1 //===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AArch64ExpandImm stuff.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "AArch64.h"
14 #include "AArch64ExpandImm.h"
15 #include "MCTargetDesc/AArch64AddressingModes.h"
16
17 using namespace llvm;
18 using namespace llvm::AArch64_IMM;
19
20 /// Helper function which extracts the specified 16-bit chunk from a
21 /// 64-bit value.
getChunk(uint64_t Imm,unsigned ChunkIdx)22 static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
23 assert(ChunkIdx < 4 && "Out of range chunk index specified!");
24
25 return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
26 }
27
28 /// Check whether the given 16-bit chunk replicated to full 64-bit width
29 /// can be materialized with an ORR instruction.
canUseOrr(uint64_t Chunk,uint64_t & Encoding)30 static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
31 Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
32
33 return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
34 }
35
36 /// Check for identical 16-bit chunks within the constant and if so
37 /// materialize them with a single ORR instruction. The remaining one or two
38 /// 16-bit chunks will be materialized with MOVK instructions.
39 ///
40 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
41 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
42 /// an ORR instruction.
tryToreplicateChunks(uint64_t UImm,SmallVectorImpl<ImmInsnModel> & Insn)43 static bool tryToreplicateChunks(uint64_t UImm,
44 SmallVectorImpl<ImmInsnModel> &Insn) {
45 using CountMap = DenseMap<uint64_t, unsigned>;
46
47 CountMap Counts;
48
49 // Scan the constant and count how often every chunk occurs.
50 for (unsigned Idx = 0; Idx < 4; ++Idx)
51 ++Counts[getChunk(UImm, Idx)];
52
53 // Traverse the chunks to find one which occurs more than once.
54 for (const auto &Chunk : Counts) {
55 const uint64_t ChunkVal = Chunk.first;
56 const unsigned Count = Chunk.second;
57
58 uint64_t Encoding = 0;
59
60 // We are looking for chunks which have two or three instances and can be
61 // materialized with an ORR instruction.
62 if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
63 continue;
64
65 const bool CountThree = Count == 3;
66
67 Insn.push_back({ AArch64::ORRXri, 0, Encoding });
68
69 unsigned ShiftAmt = 0;
70 uint64_t Imm16 = 0;
71 // Find the first chunk not materialized with the ORR instruction.
72 for (; ShiftAmt < 64; ShiftAmt += 16) {
73 Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
74
75 if (Imm16 != ChunkVal)
76 break;
77 }
78
79 // Create the first MOVK instruction.
80 Insn.push_back({ AArch64::MOVKXi, Imm16,
81 AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
82
83 // In case we have three instances the whole constant is now materialized
84 // and we can exit.
85 if (CountThree)
86 return true;
87
88 // Find the remaining chunk which needs to be materialized.
89 for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
90 Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
91
92 if (Imm16 != ChunkVal)
93 break;
94 }
95 Insn.push_back({ AArch64::MOVKXi, Imm16,
96 AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
97 return true;
98 }
99
100 return false;
101 }
102
103 /// Check whether this chunk matches the pattern '1...0...'. This pattern
104 /// starts a contiguous sequence of ones if we look at the bits from the LSB
105 /// towards the MSB.
isStartChunk(uint64_t Chunk)106 static bool isStartChunk(uint64_t Chunk) {
107 if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
108 return false;
109
110 return isMask_64(~Chunk);
111 }
112
113 /// Check whether this chunk matches the pattern '0...1...' This pattern
114 /// ends a contiguous sequence of ones if we look at the bits from the LSB
115 /// towards the MSB.
isEndChunk(uint64_t Chunk)116 static bool isEndChunk(uint64_t Chunk) {
117 if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
118 return false;
119
120 return isMask_64(Chunk);
121 }
122
123 /// Clear or set all bits in the chunk at the given index.
updateImm(uint64_t Imm,unsigned Idx,bool Clear)124 static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
125 const uint64_t Mask = 0xFFFF;
126
127 if (Clear)
128 // Clear chunk in the immediate.
129 Imm &= ~(Mask << (Idx * 16));
130 else
131 // Set all bits in the immediate for the particular chunk.
132 Imm |= Mask << (Idx * 16);
133
134 return Imm;
135 }
136
137 /// Check whether the constant contains a sequence of contiguous ones,
138 /// which might be interrupted by one or two chunks. If so, materialize the
139 /// sequence of contiguous ones with an ORR instruction.
140 /// Materialize the chunks which are either interrupting the sequence or outside
141 /// of the sequence with a MOVK instruction.
142 ///
143 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
144 /// which ends the sequence (0...1...). Then we are looking for constants which
145 /// contain at least one S and E chunk.
146 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
147 ///
148 /// We are also looking for constants like |S|A|B|E| where the contiguous
149 /// sequence of ones wraps around the MSB into the LSB.
trySequenceOfOnes(uint64_t UImm,SmallVectorImpl<ImmInsnModel> & Insn)150 static bool trySequenceOfOnes(uint64_t UImm,
151 SmallVectorImpl<ImmInsnModel> &Insn) {
152 const int NotSet = -1;
153 const uint64_t Mask = 0xFFFF;
154
155 int StartIdx = NotSet;
156 int EndIdx = NotSet;
157 // Try to find the chunks which start/end a contiguous sequence of ones.
158 for (int Idx = 0; Idx < 4; ++Idx) {
159 int64_t Chunk = getChunk(UImm, Idx);
160 // Sign extend the 16-bit chunk to 64-bit.
161 Chunk = (Chunk << 48) >> 48;
162
163 if (isStartChunk(Chunk))
164 StartIdx = Idx;
165 else if (isEndChunk(Chunk))
166 EndIdx = Idx;
167 }
168
169 // Early exit in case we can't find a start/end chunk.
170 if (StartIdx == NotSet || EndIdx == NotSet)
171 return false;
172
173 // Outside of the contiguous sequence of ones everything needs to be zero.
174 uint64_t Outside = 0;
175 // Chunks between the start and end chunk need to have all their bits set.
176 uint64_t Inside = Mask;
177
178 // If our contiguous sequence of ones wraps around from the MSB into the LSB,
179 // just swap indices and pretend we are materializing a contiguous sequence
180 // of zeros surrounded by a contiguous sequence of ones.
181 if (StartIdx > EndIdx) {
182 std::swap(StartIdx, EndIdx);
183 std::swap(Outside, Inside);
184 }
185
186 uint64_t OrrImm = UImm;
187 int FirstMovkIdx = NotSet;
188 int SecondMovkIdx = NotSet;
189
190 // Find out which chunks we need to patch up to obtain a contiguous sequence
191 // of ones.
192 for (int Idx = 0; Idx < 4; ++Idx) {
193 const uint64_t Chunk = getChunk(UImm, Idx);
194
195 // Check whether we are looking at a chunk which is not part of the
196 // contiguous sequence of ones.
197 if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
198 OrrImm = updateImm(OrrImm, Idx, Outside == 0);
199
200 // Remember the index we need to patch.
201 if (FirstMovkIdx == NotSet)
202 FirstMovkIdx = Idx;
203 else
204 SecondMovkIdx = Idx;
205
206 // Check whether we are looking a chunk which is part of the contiguous
207 // sequence of ones.
208 } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
209 OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
210
211 // Remember the index we need to patch.
212 if (FirstMovkIdx == NotSet)
213 FirstMovkIdx = Idx;
214 else
215 SecondMovkIdx = Idx;
216 }
217 }
218 assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
219
220 // Create the ORR-immediate instruction.
221 uint64_t Encoding = 0;
222 AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
223 Insn.push_back({ AArch64::ORRXri, 0, Encoding });
224
225 const bool SingleMovk = SecondMovkIdx == NotSet;
226 Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, FirstMovkIdx),
227 AArch64_AM::getShifterImm(AArch64_AM::LSL,
228 FirstMovkIdx * 16) });
229
230 // Early exit in case we only need to emit a single MOVK instruction.
231 if (SingleMovk)
232 return true;
233
234 // Create the second MOVK instruction.
235 Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, SecondMovkIdx),
236 AArch64_AM::getShifterImm(AArch64_AM::LSL,
237 SecondMovkIdx * 16) });
238
239 return true;
240 }
241
GetRunOfOnesStartingAt(uint64_t V,uint64_t StartPosition)242 static uint64_t GetRunOfOnesStartingAt(uint64_t V, uint64_t StartPosition) {
243 uint64_t NumOnes = llvm::countr_one(V >> StartPosition);
244
245 uint64_t UnshiftedOnes;
246 if (NumOnes == 64) {
247 UnshiftedOnes = ~0ULL;
248 } else {
249 UnshiftedOnes = (1ULL << NumOnes) - 1;
250 }
251 return UnshiftedOnes << StartPosition;
252 }
253
MaximallyReplicateSubImmediate(uint64_t V,uint64_t Subset)254 static uint64_t MaximallyReplicateSubImmediate(uint64_t V, uint64_t Subset) {
255 uint64_t Result = Subset;
256
257 // 64, 32, 16, 8, 4, 2
258 for (uint64_t i = 0; i < 6; ++i) {
259 uint64_t Rotation = 1ULL << (6 - i);
260 uint64_t Closure = Result | llvm::rotl<uint64_t>(Result, Rotation);
261 if (Closure != (Closure & V)) {
262 break;
263 }
264 Result = Closure;
265 }
266
267 return Result;
268 }
269
270 // Find the logical immediate that covers the most bits in RemainingBits,
271 // allowing for additional bits to be set that were set in OriginalBits.
maximalLogicalImmWithin(uint64_t RemainingBits,uint64_t OriginalBits)272 static uint64_t maximalLogicalImmWithin(uint64_t RemainingBits,
273 uint64_t OriginalBits) {
274 // Find the first set bit.
275 uint32_t Position = llvm::countr_zero(RemainingBits);
276
277 // Get the first run of set bits.
278 uint64_t FirstRun = GetRunOfOnesStartingAt(OriginalBits, Position);
279
280 // Replicate the run as many times as possible, as long as the bits are set in
281 // RemainingBits.
282 uint64_t MaximalImm = MaximallyReplicateSubImmediate(OriginalBits, FirstRun);
283
284 return MaximalImm;
285 }
286
287 static std::optional<std::pair<uint64_t, uint64_t>>
decomposeIntoOrrOfLogicalImmediates(uint64_t UImm)288 decomposeIntoOrrOfLogicalImmediates(uint64_t UImm) {
289 if (UImm == 0 || ~UImm == 0)
290 return std::nullopt;
291
292 // Make sure we don't have a run of ones split around the rotation boundary.
293 uint32_t InitialTrailingOnes = llvm::countr_one(UImm);
294 uint64_t RotatedBits = llvm::rotr<uint64_t>(UImm, InitialTrailingOnes);
295
296 // Find the largest logical immediate that fits within the full immediate.
297 uint64_t MaximalImm1 = maximalLogicalImmWithin(RotatedBits, RotatedBits);
298
299 // Remove all bits that are set by this mask.
300 uint64_t RemainingBits = RotatedBits & ~MaximalImm1;
301
302 // Find the largest logical immediate covering the remaining bits, allowing
303 // for additional bits to be set that were also set in the original immediate.
304 uint64_t MaximalImm2 = maximalLogicalImmWithin(RemainingBits, RotatedBits);
305
306 // If any bits still haven't been covered, then give up.
307 if (RemainingBits & ~MaximalImm2)
308 return std::nullopt;
309
310 // Make sure to un-rotate the immediates.
311 return std::make_pair(rotl(MaximalImm1, InitialTrailingOnes),
312 rotl(MaximalImm2, InitialTrailingOnes));
313 }
314
315 // Attempt to expand an immediate as the ORR of a pair of logical immediates.
tryOrrOfLogicalImmediates(uint64_t UImm,SmallVectorImpl<ImmInsnModel> & Insn)316 static bool tryOrrOfLogicalImmediates(uint64_t UImm,
317 SmallVectorImpl<ImmInsnModel> &Insn) {
318 auto MaybeDecomposition = decomposeIntoOrrOfLogicalImmediates(UImm);
319 if (MaybeDecomposition == std::nullopt)
320 return false;
321 uint64_t Imm1 = MaybeDecomposition->first;
322 uint64_t Imm2 = MaybeDecomposition->second;
323
324 uint64_t Encoding1, Encoding2;
325 bool Imm1Success = AArch64_AM::processLogicalImmediate(Imm1, 64, Encoding1);
326 bool Imm2Success = AArch64_AM::processLogicalImmediate(Imm2, 64, Encoding2);
327
328 if (Imm1Success && Imm2Success) {
329 // Create the ORR-immediate instructions.
330 Insn.push_back({AArch64::ORRXri, 0, Encoding1});
331 Insn.push_back({AArch64::ORRXri, 1, Encoding2});
332 return true;
333 }
334
335 return false;
336 }
337
338 // Attempt to expand an immediate as the AND of a pair of logical immediates.
339 // This is done by applying DeMorgan's law, under which logical immediates
340 // are closed.
tryAndOfLogicalImmediates(uint64_t UImm,SmallVectorImpl<ImmInsnModel> & Insn)341 static bool tryAndOfLogicalImmediates(uint64_t UImm,
342 SmallVectorImpl<ImmInsnModel> &Insn) {
343 // Apply DeMorgan's law to turn this into an ORR problem.
344 auto MaybeDecomposition = decomposeIntoOrrOfLogicalImmediates(~UImm);
345 if (MaybeDecomposition == std::nullopt)
346 return false;
347 uint64_t Imm1 = MaybeDecomposition->first;
348 uint64_t Imm2 = MaybeDecomposition->second;
349
350 uint64_t Encoding1, Encoding2;
351 bool Imm1Success = AArch64_AM::processLogicalImmediate(~Imm1, 64, Encoding1);
352 bool Imm2Success = AArch64_AM::processLogicalImmediate(~Imm2, 64, Encoding2);
353
354 if (Imm1Success && Imm2Success) {
355 // Materialize Imm1, the LHS of the AND
356 Insn.push_back({AArch64::ORRXri, 0, Encoding1});
357 // AND Imm1 with Imm2
358 Insn.push_back({AArch64::ANDXri, 1, Encoding2});
359 return true;
360 }
361
362 return false;
363 }
364
365 // Check whether the constant can be represented by exclusive-or of two 64-bit
366 // logical immediates. If so, materialize it with an ORR instruction followed
367 // by an EOR instruction.
368 //
369 // This encoding allows all remaining repeated byte patterns, and many repeated
370 // 16-bit values, to be encoded without needing four instructions. It can also
371 // represent some irregular bitmasks (although those would mostly only need
372 // three instructions otherwise).
tryEorOfLogicalImmediates(uint64_t Imm,SmallVectorImpl<ImmInsnModel> & Insn)373 static bool tryEorOfLogicalImmediates(uint64_t Imm,
374 SmallVectorImpl<ImmInsnModel> &Insn) {
375 // Determine the larger repetition size of the two possible logical
376 // immediates, by finding the repetition size of Imm.
377 unsigned BigSize = 64;
378
379 do {
380 BigSize /= 2;
381 uint64_t Mask = (1ULL << BigSize) - 1;
382
383 if ((Imm & Mask) != ((Imm >> BigSize) & Mask)) {
384 BigSize *= 2;
385 break;
386 }
387 } while (BigSize > 2);
388
389 uint64_t BigMask = ((uint64_t)-1LL) >> (64 - BigSize);
390
391 // Find the last bit of each run of ones, circularly. For runs which wrap
392 // around from bit 0 to bit 63, this is the bit before the most-significant
393 // zero, otherwise it is the least-significant bit in the run of ones.
394 uint64_t RunStarts = Imm & ~rotl<uint64_t>(Imm, 1);
395
396 // Find the smaller repetition size of the two possible logical immediates by
397 // counting the number of runs of one-bits within the BigSize-bit value. Both
398 // sizes may be the same. The EOR may add one or subtract one from the
399 // power-of-two count that can be represented by a logical immediate, or it
400 // may be left unchanged.
401 int RunsPerBigChunk = popcount(RunStarts & BigMask);
402
403 static const int8_t BigToSmallSizeTable[32] = {
404 -1, -1, 0, 1, 2, 2, -1, 3, 3, 3, -1, -1, -1, -1, -1, 4,
405 4, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5,
406 };
407
408 int BigToSmallShift = BigToSmallSizeTable[RunsPerBigChunk];
409
410 // Early-exit if the big chunk couldn't be a power-of-two number of runs
411 // EORed with another single run.
412 if (BigToSmallShift == -1)
413 return false;
414
415 unsigned SmallSize = BigSize >> BigToSmallShift;
416
417 // 64-bit values with a bit set every (1 << index) bits.
418 static const uint64_t RepeatedOnesTable[] = {
419 0xffffffffffffffff, 0x5555555555555555, 0x1111111111111111,
420 0x0101010101010101, 0x0001000100010001, 0x0000000100000001,
421 0x0000000000000001,
422 };
423
424 // This RepeatedOnesTable lookup is a faster implementation of the division
425 // 0xffffffffffffffff / ((1 << SmallSize) - 1), and can be thought of as
426 // dividing the 64-bit value into fields of width SmallSize, and placing a
427 // one in the least significant bit of each field.
428 uint64_t SmallOnes = RepeatedOnesTable[countr_zero(SmallSize)];
429
430 // Now we try to find the number of ones in each of the smaller repetitions,
431 // by looking at runs of ones in Imm. This can take three attempts, as the
432 // EOR may have changed the length of the first two runs we find.
433
434 // Rotate a run of ones so we can count the number of trailing set bits.
435 int Rotation = countr_zero(RunStarts);
436 uint64_t RotatedImm = rotr<uint64_t>(Imm, Rotation);
437 for (int Attempt = 0; Attempt < 3; ++Attempt) {
438 unsigned RunLength = countr_one(RotatedImm);
439
440 // Construct candidate values BigImm and SmallImm, such that if these two
441 // values are encodable, we have a solution. (SmallImm is constructed to be
442 // encodable, but this isn't guaranteed when RunLength >= SmallSize)
443 uint64_t SmallImm =
444 rotl<uint64_t>((SmallOnes << RunLength) - SmallOnes, Rotation);
445 uint64_t BigImm = Imm ^ SmallImm;
446
447 uint64_t BigEncoding = 0;
448 uint64_t SmallEncoding = 0;
449 if (AArch64_AM::processLogicalImmediate(BigImm, 64, BigEncoding) &&
450 AArch64_AM::processLogicalImmediate(SmallImm, 64, SmallEncoding)) {
451 Insn.push_back({AArch64::ORRXri, 0, SmallEncoding});
452 Insn.push_back({AArch64::EORXri, 1, BigEncoding});
453 return true;
454 }
455
456 // Rotate to the next run of ones
457 Rotation += countr_zero(rotr<uint64_t>(RunStarts, Rotation) & ~1);
458 RotatedImm = rotr<uint64_t>(Imm, Rotation);
459 }
460
461 return false;
462 }
463
464 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
465 /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
expandMOVImmSimple(uint64_t Imm,unsigned BitSize,unsigned OneChunks,unsigned ZeroChunks,SmallVectorImpl<ImmInsnModel> & Insn)466 static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize,
467 unsigned OneChunks, unsigned ZeroChunks,
468 SmallVectorImpl<ImmInsnModel> &Insn) {
469 const unsigned Mask = 0xFFFF;
470
471 // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
472 // more MOVK instructions to insert additional 16-bit portions into the
473 // lower bits.
474 bool isNeg = false;
475
476 // Use MOVN to materialize the high bits if we have more all one chunks
477 // than all zero chunks.
478 if (OneChunks > ZeroChunks) {
479 isNeg = true;
480 Imm = ~Imm;
481 }
482
483 unsigned FirstOpc;
484 if (BitSize == 32) {
485 Imm &= (1LL << 32) - 1;
486 FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
487 } else {
488 FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
489 }
490 unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN
491 unsigned LastShift = 0; // LSL amount for last MOVK
492 if (Imm != 0) {
493 unsigned LZ = llvm::countl_zero(Imm);
494 unsigned TZ = llvm::countr_zero(Imm);
495 Shift = (TZ / 16) * 16;
496 LastShift = ((63 - LZ) / 16) * 16;
497 }
498 unsigned Imm16 = (Imm >> Shift) & Mask;
499
500 Insn.push_back({ FirstOpc, Imm16,
501 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
502
503 if (Shift == LastShift)
504 return;
505
506 // If a MOVN was used for the high bits of a negative value, flip the rest
507 // of the bits back for use with MOVK.
508 if (isNeg)
509 Imm = ~Imm;
510
511 unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
512 while (Shift < LastShift) {
513 Shift += 16;
514 Imm16 = (Imm >> Shift) & Mask;
515 if (Imm16 == (isNeg ? Mask : 0))
516 continue; // This 16-bit portion is already set correctly.
517
518 Insn.push_back({ Opc, Imm16,
519 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
520 }
521
522 // Now, we get 16-bit divided Imm. If high and low bits are same in
523 // 32-bit, there is an opportunity to reduce instruction.
524 if (Insn.size() > 2 && (Imm >> 32) == (Imm & 0xffffffffULL)) {
525 for (int Size = Insn.size(); Size > 2; Size--)
526 Insn.pop_back();
527 Insn.push_back({AArch64::ORRXrs, 0, 32});
528 }
529 }
530
531 /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
532 /// real move-immediate instructions to synthesize the immediate.
expandMOVImm(uint64_t Imm,unsigned BitSize,SmallVectorImpl<ImmInsnModel> & Insn)533 void AArch64_IMM::expandMOVImm(uint64_t Imm, unsigned BitSize,
534 SmallVectorImpl<ImmInsnModel> &Insn) {
535 const unsigned Mask = 0xFFFF;
536
537 // Scan the immediate and count the number of 16-bit chunks which are either
538 // all ones or all zeros.
539 unsigned OneChunks = 0;
540 unsigned ZeroChunks = 0;
541 for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
542 const unsigned Chunk = (Imm >> Shift) & Mask;
543 if (Chunk == Mask)
544 OneChunks++;
545 else if (Chunk == 0)
546 ZeroChunks++;
547 }
548
549 // Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias.
550 if ((BitSize / 16) - OneChunks <= 1 || (BitSize / 16) - ZeroChunks <= 1) {
551 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
552 return;
553 }
554
555 // Try a single ORR.
556 uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
557 uint64_t Encoding;
558 if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
559 unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
560 Insn.push_back({ Opc, 0, Encoding });
561 return;
562 }
563
564 // One to up three instruction sequences.
565 //
566 // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
567 // fastest sequence with fast literal generation.
568 if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) {
569 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
570 return;
571 }
572
573 assert(BitSize == 64 && "All 32-bit immediates can be expanded with a"
574 "MOVZ/MOVK pair");
575
576 // Try other two-instruction sequences.
577
578 // 64-bit ORR followed by MOVK.
579 // We try to construct the ORR immediate in three different ways: either we
580 // zero out the chunk which will be replaced, we fill the chunk which will
581 // be replaced with ones, or we take the bit pattern from the other half of
582 // the 64-bit immediate. This is comprehensive because of the way ORR
583 // immediates are constructed.
584 for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
585 uint64_t ShiftedMask = (0xFFFFULL << Shift);
586 uint64_t ZeroChunk = UImm & ~ShiftedMask;
587 uint64_t OneChunk = UImm | ShiftedMask;
588 uint64_t RotatedImm = (UImm << 32) | (UImm >> 32);
589 uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask);
590 if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) ||
591 AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) ||
592 AArch64_AM::processLogicalImmediate(ReplicateChunk, BitSize,
593 Encoding)) {
594 // Create the ORR-immediate instruction.
595 Insn.push_back({ AArch64::ORRXri, 0, Encoding });
596
597 // Create the MOVK instruction.
598 const unsigned Imm16 = getChunk(UImm, Shift / 16);
599 Insn.push_back({ AArch64::MOVKXi, Imm16,
600 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
601 return;
602 }
603 }
604
605 // Attempt to use a sequence of two ORR-immediate instructions.
606 if (tryOrrOfLogicalImmediates(Imm, Insn))
607 return;
608
609 // Attempt to use a sequence of ORR-immediate followed by AND-immediate.
610 if (tryAndOfLogicalImmediates(Imm, Insn))
611 return;
612
613 // Attempt to use a sequence of ORR-immediate followed by EOR-immediate.
614 if (tryEorOfLogicalImmediates(UImm, Insn))
615 return;
616
617 // FIXME: Add more two-instruction sequences.
618
619 // Three instruction sequences.
620 //
621 // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
622 // the fastest sequence with fast literal generation. (If neither MOVK is
623 // part of a fast literal generation pair, it could be slower than the
624 // four-instruction sequence, but we won't worry about that for now.)
625 if (OneChunks || ZeroChunks) {
626 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
627 return;
628 }
629
630 // Check for identical 16-bit chunks within the constant and if so materialize
631 // them with a single ORR instruction. The remaining one or two 16-bit chunks
632 // will be materialized with MOVK instructions.
633 if (BitSize == 64 && tryToreplicateChunks(UImm, Insn))
634 return;
635
636 // Check whether the constant contains a sequence of contiguous ones, which
637 // might be interrupted by one or two chunks. If so, materialize the sequence
638 // of contiguous ones with an ORR instruction. Materialize the chunks which
639 // are either interrupting the sequence or outside of the sequence with a
640 // MOVK instruction.
641 if (BitSize == 64 && trySequenceOfOnes(UImm, Insn))
642 return;
643
644 // We found no possible two or three instruction sequence; use the general
645 // four-instruction sequence.
646 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
647 }
648