsb);
19721   INTRINSIC_WITH_CC(s390_vstrsh);
19722   INTRINSIC_WITH_CC(s390_vstrsf);
19723 
19724   INTRINSIC_WITH_CC(s390_vstrszb);
19725   INTRINSIC_WITH_CC(s390_vstrszh);
19726   INTRINSIC_WITH_CC(s390_vstrszf);
19727 
19728 #undef INTRINSIC_WITH_CC
19729 
19730   default:
19731     return nullptr;
19732   }
19733 }
19734 
19735 namespace {
19736 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
19737 struct NVPTXMmaLdstInfo {
19738   unsigned NumResults;  // Number of elements to load/store
19739   // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
19740   unsigned IID_col;
19741   unsigned IID_row;
19742 };
19743 
19744 #define MMA_INTR(geom_op_type, layout) \
19745   Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
19746 #define MMA_LDST(n, geom_op_type)                                              \
19747   { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
19748 
getNVPTXMmaLdstInfo(unsigned BuiltinID)19749 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
19750   switch (BuiltinID) {
19751   // FP MMA loads
19752   case NVPTX::BI__hmma_m16n16k16_ld_a:
19753     return MMA_LDST(8, m16n16k16_load_a_f16);
19754   case NVPTX::BI__hmma_m16n16k16_ld_b:
19755     return MMA_LDST(8, m16n16k16_load_b_f16);
19756   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
19757     return MMA_LDST(4, m16n16k16_load_c_f16);
19758   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
19759     return MMA_LDST(8, m16n16k16_load_c_f32);
19760   case NVPTX::BI__hmma_m32n8k16_ld_a:
19761     return MMA_LDST(8, m32n8k16_load_a_f16);
19762   case NVPTX::BI__hmma_m32n8k16_ld_b:
19763     return MMA_LDST(8, m32n8k16_load_b_f16);
19764   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
19765     return MMA_LDST(4, m32n8k16_load_c_f16);
19766   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
19767     return MMA_LDST(8, m32n8k16_load_c_f32);
19768   case NVPTX::BI__hmma_m8n32k16_ld_a:
19769     return MMA_LDST(8, m8n32k16_load_a_f16);
19770   case NVPTX::BI__hmma_m8n32k16_ld_b:
19771     return MMA_LDST(8, m8n32k16_load_b_f16);
19772   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
19773     return MMA_LDST(4, m8n32k16_load_c_f16);
19774   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
19775     return MMA_LDST(8, m8n32k16_load_c_f32);
19776 
19777   // Integer MMA loads
19778   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
19779     return MMA_LDST(2, m16n16k16_load_a_s8);
19780   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
19781     return MMA_LDST(2, m16n16k16_load_a_u8);
19782   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
19783     return MMA_LDST(2, m16n16k16_load_b_s8);
19784   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
19785     return MMA_LDST(2, m16n16k16_load_b_u8);
19786   case NVPTX::BI__imma_m16n16k16_ld_c:
19787     return MMA_LDST(8, m16n16k16_load_c_s32);
19788   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
19789     return MMA_LDST(4, m32n8k16_load_a_s8);
19790   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
19791     return MMA_LDST(4, m32n8k16_load_a_u8);
19792   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
19793     return MMA_LDST(1, m32n8k16_load_b_s8);
19794   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
19795     return MMA_LDST(1, m32n8k16_load_b_u8);
19796   case NVPTX::BI__imma_m32n8k16_ld_c:
19797     return MMA_LDST(8, m32n8k16_load_c_s32);
19798   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
19799     return MMA_LDST(1, m8n32k16_load_a_s8);
19800   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
19801     return MMA_LDST(1, m8n32k16_load_a_u8);
19802   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
19803     return MMA_LDST(4, m8n32k16_load_b_s8);
19804   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
19805     return MMA_LDST(4, m8n32k16_load_b_u8);
19806   case NVPTX::BI__imma_m8n32k16_ld_c:
19807     return MMA_LDST(8, m8n32k16_load_c_s32);
19808 
19809   // Sub-integer MMA loads.
19810   // Only row/col layout is supported by A/B fragments.
19811   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
19812     return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
19813   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
19814     return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
19815   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
19816     return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
19817   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
19818     return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
19819   case NVPTX::BI__imma_m8n8k32_ld_c:
19820     return MMA_LDST(2, m8n8k32_load_c_s32);
19821   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
19822     return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
19823   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
19824     return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
19825   case NVPTX::BI__bmma_m8n8k128_ld_c:
19826     return MMA_LDST(2, m8n8k128_load_c_s32);
19827 
19828   // Double MMA loads
19829   case NVPTX::BI__dmma_m8n8k4_ld_a:
19830     return MMA_LDST(1, m8n8k4_load_a_f64);
19831   case NVPTX::BI__dmma_m8n8k4_ld_b:
19832     return MMA_LDST(1, m8n8k4_load_b_f64);
19833   case NVPTX::BI__dmma_m8n8k4_ld_c:
19834     return MMA_LDST(2, m8n8k4_load_c_f64);
19835 
19836   // Alternate float MMA loads
19837   case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
19838     return MMA_LDST(4, m16n16k16_load_a_bf16);
19839   case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
19840     return MMA_LDST(4, m16n16k16_load_b_bf16);
19841   case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
19842     return MMA_LDST(2, m8n32k16_load_a_bf16);
19843   case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
19844     return MMA_LDST(8, m8n32k16_load_b_bf16);
19845   case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
19846     return MMA_LDST(8, m32n8k16_load_a_bf16);
19847   case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
19848     return MMA_LDST(2, m32n8k16_load_b_bf16);
19849   case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
19850     return MMA_LDST(4, m16n16k8_load_a_tf32);
19851   case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
19852     return MMA_LDST(4, m16n16k8_load_b_tf32);
19853   case NVPTX::BI__mma_tf32_m16n16k8_ld_c:
19854     return MMA_LDST(8, m16n16k8_load_c_f32);
19855 
19856   // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
19857   // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
19858   // use fragment C for both loads and stores.
19859   // FP MMA stores.
19860   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
19861     return MMA_LDST(4, m16n16k16_store_d_f16);
19862   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
19863     return MMA_LDST(8, m16n16k16_store_d_f32);
19864   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
19865     return MMA_LDST(4, m32n8k16_store_d_f16);
19866   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
19867     return MMA_LDST(8, m32n8k16_store_d_f32);
19868   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
19869     return MMA_LDST(4, m8n32k16_store_d_f16);
19870   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
19871     return MMA_LDST(8, m8n32k16_store_d_f32);
19872 
19873   // Integer and sub-integer MMA stores.
19874   // Another naming quirk. Unlike other MMA builtins that use PTX types in the
19875   // name, integer loads/stores use LLVM's i32.
19876   case NVPTX::BI__imma_m16n16k16_st_c_i32:
19877     return MMA_LDST(8, m16n16k16_store_d_s32);
19878   case NVPTX::BI__imma_m32n8k16_st_c_i32:
19879     return MMA_LDST(8, m32n8k16_store_d_s32);
19880   case NVPTX::BI__imma_m8n32k16_st_c_i32:
19881     return MMA_LDST(8, m8n32k16_store_d_s32);
19882   case NVPTX::BI__imma_m8n8k32_st_c_i32:
19883     return MMA_LDST(2, m8n8k32_store_d_s32);
19884   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
19885     return MMA_LDST(2, m8n8k128_store_d_s32);
19886 
19887   // Double MMA store
19888   case NVPTX::BI__dmma_m8n8k4_st_c_f64:
19889     return MMA_LDST(2, m8n8k4_store_d_f64);
19890 
19891   // Alternate float MMA store
19892   case NVPTX::BI__mma_m16n16k8_st_c_f32:
19893     return MMA_LDST(8, m16n16k8_store_d_f32);
19894 
19895   default:
19896     llvm_unreachable("Unknown MMA builtin");
19897   }
19898 }
19899 #undef MMA_LDST
19900 #undef MMA_INTR
19901 
19902 
19903 struct NVPTXMmaInfo {
19904   unsigned NumEltsA;
19905   unsigned NumEltsB;
19906   unsigned NumEltsC;
19907   unsigned NumEltsD;
19908 
19909   // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority
19910   // over 'col' for layout. The index of non-satf variants is expected to match
19911   // the undocumented layout constants used by CUDA's mma.hpp.
19912   std::array<unsigned, 8> Variants;
19913 
getMMAIntrinsic__anon6c984ebf1711::NVPTXMmaInfo19914   unsigned getMMAIntrinsic(int Layout, bool Satf) {
19915     unsigned Index = Layout + 4 * Satf;
19916     if (Index >= Variants.size())
19917       return 0;
19918     return Variants[Index];
19919   }
19920 };
19921 
19922   // Returns an intrinsic that matches Layout and Satf for valid combinations of
19923   // Layout and Satf, 0 otherwise.
getNVPTXMmaInfo(unsigned BuiltinID)19924 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
19925   // clang-format off
19926 #define MMA_VARIANTS(geom, type)                                    \
19927       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
19928       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
19929       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
19930       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type
19931 #define MMA_SATF_VARIANTS(geom, type)                               \
19932       MMA_VARIANTS(geom, type),                                     \
19933       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
19934       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
19935       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
19936       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite
19937 // Sub-integer MMA only supports row.col layout.
19938 #define MMA_VARIANTS_I4(geom, type) \
19939       0, \
19940       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
19941       0, \
19942       0, \
19943       0, \
19944       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
19945       0, \
19946       0
19947 // b1 MMA does not support .satfinite.
19948 #define MMA_VARIANTS_B1_XOR(geom, type) \
19949       0, \
19950       Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type,             \
19951       0, \
19952       0, \
19953       0, \
19954       0, \
19955       0, \
19956       0
19957 #define MMA_VARIANTS_B1_AND(geom, type) \
19958       0, \
19959       Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type,             \
19960       0, \
19961       0, \
19962       0, \
19963       0, \
19964       0, \
19965       0
19966   // clang-format on
19967   switch (BuiltinID) {
19968   // FP MMA
19969   // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while
19970   // NumEltsN of return value are ordered as A,B,C,D.
19971   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
19972     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}};
19973   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
19974     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}};
19975   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
19976     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}};
19977   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
19978     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}};
19979   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
19980     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}};
19981   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
19982     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}};
19983   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
19984     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}};
19985   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
19986     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}};
19987   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
19988     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}};
19989   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
19990     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}};
19991   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
19992     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}};
19993   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
19994     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}};
19995 
19996   // Integer MMA
19997   case NVPTX::BI__imma_m16n16k16_mma_s8:
19998     return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}};
19999   case NVPTX::BI__imma_m16n16k16_mma_u8:
20000     return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}};
20001   case NVPTX::BI__imma_m32n8k16_mma_s8:
20002     return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}};
20003   case NVPTX::BI__imma_m32n8k16_mma_u8:
20004     return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}};
20005   case NVPTX::BI__imma_m8n32k16_mma_s8:
20006     return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}};
20007   case NVPTX::BI__imma_m8n32k16_mma_u8:
20008     return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}};
20009 
20010   // Sub-integer MMA
20011   case NVPTX::BI__imma_m8n8k32_mma_s4:
20012     return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}};
20013   case NVPTX::BI__imma_m8n8k32_mma_u4:
20014     return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}};
20015   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
20016     return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}};
20017   case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
20018     return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}};
20019 
20020   // Double MMA
20021   case NVPTX::BI__dmma_m8n8k4_mma_f64:
20022     return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}};
20023 
20024   // Alternate FP MMA
20025   case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
20026     return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}};
20027   case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
20028     return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}};
20029   case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
20030     return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}};
20031   case NVPTX::BI__mma_tf32_m16n16k8_mma_f32:
20032     return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}};
20033   default:
20034     llvm_unreachable("Unexpected builtin ID.");
20035   }
20036 #undef MMA_VARIANTS
20037 #undef MMA_SATF_VARIANTS
20038 #undef MMA_VARIANTS_I4
20039 #undef MMA_VARIANTS_B1_AND
20040 #undef MMA_VARIANTS_B1_XOR
20041 }
20042 
MakeLdgLdu(unsigned IntrinsicID,CodeGenFunction & CGF,const CallExpr * E)20043 static Value *MakeLdgLdu(unsigned IntrinsicID, CodeGenFunction &CGF,
20044                          const CallExpr *E) {
20045   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
20046   QualType ArgType = E->getArg(0)->getType();
20047   clang::CharUnits Align = CGF.CGM.getNaturalPointeeTypeAlignment(ArgType);
20048   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ArgType->getPointeeType());
20049   return CGF.Builder.CreateCall(
20050       CGF.CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
20051       {Ptr, ConstantInt::get(CGF.Builder.getInt32Ty(), Align.getQuantity())});
20052 }
20053 
MakeScopedAtomic(unsigned IntrinsicID,CodeGenFunction & CGF,const CallExpr * E)20054 static Value *MakeScopedAtomic(unsigned IntrinsicID, CodeGenFunction &CGF,
20055                                const CallExpr *E) {
20056   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
20057   llvm::Type *ElemTy =
20058       CGF.ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
20059   return CGF.Builder.CreateCall(
20060       CGF.CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
20061       {Ptr, CGF.EmitScalarExpr(E->getArg(1))});
20062 }
20063 
MakeCpAsync(unsigned IntrinsicID,unsigned IntrinsicIDS,CodeGenFunction & CGF,const CallExpr * E,int SrcSize)20064 static Value *MakeCpAsync(unsigned IntrinsicID, unsigned IntrinsicIDS,
20065                           CodeGenFunction &CGF, const CallExpr *E,
20066                           int SrcSize) {
20067   return E->getNumArgs() == 3
20068              ? CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IntrinsicIDS),
20069                                       {CGF.EmitScalarExpr(E->getArg(0)),
20070                                        CGF.EmitScalarExpr(E->getArg(1)),
20071                                        CGF.EmitScalarExpr(E->getArg(2))})
20072              : CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IntrinsicID),
20073                                       {CGF.EmitScalarExpr(E->getArg(0)),
20074                                        CGF.EmitScalarExpr(E->getArg(1))});
20075 }
20076 
MakeHalfType(unsigned IntrinsicID,unsigned BuiltinID,const CallExpr * E,CodeGenFunction & CGF)20077 static Value *MakeHalfType(unsigned IntrinsicID, unsigned BuiltinID,
20078                            const CallExpr *E, CodeGenFunction &CGF) {
20079   auto &C = CGF.CGM.getContext();
20080   if (!(C.getLangOpts().NativeHalfType ||
20081         !C.getTargetInfo().useFP16ConversionIntrinsics())) {
20082     CGF.CGM.Error(E->getExprLoc(), C.BuiltinInfo.getName(BuiltinID).str() +
20083                                        " requires native half type support.");
20084     return nullptr;
20085   }
20086 
20087   if (IntrinsicID == Intrinsic::nvvm_ldg_global_f ||
20088       IntrinsicID == Intrinsic::nvvm_ldu_global_f)
20089     return MakeLdgLdu(IntrinsicID, CGF, E);
20090 
20091   SmallVector<Value *, 16> Args;
20092   auto *F = CGF.CGM.getIntrinsic(IntrinsicID);
20093   auto *FTy = F->getFunctionType();
20094   unsigned ICEArguments = 0;
20095   ASTContext::GetBuiltinTypeError Error;
20096   C.GetBuiltinType(BuiltinID, Error, &ICEArguments);
20097   assert(Error == ASTContext::GE_None && "Should not codegen an error");
20098   for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
20099     assert((ICEArguments & (1 << i)) == 0);
20100     auto *ArgValue = CGF.EmitScalarExpr(E->getArg(i));
20101     auto *PTy = FTy->getParamType(i);
20102     if (PTy != ArgValue->getType())
20103       ArgValue = CGF.Builder.CreateBitCast(ArgValue, PTy);
20104     Args.push_back(ArgValue);
20105   }
20106 
20107   return CGF.Builder.CreateCall(F, Args);
20108 }
20109 } // namespace
20110 
EmitNVPTXBuiltinExpr(unsigned BuiltinID,const CallExpr * E)20111 Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID,
20112                                              const CallExpr *E) {
20113   switch (BuiltinID) {
20114   case NVPTX::BI__nvvm_atom_add_gen_i:
20115   case NVPTX::BI__nvvm_atom_add_gen_l:
20116   case NVPTX::BI__nvvm_atom_add_gen_ll:
20117     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
20118 
20119   case NVPTX::BI__nvvm_atom_sub_gen_i:
20120   case NVPTX::BI__nvvm_atom_sub_gen_l:
20121   case NVPTX::BI__nvvm_atom_sub_gen_ll:
20122     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
20123 
20124   case NVPTX::BI__nvvm_atom_and_gen_i:
20125   case NVPTX::BI__nvvm_atom_and_gen_l:
20126   case NVPTX::BI__nvvm_atom_and_gen_ll:
20127     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
20128 
20129   case NVPTX::BI__nvvm_atom_or_gen_i:
20130   case NVPTX::BI__nvvm_atom_or_gen_l:
20131   case NVPTX::BI__nvvm_atom_or_gen_ll:
20132     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
20133 
20134   case NVPTX::BI__nvvm_atom_xor_gen_i:
20135   case NVPTX::BI__nvvm_atom_xor_gen_l:
20136   case NVPTX::BI__nvvm_atom_xor_gen_ll:
20137     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
20138 
20139   case NVPTX::BI__nvvm_atom_xchg_gen_i:
20140   case NVPTX::BI__nvvm_atom_xchg_gen_l:
20141   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
20142     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
20143 
20144   case NVPTX::BI__nvvm_atom_max_gen_i:
20145   case NVPTX::BI__nvvm_atom_max_gen_l:
20146   case NVPTX::BI__nvvm_atom_max_gen_ll:
20147     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
20148 
20149   case NVPTX::BI__nvvm_atom_max_gen_ui:
20150   case NVPTX::BI__nvvm_atom_max_gen_ul:
20151   case NVPTX::BI__nvvm_atom_max_gen_ull:
20152     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
20153 
20154   case NVPTX::BI__nvvm_atom_min_gen_i:
20155   case NVPTX::BI__nvvm_atom_min_gen_l:
20156   case NVPTX::BI__nvvm_atom_min_gen_ll:
20157     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
20158 
20159   case NVPTX::BI__nvvm_atom_min_gen_ui:
20160   case NVPTX::BI__nvvm_atom_min_gen_ul:
20161   case NVPTX::BI__nvvm_atom_min_gen_ull:
20162     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
20163 
20164   case NVPTX::BI__nvvm_atom_cas_gen_i:
20165   case NVPTX::BI__nvvm_atom_cas_gen_l:
20166   case NVPTX::BI__nvvm_atom_cas_gen_ll:
20167     // __nvvm_atom_cas_gen_* should return the old value rather than the
20168     // success flag.
20169     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
20170 
20171   case NVPTX::BI__nvvm_atom_add_gen_f:
20172   case NVPTX::BI__nvvm_atom_add_gen_d: {
20173     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
20174     Value *Val = EmitScalarExpr(E->getArg(1));
20175 
20176     return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, DestAddr, Val,
20177                                    AtomicOrdering::SequentiallyConsistent);
20178   }
20179 
20180   case NVPTX::BI__nvvm_atom_inc_gen_ui: {
20181     Value *Ptr = EmitScalarExpr(E->getArg(0));
20182     Value *Val = EmitScalarExpr(E->getArg(1));
20183     Function *FnALI32 =
20184         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
20185     return Builder.CreateCall(FnALI32, {Ptr, Val});
20186   }
20187 
20188   case NVPTX::BI__nvvm_atom_dec_gen_ui: {
20189     Value *Ptr = EmitScalarExpr(E->getArg(0));
20190     Value *Val = EmitScalarExpr(E->getArg(1));
20191     Function *FnALD32 =
20192         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
20193     return Builder.CreateCall(FnALD32, {Ptr, Val});
20194   }
20195 
20196   case NVPTX::BI__nvvm_ldg_c:
20197   case NVPTX::BI__nvvm_ldg_sc:
20198   case NVPTX::BI__nvvm_ldg_c2:
20199   case NVPTX::BI__nvvm_ldg_sc2:
20200   case NVPTX::BI__nvvm_ldg_c4:
20201   case NVPTX::BI__nvvm_ldg_sc4:
20202   case NVPTX::BI__nvvm_ldg_s:
20203   case NVPTX::BI__nvvm_ldg_s2:
20204   case NVPTX::BI__nvvm_ldg_s4:
20205   case NVPTX::BI__nvvm_ldg_i:
20206   case NVPTX::BI__nvvm_ldg_i2:
20207   case NVPTX::BI__nvvm_ldg_i4:
20208   case NVPTX::BI__nvvm_ldg_l:
20209   case NVPTX::BI__nvvm_ldg_l2:
20210   case NVPTX::BI__nvvm_ldg_ll:
20211   case NVPTX::BI__nvvm_ldg_ll2:
20212   case NVPTX::BI__nvvm_ldg_uc:
20213   case NVPTX::BI__nvvm_ldg_uc2:
20214   case NVPTX::BI__nvvm_ldg_uc4:
20215   case NVPTX::BI__nvvm_ldg_us:
20216   case NVPTX::BI__nvvm_ldg_us2:
20217   case NVPTX::BI__nvvm_ldg_us4:
20218   case NVPTX::BI__nvvm_ldg_ui:
20219   case NVPTX::BI__nvvm_ldg_ui2:
20220   case NVPTX::BI__nvvm_ldg_ui4:
20221   case NVPTX::BI__nvvm_ldg_ul:
20222   case NVPTX::BI__nvvm_ldg_ul2:
20223   case NVPTX::BI__nvvm_ldg_ull:
20224   case NVPTX::BI__nvvm_ldg_ull2:
20225     // PTX Interoperability section 2.2: "For a vector with an even number of
20226     // elements, its alignment is set to number of elements times the alignment
20227     // of its member: n*alignof(t)."
20228     return MakeLdgLdu(Intrinsic::nvvm_ldg_global_i, *this, E);
20229   case NVPTX::BI__nvvm_ldg_f:
20230   case NVPTX::BI__nvvm_ldg_f2:
20231   case NVPTX::BI__nvvm_ldg_f4:
20232   case NVPTX::BI__nvvm_ldg_d:
20233   case NVPTX::BI__nvvm_ldg_d2:
20234     return MakeLdgLdu(Intrinsic::nvvm_ldg_global_f, *this, E);
20235 
20236   case NVPTX::BI__nvvm_ldu_c:
20237   case NVPTX::BI__nvvm_ldu_sc:
20238   case NVPTX::BI__nvvm_ldu_c2:
20239   case NVPTX::BI__nvvm_ldu_sc2:
20240   case NVPTX::BI__nvvm_ldu_c4:
20241   case NVPTX::BI__nvvm_ldu_sc4:
20242   case NVPTX::BI__nvvm_ldu_s:
20243   case NVPTX::BI__nvvm_ldu_s2:
20244   case NVPTX::BI__nvvm_ldu_s4:
20245   case NVPTX::BI__nvvm_ldu_i:
20246   case NVPTX::BI__nvvm_ldu_i2:
20247   case NVPTX::BI__nvvm_ldu_i4:
20248   case NVPTX::BI__nvvm_ldu_l:
20249   case NVPTX::BI__nvvm_ldu_l2:
20250   case NVPTX::BI__nvvm_ldu_ll:
20251   case NVPTX::BI__nvvm_ldu_ll2:
20252   case NVPTX::BI__nvvm_ldu_uc:
20253   case NVPTX::BI__nvvm_ldu_uc2:
20254   case NVPTX::BI__nvvm_ldu_uc4:
20255   case NVPTX::BI__nvvm_ldu_us:
20256   case NVPTX::BI__nvvm_ldu_us2:
20257   case NVPTX::BI__nvvm_ldu_us4:
20258   case NVPTX::BI__nvvm_ldu_ui:
20259   case NVPTX::BI__nvvm_ldu_ui2:
20260   case NVPTX::BI__nvvm_ldu_ui4:
20261   case NVPTX::BI__nvvm_ldu_ul:
20262   case NVPTX::BI__nvvm_ldu_ul2:
20263   case NVPTX::BI__nvvm_ldu_ull:
20264   case NVPTX::BI__nvvm_ldu_ull2:
20265     return MakeLdgLdu(Intrinsic::nvvm_ldu_global_i, *this, E);
20266   case NVPTX::BI__nvvm_ldu_f:
20267   case NVPTX::BI__nvvm_ldu_f2:
20268   case NVPTX::BI__nvvm_ldu_f4:
20269   case NVPTX::BI__nvvm_ldu_d:
20270   case NVPTX::BI__nvvm_ldu_d2:
20271     return MakeLdgLdu(Intrinsic::nvvm_ldu_global_f, *this, E);
20272 
20273   case NVPTX::BI__nvvm_atom_cta_add_gen_i:
20274   case NVPTX::BI__nvvm_atom_cta_add_gen_l:
20275   case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
20276     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta, *this, E);
20277   case NVPTX::BI__nvvm_atom_sys_add_gen_i:
20278   case NVPTX::BI__nvvm_atom_sys_add_gen_l:
20279   case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
20280     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys, *this, E);
20281   case NVPTX::BI__nvvm_atom_cta_add_gen_f:
20282   case NVPTX::BI__nvvm_atom_cta_add_gen_d:
20283     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta, *this, E);
20284   case NVPTX::BI__nvvm_atom_sys_add_gen_f:
20285   case NVPTX::BI__nvvm_atom_sys_add_gen_d:
20286     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys, *this, E);
20287   case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
20288   case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
20289   case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
20290     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta, *this, E);
20291   case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
20292   case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
20293   case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
20294     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys, *this, E);
20295   case NVPTX::BI__nvvm_atom_cta_max_gen_i:
20296   case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
20297   case NVPTX::BI__nvvm_atom_cta_max_gen_l:
20298   case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
20299   case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
20300   case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
20301     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta, *this, E);
20302   case NVPTX::BI__nvvm_atom_sys_max_gen_i:
20303   case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
20304   case NVPTX::BI__nvvm_atom_sys_max_gen_l:
20305   case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
20306   case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
20307   case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
20308     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys, *this, E);
20309   case NVPTX::BI__nvvm_atom_cta_min_gen_i:
20310   case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
20311   case NVPTX::BI__nvvm_atom_cta_min_gen_l:
20312   case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
20313   case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
20314   case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
20315     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta, *this, E);
20316   case NVPTX::BI__nvvm_atom_sys_min_gen_i:
20317   case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
20318   case NVPTX::BI__nvvm_atom_sys_min_gen_l:
20319   case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
20320   case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
20321   case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
20322     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys, *this, E);
20323   case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
20324     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta, *this, E);
20325   case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
20326     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta, *this, E);
20327   case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
20328     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys, *this, E);
20329   case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
20330     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys, *this, E);
20331   case NVPTX::BI__nvvm_atom_cta_and_gen_i:
20332   case NVPTX::BI__nvvm_atom_cta_and_gen_l:
20333   case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
20334     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta, *this, E);
20335   case NVPTX::BI__nvvm_atom_sys_and_gen_i:
20336   case NVPTX::BI__nvvm_atom_sys_and_gen_l:
20337   case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
20338     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys, *this, E);
20339   case NVPTX::BI__nvvm_atom_cta_or_gen_i:
20340   case NVPTX::BI__nvvm_atom_cta_or_gen_l:
20341   case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
20342     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta, *this, E);
20343   case NVPTX::BI__nvvm_atom_sys_or_gen_i:
20344   case NVPTX::BI__nvvm_atom_sys_or_gen_l:
20345   case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
20346     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys, *this, E);
20347   case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
20348   case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
20349   case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
20350     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta, *this, E);
20351   case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
20352   case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
20353   case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
20354     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys, *this, E);
20355   case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
20356   case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
20357   case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
20358     Value *Ptr = EmitScalarExpr(E->getArg(0));
20359     llvm::Type *ElemTy =
20360         ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
20361     return Builder.CreateCall(
20362         CGM.getIntrinsic(
20363             Intrinsic::nvvm_atomic_cas_gen_i_cta, {ElemTy, Ptr->getType()}),
20364         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
20365   }
20366   case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
20367   case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
20368   case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
20369     Value *Ptr = EmitScalarExpr(E->getArg(0));
20370     llvm::Type *ElemTy =
20371         ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
20372     return Builder.CreateCall(
20373         CGM.getIntrinsic(
20374             Intrinsic::nvvm_atomic_cas_gen_i_sys, {ElemTy, Ptr->getType()}),
20375         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
20376   }
20377   case NVPTX::BI__nvvm_match_all_sync_i32p:
20378   case NVPTX::BI__nvvm_match_all_sync_i64p: {
20379     Value *Mask = EmitScalarExpr(E->getArg(0));
20380     Value *Val = EmitScalarExpr(E->getArg(1));
20381     Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
20382     Value *ResultPair = Builder.CreateCall(
20383         CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
20384                              ? Intrinsic::nvvm_match_all_sync_i32p
20385                              : Intrinsic::nvvm_match_all_sync_i64p),
20386         {Mask, Val});
20387     Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
20388                                      PredOutPtr.getElementType());
20389     Builder.CreateStore(Pred, PredOutPtr);
20390     return Builder.CreateExtractValue(ResultPair, 0);
20391   }
20392 
20393   // FP MMA loads
20394   case NVPTX::BI__hmma_m16n16k16_ld_a:
20395   case NVPTX::BI__hmma_m16n16k16_ld_b:
20396   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
20397   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
20398   case NVPTX::BI__hmma_m32n8k16_ld_a:
20399   case NVPTX::BI__hmma_m32n8k16_ld_b:
20400   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
20401   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
20402   case NVPTX::BI__hmma_m8n32k16_ld_a:
20403   case NVPTX::BI__hmma_m8n32k16_ld_b:
20404   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
20405   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
20406   // Integer MMA loads.
20407   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
20408   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
20409   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
20410   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
20411   case NVPTX::BI__imma_m16n16k16_ld_c:
20412   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
20413   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
20414   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
20415   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
20416   case NVPTX::BI__imma_m32n8k16_ld_c:
20417   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
20418   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
20419   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
20420   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
20421   case NVPTX::BI__imma_m8n32k16_ld_c:
20422   // Sub-integer MMA loads.
20423   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
20424   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
20425   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
20426   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
20427   case NVPTX::BI__imma_m8n8k32_ld_c:
20428   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
20429   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
20430   case NVPTX::BI__bmma_m8n8k128_ld_c:
20431   // Double MMA loads.
20432   case NVPTX::BI__dmma_m8n8k4_ld_a:
20433   case NVPTX::BI__dmma_m8n8k4_ld_b:
20434   case NVPTX::BI__dmma_m8n8k4_ld_c:
20435   // Alternate float MMA loads.
20436   case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
20437   case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
20438   case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
20439   case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
20440   case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
20441   case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
20442   case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
20443   case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
20444   case NVPTX::BI__mma_tf32_m16n16k8_ld_c: {
20445     Address Dst = EmitPointerWithAlignment(E->getArg(0));
20446     Value *Src = EmitScalarExpr(E->getArg(1));
20447     Value *Ldm = EmitScalarExpr(E->getArg(2));
20448     std::optional<llvm::APSInt> isColMajorArg =
20449         E->getArg(3)->getIntegerConstantExpr(getContext());
20450     if (!isColMajorArg)
20451       return nullptr;
20452     bool isColMajor = isColMajorArg->getSExtValue();
20453     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
20454     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
20455     if (IID == 0)
20456       return nullptr;
20457 
20458     Value *Result =
20459         Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
20460 
20461     // Save returned values.
20462     assert(II.NumResults);
20463     if (II.NumResults == 1) {
20464       Builder.CreateAlignedStore(Result, Dst.emitRawPointer(*this),
20465                                  CharUnits::fromQuantity(4));
20466     } else {
20467       for (unsigned i = 0; i < II.NumResults; ++i) {
20468         Builder.CreateAlignedStore(
20469             Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
20470                                   Dst.getElementType()),
20471             Builder.CreateGEP(Dst.getElementType(), Dst.emitRawPointer(*this),
20472                               llvm::ConstantInt::get(IntTy, i)),
20473             CharUnits::fromQuantity(4));
20474       }
20475     }
20476     return Result;
20477   }
20478 
20479   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
20480   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
20481   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
20482   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
20483   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
20484   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
20485   case NVPTX::BI__imma_m16n16k16_st_c_i32:
20486   case NVPTX::BI__imma_m32n8k16_st_c_i32:
20487   case NVPTX::BI__imma_m8n32k16_st_c_i32:
20488   case NVPTX::BI__imma_m8n8k32_st_c_i32:
20489   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
20490   case NVPTX::BI__dmma_m8n8k4_st_c_f64:
20491   case NVPTX::BI__mma_m16n16k8_st_c_f32: {
20492     Value *Dst = EmitScalarExpr(E->getArg(0));
20493     Address Src = EmitPointerWithAlignment(E->getArg(1));
20494     Value *Ldm = EmitScalarExpr(E->getArg(2));
20495     std::optional<llvm::APSInt> isColMajorArg =
20496         E->getArg(3)->getIntegerConstantExpr(getContext());
20497     if (!isColMajorArg)
20498       return nullptr;
20499     bool isColMajor = isColMajorArg->getSExtValue();
20500     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
20501     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
20502     if (IID == 0)
20503       return nullptr;
20504     Function *Intrinsic =
20505         CGM.getIntrinsic(IID, Dst->getType());
20506     llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
20507     SmallVector<Value *, 10> Values = {Dst};
20508     for (unsigned i = 0; i < II.NumResults; ++i) {
20509       Value *V = Builder.CreateAlignedLoad(
20510           Src.getElementType(),
20511           Builder.CreateGEP(Src.getElementType(), Src.emitRawPointer(*this),
20512                             llvm::ConstantInt::get(IntTy, i)),
20513           CharUnits::fromQuantity(4));
20514       Values.push_back(Builder.CreateBitCast(V, ParamType));
20515     }
20516     Values.push_back(Ldm);
20517     Value *Result = Builder.CreateCall(Intrinsic, Values);
20518     return Result;
20519   }
20520 
20521   // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
20522   // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
20523   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
20524   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
20525   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
20526   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
20527   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
20528   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
20529   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
20530   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
20531   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
20532   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
20533   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
20534   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
20535   case NVPTX::BI__imma_m16n16k16_mma_s8:
20536   case NVPTX::BI__imma_m16n16k16_mma_u8:
20537   case NVPTX::BI__imma_m32n8k16_mma_s8:
20538   case NVPTX::BI__imma_m32n8k16_mma_u8:
20539   case NVPTX::BI__imma_m8n32k16_mma_s8:
20540   case NVPTX::BI__imma_m8n32k16_mma_u8:
20541   case NVPTX::BI__imma_m8n8k32_mma_s4:
20542   case NVPTX::BI__imma_m8n8k32_mma_u4:
20543   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
20544   case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
20545   case NVPTX::BI__dmma_m8n8k4_mma_f64:
20546   case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
20547   case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
20548   case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
20549   case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: {
20550     Address Dst = EmitPointerWithAlignment(E->getArg(0));
20551     Address SrcA = EmitPointerWithAlignment(E->getArg(1));
20552     Address SrcB = EmitPointerWithAlignment(E->getArg(2));
20553     Address SrcC = EmitPointerWithAlignment(E->getArg(3));
20554     std::optional<llvm::APSInt> LayoutArg =
20555         E->getArg(4)->getIntegerConstantExpr(getContext());
20556     if (!LayoutArg)
20557       return nullptr;
20558     int Layout = LayoutArg->getSExtValue();
20559     if (Layout < 0 || Layout > 3)
20560       return nullptr;
20561     llvm::APSInt SatfArg;
20562     if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 ||
20563         BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1)
20564       SatfArg = 0;  // .b1 does not have satf argument.
20565     else if (std::optional<llvm::APSInt> OptSatfArg =
20566                  E->getArg(5)->getIntegerConstantExpr(getContext()))
20567       SatfArg = *OptSatfArg;
20568     else
20569       return nullptr;
20570     bool Satf = SatfArg.getSExtValue();
20571     NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
20572     unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
20573     if (IID == 0)  // Unsupported combination of Layout/Satf.
20574       return nullptr;
20575 
20576     SmallVector<Value *, 24> Values;
20577     Function *Intrinsic = CGM.getIntrinsic(IID);
20578     llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
20579     // Load A
20580     for (unsigned i = 0; i < MI.NumEltsA; ++i) {
20581       Value *V = Builder.CreateAlignedLoad(
20582           SrcA.getElementType(),
20583           Builder.CreateGEP(SrcA.getElementType(), SrcA.emitRawPointer(*this),
20584                             llvm::ConstantInt::get(IntTy, i)),
20585           CharUnits::fromQuantity(4));
20586       Values.push_back(Builder.CreateBitCast(V, AType));
20587     }
20588     // Load B
20589     llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
20590     for (unsigned i = 0; i < MI.NumEltsB; ++i) {
20591       Value *V = Builder.CreateAlignedLoad(
20592           SrcB.getElementType(),
20593           Builder.CreateGEP(SrcB.getElementType(), SrcB.emitRawPointer(*this),
20594                             llvm::ConstantInt::get(IntTy, i)),
20595           CharUnits::fromQuantity(4));
20596       Values.push_back(Builder.CreateBitCast(V, BType));
20597     }
20598     // Load C
20599     llvm::Type *CType =
20600         Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
20601     for (unsigned i = 0; i < MI.NumEltsC; ++i) {
20602       Value *V = Builder.CreateAlignedLoad(
20603           SrcC.getElementType(),
20604           Builder.CreateGEP(SrcC.getElementType(), SrcC.emitRawPointer(*this),
20605                             llvm::ConstantInt::get(IntTy, i)),
20606           CharUnits::fromQuantity(4));
20607       Values.push_back(Builder.CreateBitCast(V, CType));
20608     }
20609     Value *Result = Builder.CreateCall(Intrinsic, Values);
20610     llvm::Type *DType = Dst.getElementType();
20611     for (unsigned i = 0; i < MI.NumEltsD; ++i)
20612       Builder.CreateAlignedStore(
20613           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
20614           Builder.CreateGEP(Dst.getElementType(), Dst.emitRawPointer(*this),
20615                             llvm::ConstantInt::get(IntTy, i)),
20616           CharUnits::fromQuantity(4));
20617     return Result;
20618   }
20619   // The following builtins require half type support
20620   case NVPTX::BI__nvvm_ex2_approx_f16:
20621     return MakeHalfType(Intrinsic::nvvm_ex2_approx_f16, BuiltinID, E, *this);
20622   case NVPTX::BI__nvvm_ex2_approx_f16x2:
20623     return MakeHalfType(Intrinsic::nvvm_ex2_approx_f16x2, BuiltinID, E, *this);
20624   case NVPTX::BI__nvvm_ff2f16x2_rn:
20625     return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rn, BuiltinID, E, *this);
20626   case NVPTX::BI__nvvm_ff2f16x2_rn_relu:
20627     return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rn_relu, BuiltinID, E, *this);
20628   case NVPTX::BI__nvvm_ff2f16x2_rz:
20629     return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rz, BuiltinID, E, *this);
20630   case NVPTX::BI__nvvm_ff2f16x2_rz_relu:
20631     return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rz_relu, BuiltinID, E, *this);
20632   case NVPTX::BI__nvvm_fma_rn_f16:
20633     return MakeHalfType(Intrinsic::nvvm_fma_rn_f16, BuiltinID, E, *this);
20634   case NVPTX::BI__nvvm_fma_rn_f16x2:
20635     return MakeHalfType(Intrinsic::nvvm_fma_rn_f16x2, BuiltinID, E, *this);
20636   case NVPTX::BI__nvvm_fma_rn_ftz_f16:
20637     return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_f16, BuiltinID, E, *this);
20638   case NVPTX::BI__nvvm_fma_rn_ftz_f16x2:
20639     return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_f16x2, BuiltinID, E, *this);
20640   case NVPTX::BI__nvvm_fma_rn_ftz_relu_f16:
20641     return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_relu_f16, BuiltinID, E,
20642                         *this);
20643   case NVPTX::BI__nvvm_fma_rn_ftz_relu_f16x2:
20644     return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_relu_f16x2, BuiltinID, E,
20645                         *this);
20646   case NVPTX::BI__nvvm_fma_rn_ftz_sat_f16:
20647     return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_sat_f16, BuiltinID, E,
20648                         *this);
20649   case NVPTX::BI__nvvm_fma_rn_ftz_sat_f16x2:
20650     return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_sat_f16x2, BuiltinID, E,
20651                         *this);
20652   case NVPTX::BI__nvvm_fma_rn_relu_f16:
20653     return MakeHalfType(Intrinsic::nvvm_fma_rn_relu_f16, BuiltinID, E, *this);
20654   case NVPTX::BI__nvvm_fma_rn_relu_f16x2:
20655     return MakeHalfType(Intrinsic::nvvm_fma_rn_relu_f16x2, BuiltinID, E, *this);
20656   case NVPTX::BI__nvvm_fma_rn_sat_f16:
20657     return MakeHalfType(Intrinsic::nvvm_fma_rn_sat_f16, BuiltinID, E, *this);
20658   case NVPTX::BI__nvvm_fma_rn_sat_f16x2:
20659     return MakeHalfType(Intrinsic::nvvm_fma_rn_sat_f16x2, BuiltinID, E, *this);
20660   case NVPTX::BI__nvvm_fmax_f16:
20661     return MakeHalfType(Intrinsic::nvvm_fmax_f16, BuiltinID, E, *this);
20662   case NVPTX::BI__nvvm_fmax_f16x2:
20663     return MakeHalfType(Intrinsic::nvvm_fmax_f16x2, BuiltinID, E, *this);
20664   case NVPTX::BI__nvvm_fmax_ftz_f16:
20665     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_f16, BuiltinID, E, *this);
20666   case NVPTX::BI__nvvm_fmax_ftz_f16x2:
20667     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_f16x2, BuiltinID, E, *this);
20668   case NVPTX::BI__nvvm_fmax_ftz_nan_f16:
20669     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_f16, BuiltinID, E, *this);
20670   case NVPTX::BI__nvvm_fmax_ftz_nan_f16x2:
20671     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_f16x2, BuiltinID, E,
20672                         *this);
20673   case NVPTX::BI__nvvm_fmax_ftz_nan_xorsign_abs_f16:
20674     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f16, BuiltinID,
20675                         E, *this);
20676   case NVPTX::BI__nvvm_fmax_ftz_nan_xorsign_abs_f16x2:
20677     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f16x2,
20678                         BuiltinID, E, *this);
20679   case NVPTX::BI__nvvm_fmax_ftz_xorsign_abs_f16:
20680     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_xorsign_abs_f16, BuiltinID, E,
20681                         *this);
20682   case NVPTX::BI__nvvm_fmax_ftz_xorsign_abs_f16x2:
20683     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_xorsign_abs_f16x2, BuiltinID,
20684                         E, *this);
20685   case NVPTX::BI__nvvm_fmax_nan_f16:
20686     return MakeHalfType(Intrinsic::nvvm_fmax_nan_f16, BuiltinID, E, *this);
20687   case NVPTX::BI__nvvm_fmax_nan_f16x2:
20688     return MakeHalfType(Intrinsic::nvvm_fmax_nan_f16x2, BuiltinID, E, *this);
20689   case NVPTX::BI__nvvm_fmax_nan_xorsign_abs_f16:
20690     return MakeHalfType(Intrinsic::nvvm_fmax_nan_xorsign_abs_f16, BuiltinID, E,
20691                         *this);
20692   case NVPTX::BI__nvvm_fmax_nan_xorsign_abs_f16x2:
20693     return MakeHalfType(Intrinsic::nvvm_fmax_nan_xorsign_abs_f16x2, BuiltinID,
20694                         E, *this);
20695   case NVPTX::BI__nvvm_fmax_xorsign_abs_f16:
20696     return MakeHalfType(Intrinsic::nvvm_fmax_xorsign_abs_f16, BuiltinID, E,
20697                         *this);
20698   case NVPTX::BI__nvvm_fmax_xorsign_abs_f16x2:
20699     return MakeHalfType(Intrinsic::nvvm_fmax_xorsign_abs_f16x2, BuiltinID, E,
20700                         *this);
20701   case NVPTX::BI__nvvm_fmin_f16:
20702     return MakeHalfType(Intrinsic::nvvm_fmin_f16, BuiltinID, E, *this);
20703   case NVPTX::BI__nvvm_fmin_f16x2:
20704     return MakeHalfType(Intrinsic::nvvm_fmin_f16x2, BuiltinID, E, *this);
20705   case NVPTX::BI__nvvm_fmin_ftz_f16:
20706     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_f16, BuiltinID, E, *this);
20707   case NVPTX::BI__nvvm_fmin_ftz_f16x2:
20708     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_f16x2, BuiltinID, E, *this);
20709   case NVPTX::BI__nvvm_fmin_ftz_nan_f16:
20710     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_f16, BuiltinID, E, *this);
20711   case NVPTX::BI__nvvm_fmin_ftz_nan_f16x2:
20712     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_f16x2, BuiltinID, E,
20713                         *this);
20714   case NVPTX::BI__nvvm_fmin_ftz_nan_xorsign_abs_f16:
20715     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f16, BuiltinID,
20716                         E, *this);
20717   case NVPTX::BI__nvvm_fmin_ftz_nan_xorsign_abs_f16x2:
20718     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f16x2,
20719                         BuiltinID, E, *this);
20720   case NVPTX::BI__nvvm_fmin_ftz_xorsign_abs_f16:
20721     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_xorsign_abs_f16, BuiltinID, E,
20722                         *this);
20723   case NVPTX::BI__nvvm_fmin_ftz_xorsign_abs_f16x2:
20724     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_xorsign_abs_f16x2, BuiltinID,
20725                         E, *this);
20726   case NVPTX::BI__nvvm_fmin_nan_f16:
20727     return MakeHalfType(Intrinsic::nvvm_fmin_nan_f16, BuiltinID, E, *this);
20728   case NVPTX::BI__nvvm_fmin_nan_f16x2:
20729     return MakeHalfType(Intrinsic::nvvm_fmin_nan_f16x2, BuiltinID, E, *this);
20730   case NVPTX::BI__nvvm_fmin_nan_xorsign_abs_f16:
20731     return MakeHalfType(Intrinsic::nvvm_fmin_nan_xorsign_abs_f16, BuiltinID, E,
20732                         *this);
20733   case NVPTX::BI__nvvm_fmin_nan_xorsign_abs_f16x2:
20734     return MakeHalfType(Intrinsic::nvvm_fmin_nan_xorsign_abs_f16x2, BuiltinID,
20735                         E, *this);
20736   case NVPTX::BI__nvvm_fmin_xorsign_abs_f16:
20737     return MakeHalfType(Intrinsic::nvvm_fmin_xorsign_abs_f16, BuiltinID, E,
20738                         *this);
20739   case NVPTX::BI__nvvm_fmin_xorsign_abs_f16x2:
20740     return MakeHalfType(Intrinsic::nvvm_fmin_xorsign_abs_f16x2, BuiltinID, E,
20741                         *this);
20742   case NVPTX::BI__nvvm_ldg_h:
20743     return MakeHalfType(Intrinsic::nvvm_ldg_global_f, BuiltinID, E, *this);
20744   case NVPTX::BI__nvvm_ldg_h2:
20745     return MakeHalfType(Intrinsic::nvvm_ldg_global_f, BuiltinID, E, *this);
20746   case NVPTX::BI__nvvm_ldu_h:
20747     return MakeHalfType(Intrinsic::nvvm_ldu_global_f, BuiltinID, E, *this);
20748   case NVPTX::BI__nvvm_ldu_h2: {
20749     return MakeHalfType(Intrinsic::nvvm_ldu_global_f, BuiltinID, E, *this);
20750   }
20751   case NVPTX::BI__nvvm_cp_async_ca_shared_global_4:
20752     return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_4,
20753                        Intrinsic::nvvm_cp_async_ca_shared_global_4_s, *this, E,
20754                        4);
20755   case NVPTX::BI__nvvm_cp_async_ca_shared_global_8:
20756     return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_8,
20757                        Intrinsic::nvvm_cp_async_ca_shared_global_8_s, *this, E,
20758                        8);
20759   case NVPTX::BI__nvvm_cp_async_ca_shared_global_16:
20760     return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_16,
20761                        Intrinsic::nvvm_cp_async_ca_shared_global_16_s, *this, E,
20762                        16);
20763   case NVPTX::BI__nvvm_cp_async_cg_shared_global_16:
20764     return MakeCpAsync(Intrinsic::nvvm_cp_async_cg_shared_global_16,
20765                        Intrinsic::nvvm_cp_async_cg_shared_global_16_s, *this, E,
20766                        16);
20767   case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_x:
20768     return Builder.CreateCall(
20769         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_x));
20770   case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_y:
20771     return Builder.CreateCall(
20772         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_y));
20773   case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_z:
20774     return Builder.CreateCall(
20775         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_z));
20776   case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_w:
20777     return Builder.CreateCall(
20778         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_w));
20779   case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_x:
20780     return Builder.CreateCall(
20781         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_x));
20782   case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_y:
20783     return Builder.CreateCall(
20784         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_y));
20785   case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_z:
20786     return Builder.CreateCall(
20787         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_z));
20788   case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_w:
20789     return Builder.CreateCall(
20790         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_w));
20791   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_x:
20792     return Builder.CreateCall(
20793         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_x));
20794   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_y:
20795     return Builder.CreateCall(
20796         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_y));
20797   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_z:
20798     return Builder.CreateCall(
20799         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_z));
20800   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_w:
20801     return Builder.CreateCall(
20802         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_w));
20803   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_x:
20804     return Builder.CreateCall(
20805         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_x));
20806   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_y:
20807     return Builder.CreateCall(
20808         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_y));
20809   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_z:
20810     return Builder.CreateCall(
20811         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_z));
20812   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_w:
20813     return Builder.CreateCall(
20814         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_w));
20815   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctarank:
20816     return Builder.CreateCall(
20817         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctarank));
20818   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctarank:
20819     return Builder.CreateCall(
20820         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctarank));
20821   case NVPTX::BI__nvvm_is_explicit_cluster:
20822     return Builder.CreateCall(
20823         CGM.getIntrinsic(Intrinsic::nvvm_is_explicit_cluster));
20824   case NVPTX::BI__nvvm_isspacep_shared_cluster:
20825     return Builder.CreateCall(
20826         CGM.getIntrinsic(Intrinsic::nvvm_isspacep_shared_cluster),
20827         EmitScalarExpr(E->getArg(0)));
20828   case NVPTX::BI__nvvm_mapa:
20829     return Builder.CreateCall(
20830         CGM.getIntrinsic(Intrinsic::nvvm_mapa),
20831         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))});
20832   case NVPTX::BI__nvvm_mapa_shared_cluster:
20833     return Builder.CreateCall(
20834         CGM.getIntrinsic(Intrinsic::nvvm_mapa_shared_cluster),
20835         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))});
20836   case NVPTX::BI__nvvm_getctarank:
20837     return Builder.CreateCall(
20838         CGM.getIntrinsic(Intrinsic::nvvm_getctarank),
20839         EmitScalarExpr(E->getArg(0)));
20840   case NVPTX::BI__nvvm_getctarank_shared_cluster:
20841     return Builder.CreateCall(
20842         CGM.getIntrinsic(Intrinsic::nvvm_getctarank_shared_cluster),
20843         EmitScalarExpr(E->getArg(0)));
20844   case NVPTX::BI__nvvm_barrier_cluster_arrive:
20845     return Builder.CreateCall(
20846         CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_arrive));
20847   case NVPTX::BI__nvvm_barrier_cluster_arrive_relaxed:
20848     return Builder.CreateCall(
20849         CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_arrive_relaxed));
20850   case NVPTX::BI__nvvm_barrier_cluster_wait:
20851     return Builder.CreateCall(
20852         CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_wait));
20853   case NVPTX::BI__nvvm_fence_sc_cluster:
20854     return Builder.CreateCall(
20855         CGM.getIntrinsic(Intrinsic::nvvm_fence_sc_cluster));
20856   default:
20857     return nullptr;
20858   }
20859 }
20860 
20861 namespace {
20862 struct BuiltinAlignArgs {
20863   llvm::Value *Src = nullptr;
20864   llvm::Type *SrcType = nullptr;
20865   llvm::Value *Alignment = nullptr;
20866   llvm::Value *Mask = nullptr;
20867   llvm::IntegerType *IntType = nullptr;
20868 
BuiltinAlignArgs__anon6c984ebf1811::BuiltinAlignArgs20869   BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
20870     QualType AstType = E->getArg(0)->getType();
20871     if (AstType->isArrayType())
20872       Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(CGF);
20873     else
20874       Src = CGF.EmitScalarExpr(E->getArg(0));
20875     SrcType = Src->getType();
20876     if (SrcType->isPointerTy()) {
20877       IntType = IntegerType::get(
20878           CGF.getLLVMContext(),
20879           CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
20880     } else {
20881       assert(SrcType->isIntegerTy());
20882       IntType = cast<llvm::IntegerType>(SrcType);
20883     }
20884     Alignment = CGF.EmitScalarExpr(E->getArg(1));
20885     Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
20886     auto *One = llvm::ConstantInt::get(IntType, 1);
20887     Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
20888   }
20889 };
20890 } // namespace
20891 
20892 /// Generate (x & (y-1)) == 0.
EmitBuiltinIsAligned(const CallExpr * E)20893 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
20894   BuiltinAlignArgs Args(E, *this);
20895   llvm::Value *SrcAddress = Args.Src;
20896   if (Args.SrcType->isPointerTy())
20897     SrcAddress =
20898         Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
20899   return RValue::get(Builder.CreateICmpEQ(
20900       Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
20901       llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
20902 }
20903 
20904 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
20905 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
20906 /// llvm.ptrmask intrinsic (with a GEP before in the align_up case).
EmitBuiltinAlignTo(const CallExpr * E,bool AlignUp)20907 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
20908   BuiltinAlignArgs Args(E, *this);
20909   llvm::Value *SrcForMask = Args.Src;
20910   if (AlignUp) {
20911     // When aligning up we have to first add the mask to ensure we go over the
20912     // next alignment value and then align down to the next valid multiple.
20913     // By adding the mask, we ensure that align_up on an already aligned
20914     // value will not change the value.
20915     if (Args.Src->getType()->isPointerTy()) {
20916       if (getLangOpts().isSignedOverflowDefined())
20917         SrcForMask =
20918             Builder.CreateGEP(Int8Ty, SrcForMask, Args.Mask, "over_boundary");
20919       else
20920         SrcForMask = EmitCheckedInBoundsGEP(Int8Ty, SrcForMask, Args.Mask,
20921                                             /*SignedIndices=*/true,
20922                                             /*isSubtraction=*/false,
20923                                             E->getExprLoc(), "over_boundary");
20924     } else {
20925       SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
20926     }
20927   }
20928   // Invert the mask to only clear the lower bits.
20929   llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
20930   llvm::Value *Result = nullptr;
20931   if (Args.Src->getType()->isPointerTy()) {
20932     Result = Builder.CreateIntrinsic(
20933         Intrinsic::ptrmask, {Args.SrcType, Args.IntType},
20934         {SrcForMask, InvertedMask}, nullptr, "aligned_result");
20935   } else {
20936     Result = Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
20937   }
20938   assert(Result->getType() == Args.SrcType);
20939   return RValue::get(Result);
20940 }
20941 
EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,const CallExpr * E)20942 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
20943                                                    const CallExpr *E) {
20944   switch (BuiltinID) {
20945   case WebAssembly::BI__builtin_wasm_memory_size: {
20946     llvm::Type *ResultType = ConvertType(E->getType());
20947     Value *I = EmitScalarExpr(E->getArg(0));
20948     Function *Callee =
20949         CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
20950     return Builder.CreateCall(Callee, I);
20951   }
20952   case WebAssembly::BI__builtin_wasm_memory_grow: {
20953     llvm::Type *ResultType = ConvertType(E->getType());
20954     Value *Args[] = {EmitScalarExpr(E->getArg(0)),
20955                      EmitScalarExpr(E->getArg(1))};
20956     Function *Callee =
20957         CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
20958     return Builder.CreateCall(Callee, Args);
20959   }
20960   case WebAssembly::BI__builtin_wasm_tls_size: {
20961     llvm::Type *ResultType = ConvertType(E->getType());
20962     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
20963     return Builder.CreateCall(Callee);
20964   }
20965   case WebAssembly::BI__builtin_wasm_tls_align: {
20966     llvm::Type *ResultType = ConvertType(E->getType());
20967     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
20968     return Builder.CreateCall(Callee);
20969   }
20970   case WebAssembly::BI__builtin_wasm_tls_base: {
20971     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
20972     return Builder.CreateCall(Callee);
20973   }
20974   case WebAssembly::BI__builtin_wasm_throw: {
20975     Value *Tag = EmitScalarExpr(E->getArg(0));
20976     Value *Obj = EmitScalarExpr(E->getArg(1));
20977     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
20978     return Builder.CreateCall(Callee, {Tag, Obj});
20979   }
20980   case WebAssembly::BI__builtin_wasm_rethrow: {
20981     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
20982     return Builder.CreateCall(Callee);
20983   }
20984   case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
20985     Value *Addr = EmitScalarExpr(E->getArg(0));
20986     Value *Expected = EmitScalarExpr(E->getArg(1));
20987     Value *Timeout = EmitScalarExpr(E->getArg(2));
20988     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
20989     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
20990   }
20991   case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
20992     Value *Addr = EmitScalarExpr(E->getArg(0));
20993     Value *Expected = EmitScalarExpr(E->getArg(1));
20994     Value *Timeout = EmitScalarExpr(E->getArg(2));
20995     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
20996     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
20997   }
20998   case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
20999     Value *Addr = EmitScalarExpr(E->getArg(0));
21000     Value *Count = EmitScalarExpr(E->getArg(1));
21001     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
21002     return Builder.CreateCall(Callee, {Addr, Count});
21003   }
21004   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
21005   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
21006   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
21007   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
21008     Value *Src = EmitScalarExpr(E->getArg(0));
21009     llvm::Type *ResT = ConvertType(E->getType());
21010     Function *Callee =
21011         CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
21012     return Builder.CreateCall(Callee, {Src});
21013   }
21014   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
21015   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
21016   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
21017   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
21018     Value *Src = EmitScalarExpr(E->getArg(0));
21019     llvm::Type *ResT = ConvertType(E->getType());
21020     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
21021                                         {ResT, Src->getType()});
21022     return Builder.CreateCall(Callee, {Src});
21023   }
21024   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
21025   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
21026   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
21027   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
21028   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
21029     Value *Src = EmitScalarExpr(E->getArg(0));
21030     llvm::Type *ResT = ConvertType(E->getType());
21031     Function *Callee =
21032         CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
21033     return Builder.CreateCall(Callee, {Src});
21034   }
21035   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
21036   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
21037   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
21038   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
21039   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
21040     Value *Src = EmitScalarExpr(E->getArg(0));
21041     llvm::Type *ResT = ConvertType(E->getType());
21042     Function *Callee =
21043         CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
21044     return Builder.CreateCall(Callee, {Src});
21045   }
21046   case WebAssembly::BI__builtin_wasm_min_f32:
21047   case WebAssembly::BI__builtin_wasm_min_f64:
21048   case WebAssembly::BI__builtin_wasm_min_f16x8:
21049   case WebAssembly::BI__builtin_wasm_min_f32x4:
21050   case WebAssembly::BI__builtin_wasm_min_f64x2: {
21051     Value *LHS = EmitScalarExpr(E->getArg(0));
21052     Value *RHS = EmitScalarExpr(E->getArg(1));
21053     Function *Callee =
21054         CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
21055     return Builder.CreateCall(Callee, {LHS, RHS});
21056   }
21057   case WebAssembly::BI__builtin_wasm_max_f32:
21058   case WebAssembly::BI__builtin_wasm_max_f64:
21059   case WebAssembly::BI__builtin_wasm_max_f16x8:
21060   case WebAssembly::BI__builtin_wasm_max_f32x4:
21061   case WebAssembly::BI__builtin_wasm_max_f64x2: {
21062     Value *LHS = EmitScalarExpr(E->getArg(0));
21063     Value *RHS = EmitScalarExpr(E->getArg(1));
21064     Function *Callee =
21065         CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
21066     return Builder.CreateCall(Callee, {LHS, RHS});
21067   }
21068   case WebAssembly::BI__builtin_wasm_pmin_f16x8:
21069   case WebAssembly::BI__builtin_wasm_pmin_f32x4:
21070   case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
21071     Value *LHS = EmitScalarExpr(E->getArg(0));
21072     Value *RHS = EmitScalarExpr(E->getArg(1));
21073     Function *Callee =
21074         CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
21075     return Builder.CreateCall(Callee, {LHS, RHS});
21076   }
21077   case WebAssembly::BI__builtin_wasm_pmax_f16x8:
21078   case WebAssembly::BI__builtin_wasm_pmax_f32x4:
21079   case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
21080     Value *LHS = EmitScalarExpr(E->getArg(0));
21081     Value *RHS = EmitScalarExpr(E->getArg(1));
21082     Function *Callee =
21083         CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
21084     return Builder.CreateCall(Callee, {LHS, RHS});
21085   }
21086   case WebAssembly::BI__builtin_wasm_ceil_f32x4:
21087   case WebAssembly::BI__builtin_wasm_floor_f32x4:
21088   case WebAssembly::BI__builtin_wasm_trunc_f32x4:
21089   case WebAssembly::BI__builtin_wasm_nearest_f32x4:
21090   case WebAssembly::BI__builtin_wasm_ceil_f64x2:
21091   case WebAssembly::BI__builtin_wasm_floor_f64x2:
21092   case WebAssembly::BI__builtin_wasm_trunc_f64x2:
21093   case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
21094     unsigned IntNo;
21095     switch (BuiltinID) {
21096     case WebAssembly::BI__builtin_wasm_ceil_f32x4:
21097     case WebAssembly::BI__builtin_wasm_ceil_f64x2:
21098       IntNo = Intrinsic::ceil;
21099       break;
21100     case WebAssembly::BI__builtin_wasm_floor_f32x4:
21101     case WebAssembly::BI__builtin_wasm_floor_f64x2:
21102       IntNo = Intrinsic::floor;
21103       break;
21104     case WebAssembly::BI__builtin_wasm_trunc_f32x4:
21105     case WebAssembly::BI__builtin_wasm_trunc_f64x2:
21106       IntNo = Intrinsic::trunc;
21107       break;
21108     case WebAssembly::BI__builtin_wasm_nearest_f32x4:
21109     case WebAssembly::BI__builtin_wasm_nearest_f64x2:
21110       IntNo = Intrinsic::nearbyint;
21111       break;
21112     default:
21113       llvm_unreachable("unexpected builtin ID");
21114     }
21115     Value *Value = EmitScalarExpr(E->getArg(0));
21116     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
21117     return Builder.CreateCall(Callee, Value);
21118   }
21119   case WebAssembly::BI__builtin_wasm_ref_null_extern: {
21120     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_ref_null_extern);
21121     return Builder.CreateCall(Callee);
21122   }
21123   case WebAssembly::BI__builtin_wasm_ref_null_func: {
21124     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_ref_null_func);
21125     return Builder.CreateCall(Callee);
21126   }
21127   case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
21128     Value *Src = EmitScalarExpr(E->getArg(0));
21129     Value *Indices = EmitScalarExpr(E->getArg(1));
21130     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
21131     return Builder.CreateCall(Callee, {Src, Indices});
21132   }
21133   case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
21134   case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
21135   case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
21136   case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
21137   case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
21138   case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
21139   case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
21140   case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
21141     unsigned IntNo;
21142     switch (BuiltinID) {
21143     case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
21144     case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
21145       IntNo = Intrinsic::sadd_sat;
21146       break;
21147     case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
21148     case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
21149       IntNo = Intrinsic::uadd_sat;
21150       break;
21151     case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
21152     case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
21153       IntNo = Intrinsic::wasm_sub_sat_signed;
21154       break;
21155     case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
21156     case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
21157       IntNo = Intrinsic::wasm_sub_sat_unsigned;
21158       break;
21159     default:
21160       llvm_unreachable("unexpected builtin ID");
21161     }
21162     Value *LHS = EmitScalarExpr(E->getArg(0));
21163     Value *RHS = EmitScalarExpr(E->getArg(1));
21164     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
21165     return Builder.CreateCall(Callee, {LHS, RHS});
21166   }
21167   case WebAssembly::BI__builtin_wasm_abs_i8x16:
21168   case WebAssembly::BI__builtin_wasm_abs_i16x8:
21169   case WebAssembly::BI__builtin_wasm_abs_i32x4:
21170   case WebAssembly::BI__builtin_wasm_abs_i64x2: {
21171     Value *Vec = EmitScalarExpr(E->getArg(0));
21172     Value *Neg = Builder.CreateNeg(Vec, "neg");
21173     Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
21174     Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
21175     return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
21176   }
21177   case WebAssembly::BI__builtin_wasm_min_s_i8x16:
21178   case WebAssembly::BI__builtin_wasm_min_u_i8x16:
21179   case WebAssembly::BI__builtin_wasm_max_s_i8x16:
21180   case WebAssembly::BI__builtin_wasm_max_u_i8x16:
21181   case WebAssembly::BI__builtin_wasm_min_s_i16x8:
21182   case WebAssembly::BI__builtin_wasm_min_u_i16x8:
21183   case WebAssembly::BI__builtin_wasm_max_s_i16x8:
21184   case WebAssembly::BI__builtin_wasm_max_u_i16x8:
21185   case WebAssembly::BI__builtin_wasm_min_s_i32x4:
21186   case WebAssembly::BI__builtin_wasm_min_u_i32x4:
21187   case WebAssembly::BI__builtin_wasm_max_s_i32x4:
21188   case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
21189     Value *LHS = EmitScalarExpr(E->getArg(0));
21190     Value *RHS = EmitScalarExpr(E->getArg(1));
21191     Value *ICmp;
21192     switch (BuiltinID) {
21193     case WebAssembly::BI__builtin_wasm_min_s_i8x16:
21194     case WebAssembly::BI__builtin_wasm_min_s_i16x8:
21195     case WebAssembly::BI__builtin_wasm_min_s_i32x4:
21196       ICmp = Builder.CreateICmpSLT(LHS, RHS);
21197       break;
21198     case WebAssembly::BI__builtin_wasm_min_u_i8x16:
21199     case WebAssembly::BI__builtin_wasm_min_u_i16x8:
21200     case WebAssembly::BI__builtin_wasm_min_u_i32x4:
21201       ICmp = Builder.CreateICmpULT(LHS, RHS);
21202       break;
21203     case WebAssembly::BI__builtin_wasm_max_s_i8x16:
21204     case WebAssembly::BI__builtin_wasm_max_s_i16x8:
21205     case WebAssembly::BI__builtin_wasm_max_s_i32x4:
21206       ICmp = Builder.CreateICmpSGT(LHS, RHS);
21207       break;
21208     case WebAssembly::BI__builtin_wasm_max_u_i8x16:
21209     case WebAssembly::BI__builtin_wasm_max_u_i16x8:
21210     case WebAssembly::BI__builtin_wasm_max_u_i32x4:
21211       ICmp = Builder.CreateICmpUGT(LHS, RHS);
21212       break;
21213     default:
21214       llvm_unreachable("unexpected builtin ID");
21215     }
21216     return Builder.CreateSelect(ICmp, LHS, RHS);
21217   }
21218   case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
21219   case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
21220     Value *LHS = EmitScalarExpr(E->getArg(0));
21221     Value *RHS = EmitScalarExpr(E->getArg(1));
21222     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
21223                                         ConvertType(E->getType()));
21224     return Builder.CreateCall(Callee, {LHS, RHS});
21225   }
21226   case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
21227     Value *LHS = EmitScalarExpr(E->getArg(0));
21228     Value *RHS = EmitScalarExpr(E->getArg(1));
21229     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
21230     return Builder.CreateCall(Callee, {LHS, RHS});
21231   }
21232   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
21233   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
21234   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
21235   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
21236     Value *Vec = EmitScalarExpr(E->getArg(0));
21237     unsigned IntNo;
21238     switch (BuiltinID) {
21239     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
21240     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
21241       IntNo = Intrinsic::wasm_extadd_pairwise_signed;
21242       break;
21243     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
21244     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
21245       IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
21246       break;
21247     default:
21248       llvm_unreachable("unexpected builtin ID");
21249     }
21250 
21251     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
21252     return Builder.CreateCall(Callee, Vec);
21253   }
21254   case WebAssembly::BI__builtin_wasm_bitselect: {
21255     Value *V1 = EmitScalarExpr(E->getArg(0));
21256     Value *V2 = EmitScalarExpr(E->getArg(1));
21257     Value *C = EmitScalarExpr(E->getArg(2));
21258     Function *Callee =
21259         CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
21260     return Builder.CreateCall(Callee, {V1, V2, C});
21261   }
21262   case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
21263     Value *LHS = EmitScalarExpr(E->getArg(0));
21264     Value *RHS = EmitScalarExpr(E->getArg(1));
21265     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
21266     return Builder.CreateCall(Callee, {LHS, RHS});
21267   }
21268   case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
21269     Value *Vec = EmitScalarExpr(E->getArg(0));
21270     Function *Callee =
21271         CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType()));
21272     return Builder.CreateCall(Callee, {Vec});
21273   }
21274   case WebAssembly::BI__builtin_wasm_any_true_v128:
21275   case WebAssembly::BI__builtin_wasm_all_true_i8x16:
21276   case WebAssembly::BI__builtin_wasm_all_true_i16x8:
21277   case WebAssembly::BI__builtin_wasm_all_true_i32x4:
21278   case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
21279     unsigned IntNo;
21280     switch (BuiltinID) {
21281     case WebAssembly::BI__builtin_wasm_any_true_v128:
21282       IntNo = Intrinsic::wasm_anytrue;
21283       break;
21284     case WebAssembly::BI__builtin_wasm_all_true_i8x16:
21285     case WebAssembly::BI__builtin_wasm_all_true_i16x8:
21286     case WebAssembly::BI__builtin_wasm_all_true_i32x4:
21287     case WebAssembly::BI__builtin_wasm_all_true_i64x2:
21288       IntNo = Intrinsic::wasm_alltrue;
21289       break;
21290     default:
21291       llvm_unreachable("unexpected builtin ID");
21292     }
21293     Value *Vec = EmitScalarExpr(E->getArg(0));
21294     Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
21295     return Builder.CreateCall(Callee, {Vec});
21296   }
21297   case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
21298   case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
21299   case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
21300   case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
21301     Value *Vec = EmitScalarExpr(E->getArg(0));
21302     Function *Callee =
21303         CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
21304     return Builder.CreateCall(Callee, {Vec});
21305   }
21306   case WebAssembly::BI__builtin_wasm_abs_f32x4:
21307   case WebAssembly::BI__builtin_wasm_abs_f64x2: {
21308     Value *Vec = EmitScalarExpr(E->getArg(0));
21309     Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
21310     return Builder.CreateCall(Callee, {Vec});
21311   }
21312   case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
21313   case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
21314     Value *Vec = EmitScalarExpr(E->getArg(0));
21315     Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
21316     return Builder.CreateCall(Callee, {Vec});
21317   }
21318   case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
21319   case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
21320   case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
21321   case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
21322     Value *Low = EmitScalarExpr(E->getArg(0));
21323     Value *High = EmitScalarExpr(E->getArg(1));
21324     unsigned IntNo;
21325     switch (BuiltinID) {
21326     case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
21327     case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
21328       IntNo = Intrinsic::wasm_narrow_signed;
21329       break;
21330     case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
21331     case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
21332       IntNo = Intrinsic::wasm_narrow_unsigned;
21333       break;
21334     default:
21335       llvm_unreachable("unexpected builtin ID");
21336     }
21337     Function *Callee =
21338         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
21339     return Builder.CreateCall(Callee, {Low, High});
21340   }
21341   case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
21342   case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4: {
21343     Value *Vec = EmitScalarExpr(E->getArg(0));
21344     unsigned IntNo;
21345     switch (BuiltinID) {
21346     case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
21347       IntNo = Intrinsic::fptosi_sat;
21348       break;
21349     case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4:
21350       IntNo = Intrinsic::fptoui_sat;
21351       break;
21352     default:
21353       llvm_unreachable("unexpected builtin ID");
21354     }
21355     llvm::Type *SrcT = Vec->getType();
21356     llvm::Type *TruncT = SrcT->getWithNewType(Builder.getInt32Ty());
21357     Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
21358     Value *Trunc = Builder.CreateCall(Callee, Vec);
21359     Value *Splat = Constant::getNullValue(TruncT);
21360     return Builder.CreateShuffleVector(Trunc, Splat, ArrayRef<int>{0, 1, 2, 3});
21361   }
21362   case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
21363     Value *Ops[18];
21364     size_t OpIdx = 0;
21365     Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
21366     Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
21367     while (OpIdx < 18) {
21368       std::optional<llvm::APSInt> LaneConst =
21369           E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
21370       assert(LaneConst && "Constant arg isn't actually constant?");
21371       Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
21372     }
21373     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
21374     return Builder.CreateCall(Callee, Ops);
21375   }
21376   case WebAssembly::BI__builtin_wasm_relaxed_madd_f16x8:
21377   case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f16x8:
21378   case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4:
21379   case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4:
21380   case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2:
21381   case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2: {
21382     Value *A = EmitScalarExpr(E->getArg(0));
21383     Value *B = EmitScalarExpr(E->getArg(1));
21384     Value *C = EmitScalarExpr(E->getArg(2));
21385     unsigned IntNo;
21386     switch (BuiltinID) {
21387     case WebAssembly::BI__builtin_wasm_relaxed_madd_f16x8:
21388     case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4:
21389     case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2:
21390       IntNo = Intrinsic::wasm_relaxed_madd;
21391       break;
21392     case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f16x8:
21393     case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4:
21394     case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2:
21395       IntNo = Intrinsic::wasm_relaxed_nmadd;
21396       break;
21397     default:
21398       llvm_unreachable("unexpected builtin ID");
21399     }
21400     Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
21401     return Builder.CreateCall(Callee, {A, B, C});
21402   }
21403   case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i8x16:
21404   case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i16x8:
21405   case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i32x4:
21406   case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i64x2: {
21407     Value *A = EmitScalarExpr(E->getArg(0));
21408     Value *B = EmitScalarExpr(E->getArg(1));
21409     Value *C = EmitScalarExpr(E->getArg(2));
21410     Function *Callee =
21411         CGM.getIntrinsic(Intrinsic::wasm_relaxed_laneselect, A->getType());
21412     return Builder.CreateCall(Callee, {A, B, C});
21413   }
21414   case WebAssembly::BI__builtin_wasm_relaxed_swizzle_i8x16: {
21415     Value *Src = EmitScalarExpr(E->getArg(0));
21416     Value *Indices = EmitScalarExpr(E->getArg(1));
21417     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_swizzle);
21418     return Builder.CreateCall(Callee, {Src, Indices});
21419   }
21420   case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
21421   case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
21422   case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
21423   case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: {
21424     Value *LHS = EmitScalarExpr(E->getArg(0));
21425     Value *RHS = EmitScalarExpr(E->getArg(1));
21426     unsigned IntNo;
21427     switch (BuiltinID) {
21428     case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
21429     case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
21430       IntNo = Intrinsic::wasm_relaxed_min;
21431       break;
21432     case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
21433     case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2:
21434       IntNo = Intrinsic::wasm_relaxed_max;
21435       break;
21436     default:
21437       llvm_unreachable("unexpected builtin ID");
21438     }
21439     Function *Callee = CGM.getIntrinsic(IntNo, LHS->getType());
21440     return Builder.CreateCall(Callee, {LHS, RHS});
21441   }
21442   case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
21443   case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
21444   case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
21445   case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2: {
21446     Value *Vec = EmitScalarExpr(E->getArg(0));
21447     unsigned IntNo;
21448     switch (BuiltinID) {
21449     case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
21450       IntNo = Intrinsic::wasm_relaxed_trunc_signed;
21451       break;
21452     case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
21453       IntNo = Intrinsic::wasm_relaxed_trunc_unsigned;
21454       break;
21455     case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
21456       IntNo = Intrinsic::wasm_relaxed_trunc_signed_zero;
21457       break;
21458     case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2:
21459       IntNo = Intrinsic::wasm_relaxed_trunc_unsigned_zero;
21460       break;
21461     default:
21462       llvm_unreachable("unexpected builtin ID");
21463     }
21464     Function *Callee = CGM.getIntrinsic(IntNo);
21465     return Builder.CreateCall(Callee, {Vec});
21466   }
21467   case WebAssembly::BI__builtin_wasm_relaxed_q15mulr_s_i16x8: {
21468     Value *LHS = EmitScalarExpr(E->getArg(0));
21469     Value *RHS = EmitScalarExpr(E->getArg(1));
21470     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_q15mulr_signed);
21471     return Builder.CreateCall(Callee, {LHS, RHS});
21472   }
21473   case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_s_i16x8: {
21474     Value *LHS = EmitScalarExpr(E->getArg(0));
21475     Value *RHS = EmitScalarExpr(E->getArg(1));
21476     Function *Callee =
21477         CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_signed);
21478     return Builder.CreateCall(Callee, {LHS, RHS});
21479   }
21480   case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_add_s_i32x4: {
21481     Value *LHS = EmitScalarExpr(E->getArg(0));
21482     Value *RHS = EmitScalarExpr(E->getArg(1));
21483     Value *Acc = EmitScalarExpr(E->getArg(2));
21484     Function *Callee =
21485         CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_add_signed);
21486     return Builder.CreateCall(Callee, {LHS, RHS, Acc});
21487   }
21488   case WebAssembly::BI__builtin_wasm_relaxed_dot_bf16x8_add_f32_f32x4: {
21489     Value *LHS = EmitScalarExpr(E->getArg(0));
21490     Value *RHS = EmitScalarExpr(E->getArg(1));
21491     Value *Acc = EmitScalarExpr(E->getArg(2));
21492     Function *Callee =
21493         CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_bf16x8_add_f32);
21494     return Builder.CreateCall(Callee, {LHS, RHS, Acc});
21495   }
21496   case WebAssembly::BI__builtin_wasm_loadf16_f32: {
21497     Value *Addr = EmitScalarExpr(E->getArg(0));
21498     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_loadf16_f32);
21499     return Builder.CreateCall(Callee, {Addr});
21500   }
21501   case WebAssembly::BI__builtin_wasm_storef16_f32: {
21502     Value *Val = EmitScalarExpr(E->getArg(0));
21503     Value *Addr = EmitScalarExpr(E->getArg(1));
21504     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_storef16_f32);
21505     return Builder.CreateCall(Callee, {Val, Addr});
21506   }
21507   case WebAssembly::BI__builtin_wasm_splat_f16x8: {
21508     Value *Val = EmitScalarExpr(E->getArg(0));
21509     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_splat_f16x8);
21510     return Builder.CreateCall(Callee, {Val});
21511   }
21512   case WebAssembly::BI__builtin_wasm_extract_lane_f16x8: {
21513     Value *Vector = EmitScalarExpr(E->getArg(0));
21514     Value *Index = EmitScalarExpr(E->getArg(1));
21515     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_extract_lane_f16x8);
21516     return Builder.CreateCall(Callee, {Vector, Index});
21517   }
21518   case WebAssembly::BI__builtin_wasm_table_get: {
21519     assert(E->getArg(0)->getType()->isArrayType());
21520     Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21521     Value *Index = EmitScalarExpr(E->getArg(1));
21522     Function *Callee;
21523     if (E->getType().isWebAssemblyExternrefType())
21524       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_get_externref);
21525     else if (E->getType().isWebAssemblyFuncrefType())
21526       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_get_funcref);
21527     else
21528       llvm_unreachable(
21529           "Unexpected reference type for __builtin_wasm_table_get");
21530     return Builder.CreateCall(Callee, {Table, Index});
21531   }
21532   case WebAssembly::BI__builtin_wasm_table_set: {
21533     assert(E->getArg(0)->getType()->isArrayType());
21534     Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21535     Value *Index = EmitScalarExpr(E->getArg(1));
21536     Value *Val = EmitScalarExpr(E->getArg(2));
21537     Function *Callee;
21538     if (E->getArg(2)->getType().isWebAssemblyExternrefType())
21539       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_set_externref);
21540     else if (E->getArg(2)->getType().isWebAssemblyFuncrefType())
21541       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_set_funcref);
21542     else
21543       llvm_unreachable(
21544           "Unexpected reference type for __builtin_wasm_table_set");
21545     return Builder.CreateCall(Callee, {Table, Index, Val});
21546   }
21547   case WebAssembly::BI__builtin_wasm_table_size: {
21548     assert(E->getArg(0)->getType()->isArrayType());
21549     Value *Value = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21550     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_table_size);
21551     return Builder.CreateCall(Callee, Value);
21552   }
21553   case WebAssembly::BI__builtin_wasm_table_grow: {
21554     assert(E->getArg(0)->getType()->isArrayType());
21555     Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21556     Value *Val = EmitScalarExpr(E->getArg(1));
21557     Value *NElems = EmitScalarExpr(E->getArg(2));
21558 
21559     Function *Callee;
21560     if (E->getArg(1)->getType().isWebAssemblyExternrefType())
21561       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_grow_externref);
21562     else if (E->getArg(2)->getType().isWebAssemblyFuncrefType())
21563       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_funcref);
21564     else
21565       llvm_unreachable(
21566           "Unexpected reference type for __builtin_wasm_table_grow");
21567 
21568     return Builder.CreateCall(Callee, {Table, Val, NElems});
21569   }
21570   case WebAssembly::BI__builtin_wasm_table_fill: {
21571     assert(E->getArg(0)->getType()->isArrayType());
21572     Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21573     Value *Index = EmitScalarExpr(E->getArg(1));
21574     Value *Val = EmitScalarExpr(E->getArg(2));
21575     Value *NElems = EmitScalarExpr(E->getArg(3));
21576 
21577     Function *Callee;
21578     if (E->getArg(2)->getType().isWebAssemblyExternrefType())
21579       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_externref);
21580     else if (E->getArg(2)->getType().isWebAssemblyFuncrefType())
21581       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_funcref);
21582     else
21583       llvm_unreachable(
21584           "Unexpected reference type for __builtin_wasm_table_fill");
21585 
21586     return Builder.CreateCall(Callee, {Table, Index, Val, NElems});
21587   }
21588   case WebAssembly::BI__builtin_wasm_table_copy: {
21589     assert(E->getArg(0)->getType()->isArrayType());
21590     Value *TableX = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21591     Value *TableY = EmitArrayToPointerDecay(E->getArg(1)).emitRawPointer(*this);
21592     Value *DstIdx = EmitScalarExpr(E->getArg(2));
21593     Value *SrcIdx = EmitScalarExpr(E->getArg(3));
21594     Value *NElems = EmitScalarExpr(E->getArg(4));
21595 
21596     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_table_copy);
21597 
21598     return Builder.CreateCall(Callee, {TableX, TableY, SrcIdx, DstIdx, NElems});
21599   }
21600   default:
21601     return nullptr;
21602   }
21603 }
21604 
21605 static std::pair<Intrinsic::ID, unsigned>
getIntrinsicForHexagonNonClangBuiltin(unsigned BuiltinID)21606 getIntrinsicForHexagonNonClangBuiltin(unsigned BuiltinID) {
21607   struct Info {
21608     unsigned BuiltinID;
21609     Intrinsic::ID IntrinsicID;
21610     unsigned VecLen;
21611   };
21612   static Info Infos[] = {
21613 #define CUSTOM_BUILTIN_MAPPING(x,s) \
21614   { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
21615     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
21616     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
21617     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
21618     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
21619     CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
21620     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
21621     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
21622     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
21623     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
21624     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
21625     CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
21626     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
21627     CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
21628     CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
21629     CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
21630     CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
21631     CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
21632     CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
21633     CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
21634     CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
21635     CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
21636     CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
21637     // Legacy builtins that take a vector in place of a vector predicate.
21638     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
21639     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
21640     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
21641     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
21642     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
21643     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
21644     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
21645     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
21646 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
21647 #undef CUSTOM_BUILTIN_MAPPING
21648   };
21649 
21650   auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
21651   static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
21652   (void)SortOnce;
21653 
21654   const Info *F = llvm::lower_bound(Infos, Info{BuiltinID, 0, 0}, CmpInfo);
21655   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
21656     return {Intrinsic::not_intrinsic, 0};
21657 
21658   return {F->IntrinsicID, F->VecLen};
21659 }
21660 
EmitHexagonBuiltinExpr(unsigned BuiltinID,const CallExpr * E)21661 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
21662                                                const CallExpr *E) {
21663   Intrinsic::ID ID;
21664   unsigned VecLen;
21665   std::tie(ID, VecLen) = getIntrinsicForHexagonNonClangBuiltin(BuiltinID);
21666 
21667   auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
21668     // The base pointer is passed by address, so it needs to be loaded.
21669     Address A = EmitPointerWithAlignment(E->getArg(0));
21670     Address BP = Address(A.emitRawPointer(*this), Int8PtrTy, A.getAlignment());
21671     llvm::Value *Base = Builder.CreateLoad(BP);
21672     // The treatment of both loads and stores is the same: the arguments for
21673     // the builtin are the same as the arguments for the intrinsic.
21674     // Load:
21675     //   builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
21676     //   builtin(Base, Mod, Start)      -> intr(Base, Mod, Start)
21677     // Store:
21678     //   builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
21679     //   builtin(Base, Mod, Val, Start)      -> intr(Base, Mod, Val, Start)
21680     SmallVector<llvm::Value*,5> Ops = { Base };
21681     for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
21682       Ops.push_back(EmitScalarExpr(E->getArg(i)));
21683 
21684     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
21685     // The load intrinsics generate two results (Value, NewBase), stores
21686     // generate one (NewBase). The new base address needs to be stored.
21687     llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
21688                                   : Result;
21689     llvm::Value *LV = EmitScalarExpr(E->getArg(0));
21690     Address Dest = EmitPointerWithAlignment(E->getArg(0));
21691     llvm::Value *RetVal =
21692         Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
21693     if (IsLoad)
21694       RetVal = Builder.CreateExtractValue(Result, 0);
21695     return RetVal;
21696   };
21697 
21698   // Handle the conversion of bit-reverse load intrinsics to bit code.
21699   // The intrinsic call after this function only reads from memory and the
21700   // write to memory is dealt by the store instruction.
21701   auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
21702     // The intrinsic generates one result, which is the new value for the base
21703     // pointer. It needs to be returned. The result of the load instruction is
21704     // passed to intrinsic by address, so the value needs to be stored.
21705     llvm::Value *BaseAddress = EmitScalarExpr(E->getArg(0));
21706 
21707     // Expressions like &(*pt++) will be incremented per evaluation.
21708     // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
21709     // per call.
21710     Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
21711     DestAddr = DestAddr.withElementType(Int8Ty);
21712     llvm::Value *DestAddress = DestAddr.emitRawPointer(*this);
21713 
21714     // Operands are Base, Dest, Modifier.
21715     // The intrinsic format in LLVM IR is defined as
21716     // { ValueType, i8* } (i8*, i32).
21717     llvm::Value *Result = Builder.CreateCall(
21718         CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
21719 
21720     // The value needs to be stored as the variable is passed by reference.
21721     llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
21722 
21723     // The store needs to be truncated to fit the destination type.
21724     // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
21725     // to be handled with stores of respective destination type.
21726     DestVal = Builder.CreateTrunc(DestVal, DestTy);
21727 
21728     Builder.CreateAlignedStore(DestVal, DestAddress, DestAddr.getAlignment());
21729     // The updated value of the base pointer is returned.
21730     return Builder.CreateExtractValue(Result, 1);
21731   };
21732 
21733   auto V2Q = [this, VecLen] (llvm::Value *Vec) {
21734     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
21735                                      : Intrinsic::hexagon_V6_vandvrt;
21736     return Builder.CreateCall(CGM.getIntrinsic(ID),
21737                               {Vec, Builder.getInt32(-1)});
21738   };
21739   auto Q2V = [this, VecLen] (llvm::Value *Pred) {
21740     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
21741                                      : Intrinsic::hexagon_V6_vandqrt;
21742     return Builder.CreateCall(CGM.getIntrinsic(ID),
21743                               {Pred, Builder.getInt32(-1)});
21744   };
21745 
21746   switch (BuiltinID) {
21747   // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
21748   // and the corresponding C/C++ builtins use loads/stores to update
21749   // the predicate.
21750   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
21751   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
21752   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
21753   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
21754     // Get the type from the 0-th argument.
21755     llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
21756     Address PredAddr =
21757         EmitPointerWithAlignment(E->getArg(2)).withElementType(VecType);
21758     llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
21759     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
21760         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
21761 
21762     llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
21763     Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.emitRawPointer(*this),
21764                                PredAddr.getAlignment());
21765     return Builder.CreateExtractValue(Result, 0);
21766   }
21767   // These are identical to the builtins above, except they don't consume
21768   // input carry, only generate carry-out. Since they still produce two
21769   // outputs, generate the store of the predicate, but no load.
21770   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo:
21771   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo_128B:
21772   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo:
21773   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo_128B: {
21774     // Get the type from the 0-th argument.
21775     llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
21776     Address PredAddr =
21777         EmitPointerWithAlignment(E->getArg(2)).withElementType(VecType);
21778     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
21779         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))});
21780 
21781     llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
21782     Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.emitRawPointer(*this),
21783                                PredAddr.getAlignment());
21784     return Builder.CreateExtractValue(Result, 0);
21785   }
21786 
21787   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq:
21788   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq:
21789   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq:
21790   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq:
21791   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq_128B:
21792   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq_128B:
21793   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq_128B:
21794   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq_128B: {
21795     SmallVector<llvm::Value*,4> Ops;
21796     const Expr *PredOp = E->getArg(0);
21797     // There will be an implicit cast to a boolean vector. Strip it.
21798     if (auto *Cast = dyn_cast<ImplicitCastExpr>(PredOp)) {
21799       if (Cast->getCastKind() == CK_BitCast)
21800         PredOp = Cast->getSubExpr();
21801       Ops.push_back(V2Q(EmitScalarExpr(PredOp)));
21802     }
21803     for (int i = 1, e = E->getNumArgs(); i != e; ++i)
21804       Ops.push_back(EmitScalarExpr(E->getArg(i)));
21805     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
21806   }
21807 
21808   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
21809   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
21810   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
21811   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
21812   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
21813   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
21814   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
21815   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
21816   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
21817   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
21818   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
21819   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
21820     return MakeCircOp(ID, /*IsLoad=*/true);
21821   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
21822   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
21823   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
21824   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
21825   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
21826   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
21827   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
21828   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
21829   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
21830   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
21831     return MakeCircOp(ID, /*IsLoad=*/false);
21832   case Hexagon::BI__builtin_brev_ldub:
21833     return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
21834   case Hexagon::BI__builtin_brev_ldb:
21835     return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
21836   case Hexagon::BI__builtin_brev_lduh:
21837     return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
21838   case Hexagon::BI__builtin_brev_ldh:
21839     return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
21840   case Hexagon::BI__builtin_brev_ldw:
21841     return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
21842   case Hexagon::BI__builtin_brev_ldd:
21843     return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
21844   } // switch
21845 
21846   return nullptr;
21847 }
21848 
EmitRISCVBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)21849 Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
21850                                              const CallExpr *E,
21851                                              ReturnValueSlot ReturnValue) {
21852   SmallVector<Value *, 4> Ops;
21853   llvm::Type *ResultType = ConvertType(E->getType());
21854 
21855   // Find out if any arguments are required to be integer constant expressions.
21856   unsigned ICEArguments = 0;
21857   ASTContext::GetBuiltinTypeError Error;
21858   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
21859   if (Error == ASTContext::GE_Missing_type) {
21860     // Vector intrinsics don't have a type string.
21861     assert(BuiltinID >= clang::RISCV::FirstRVVBuiltin &&
21862            BuiltinID <= clang::RISCV::LastRVVBuiltin);
21863     ICEArguments = 0;
21864     if (BuiltinID == RISCVVector::BI__builtin_rvv_vget_v ||
21865         BuiltinID == RISCVVector::BI__builtin_rvv_vset_v)
21866       ICEArguments = 1 << 1;
21867   } else {
21868     assert(Error == ASTContext::GE_None && "Unexpected error");
21869   }
21870 
21871   if (BuiltinID == RISCV::BI__builtin_riscv_ntl_load)
21872     ICEArguments |= (1 << 1);
21873   if (BuiltinID == RISCV::BI__builtin_riscv_ntl_store)
21874     ICEArguments |= (1 << 2);
21875 
21876   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
21877     // Handle aggregate argument, namely RVV tuple types in segment load/store
21878     if (hasAggregateEvaluationKind(E->getArg(i)->getType())) {
21879       LValue L = EmitAggExprToLValue(E->getArg(i));
21880       llvm::Value *AggValue = Builder.CreateLoad(L.getAddress());
21881       Ops.push_back(AggValue);
21882       continue;
21883     }
21884     Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
21885   }
21886 
21887   Intrinsic::ID ID = Intrinsic::not_intrinsic;
21888   unsigned NF = 1;
21889   // The 0th bit simulates the `vta` of RVV
21890   // The 1st bit simulates the `vma` of RVV
21891   constexpr unsigned RVV_VTA = 0x1;
21892   constexpr unsigned RVV_VMA = 0x2;
21893   int PolicyAttrs = 0;
21894   bool IsMasked = false;
21895 
21896   // Required for overloaded intrinsics.
21897   llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
21898   switch (BuiltinID) {
21899   default: llvm_unreachable("unexpected builtin ID");
21900   case RISCV::BI__builtin_riscv_orc_b_32:
21901   case RISCV::BI__builtin_riscv_orc_b_64:
21902   case RISCV::BI__builtin_riscv_clz_32:
21903   case RISCV::BI__builtin_riscv_clz_64:
21904   case RISCV::BI__builtin_riscv_ctz_32:
21905   case RISCV::BI__builtin_riscv_ctz_64:
21906   case RISCV::BI__builtin_riscv_clmul_32:
21907   case RISCV::BI__builtin_riscv_clmul_64:
21908   case RISCV::BI__builtin_riscv_clmulh_32:
21909   case RISCV::BI__builtin_riscv_clmulh_64:
21910   case RISCV::BI__builtin_riscv_clmulr_32:
21911   case RISCV::BI__builtin_riscv_clmulr_64:
21912   case RISCV::BI__builtin_riscv_xperm4_32:
21913   case RISCV::BI__builtin_riscv_xperm4_64:
21914   case RISCV::BI__builtin_riscv_xperm8_32:
21915   case RISCV::BI__builtin_riscv_xperm8_64:
21916   case RISCV::BI__builtin_riscv_brev8_32:
21917   case RISCV::BI__builtin_riscv_brev8_64:
21918   case RISCV::BI__builtin_riscv_zip_32:
21919   case RISCV::BI__builtin_riscv_unzip_32: {
21920     switch (BuiltinID) {
21921     default: llvm_unreachable("unexpected builtin ID");
21922     // Zbb
21923     case RISCV::BI__builtin_riscv_orc_b_32:
21924     case RISCV::BI__builtin_riscv_orc_b_64:
21925       ID = Intrinsic::riscv_orc_b;
21926       break;
21927     case RISCV::BI__builtin_riscv_clz_32:
21928     case RISCV::BI__builtin_riscv_clz_64: {
21929       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
21930       Value *Result = Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
21931       if (Result->getType() != ResultType)
21932         Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
21933                                        "cast");
21934       return Result;
21935     }
21936     case RISCV::BI__builtin_riscv_ctz_32:
21937     case RISCV::BI__builtin_riscv_ctz_64: {
21938       Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
21939       Value *Result = Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
21940       if (Result->getType() != ResultType)
21941         Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
21942                                        "cast");
21943       return Result;
21944     }
21945 
21946     // Zbc
21947     case RISCV::BI__builtin_riscv_clmul_32:
21948     case RISCV::BI__builtin_riscv_clmul_64:
21949       ID = Intrinsic::riscv_clmul;
21950       break;
21951     case RISCV::BI__builtin_riscv_clmulh_32:
21952     case RISCV::BI__builtin_riscv_clmulh_64:
21953       ID = Intrinsic::riscv_clmulh;
21954       break;
21955     case RISCV::BI__builtin_riscv_clmulr_32:
21956     case RISCV::BI__builtin_riscv_clmulr_64:
21957       ID = Intrinsic::riscv_clmulr;
21958       break;
21959 
21960     // Zbkx
21961     case RISCV::BI__builtin_riscv_xperm8_32:
21962     case RISCV::BI__builtin_riscv_xperm8_64:
21963       ID = Intrinsic::riscv_xperm8;
21964       break;
21965     case RISCV::BI__builtin_riscv_xperm4_32:
21966     case RISCV::BI__builtin_riscv_xperm4_64:
21967       ID = Intrinsic::riscv_xperm4;
21968       break;
21969 
21970     // Zbkb
21971     case RISCV::BI__builtin_riscv_brev8_32:
21972     case RISCV::BI__builtin_riscv_brev8_64:
21973       ID = Intrinsic::riscv_brev8;
21974       break;
21975     case RISCV::BI__builtin_riscv_zip_32:
21976       ID = Intrinsic::riscv_zip;
21977       break;
21978     case RISCV::BI__builtin_riscv_unzip_32:
21979       ID = Intrinsic::riscv_unzip;
21980       break;
21981     }
21982 
21983     IntrinsicTypes = {ResultType};
21984     break;
21985   }
21986 
21987   // Zk builtins
21988 
21989   // Zknh
21990   case RISCV::BI__builtin_riscv_sha256sig0:
21991     ID = Intrinsic::riscv_sha256sig0;
21992     break;
21993   case RISCV::BI__builtin_riscv_sha256sig1:
21994     ID = Intrinsic::riscv_sha256sig1;
21995     break;
21996   case RISCV::BI__builtin_riscv_sha256sum0:
21997     ID = Intrinsic::riscv_sha256sum0;
21998     break;
21999   case RISCV::BI__builtin_riscv_sha256sum1:
22000     ID = Intrinsic::riscv_sha256sum1;
22001     break;
22002 
22003   // Zksed
22004   case RISCV::BI__builtin_riscv_sm4ks:
22005     ID = Intrinsic::riscv_sm4ks;
22006     break;
22007   case RISCV::BI__builtin_riscv_sm4ed:
22008     ID = Intrinsic::riscv_sm4ed;
22009     break;
22010 
22011   // Zksh
22012   case RISCV::BI__builtin_riscv_sm3p0:
22013     ID = Intrinsic::riscv_sm3p0;
22014     break;
22015   case RISCV::BI__builtin_riscv_sm3p1:
22016     ID = Intrinsic::riscv_sm3p1;
22017     break;
22018 
22019   // Zihintntl
22020   case RISCV::BI__builtin_riscv_ntl_load: {
22021     llvm::Type *ResTy = ConvertType(E->getType());
22022     unsigned DomainVal = 5; // Default __RISCV_NTLH_ALL
22023     if (Ops.size() == 2)
22024       DomainVal = cast<ConstantInt>(Ops[1])->getZExtValue();
22025 
22026     llvm::MDNode *RISCVDomainNode = llvm::MDNode::get(
22027         getLLVMContext(),
22028         llvm::ConstantAsMetadata::get(Builder.getInt32(DomainVal)));
22029     llvm::MDNode *NontemporalNode = llvm::MDNode::get(
22030         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
22031 
22032     int Width;
22033     if(ResTy->isScalableTy()) {
22034       const ScalableVectorType *SVTy = cast<ScalableVectorType>(ResTy);
22035       llvm::Type *ScalarTy = ResTy->getScalarType();
22036       Width = ScalarTy->getPrimitiveSizeInBits() *
22037               SVTy->getElementCount().getKnownMinValue();
22038     } else
22039       Width = ResTy->getPrimitiveSizeInBits();
22040     LoadInst *Load = Builder.CreateLoad(
22041         Address(Ops[0], ResTy, CharUnits::fromQuantity(Width / 8)));
22042 
22043     Load->setMetadata(llvm::LLVMContext::MD_nontemporal, NontemporalNode);
22044     Load->setMetadata(CGM.getModule().getMDKindID("riscv-nontemporal-domain"),
22045                       RISCVDomainNode);
22046 
22047     return Load;
22048   }
22049   case RISCV::BI__builtin_riscv_ntl_store: {
22050     unsigned DomainVal = 5; // Default __RISCV_NTLH_ALL
22051     if (Ops.size() == 3)
22052       DomainVal = cast<ConstantInt>(Ops[2])->getZExtValue();
22053 
22054     llvm::MDNode *RISCVDomainNode = llvm::MDNode::get(
22055         getLLVMContext(),
22056         llvm::ConstantAsMetadata::get(Builder.getInt32(DomainVal)));
22057     llvm::MDNode *NontemporalNode = llvm::MDNode::get(
22058         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
22059 
22060     StoreInst *Store = Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
22061     Store->setMetadata(llvm::LLVMContext::MD_nontemporal, NontemporalNode);
22062     Store->setMetadata(CGM.getModule().getMDKindID("riscv-nontemporal-domain"),
22063                        RISCVDomainNode);
22064 
22065     return Store;
22066   }
22067 
22068   // Vector builtins are handled from here.
22069 #include "clang/Basic/riscv_vector_builtin_cg.inc"
22070   // SiFive Vector builtins are handled from here.
22071 #include "clang/Basic/riscv_sifive_vector_builtin_cg.inc"
22072   }
22073 
22074   assert(ID != Intrinsic::not_intrinsic);
22075 
22076   llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
22077   return Builder.CreateCall(F, Ops, "");
22078 }
22079