1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /*
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright 2019 Joyent, Inc.
27 */
28
29 /*
30 * VM - Hardware Address Translation management for Spitfire MMU.
31 *
32 * This file implements the machine specific hardware translation
33 * needed by the VM system. The machine independent interface is
34 * described in <vm/hat.h> while the machine dependent interface
35 * and data structures are described in <vm/hat_sfmmu.h>.
36 *
37 * The hat layer manages the address translation hardware as a cache
38 * driven by calls from the higher levels in the VM system.
39 */
40
41 #include <sys/types.h>
42 #include <sys/kstat.h>
43 #include <vm/hat.h>
44 #include <vm/hat_sfmmu.h>
45 #include <vm/page.h>
46 #include <sys/pte.h>
47 #include <sys/systm.h>
48 #include <sys/mman.h>
49 #include <sys/sysmacros.h>
50 #include <sys/machparam.h>
51 #include <sys/vtrace.h>
52 #include <sys/kmem.h>
53 #include <sys/mmu.h>
54 #include <sys/cmn_err.h>
55 #include <sys/cpu.h>
56 #include <sys/cpuvar.h>
57 #include <sys/debug.h>
58 #include <sys/lgrp.h>
59 #include <sys/archsystm.h>
60 #include <sys/machsystm.h>
61 #include <sys/vmsystm.h>
62 #include <vm/as.h>
63 #include <vm/seg.h>
64 #include <vm/seg_kp.h>
65 #include <vm/seg_kmem.h>
66 #include <vm/seg_kpm.h>
67 #include <vm/rm.h>
68 #include <sys/t_lock.h>
69 #include <sys/obpdefs.h>
70 #include <sys/vm_machparam.h>
71 #include <sys/var.h>
72 #include <sys/trap.h>
73 #include <sys/machtrap.h>
74 #include <sys/scb.h>
75 #include <sys/bitmap.h>
76 #include <sys/machlock.h>
77 #include <sys/membar.h>
78 #include <sys/atomic.h>
79 #include <sys/cpu_module.h>
80 #include <sys/prom_debug.h>
81 #include <sys/ksynch.h>
82 #include <sys/mem_config.h>
83 #include <sys/mem_cage.h>
84 #include <vm/vm_dep.h>
85 #include <sys/fpu/fpusystm.h>
86 #include <vm/mach_kpm.h>
87 #include <sys/callb.h>
88
89 #ifdef DEBUG
90 #define SFMMU_VALIDATE_HMERID(hat, rid, saddr, len) \
91 if (SFMMU_IS_SHMERID_VALID(rid)) { \
92 caddr_t _eaddr = (saddr) + (len); \
93 sf_srd_t *_srdp; \
94 sf_region_t *_rgnp; \
95 ASSERT((rid) < SFMMU_MAX_HME_REGIONS); \
96 ASSERT(SF_RGNMAP_TEST(hat->sfmmu_hmeregion_map, rid)); \
97 ASSERT((hat) != ksfmmup); \
98 _srdp = (hat)->sfmmu_srdp; \
99 ASSERT(_srdp != NULL); \
100 ASSERT(_srdp->srd_refcnt != 0); \
101 _rgnp = _srdp->srd_hmergnp[(rid)]; \
102 ASSERT(_rgnp != NULL && _rgnp->rgn_id == rid); \
103 ASSERT(_rgnp->rgn_refcnt != 0); \
104 ASSERT(!(_rgnp->rgn_flags & SFMMU_REGION_FREE)); \
105 ASSERT((_rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == \
106 SFMMU_REGION_HME); \
107 ASSERT((saddr) >= _rgnp->rgn_saddr); \
108 ASSERT((saddr) < _rgnp->rgn_saddr + _rgnp->rgn_size); \
109 ASSERT(_eaddr > _rgnp->rgn_saddr); \
110 ASSERT(_eaddr <= _rgnp->rgn_saddr + _rgnp->rgn_size); \
111 }
112
113 #define SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid) \
114 { \
115 caddr_t _hsva; \
116 caddr_t _heva; \
117 caddr_t _rsva; \
118 caddr_t _reva; \
119 int _ttesz = get_hblk_ttesz(hmeblkp); \
120 int _flagtte; \
121 ASSERT((srdp)->srd_refcnt != 0); \
122 ASSERT((rid) < SFMMU_MAX_HME_REGIONS); \
123 ASSERT((rgnp)->rgn_id == rid); \
124 ASSERT(!((rgnp)->rgn_flags & SFMMU_REGION_FREE)); \
125 ASSERT(((rgnp)->rgn_flags & SFMMU_REGION_TYPE_MASK) == \
126 SFMMU_REGION_HME); \
127 ASSERT(_ttesz <= (rgnp)->rgn_pgszc); \
128 _hsva = (caddr_t)get_hblk_base(hmeblkp); \
129 _heva = get_hblk_endaddr(hmeblkp); \
130 _rsva = (caddr_t)P2ALIGN( \
131 (uintptr_t)(rgnp)->rgn_saddr, HBLK_MIN_BYTES); \
132 _reva = (caddr_t)P2ROUNDUP( \
133 (uintptr_t)((rgnp)->rgn_saddr + (rgnp)->rgn_size), \
134 HBLK_MIN_BYTES); \
135 ASSERT(_hsva >= _rsva); \
136 ASSERT(_hsva < _reva); \
137 ASSERT(_heva > _rsva); \
138 ASSERT(_heva <= _reva); \
139 _flagtte = (_ttesz < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : \
140 _ttesz; \
141 ASSERT(rgnp->rgn_hmeflags & (0x1 << _flagtte)); \
142 }
143
144 #else /* DEBUG */
145 #define SFMMU_VALIDATE_HMERID(hat, rid, addr, len)
146 #define SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)
147 #endif /* DEBUG */
148
149 #if defined(SF_ERRATA_57)
150 extern caddr_t errata57_limit;
151 #endif
152
153 #define HME8BLK_SZ_RND ((roundup(HME8BLK_SZ, sizeof (int64_t))) / \
154 (sizeof (int64_t)))
155 #define HBLK_RESERVE ((struct hme_blk *)hblk_reserve)
156
157 #define HBLK_RESERVE_CNT 128
158 #define HBLK_RESERVE_MIN 20
159
160 static struct hme_blk *freehblkp;
161 static kmutex_t freehblkp_lock;
162 static int freehblkcnt;
163
164 static int64_t hblk_reserve[HME8BLK_SZ_RND];
165 static kmutex_t hblk_reserve_lock;
166 static kthread_t *hblk_reserve_thread;
167
168 static nucleus_hblk8_info_t nucleus_hblk8;
169 static nucleus_hblk1_info_t nucleus_hblk1;
170
171 /*
172 * Data to manage per-cpu hmeblk pending queues, hmeblks are queued here
173 * after the initial phase of removing an hmeblk from the hash chain, see
174 * the detailed comment in sfmmu_hblk_hash_rm() for further details.
175 */
176 static cpu_hme_pend_t *cpu_hme_pend;
177 static uint_t cpu_hme_pend_thresh;
178 /*
179 * SFMMU specific hat functions
180 */
181 void hat_pagecachectl(struct page *, int);
182
183 /* flags for hat_pagecachectl */
184 #define HAT_CACHE 0x1
185 #define HAT_UNCACHE 0x2
186 #define HAT_TMPNC 0x4
187
188 /*
189 * Flag to allow the creation of non-cacheable translations
190 * to system memory. It is off by default. At the moment this
191 * flag is used by the ecache error injector. The error injector
192 * will turn it on when creating such a translation then shut it
193 * off when it's finished.
194 */
195
196 int sfmmu_allow_nc_trans = 0;
197
198 /*
199 * Flag to disable large page support.
200 * value of 1 => disable all large pages.
201 * bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
202 *
203 * For example, use the value 0x4 to disable 512K pages.
204 *
205 */
206 #define LARGE_PAGES_OFF 0x1
207
208 /*
209 * The disable_large_pages and disable_ism_large_pages variables control
210 * hat_memload_array and the page sizes to be used by ISM and the kernel.
211 *
212 * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
213 * are only used to control which OOB pages to use at upper VM segment creation
214 * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
215 * Their values may come from platform or CPU specific code to disable page
216 * sizes that should not be used.
217 *
218 * WARNING: 512K pages are currently not supported for ISM/DISM.
219 */
220 uint_t disable_large_pages = 0;
221 uint_t disable_ism_large_pages = (1 << TTE512K);
222 uint_t disable_auto_data_large_pages = 0;
223 uint_t disable_auto_text_large_pages = 0;
224
225 /*
226 * Private sfmmu data structures for hat management
227 */
228 static struct kmem_cache *sfmmuid_cache;
229 static struct kmem_cache *mmuctxdom_cache;
230
231 /*
232 * Private sfmmu data structures for tsb management
233 */
234 static struct kmem_cache *sfmmu_tsbinfo_cache;
235 static struct kmem_cache *sfmmu_tsb8k_cache;
236 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
237 static vmem_t *kmem_bigtsb_arena;
238 static vmem_t *kmem_tsb_arena;
239
240 /*
241 * sfmmu static variables for hmeblk resource management.
242 */
243 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
244 static struct kmem_cache *sfmmu8_cache;
245 static struct kmem_cache *sfmmu1_cache;
246 static struct kmem_cache *pa_hment_cache;
247
248 static kmutex_t ism_mlist_lock; /* mutex for ism mapping list */
249 /*
250 * private data for ism
251 */
252 static struct kmem_cache *ism_blk_cache;
253 static struct kmem_cache *ism_ment_cache;
254 #define ISMID_STARTADDR NULL
255
256 /*
257 * Region management data structures and function declarations.
258 */
259
260 static void sfmmu_leave_srd(sfmmu_t *);
261 static int sfmmu_srdcache_constructor(void *, void *, int);
262 static void sfmmu_srdcache_destructor(void *, void *);
263 static int sfmmu_rgncache_constructor(void *, void *, int);
264 static void sfmmu_rgncache_destructor(void *, void *);
265 static int sfrgnmap_isnull(sf_region_map_t *);
266 static int sfhmergnmap_isnull(sf_hmeregion_map_t *);
267 static int sfmmu_scdcache_constructor(void *, void *, int);
268 static void sfmmu_scdcache_destructor(void *, void *);
269 static void sfmmu_rgn_cb_noop(caddr_t, caddr_t, caddr_t,
270 size_t, void *, u_offset_t);
271
272 static uint_t srd_hashmask = SFMMU_MAX_SRD_BUCKETS - 1;
273 static sf_srd_bucket_t *srd_buckets;
274 static struct kmem_cache *srd_cache;
275 static uint_t srd_rgn_hashmask = SFMMU_MAX_REGION_BUCKETS - 1;
276 static struct kmem_cache *region_cache;
277 static struct kmem_cache *scd_cache;
278
279 #ifdef sun4v
280 int use_bigtsb_arena = 1;
281 #else
282 int use_bigtsb_arena = 0;
283 #endif
284
285 /* External /etc/system tunable, for turning on&off the shctx support */
286 int disable_shctx = 0;
287 /* Internal variable, set by MD if the HW supports shctx feature */
288 int shctx_on = 0;
289
290 #ifdef DEBUG
291 static void check_scd_sfmmu_list(sfmmu_t **, sfmmu_t *, int);
292 #endif
293 static void sfmmu_to_scd_list(sfmmu_t **, sfmmu_t *);
294 static void sfmmu_from_scd_list(sfmmu_t **, sfmmu_t *);
295
296 static sf_scd_t *sfmmu_alloc_scd(sf_srd_t *, sf_region_map_t *);
297 static void sfmmu_find_scd(sfmmu_t *);
298 static void sfmmu_join_scd(sf_scd_t *, sfmmu_t *);
299 static void sfmmu_finish_join_scd(sfmmu_t *);
300 static void sfmmu_leave_scd(sfmmu_t *, uchar_t);
301 static void sfmmu_destroy_scd(sf_srd_t *, sf_scd_t *, sf_region_map_t *);
302 static int sfmmu_alloc_scd_tsbs(sf_srd_t *, sf_scd_t *);
303 static void sfmmu_free_scd_tsbs(sfmmu_t *);
304 static void sfmmu_tsb_inv_ctx(sfmmu_t *);
305 static int find_ism_rid(sfmmu_t *, sfmmu_t *, caddr_t, uint_t *);
306 static void sfmmu_ism_hatflags(sfmmu_t *, int);
307 static int sfmmu_srd_lock_held(sf_srd_t *);
308 static void sfmmu_remove_scd(sf_scd_t **, sf_scd_t *);
309 static void sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *);
310 static void sfmmu_link_scd_to_regions(sf_srd_t *, sf_scd_t *);
311 static void sfmmu_unlink_scd_from_regions(sf_srd_t *, sf_scd_t *);
312 static void sfmmu_link_to_hmeregion(sfmmu_t *, sf_region_t *);
313 static void sfmmu_unlink_from_hmeregion(sfmmu_t *, sf_region_t *);
314
315 /*
316 * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
317 * HAT flags, synchronizing TLB/TSB coherency, and context management.
318 * The lock is hashed on the sfmmup since the case where we need to lock
319 * all processes is rare but does occur (e.g. we need to unload a shared
320 * mapping from all processes using the mapping). We have a lot of buckets,
321 * and each slab of sfmmu_t's can use about a quarter of them, giving us
322 * a fairly good distribution without wasting too much space and overhead
323 * when we have to grab them all.
324 */
325 #define SFMMU_NUM_LOCK 128 /* must be power of two */
326 hatlock_t hat_lock[SFMMU_NUM_LOCK];
327
328 /*
329 * Hash algorithm optimized for a small number of slabs.
330 * 7 is (highbit((sizeof sfmmu_t)) - 1)
331 * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
332 * kmem_cache, and thus they will be sequential within that cache. In
333 * addition, each new slab will have a different "color" up to cache_maxcolor
334 * which will skew the hashing for each successive slab which is allocated.
335 * If the size of sfmmu_t changed to a larger size, this algorithm may need
336 * to be revisited.
337 */
338 #define TSB_HASH_SHIFT_BITS (7)
339 #define PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
340
341 #ifdef DEBUG
342 int tsb_hash_debug = 0;
343 #define TSB_HASH(sfmmup) \
344 (tsb_hash_debug ? &hat_lock[0] : \
345 &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
346 #else /* DEBUG */
347 #define TSB_HASH(sfmmup) &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
348 #endif /* DEBUG */
349
350
351 /* sfmmu_replace_tsb() return codes. */
352 typedef enum tsb_replace_rc {
353 TSB_SUCCESS,
354 TSB_ALLOCFAIL,
355 TSB_LOSTRACE,
356 TSB_ALREADY_SWAPPED,
357 TSB_CANTGROW
358 } tsb_replace_rc_t;
359
360 /*
361 * Flags for TSB allocation routines.
362 */
363 #define TSB_ALLOC 0x01
364 #define TSB_FORCEALLOC 0x02
365 #define TSB_GROW 0x04
366 #define TSB_SHRINK 0x08
367 #define TSB_SWAPIN 0x10
368
369 /*
370 * Support for HAT callbacks.
371 */
372 #define SFMMU_MAX_RELOC_CALLBACKS 10
373 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
374 static id_t sfmmu_cb_nextid = 0;
375 static id_t sfmmu_tsb_cb_id;
376 struct sfmmu_callback *sfmmu_cb_table;
377
378 kmutex_t kpr_mutex;
379 kmutex_t kpr_suspendlock;
380 kthread_t *kreloc_thread;
381
382 /*
383 * Enable VA->PA translation sanity checking on DEBUG kernels.
384 * Disabled by default. This is incompatible with some
385 * drivers (error injector, RSM) so if it breaks you get
386 * to keep both pieces.
387 */
388 int hat_check_vtop = 0;
389
390 /*
391 * Private sfmmu routines (prototypes)
392 */
393 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
394 static struct hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
395 struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t,
396 uint_t);
397 static caddr_t sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
398 caddr_t, demap_range_t *, uint_t);
399 static caddr_t sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
400 caddr_t, int);
401 static void sfmmu_hblk_free(struct hme_blk **);
402 static void sfmmu_hblks_list_purge(struct hme_blk **, int);
403 static uint_t sfmmu_get_free_hblk(struct hme_blk **, uint_t);
404 static uint_t sfmmu_put_free_hblk(struct hme_blk *, uint_t);
405 static struct hme_blk *sfmmu_hblk_steal(int);
406 static int sfmmu_steal_this_hblk(struct hmehash_bucket *,
407 struct hme_blk *, uint64_t, struct hme_blk *);
408 static caddr_t sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
409
410 static void hat_do_memload_array(struct hat *, caddr_t, size_t,
411 struct page **, uint_t, uint_t, uint_t);
412 static void hat_do_memload(struct hat *, caddr_t, struct page *,
413 uint_t, uint_t, uint_t);
414 static void sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
415 uint_t, uint_t, pgcnt_t, uint_t);
416 void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
417 uint_t);
418 static int sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
419 uint_t, uint_t);
420 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
421 caddr_t, int, uint_t);
422 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
423 struct hmehash_bucket *, caddr_t, uint_t, uint_t,
424 uint_t);
425 static int sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
426 caddr_t, page_t **, uint_t, uint_t);
427 static void sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
428
429 static int sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
430 static pfn_t sfmmu_uvatopfn(caddr_t, sfmmu_t *, tte_t *);
431 void sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
432 #ifdef VAC
433 static void sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
434 static int sfmmu_vacconflict_array(caddr_t, page_t *, int *);
435 int tst_tnc(page_t *pp, pgcnt_t);
436 void conv_tnc(page_t *pp, int);
437 #endif
438
439 static void sfmmu_get_ctx(sfmmu_t *);
440 static void sfmmu_free_sfmmu(sfmmu_t *);
441
442 static void sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
443 static void sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
444
445 cpuset_t sfmmu_pageunload(page_t *, struct sf_hment *, int);
446 static void hat_pagereload(struct page *, struct page *);
447 static cpuset_t sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
448 #ifdef VAC
449 void sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
450 static void sfmmu_page_cache(page_t *, int, int, int);
451 #endif
452
453 cpuset_t sfmmu_rgntlb_demap(caddr_t, sf_region_t *,
454 struct hme_blk *, int);
455 static void sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
456 pfn_t, int, int, int, int);
457 static void sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
458 pfn_t, int);
459 static void sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
460 static void sfmmu_tlb_range_demap(demap_range_t *);
461 static void sfmmu_invalidate_ctx(sfmmu_t *);
462 static void sfmmu_sync_mmustate(sfmmu_t *);
463
464 static void sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
465 static int sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
466 sfmmu_t *);
467 static void sfmmu_tsb_free(struct tsb_info *);
468 static void sfmmu_tsbinfo_free(struct tsb_info *);
469 static int sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
470 sfmmu_t *);
471 static void sfmmu_tsb_chk_reloc(sfmmu_t *, hatlock_t *);
472 static void sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
473 static int sfmmu_select_tsb_szc(pgcnt_t);
474 static void sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
475 #define sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
476 sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
477 #define sfmmu_unload_tsb(sfmmup, vaddr, szc) \
478 sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
479 static void sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
480 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
481 hatlock_t *, uint_t);
482 static void sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
483
484 #ifdef VAC
485 void sfmmu_cache_flush(pfn_t, int);
486 void sfmmu_cache_flushcolor(int, pfn_t);
487 #endif
488 static caddr_t sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
489 caddr_t, demap_range_t *, uint_t, int);
490
491 static uint64_t sfmmu_vtop_attr(uint_t, int mode, tte_t *);
492 static uint_t sfmmu_ptov_attr(tte_t *);
493 static caddr_t sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
494 caddr_t, demap_range_t *, uint_t);
495 static uint_t sfmmu_vtop_prot(uint_t, uint_t *);
496 static int sfmmu_idcache_constructor(void *, void *, int);
497 static void sfmmu_idcache_destructor(void *, void *);
498 static int sfmmu_hblkcache_constructor(void *, void *, int);
499 static void sfmmu_hblkcache_destructor(void *, void *);
500 static void sfmmu_hblkcache_reclaim(void *);
501 static void sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
502 struct hmehash_bucket *);
503 static void sfmmu_hblk_hash_rm(struct hmehash_bucket *, struct hme_blk *,
504 struct hme_blk *, struct hme_blk **, int);
505 static void sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *,
506 uint64_t);
507 static struct hme_blk *sfmmu_check_pending_hblks(int);
508 static void sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
509 static void sfmmu_cleanup_rhblk(sf_srd_t *, caddr_t, uint_t, int);
510 static void sfmmu_unload_hmeregion_va(sf_srd_t *, uint_t, caddr_t, caddr_t,
511 int, caddr_t *);
512 static void sfmmu_unload_hmeregion(sf_srd_t *, sf_region_t *);
513
514 static void sfmmu_rm_large_mappings(page_t *, int);
515
516 static void hat_lock_init(void);
517 static void hat_kstat_init(void);
518 static int sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
519 static void sfmmu_set_scd_rttecnt(sf_srd_t *, sf_scd_t *);
520 static int sfmmu_is_rgnva(sf_srd_t *, caddr_t, ulong_t, ulong_t);
521 static void sfmmu_check_page_sizes(sfmmu_t *, int);
522 int fnd_mapping_sz(page_t *);
523 static void iment_add(struct ism_ment *, struct hat *);
524 static void iment_sub(struct ism_ment *, struct hat *);
525 static pgcnt_t ism_tsb_entries(sfmmu_t *, int szc);
526 extern void sfmmu_setup_tsbinfo(sfmmu_t *);
527 extern void sfmmu_clear_utsbinfo(void);
528
529 static void sfmmu_ctx_wrap_around(mmu_ctx_t *, boolean_t);
530
531 extern int vpm_enable;
532
533 /* kpm globals */
534 #ifdef DEBUG
535 /*
536 * Enable trap level tsbmiss handling
537 */
538 int kpm_tsbmtl = 1;
539
540 /*
541 * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
542 * required TLB shootdowns in this case, so handle w/ care. Off by default.
543 */
544 int kpm_tlb_flush;
545 #endif /* DEBUG */
546
547 static void *sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
548
549 #ifdef DEBUG
550 static void sfmmu_check_hblk_flist();
551 #endif
552
553 /*
554 * Semi-private sfmmu data structures. Some of them are initialize in
555 * startup or in hat_init. Some of them are private but accessed by
556 * assembly code or mach_sfmmu.c
557 */
558 struct hmehash_bucket *uhme_hash; /* user hmeblk hash table */
559 struct hmehash_bucket *khme_hash; /* kernel hmeblk hash table */
560 uint64_t uhme_hash_pa; /* PA of uhme_hash */
561 uint64_t khme_hash_pa; /* PA of khme_hash */
562 int uhmehash_num; /* # of buckets in user hash table */
563 int khmehash_num; /* # of buckets in kernel hash table */
564
565 uint_t max_mmu_ctxdoms = 0; /* max context domains in the system */
566 mmu_ctx_t **mmu_ctxs_tbl; /* global array of context domains */
567 uint64_t mmu_saved_gnum = 0; /* to init incoming MMUs' gnums */
568
569 #define DEFAULT_NUM_CTXS_PER_MMU 8192
570 static uint_t nctxs = DEFAULT_NUM_CTXS_PER_MMU;
571
572 int cache; /* describes system cache */
573
574 caddr_t ktsb_base; /* kernel 8k-indexed tsb base address */
575 uint64_t ktsb_pbase; /* kernel 8k-indexed tsb phys address */
576 int ktsb_szcode; /* kernel 8k-indexed tsb size code */
577 int ktsb_sz; /* kernel 8k-indexed tsb size */
578
579 caddr_t ktsb4m_base; /* kernel 4m-indexed tsb base address */
580 uint64_t ktsb4m_pbase; /* kernel 4m-indexed tsb phys address */
581 int ktsb4m_szcode; /* kernel 4m-indexed tsb size code */
582 int ktsb4m_sz; /* kernel 4m-indexed tsb size */
583
584 uint64_t kpm_tsbbase; /* kernel seg_kpm 4M TSB base address */
585 int kpm_tsbsz; /* kernel seg_kpm 4M TSB size code */
586 uint64_t kpmsm_tsbbase; /* kernel seg_kpm 8K TSB base address */
587 int kpmsm_tsbsz; /* kernel seg_kpm 8K TSB size code */
588
589 #ifndef sun4v
590 int utsb_dtlb_ttenum = -1; /* index in TLB for utsb locked TTE */
591 int utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
592 int dtlb_resv_ttenum; /* index in TLB of first reserved TTE */
593 caddr_t utsb_vabase; /* reserved kernel virtual memory */
594 caddr_t utsb4m_vabase; /* for trap handler TSB accesses */
595 #endif /* sun4v */
596 uint64_t tsb_alloc_bytes = 0; /* bytes allocated to TSBs */
597 vmem_t *kmem_tsb_default_arena[NLGRPS_MAX]; /* For dynamic TSBs */
598 vmem_t *kmem_bigtsb_default_arena[NLGRPS_MAX]; /* dynamic 256M TSBs */
599
600 /*
601 * Size to use for TSB slabs. Future platforms that support page sizes
602 * larger than 4M may wish to change these values, and provide their own
603 * assembly macros for building and decoding the TSB base register contents.
604 * Note disable_large_pages will override the value set here.
605 */
606 static uint_t tsb_slab_ttesz = TTE4M;
607 size_t tsb_slab_size = MMU_PAGESIZE4M;
608 uint_t tsb_slab_shift = MMU_PAGESHIFT4M;
609 /* PFN mask for TTE */
610 size_t tsb_slab_mask = MMU_PAGEOFFSET4M >> MMU_PAGESHIFT;
611
612 /*
613 * Size to use for TSB slabs. These are used only when 256M tsb arenas
614 * exist.
615 */
616 static uint_t bigtsb_slab_ttesz = TTE256M;
617 static size_t bigtsb_slab_size = MMU_PAGESIZE256M;
618 static uint_t bigtsb_slab_shift = MMU_PAGESHIFT256M;
619 /* 256M page alignment for 8K pfn */
620 static size_t bigtsb_slab_mask = MMU_PAGEOFFSET256M >> MMU_PAGESHIFT;
621
622 /* largest TSB size to grow to, will be smaller on smaller memory systems */
623 static int tsb_max_growsize = 0;
624
625 /*
626 * Tunable parameters dealing with TSB policies.
627 */
628
629 /*
630 * This undocumented tunable forces all 8K TSBs to be allocated from
631 * the kernel heap rather than from the kmem_tsb_default_arena arenas.
632 */
633 #ifdef DEBUG
634 int tsb_forceheap = 0;
635 #endif /* DEBUG */
636
637 /*
638 * Decide whether to use per-lgroup arenas, or one global set of
639 * TSB arenas. The default is not to break up per-lgroup, since
640 * most platforms don't recognize any tangible benefit from it.
641 */
642 int tsb_lgrp_affinity = 0;
643
644 /*
645 * Used for growing the TSB based on the process RSS.
646 * tsb_rss_factor is based on the smallest TSB, and is
647 * shifted by the TSB size to determine if we need to grow.
648 * The default will grow the TSB if the number of TTEs for
649 * this page size exceeds 75% of the number of TSB entries,
650 * which should _almost_ eliminate all conflict misses
651 * (at the expense of using up lots and lots of memory).
652 */
653 #define TSB_RSS_FACTOR (TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
654 #define SFMMU_RSS_TSBSIZE(tsbszc) (tsb_rss_factor << tsbszc)
655 #define SELECT_TSB_SIZECODE(pgcnt) ( \
656 (enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
657 default_tsb_size)
658 #define TSB_OK_SHRINK() \
659 (tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
660 #define TSB_OK_GROW() \
661 (tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
662
663 int enable_tsb_rss_sizing = 1;
664 int tsb_rss_factor = (int)TSB_RSS_FACTOR;
665
666 /* which TSB size code to use for new address spaces or if rss sizing off */
667 int default_tsb_size = TSB_8K_SZCODE;
668
669 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
670 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
671 #define TSB_ALLOC_HIWATER_FACTOR_DEFAULT 32
672
673 #ifdef DEBUG
674 static int tsb_random_size = 0; /* set to 1 to test random tsb sizes on alloc */
675 static int tsb_grow_stress = 0; /* if set to 1, keep replacing TSB w/ random */
676 static int tsb_alloc_mtbf = 0; /* fail allocation every n attempts */
677 static int tsb_alloc_fail_mtbf = 0;
678 static int tsb_alloc_count = 0;
679 #endif /* DEBUG */
680
681 /* if set to 1, will remap valid TTEs when growing TSB. */
682 int tsb_remap_ttes = 1;
683
684 /*
685 * If we have more than this many mappings, allocate a second TSB.
686 * This default is chosen because the I/D fully associative TLBs are
687 * assumed to have at least 8 available entries. Platforms with a
688 * larger fully-associative TLB could probably override the default.
689 */
690
691 #ifdef sun4v
692 int tsb_sectsb_threshold = 0;
693 #else
694 int tsb_sectsb_threshold = 8;
695 #endif
696
697 /*
698 * kstat data
699 */
700 struct sfmmu_global_stat sfmmu_global_stat;
701 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
702
703 /*
704 * Global data
705 */
706 sfmmu_t *ksfmmup; /* kernel's hat id */
707
708 #ifdef DEBUG
709 static void chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
710 #endif
711
712 /* sfmmu locking operations */
713 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
714 static int sfmmu_mlspl_held(struct page *, int);
715
716 kmutex_t *sfmmu_page_enter(page_t *);
717 void sfmmu_page_exit(kmutex_t *);
718 int sfmmu_page_spl_held(struct page *);
719
720 /* sfmmu internal locking operations - accessed directly */
721 static void sfmmu_mlist_reloc_enter(page_t *, page_t *,
722 kmutex_t **, kmutex_t **);
723 static void sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
724 static hatlock_t *
725 sfmmu_hat_enter(sfmmu_t *);
726 static hatlock_t *
727 sfmmu_hat_tryenter(sfmmu_t *);
728 static void sfmmu_hat_exit(hatlock_t *);
729 static void sfmmu_hat_lock_all(void);
730 static void sfmmu_hat_unlock_all(void);
731 static void sfmmu_ismhat_enter(sfmmu_t *, int);
732 static void sfmmu_ismhat_exit(sfmmu_t *, int);
733
734 kpm_hlk_t *kpmp_table;
735 uint_t kpmp_table_sz; /* must be a power of 2 */
736 uchar_t kpmp_shift;
737
738 kpm_shlk_t *kpmp_stable;
739 uint_t kpmp_stable_sz; /* must be a power of 2 */
740
741 /*
742 * SPL_TABLE_SIZE is 2 * NCPU, but no smaller than 128.
743 * SPL_SHIFT is log2(SPL_TABLE_SIZE).
744 */
745 #if ((2*NCPU_P2) > 128)
746 #define SPL_SHIFT ((unsigned)(NCPU_LOG2 + 1))
747 #else
748 #define SPL_SHIFT 7U
749 #endif
750 #define SPL_TABLE_SIZE (1U << SPL_SHIFT)
751 #define SPL_MASK (SPL_TABLE_SIZE - 1)
752
753 /*
754 * We shift by PP_SHIFT to take care of the low-order 0 bits of a page_t
755 * and by multiples of SPL_SHIFT to get as many varied bits as we can.
756 */
757 #define SPL_INDEX(pp) \
758 ((((uintptr_t)(pp) >> PP_SHIFT) ^ \
759 ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT)) ^ \
760 ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 2)) ^ \
761 ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 3))) & \
762 SPL_MASK)
763
764 #define SPL_HASH(pp) \
765 (&sfmmu_page_lock[SPL_INDEX(pp)].pad_mutex)
766
767 static pad_mutex_t sfmmu_page_lock[SPL_TABLE_SIZE];
768
769 /* Array of mutexes protecting a page's mapping list and p_nrm field. */
770
771 #define MML_TABLE_SIZE SPL_TABLE_SIZE
772 #define MLIST_HASH(pp) (&mml_table[SPL_INDEX(pp)].pad_mutex)
773
774 static pad_mutex_t mml_table[MML_TABLE_SIZE];
775
776 /*
777 * hat_unload_callback() will group together callbacks in order
778 * to avoid xt_sync() calls. This is the maximum size of the group.
779 */
780 #define MAX_CB_ADDR 32
781
782 tte_t hw_tte;
783 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
784
785 static char *mmu_ctx_kstat_names[] = {
786 "mmu_ctx_tsb_exceptions",
787 "mmu_ctx_tsb_raise_exception",
788 "mmu_ctx_wrap_around",
789 };
790
791 /*
792 * Wrapper for vmem_xalloc since vmem_create only allows limited
793 * parameters for vm_source_alloc functions. This function allows us
794 * to specify alignment consistent with the size of the object being
795 * allocated.
796 */
797 static void *
sfmmu_vmem_xalloc_aligned_wrapper(vmem_t * vmp,size_t size,int vmflag)798 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
799 {
800 return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
801 }
802
803 /* Common code for setting tsb_alloc_hiwater. */
804 #define SFMMU_SET_TSB_ALLOC_HIWATER(pages) tsb_alloc_hiwater = \
805 ptob(pages) / tsb_alloc_hiwater_factor
806
807 /*
808 * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
809 * a single TSB. physmem is the number of physical pages so we need physmem 8K
810 * TTEs to represent all those physical pages. We round this up by using
811 * 1<<highbit(). To figure out which size code to use, remember that the size
812 * code is just an amount to shift the smallest TSB size to get the size of
813 * this TSB. So we subtract that size, TSB_START_SIZE, from highbit() (or
814 * highbit() - 1) to get the size code for the smallest TSB that can represent
815 * all of physical memory, while erring on the side of too much.
816 *
817 * Restrict tsb_max_growsize to make sure that:
818 * 1) TSBs can't grow larger than the TSB slab size
819 * 2) TSBs can't grow larger than UTSB_MAX_SZCODE.
820 */
821 #define SFMMU_SET_TSB_MAX_GROWSIZE(pages) { \
822 int _i, _szc, _slabszc, _tsbszc; \
823 \
824 _i = highbit(pages); \
825 if ((1 << (_i - 1)) == (pages)) \
826 _i--; /* 2^n case, round down */ \
827 _szc = _i - TSB_START_SIZE; \
828 _slabszc = bigtsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); \
829 _tsbszc = MIN(_szc, _slabszc); \
830 tsb_max_growsize = MIN(_tsbszc, UTSB_MAX_SZCODE); \
831 }
832
833 /*
834 * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
835 * tsb_info which handles that TTE size.
836 */
837 #define SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) { \
838 (tsbinfop) = (sfmmup)->sfmmu_tsb; \
839 ASSERT(((tsbinfop)->tsb_flags & TSB_SHAREDCTX) || \
840 sfmmu_hat_lock_held(sfmmup)); \
841 if ((tte_szc) >= TTE4M) { \
842 ASSERT((tsbinfop) != NULL); \
843 (tsbinfop) = (tsbinfop)->tsb_next; \
844 } \
845 }
846
847 /*
848 * Macro to use to unload entries from the TSB.
849 * It has knowledge of which page sizes get replicated in the TSB
850 * and will call the appropriate unload routine for the appropriate size.
851 */
852 #define SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, ismhat) \
853 { \
854 int ttesz = get_hblk_ttesz(hmeblkp); \
855 if (ttesz == TTE8K || ttesz == TTE4M) { \
856 sfmmu_unload_tsb(sfmmup, addr, ttesz); \
857 } else { \
858 caddr_t sva = ismhat ? addr : \
859 (caddr_t)get_hblk_base(hmeblkp); \
860 caddr_t eva = sva + get_hblk_span(hmeblkp); \
861 ASSERT(addr >= sva && addr < eva); \
862 sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz); \
863 } \
864 }
865
866
867 /* Update tsb_alloc_hiwater after memory is configured. */
868 /*ARGSUSED*/
869 static void
sfmmu_update_post_add(void * arg,pgcnt_t delta_pages)870 sfmmu_update_post_add(void *arg, pgcnt_t delta_pages)
871 {
872 /* Assumes physmem has already been updated. */
873 SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
874 SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
875 }
876
877 /*
878 * Update tsb_alloc_hiwater before memory is deleted. We'll do nothing here
879 * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
880 * deleted.
881 */
882 /*ARGSUSED*/
883 static int
sfmmu_update_pre_del(void * arg,pgcnt_t delta_pages)884 sfmmu_update_pre_del(void *arg, pgcnt_t delta_pages)
885 {
886 return (0);
887 }
888
889 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
890 /*ARGSUSED*/
891 static void
sfmmu_update_post_del(void * arg,pgcnt_t delta_pages,int cancelled)892 sfmmu_update_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
893 {
894 /*
895 * Whether the delete was cancelled or not, just go ahead and update
896 * tsb_alloc_hiwater and tsb_max_growsize.
897 */
898 SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
899 SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
900 }
901
902 static kphysm_setup_vector_t sfmmu_update_vec = {
903 KPHYSM_SETUP_VECTOR_VERSION, /* version */
904 sfmmu_update_post_add, /* post_add */
905 sfmmu_update_pre_del, /* pre_del */
906 sfmmu_update_post_del /* post_del */
907 };
908
909
910 /*
911 * HME_BLK HASH PRIMITIVES
912 */
913
914 /*
915 * Enter a hme on the mapping list for page pp.
916 * When large pages are more prevalent in the system we might want to
917 * keep the mapping list in ascending order by the hment size. For now,
918 * small pages are more frequent, so don't slow it down.
919 */
920 #define HME_ADD(hme, pp) \
921 { \
922 ASSERT(sfmmu_mlist_held(pp)); \
923 \
924 hme->hme_prev = NULL; \
925 hme->hme_next = pp->p_mapping; \
926 hme->hme_page = pp; \
927 if (pp->p_mapping) { \
928 ((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
929 ASSERT(pp->p_share > 0); \
930 } else { \
931 /* EMPTY */ \
932 ASSERT(pp->p_share == 0); \
933 } \
934 pp->p_mapping = hme; \
935 pp->p_share++; \
936 }
937
938 /*
939 * Enter a hme on the mapping list for page pp.
940 * If we are unmapping a large translation, we need to make sure that the
941 * change is reflect in the corresponding bit of the p_index field.
942 */
943 #define HME_SUB(hme, pp) \
944 { \
945 ASSERT(sfmmu_mlist_held(pp)); \
946 ASSERT(hme->hme_page == pp || IS_PAHME(hme)); \
947 \
948 if (pp->p_mapping == NULL) { \
949 panic("hme_remove - no mappings"); \
950 } \
951 \
952 membar_stst(); /* ensure previous stores finish */ \
953 \
954 ASSERT(pp->p_share > 0); \
955 pp->p_share--; \
956 \
957 if (hme->hme_prev) { \
958 ASSERT(pp->p_mapping != hme); \
959 ASSERT(hme->hme_prev->hme_page == pp || \
960 IS_PAHME(hme->hme_prev)); \
961 hme->hme_prev->hme_next = hme->hme_next; \
962 } else { \
963 ASSERT(pp->p_mapping == hme); \
964 pp->p_mapping = hme->hme_next; \
965 ASSERT((pp->p_mapping == NULL) ? \
966 (pp->p_share == 0) : 1); \
967 } \
968 \
969 if (hme->hme_next) { \
970 ASSERT(hme->hme_next->hme_page == pp || \
971 IS_PAHME(hme->hme_next)); \
972 hme->hme_next->hme_prev = hme->hme_prev; \
973 } \
974 \
975 /* zero out the entry */ \
976 hme->hme_next = NULL; \
977 hme->hme_prev = NULL; \
978 hme->hme_page = NULL; \
979 \
980 if (hme_size(hme) > TTE8K) { \
981 /* remove mappings for remainder of large pg */ \
982 sfmmu_rm_large_mappings(pp, hme_size(hme)); \
983 } \
984 }
985
986 /*
987 * This function returns the hment given the hme_blk and a vaddr.
988 * It assumes addr has already been checked to belong to hme_blk's
989 * range.
990 */
991 #define HBLKTOHME(hment, hmeblkp, addr) \
992 { \
993 int index; \
994 HBLKTOHME_IDX(hment, hmeblkp, addr, index) \
995 }
996
997 /*
998 * Version of HBLKTOHME that also returns the index in hmeblkp
999 * of the hment.
1000 */
1001 #define HBLKTOHME_IDX(hment, hmeblkp, addr, idx) \
1002 { \
1003 ASSERT(in_hblk_range((hmeblkp), (addr))); \
1004 \
1005 if (get_hblk_ttesz(hmeblkp) == TTE8K) { \
1006 idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
1007 } else \
1008 idx = 0; \
1009 \
1010 (hment) = &(hmeblkp)->hblk_hme[idx]; \
1011 }
1012
1013 /*
1014 * Disable any page sizes not supported by the CPU
1015 */
1016 void
hat_init_pagesizes()1017 hat_init_pagesizes()
1018 {
1019 int i;
1020
1021 mmu_exported_page_sizes = 0;
1022 for (i = TTE8K; i < max_mmu_page_sizes; i++) {
1023
1024 szc_2_userszc[i] = (uint_t)-1;
1025 userszc_2_szc[i] = (uint_t)-1;
1026
1027 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
1028 disable_large_pages |= (1 << i);
1029 } else {
1030 szc_2_userszc[i] = mmu_exported_page_sizes;
1031 userszc_2_szc[mmu_exported_page_sizes] = i;
1032 mmu_exported_page_sizes++;
1033 }
1034 }
1035
1036 disable_ism_large_pages |= disable_large_pages;
1037 disable_auto_data_large_pages = disable_large_pages;
1038 disable_auto_text_large_pages = disable_large_pages;
1039
1040 /*
1041 * Initialize mmu-specific large page sizes.
1042 */
1043 if (&mmu_large_pages_disabled) {
1044 disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
1045 disable_ism_large_pages |=
1046 mmu_large_pages_disabled(HAT_LOAD_SHARE);
1047 disable_auto_data_large_pages |=
1048 mmu_large_pages_disabled(HAT_AUTO_DATA);
1049 disable_auto_text_large_pages |=
1050 mmu_large_pages_disabled(HAT_AUTO_TEXT);
1051 }
1052 }
1053
1054 /*
1055 * Initialize the hardware address translation structures.
1056 */
1057 void
hat_init(void)1058 hat_init(void)
1059 {
1060 int i;
1061 uint_t sz;
1062 size_t size;
1063
1064 hat_lock_init();
1065 hat_kstat_init();
1066
1067 /*
1068 * Hardware-only bits in a TTE
1069 */
1070 MAKE_TTE_MASK(&hw_tte);
1071
1072 hat_init_pagesizes();
1073
1074 /* Initialize the hash locks */
1075 for (i = 0; i < khmehash_num; i++) {
1076 mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1077 MUTEX_DEFAULT, NULL);
1078 khme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1079 }
1080 for (i = 0; i < uhmehash_num; i++) {
1081 mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1082 MUTEX_DEFAULT, NULL);
1083 uhme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1084 }
1085 khmehash_num--; /* make sure counter starts from 0 */
1086 uhmehash_num--; /* make sure counter starts from 0 */
1087
1088 /*
1089 * Allocate context domain structures.
1090 *
1091 * A platform may choose to modify max_mmu_ctxdoms in
1092 * set_platform_defaults(). If a platform does not define
1093 * a set_platform_defaults() or does not choose to modify
1094 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
1095 *
1096 * For all platforms that have CPUs sharing MMUs, this
1097 * value must be defined.
1098 */
1099 if (max_mmu_ctxdoms == 0)
1100 max_mmu_ctxdoms = max_ncpus;
1101
1102 size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
1103 mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
1104
1105 /* mmu_ctx_t is 64 bytes aligned */
1106 mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
1107 sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
1108 /*
1109 * MMU context domain initialization for the Boot CPU.
1110 * This needs the context domains array allocated above.
1111 */
1112 mutex_enter(&cpu_lock);
1113 sfmmu_cpu_init(CPU);
1114 mutex_exit(&cpu_lock);
1115
1116 /*
1117 * Intialize ism mapping list lock.
1118 */
1119
1120 mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1121
1122 /*
1123 * Each sfmmu structure carries an array of MMU context info
1124 * structures, one per context domain. The size of this array depends
1125 * on the maximum number of context domains. So, the size of the
1126 * sfmmu structure varies per platform.
1127 *
1128 * sfmmu is allocated from static arena, because trap
1129 * handler at TL > 0 is not allowed to touch kernel relocatable
1130 * memory. sfmmu's alignment is changed to 64 bytes from
1131 * default 8 bytes, as the lower 6 bits will be used to pass
1132 * pgcnt to vtag_flush_pgcnt_tl1.
1133 */
1134 size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1135
1136 sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1137 64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1138 NULL, NULL, static_arena, 0);
1139
1140 sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1141 sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1142
1143 /*
1144 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1145 * from the heap when low on memory or when TSB_FORCEALLOC is
1146 * specified, don't use magazines to cache them--we want to return
1147 * them to the system as quickly as possible.
1148 */
1149 sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1150 MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1151 static_arena, KMC_NOMAGAZINE);
1152
1153 /*
1154 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1155 * memory, which corresponds to the old static reserve for TSBs.
1156 * tsb_alloc_hiwater_factor defaults to 32. This caps the amount of
1157 * memory we'll allocate for TSB slabs; beyond this point TSB
1158 * allocations will be taken from the kernel heap (via
1159 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1160 * consumer.
1161 */
1162 if (tsb_alloc_hiwater_factor == 0) {
1163 tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1164 }
1165 SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1166
1167 for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1168 if (!(disable_large_pages & (1 << sz)))
1169 break;
1170 }
1171
1172 if (sz < tsb_slab_ttesz) {
1173 tsb_slab_ttesz = sz;
1174 tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1175 tsb_slab_size = 1 << tsb_slab_shift;
1176 tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1177 use_bigtsb_arena = 0;
1178 } else if (use_bigtsb_arena &&
1179 (disable_large_pages & (1 << bigtsb_slab_ttesz))) {
1180 use_bigtsb_arena = 0;
1181 }
1182
1183 if (!use_bigtsb_arena) {
1184 bigtsb_slab_shift = tsb_slab_shift;
1185 }
1186 SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1187
1188 /*
1189 * On smaller memory systems, allocate TSB memory in smaller chunks
1190 * than the default 4M slab size. We also honor disable_large_pages
1191 * here.
1192 *
1193 * The trap handlers need to be patched with the final slab shift,
1194 * since they need to be able to construct the TSB pointer at runtime.
1195 */
1196 if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1197 !(disable_large_pages & (1 << TTE512K))) {
1198 tsb_slab_ttesz = TTE512K;
1199 tsb_slab_shift = MMU_PAGESHIFT512K;
1200 tsb_slab_size = MMU_PAGESIZE512K;
1201 tsb_slab_mask = MMU_PAGEOFFSET512K >> MMU_PAGESHIFT;
1202 use_bigtsb_arena = 0;
1203 }
1204
1205 if (!use_bigtsb_arena) {
1206 bigtsb_slab_ttesz = tsb_slab_ttesz;
1207 bigtsb_slab_shift = tsb_slab_shift;
1208 bigtsb_slab_size = tsb_slab_size;
1209 bigtsb_slab_mask = tsb_slab_mask;
1210 }
1211
1212
1213 /*
1214 * Set up memory callback to update tsb_alloc_hiwater and
1215 * tsb_max_growsize.
1216 */
1217 i = kphysm_setup_func_register(&sfmmu_update_vec, (void *) 0);
1218 ASSERT(i == 0);
1219
1220 /*
1221 * kmem_tsb_arena is the source from which large TSB slabs are
1222 * drawn. The quantum of this arena corresponds to the largest
1223 * TSB size we can dynamically allocate for user processes.
1224 * Currently it must also be a supported page size since we
1225 * use exactly one translation entry to map each slab page.
1226 *
1227 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1228 * which most TSBs are allocated. Since most TSB allocations are
1229 * typically 8K we have a kmem cache we stack on top of each
1230 * kmem_tsb_default_arena to speed up those allocations.
1231 *
1232 * Note the two-level scheme of arenas is required only
1233 * because vmem_create doesn't allow us to specify alignment
1234 * requirements. If this ever changes the code could be
1235 * simplified to use only one level of arenas.
1236 *
1237 * If 256M page support exists on sun4v, 256MB kmem_bigtsb_arena
1238 * will be provided in addition to the 4M kmem_tsb_arena.
1239 */
1240 if (use_bigtsb_arena) {
1241 kmem_bigtsb_arena = vmem_create("kmem_bigtsb", NULL, 0,
1242 bigtsb_slab_size, sfmmu_vmem_xalloc_aligned_wrapper,
1243 vmem_xfree, heap_arena, 0, VM_SLEEP);
1244 }
1245
1246 kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1247 sfmmu_vmem_xalloc_aligned_wrapper,
1248 vmem_xfree, heap_arena, 0, VM_SLEEP);
1249
1250 if (tsb_lgrp_affinity) {
1251 char s[50];
1252 for (i = 0; i < NLGRPS_MAX; i++) {
1253 if (use_bigtsb_arena) {
1254 (void) sprintf(s, "kmem_bigtsb_lgrp%d", i);
1255 kmem_bigtsb_default_arena[i] = vmem_create(s,
1256 NULL, 0, 2 * tsb_slab_size,
1257 sfmmu_tsb_segkmem_alloc,
1258 sfmmu_tsb_segkmem_free, kmem_bigtsb_arena,
1259 0, VM_SLEEP | VM_BESTFIT);
1260 }
1261
1262 (void) sprintf(s, "kmem_tsb_lgrp%d", i);
1263 kmem_tsb_default_arena[i] = vmem_create(s,
1264 NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1265 sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1266 VM_SLEEP | VM_BESTFIT);
1267
1268 (void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1269 sfmmu_tsb_cache[i] = kmem_cache_create(s,
1270 PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1271 kmem_tsb_default_arena[i], 0);
1272 }
1273 } else {
1274 if (use_bigtsb_arena) {
1275 kmem_bigtsb_default_arena[0] =
1276 vmem_create("kmem_bigtsb_default", NULL, 0,
1277 2 * tsb_slab_size, sfmmu_tsb_segkmem_alloc,
1278 sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 0,
1279 VM_SLEEP | VM_BESTFIT);
1280 }
1281
1282 kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1283 NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1284 sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1285 VM_SLEEP | VM_BESTFIT);
1286 sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1287 PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1288 kmem_tsb_default_arena[0], 0);
1289 }
1290
1291 sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1292 HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1293 sfmmu_hblkcache_destructor,
1294 sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1295 hat_memload_arena, KMC_NOHASH);
1296
1297 hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1298 segkmem_alloc_permanent, segkmem_free, heap_arena, 0,
1299 VMC_DUMPSAFE | VM_SLEEP);
1300
1301 sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1302 HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1303 sfmmu_hblkcache_destructor,
1304 NULL, (void *)HME1BLK_SZ,
1305 hat_memload1_arena, KMC_NOHASH);
1306
1307 pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1308 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1309
1310 ism_blk_cache = kmem_cache_create("ism_blk_cache",
1311 sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1312 NULL, NULL, static_arena, KMC_NOHASH);
1313
1314 ism_ment_cache = kmem_cache_create("ism_ment_cache",
1315 sizeof (ism_ment_t), 0, NULL, NULL,
1316 NULL, NULL, NULL, 0);
1317
1318 /*
1319 * We grab the first hat for the kernel,
1320 */
1321 AS_LOCK_ENTER(&kas, RW_WRITER);
1322 kas.a_hat = hat_alloc(&kas);
1323 AS_LOCK_EXIT(&kas);
1324
1325 /*
1326 * Initialize hblk_reserve.
1327 */
1328 ((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1329 va_to_pa((caddr_t)hblk_reserve);
1330
1331 #ifndef UTSB_PHYS
1332 /*
1333 * Reserve some kernel virtual address space for the locked TTEs
1334 * that allow us to probe the TSB from TL>0.
1335 */
1336 utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1337 0, 0, NULL, NULL, VM_SLEEP);
1338 utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1339 0, 0, NULL, NULL, VM_SLEEP);
1340 #endif
1341
1342 #ifdef VAC
1343 /*
1344 * The big page VAC handling code assumes VAC
1345 * will not be bigger than the smallest big
1346 * page- which is 64K.
1347 */
1348 if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1349 cmn_err(CE_PANIC, "VAC too big!");
1350 }
1351 #endif
1352
1353 uhme_hash_pa = va_to_pa(uhme_hash);
1354 khme_hash_pa = va_to_pa(khme_hash);
1355
1356 /*
1357 * Initialize relocation locks. kpr_suspendlock is held
1358 * at PIL_MAX to prevent interrupts from pinning the holder
1359 * of a suspended TTE which may access it leading to a
1360 * deadlock condition.
1361 */
1362 mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1363 mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1364
1365 /*
1366 * If Shared context support is disabled via /etc/system
1367 * set shctx_on to 0 here if it was set to 1 earlier in boot
1368 * sequence by cpu module initialization code.
1369 */
1370 if (shctx_on && disable_shctx) {
1371 shctx_on = 0;
1372 }
1373
1374 if (shctx_on) {
1375 srd_buckets = kmem_zalloc(SFMMU_MAX_SRD_BUCKETS *
1376 sizeof (srd_buckets[0]), KM_SLEEP);
1377 for (i = 0; i < SFMMU_MAX_SRD_BUCKETS; i++) {
1378 mutex_init(&srd_buckets[i].srdb_lock, NULL,
1379 MUTEX_DEFAULT, NULL);
1380 }
1381
1382 srd_cache = kmem_cache_create("srd_cache", sizeof (sf_srd_t),
1383 0, sfmmu_srdcache_constructor, sfmmu_srdcache_destructor,
1384 NULL, NULL, NULL, 0);
1385 region_cache = kmem_cache_create("region_cache",
1386 sizeof (sf_region_t), 0, sfmmu_rgncache_constructor,
1387 sfmmu_rgncache_destructor, NULL, NULL, NULL, 0);
1388 scd_cache = kmem_cache_create("scd_cache", sizeof (sf_scd_t),
1389 0, sfmmu_scdcache_constructor, sfmmu_scdcache_destructor,
1390 NULL, NULL, NULL, 0);
1391 }
1392
1393 /*
1394 * Pre-allocate hrm_hashtab before enabling the collection of
1395 * refmod statistics. Allocating on the fly would mean us
1396 * running the risk of suffering recursive mutex enters or
1397 * deadlocks.
1398 */
1399 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1400 KM_SLEEP);
1401
1402 /* Allocate per-cpu pending freelist of hmeblks */
1403 cpu_hme_pend = kmem_zalloc((NCPU * sizeof (cpu_hme_pend_t)) + 64,
1404 KM_SLEEP);
1405 cpu_hme_pend = (cpu_hme_pend_t *)P2ROUNDUP(
1406 (uintptr_t)cpu_hme_pend, 64);
1407
1408 for (i = 0; i < NCPU; i++) {
1409 mutex_init(&cpu_hme_pend[i].chp_mutex, NULL, MUTEX_DEFAULT,
1410 NULL);
1411 }
1412
1413 if (cpu_hme_pend_thresh == 0) {
1414 cpu_hme_pend_thresh = CPU_HME_PEND_THRESH;
1415 }
1416 }
1417
1418 /*
1419 * Initialize locking for the hat layer, called early during boot.
1420 */
1421 static void
hat_lock_init()1422 hat_lock_init()
1423 {
1424 int i;
1425
1426 /*
1427 * initialize the array of mutexes protecting a page's mapping
1428 * list and p_nrm field.
1429 */
1430 for (i = 0; i < MML_TABLE_SIZE; i++)
1431 mutex_init(&mml_table[i].pad_mutex, NULL, MUTEX_DEFAULT, NULL);
1432
1433 if (kpm_enable) {
1434 for (i = 0; i < kpmp_table_sz; i++) {
1435 mutex_init(&kpmp_table[i].khl_mutex, NULL,
1436 MUTEX_DEFAULT, NULL);
1437 }
1438 }
1439
1440 /*
1441 * Initialize array of mutex locks that protects sfmmu fields and
1442 * TSB lists.
1443 */
1444 for (i = 0; i < SFMMU_NUM_LOCK; i++)
1445 mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1446 NULL);
1447 }
1448
1449 #define SFMMU_KERNEL_MAXVA \
1450 (kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1451
1452 /*
1453 * Allocate a hat structure.
1454 * Called when an address space first uses a hat.
1455 */
1456 struct hat *
hat_alloc(struct as * as)1457 hat_alloc(struct as *as)
1458 {
1459 sfmmu_t *sfmmup;
1460 int i;
1461 uint64_t cnum;
1462 extern uint_t get_color_start(struct as *);
1463
1464 ASSERT(AS_WRITE_HELD(as));
1465 sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1466 sfmmup->sfmmu_as = as;
1467 sfmmup->sfmmu_flags = 0;
1468 sfmmup->sfmmu_tteflags = 0;
1469 sfmmup->sfmmu_rtteflags = 0;
1470 LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1471
1472 if (as == &kas) {
1473 ksfmmup = sfmmup;
1474 sfmmup->sfmmu_cext = 0;
1475 cnum = KCONTEXT;
1476
1477 sfmmup->sfmmu_clrstart = 0;
1478 sfmmup->sfmmu_tsb = NULL;
1479 /*
1480 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1481 * to setup tsb_info for ksfmmup.
1482 */
1483 } else {
1484
1485 /*
1486 * Just set to invalid ctx. When it faults, it will
1487 * get a valid ctx. This would avoid the situation
1488 * where we get a ctx, but it gets stolen and then
1489 * we fault when we try to run and so have to get
1490 * another ctx.
1491 */
1492 sfmmup->sfmmu_cext = 0;
1493 cnum = INVALID_CONTEXT;
1494
1495 /* initialize original physical page coloring bin */
1496 sfmmup->sfmmu_clrstart = get_color_start(as);
1497 #ifdef DEBUG
1498 if (tsb_random_size) {
1499 uint32_t randval = (uint32_t)gettick() >> 4;
1500 int size = randval % (tsb_max_growsize + 1);
1501
1502 /* chose a random tsb size for stress testing */
1503 (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1504 TSB8K|TSB64K|TSB512K, 0, sfmmup);
1505 } else
1506 #endif /* DEBUG */
1507 (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1508 default_tsb_size,
1509 TSB8K|TSB64K|TSB512K, 0, sfmmup);
1510 sfmmup->sfmmu_flags = HAT_SWAPPED | HAT_ALLCTX_INVALID;
1511 ASSERT(sfmmup->sfmmu_tsb != NULL);
1512 }
1513
1514 ASSERT(max_mmu_ctxdoms > 0);
1515 for (i = 0; i < max_mmu_ctxdoms; i++) {
1516 sfmmup->sfmmu_ctxs[i].cnum = cnum;
1517 sfmmup->sfmmu_ctxs[i].gnum = 0;
1518 }
1519
1520 for (i = 0; i < max_mmu_page_sizes; i++) {
1521 sfmmup->sfmmu_ttecnt[i] = 0;
1522 sfmmup->sfmmu_scdrttecnt[i] = 0;
1523 sfmmup->sfmmu_ismttecnt[i] = 0;
1524 sfmmup->sfmmu_scdismttecnt[i] = 0;
1525 sfmmup->sfmmu_pgsz[i] = TTE8K;
1526 }
1527 sfmmup->sfmmu_tsb0_4minflcnt = 0;
1528 sfmmup->sfmmu_iblk = NULL;
1529 sfmmup->sfmmu_ismhat = 0;
1530 sfmmup->sfmmu_scdhat = 0;
1531 sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1532 if (sfmmup == ksfmmup) {
1533 CPUSET_ALL(sfmmup->sfmmu_cpusran);
1534 } else {
1535 CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1536 }
1537 sfmmup->sfmmu_free = 0;
1538 sfmmup->sfmmu_rmstat = 0;
1539 sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1540 cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1541 sfmmup->sfmmu_srdp = NULL;
1542 SF_RGNMAP_ZERO(sfmmup->sfmmu_region_map);
1543 bzero(sfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
1544 sfmmup->sfmmu_scdp = NULL;
1545 sfmmup->sfmmu_scd_link.next = NULL;
1546 sfmmup->sfmmu_scd_link.prev = NULL;
1547 return (sfmmup);
1548 }
1549
1550 /*
1551 * Create per-MMU context domain kstats for a given MMU ctx.
1552 */
1553 static void
sfmmu_mmu_kstat_create(mmu_ctx_t * mmu_ctxp)1554 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1555 {
1556 mmu_ctx_stat_t stat;
1557 kstat_t *mmu_kstat;
1558
1559 ASSERT(MUTEX_HELD(&cpu_lock));
1560 ASSERT(mmu_ctxp->mmu_kstat == NULL);
1561
1562 mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1563 "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1564
1565 if (mmu_kstat == NULL) {
1566 cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1567 mmu_ctxp->mmu_idx);
1568 } else {
1569 mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1570 for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1571 kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1572 mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1573 mmu_ctxp->mmu_kstat = mmu_kstat;
1574 kstat_install(mmu_kstat);
1575 }
1576 }
1577
1578 /*
1579 * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1580 * context domain information for a given CPU. If a platform does not
1581 * specify that interface, then the function below is used instead to return
1582 * default information. The defaults are as follows:
1583 *
1584 * - The number of MMU context IDs supported on any CPU in the
1585 * system is 8K.
1586 * - There is one MMU context domain per CPU.
1587 */
1588 /*ARGSUSED*/
1589 static void
sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid,mmu_ctx_info_t * infop)1590 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1591 {
1592 infop->mmu_nctxs = nctxs;
1593 infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1594 }
1595
1596 /*
1597 * Called during CPU initialization to set the MMU context-related information
1598 * for a CPU.
1599 *
1600 * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1601 */
1602 void
sfmmu_cpu_init(cpu_t * cp)1603 sfmmu_cpu_init(cpu_t *cp)
1604 {
1605 mmu_ctx_info_t info;
1606 mmu_ctx_t *mmu_ctxp;
1607
1608 ASSERT(MUTEX_HELD(&cpu_lock));
1609
1610 if (&plat_cpuid_to_mmu_ctx_info == NULL)
1611 sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1612 else
1613 plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1614
1615 ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1616
1617 if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1618 /* Each mmu_ctx is cacheline aligned. */
1619 mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1620 bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1621
1622 mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1623 (void *)ipltospl(DISP_LEVEL));
1624 mmu_ctxp->mmu_idx = info.mmu_idx;
1625 mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1626 /*
1627 * Globally for lifetime of a system,
1628 * gnum must always increase.
1629 * mmu_saved_gnum is protected by the cpu_lock.
1630 */
1631 mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1632 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1633
1634 sfmmu_mmu_kstat_create(mmu_ctxp);
1635
1636 mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1637 } else {
1638 ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1639 ASSERT(mmu_ctxp->mmu_nctxs <= info.mmu_nctxs);
1640 }
1641
1642 /*
1643 * The mmu_lock is acquired here to prevent races with
1644 * the wrap-around code.
1645 */
1646 mutex_enter(&mmu_ctxp->mmu_lock);
1647
1648
1649 mmu_ctxp->mmu_ncpus++;
1650 CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1651 CPU_MMU_IDX(cp) = info.mmu_idx;
1652 CPU_MMU_CTXP(cp) = mmu_ctxp;
1653
1654 mutex_exit(&mmu_ctxp->mmu_lock);
1655 }
1656
1657 static void
sfmmu_ctxdom_free(mmu_ctx_t * mmu_ctxp)1658 sfmmu_ctxdom_free(mmu_ctx_t *mmu_ctxp)
1659 {
1660 ASSERT(MUTEX_HELD(&cpu_lock));
1661 ASSERT(!MUTEX_HELD(&mmu_ctxp->mmu_lock));
1662
1663 mutex_destroy(&mmu_ctxp->mmu_lock);
1664
1665 if (mmu_ctxp->mmu_kstat)
1666 kstat_delete(mmu_ctxp->mmu_kstat);
1667
1668 /* mmu_saved_gnum is protected by the cpu_lock. */
1669 if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1670 mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1671
1672 kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1673 }
1674
1675 /*
1676 * Called to perform MMU context-related cleanup for a CPU.
1677 */
1678 void
sfmmu_cpu_cleanup(cpu_t * cp)1679 sfmmu_cpu_cleanup(cpu_t *cp)
1680 {
1681 mmu_ctx_t *mmu_ctxp;
1682
1683 ASSERT(MUTEX_HELD(&cpu_lock));
1684
1685 mmu_ctxp = CPU_MMU_CTXP(cp);
1686 ASSERT(mmu_ctxp != NULL);
1687
1688 /*
1689 * The mmu_lock is acquired here to prevent races with
1690 * the wrap-around code.
1691 */
1692 mutex_enter(&mmu_ctxp->mmu_lock);
1693
1694 CPU_MMU_CTXP(cp) = NULL;
1695
1696 CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1697 if (--mmu_ctxp->mmu_ncpus == 0) {
1698 mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1699 mutex_exit(&mmu_ctxp->mmu_lock);
1700 sfmmu_ctxdom_free(mmu_ctxp);
1701 return;
1702 }
1703
1704 mutex_exit(&mmu_ctxp->mmu_lock);
1705 }
1706
1707 uint_t
sfmmu_ctxdom_nctxs(int idx)1708 sfmmu_ctxdom_nctxs(int idx)
1709 {
1710 return (mmu_ctxs_tbl[idx]->mmu_nctxs);
1711 }
1712
1713 #ifdef sun4v
1714 /*
1715 * sfmmu_ctxdoms_* is an interface provided to help keep context domains
1716 * consistant after suspend/resume on system that can resume on a different
1717 * hardware than it was suspended.
1718 *
1719 * sfmmu_ctxdom_lock(void) locks all context domains and prevents new contexts
1720 * from being allocated. It acquires all hat_locks, which blocks most access to
1721 * context data, except for a few cases that are handled separately or are
1722 * harmless. It wraps each domain to increment gnum and invalidate on-CPU
1723 * contexts, and forces cnum to its max. As a result of this call all user
1724 * threads that are running on CPUs trap and try to perform wrap around but
1725 * can't because hat_locks are taken. Threads that were not on CPUs but started
1726 * by scheduler go to sfmmu_alloc_ctx() to aquire context without checking
1727 * hat_lock, but fail, because cnum == nctxs, and therefore also trap and block
1728 * on hat_lock trying to wrap. sfmmu_ctxdom_lock() must be called before CPUs
1729 * are paused, else it could deadlock acquiring locks held by paused CPUs.
1730 *
1731 * sfmmu_ctxdoms_remove() removes context domains from every CPUs and records
1732 * the CPUs that had them. It must be called after CPUs have been paused. This
1733 * ensures that no threads are in sfmmu_alloc_ctx() accessing domain data,
1734 * because pause_cpus sends a mondo interrupt to every CPU, and sfmmu_alloc_ctx
1735 * runs with interrupts disabled. When CPUs are later resumed, they may enter
1736 * sfmmu_alloc_ctx, but it will check for CPU_MMU_CTXP = NULL and immediately
1737 * return failure. Or, they will be blocked trying to acquire hat_lock. Thus
1738 * after sfmmu_ctxdoms_remove returns, we are guaranteed that no one is
1739 * accessing the old context domains.
1740 *
1741 * sfmmu_ctxdoms_update(void) frees space used by old context domains and
1742 * allocates new context domains based on hardware layout. It initializes
1743 * every CPU that had context domain before migration to have one again.
1744 * sfmmu_ctxdoms_update must be called after CPUs are resumed, else it
1745 * could deadlock acquiring locks held by paused CPUs.
1746 *
1747 * sfmmu_ctxdoms_unlock(void) releases all hat_locks after which user threads
1748 * acquire new context ids and continue execution.
1749 *
1750 * Therefore functions should be called in the following order:
1751 * suspend_routine()
1752 * sfmmu_ctxdom_lock()
1753 * pause_cpus()
1754 * suspend()
1755 * if (suspend failed)
1756 * sfmmu_ctxdom_unlock()
1757 * ...
1758 * sfmmu_ctxdom_remove()
1759 * resume_cpus()
1760 * sfmmu_ctxdom_update()
1761 * sfmmu_ctxdom_unlock()
1762 */
1763 static cpuset_t sfmmu_ctxdoms_pset;
1764
1765 void
sfmmu_ctxdoms_remove()1766 sfmmu_ctxdoms_remove()
1767 {
1768 processorid_t id;
1769 cpu_t *cp;
1770
1771 /*
1772 * Record the CPUs that have domains in sfmmu_ctxdoms_pset, so they can
1773 * be restored post-migration. A CPU may be powered off and not have a
1774 * domain, for example.
1775 */
1776 CPUSET_ZERO(sfmmu_ctxdoms_pset);
1777
1778 for (id = 0; id < NCPU; id++) {
1779 if ((cp = cpu[id]) != NULL && CPU_MMU_CTXP(cp) != NULL) {
1780 CPUSET_ADD(sfmmu_ctxdoms_pset, id);
1781 CPU_MMU_CTXP(cp) = NULL;
1782 }
1783 }
1784 }
1785
1786 void
sfmmu_ctxdoms_lock(void)1787 sfmmu_ctxdoms_lock(void)
1788 {
1789 int idx;
1790 mmu_ctx_t *mmu_ctxp;
1791
1792 sfmmu_hat_lock_all();
1793
1794 /*
1795 * At this point, no thread can be in sfmmu_ctx_wrap_around, because
1796 * hat_lock is always taken before calling it.
1797 *
1798 * For each domain, set mmu_cnum to max so no more contexts can be
1799 * allocated, and wrap to flush on-CPU contexts and force threads to
1800 * acquire a new context when we later drop hat_lock after migration.
1801 * Setting mmu_cnum may race with sfmmu_alloc_ctx which also sets cnum,
1802 * but the latter uses CAS and will miscompare and not overwrite it.
1803 */
1804 kpreempt_disable(); /* required by sfmmu_ctx_wrap_around */
1805 for (idx = 0; idx < max_mmu_ctxdoms; idx++) {
1806 if ((mmu_ctxp = mmu_ctxs_tbl[idx]) != NULL) {
1807 mutex_enter(&mmu_ctxp->mmu_lock);
1808 mmu_ctxp->mmu_cnum = mmu_ctxp->mmu_nctxs;
1809 /* make sure updated cnum visible */
1810 membar_enter();
1811 mutex_exit(&mmu_ctxp->mmu_lock);
1812 sfmmu_ctx_wrap_around(mmu_ctxp, B_FALSE);
1813 }
1814 }
1815 kpreempt_enable();
1816 }
1817
1818 void
sfmmu_ctxdoms_unlock(void)1819 sfmmu_ctxdoms_unlock(void)
1820 {
1821 sfmmu_hat_unlock_all();
1822 }
1823
1824 void
sfmmu_ctxdoms_update(void)1825 sfmmu_ctxdoms_update(void)
1826 {
1827 processorid_t id;
1828 cpu_t *cp;
1829 uint_t idx;
1830 mmu_ctx_t *mmu_ctxp;
1831
1832 /*
1833 * Free all context domains. As side effect, this increases
1834 * mmu_saved_gnum to the maximum gnum over all domains, which is used to
1835 * init gnum in the new domains, which therefore will be larger than the
1836 * sfmmu gnum for any process, guaranteeing that every process will see
1837 * a new generation and allocate a new context regardless of what new
1838 * domain it runs in.
1839 */
1840 mutex_enter(&cpu_lock);
1841
1842 for (idx = 0; idx < max_mmu_ctxdoms; idx++) {
1843 if (mmu_ctxs_tbl[idx] != NULL) {
1844 mmu_ctxp = mmu_ctxs_tbl[idx];
1845 mmu_ctxs_tbl[idx] = NULL;
1846 sfmmu_ctxdom_free(mmu_ctxp);
1847 }
1848 }
1849
1850 for (id = 0; id < NCPU; id++) {
1851 if (CPU_IN_SET(sfmmu_ctxdoms_pset, id) &&
1852 (cp = cpu[id]) != NULL)
1853 sfmmu_cpu_init(cp);
1854 }
1855 mutex_exit(&cpu_lock);
1856 }
1857 #endif
1858
1859 /*
1860 * Hat_setup, makes an address space context the current active one.
1861 * In sfmmu this translates to setting the secondary context with the
1862 * corresponding context.
1863 */
1864 void
hat_setup(struct hat * sfmmup,int allocflag)1865 hat_setup(struct hat *sfmmup, int allocflag)
1866 {
1867 hatlock_t *hatlockp;
1868
1869 /* Init needs some special treatment. */
1870 if (allocflag == HAT_INIT) {
1871 /*
1872 * Make sure that we have
1873 * 1. a TSB
1874 * 2. a valid ctx that doesn't get stolen after this point.
1875 */
1876 hatlockp = sfmmu_hat_enter(sfmmup);
1877
1878 /*
1879 * Swap in the TSB. hat_init() allocates tsbinfos without
1880 * TSBs, but we need one for init, since the kernel does some
1881 * special things to set up its stack and needs the TSB to
1882 * resolve page faults.
1883 */
1884 sfmmu_tsb_swapin(sfmmup, hatlockp);
1885
1886 sfmmu_get_ctx(sfmmup);
1887
1888 sfmmu_hat_exit(hatlockp);
1889 } else {
1890 ASSERT(allocflag == HAT_ALLOC);
1891
1892 hatlockp = sfmmu_hat_enter(sfmmup);
1893 kpreempt_disable();
1894
1895 CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1896 /*
1897 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1898 * pagesize bits don't matter in this case since we are passing
1899 * INVALID_CONTEXT to it.
1900 * Compatibility Note: hw takes care of MMU_SCONTEXT1
1901 */
1902 sfmmu_setctx_sec(INVALID_CONTEXT);
1903 sfmmu_clear_utsbinfo();
1904
1905 kpreempt_enable();
1906 sfmmu_hat_exit(hatlockp);
1907 }
1908 }
1909
1910 /*
1911 * Free all the translation resources for the specified address space.
1912 * Called from as_free when an address space is being destroyed.
1913 */
1914 void
hat_free_start(struct hat * sfmmup)1915 hat_free_start(struct hat *sfmmup)
1916 {
1917 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
1918 ASSERT(sfmmup != ksfmmup);
1919
1920 sfmmup->sfmmu_free = 1;
1921 if (sfmmup->sfmmu_scdp != NULL) {
1922 sfmmu_leave_scd(sfmmup, 0);
1923 }
1924
1925 ASSERT(sfmmup->sfmmu_scdp == NULL);
1926 }
1927
1928 void
hat_free_end(struct hat * sfmmup)1929 hat_free_end(struct hat *sfmmup)
1930 {
1931 int i;
1932
1933 ASSERT(sfmmup->sfmmu_free == 1);
1934 ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1935 ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1936 ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1937 ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1938 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1939 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1940
1941 if (sfmmup->sfmmu_rmstat) {
1942 hat_freestat(sfmmup->sfmmu_as, NULL);
1943 }
1944
1945 while (sfmmup->sfmmu_tsb != NULL) {
1946 struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1947 sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1948 sfmmup->sfmmu_tsb = next;
1949 }
1950
1951 if (sfmmup->sfmmu_srdp != NULL) {
1952 sfmmu_leave_srd(sfmmup);
1953 ASSERT(sfmmup->sfmmu_srdp == NULL);
1954 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1955 if (sfmmup->sfmmu_hmeregion_links[i] != NULL) {
1956 kmem_free(sfmmup->sfmmu_hmeregion_links[i],
1957 SFMMU_L2_HMERLINKS_SIZE);
1958 sfmmup->sfmmu_hmeregion_links[i] = NULL;
1959 }
1960 }
1961 }
1962 sfmmu_free_sfmmu(sfmmup);
1963
1964 #ifdef DEBUG
1965 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1966 ASSERT(sfmmup->sfmmu_hmeregion_links[i] == NULL);
1967 }
1968 #endif
1969
1970 kmem_cache_free(sfmmuid_cache, sfmmup);
1971 }
1972
1973 /*
1974 * Set up any translation structures, for the specified address space,
1975 * that are needed or preferred when the process is being swapped in.
1976 */
1977 /* ARGSUSED */
1978 void
hat_swapin(struct hat * hat)1979 hat_swapin(struct hat *hat)
1980 {
1981 }
1982
1983 /*
1984 * Free all of the translation resources, for the specified address space,
1985 * that can be freed while the process is swapped out. Called from as_swapout.
1986 * Also, free up the ctx that this process was using.
1987 */
1988 void
hat_swapout(struct hat * sfmmup)1989 hat_swapout(struct hat *sfmmup)
1990 {
1991 struct hmehash_bucket *hmebp;
1992 struct hme_blk *hmeblkp;
1993 struct hme_blk *pr_hblk = NULL;
1994 struct hme_blk *nx_hblk;
1995 int i;
1996 struct hme_blk *list = NULL;
1997 hatlock_t *hatlockp;
1998 struct tsb_info *tsbinfop;
1999 struct free_tsb {
2000 struct free_tsb *next;
2001 struct tsb_info *tsbinfop;
2002 }; /* free list of TSBs */
2003 struct free_tsb *freelist, *last, *next;
2004
2005 SFMMU_STAT(sf_swapout);
2006
2007 /*
2008 * There is no way to go from an as to all its translations in sfmmu.
2009 * Here is one of the times when we take the big hit and traverse
2010 * the hash looking for hme_blks to free up. Not only do we free up
2011 * this as hme_blks but all those that are free. We are obviously
2012 * swapping because we need memory so let's free up as much
2013 * as we can.
2014 *
2015 * Note that we don't flush TLB/TSB here -- it's not necessary
2016 * because:
2017 * 1) we free the ctx we're using and throw away the TSB(s);
2018 * 2) processes aren't runnable while being swapped out.
2019 */
2020 ASSERT(sfmmup != KHATID);
2021 for (i = 0; i <= UHMEHASH_SZ; i++) {
2022 hmebp = &uhme_hash[i];
2023 SFMMU_HASH_LOCK(hmebp);
2024 hmeblkp = hmebp->hmeblkp;
2025 pr_hblk = NULL;
2026 while (hmeblkp) {
2027
2028 if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
2029 !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
2030 ASSERT(!hmeblkp->hblk_shared);
2031 (void) sfmmu_hblk_unload(sfmmup, hmeblkp,
2032 (caddr_t)get_hblk_base(hmeblkp),
2033 get_hblk_endaddr(hmeblkp),
2034 NULL, HAT_UNLOAD);
2035 }
2036 nx_hblk = hmeblkp->hblk_next;
2037 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
2038 ASSERT(!hmeblkp->hblk_lckcnt);
2039 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
2040 &list, 0);
2041 } else {
2042 pr_hblk = hmeblkp;
2043 }
2044 hmeblkp = nx_hblk;
2045 }
2046 SFMMU_HASH_UNLOCK(hmebp);
2047 }
2048
2049 sfmmu_hblks_list_purge(&list, 0);
2050
2051 /*
2052 * Now free up the ctx so that others can reuse it.
2053 */
2054 hatlockp = sfmmu_hat_enter(sfmmup);
2055
2056 sfmmu_invalidate_ctx(sfmmup);
2057
2058 /*
2059 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
2060 * If TSBs were never swapped in, just return.
2061 * This implies that we don't support partial swapping
2062 * of TSBs -- either all are swapped out, or none are.
2063 *
2064 * We must hold the HAT lock here to prevent racing with another
2065 * thread trying to unmap TTEs from the TSB or running the post-
2066 * relocator after relocating the TSB's memory. Unfortunately, we
2067 * can't free memory while holding the HAT lock or we could
2068 * deadlock, so we build a list of TSBs to be freed after marking
2069 * the tsbinfos as swapped out and free them after dropping the
2070 * lock.
2071 */
2072 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
2073 sfmmu_hat_exit(hatlockp);
2074 return;
2075 }
2076
2077 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
2078 last = freelist = NULL;
2079 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
2080 tsbinfop = tsbinfop->tsb_next) {
2081 ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
2082
2083 /*
2084 * Cast the TSB into a struct free_tsb and put it on the free
2085 * list.
2086 */
2087 if (freelist == NULL) {
2088 last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
2089 } else {
2090 last->next = (struct free_tsb *)tsbinfop->tsb_va;
2091 last = last->next;
2092 }
2093 last->next = NULL;
2094 last->tsbinfop = tsbinfop;
2095 tsbinfop->tsb_flags |= TSB_SWAPPED;
2096 /*
2097 * Zero out the TTE to clear the valid bit.
2098 * Note we can't use a value like 0xbad because we want to
2099 * ensure diagnostic bits are NEVER set on TTEs that might
2100 * be loaded. The intent is to catch any invalid access
2101 * to the swapped TSB, such as a thread running with a valid
2102 * context without first calling sfmmu_tsb_swapin() to
2103 * allocate TSB memory.
2104 */
2105 tsbinfop->tsb_tte.ll = 0;
2106 }
2107
2108 /* Now we can drop the lock and free the TSB memory. */
2109 sfmmu_hat_exit(hatlockp);
2110 for (; freelist != NULL; freelist = next) {
2111 next = freelist->next;
2112 sfmmu_tsb_free(freelist->tsbinfop);
2113 }
2114 }
2115
2116 /*
2117 * Duplicate the translations of an as into another newas
2118 */
2119 /* ARGSUSED */
2120 int
hat_dup(struct hat * hat,struct hat * newhat,caddr_t addr,size_t len,uint_t flag)2121 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
2122 uint_t flag)
2123 {
2124 sf_srd_t *srdp;
2125 sf_scd_t *scdp;
2126 int i;
2127 extern uint_t get_color_start(struct as *);
2128
2129 ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW) ||
2130 (flag == HAT_DUP_SRD));
2131 ASSERT(hat != ksfmmup);
2132 ASSERT(newhat != ksfmmup);
2133 ASSERT(flag != HAT_DUP_ALL || hat->sfmmu_srdp == newhat->sfmmu_srdp);
2134
2135 if (flag == HAT_DUP_COW) {
2136 panic("hat_dup: HAT_DUP_COW not supported");
2137 }
2138
2139 if (flag == HAT_DUP_SRD && ((srdp = hat->sfmmu_srdp) != NULL)) {
2140 ASSERT(srdp->srd_evp != NULL);
2141 VN_HOLD(srdp->srd_evp);
2142 ASSERT(srdp->srd_refcnt > 0);
2143 newhat->sfmmu_srdp = srdp;
2144 atomic_inc_32((volatile uint_t *)&srdp->srd_refcnt);
2145 }
2146
2147 /*
2148 * HAT_DUP_ALL flag is used after as duplication is done.
2149 */
2150 if (flag == HAT_DUP_ALL && ((srdp = newhat->sfmmu_srdp) != NULL)) {
2151 ASSERT(newhat->sfmmu_srdp->srd_refcnt >= 2);
2152 newhat->sfmmu_rtteflags = hat->sfmmu_rtteflags;
2153 if (hat->sfmmu_flags & HAT_4MTEXT_FLAG) {
2154 newhat->sfmmu_flags |= HAT_4MTEXT_FLAG;
2155 }
2156
2157 /* check if need to join scd */
2158 if ((scdp = hat->sfmmu_scdp) != NULL &&
2159 newhat->sfmmu_scdp != scdp) {
2160 int ret;
2161 SF_RGNMAP_IS_SUBSET(&newhat->sfmmu_region_map,
2162 &scdp->scd_region_map, ret);
2163 ASSERT(ret);
2164 sfmmu_join_scd(scdp, newhat);
2165 ASSERT(newhat->sfmmu_scdp == scdp &&
2166 scdp->scd_refcnt >= 2);
2167 for (i = 0; i < max_mmu_page_sizes; i++) {
2168 newhat->sfmmu_ismttecnt[i] =
2169 hat->sfmmu_ismttecnt[i];
2170 newhat->sfmmu_scdismttecnt[i] =
2171 hat->sfmmu_scdismttecnt[i];
2172 }
2173 }
2174
2175 sfmmu_check_page_sizes(newhat, 1);
2176 }
2177
2178 if (flag == HAT_DUP_ALL && consistent_coloring == 0 &&
2179 update_proc_pgcolorbase_after_fork != 0) {
2180 hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as);
2181 }
2182 return (0);
2183 }
2184
2185 void
hat_memload(struct hat * hat,caddr_t addr,struct page * pp,uint_t attr,uint_t flags)2186 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
2187 uint_t attr, uint_t flags)
2188 {
2189 hat_do_memload(hat, addr, pp, attr, flags,
2190 SFMMU_INVALID_SHMERID);
2191 }
2192
2193 void
hat_memload_region(struct hat * hat,caddr_t addr,struct page * pp,uint_t attr,uint_t flags,hat_region_cookie_t rcookie)2194 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
2195 uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
2196 {
2197 uint_t rid;
2198 if (rcookie == HAT_INVALID_REGION_COOKIE) {
2199 hat_do_memload(hat, addr, pp, attr, flags,
2200 SFMMU_INVALID_SHMERID);
2201 return;
2202 }
2203 rid = (uint_t)((uint64_t)rcookie);
2204 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2205 hat_do_memload(hat, addr, pp, attr, flags, rid);
2206 }
2207
2208 /*
2209 * Set up addr to map to page pp with protection prot.
2210 * As an optimization we also load the TSB with the
2211 * corresponding tte but it is no big deal if the tte gets kicked out.
2212 */
2213 static void
hat_do_memload(struct hat * hat,caddr_t addr,struct page * pp,uint_t attr,uint_t flags,uint_t rid)2214 hat_do_memload(struct hat *hat, caddr_t addr, struct page *pp,
2215 uint_t attr, uint_t flags, uint_t rid)
2216 {
2217 tte_t tte;
2218
2219
2220 ASSERT(hat != NULL);
2221 ASSERT(PAGE_LOCKED(pp));
2222 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2223 ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2224 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2225 SFMMU_VALIDATE_HMERID(hat, rid, addr, MMU_PAGESIZE);
2226
2227 if (PP_ISFREE(pp)) {
2228 panic("hat_memload: loading a mapping to free page %p",
2229 (void *)pp);
2230 }
2231
2232 ASSERT((hat == ksfmmup) || AS_LOCK_HELD(hat->sfmmu_as));
2233
2234 if (flags & ~SFMMU_LOAD_ALLFLAG)
2235 cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
2236 flags & ~SFMMU_LOAD_ALLFLAG);
2237
2238 if (hat->sfmmu_rmstat)
2239 hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
2240
2241 #if defined(SF_ERRATA_57)
2242 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2243 (addr < errata57_limit) && (attr & PROT_EXEC) &&
2244 !(flags & HAT_LOAD_SHARE)) {
2245 cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
2246 " page executable");
2247 attr &= ~PROT_EXEC;
2248 }
2249 #endif
2250
2251 sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2252 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags, rid);
2253
2254 /*
2255 * Check TSB and TLB page sizes.
2256 */
2257 if ((flags & HAT_LOAD_SHARE) == 0) {
2258 sfmmu_check_page_sizes(hat, 1);
2259 }
2260 }
2261
2262 /*
2263 * hat_devload can be called to map real memory (e.g.
2264 * /dev/kmem) and even though hat_devload will determine pf is
2265 * for memory, it will be unable to get a shared lock on the
2266 * page (because someone else has it exclusively) and will
2267 * pass dp = NULL. If tteload doesn't get a non-NULL
2268 * page pointer it can't cache memory.
2269 */
2270 void
hat_devload(struct hat * hat,caddr_t addr,size_t len,pfn_t pfn,uint_t attr,int flags)2271 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
2272 uint_t attr, int flags)
2273 {
2274 tte_t tte;
2275 struct page *pp = NULL;
2276 int use_lgpg = 0;
2277
2278 ASSERT(hat != NULL);
2279
2280 ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2281 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2282 ASSERT((hat == ksfmmup) || AS_LOCK_HELD(hat->sfmmu_as));
2283 if (len == 0)
2284 panic("hat_devload: zero len");
2285 if (flags & ~SFMMU_LOAD_ALLFLAG)
2286 cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
2287 flags & ~SFMMU_LOAD_ALLFLAG);
2288
2289 #if defined(SF_ERRATA_57)
2290 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2291 (addr < errata57_limit) && (attr & PROT_EXEC) &&
2292 !(flags & HAT_LOAD_SHARE)) {
2293 cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
2294 " page executable");
2295 attr &= ~PROT_EXEC;
2296 }
2297 #endif
2298
2299 /*
2300 * If it's a memory page find its pp
2301 */
2302 if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
2303 pp = page_numtopp_nolock(pfn);
2304 if (pp == NULL) {
2305 flags |= HAT_LOAD_NOCONSIST;
2306 } else {
2307 if (PP_ISFREE(pp)) {
2308 panic("hat_memload: loading "
2309 "a mapping to free page %p",
2310 (void *)pp);
2311 }
2312 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
2313 panic("hat_memload: loading a mapping "
2314 "to unlocked relocatable page %p",
2315 (void *)pp);
2316 }
2317 ASSERT(len == MMU_PAGESIZE);
2318 }
2319 }
2320
2321 if (hat->sfmmu_rmstat)
2322 hat_resvstat(len, hat->sfmmu_as, addr);
2323
2324 if (flags & HAT_LOAD_NOCONSIST) {
2325 attr |= SFMMU_UNCACHEVTTE;
2326 use_lgpg = 1;
2327 }
2328 if (!pf_is_memory(pfn)) {
2329 attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
2330 use_lgpg = 1;
2331 switch (attr & HAT_ORDER_MASK) {
2332 case HAT_STRICTORDER:
2333 case HAT_UNORDERED_OK:
2334 /*
2335 * we set the side effect bit for all non
2336 * memory mappings unless merging is ok
2337 */
2338 attr |= SFMMU_SIDEFFECT;
2339 break;
2340 case HAT_MERGING_OK:
2341 case HAT_LOADCACHING_OK:
2342 case HAT_STORECACHING_OK:
2343 break;
2344 default:
2345 panic("hat_devload: bad attr");
2346 break;
2347 }
2348 }
2349 while (len) {
2350 if (!use_lgpg) {
2351 sfmmu_memtte(&tte, pfn, attr, TTE8K);
2352 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2353 flags, SFMMU_INVALID_SHMERID);
2354 len -= MMU_PAGESIZE;
2355 addr += MMU_PAGESIZE;
2356 pfn++;
2357 continue;
2358 }
2359 /*
2360 * try to use large pages, check va/pa alignments
2361 * Note that 32M/256M page sizes are not (yet) supported.
2362 */
2363 if ((len >= MMU_PAGESIZE4M) &&
2364 !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
2365 !(disable_large_pages & (1 << TTE4M)) &&
2366 !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
2367 sfmmu_memtte(&tte, pfn, attr, TTE4M);
2368 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2369 flags, SFMMU_INVALID_SHMERID);
2370 len -= MMU_PAGESIZE4M;
2371 addr += MMU_PAGESIZE4M;
2372 pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
2373 } else if ((len >= MMU_PAGESIZE512K) &&
2374 !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
2375 !(disable_large_pages & (1 << TTE512K)) &&
2376 !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
2377 sfmmu_memtte(&tte, pfn, attr, TTE512K);
2378 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2379 flags, SFMMU_INVALID_SHMERID);
2380 len -= MMU_PAGESIZE512K;
2381 addr += MMU_PAGESIZE512K;
2382 pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
2383 } else if ((len >= MMU_PAGESIZE64K) &&
2384 !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
2385 !(disable_large_pages & (1 << TTE64K)) &&
2386 !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
2387 sfmmu_memtte(&tte, pfn, attr, TTE64K);
2388 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2389 flags, SFMMU_INVALID_SHMERID);
2390 len -= MMU_PAGESIZE64K;
2391 addr += MMU_PAGESIZE64K;
2392 pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
2393 } else {
2394 sfmmu_memtte(&tte, pfn, attr, TTE8K);
2395 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2396 flags, SFMMU_INVALID_SHMERID);
2397 len -= MMU_PAGESIZE;
2398 addr += MMU_PAGESIZE;
2399 pfn++;
2400 }
2401 }
2402
2403 /*
2404 * Check TSB and TLB page sizes.
2405 */
2406 if ((flags & HAT_LOAD_SHARE) == 0) {
2407 sfmmu_check_page_sizes(hat, 1);
2408 }
2409 }
2410
2411 void
hat_memload_array(struct hat * hat,caddr_t addr,size_t len,struct page ** pps,uint_t attr,uint_t flags)2412 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2413 struct page **pps, uint_t attr, uint_t flags)
2414 {
2415 hat_do_memload_array(hat, addr, len, pps, attr, flags,
2416 SFMMU_INVALID_SHMERID);
2417 }
2418
2419 void
hat_memload_array_region(struct hat * hat,caddr_t addr,size_t len,struct page ** pps,uint_t attr,uint_t flags,hat_region_cookie_t rcookie)2420 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
2421 struct page **pps, uint_t attr, uint_t flags,
2422 hat_region_cookie_t rcookie)
2423 {
2424 uint_t rid;
2425 if (rcookie == HAT_INVALID_REGION_COOKIE) {
2426 hat_do_memload_array(hat, addr, len, pps, attr, flags,
2427 SFMMU_INVALID_SHMERID);
2428 return;
2429 }
2430 rid = (uint_t)((uint64_t)rcookie);
2431 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2432 hat_do_memload_array(hat, addr, len, pps, attr, flags, rid);
2433 }
2434
2435 /*
2436 * Map the largest extend possible out of the page array. The array may NOT
2437 * be in order. The largest possible mapping a page can have
2438 * is specified in the p_szc field. The p_szc field
2439 * cannot change as long as there any mappings (large or small)
2440 * to any of the pages that make up the large page. (ie. any
2441 * promotion/demotion of page size is not up to the hat but up to
2442 * the page free list manager). The array
2443 * should consist of properly aligned contigous pages that are
2444 * part of a big page for a large mapping to be created.
2445 */
2446 static void
hat_do_memload_array(struct hat * hat,caddr_t addr,size_t len,struct page ** pps,uint_t attr,uint_t flags,uint_t rid)2447 hat_do_memload_array(struct hat *hat, caddr_t addr, size_t len,
2448 struct page **pps, uint_t attr, uint_t flags, uint_t rid)
2449 {
2450 int ttesz;
2451 size_t mapsz;
2452 pgcnt_t numpg, npgs;
2453 tte_t tte;
2454 page_t *pp;
2455 uint_t large_pages_disable;
2456
2457 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2458 SFMMU_VALIDATE_HMERID(hat, rid, addr, len);
2459
2460 if (hat->sfmmu_rmstat)
2461 hat_resvstat(len, hat->sfmmu_as, addr);
2462
2463 #if defined(SF_ERRATA_57)
2464 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2465 (addr < errata57_limit) && (attr & PROT_EXEC) &&
2466 !(flags & HAT_LOAD_SHARE)) {
2467 cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2468 "user page executable");
2469 attr &= ~PROT_EXEC;
2470 }
2471 #endif
2472
2473 /* Get number of pages */
2474 npgs = len >> MMU_PAGESHIFT;
2475
2476 if (flags & HAT_LOAD_SHARE) {
2477 large_pages_disable = disable_ism_large_pages;
2478 } else {
2479 large_pages_disable = disable_large_pages;
2480 }
2481
2482 if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2483 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2484 rid);
2485 return;
2486 }
2487
2488 while (npgs >= NHMENTS) {
2489 pp = *pps;
2490 for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2491 /*
2492 * Check if this page size is disabled.
2493 */
2494 if (large_pages_disable & (1 << ttesz))
2495 continue;
2496
2497 numpg = TTEPAGES(ttesz);
2498 mapsz = numpg << MMU_PAGESHIFT;
2499 if ((npgs >= numpg) &&
2500 IS_P2ALIGNED(addr, mapsz) &&
2501 IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2502 /*
2503 * At this point we have enough pages and
2504 * we know the virtual address and the pfn
2505 * are properly aligned. We still need
2506 * to check for physical contiguity but since
2507 * it is very likely that this is the case
2508 * we will assume they are so and undo
2509 * the request if necessary. It would
2510 * be great if we could get a hint flag
2511 * like HAT_CONTIG which would tell us
2512 * the pages are contigous for sure.
2513 */
2514 sfmmu_memtte(&tte, (*pps)->p_pagenum,
2515 attr, ttesz);
2516 if (!sfmmu_tteload_array(hat, &tte, addr,
2517 pps, flags, rid)) {
2518 break;
2519 }
2520 }
2521 }
2522 if (ttesz == TTE8K) {
2523 /*
2524 * We were not able to map array using a large page
2525 * batch a hmeblk or fraction at a time.
2526 */
2527 numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2528 & (NHMENTS-1);
2529 numpg = NHMENTS - numpg;
2530 ASSERT(numpg <= npgs);
2531 mapsz = numpg * MMU_PAGESIZE;
2532 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2533 numpg, rid);
2534 }
2535 addr += mapsz;
2536 npgs -= numpg;
2537 pps += numpg;
2538 }
2539
2540 if (npgs) {
2541 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2542 rid);
2543 }
2544
2545 /*
2546 * Check TSB and TLB page sizes.
2547 */
2548 if ((flags & HAT_LOAD_SHARE) == 0) {
2549 sfmmu_check_page_sizes(hat, 1);
2550 }
2551 }
2552
2553 /*
2554 * Function tries to batch 8K pages into the same hme blk.
2555 */
2556 static void
sfmmu_memload_batchsmall(struct hat * hat,caddr_t vaddr,page_t ** pps,uint_t attr,uint_t flags,pgcnt_t npgs,uint_t rid)2557 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2558 uint_t attr, uint_t flags, pgcnt_t npgs, uint_t rid)
2559 {
2560 tte_t tte;
2561 page_t *pp;
2562 struct hmehash_bucket *hmebp;
2563 struct hme_blk *hmeblkp;
2564 int index;
2565
2566 while (npgs) {
2567 /*
2568 * Acquire the hash bucket.
2569 */
2570 hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K,
2571 rid);
2572 ASSERT(hmebp);
2573
2574 /*
2575 * Find the hment block.
2576 */
2577 hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2578 TTE8K, flags, rid);
2579 ASSERT(hmeblkp);
2580
2581 do {
2582 /*
2583 * Make the tte.
2584 */
2585 pp = *pps;
2586 sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2587
2588 /*
2589 * Add the translation.
2590 */
2591 (void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2592 vaddr, pps, flags, rid);
2593
2594 /*
2595 * Goto next page.
2596 */
2597 pps++;
2598 npgs--;
2599
2600 /*
2601 * Goto next address.
2602 */
2603 vaddr += MMU_PAGESIZE;
2604
2605 /*
2606 * Don't crossover into a different hmentblk.
2607 */
2608 index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2609 (NHMENTS-1));
2610
2611 } while (index != 0 && npgs != 0);
2612
2613 /*
2614 * Release the hash bucket.
2615 */
2616
2617 sfmmu_tteload_release_hashbucket(hmebp);
2618 }
2619 }
2620
2621 /*
2622 * Construct a tte for a page:
2623 *
2624 * tte_valid = 1
2625 * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2626 * tte_size = size
2627 * tte_nfo = attr & HAT_NOFAULT
2628 * tte_ie = attr & HAT_STRUCTURE_LE
2629 * tte_hmenum = hmenum
2630 * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2631 * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2632 * tte_ref = 1 (optimization)
2633 * tte_wr_perm = attr & PROT_WRITE;
2634 * tte_no_sync = attr & HAT_NOSYNC
2635 * tte_lock = attr & SFMMU_LOCKTTE
2636 * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2637 * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2638 * tte_e = attr & SFMMU_SIDEFFECT
2639 * tte_priv = !(attr & PROT_USER)
2640 * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2641 * tte_glb = 0
2642 */
2643 void
sfmmu_memtte(tte_t * ttep,pfn_t pfn,uint_t attr,int tte_sz)2644 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2645 {
2646 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2647
2648 ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2649 ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2650
2651 if (TTE_IS_NOSYNC(ttep)) {
2652 TTE_SET_REF(ttep);
2653 if (TTE_IS_WRITABLE(ttep)) {
2654 TTE_SET_MOD(ttep);
2655 }
2656 }
2657 if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2658 panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2659 }
2660 }
2661
2662 /*
2663 * This function will add a translation to the hme_blk and allocate the
2664 * hme_blk if one does not exist.
2665 * If a page structure is specified then it will add the
2666 * corresponding hment to the mapping list.
2667 * It will also update the hmenum field for the tte.
2668 *
2669 * Currently this function is only used for kernel mappings.
2670 * So pass invalid region to sfmmu_tteload_array().
2671 */
2672 void
sfmmu_tteload(struct hat * sfmmup,tte_t * ttep,caddr_t vaddr,page_t * pp,uint_t flags)2673 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2674 uint_t flags)
2675 {
2676 ASSERT(sfmmup == ksfmmup);
2677 (void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags,
2678 SFMMU_INVALID_SHMERID);
2679 }
2680
2681 /*
2682 * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2683 * Assumes that a particular page size may only be resident in one TSB.
2684 */
2685 static void
sfmmu_mod_tsb(sfmmu_t * sfmmup,caddr_t vaddr,tte_t * ttep,int ttesz)2686 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2687 {
2688 struct tsb_info *tsbinfop = NULL;
2689 uint64_t tag;
2690 struct tsbe *tsbe_addr;
2691 uint64_t tsb_base;
2692 uint_t tsb_size;
2693 int vpshift = MMU_PAGESHIFT;
2694 int phys = 0;
2695
2696 if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2697 phys = ktsb_phys;
2698 if (ttesz >= TTE4M) {
2699 #ifndef sun4v
2700 ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2701 #endif
2702 tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2703 tsb_size = ktsb4m_szcode;
2704 } else {
2705 tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2706 tsb_size = ktsb_szcode;
2707 }
2708 } else {
2709 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2710
2711 /*
2712 * If there isn't a TSB for this page size, or the TSB is
2713 * swapped out, there is nothing to do. Note that the latter
2714 * case seems impossible but can occur if hat_pageunload()
2715 * is called on an ISM mapping while the process is swapped
2716 * out.
2717 */
2718 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2719 return;
2720
2721 /*
2722 * If another thread is in the middle of relocating a TSB
2723 * we can't unload the entry so set a flag so that the
2724 * TSB will be flushed before it can be accessed by the
2725 * process.
2726 */
2727 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2728 if (ttep == NULL)
2729 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2730 return;
2731 }
2732 #if defined(UTSB_PHYS)
2733 phys = 1;
2734 tsb_base = (uint64_t)tsbinfop->tsb_pa;
2735 #else
2736 tsb_base = (uint64_t)tsbinfop->tsb_va;
2737 #endif
2738 tsb_size = tsbinfop->tsb_szc;
2739 }
2740 if (ttesz >= TTE4M)
2741 vpshift = MMU_PAGESHIFT4M;
2742
2743 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2744 tag = sfmmu_make_tsbtag(vaddr);
2745
2746 if (ttep == NULL) {
2747 sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2748 } else {
2749 if (ttesz >= TTE4M) {
2750 SFMMU_STAT(sf_tsb_load4m);
2751 } else {
2752 SFMMU_STAT(sf_tsb_load8k);
2753 }
2754
2755 sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2756 }
2757 }
2758
2759 /*
2760 * Unmap all entries from [start, end) matching the given page size.
2761 *
2762 * This function is used primarily to unmap replicated 64K or 512K entries
2763 * from the TSB that are inserted using the base page size TSB pointer, but
2764 * it may also be called to unmap a range of addresses from the TSB.
2765 */
2766 void
sfmmu_unload_tsb_range(sfmmu_t * sfmmup,caddr_t start,caddr_t end,int ttesz)2767 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2768 {
2769 struct tsb_info *tsbinfop;
2770 uint64_t tag;
2771 struct tsbe *tsbe_addr;
2772 caddr_t vaddr;
2773 uint64_t tsb_base;
2774 int vpshift, vpgsz;
2775 uint_t tsb_size;
2776 int phys = 0;
2777
2778 /*
2779 * Assumptions:
2780 * If ttesz == 8K, 64K or 512K, we walk through the range 8K
2781 * at a time shooting down any valid entries we encounter.
2782 *
2783 * If ttesz >= 4M we walk the range 4M at a time shooting
2784 * down any valid mappings we find.
2785 */
2786 if (sfmmup == ksfmmup) {
2787 phys = ktsb_phys;
2788 if (ttesz >= TTE4M) {
2789 #ifndef sun4v
2790 ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2791 #endif
2792 tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2793 tsb_size = ktsb4m_szcode;
2794 } else {
2795 tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2796 tsb_size = ktsb_szcode;
2797 }
2798 } else {
2799 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2800
2801 /*
2802 * If there isn't a TSB for this page size, or the TSB is
2803 * swapped out, there is nothing to do. Note that the latter
2804 * case seems impossible but can occur if hat_pageunload()
2805 * is called on an ISM mapping while the process is swapped
2806 * out.
2807 */
2808 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2809 return;
2810
2811 /*
2812 * If another thread is in the middle of relocating a TSB
2813 * we can't unload the entry so set a flag so that the
2814 * TSB will be flushed before it can be accessed by the
2815 * process.
2816 */
2817 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2818 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2819 return;
2820 }
2821 #if defined(UTSB_PHYS)
2822 phys = 1;
2823 tsb_base = (uint64_t)tsbinfop->tsb_pa;
2824 #else
2825 tsb_base = (uint64_t)tsbinfop->tsb_va;
2826 #endif
2827 tsb_size = tsbinfop->tsb_szc;
2828 }
2829 if (ttesz >= TTE4M) {
2830 vpshift = MMU_PAGESHIFT4M;
2831 vpgsz = MMU_PAGESIZE4M;
2832 } else {
2833 vpshift = MMU_PAGESHIFT;
2834 vpgsz = MMU_PAGESIZE;
2835 }
2836
2837 for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2838 tag = sfmmu_make_tsbtag(vaddr);
2839 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2840 sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2841 }
2842 }
2843
2844 /*
2845 * Select the optimum TSB size given the number of mappings
2846 * that need to be cached.
2847 */
2848 static int
sfmmu_select_tsb_szc(pgcnt_t pgcnt)2849 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2850 {
2851 int szc = 0;
2852
2853 #ifdef DEBUG
2854 if (tsb_grow_stress) {
2855 uint32_t randval = (uint32_t)gettick() >> 4;
2856 return (randval % (tsb_max_growsize + 1));
2857 }
2858 #endif /* DEBUG */
2859
2860 while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2861 szc++;
2862 return (szc);
2863 }
2864
2865 /*
2866 * This function will add a translation to the hme_blk and allocate the
2867 * hme_blk if one does not exist.
2868 * If a page structure is specified then it will add the
2869 * corresponding hment to the mapping list.
2870 * It will also update the hmenum field for the tte.
2871 * Furthermore, it attempts to create a large page translation
2872 * for <addr,hat> at page array pps. It assumes addr and first
2873 * pp is correctly aligned. It returns 0 if successful and 1 otherwise.
2874 */
2875 static int
sfmmu_tteload_array(sfmmu_t * sfmmup,tte_t * ttep,caddr_t vaddr,page_t ** pps,uint_t flags,uint_t rid)2876 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2877 page_t **pps, uint_t flags, uint_t rid)
2878 {
2879 struct hmehash_bucket *hmebp;
2880 struct hme_blk *hmeblkp;
2881 int ret;
2882 uint_t size;
2883
2884 /*
2885 * Get mapping size.
2886 */
2887 size = TTE_CSZ(ttep);
2888 ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2889
2890 /*
2891 * Acquire the hash bucket.
2892 */
2893 hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size, rid);
2894 ASSERT(hmebp);
2895
2896 /*
2897 * Find the hment block.
2898 */
2899 hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags,
2900 rid);
2901 ASSERT(hmeblkp);
2902
2903 /*
2904 * Add the translation.
2905 */
2906 ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags,
2907 rid);
2908
2909 /*
2910 * Release the hash bucket.
2911 */
2912 sfmmu_tteload_release_hashbucket(hmebp);
2913
2914 return (ret);
2915 }
2916
2917 /*
2918 * Function locks and returns a pointer to the hash bucket for vaddr and size.
2919 */
2920 static struct hmehash_bucket *
sfmmu_tteload_acquire_hashbucket(sfmmu_t * sfmmup,caddr_t vaddr,int size,uint_t rid)2921 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size,
2922 uint_t rid)
2923 {
2924 struct hmehash_bucket *hmebp;
2925 int hmeshift;
2926 void *htagid = sfmmutohtagid(sfmmup, rid);
2927
2928 ASSERT(htagid != NULL);
2929
2930 hmeshift = HME_HASH_SHIFT(size);
2931
2932 hmebp = HME_HASH_FUNCTION(htagid, vaddr, hmeshift);
2933
2934 SFMMU_HASH_LOCK(hmebp);
2935
2936 return (hmebp);
2937 }
2938
2939 /*
2940 * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2941 * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2942 * allocated.
2943 */
2944 static struct hme_blk *
sfmmu_tteload_find_hmeblk(sfmmu_t * sfmmup,struct hmehash_bucket * hmebp,caddr_t vaddr,uint_t size,uint_t flags,uint_t rid)2945 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2946 caddr_t vaddr, uint_t size, uint_t flags, uint_t rid)
2947 {
2948 hmeblk_tag hblktag;
2949 int hmeshift;
2950 struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2951
2952 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
2953
2954 hblktag.htag_id = sfmmutohtagid(sfmmup, rid);
2955 ASSERT(hblktag.htag_id != NULL);
2956 hmeshift = HME_HASH_SHIFT(size);
2957 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2958 hblktag.htag_rehash = HME_HASH_REHASH(size);
2959 hblktag.htag_rid = rid;
2960
2961 ttearray_realloc:
2962
2963 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
2964
2965 /*
2966 * We block until hblk_reserve_lock is released; it's held by
2967 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2968 * replaced by a hblk from sfmmu8_cache.
2969 */
2970 if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2971 hblk_reserve_thread != curthread) {
2972 SFMMU_HASH_UNLOCK(hmebp);
2973 mutex_enter(&hblk_reserve_lock);
2974 mutex_exit(&hblk_reserve_lock);
2975 SFMMU_STAT(sf_hblk_reserve_hit);
2976 SFMMU_HASH_LOCK(hmebp);
2977 goto ttearray_realloc;
2978 }
2979
2980 if (hmeblkp == NULL) {
2981 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2982 hblktag, flags, rid);
2983 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2984 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2985 } else {
2986 /*
2987 * It is possible for 8k and 64k hblks to collide since they
2988 * have the same rehash value. This is because we
2989 * lazily free hblks and 8K/64K blks could be lingering.
2990 * If we find size mismatch we free the block and & try again.
2991 */
2992 if (get_hblk_ttesz(hmeblkp) != size) {
2993 ASSERT(!hmeblkp->hblk_vcnt);
2994 ASSERT(!hmeblkp->hblk_hmecnt);
2995 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
2996 &list, 0);
2997 goto ttearray_realloc;
2998 }
2999 if (hmeblkp->hblk_shw_bit) {
3000 /*
3001 * if the hblk was previously used as a shadow hblk then
3002 * we will change it to a normal hblk
3003 */
3004 ASSERT(!hmeblkp->hblk_shared);
3005 if (hmeblkp->hblk_shw_mask) {
3006 sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
3007 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3008 goto ttearray_realloc;
3009 } else {
3010 hmeblkp->hblk_shw_bit = 0;
3011 }
3012 }
3013 SFMMU_STAT(sf_hblk_hit);
3014 }
3015
3016 /*
3017 * hat_memload() should never call kmem_cache_free() for kernel hmeblks;
3018 * see block comment showing the stacktrace in sfmmu_hblk_alloc();
3019 * set the flag parameter to 1 so that sfmmu_hblks_list_purge() will
3020 * just add these hmeblks to the per-cpu pending queue.
3021 */
3022 sfmmu_hblks_list_purge(&list, 1);
3023
3024 ASSERT(get_hblk_ttesz(hmeblkp) == size);
3025 ASSERT(!hmeblkp->hblk_shw_bit);
3026 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3027 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3028 ASSERT(hmeblkp->hblk_tag.htag_rid == rid);
3029
3030 return (hmeblkp);
3031 }
3032
3033 /*
3034 * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
3035 * otherwise.
3036 */
3037 static int
sfmmu_tteload_addentry(sfmmu_t * sfmmup,struct hme_blk * hmeblkp,tte_t * ttep,caddr_t vaddr,page_t ** pps,uint_t flags,uint_t rid)3038 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
3039 caddr_t vaddr, page_t **pps, uint_t flags, uint_t rid)
3040 {
3041 page_t *pp = *pps;
3042 int hmenum, size, remap;
3043 tte_t tteold, flush_tte;
3044 #ifdef DEBUG
3045 tte_t orig_old;
3046 #endif /* DEBUG */
3047 struct sf_hment *sfhme;
3048 kmutex_t *pml, *pmtx;
3049 hatlock_t *hatlockp;
3050 int myflt;
3051
3052 /*
3053 * remove this panic when we decide to let user virtual address
3054 * space be >= USERLIMIT.
3055 */
3056 if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
3057 panic("user addr %p in kernel space", (void *)vaddr);
3058 #if defined(TTE_IS_GLOBAL)
3059 if (TTE_IS_GLOBAL(ttep))
3060 panic("sfmmu_tteload: creating global tte");
3061 #endif
3062
3063 #ifdef DEBUG
3064 if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
3065 !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
3066 panic("sfmmu_tteload: non cacheable memory tte");
3067 #endif /* DEBUG */
3068
3069 /* don't simulate dirty bit for writeable ISM/DISM mappings */
3070 if ((flags & HAT_LOAD_SHARE) && TTE_IS_WRITABLE(ttep)) {
3071 TTE_SET_REF(ttep);
3072 TTE_SET_MOD(ttep);
3073 }
3074
3075 if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
3076 !TTE_IS_MOD(ttep)) {
3077 /*
3078 * Don't load TSB for dummy as in ISM. Also don't preload
3079 * the TSB if the TTE isn't writable since we're likely to
3080 * fault on it again -- preloading can be fairly expensive.
3081 */
3082 flags |= SFMMU_NO_TSBLOAD;
3083 }
3084
3085 size = TTE_CSZ(ttep);
3086 switch (size) {
3087 case TTE8K:
3088 SFMMU_STAT(sf_tteload8k);
3089 break;
3090 case TTE64K:
3091 SFMMU_STAT(sf_tteload64k);
3092 break;
3093 case TTE512K:
3094 SFMMU_STAT(sf_tteload512k);
3095 break;
3096 case TTE4M:
3097 SFMMU_STAT(sf_tteload4m);
3098 break;
3099 case (TTE32M):
3100 SFMMU_STAT(sf_tteload32m);
3101 ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3102 break;
3103 case (TTE256M):
3104 SFMMU_STAT(sf_tteload256m);
3105 ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3106 break;
3107 }
3108
3109 ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
3110 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
3111 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3112 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3113
3114 HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
3115
3116 /*
3117 * Need to grab mlist lock here so that pageunload
3118 * will not change tte behind us.
3119 */
3120 if (pp) {
3121 pml = sfmmu_mlist_enter(pp);
3122 }
3123
3124 sfmmu_copytte(&sfhme->hme_tte, &tteold);
3125 /*
3126 * Look for corresponding hment and if valid verify
3127 * pfns are equal.
3128 */
3129 remap = TTE_IS_VALID(&tteold);
3130 if (remap) {
3131 pfn_t new_pfn, old_pfn;
3132
3133 old_pfn = TTE_TO_PFN(vaddr, &tteold);
3134 new_pfn = TTE_TO_PFN(vaddr, ttep);
3135
3136 if (flags & HAT_LOAD_REMAP) {
3137 /* make sure we are remapping same type of pages */
3138 if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
3139 panic("sfmmu_tteload - tte remap io<->memory");
3140 }
3141 if (old_pfn != new_pfn &&
3142 (pp != NULL || sfhme->hme_page != NULL)) {
3143 panic("sfmmu_tteload - tte remap pp != NULL");
3144 }
3145 } else if (old_pfn != new_pfn) {
3146 panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
3147 (void *)hmeblkp);
3148 }
3149 ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
3150 }
3151
3152 if (pp) {
3153 if (size == TTE8K) {
3154 #ifdef VAC
3155 /*
3156 * Handle VAC consistency
3157 */
3158 if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
3159 sfmmu_vac_conflict(sfmmup, vaddr, pp);
3160 }
3161 #endif
3162
3163 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3164 pmtx = sfmmu_page_enter(pp);
3165 PP_CLRRO(pp);
3166 sfmmu_page_exit(pmtx);
3167 } else if (!PP_ISMAPPED(pp) &&
3168 (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
3169 pmtx = sfmmu_page_enter(pp);
3170 if (!(PP_ISMOD(pp))) {
3171 PP_SETRO(pp);
3172 }
3173 sfmmu_page_exit(pmtx);
3174 }
3175
3176 } else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
3177 /*
3178 * sfmmu_pagearray_setup failed so return
3179 */
3180 sfmmu_mlist_exit(pml);
3181 return (1);
3182 }
3183 }
3184
3185 /*
3186 * Make sure hment is not on a mapping list.
3187 */
3188 ASSERT(remap || (sfhme->hme_page == NULL));
3189
3190 /* if it is not a remap then hme->next better be NULL */
3191 ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
3192
3193 if (flags & HAT_LOAD_LOCK) {
3194 if ((hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
3195 panic("too high lckcnt-hmeblk %p",
3196 (void *)hmeblkp);
3197 }
3198 atomic_inc_32(&hmeblkp->hblk_lckcnt);
3199
3200 HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
3201 }
3202
3203 #ifdef VAC
3204 if (pp && PP_ISNC(pp)) {
3205 /*
3206 * If the physical page is marked to be uncacheable, like
3207 * by a vac conflict, make sure the new mapping is also
3208 * uncacheable.
3209 */
3210 TTE_CLR_VCACHEABLE(ttep);
3211 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
3212 }
3213 #endif
3214 ttep->tte_hmenum = hmenum;
3215
3216 #ifdef DEBUG
3217 orig_old = tteold;
3218 #endif /* DEBUG */
3219
3220 while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
3221 if ((sfmmup == KHATID) &&
3222 (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
3223 sfmmu_copytte(&sfhme->hme_tte, &tteold);
3224 }
3225 #ifdef DEBUG
3226 chk_tte(&orig_old, &tteold, ttep, hmeblkp);
3227 #endif /* DEBUG */
3228 }
3229 ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
3230
3231 if (!TTE_IS_VALID(&tteold)) {
3232
3233 atomic_inc_16(&hmeblkp->hblk_vcnt);
3234 if (rid == SFMMU_INVALID_SHMERID) {
3235 atomic_inc_ulong(&sfmmup->sfmmu_ttecnt[size]);
3236 } else {
3237 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
3238 sf_region_t *rgnp = srdp->srd_hmergnp[rid];
3239 /*
3240 * We already accounted for region ttecnt's in sfmmu
3241 * during hat_join_region() processing. Here we
3242 * only update ttecnt's in region struture.
3243 */
3244 atomic_inc_ulong(&rgnp->rgn_ttecnt[size]);
3245 }
3246 }
3247
3248 myflt = (astosfmmu(curthread->t_procp->p_as) == sfmmup);
3249 if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
3250 sfmmup != ksfmmup) {
3251 uchar_t tteflag = 1 << size;
3252 if (rid == SFMMU_INVALID_SHMERID) {
3253 if (!(sfmmup->sfmmu_tteflags & tteflag)) {
3254 hatlockp = sfmmu_hat_enter(sfmmup);
3255 sfmmup->sfmmu_tteflags |= tteflag;
3256 sfmmu_hat_exit(hatlockp);
3257 }
3258 } else if (!(sfmmup->sfmmu_rtteflags & tteflag)) {
3259 hatlockp = sfmmu_hat_enter(sfmmup);
3260 sfmmup->sfmmu_rtteflags |= tteflag;
3261 sfmmu_hat_exit(hatlockp);
3262 }
3263 /*
3264 * Update the current CPU tsbmiss area, so the current thread
3265 * won't need to take the tsbmiss for the new pagesize.
3266 * The other threads in the process will update their tsb
3267 * miss area lazily in sfmmu_tsbmiss_exception() when they
3268 * fail to find the translation for a newly added pagesize.
3269 */
3270 if (size > TTE64K && myflt) {
3271 struct tsbmiss *tsbmp;
3272 kpreempt_disable();
3273 tsbmp = &tsbmiss_area[CPU->cpu_id];
3274 if (rid == SFMMU_INVALID_SHMERID) {
3275 if (!(tsbmp->uhat_tteflags & tteflag)) {
3276 tsbmp->uhat_tteflags |= tteflag;
3277 }
3278 } else {
3279 if (!(tsbmp->uhat_rtteflags & tteflag)) {
3280 tsbmp->uhat_rtteflags |= tteflag;
3281 }
3282 }
3283 kpreempt_enable();
3284 }
3285 }
3286
3287 if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
3288 !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
3289 hatlockp = sfmmu_hat_enter(sfmmup);
3290 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
3291 sfmmu_hat_exit(hatlockp);
3292 }
3293
3294 flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
3295 hw_tte.tte_intlo;
3296 flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
3297 hw_tte.tte_inthi;
3298
3299 if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
3300 /*
3301 * If remap and new tte differs from old tte we need
3302 * to sync the mod bit and flush TLB/TSB. We don't
3303 * need to sync ref bit because we currently always set
3304 * ref bit in tteload.
3305 */
3306 ASSERT(TTE_IS_REF(ttep));
3307 if (TTE_IS_MOD(&tteold)) {
3308 sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
3309 }
3310 /*
3311 * hwtte bits shouldn't change for SRD hmeblks as long as SRD
3312 * hmes are only used for read only text. Adding this code for
3313 * completeness and future use of shared hmeblks with writable
3314 * mappings of VMODSORT vnodes.
3315 */
3316 if (hmeblkp->hblk_shared) {
3317 cpuset_t cpuset = sfmmu_rgntlb_demap(vaddr,
3318 sfmmup->sfmmu_srdp->srd_hmergnp[rid], hmeblkp, 1);
3319 xt_sync(cpuset);
3320 SFMMU_STAT_ADD(sf_region_remap_demap, 1);
3321 } else {
3322 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
3323 xt_sync(sfmmup->sfmmu_cpusran);
3324 }
3325 }
3326
3327 if ((flags & SFMMU_NO_TSBLOAD) == 0) {
3328 /*
3329 * We only preload 8K and 4M mappings into the TSB, since
3330 * 64K and 512K mappings are replicated and hence don't
3331 * have a single, unique TSB entry. Ditto for 32M/256M.
3332 */
3333 if (size == TTE8K || size == TTE4M) {
3334 sf_scd_t *scdp;
3335 hatlockp = sfmmu_hat_enter(sfmmup);
3336 /*
3337 * Don't preload private TSB if the mapping is used
3338 * by the shctx in the SCD.
3339 */
3340 scdp = sfmmup->sfmmu_scdp;
3341 if (rid == SFMMU_INVALID_SHMERID || scdp == NULL ||
3342 !SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
3343 sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte,
3344 size);
3345 }
3346 sfmmu_hat_exit(hatlockp);
3347 }
3348 }
3349 if (pp) {
3350 if (!remap) {
3351 HME_ADD(sfhme, pp);
3352 atomic_inc_16(&hmeblkp->hblk_hmecnt);
3353 ASSERT(hmeblkp->hblk_hmecnt > 0);
3354
3355 /*
3356 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
3357 * see pageunload() for comment.
3358 */
3359 }
3360 sfmmu_mlist_exit(pml);
3361 }
3362
3363 return (0);
3364 }
3365 /*
3366 * Function unlocks hash bucket.
3367 */
3368 static void
sfmmu_tteload_release_hashbucket(struct hmehash_bucket * hmebp)3369 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
3370 {
3371 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3372 SFMMU_HASH_UNLOCK(hmebp);
3373 }
3374
3375 /*
3376 * function which checks and sets up page array for a large
3377 * translation. Will set p_vcolor, p_index, p_ro fields.
3378 * Assumes addr and pfnum of first page are properly aligned.
3379 * Will check for physical contiguity. If check fails it return
3380 * non null.
3381 */
3382 static int
sfmmu_pagearray_setup(caddr_t addr,page_t ** pps,tte_t * ttep,int remap)3383 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
3384 {
3385 int i, index, ttesz;
3386 pfn_t pfnum;
3387 pgcnt_t npgs;
3388 page_t *pp, *pp1;
3389 kmutex_t *pmtx;
3390 #ifdef VAC
3391 int osz;
3392 int cflags = 0;
3393 int vac_err = 0;
3394 #endif
3395 int newidx = 0;
3396
3397 ttesz = TTE_CSZ(ttep);
3398
3399 ASSERT(ttesz > TTE8K);
3400
3401 npgs = TTEPAGES(ttesz);
3402 index = PAGESZ_TO_INDEX(ttesz);
3403
3404 pfnum = (*pps)->p_pagenum;
3405 ASSERT(IS_P2ALIGNED(pfnum, npgs));
3406
3407 /*
3408 * Save the first pp so we can do HAT_TMPNC at the end.
3409 */
3410 pp1 = *pps;
3411 #ifdef VAC
3412 osz = fnd_mapping_sz(pp1);
3413 #endif
3414
3415 for (i = 0; i < npgs; i++, pps++) {
3416 pp = *pps;
3417 ASSERT(PAGE_LOCKED(pp));
3418 ASSERT(pp->p_szc >= ttesz);
3419 ASSERT(pp->p_szc == pp1->p_szc);
3420 ASSERT(sfmmu_mlist_held(pp));
3421
3422 /*
3423 * XXX is it possible to maintain P_RO on the root only?
3424 */
3425 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3426 pmtx = sfmmu_page_enter(pp);
3427 PP_CLRRO(pp);
3428 sfmmu_page_exit(pmtx);
3429 } else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
3430 !PP_ISMOD(pp)) {
3431 pmtx = sfmmu_page_enter(pp);
3432 if (!(PP_ISMOD(pp))) {
3433 PP_SETRO(pp);
3434 }
3435 sfmmu_page_exit(pmtx);
3436 }
3437
3438 /*
3439 * If this is a remap we skip vac & contiguity checks.
3440 */
3441 if (remap)
3442 continue;
3443
3444 /*
3445 * set p_vcolor and detect any vac conflicts.
3446 */
3447 #ifdef VAC
3448 if (vac_err == 0) {
3449 vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
3450
3451 }
3452 #endif
3453
3454 /*
3455 * Save current index in case we need to undo it.
3456 * Note: "PAGESZ_TO_INDEX(sz) (1 << (sz))"
3457 * "SFMMU_INDEX_SHIFT 6"
3458 * "SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1)"
3459 * "PP_MAPINDEX(p_index) (p_index & SFMMU_INDEX_MASK)"
3460 *
3461 * So: index = PAGESZ_TO_INDEX(ttesz);
3462 * if ttesz == 1 then index = 0x2
3463 * 2 then index = 0x4
3464 * 3 then index = 0x8
3465 * 4 then index = 0x10
3466 * 5 then index = 0x20
3467 * The code below checks if it's a new pagesize (ie, newidx)
3468 * in case we need to take it back out of p_index,
3469 * and then or's the new index into the existing index.
3470 */
3471 if ((PP_MAPINDEX(pp) & index) == 0)
3472 newidx = 1;
3473 pp->p_index = (PP_MAPINDEX(pp) | index);
3474
3475 /*
3476 * contiguity check
3477 */
3478 if (pp->p_pagenum != pfnum) {
3479 /*
3480 * If we fail the contiguity test then
3481 * the only thing we need to fix is the p_index field.
3482 * We might get a few extra flushes but since this
3483 * path is rare that is ok. The p_ro field will
3484 * get automatically fixed on the next tteload to
3485 * the page. NO TNC bit is set yet.
3486 */
3487 while (i >= 0) {
3488 pp = *pps;
3489 if (newidx)
3490 pp->p_index = (PP_MAPINDEX(pp) &
3491 ~index);
3492 pps--;
3493 i--;
3494 }
3495 return (1);
3496 }
3497 pfnum++;
3498 addr += MMU_PAGESIZE;
3499 }
3500
3501 #ifdef VAC
3502 if (vac_err) {
3503 if (ttesz > osz) {
3504 /*
3505 * There are some smaller mappings that causes vac
3506 * conflicts. Convert all existing small mappings to
3507 * TNC.
3508 */
3509 SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3510 sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3511 npgs);
3512 } else {
3513 /* EMPTY */
3514 /*
3515 * If there exists an big page mapping,
3516 * that means the whole existing big page
3517 * has TNC setting already. No need to covert to
3518 * TNC again.
3519 */
3520 ASSERT(PP_ISTNC(pp1));
3521 }
3522 }
3523 #endif /* VAC */
3524
3525 return (0);
3526 }
3527
3528 #ifdef VAC
3529 /*
3530 * Routine that detects vac consistency for a large page. It also
3531 * sets virtual color for all pp's for this big mapping.
3532 */
3533 static int
sfmmu_vacconflict_array(caddr_t addr,page_t * pp,int * cflags)3534 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3535 {
3536 int vcolor, ocolor;
3537
3538 ASSERT(sfmmu_mlist_held(pp));
3539
3540 if (PP_ISNC(pp)) {
3541 return (HAT_TMPNC);
3542 }
3543
3544 vcolor = addr_to_vcolor(addr);
3545 if (PP_NEWPAGE(pp)) {
3546 PP_SET_VCOLOR(pp, vcolor);
3547 return (0);
3548 }
3549
3550 ocolor = PP_GET_VCOLOR(pp);
3551 if (ocolor == vcolor) {
3552 return (0);
3553 }
3554
3555 if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
3556 /*
3557 * Previous user of page had a differnet color
3558 * but since there are no current users
3559 * we just flush the cache and change the color.
3560 * As an optimization for large pages we flush the
3561 * entire cache of that color and set a flag.
3562 */
3563 SFMMU_STAT(sf_pgcolor_conflict);
3564 if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3565 CacheColor_SetFlushed(*cflags, ocolor);
3566 sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3567 }
3568 PP_SET_VCOLOR(pp, vcolor);
3569 return (0);
3570 }
3571
3572 /*
3573 * We got a real conflict with a current mapping.
3574 * set flags to start unencaching all mappings
3575 * and return failure so we restart looping
3576 * the pp array from the beginning.
3577 */
3578 return (HAT_TMPNC);
3579 }
3580 #endif /* VAC */
3581
3582 /*
3583 * creates a large page shadow hmeblk for a tte.
3584 * The purpose of this routine is to allow us to do quick unloads because
3585 * the vm layer can easily pass a very large but sparsely populated range.
3586 */
3587 static struct hme_blk *
sfmmu_shadow_hcreate(sfmmu_t * sfmmup,caddr_t vaddr,int ttesz,uint_t flags)3588 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3589 {
3590 struct hmehash_bucket *hmebp;
3591 hmeblk_tag hblktag;
3592 int hmeshift, size, vshift;
3593 uint_t shw_mask, newshw_mask;
3594 struct hme_blk *hmeblkp;
3595
3596 ASSERT(sfmmup != KHATID);
3597 if (mmu_page_sizes == max_mmu_page_sizes) {
3598 ASSERT(ttesz < TTE256M);
3599 } else {
3600 ASSERT(ttesz < TTE4M);
3601 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3602 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3603 }
3604
3605 if (ttesz == TTE8K) {
3606 size = TTE512K;
3607 } else {
3608 size = ++ttesz;
3609 }
3610
3611 hblktag.htag_id = sfmmup;
3612 hmeshift = HME_HASH_SHIFT(size);
3613 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3614 hblktag.htag_rehash = HME_HASH_REHASH(size);
3615 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3616 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3617
3618 SFMMU_HASH_LOCK(hmebp);
3619
3620 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3621 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3622 if (hmeblkp == NULL) {
3623 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3624 hblktag, flags, SFMMU_INVALID_SHMERID);
3625 }
3626 ASSERT(hmeblkp);
3627 if (!hmeblkp->hblk_shw_mask) {
3628 /*
3629 * if this is a unused hblk it was just allocated or could
3630 * potentially be a previous large page hblk so we need to
3631 * set the shadow bit.
3632 */
3633 ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3634 hmeblkp->hblk_shw_bit = 1;
3635 } else if (hmeblkp->hblk_shw_bit == 0) {
3636 panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3637 (void *)hmeblkp);
3638 }
3639 ASSERT(hmeblkp->hblk_shw_bit == 1);
3640 ASSERT(!hmeblkp->hblk_shared);
3641 vshift = vaddr_to_vshift(hblktag, vaddr, size);
3642 ASSERT(vshift < 8);
3643 /*
3644 * Atomically set shw mask bit
3645 */
3646 do {
3647 shw_mask = hmeblkp->hblk_shw_mask;
3648 newshw_mask = shw_mask | (1 << vshift);
3649 newshw_mask = atomic_cas_32(&hmeblkp->hblk_shw_mask, shw_mask,
3650 newshw_mask);
3651 } while (newshw_mask != shw_mask);
3652
3653 SFMMU_HASH_UNLOCK(hmebp);
3654
3655 return (hmeblkp);
3656 }
3657
3658 /*
3659 * This routine cleanup a previous shadow hmeblk and changes it to
3660 * a regular hblk. This happens rarely but it is possible
3661 * when a process wants to use large pages and there are hblks still
3662 * lying around from the previous as that used these hmeblks.
3663 * The alternative was to cleanup the shadow hblks at unload time
3664 * but since so few user processes actually use large pages, it is
3665 * better to be lazy and cleanup at this time.
3666 */
3667 static void
sfmmu_shadow_hcleanup(sfmmu_t * sfmmup,struct hme_blk * hmeblkp,struct hmehash_bucket * hmebp)3668 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3669 struct hmehash_bucket *hmebp)
3670 {
3671 caddr_t addr, endaddr;
3672 int hashno, size;
3673
3674 ASSERT(hmeblkp->hblk_shw_bit);
3675 ASSERT(!hmeblkp->hblk_shared);
3676
3677 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3678
3679 if (!hmeblkp->hblk_shw_mask) {
3680 hmeblkp->hblk_shw_bit = 0;
3681 return;
3682 }
3683 addr = (caddr_t)get_hblk_base(hmeblkp);
3684 endaddr = get_hblk_endaddr(hmeblkp);
3685 size = get_hblk_ttesz(hmeblkp);
3686 hashno = size - 1;
3687 ASSERT(hashno > 0);
3688 SFMMU_HASH_UNLOCK(hmebp);
3689
3690 sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3691
3692 SFMMU_HASH_LOCK(hmebp);
3693 }
3694
3695 static void
sfmmu_free_hblks(sfmmu_t * sfmmup,caddr_t addr,caddr_t endaddr,int hashno)3696 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3697 int hashno)
3698 {
3699 int hmeshift, shadow = 0;
3700 hmeblk_tag hblktag;
3701 struct hmehash_bucket *hmebp;
3702 struct hme_blk *hmeblkp;
3703 struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3704
3705 ASSERT(hashno > 0);
3706 hblktag.htag_id = sfmmup;
3707 hblktag.htag_rehash = hashno;
3708 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3709
3710 hmeshift = HME_HASH_SHIFT(hashno);
3711
3712 while (addr < endaddr) {
3713 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3714 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3715 SFMMU_HASH_LOCK(hmebp);
3716 /* inline HME_HASH_SEARCH */
3717 hmeblkp = hmebp->hmeblkp;
3718 pr_hblk = NULL;
3719 while (hmeblkp) {
3720 if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3721 /* found hme_blk */
3722 ASSERT(!hmeblkp->hblk_shared);
3723 if (hmeblkp->hblk_shw_bit) {
3724 if (hmeblkp->hblk_shw_mask) {
3725 shadow = 1;
3726 sfmmu_shadow_hcleanup(sfmmup,
3727 hmeblkp, hmebp);
3728 break;
3729 } else {
3730 hmeblkp->hblk_shw_bit = 0;
3731 }
3732 }
3733
3734 /*
3735 * Hblk_hmecnt and hblk_vcnt could be non zero
3736 * since hblk_unload() does not gurantee that.
3737 *
3738 * XXX - this could cause tteload() to spin
3739 * where sfmmu_shadow_hcleanup() is called.
3740 */
3741 }
3742
3743 nx_hblk = hmeblkp->hblk_next;
3744 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3745 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3746 &list, 0);
3747 } else {
3748 pr_hblk = hmeblkp;
3749 }
3750 hmeblkp = nx_hblk;
3751 }
3752
3753 SFMMU_HASH_UNLOCK(hmebp);
3754
3755 if (shadow) {
3756 /*
3757 * We found another shadow hblk so cleaned its
3758 * children. We need to go back and cleanup
3759 * the original hblk so we don't change the
3760 * addr.
3761 */
3762 shadow = 0;
3763 } else {
3764 addr = (caddr_t)roundup((uintptr_t)addr + 1,
3765 (1 << hmeshift));
3766 }
3767 }
3768 sfmmu_hblks_list_purge(&list, 0);
3769 }
3770
3771 /*
3772 * This routine's job is to delete stale invalid shared hmeregions hmeblks that
3773 * may still linger on after pageunload.
3774 */
3775 static void
sfmmu_cleanup_rhblk(sf_srd_t * srdp,caddr_t addr,uint_t rid,int ttesz)3776 sfmmu_cleanup_rhblk(sf_srd_t *srdp, caddr_t addr, uint_t rid, int ttesz)
3777 {
3778 int hmeshift;
3779 hmeblk_tag hblktag;
3780 struct hmehash_bucket *hmebp;
3781 struct hme_blk *hmeblkp;
3782 struct hme_blk *pr_hblk;
3783 struct hme_blk *list = NULL;
3784
3785 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3786 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3787
3788 hmeshift = HME_HASH_SHIFT(ttesz);
3789 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3790 hblktag.htag_rehash = ttesz;
3791 hblktag.htag_rid = rid;
3792 hblktag.htag_id = srdp;
3793 hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3794
3795 SFMMU_HASH_LOCK(hmebp);
3796 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3797 if (hmeblkp != NULL) {
3798 ASSERT(hmeblkp->hblk_shared);
3799 ASSERT(!hmeblkp->hblk_shw_bit);
3800 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3801 panic("sfmmu_cleanup_rhblk: valid hmeblk");
3802 }
3803 ASSERT(!hmeblkp->hblk_lckcnt);
3804 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3805 &list, 0);
3806 }
3807 SFMMU_HASH_UNLOCK(hmebp);
3808 sfmmu_hblks_list_purge(&list, 0);
3809 }
3810
3811 /* ARGSUSED */
3812 static void
sfmmu_rgn_cb_noop(caddr_t saddr,caddr_t eaddr,caddr_t r_saddr,size_t r_size,void * r_obj,u_offset_t r_objoff)3813 sfmmu_rgn_cb_noop(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
3814 size_t r_size, void *r_obj, u_offset_t r_objoff)
3815 {
3816 }
3817
3818 /*
3819 * Searches for an hmeblk which maps addr, then unloads this mapping
3820 * and updates *eaddrp, if the hmeblk is found.
3821 */
3822 static void
sfmmu_unload_hmeregion_va(sf_srd_t * srdp,uint_t rid,caddr_t addr,caddr_t eaddr,int ttesz,caddr_t * eaddrp)3823 sfmmu_unload_hmeregion_va(sf_srd_t *srdp, uint_t rid, caddr_t addr,
3824 caddr_t eaddr, int ttesz, caddr_t *eaddrp)
3825 {
3826 int hmeshift;
3827 hmeblk_tag hblktag;
3828 struct hmehash_bucket *hmebp;
3829 struct hme_blk *hmeblkp;
3830 struct hme_blk *pr_hblk;
3831 struct hme_blk *list = NULL;
3832
3833 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3834 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3835 ASSERT(ttesz >= HBLK_MIN_TTESZ);
3836
3837 hmeshift = HME_HASH_SHIFT(ttesz);
3838 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3839 hblktag.htag_rehash = ttesz;
3840 hblktag.htag_rid = rid;
3841 hblktag.htag_id = srdp;
3842 hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3843
3844 SFMMU_HASH_LOCK(hmebp);
3845 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3846 if (hmeblkp != NULL) {
3847 ASSERT(hmeblkp->hblk_shared);
3848 ASSERT(!hmeblkp->hblk_lckcnt);
3849 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3850 *eaddrp = sfmmu_hblk_unload(NULL, hmeblkp, addr,
3851 eaddr, NULL, HAT_UNLOAD);
3852 ASSERT(*eaddrp > addr);
3853 }
3854 ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3855 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3856 &list, 0);
3857 }
3858 SFMMU_HASH_UNLOCK(hmebp);
3859 sfmmu_hblks_list_purge(&list, 0);
3860 }
3861
3862 static void
sfmmu_unload_hmeregion(sf_srd_t * srdp,sf_region_t * rgnp)3863 sfmmu_unload_hmeregion(sf_srd_t *srdp, sf_region_t *rgnp)
3864 {
3865 int ttesz = rgnp->rgn_pgszc;
3866 size_t rsz = rgnp->rgn_size;
3867 caddr_t rsaddr = rgnp->rgn_saddr;
3868 caddr_t readdr = rsaddr + rsz;
3869 caddr_t rhsaddr;
3870 caddr_t va;
3871 uint_t rid = rgnp->rgn_id;
3872 caddr_t cbsaddr;
3873 caddr_t cbeaddr;
3874 hat_rgn_cb_func_t rcbfunc;
3875 ulong_t cnt;
3876
3877 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3878 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3879
3880 ASSERT(IS_P2ALIGNED(rsaddr, TTEBYTES(ttesz)));
3881 ASSERT(IS_P2ALIGNED(rsz, TTEBYTES(ttesz)));
3882 if (ttesz < HBLK_MIN_TTESZ) {
3883 ttesz = HBLK_MIN_TTESZ;
3884 rhsaddr = (caddr_t)P2ALIGN((uintptr_t)rsaddr, HBLK_MIN_BYTES);
3885 } else {
3886 rhsaddr = rsaddr;
3887 }
3888
3889 if ((rcbfunc = rgnp->rgn_cb_function) == NULL) {
3890 rcbfunc = sfmmu_rgn_cb_noop;
3891 }
3892
3893 while (ttesz >= HBLK_MIN_TTESZ) {
3894 cbsaddr = rsaddr;
3895 cbeaddr = rsaddr;
3896 if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3897 ttesz--;
3898 continue;
3899 }
3900 cnt = 0;
3901 va = rsaddr;
3902 while (va < readdr) {
3903 ASSERT(va >= rhsaddr);
3904 if (va != cbeaddr) {
3905 if (cbeaddr != cbsaddr) {
3906 ASSERT(cbeaddr > cbsaddr);
3907 (*rcbfunc)(cbsaddr, cbeaddr,
3908 rsaddr, rsz, rgnp->rgn_obj,
3909 rgnp->rgn_objoff);
3910 }
3911 cbsaddr = va;
3912 cbeaddr = va;
3913 }
3914 sfmmu_unload_hmeregion_va(srdp, rid, va, readdr,
3915 ttesz, &cbeaddr);
3916 cnt++;
3917 va = rhsaddr + (cnt << TTE_PAGE_SHIFT(ttesz));
3918 }
3919 if (cbeaddr != cbsaddr) {
3920 ASSERT(cbeaddr > cbsaddr);
3921 (*rcbfunc)(cbsaddr, cbeaddr, rsaddr,
3922 rsz, rgnp->rgn_obj,
3923 rgnp->rgn_objoff);
3924 }
3925 ttesz--;
3926 }
3927 }
3928
3929 /*
3930 * Release one hardware address translation lock on the given address range.
3931 */
3932 void
hat_unlock(struct hat * sfmmup,caddr_t addr,size_t len)3933 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3934 {
3935 struct hmehash_bucket *hmebp;
3936 hmeblk_tag hblktag;
3937 int hmeshift, hashno = 1;
3938 struct hme_blk *hmeblkp, *list = NULL;
3939 caddr_t endaddr;
3940
3941 ASSERT(sfmmup != NULL);
3942
3943 ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
3944 ASSERT((len & MMU_PAGEOFFSET) == 0);
3945 endaddr = addr + len;
3946 hblktag.htag_id = sfmmup;
3947 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3948
3949 /*
3950 * Spitfire supports 4 page sizes.
3951 * Most pages are expected to be of the smallest page size (8K) and
3952 * these will not need to be rehashed. 64K pages also don't need to be
3953 * rehashed because an hmeblk spans 64K of address space. 512K pages
3954 * might need 1 rehash and and 4M pages might need 2 rehashes.
3955 */
3956 while (addr < endaddr) {
3957 hmeshift = HME_HASH_SHIFT(hashno);
3958 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3959 hblktag.htag_rehash = hashno;
3960 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3961
3962 SFMMU_HASH_LOCK(hmebp);
3963
3964 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3965 if (hmeblkp != NULL) {
3966 ASSERT(!hmeblkp->hblk_shared);
3967 /*
3968 * If we encounter a shadow hmeblk then
3969 * we know there are no valid hmeblks mapping
3970 * this address at this size or larger.
3971 * Just increment address by the smallest
3972 * page size.
3973 */
3974 if (hmeblkp->hblk_shw_bit) {
3975 addr += MMU_PAGESIZE;
3976 } else {
3977 addr = sfmmu_hblk_unlock(hmeblkp, addr,
3978 endaddr);
3979 }
3980 SFMMU_HASH_UNLOCK(hmebp);
3981 hashno = 1;
3982 continue;
3983 }
3984 SFMMU_HASH_UNLOCK(hmebp);
3985
3986 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3987 /*
3988 * We have traversed the whole list and rehashed
3989 * if necessary without finding the address to unlock
3990 * which should never happen.
3991 */
3992 panic("sfmmu_unlock: addr not found. "
3993 "addr %p hat %p", (void *)addr, (void *)sfmmup);
3994 } else {
3995 hashno++;
3996 }
3997 }
3998
3999 sfmmu_hblks_list_purge(&list, 0);
4000 }
4001
4002 void
hat_unlock_region(struct hat * sfmmup,caddr_t addr,size_t len,hat_region_cookie_t rcookie)4003 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len,
4004 hat_region_cookie_t rcookie)
4005 {
4006 sf_srd_t *srdp;
4007 sf_region_t *rgnp;
4008 int ttesz;
4009 uint_t rid;
4010 caddr_t eaddr;
4011 caddr_t va;
4012 int hmeshift;
4013 hmeblk_tag hblktag;
4014 struct hmehash_bucket *hmebp;
4015 struct hme_blk *hmeblkp;
4016 struct hme_blk *pr_hblk;
4017 struct hme_blk *list;
4018
4019 if (rcookie == HAT_INVALID_REGION_COOKIE) {
4020 hat_unlock(sfmmup, addr, len);
4021 return;
4022 }
4023
4024 ASSERT(sfmmup != NULL);
4025 ASSERT(sfmmup != ksfmmup);
4026
4027 srdp = sfmmup->sfmmu_srdp;
4028 rid = (uint_t)((uint64_t)rcookie);
4029 VERIFY3U(rid, <, SFMMU_MAX_HME_REGIONS);
4030 eaddr = addr + len;
4031 va = addr;
4032 list = NULL;
4033 rgnp = srdp->srd_hmergnp[rid];
4034 SFMMU_VALIDATE_HMERID(sfmmup, rid, addr, len);
4035
4036 ASSERT(IS_P2ALIGNED(addr, TTEBYTES(rgnp->rgn_pgszc)));
4037 ASSERT(IS_P2ALIGNED(len, TTEBYTES(rgnp->rgn_pgszc)));
4038 if (rgnp->rgn_pgszc < HBLK_MIN_TTESZ) {
4039 ttesz = HBLK_MIN_TTESZ;
4040 } else {
4041 ttesz = rgnp->rgn_pgszc;
4042 }
4043 while (va < eaddr) {
4044 while (ttesz < rgnp->rgn_pgszc &&
4045 IS_P2ALIGNED(va, TTEBYTES(ttesz + 1))) {
4046 ttesz++;
4047 }
4048 while (ttesz >= HBLK_MIN_TTESZ) {
4049 if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
4050 ttesz--;
4051 continue;
4052 }
4053 hmeshift = HME_HASH_SHIFT(ttesz);
4054 hblktag.htag_bspage = HME_HASH_BSPAGE(va, hmeshift);
4055 hblktag.htag_rehash = ttesz;
4056 hblktag.htag_rid = rid;
4057 hblktag.htag_id = srdp;
4058 hmebp = HME_HASH_FUNCTION(srdp, va, hmeshift);
4059 SFMMU_HASH_LOCK(hmebp);
4060 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk,
4061 &list);
4062 if (hmeblkp == NULL) {
4063 SFMMU_HASH_UNLOCK(hmebp);
4064 ttesz--;
4065 continue;
4066 }
4067 ASSERT(hmeblkp->hblk_shared);
4068 va = sfmmu_hblk_unlock(hmeblkp, va, eaddr);
4069 ASSERT(va >= eaddr ||
4070 IS_P2ALIGNED((uintptr_t)va, TTEBYTES(ttesz)));
4071 SFMMU_HASH_UNLOCK(hmebp);
4072 break;
4073 }
4074 if (ttesz < HBLK_MIN_TTESZ) {
4075 panic("hat_unlock_region: addr not found "
4076 "addr %p hat %p", (void *)va, (void *)sfmmup);
4077 }
4078 }
4079 sfmmu_hblks_list_purge(&list, 0);
4080 }
4081
4082 /*
4083 * Function to unlock a range of addresses in an hmeblk. It returns the
4084 * next address that needs to be unlocked.
4085 * Should be called with the hash lock held.
4086 */
4087 static caddr_t
sfmmu_hblk_unlock(struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr)4088 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
4089 {
4090 struct sf_hment *sfhme;
4091 tte_t tteold, ttemod;
4092 int ttesz, ret;
4093
4094 ASSERT(in_hblk_range(hmeblkp, addr));
4095 ASSERT(hmeblkp->hblk_shw_bit == 0);
4096
4097 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4098 ttesz = get_hblk_ttesz(hmeblkp);
4099
4100 HBLKTOHME(sfhme, hmeblkp, addr);
4101 while (addr < endaddr) {
4102 readtte:
4103 sfmmu_copytte(&sfhme->hme_tte, &tteold);
4104 if (TTE_IS_VALID(&tteold)) {
4105
4106 ttemod = tteold;
4107
4108 ret = sfmmu_modifytte_try(&tteold, &ttemod,
4109 &sfhme->hme_tte);
4110
4111 if (ret < 0)
4112 goto readtte;
4113
4114 if (hmeblkp->hblk_lckcnt == 0)
4115 panic("zero hblk lckcnt");
4116
4117 if (((uintptr_t)addr + TTEBYTES(ttesz)) >
4118 (uintptr_t)endaddr)
4119 panic("can't unlock large tte");
4120
4121 ASSERT(hmeblkp->hblk_lckcnt > 0);
4122 atomic_dec_32(&hmeblkp->hblk_lckcnt);
4123 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
4124 } else {
4125 panic("sfmmu_hblk_unlock: invalid tte");
4126 }
4127 addr += TTEBYTES(ttesz);
4128 sfhme++;
4129 }
4130 return (addr);
4131 }
4132
4133 /*
4134 * Physical Address Mapping Framework
4135 *
4136 * General rules:
4137 *
4138 * (1) Applies only to seg_kmem memory pages. To make things easier,
4139 * seg_kpm addresses are also accepted by the routines, but nothing
4140 * is done with them since by definition their PA mappings are static.
4141 * (2) hat_add_callback() may only be called while holding the page lock
4142 * SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
4143 * or passing HAC_PAGELOCK flag.
4144 * (3) prehandler() and posthandler() may not call hat_add_callback() or
4145 * hat_delete_callback(), nor should they allocate memory. Post quiesce
4146 * callbacks may not sleep or acquire adaptive mutex locks.
4147 * (4) Either prehandler() or posthandler() (but not both) may be specified
4148 * as being NULL. Specifying an errhandler() is optional.
4149 *
4150 * Details of using the framework:
4151 *
4152 * registering a callback (hat_register_callback())
4153 *
4154 * Pass prehandler, posthandler, errhandler addresses
4155 * as described below. If capture_cpus argument is nonzero,
4156 * suspend callback to the prehandler will occur with CPUs
4157 * captured and executing xc_loop() and CPUs will remain
4158 * captured until after the posthandler suspend callback
4159 * occurs.
4160 *
4161 * adding a callback (hat_add_callback())
4162 *
4163 * as_pagelock();
4164 * hat_add_callback();
4165 * save returned pfn in private data structures or program registers;
4166 * as_pageunlock();
4167 *
4168 * prehandler()
4169 *
4170 * Stop all accesses by physical address to this memory page.
4171 * Called twice: the first, PRESUSPEND, is a context safe to acquire
4172 * adaptive locks. The second, SUSPEND, is called at high PIL with
4173 * CPUs captured so adaptive locks may NOT be acquired (and all spin
4174 * locks must be XCALL_PIL or higher locks).
4175 *
4176 * May return the following errors:
4177 * EIO: A fatal error has occurred. This will result in panic.
4178 * EAGAIN: The page cannot be suspended. This will fail the
4179 * relocation.
4180 * 0: Success.
4181 *
4182 * posthandler()
4183 *
4184 * Save new pfn in private data structures or program registers;
4185 * not allowed to fail (non-zero return values will result in panic).
4186 *
4187 * errhandler()
4188 *
4189 * called when an error occurs related to the callback. Currently
4190 * the only such error is HAT_CB_ERR_LEAKED which indicates that
4191 * a page is being freed, but there are still outstanding callback(s)
4192 * registered on the page.
4193 *
4194 * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
4195 *
4196 * stop using physical address
4197 * hat_delete_callback();
4198 *
4199 */
4200
4201 /*
4202 * Register a callback class. Each subsystem should do this once and
4203 * cache the id_t returned for use in setting up and tearing down callbacks.
4204 *
4205 * There is no facility for removing callback IDs once they are created;
4206 * the "key" should be unique for each module, so in case a module is unloaded
4207 * and subsequently re-loaded, we can recycle the module's previous entry.
4208 */
4209 id_t
hat_register_callback(int key,int (* prehandler)(caddr_t,uint_t,uint_t,void *),int (* posthandler)(caddr_t,uint_t,uint_t,void *,pfn_t),int (* errhandler)(caddr_t,uint_t,uint_t,void *),int capture_cpus)4210 hat_register_callback(int key,
4211 int (*prehandler)(caddr_t, uint_t, uint_t, void *),
4212 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
4213 int (*errhandler)(caddr_t, uint_t, uint_t, void *),
4214 int capture_cpus)
4215 {
4216 id_t id;
4217
4218 /*
4219 * Search the table for a pre-existing callback associated with
4220 * the identifier "key". If one exists, we re-use that entry in
4221 * the table for this instance, otherwise we assign the next
4222 * available table slot.
4223 */
4224 for (id = 0; id < sfmmu_max_cb_id; id++) {
4225 if (sfmmu_cb_table[id].key == key)
4226 break;
4227 }
4228
4229 if (id == sfmmu_max_cb_id) {
4230 id = sfmmu_cb_nextid++;
4231 if (id >= sfmmu_max_cb_id)
4232 panic("hat_register_callback: out of callback IDs");
4233 }
4234
4235 ASSERT(prehandler != NULL || posthandler != NULL);
4236
4237 sfmmu_cb_table[id].key = key;
4238 sfmmu_cb_table[id].prehandler = prehandler;
4239 sfmmu_cb_table[id].posthandler = posthandler;
4240 sfmmu_cb_table[id].errhandler = errhandler;
4241 sfmmu_cb_table[id].capture_cpus = capture_cpus;
4242
4243 return (id);
4244 }
4245
4246 #define HAC_COOKIE_NONE (void *)-1
4247
4248 /*
4249 * Add relocation callbacks to the specified addr/len which will be called
4250 * when relocating the associated page. See the description of pre and
4251 * posthandler above for more details.
4252 *
4253 * If HAC_PAGELOCK is included in flags, the underlying memory page is
4254 * locked internally so the caller must be able to deal with the callback
4255 * running even before this function has returned. If HAC_PAGELOCK is not
4256 * set, it is assumed that the underlying memory pages are locked.
4257 *
4258 * Since the caller must track the individual page boundaries anyway,
4259 * we only allow a callback to be added to a single page (large
4260 * or small). Thus [addr, addr + len) MUST be contained within a single
4261 * page.
4262 *
4263 * Registering multiple callbacks on the same [addr, addr+len) is supported,
4264 * _provided_that_ a unique parameter is specified for each callback.
4265 * If multiple callbacks are registered on the same range the callback will
4266 * be invoked with each unique parameter. Registering the same callback with
4267 * the same argument more than once will result in corrupted kernel state.
4268 *
4269 * Returns the pfn of the underlying kernel page in *rpfn
4270 * on success, or PFN_INVALID on failure.
4271 *
4272 * cookiep (if passed) provides storage space for an opaque cookie
4273 * to return later to hat_delete_callback(). This cookie makes the callback
4274 * deletion significantly quicker by avoiding a potentially lengthy hash
4275 * search.
4276 *
4277 * Returns values:
4278 * 0: success
4279 * ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
4280 * EINVAL: callback ID is not valid
4281 * ENXIO: ["vaddr", "vaddr" + len) is not mapped in the kernel's address
4282 * space
4283 * ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
4284 */
4285 int
hat_add_callback(id_t callback_id,caddr_t vaddr,uint_t len,uint_t flags,void * pvt,pfn_t * rpfn,void ** cookiep)4286 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
4287 void *pvt, pfn_t *rpfn, void **cookiep)
4288 {
4289 struct hmehash_bucket *hmebp;
4290 hmeblk_tag hblktag;
4291 struct hme_blk *hmeblkp;
4292 int hmeshift, hashno;
4293 caddr_t saddr, eaddr, baseaddr;
4294 struct pa_hment *pahmep;
4295 struct sf_hment *sfhmep, *osfhmep;
4296 kmutex_t *pml;
4297 tte_t tte;
4298 page_t *pp;
4299 vnode_t *vp;
4300 u_offset_t off;
4301 pfn_t pfn;
4302 int kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
4303 int locked = 0;
4304
4305 /*
4306 * For KPM mappings, just return the physical address since we
4307 * don't need to register any callbacks.
4308 */
4309 if (IS_KPM_ADDR(vaddr)) {
4310 uint64_t paddr;
4311 SFMMU_KPM_VTOP(vaddr, paddr);
4312 *rpfn = btop(paddr);
4313 if (cookiep != NULL)
4314 *cookiep = HAC_COOKIE_NONE;
4315 return (0);
4316 }
4317
4318 if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
4319 *rpfn = PFN_INVALID;
4320 return (EINVAL);
4321 }
4322
4323 if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
4324 *rpfn = PFN_INVALID;
4325 return (ENOMEM);
4326 }
4327
4328 sfhmep = &pahmep->sfment;
4329
4330 saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4331 eaddr = saddr + len;
4332
4333 rehash:
4334 /* Find the mapping(s) for this page */
4335 for (hashno = TTE64K, hmeblkp = NULL;
4336 hmeblkp == NULL && hashno <= mmu_hashcnt;
4337 hashno++) {
4338 hmeshift = HME_HASH_SHIFT(hashno);
4339 hblktag.htag_id = ksfmmup;
4340 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4341 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4342 hblktag.htag_rehash = hashno;
4343 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4344
4345 SFMMU_HASH_LOCK(hmebp);
4346
4347 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4348
4349 if (hmeblkp == NULL)
4350 SFMMU_HASH_UNLOCK(hmebp);
4351 }
4352
4353 if (hmeblkp == NULL) {
4354 kmem_cache_free(pa_hment_cache, pahmep);
4355 *rpfn = PFN_INVALID;
4356 return (ENXIO);
4357 }
4358
4359 ASSERT(!hmeblkp->hblk_shared);
4360
4361 HBLKTOHME(osfhmep, hmeblkp, saddr);
4362 sfmmu_copytte(&osfhmep->hme_tte, &tte);
4363
4364 if (!TTE_IS_VALID(&tte)) {
4365 SFMMU_HASH_UNLOCK(hmebp);
4366 kmem_cache_free(pa_hment_cache, pahmep);
4367 *rpfn = PFN_INVALID;
4368 return (ENXIO);
4369 }
4370
4371 /*
4372 * Make sure the boundaries for the callback fall within this
4373 * single mapping.
4374 */
4375 baseaddr = (caddr_t)get_hblk_base(hmeblkp);
4376 ASSERT(saddr >= baseaddr);
4377 if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
4378 SFMMU_HASH_UNLOCK(hmebp);
4379 kmem_cache_free(pa_hment_cache, pahmep);
4380 *rpfn = PFN_INVALID;
4381 return (ERANGE);
4382 }
4383
4384 pfn = sfmmu_ttetopfn(&tte, vaddr);
4385
4386 /*
4387 * The pfn may not have a page_t underneath in which case we
4388 * just return it. This can happen if we are doing I/O to a
4389 * static portion of the kernel's address space, for instance.
4390 */
4391 pp = osfhmep->hme_page;
4392 if (pp == NULL) {
4393 SFMMU_HASH_UNLOCK(hmebp);
4394 kmem_cache_free(pa_hment_cache, pahmep);
4395 *rpfn = pfn;
4396 if (cookiep)
4397 *cookiep = HAC_COOKIE_NONE;
4398 return (0);
4399 }
4400 ASSERT(pp == PP_PAGEROOT(pp));
4401
4402 vp = pp->p_vnode;
4403 off = pp->p_offset;
4404
4405 pml = sfmmu_mlist_enter(pp);
4406
4407 if (flags & HAC_PAGELOCK) {
4408 if (!page_trylock(pp, SE_SHARED)) {
4409 /*
4410 * Somebody is holding SE_EXCL lock. Might
4411 * even be hat_page_relocate(). Drop all
4412 * our locks, lookup the page in &kvp, and
4413 * retry. If it doesn't exist in &kvp and &zvp,
4414 * then we must be dealing with a kernel mapped
4415 * page which doesn't actually belong to
4416 * segkmem so we punt.
4417 */
4418 sfmmu_mlist_exit(pml);
4419 SFMMU_HASH_UNLOCK(hmebp);
4420 pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4421
4422 /* check zvp before giving up */
4423 if (pp == NULL)
4424 pp = page_lookup(&zvp, (u_offset_t)saddr,
4425 SE_SHARED);
4426
4427 /* Okay, we didn't find it, give up */
4428 if (pp == NULL) {
4429 kmem_cache_free(pa_hment_cache, pahmep);
4430 *rpfn = pfn;
4431 if (cookiep)
4432 *cookiep = HAC_COOKIE_NONE;
4433 return (0);
4434 }
4435 page_unlock(pp);
4436 goto rehash;
4437 }
4438 locked = 1;
4439 }
4440
4441 if (!PAGE_LOCKED(pp) && !panicstr)
4442 panic("hat_add_callback: page 0x%p not locked", (void *)pp);
4443
4444 if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4445 pp->p_offset != off) {
4446 /*
4447 * The page moved before we got our hands on it. Drop
4448 * all the locks and try again.
4449 */
4450 ASSERT((flags & HAC_PAGELOCK) != 0);
4451 sfmmu_mlist_exit(pml);
4452 SFMMU_HASH_UNLOCK(hmebp);
4453 page_unlock(pp);
4454 locked = 0;
4455 goto rehash;
4456 }
4457
4458 if (!VN_ISKAS(vp)) {
4459 /*
4460 * This is not a segkmem page but another page which
4461 * has been kernel mapped. It had better have at least
4462 * a share lock on it. Return the pfn.
4463 */
4464 sfmmu_mlist_exit(pml);
4465 SFMMU_HASH_UNLOCK(hmebp);
4466 if (locked)
4467 page_unlock(pp);
4468 kmem_cache_free(pa_hment_cache, pahmep);
4469 ASSERT(PAGE_LOCKED(pp));
4470 *rpfn = pfn;
4471 if (cookiep)
4472 *cookiep = HAC_COOKIE_NONE;
4473 return (0);
4474 }
4475
4476 /*
4477 * Setup this pa_hment and link its embedded dummy sf_hment into
4478 * the mapping list.
4479 */
4480 pp->p_share++;
4481 pahmep->cb_id = callback_id;
4482 pahmep->addr = vaddr;
4483 pahmep->len = len;
4484 pahmep->refcnt = 1;
4485 pahmep->flags = 0;
4486 pahmep->pvt = pvt;
4487
4488 sfhmep->hme_tte.ll = 0;
4489 sfhmep->hme_data = pahmep;
4490 sfhmep->hme_prev = osfhmep;
4491 sfhmep->hme_next = osfhmep->hme_next;
4492
4493 if (osfhmep->hme_next)
4494 osfhmep->hme_next->hme_prev = sfhmep;
4495
4496 osfhmep->hme_next = sfhmep;
4497
4498 sfmmu_mlist_exit(pml);
4499 SFMMU_HASH_UNLOCK(hmebp);
4500
4501 if (locked)
4502 page_unlock(pp);
4503
4504 *rpfn = pfn;
4505 if (cookiep)
4506 *cookiep = (void *)pahmep;
4507
4508 return (0);
4509 }
4510
4511 /*
4512 * Remove the relocation callbacks from the specified addr/len.
4513 */
4514 void
hat_delete_callback(caddr_t vaddr,uint_t len,void * pvt,uint_t flags,void * cookie)4515 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
4516 void *cookie)
4517 {
4518 struct hmehash_bucket *hmebp;
4519 hmeblk_tag hblktag;
4520 struct hme_blk *hmeblkp;
4521 int hmeshift, hashno;
4522 caddr_t saddr;
4523 struct pa_hment *pahmep;
4524 struct sf_hment *sfhmep, *osfhmep;
4525 kmutex_t *pml;
4526 tte_t tte;
4527 page_t *pp;
4528 vnode_t *vp;
4529 u_offset_t off;
4530 int locked = 0;
4531
4532 /*
4533 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
4534 * remove so just return.
4535 */
4536 if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
4537 return;
4538
4539 saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4540
4541 rehash:
4542 /* Find the mapping(s) for this page */
4543 for (hashno = TTE64K, hmeblkp = NULL;
4544 hmeblkp == NULL && hashno <= mmu_hashcnt;
4545 hashno++) {
4546 hmeshift = HME_HASH_SHIFT(hashno);
4547 hblktag.htag_id = ksfmmup;
4548 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4549 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4550 hblktag.htag_rehash = hashno;
4551 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4552
4553 SFMMU_HASH_LOCK(hmebp);
4554
4555 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4556
4557 if (hmeblkp == NULL)
4558 SFMMU_HASH_UNLOCK(hmebp);
4559 }
4560
4561 if (hmeblkp == NULL)
4562 return;
4563
4564 ASSERT(!hmeblkp->hblk_shared);
4565
4566 HBLKTOHME(osfhmep, hmeblkp, saddr);
4567
4568 sfmmu_copytte(&osfhmep->hme_tte, &tte);
4569 if (!TTE_IS_VALID(&tte)) {
4570 SFMMU_HASH_UNLOCK(hmebp);
4571 return;
4572 }
4573
4574 pp = osfhmep->hme_page;
4575 if (pp == NULL) {
4576 SFMMU_HASH_UNLOCK(hmebp);
4577 ASSERT(cookie == NULL);
4578 return;
4579 }
4580
4581 vp = pp->p_vnode;
4582 off = pp->p_offset;
4583
4584 pml = sfmmu_mlist_enter(pp);
4585
4586 if (flags & HAC_PAGELOCK) {
4587 if (!page_trylock(pp, SE_SHARED)) {
4588 /*
4589 * Somebody is holding SE_EXCL lock. Might
4590 * even be hat_page_relocate(). Drop all
4591 * our locks, lookup the page in &kvp, and
4592 * retry. If it doesn't exist in &kvp and &zvp,
4593 * then we must be dealing with a kernel mapped
4594 * page which doesn't actually belong to
4595 * segkmem so we punt.
4596 */
4597 sfmmu_mlist_exit(pml);
4598 SFMMU_HASH_UNLOCK(hmebp);
4599 pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4600 /* check zvp before giving up */
4601 if (pp == NULL)
4602 pp = page_lookup(&zvp, (u_offset_t)saddr,
4603 SE_SHARED);
4604
4605 if (pp == NULL) {
4606 ASSERT(cookie == NULL);
4607 return;
4608 }
4609 page_unlock(pp);
4610 goto rehash;
4611 }
4612 locked = 1;
4613 }
4614
4615 ASSERT(PAGE_LOCKED(pp));
4616
4617 if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4618 pp->p_offset != off) {
4619 /*
4620 * The page moved before we got our hands on it. Drop
4621 * all the locks and try again.
4622 */
4623 ASSERT((flags & HAC_PAGELOCK) != 0);
4624 sfmmu_mlist_exit(pml);
4625 SFMMU_HASH_UNLOCK(hmebp);
4626 page_unlock(pp);
4627 locked = 0;
4628 goto rehash;
4629 }
4630
4631 if (!VN_ISKAS(vp)) {
4632 /*
4633 * This is not a segkmem page but another page which
4634 * has been kernel mapped.
4635 */
4636 sfmmu_mlist_exit(pml);
4637 SFMMU_HASH_UNLOCK(hmebp);
4638 if (locked)
4639 page_unlock(pp);
4640 ASSERT(cookie == NULL);
4641 return;
4642 }
4643
4644 if (cookie != NULL) {
4645 pahmep = (struct pa_hment *)cookie;
4646 sfhmep = &pahmep->sfment;
4647 } else {
4648 for (sfhmep = pp->p_mapping; sfhmep != NULL;
4649 sfhmep = sfhmep->hme_next) {
4650
4651 /*
4652 * skip va<->pa mappings
4653 */
4654 if (!IS_PAHME(sfhmep))
4655 continue;
4656
4657 pahmep = sfhmep->hme_data;
4658 ASSERT(pahmep != NULL);
4659
4660 /*
4661 * if pa_hment matches, remove it
4662 */
4663 if ((pahmep->pvt == pvt) &&
4664 (pahmep->addr == vaddr) &&
4665 (pahmep->len == len)) {
4666 break;
4667 }
4668 }
4669 }
4670
4671 if (sfhmep == NULL) {
4672 if (!panicstr) {
4673 panic("hat_delete_callback: pa_hment not found, pp %p",
4674 (void *)pp);
4675 }
4676 return;
4677 }
4678
4679 /*
4680 * Note: at this point a valid kernel mapping must still be
4681 * present on this page.
4682 */
4683 pp->p_share--;
4684 if (pp->p_share <= 0)
4685 panic("hat_delete_callback: zero p_share");
4686
4687 if (--pahmep->refcnt == 0) {
4688 if (pahmep->flags != 0)
4689 panic("hat_delete_callback: pa_hment is busy");
4690
4691 /*
4692 * Remove sfhmep from the mapping list for the page.
4693 */
4694 if (sfhmep->hme_prev) {
4695 sfhmep->hme_prev->hme_next = sfhmep->hme_next;
4696 } else {
4697 pp->p_mapping = sfhmep->hme_next;
4698 }
4699
4700 if (sfhmep->hme_next)
4701 sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
4702
4703 sfmmu_mlist_exit(pml);
4704 SFMMU_HASH_UNLOCK(hmebp);
4705
4706 if (locked)
4707 page_unlock(pp);
4708
4709 kmem_cache_free(pa_hment_cache, pahmep);
4710 return;
4711 }
4712
4713 sfmmu_mlist_exit(pml);
4714 SFMMU_HASH_UNLOCK(hmebp);
4715 if (locked)
4716 page_unlock(pp);
4717 }
4718
4719 /*
4720 * hat_probe returns 1 if the translation for the address 'addr' is
4721 * loaded, zero otherwise.
4722 *
4723 * hat_probe should be used only for advisorary purposes because it may
4724 * occasionally return the wrong value. The implementation must guarantee that
4725 * returning the wrong value is a very rare event. hat_probe is used
4726 * to implement optimizations in the segment drivers.
4727 *
4728 */
4729 int
hat_probe(struct hat * sfmmup,caddr_t addr)4730 hat_probe(struct hat *sfmmup, caddr_t addr)
4731 {
4732 pfn_t pfn;
4733 tte_t tte;
4734
4735 ASSERT(sfmmup != NULL);
4736
4737 ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
4738
4739 if (sfmmup == ksfmmup) {
4740 while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4741 == PFN_SUSPENDED) {
4742 sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4743 }
4744 } else {
4745 pfn = sfmmu_uvatopfn(addr, sfmmup, NULL);
4746 }
4747
4748 if (pfn != PFN_INVALID)
4749 return (1);
4750 else
4751 return (0);
4752 }
4753
4754 ssize_t
hat_getpagesize(struct hat * sfmmup,caddr_t addr)4755 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4756 {
4757 tte_t tte;
4758
4759 if (sfmmup == ksfmmup) {
4760 if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4761 return (-1);
4762 }
4763 } else {
4764 if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4765 return (-1);
4766 }
4767 }
4768
4769 ASSERT(TTE_IS_VALID(&tte));
4770 return (TTEBYTES(TTE_CSZ(&tte)));
4771 }
4772
4773 uint_t
hat_getattr(struct hat * sfmmup,caddr_t addr,uint_t * attr)4774 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4775 {
4776 tte_t tte;
4777
4778 if (sfmmup == ksfmmup) {
4779 if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4780 tte.ll = 0;
4781 }
4782 } else {
4783 if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4784 tte.ll = 0;
4785 }
4786 }
4787 if (TTE_IS_VALID(&tte)) {
4788 *attr = sfmmu_ptov_attr(&tte);
4789 return (0);
4790 }
4791 *attr = 0;
4792 return ((uint_t)0xffffffff);
4793 }
4794
4795 /*
4796 * Enables more attributes on specified address range (ie. logical OR)
4797 */
4798 void
hat_setattr(struct hat * hat,caddr_t addr,size_t len,uint_t attr)4799 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4800 {
4801 ASSERT(hat->sfmmu_as != NULL);
4802
4803 sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4804 }
4805
4806 /*
4807 * Assigns attributes to the specified address range. All the attributes
4808 * are specified.
4809 */
4810 void
hat_chgattr(struct hat * hat,caddr_t addr,size_t len,uint_t attr)4811 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4812 {
4813 ASSERT(hat->sfmmu_as != NULL);
4814
4815 sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4816 }
4817
4818 /*
4819 * Remove attributes on the specified address range (ie. loginal NAND)
4820 */
4821 void
hat_clrattr(struct hat * hat,caddr_t addr,size_t len,uint_t attr)4822 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4823 {
4824 ASSERT(hat->sfmmu_as != NULL);
4825
4826 sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4827 }
4828
4829 /*
4830 * Change attributes on an address range to that specified by attr and mode.
4831 */
4832 static void
sfmmu_chgattr(struct hat * sfmmup,caddr_t addr,size_t len,uint_t attr,int mode)4833 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4834 int mode)
4835 {
4836 struct hmehash_bucket *hmebp;
4837 hmeblk_tag hblktag;
4838 int hmeshift, hashno = 1;
4839 struct hme_blk *hmeblkp, *list = NULL;
4840 caddr_t endaddr;
4841 cpuset_t cpuset;
4842 demap_range_t dmr;
4843
4844 CPUSET_ZERO(cpuset);
4845
4846 ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
4847 ASSERT((len & MMU_PAGEOFFSET) == 0);
4848 ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4849
4850 if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4851 ((addr + len) > (caddr_t)USERLIMIT)) {
4852 panic("user addr %p in kernel space",
4853 (void *)addr);
4854 }
4855
4856 endaddr = addr + len;
4857 hblktag.htag_id = sfmmup;
4858 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4859 DEMAP_RANGE_INIT(sfmmup, &dmr);
4860
4861 while (addr < endaddr) {
4862 hmeshift = HME_HASH_SHIFT(hashno);
4863 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4864 hblktag.htag_rehash = hashno;
4865 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4866
4867 SFMMU_HASH_LOCK(hmebp);
4868
4869 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4870 if (hmeblkp != NULL) {
4871 ASSERT(!hmeblkp->hblk_shared);
4872 /*
4873 * We've encountered a shadow hmeblk so skip the range
4874 * of the next smaller mapping size.
4875 */
4876 if (hmeblkp->hblk_shw_bit) {
4877 ASSERT(sfmmup != ksfmmup);
4878 ASSERT(hashno > 1);
4879 addr = (caddr_t)P2END((uintptr_t)addr,
4880 TTEBYTES(hashno - 1));
4881 } else {
4882 addr = sfmmu_hblk_chgattr(sfmmup,
4883 hmeblkp, addr, endaddr, &dmr, attr, mode);
4884 }
4885 SFMMU_HASH_UNLOCK(hmebp);
4886 hashno = 1;
4887 continue;
4888 }
4889 SFMMU_HASH_UNLOCK(hmebp);
4890
4891 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4892 /*
4893 * We have traversed the whole list and rehashed
4894 * if necessary without finding the address to chgattr.
4895 * This is ok, so we increment the address by the
4896 * smallest hmeblk range for kernel mappings or for
4897 * user mappings with no large pages, and the largest
4898 * hmeblk range, to account for shadow hmeblks, for
4899 * user mappings with large pages and continue.
4900 */
4901 if (sfmmup == ksfmmup)
4902 addr = (caddr_t)P2END((uintptr_t)addr,
4903 TTEBYTES(1));
4904 else
4905 addr = (caddr_t)P2END((uintptr_t)addr,
4906 TTEBYTES(hashno));
4907 hashno = 1;
4908 } else {
4909 hashno++;
4910 }
4911 }
4912
4913 sfmmu_hblks_list_purge(&list, 0);
4914 DEMAP_RANGE_FLUSH(&dmr);
4915 cpuset = sfmmup->sfmmu_cpusran;
4916 xt_sync(cpuset);
4917 }
4918
4919 /*
4920 * This function chgattr on a range of addresses in an hmeblk. It returns the
4921 * next addres that needs to be chgattr.
4922 * It should be called with the hash lock held.
4923 * XXX It should be possible to optimize chgattr by not flushing every time but
4924 * on the other hand:
4925 * 1. do one flush crosscall.
4926 * 2. only flush if we are increasing permissions (make sure this will work)
4927 */
4928 static caddr_t
sfmmu_hblk_chgattr(struct hat * sfmmup,struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr,demap_range_t * dmrp,uint_t attr,int mode)4929 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4930 caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4931 {
4932 tte_t tte, tteattr, tteflags, ttemod;
4933 struct sf_hment *sfhmep;
4934 int ttesz;
4935 struct page *pp = NULL;
4936 kmutex_t *pml, *pmtx;
4937 int ret;
4938 int use_demap_range;
4939 #if defined(SF_ERRATA_57)
4940 int check_exec;
4941 #endif
4942
4943 ASSERT(in_hblk_range(hmeblkp, addr));
4944 ASSERT(hmeblkp->hblk_shw_bit == 0);
4945 ASSERT(!hmeblkp->hblk_shared);
4946
4947 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4948 ttesz = get_hblk_ttesz(hmeblkp);
4949
4950 /*
4951 * Flush the current demap region if addresses have been
4952 * skipped or the page size doesn't match.
4953 */
4954 use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4955 if (use_demap_range) {
4956 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4957 } else if (dmrp != NULL) {
4958 DEMAP_RANGE_FLUSH(dmrp);
4959 }
4960
4961 tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4962 #if defined(SF_ERRATA_57)
4963 check_exec = (sfmmup != ksfmmup) &&
4964 AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4965 TTE_IS_EXECUTABLE(&tteattr);
4966 #endif
4967 HBLKTOHME(sfhmep, hmeblkp, addr);
4968 while (addr < endaddr) {
4969 sfmmu_copytte(&sfhmep->hme_tte, &tte);
4970 if (TTE_IS_VALID(&tte)) {
4971 if ((tte.ll & tteflags.ll) == tteattr.ll) {
4972 /*
4973 * if the new attr is the same as old
4974 * continue
4975 */
4976 goto next_addr;
4977 }
4978 if (!TTE_IS_WRITABLE(&tteattr)) {
4979 /*
4980 * make sure we clear hw modify bit if we
4981 * removing write protections
4982 */
4983 tteflags.tte_intlo |= TTE_HWWR_INT;
4984 }
4985
4986 pml = NULL;
4987 pp = sfhmep->hme_page;
4988 if (pp) {
4989 pml = sfmmu_mlist_enter(pp);
4990 }
4991
4992 if (pp != sfhmep->hme_page) {
4993 /*
4994 * tte must have been unloaded.
4995 */
4996 ASSERT(pml);
4997 sfmmu_mlist_exit(pml);
4998 continue;
4999 }
5000
5001 ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5002
5003 ttemod = tte;
5004 ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
5005 ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
5006
5007 #if defined(SF_ERRATA_57)
5008 if (check_exec && addr < errata57_limit)
5009 ttemod.tte_exec_perm = 0;
5010 #endif
5011 ret = sfmmu_modifytte_try(&tte, &ttemod,
5012 &sfhmep->hme_tte);
5013
5014 if (ret < 0) {
5015 /* tte changed underneath us */
5016 if (pml) {
5017 sfmmu_mlist_exit(pml);
5018 }
5019 continue;
5020 }
5021
5022 if (tteflags.tte_intlo & TTE_HWWR_INT) {
5023 /*
5024 * need to sync if we are clearing modify bit.
5025 */
5026 sfmmu_ttesync(sfmmup, addr, &tte, pp);
5027 }
5028
5029 if (pp && PP_ISRO(pp)) {
5030 if (tteattr.tte_intlo & TTE_WRPRM_INT) {
5031 pmtx = sfmmu_page_enter(pp);
5032 PP_CLRRO(pp);
5033 sfmmu_page_exit(pmtx);
5034 }
5035 }
5036
5037 if (ret > 0 && use_demap_range) {
5038 DEMAP_RANGE_MARKPG(dmrp, addr);
5039 } else if (ret > 0) {
5040 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5041 }
5042
5043 if (pml) {
5044 sfmmu_mlist_exit(pml);
5045 }
5046 }
5047 next_addr:
5048 addr += TTEBYTES(ttesz);
5049 sfhmep++;
5050 DEMAP_RANGE_NEXTPG(dmrp);
5051 }
5052 return (addr);
5053 }
5054
5055 /*
5056 * This routine converts virtual attributes to physical ones. It will
5057 * update the tteflags field with the tte mask corresponding to the attributes
5058 * affected and it returns the new attributes. It will also clear the modify
5059 * bit if we are taking away write permission. This is necessary since the
5060 * modify bit is the hardware permission bit and we need to clear it in order
5061 * to detect write faults.
5062 */
5063 static uint64_t
sfmmu_vtop_attr(uint_t attr,int mode,tte_t * ttemaskp)5064 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
5065 {
5066 tte_t ttevalue;
5067
5068 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
5069
5070 switch (mode) {
5071 case SFMMU_CHGATTR:
5072 /* all attributes specified */
5073 ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
5074 ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
5075 ttemaskp->tte_inthi = TTEINTHI_ATTR;
5076 ttemaskp->tte_intlo = TTEINTLO_ATTR;
5077 break;
5078 case SFMMU_SETATTR:
5079 ASSERT(!(attr & ~HAT_PROT_MASK));
5080 ttemaskp->ll = 0;
5081 ttevalue.ll = 0;
5082 /*
5083 * a valid tte implies exec and read for sfmmu
5084 * so no need to do anything about them.
5085 * since priviledged access implies user access
5086 * PROT_USER doesn't make sense either.
5087 */
5088 if (attr & PROT_WRITE) {
5089 ttemaskp->tte_intlo |= TTE_WRPRM_INT;
5090 ttevalue.tte_intlo |= TTE_WRPRM_INT;
5091 }
5092 break;
5093 case SFMMU_CLRATTR:
5094 /* attributes will be nand with current ones */
5095 if (attr & ~(PROT_WRITE | PROT_USER)) {
5096 panic("sfmmu: attr %x not supported", attr);
5097 }
5098 ttemaskp->ll = 0;
5099 ttevalue.ll = 0;
5100 if (attr & PROT_WRITE) {
5101 /* clear both writable and modify bit */
5102 ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
5103 }
5104 if (attr & PROT_USER) {
5105 ttemaskp->tte_intlo |= TTE_PRIV_INT;
5106 ttevalue.tte_intlo |= TTE_PRIV_INT;
5107 }
5108 break;
5109 default:
5110 panic("sfmmu_vtop_attr: bad mode %x", mode);
5111 }
5112 ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
5113 return (ttevalue.ll);
5114 }
5115
5116 static uint_t
sfmmu_ptov_attr(tte_t * ttep)5117 sfmmu_ptov_attr(tte_t *ttep)
5118 {
5119 uint_t attr;
5120
5121 ASSERT(TTE_IS_VALID(ttep));
5122
5123 attr = PROT_READ;
5124
5125 if (TTE_IS_WRITABLE(ttep)) {
5126 attr |= PROT_WRITE;
5127 }
5128 if (TTE_IS_EXECUTABLE(ttep)) {
5129 attr |= PROT_EXEC;
5130 }
5131 if (!TTE_IS_PRIVILEGED(ttep)) {
5132 attr |= PROT_USER;
5133 }
5134 if (TTE_IS_NFO(ttep)) {
5135 attr |= HAT_NOFAULT;
5136 }
5137 if (TTE_IS_NOSYNC(ttep)) {
5138 attr |= HAT_NOSYNC;
5139 }
5140 if (TTE_IS_SIDEFFECT(ttep)) {
5141 attr |= SFMMU_SIDEFFECT;
5142 }
5143 if (!TTE_IS_VCACHEABLE(ttep)) {
5144 attr |= SFMMU_UNCACHEVTTE;
5145 }
5146 if (!TTE_IS_PCACHEABLE(ttep)) {
5147 attr |= SFMMU_UNCACHEPTTE;
5148 }
5149 return (attr);
5150 }
5151
5152 /*
5153 * hat_chgprot is a deprecated hat call. New segment drivers
5154 * should store all attributes and use hat_*attr calls.
5155 *
5156 * Change the protections in the virtual address range
5157 * given to the specified virtual protection. If vprot is ~PROT_WRITE,
5158 * then remove write permission, leaving the other
5159 * permissions unchanged. If vprot is ~PROT_USER, remove user permissions.
5160 *
5161 */
5162 void
hat_chgprot(struct hat * sfmmup,caddr_t addr,size_t len,uint_t vprot)5163 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
5164 {
5165 struct hmehash_bucket *hmebp;
5166 hmeblk_tag hblktag;
5167 int hmeshift, hashno = 1;
5168 struct hme_blk *hmeblkp, *list = NULL;
5169 caddr_t endaddr;
5170 cpuset_t cpuset;
5171 demap_range_t dmr;
5172
5173 ASSERT((len & MMU_PAGEOFFSET) == 0);
5174 ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
5175
5176 ASSERT(sfmmup->sfmmu_as != NULL);
5177
5178 CPUSET_ZERO(cpuset);
5179
5180 if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
5181 ((addr + len) > (caddr_t)USERLIMIT)) {
5182 panic("user addr %p vprot %x in kernel space",
5183 (void *)addr, vprot);
5184 }
5185 endaddr = addr + len;
5186 hblktag.htag_id = sfmmup;
5187 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5188 DEMAP_RANGE_INIT(sfmmup, &dmr);
5189
5190 while (addr < endaddr) {
5191 hmeshift = HME_HASH_SHIFT(hashno);
5192 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5193 hblktag.htag_rehash = hashno;
5194 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5195
5196 SFMMU_HASH_LOCK(hmebp);
5197
5198 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5199 if (hmeblkp != NULL) {
5200 ASSERT(!hmeblkp->hblk_shared);
5201 /*
5202 * We've encountered a shadow hmeblk so skip the range
5203 * of the next smaller mapping size.
5204 */
5205 if (hmeblkp->hblk_shw_bit) {
5206 ASSERT(sfmmup != ksfmmup);
5207 ASSERT(hashno > 1);
5208 addr = (caddr_t)P2END((uintptr_t)addr,
5209 TTEBYTES(hashno - 1));
5210 } else {
5211 addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
5212 addr, endaddr, &dmr, vprot);
5213 }
5214 SFMMU_HASH_UNLOCK(hmebp);
5215 hashno = 1;
5216 continue;
5217 }
5218 SFMMU_HASH_UNLOCK(hmebp);
5219
5220 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5221 /*
5222 * We have traversed the whole list and rehashed
5223 * if necessary without finding the address to chgprot.
5224 * This is ok so we increment the address by the
5225 * smallest hmeblk range for kernel mappings and the
5226 * largest hmeblk range, to account for shadow hmeblks,
5227 * for user mappings and continue.
5228 */
5229 if (sfmmup == ksfmmup)
5230 addr = (caddr_t)P2END((uintptr_t)addr,
5231 TTEBYTES(1));
5232 else
5233 addr = (caddr_t)P2END((uintptr_t)addr,
5234 TTEBYTES(hashno));
5235 hashno = 1;
5236 } else {
5237 hashno++;
5238 }
5239 }
5240
5241 sfmmu_hblks_list_purge(&list, 0);
5242 DEMAP_RANGE_FLUSH(&dmr);
5243 cpuset = sfmmup->sfmmu_cpusran;
5244 xt_sync(cpuset);
5245 }
5246
5247 /*
5248 * This function chgprots a range of addresses in an hmeblk. It returns the
5249 * next addres that needs to be chgprot.
5250 * It should be called with the hash lock held.
5251 * XXX It shold be possible to optimize chgprot by not flushing every time but
5252 * on the other hand:
5253 * 1. do one flush crosscall.
5254 * 2. only flush if we are increasing permissions (make sure this will work)
5255 */
5256 static caddr_t
sfmmu_hblk_chgprot(sfmmu_t * sfmmup,struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr,demap_range_t * dmrp,uint_t vprot)5257 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5258 caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
5259 {
5260 uint_t pprot;
5261 tte_t tte, ttemod;
5262 struct sf_hment *sfhmep;
5263 uint_t tteflags;
5264 int ttesz;
5265 struct page *pp = NULL;
5266 kmutex_t *pml, *pmtx;
5267 int ret;
5268 int use_demap_range;
5269 #if defined(SF_ERRATA_57)
5270 int check_exec;
5271 #endif
5272
5273 ASSERT(in_hblk_range(hmeblkp, addr));
5274 ASSERT(hmeblkp->hblk_shw_bit == 0);
5275 ASSERT(!hmeblkp->hblk_shared);
5276
5277 #ifdef DEBUG
5278 if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5279 (endaddr < get_hblk_endaddr(hmeblkp))) {
5280 panic("sfmmu_hblk_chgprot: partial chgprot of large page");
5281 }
5282 #endif /* DEBUG */
5283
5284 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5285 ttesz = get_hblk_ttesz(hmeblkp);
5286
5287 pprot = sfmmu_vtop_prot(vprot, &tteflags);
5288 #if defined(SF_ERRATA_57)
5289 check_exec = (sfmmup != ksfmmup) &&
5290 AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
5291 ((vprot & PROT_EXEC) == PROT_EXEC);
5292 #endif
5293 HBLKTOHME(sfhmep, hmeblkp, addr);
5294
5295 /*
5296 * Flush the current demap region if addresses have been
5297 * skipped or the page size doesn't match.
5298 */
5299 use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
5300 if (use_demap_range) {
5301 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5302 } else if (dmrp != NULL) {
5303 DEMAP_RANGE_FLUSH(dmrp);
5304 }
5305
5306 while (addr < endaddr) {
5307 sfmmu_copytte(&sfhmep->hme_tte, &tte);
5308 if (TTE_IS_VALID(&tte)) {
5309 if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
5310 /*
5311 * if the new protection is the same as old
5312 * continue
5313 */
5314 goto next_addr;
5315 }
5316 pml = NULL;
5317 pp = sfhmep->hme_page;
5318 if (pp) {
5319 pml = sfmmu_mlist_enter(pp);
5320 }
5321 if (pp != sfhmep->hme_page) {
5322 /*
5323 * tte most have been unloaded
5324 * underneath us. Recheck
5325 */
5326 ASSERT(pml);
5327 sfmmu_mlist_exit(pml);
5328 continue;
5329 }
5330
5331 ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5332
5333 ttemod = tte;
5334 TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
5335 #if defined(SF_ERRATA_57)
5336 if (check_exec && addr < errata57_limit)
5337 ttemod.tte_exec_perm = 0;
5338 #endif
5339 ret = sfmmu_modifytte_try(&tte, &ttemod,
5340 &sfhmep->hme_tte);
5341
5342 if (ret < 0) {
5343 /* tte changed underneath us */
5344 if (pml) {
5345 sfmmu_mlist_exit(pml);
5346 }
5347 continue;
5348 }
5349
5350 if (tteflags & TTE_HWWR_INT) {
5351 /*
5352 * need to sync if we are clearing modify bit.
5353 */
5354 sfmmu_ttesync(sfmmup, addr, &tte, pp);
5355 }
5356
5357 if (pp && PP_ISRO(pp)) {
5358 if (pprot & TTE_WRPRM_INT) {
5359 pmtx = sfmmu_page_enter(pp);
5360 PP_CLRRO(pp);
5361 sfmmu_page_exit(pmtx);
5362 }
5363 }
5364
5365 if (ret > 0 && use_demap_range) {
5366 DEMAP_RANGE_MARKPG(dmrp, addr);
5367 } else if (ret > 0) {
5368 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5369 }
5370
5371 if (pml) {
5372 sfmmu_mlist_exit(pml);
5373 }
5374 }
5375 next_addr:
5376 addr += TTEBYTES(ttesz);
5377 sfhmep++;
5378 DEMAP_RANGE_NEXTPG(dmrp);
5379 }
5380 return (addr);
5381 }
5382
5383 /*
5384 * This routine is deprecated and should only be used by hat_chgprot.
5385 * The correct routine is sfmmu_vtop_attr.
5386 * This routine converts virtual page protections to physical ones. It will
5387 * update the tteflags field with the tte mask corresponding to the protections
5388 * affected and it returns the new protections. It will also clear the modify
5389 * bit if we are taking away write permission. This is necessary since the
5390 * modify bit is the hardware permission bit and we need to clear it in order
5391 * to detect write faults.
5392 * It accepts the following special protections:
5393 * ~PROT_WRITE = remove write permissions.
5394 * ~PROT_USER = remove user permissions.
5395 */
5396 static uint_t
sfmmu_vtop_prot(uint_t vprot,uint_t * tteflagsp)5397 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
5398 {
5399 if (vprot == (uint_t)~PROT_WRITE) {
5400 *tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
5401 return (0); /* will cause wrprm to be cleared */
5402 }
5403 if (vprot == (uint_t)~PROT_USER) {
5404 *tteflagsp = TTE_PRIV_INT;
5405 return (0); /* will cause privprm to be cleared */
5406 }
5407 if ((vprot == 0) || (vprot == PROT_USER) ||
5408 ((vprot & PROT_ALL) != vprot)) {
5409 panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5410 }
5411
5412 switch (vprot) {
5413 case (PROT_READ):
5414 case (PROT_EXEC):
5415 case (PROT_EXEC | PROT_READ):
5416 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5417 return (TTE_PRIV_INT); /* set prv and clr wrt */
5418 case (PROT_WRITE):
5419 case (PROT_WRITE | PROT_READ):
5420 case (PROT_EXEC | PROT_WRITE):
5421 case (PROT_EXEC | PROT_WRITE | PROT_READ):
5422 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5423 return (TTE_PRIV_INT | TTE_WRPRM_INT); /* set prv and wrt */
5424 case (PROT_USER | PROT_READ):
5425 case (PROT_USER | PROT_EXEC):
5426 case (PROT_USER | PROT_EXEC | PROT_READ):
5427 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5428 return (0); /* clr prv and wrt */
5429 case (PROT_USER | PROT_WRITE):
5430 case (PROT_USER | PROT_WRITE | PROT_READ):
5431 case (PROT_USER | PROT_EXEC | PROT_WRITE):
5432 case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
5433 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5434 return (TTE_WRPRM_INT); /* clr prv and set wrt */
5435 default:
5436 panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5437 }
5438 return (0);
5439 }
5440
5441 /*
5442 * Alternate unload for very large virtual ranges. With a true 64 bit VA,
5443 * the normal algorithm would take too long for a very large VA range with
5444 * few real mappings. This routine just walks thru all HMEs in the global
5445 * hash table to find and remove mappings.
5446 */
5447 static void
hat_unload_large_virtual(struct hat * sfmmup,caddr_t startaddr,size_t len,uint_t flags,hat_callback_t * callback)5448 hat_unload_large_virtual(struct hat *sfmmup, caddr_t startaddr, size_t len,
5449 uint_t flags, hat_callback_t *callback)
5450 {
5451 struct hmehash_bucket *hmebp;
5452 struct hme_blk *hmeblkp;
5453 struct hme_blk *pr_hblk = NULL;
5454 struct hme_blk *nx_hblk;
5455 struct hme_blk *list = NULL;
5456 int i;
5457 demap_range_t dmr, *dmrp;
5458 cpuset_t cpuset;
5459 caddr_t endaddr = startaddr + len;
5460 caddr_t sa;
5461 caddr_t ea;
5462 caddr_t cb_sa[MAX_CB_ADDR];
5463 caddr_t cb_ea[MAX_CB_ADDR];
5464 int addr_cnt = 0;
5465 int a = 0;
5466
5467 if (sfmmup->sfmmu_free) {
5468 dmrp = NULL;
5469 } else {
5470 dmrp = &dmr;
5471 DEMAP_RANGE_INIT(sfmmup, dmrp);
5472 }
5473
5474 /*
5475 * Loop through all the hash buckets of HME blocks looking for matches.
5476 */
5477 for (i = 0; i <= UHMEHASH_SZ; i++) {
5478 hmebp = &uhme_hash[i];
5479 SFMMU_HASH_LOCK(hmebp);
5480 hmeblkp = hmebp->hmeblkp;
5481 pr_hblk = NULL;
5482 while (hmeblkp) {
5483 nx_hblk = hmeblkp->hblk_next;
5484
5485 /*
5486 * skip if not this context, if a shadow block or
5487 * if the mapping is not in the requested range
5488 */
5489 if (hmeblkp->hblk_tag.htag_id != sfmmup ||
5490 hmeblkp->hblk_shw_bit ||
5491 (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
5492 (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
5493 pr_hblk = hmeblkp;
5494 goto next_block;
5495 }
5496
5497 ASSERT(!hmeblkp->hblk_shared);
5498 /*
5499 * unload if there are any current valid mappings
5500 */
5501 if (hmeblkp->hblk_vcnt != 0 ||
5502 hmeblkp->hblk_hmecnt != 0)
5503 (void) sfmmu_hblk_unload(sfmmup, hmeblkp,
5504 sa, ea, dmrp, flags);
5505
5506 /*
5507 * on unmap we also release the HME block itself, once
5508 * all mappings are gone.
5509 */
5510 if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
5511 !hmeblkp->hblk_vcnt &&
5512 !hmeblkp->hblk_hmecnt) {
5513 ASSERT(!hmeblkp->hblk_lckcnt);
5514 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5515 &list, 0);
5516 } else {
5517 pr_hblk = hmeblkp;
5518 }
5519
5520 if (callback == NULL)
5521 goto next_block;
5522
5523 /*
5524 * HME blocks may span more than one page, but we may be
5525 * unmapping only one page, so check for a smaller range
5526 * for the callback
5527 */
5528 if (sa < startaddr)
5529 sa = startaddr;
5530 if (--ea > endaddr)
5531 ea = endaddr - 1;
5532
5533 cb_sa[addr_cnt] = sa;
5534 cb_ea[addr_cnt] = ea;
5535 if (++addr_cnt == MAX_CB_ADDR) {
5536 if (dmrp != NULL) {
5537 DEMAP_RANGE_FLUSH(dmrp);
5538 cpuset = sfmmup->sfmmu_cpusran;
5539 xt_sync(cpuset);
5540 }
5541
5542 for (a = 0; a < MAX_CB_ADDR; ++a) {
5543 callback->hcb_start_addr = cb_sa[a];
5544 callback->hcb_end_addr = cb_ea[a];
5545 callback->hcb_function(callback);
5546 }
5547 addr_cnt = 0;
5548 }
5549
5550 next_block:
5551 hmeblkp = nx_hblk;
5552 }
5553 SFMMU_HASH_UNLOCK(hmebp);
5554 }
5555
5556 sfmmu_hblks_list_purge(&list, 0);
5557 if (dmrp != NULL) {
5558 DEMAP_RANGE_FLUSH(dmrp);
5559 cpuset = sfmmup->sfmmu_cpusran;
5560 xt_sync(cpuset);
5561 }
5562
5563 for (a = 0; a < addr_cnt; ++a) {
5564 callback->hcb_start_addr = cb_sa[a];
5565 callback->hcb_end_addr = cb_ea[a];
5566 callback->hcb_function(callback);
5567 }
5568
5569 /*
5570 * Check TSB and TLB page sizes if the process isn't exiting.
5571 */
5572 if (!sfmmup->sfmmu_free)
5573 sfmmu_check_page_sizes(sfmmup, 0);
5574 }
5575
5576 /*
5577 * Unload all the mappings in the range [addr..addr+len). addr and len must
5578 * be MMU_PAGESIZE aligned.
5579 */
5580
5581 extern struct seg *segkmap;
5582 #define ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
5583 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
5584
5585
5586 void
hat_unload_callback(struct hat * sfmmup,caddr_t addr,size_t len,uint_t flags,hat_callback_t * callback)5587 hat_unload_callback(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags,
5588 hat_callback_t *callback)
5589 {
5590 struct hmehash_bucket *hmebp;
5591 hmeblk_tag hblktag;
5592 int hmeshift, hashno, iskernel;
5593 struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
5594 caddr_t endaddr;
5595 cpuset_t cpuset;
5596 int addr_count = 0;
5597 int a;
5598 caddr_t cb_start_addr[MAX_CB_ADDR];
5599 caddr_t cb_end_addr[MAX_CB_ADDR];
5600 int issegkmap = ISSEGKMAP(sfmmup, addr);
5601 demap_range_t dmr, *dmrp;
5602
5603 ASSERT(sfmmup->sfmmu_as != NULL);
5604
5605 ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
5606 AS_LOCK_HELD(sfmmup->sfmmu_as));
5607
5608 ASSERT(sfmmup != NULL);
5609 ASSERT((len & MMU_PAGEOFFSET) == 0);
5610 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5611
5612 /*
5613 * Probing through a large VA range (say 63 bits) will be slow, even
5614 * at 4 Meg steps between the probes. So, when the virtual address range
5615 * is very large, search the HME entries for what to unload.
5616 *
5617 * len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5618 *
5619 * UHMEHASH_SZ is number of hash buckets to examine
5620 *
5621 */
5622 if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5623 hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5624 return;
5625 }
5626
5627 CPUSET_ZERO(cpuset);
5628
5629 /*
5630 * If the process is exiting, we can save a lot of fuss since
5631 * we'll flush the TLB when we free the ctx anyway.
5632 */
5633 if (sfmmup->sfmmu_free) {
5634 dmrp = NULL;
5635 } else {
5636 dmrp = &dmr;
5637 DEMAP_RANGE_INIT(sfmmup, dmrp);
5638 }
5639
5640 endaddr = addr + len;
5641 hblktag.htag_id = sfmmup;
5642 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5643
5644 /*
5645 * It is likely for the vm to call unload over a wide range of
5646 * addresses that are actually very sparsely populated by
5647 * translations. In order to speed this up the sfmmu hat supports
5648 * the concept of shadow hmeblks. Dummy large page hmeblks that
5649 * correspond to actual small translations are allocated at tteload
5650 * time and are referred to as shadow hmeblks. Now, during unload
5651 * time, we first check if we have a shadow hmeblk for that
5652 * translation. The absence of one means the corresponding address
5653 * range is empty and can be skipped.
5654 *
5655 * The kernel is an exception to above statement and that is why
5656 * we don't use shadow hmeblks and hash starting from the smallest
5657 * page size.
5658 */
5659 if (sfmmup == KHATID) {
5660 iskernel = 1;
5661 hashno = TTE64K;
5662 } else {
5663 iskernel = 0;
5664 if (mmu_page_sizes == max_mmu_page_sizes) {
5665 hashno = TTE256M;
5666 } else {
5667 hashno = TTE4M;
5668 }
5669 }
5670 while (addr < endaddr) {
5671 hmeshift = HME_HASH_SHIFT(hashno);
5672 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5673 hblktag.htag_rehash = hashno;
5674 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5675
5676 SFMMU_HASH_LOCK(hmebp);
5677
5678 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
5679 if (hmeblkp == NULL) {
5680 /*
5681 * didn't find an hmeblk. skip the appropiate
5682 * address range.
5683 */
5684 SFMMU_HASH_UNLOCK(hmebp);
5685 if (iskernel) {
5686 if (hashno < mmu_hashcnt) {
5687 hashno++;
5688 continue;
5689 } else {
5690 hashno = TTE64K;
5691 addr = (caddr_t)roundup((uintptr_t)addr
5692 + 1, MMU_PAGESIZE64K);
5693 continue;
5694 }
5695 }
5696 addr = (caddr_t)roundup((uintptr_t)addr + 1,
5697 (1 << hmeshift));
5698 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5699 ASSERT(hashno == TTE64K);
5700 continue;
5701 }
5702 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5703 hashno = TTE512K;
5704 continue;
5705 }
5706 if (mmu_page_sizes == max_mmu_page_sizes) {
5707 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5708 hashno = TTE4M;
5709 continue;
5710 }
5711 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5712 hashno = TTE32M;
5713 continue;
5714 }
5715 hashno = TTE256M;
5716 continue;
5717 } else {
5718 hashno = TTE4M;
5719 continue;
5720 }
5721 }
5722 ASSERT(hmeblkp);
5723 ASSERT(!hmeblkp->hblk_shared);
5724 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5725 /*
5726 * If the valid count is zero we can skip the range
5727 * mapped by this hmeblk.
5728 * We free hblks in the case of HAT_UNMAP. HAT_UNMAP
5729 * is used by segment drivers as a hint
5730 * that the mapping resource won't be used any longer.
5731 * The best example of this is during exit().
5732 */
5733 addr = (caddr_t)roundup((uintptr_t)addr + 1,
5734 get_hblk_span(hmeblkp));
5735 if ((flags & HAT_UNLOAD_UNMAP) ||
5736 (iskernel && !issegkmap)) {
5737 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5738 &list, 0);
5739 }
5740 SFMMU_HASH_UNLOCK(hmebp);
5741
5742 if (iskernel) {
5743 hashno = TTE64K;
5744 continue;
5745 }
5746 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5747 ASSERT(hashno == TTE64K);
5748 continue;
5749 }
5750 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5751 hashno = TTE512K;
5752 continue;
5753 }
5754 if (mmu_page_sizes == max_mmu_page_sizes) {
5755 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5756 hashno = TTE4M;
5757 continue;
5758 }
5759 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5760 hashno = TTE32M;
5761 continue;
5762 }
5763 hashno = TTE256M;
5764 continue;
5765 } else {
5766 hashno = TTE4M;
5767 continue;
5768 }
5769 }
5770 if (hmeblkp->hblk_shw_bit) {
5771 /*
5772 * If we encounter a shadow hmeblk we know there is
5773 * smaller sized hmeblks mapping the same address space.
5774 * Decrement the hash size and rehash.
5775 */
5776 ASSERT(sfmmup != KHATID);
5777 hashno--;
5778 SFMMU_HASH_UNLOCK(hmebp);
5779 continue;
5780 }
5781
5782 /*
5783 * track callback address ranges.
5784 * only start a new range when it's not contiguous
5785 */
5786 if (callback != NULL) {
5787 if (addr_count > 0 &&
5788 addr == cb_end_addr[addr_count - 1])
5789 --addr_count;
5790 else
5791 cb_start_addr[addr_count] = addr;
5792 }
5793
5794 addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5795 dmrp, flags);
5796
5797 if (callback != NULL)
5798 cb_end_addr[addr_count++] = addr;
5799
5800 if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5801 !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5802 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 0);
5803 }
5804 SFMMU_HASH_UNLOCK(hmebp);
5805
5806 /*
5807 * Notify our caller as to exactly which pages
5808 * have been unloaded. We do these in clumps,
5809 * to minimize the number of xt_sync()s that need to occur.
5810 */
5811 if (callback != NULL && addr_count == MAX_CB_ADDR) {
5812 if (dmrp != NULL) {
5813 DEMAP_RANGE_FLUSH(dmrp);
5814 cpuset = sfmmup->sfmmu_cpusran;
5815 xt_sync(cpuset);
5816 }
5817
5818 for (a = 0; a < MAX_CB_ADDR; ++a) {
5819 callback->hcb_start_addr = cb_start_addr[a];
5820 callback->hcb_end_addr = cb_end_addr[a];
5821 callback->hcb_function(callback);
5822 }
5823 addr_count = 0;
5824 }
5825 if (iskernel) {
5826 hashno = TTE64K;
5827 continue;
5828 }
5829 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5830 ASSERT(hashno == TTE64K);
5831 continue;
5832 }
5833 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5834 hashno = TTE512K;
5835 continue;
5836 }
5837 if (mmu_page_sizes == max_mmu_page_sizes) {
5838 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5839 hashno = TTE4M;
5840 continue;
5841 }
5842 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5843 hashno = TTE32M;
5844 continue;
5845 }
5846 hashno = TTE256M;
5847 } else {
5848 hashno = TTE4M;
5849 }
5850 }
5851
5852 sfmmu_hblks_list_purge(&list, 0);
5853 if (dmrp != NULL) {
5854 DEMAP_RANGE_FLUSH(dmrp);
5855 cpuset = sfmmup->sfmmu_cpusran;
5856 xt_sync(cpuset);
5857 }
5858 if (callback && addr_count != 0) {
5859 for (a = 0; a < addr_count; ++a) {
5860 callback->hcb_start_addr = cb_start_addr[a];
5861 callback->hcb_end_addr = cb_end_addr[a];
5862 callback->hcb_function(callback);
5863 }
5864 }
5865
5866 /*
5867 * Check TSB and TLB page sizes if the process isn't exiting.
5868 */
5869 if (!sfmmup->sfmmu_free)
5870 sfmmu_check_page_sizes(sfmmup, 0);
5871 }
5872
5873 /*
5874 * Unload all the mappings in the range [addr..addr+len). addr and len must
5875 * be MMU_PAGESIZE aligned.
5876 */
5877 void
hat_unload(struct hat * sfmmup,caddr_t addr,size_t len,uint_t flags)5878 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5879 {
5880 hat_unload_callback(sfmmup, addr, len, flags, NULL);
5881 }
5882
5883
5884 /*
5885 * Find the largest mapping size for this page.
5886 */
5887 int
fnd_mapping_sz(page_t * pp)5888 fnd_mapping_sz(page_t *pp)
5889 {
5890 int sz;
5891 int p_index;
5892
5893 p_index = PP_MAPINDEX(pp);
5894
5895 sz = 0;
5896 p_index >>= 1; /* don't care about 8K bit */
5897 for (; p_index; p_index >>= 1) {
5898 sz++;
5899 }
5900
5901 return (sz);
5902 }
5903
5904 /*
5905 * This function unloads a range of addresses for an hmeblk.
5906 * It returns the next address to be unloaded.
5907 * It should be called with the hash lock held.
5908 */
5909 static caddr_t
sfmmu_hblk_unload(struct hat * sfmmup,struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr,demap_range_t * dmrp,uint_t flags)5910 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5911 caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5912 {
5913 tte_t tte, ttemod;
5914 struct sf_hment *sfhmep;
5915 int ttesz;
5916 long ttecnt;
5917 page_t *pp;
5918 kmutex_t *pml;
5919 int ret;
5920 int use_demap_range;
5921
5922 ASSERT(in_hblk_range(hmeblkp, addr));
5923 ASSERT(!hmeblkp->hblk_shw_bit);
5924 ASSERT(sfmmup != NULL || hmeblkp->hblk_shared);
5925 ASSERT(sfmmup == NULL || !hmeblkp->hblk_shared);
5926 ASSERT(dmrp == NULL || !hmeblkp->hblk_shared);
5927
5928 #ifdef DEBUG
5929 if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5930 (endaddr < get_hblk_endaddr(hmeblkp))) {
5931 panic("sfmmu_hblk_unload: partial unload of large page");
5932 }
5933 #endif /* DEBUG */
5934
5935 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5936 ttesz = get_hblk_ttesz(hmeblkp);
5937
5938 use_demap_range = ((dmrp == NULL) ||
5939 (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5940
5941 if (use_demap_range) {
5942 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5943 } else if (dmrp != NULL) {
5944 DEMAP_RANGE_FLUSH(dmrp);
5945 }
5946 ttecnt = 0;
5947 HBLKTOHME(sfhmep, hmeblkp, addr);
5948
5949 while (addr < endaddr) {
5950 pml = NULL;
5951 sfmmu_copytte(&sfhmep->hme_tte, &tte);
5952 if (TTE_IS_VALID(&tte)) {
5953 pp = sfhmep->hme_page;
5954 if (pp != NULL) {
5955 pml = sfmmu_mlist_enter(pp);
5956 }
5957
5958 /*
5959 * Verify if hme still points to 'pp' now that
5960 * we have p_mapping lock.
5961 */
5962 if (sfhmep->hme_page != pp) {
5963 if (pp != NULL && sfhmep->hme_page != NULL) {
5964 ASSERT(pml != NULL);
5965 sfmmu_mlist_exit(pml);
5966 /* Re-start this iteration. */
5967 continue;
5968 }
5969 ASSERT((pp != NULL) &&
5970 (sfhmep->hme_page == NULL));
5971 goto tte_unloaded;
5972 }
5973
5974 /*
5975 * This point on we have both HASH and p_mapping
5976 * lock.
5977 */
5978 ASSERT(pp == sfhmep->hme_page);
5979 ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5980
5981 /*
5982 * We need to loop on modify tte because it is
5983 * possible for pagesync to come along and
5984 * change the software bits beneath us.
5985 *
5986 * Page_unload can also invalidate the tte after
5987 * we read tte outside of p_mapping lock.
5988 */
5989 again:
5990 ttemod = tte;
5991
5992 TTE_SET_INVALID(&ttemod);
5993 ret = sfmmu_modifytte_try(&tte, &ttemod,
5994 &sfhmep->hme_tte);
5995
5996 if (ret <= 0) {
5997 if (TTE_IS_VALID(&tte)) {
5998 ASSERT(ret < 0);
5999 goto again;
6000 }
6001 if (pp != NULL) {
6002 panic("sfmmu_hblk_unload: pp = 0x%p "
6003 "tte became invalid under mlist"
6004 " lock = 0x%p", (void *)pp,
6005 (void *)pml);
6006 }
6007 continue;
6008 }
6009
6010 if (!(flags & HAT_UNLOAD_NOSYNC)) {
6011 sfmmu_ttesync(sfmmup, addr, &tte, pp);
6012 }
6013
6014 /*
6015 * Ok- we invalidated the tte. Do the rest of the job.
6016 */
6017 ttecnt++;
6018
6019 if (flags & HAT_UNLOAD_UNLOCK) {
6020 ASSERT(hmeblkp->hblk_lckcnt > 0);
6021 atomic_dec_32(&hmeblkp->hblk_lckcnt);
6022 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
6023 }
6024
6025 /*
6026 * Normally we would need to flush the page
6027 * from the virtual cache at this point in
6028 * order to prevent a potential cache alias
6029 * inconsistency.
6030 * The particular scenario we need to worry
6031 * about is:
6032 * Given: va1 and va2 are two virtual address
6033 * that alias and map the same physical
6034 * address.
6035 * 1. mapping exists from va1 to pa and data
6036 * has been read into the cache.
6037 * 2. unload va1.
6038 * 3. load va2 and modify data using va2.
6039 * 4 unload va2.
6040 * 5. load va1 and reference data. Unless we
6041 * flush the data cache when we unload we will
6042 * get stale data.
6043 * Fortunately, page coloring eliminates the
6044 * above scenario by remembering the color a
6045 * physical page was last or is currently
6046 * mapped to. Now, we delay the flush until
6047 * the loading of translations. Only when the
6048 * new translation is of a different color
6049 * are we forced to flush.
6050 */
6051 if (use_demap_range) {
6052 /*
6053 * Mark this page as needing a demap.
6054 */
6055 DEMAP_RANGE_MARKPG(dmrp, addr);
6056 } else {
6057 ASSERT(sfmmup != NULL);
6058 ASSERT(!hmeblkp->hblk_shared);
6059 sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
6060 sfmmup->sfmmu_free, 0);
6061 }
6062
6063 if (pp) {
6064 /*
6065 * Remove the hment from the mapping list
6066 */
6067 ASSERT(hmeblkp->hblk_hmecnt > 0);
6068
6069 /*
6070 * Again, we cannot
6071 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
6072 */
6073 HME_SUB(sfhmep, pp);
6074 membar_stst();
6075 atomic_dec_16(&hmeblkp->hblk_hmecnt);
6076 }
6077
6078 ASSERT(hmeblkp->hblk_vcnt > 0);
6079 atomic_dec_16(&hmeblkp->hblk_vcnt);
6080
6081 ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6082 !hmeblkp->hblk_lckcnt);
6083
6084 #ifdef VAC
6085 if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
6086 if (PP_ISTNC(pp)) {
6087 /*
6088 * If page was temporary
6089 * uncached, try to recache
6090 * it. Note that HME_SUB() was
6091 * called above so p_index and
6092 * mlist had been updated.
6093 */
6094 conv_tnc(pp, ttesz);
6095 } else if (pp->p_mapping == NULL) {
6096 ASSERT(kpm_enable);
6097 /*
6098 * Page is marked to be in VAC conflict
6099 * to an existing kpm mapping and/or is
6100 * kpm mapped using only the regular
6101 * pagesize.
6102 */
6103 sfmmu_kpm_hme_unload(pp);
6104 }
6105 }
6106 #endif /* VAC */
6107 } else if ((pp = sfhmep->hme_page) != NULL) {
6108 /*
6109 * TTE is invalid but the hme
6110 * still exists. let pageunload
6111 * complete its job.
6112 */
6113 ASSERT(pml == NULL);
6114 pml = sfmmu_mlist_enter(pp);
6115 if (sfhmep->hme_page != NULL) {
6116 sfmmu_mlist_exit(pml);
6117 continue;
6118 }
6119 ASSERT(sfhmep->hme_page == NULL);
6120 } else if (hmeblkp->hblk_hmecnt != 0) {
6121 /*
6122 * pageunload may have not finished decrementing
6123 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
6124 * wait for pageunload to finish. Rely on pageunload
6125 * to decrement hblk_hmecnt after hblk_vcnt.
6126 */
6127 pfn_t pfn = TTE_TO_TTEPFN(&tte);
6128 ASSERT(pml == NULL);
6129 if (pf_is_memory(pfn)) {
6130 pp = page_numtopp_nolock(pfn);
6131 if (pp != NULL) {
6132 pml = sfmmu_mlist_enter(pp);
6133 sfmmu_mlist_exit(pml);
6134 pml = NULL;
6135 }
6136 }
6137 }
6138
6139 tte_unloaded:
6140 /*
6141 * At this point, the tte we are looking at
6142 * should be unloaded, and hme has been unlinked
6143 * from page too. This is important because in
6144 * pageunload, it does ttesync() then HME_SUB.
6145 * We need to make sure HME_SUB has been completed
6146 * so we know ttesync() has been completed. Otherwise,
6147 * at exit time, after return from hat layer, VM will
6148 * release as structure which hat_setstat() (called
6149 * by ttesync()) needs.
6150 */
6151 #ifdef DEBUG
6152 {
6153 tte_t dtte;
6154
6155 ASSERT(sfhmep->hme_page == NULL);
6156
6157 sfmmu_copytte(&sfhmep->hme_tte, &dtte);
6158 ASSERT(!TTE_IS_VALID(&dtte));
6159 }
6160 #endif
6161
6162 if (pml) {
6163 sfmmu_mlist_exit(pml);
6164 }
6165
6166 addr += TTEBYTES(ttesz);
6167 sfhmep++;
6168 DEMAP_RANGE_NEXTPG(dmrp);
6169 }
6170 /*
6171 * For shared hmeblks this routine is only called when region is freed
6172 * and no longer referenced. So no need to decrement ttecnt
6173 * in the region structure here.
6174 */
6175 if (ttecnt > 0 && sfmmup != NULL) {
6176 atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
6177 }
6178 return (addr);
6179 }
6180
6181 /*
6182 * Invalidate a virtual address range for the local CPU.
6183 * For best performance ensure that the va range is completely
6184 * mapped, otherwise the entire TLB will be flushed.
6185 */
6186 void
hat_flush_range(struct hat * sfmmup,caddr_t va,size_t size)6187 hat_flush_range(struct hat *sfmmup, caddr_t va, size_t size)
6188 {
6189 ssize_t sz;
6190 caddr_t endva = va + size;
6191
6192 while (va < endva) {
6193 sz = hat_getpagesize(sfmmup, va);
6194 if (sz < 0) {
6195 vtag_flushall();
6196 break;
6197 }
6198 vtag_flushpage(va, (uint64_t)sfmmup);
6199 va += sz;
6200 }
6201 }
6202
6203 /*
6204 * Synchronize all the mappings in the range [addr..addr+len).
6205 * Can be called with clearflag having two states:
6206 * HAT_SYNC_DONTZERO means just return the rm stats
6207 * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
6208 */
6209 void
hat_sync(struct hat * sfmmup,caddr_t addr,size_t len,uint_t clearflag)6210 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
6211 {
6212 struct hmehash_bucket *hmebp;
6213 hmeblk_tag hblktag;
6214 int hmeshift, hashno = 1;
6215 struct hme_blk *hmeblkp, *list = NULL;
6216 caddr_t endaddr;
6217 cpuset_t cpuset;
6218
6219 ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
6220 ASSERT((len & MMU_PAGEOFFSET) == 0);
6221 ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6222 (clearflag == HAT_SYNC_ZERORM));
6223
6224 CPUSET_ZERO(cpuset);
6225
6226 endaddr = addr + len;
6227 hblktag.htag_id = sfmmup;
6228 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
6229
6230 /*
6231 * Spitfire supports 4 page sizes.
6232 * Most pages are expected to be of the smallest page
6233 * size (8K) and these will not need to be rehashed. 64K
6234 * pages also don't need to be rehashed because the an hmeblk
6235 * spans 64K of address space. 512K pages might need 1 rehash and
6236 * and 4M pages 2 rehashes.
6237 */
6238 while (addr < endaddr) {
6239 hmeshift = HME_HASH_SHIFT(hashno);
6240 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
6241 hblktag.htag_rehash = hashno;
6242 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
6243
6244 SFMMU_HASH_LOCK(hmebp);
6245
6246 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
6247 if (hmeblkp != NULL) {
6248 ASSERT(!hmeblkp->hblk_shared);
6249 /*
6250 * We've encountered a shadow hmeblk so skip the range
6251 * of the next smaller mapping size.
6252 */
6253 if (hmeblkp->hblk_shw_bit) {
6254 ASSERT(sfmmup != ksfmmup);
6255 ASSERT(hashno > 1);
6256 addr = (caddr_t)P2END((uintptr_t)addr,
6257 TTEBYTES(hashno - 1));
6258 } else {
6259 addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
6260 addr, endaddr, clearflag);
6261 }
6262 SFMMU_HASH_UNLOCK(hmebp);
6263 hashno = 1;
6264 continue;
6265 }
6266 SFMMU_HASH_UNLOCK(hmebp);
6267
6268 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
6269 /*
6270 * We have traversed the whole list and rehashed
6271 * if necessary without finding the address to sync.
6272 * This is ok so we increment the address by the
6273 * smallest hmeblk range for kernel mappings and the
6274 * largest hmeblk range, to account for shadow hmeblks,
6275 * for user mappings and continue.
6276 */
6277 if (sfmmup == ksfmmup)
6278 addr = (caddr_t)P2END((uintptr_t)addr,
6279 TTEBYTES(1));
6280 else
6281 addr = (caddr_t)P2END((uintptr_t)addr,
6282 TTEBYTES(hashno));
6283 hashno = 1;
6284 } else {
6285 hashno++;
6286 }
6287 }
6288 sfmmu_hblks_list_purge(&list, 0);
6289 cpuset = sfmmup->sfmmu_cpusran;
6290 xt_sync(cpuset);
6291 }
6292
6293 static caddr_t
sfmmu_hblk_sync(struct hat * sfmmup,struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr,int clearflag)6294 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
6295 caddr_t endaddr, int clearflag)
6296 {
6297 tte_t tte, ttemod;
6298 struct sf_hment *sfhmep;
6299 int ttesz;
6300 struct page *pp;
6301 kmutex_t *pml;
6302 int ret;
6303
6304 ASSERT(hmeblkp->hblk_shw_bit == 0);
6305 ASSERT(!hmeblkp->hblk_shared);
6306
6307 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6308
6309 ttesz = get_hblk_ttesz(hmeblkp);
6310 HBLKTOHME(sfhmep, hmeblkp, addr);
6311
6312 while (addr < endaddr) {
6313 sfmmu_copytte(&sfhmep->hme_tte, &tte);
6314 if (TTE_IS_VALID(&tte)) {
6315 pml = NULL;
6316 pp = sfhmep->hme_page;
6317 if (pp) {
6318 pml = sfmmu_mlist_enter(pp);
6319 }
6320 if (pp != sfhmep->hme_page) {
6321 /*
6322 * tte most have been unloaded
6323 * underneath us. Recheck
6324 */
6325 ASSERT(pml);
6326 sfmmu_mlist_exit(pml);
6327 continue;
6328 }
6329
6330 ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6331
6332 if (clearflag == HAT_SYNC_ZERORM) {
6333 ttemod = tte;
6334 TTE_CLR_RM(&ttemod);
6335 ret = sfmmu_modifytte_try(&tte, &ttemod,
6336 &sfhmep->hme_tte);
6337 if (ret < 0) {
6338 if (pml) {
6339 sfmmu_mlist_exit(pml);
6340 }
6341 continue;
6342 }
6343
6344 if (ret > 0) {
6345 sfmmu_tlb_demap(addr, sfmmup,
6346 hmeblkp, 0, 0);
6347 }
6348 }
6349 sfmmu_ttesync(sfmmup, addr, &tte, pp);
6350 if (pml) {
6351 sfmmu_mlist_exit(pml);
6352 }
6353 }
6354 addr += TTEBYTES(ttesz);
6355 sfhmep++;
6356 }
6357 return (addr);
6358 }
6359
6360 /*
6361 * This function will sync a tte to the page struct and it will
6362 * update the hat stats. Currently it allows us to pass a NULL pp
6363 * and we will simply update the stats. We may want to change this
6364 * so we only keep stats for pages backed by pp's.
6365 */
6366 static void
sfmmu_ttesync(struct hat * sfmmup,caddr_t addr,tte_t * ttep,page_t * pp)6367 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
6368 {
6369 uint_t rm = 0;
6370 int sz;
6371 pgcnt_t npgs;
6372
6373 ASSERT(TTE_IS_VALID(ttep));
6374
6375 if (TTE_IS_NOSYNC(ttep)) {
6376 return;
6377 }
6378
6379 if (TTE_IS_REF(ttep)) {
6380 rm = P_REF;
6381 }
6382 if (TTE_IS_MOD(ttep)) {
6383 rm |= P_MOD;
6384 }
6385
6386 if (rm == 0) {
6387 return;
6388 }
6389
6390 sz = TTE_CSZ(ttep);
6391 if (sfmmup != NULL && sfmmup->sfmmu_rmstat) {
6392 int i;
6393 caddr_t vaddr = addr;
6394
6395 for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
6396 hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
6397 }
6398
6399 }
6400
6401 /*
6402 * XXX I want to use cas to update nrm bits but they
6403 * currently belong in common/vm and not in hat where
6404 * they should be.
6405 * The nrm bits are protected by the same mutex as
6406 * the one that protects the page's mapping list.
6407 */
6408 if (!pp)
6409 return;
6410 ASSERT(sfmmu_mlist_held(pp));
6411 /*
6412 * If the tte is for a large page, we need to sync all the
6413 * pages covered by the tte.
6414 */
6415 if (sz != TTE8K) {
6416 ASSERT(pp->p_szc != 0);
6417 pp = PP_GROUPLEADER(pp, sz);
6418 ASSERT(sfmmu_mlist_held(pp));
6419 }
6420
6421 /* Get number of pages from tte size. */
6422 npgs = TTEPAGES(sz);
6423
6424 do {
6425 ASSERT(pp);
6426 ASSERT(sfmmu_mlist_held(pp));
6427 if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
6428 ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
6429 hat_page_setattr(pp, rm);
6430
6431 /*
6432 * Are we done? If not, we must have a large mapping.
6433 * For large mappings we need to sync the rest of the pages
6434 * covered by this tte; goto the next page.
6435 */
6436 } while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
6437 }
6438
6439 /*
6440 * Execute pre-callback handler of each pa_hment linked to pp
6441 *
6442 * Inputs:
6443 * flag: either HAT_PRESUSPEND or HAT_SUSPEND.
6444 * capture_cpus: pointer to return value (below)
6445 *
6446 * Returns:
6447 * Propagates the subsystem callback return values back to the caller;
6448 * returns 0 on success. If capture_cpus is non-NULL, the value returned
6449 * is zero if all of the pa_hments are of a type that do not require
6450 * capturing CPUs prior to suspending the mapping, else it is 1.
6451 */
6452 static int
hat_pageprocess_precallbacks(struct page * pp,uint_t flag,int * capture_cpus)6453 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
6454 {
6455 struct sf_hment *sfhmep;
6456 struct pa_hment *pahmep;
6457 int (*f)(caddr_t, uint_t, uint_t, void *);
6458 int ret;
6459 id_t id;
6460 int locked = 0;
6461 kmutex_t *pml;
6462
6463 ASSERT(PAGE_EXCL(pp));
6464 if (!sfmmu_mlist_held(pp)) {
6465 pml = sfmmu_mlist_enter(pp);
6466 locked = 1;
6467 }
6468
6469 if (capture_cpus)
6470 *capture_cpus = 0;
6471
6472 top:
6473 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6474 /*
6475 * skip sf_hments corresponding to VA<->PA mappings;
6476 * for pa_hment's, hme_tte.ll is zero
6477 */
6478 if (!IS_PAHME(sfhmep))
6479 continue;
6480
6481 pahmep = sfhmep->hme_data;
6482 ASSERT(pahmep != NULL);
6483
6484 /*
6485 * skip if pre-handler has been called earlier in this loop
6486 */
6487 if (pahmep->flags & flag)
6488 continue;
6489
6490 id = pahmep->cb_id;
6491 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6492 if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
6493 *capture_cpus = 1;
6494 if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
6495 pahmep->flags |= flag;
6496 continue;
6497 }
6498
6499 /*
6500 * Drop the mapping list lock to avoid locking order issues.
6501 */
6502 if (locked)
6503 sfmmu_mlist_exit(pml);
6504
6505 ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
6506 if (ret != 0)
6507 return (ret); /* caller must do the cleanup */
6508
6509 if (locked) {
6510 pml = sfmmu_mlist_enter(pp);
6511 pahmep->flags |= flag;
6512 goto top;
6513 }
6514
6515 pahmep->flags |= flag;
6516 }
6517
6518 if (locked)
6519 sfmmu_mlist_exit(pml);
6520
6521 return (0);
6522 }
6523
6524 /*
6525 * Execute post-callback handler of each pa_hment linked to pp
6526 *
6527 * Same overall assumptions and restrictions apply as for
6528 * hat_pageprocess_precallbacks().
6529 */
6530 static void
hat_pageprocess_postcallbacks(struct page * pp,uint_t flag)6531 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
6532 {
6533 pfn_t pgpfn = pp->p_pagenum;
6534 pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
6535 pfn_t newpfn;
6536 struct sf_hment *sfhmep;
6537 struct pa_hment *pahmep;
6538 int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
6539 id_t id;
6540 int locked = 0;
6541 kmutex_t *pml;
6542
6543 ASSERT(PAGE_EXCL(pp));
6544 if (!sfmmu_mlist_held(pp)) {
6545 pml = sfmmu_mlist_enter(pp);
6546 locked = 1;
6547 }
6548
6549 top:
6550 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6551 /*
6552 * skip sf_hments corresponding to VA<->PA mappings;
6553 * for pa_hment's, hme_tte.ll is zero
6554 */
6555 if (!IS_PAHME(sfhmep))
6556 continue;
6557
6558 pahmep = sfhmep->hme_data;
6559 ASSERT(pahmep != NULL);
6560
6561 if ((pahmep->flags & flag) == 0)
6562 continue;
6563
6564 pahmep->flags &= ~flag;
6565
6566 id = pahmep->cb_id;
6567 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6568 if ((f = sfmmu_cb_table[id].posthandler) == NULL)
6569 continue;
6570
6571 /*
6572 * Convert the base page PFN into the constituent PFN
6573 * which is needed by the callback handler.
6574 */
6575 newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
6576
6577 /*
6578 * Drop the mapping list lock to avoid locking order issues.
6579 */
6580 if (locked)
6581 sfmmu_mlist_exit(pml);
6582
6583 if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
6584 != 0)
6585 panic("sfmmu: posthandler failed");
6586
6587 if (locked) {
6588 pml = sfmmu_mlist_enter(pp);
6589 goto top;
6590 }
6591 }
6592
6593 if (locked)
6594 sfmmu_mlist_exit(pml);
6595 }
6596
6597 /*
6598 * Suspend locked kernel mapping
6599 */
6600 void
hat_pagesuspend(struct page * pp)6601 hat_pagesuspend(struct page *pp)
6602 {
6603 struct sf_hment *sfhmep;
6604 sfmmu_t *sfmmup;
6605 tte_t tte, ttemod;
6606 struct hme_blk *hmeblkp;
6607 caddr_t addr;
6608 int index, cons;
6609 cpuset_t cpuset;
6610
6611 ASSERT(PAGE_EXCL(pp));
6612 ASSERT(sfmmu_mlist_held(pp));
6613
6614 mutex_enter(&kpr_suspendlock);
6615
6616 /*
6617 * We're about to suspend a kernel mapping so mark this thread as
6618 * non-traceable by DTrace. This prevents us from running into issues
6619 * with probe context trying to touch a suspended page
6620 * in the relocation codepath itself.
6621 */
6622 curthread->t_flag |= T_DONTDTRACE;
6623
6624 index = PP_MAPINDEX(pp);
6625 cons = TTE8K;
6626
6627 retry:
6628 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6629
6630 if (IS_PAHME(sfhmep))
6631 continue;
6632
6633 if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6634 continue;
6635
6636 /*
6637 * Loop until we successfully set the suspend bit in
6638 * the TTE.
6639 */
6640 again:
6641 sfmmu_copytte(&sfhmep->hme_tte, &tte);
6642 ASSERT(TTE_IS_VALID(&tte));
6643
6644 ttemod = tte;
6645 TTE_SET_SUSPEND(&ttemod);
6646 if (sfmmu_modifytte_try(&tte, &ttemod,
6647 &sfhmep->hme_tte) < 0)
6648 goto again;
6649
6650 /*
6651 * Invalidate TSB entry
6652 */
6653 hmeblkp = sfmmu_hmetohblk(sfhmep);
6654
6655 sfmmup = hblktosfmmu(hmeblkp);
6656 ASSERT(sfmmup == ksfmmup);
6657 ASSERT(!hmeblkp->hblk_shared);
6658
6659 addr = tte_to_vaddr(hmeblkp, tte);
6660
6661 /*
6662 * No need to make sure that the TSB for this sfmmu is
6663 * not being relocated since it is ksfmmup and thus it
6664 * will never be relocated.
6665 */
6666 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
6667
6668 /*
6669 * Update xcall stats
6670 */
6671 cpuset = cpu_ready_set;
6672 CPUSET_DEL(cpuset, CPU->cpu_id);
6673
6674 /* LINTED: constant in conditional context */
6675 SFMMU_XCALL_STATS(ksfmmup);
6676
6677 /*
6678 * Flush TLB entry on remote CPU's
6679 */
6680 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6681 (uint64_t)ksfmmup);
6682 xt_sync(cpuset);
6683
6684 /*
6685 * Flush TLB entry on local CPU
6686 */
6687 vtag_flushpage(addr, (uint64_t)ksfmmup);
6688 }
6689
6690 while (index != 0) {
6691 index = index >> 1;
6692 if (index != 0)
6693 cons++;
6694 if (index & 0x1) {
6695 pp = PP_GROUPLEADER(pp, cons);
6696 goto retry;
6697 }
6698 }
6699 }
6700
6701 #ifdef DEBUG
6702
6703 #define N_PRLE 1024
6704 struct prle {
6705 page_t *targ;
6706 page_t *repl;
6707 int status;
6708 int pausecpus;
6709 hrtime_t whence;
6710 };
6711
6712 static struct prle page_relocate_log[N_PRLE];
6713 static int prl_entry;
6714 static kmutex_t prl_mutex;
6715
6716 #define PAGE_RELOCATE_LOG(t, r, s, p) \
6717 mutex_enter(&prl_mutex); \
6718 page_relocate_log[prl_entry].targ = *(t); \
6719 page_relocate_log[prl_entry].repl = *(r); \
6720 page_relocate_log[prl_entry].status = (s); \
6721 page_relocate_log[prl_entry].pausecpus = (p); \
6722 page_relocate_log[prl_entry].whence = gethrtime(); \
6723 prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1; \
6724 mutex_exit(&prl_mutex);
6725
6726 #else /* !DEBUG */
6727 #define PAGE_RELOCATE_LOG(t, r, s, p)
6728 #endif
6729
6730 /*
6731 * Core Kernel Page Relocation Algorithm
6732 *
6733 * Input:
6734 *
6735 * target : constituent pages are SE_EXCL locked.
6736 * replacement: constituent pages are SE_EXCL locked.
6737 *
6738 * Output:
6739 *
6740 * nrelocp: number of pages relocated
6741 */
6742 int
hat_page_relocate(page_t ** target,page_t ** replacement,spgcnt_t * nrelocp)6743 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6744 {
6745 page_t *targ, *repl;
6746 page_t *tpp, *rpp;
6747 kmutex_t *low, *high;
6748 spgcnt_t npages, i;
6749 page_t *pl = NULL;
6750 int old_pil;
6751 cpuset_t cpuset;
6752 int cap_cpus;
6753 int ret;
6754 #ifdef VAC
6755 int cflags = 0;
6756 #endif
6757
6758 if (!kcage_on || PP_ISNORELOC(*target)) {
6759 PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6760 return (EAGAIN);
6761 }
6762
6763 mutex_enter(&kpr_mutex);
6764 kreloc_thread = curthread;
6765
6766 targ = *target;
6767 repl = *replacement;
6768 ASSERT(repl != NULL);
6769 ASSERT(targ->p_szc == repl->p_szc);
6770
6771 npages = page_get_pagecnt(targ->p_szc);
6772
6773 /*
6774 * unload VA<->PA mappings that are not locked
6775 */
6776 tpp = targ;
6777 for (i = 0; i < npages; i++) {
6778 (void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6779 tpp++;
6780 }
6781
6782 /*
6783 * Do "presuspend" callbacks, in a context from which we can still
6784 * block as needed. Note that we don't hold the mapping list lock
6785 * of "targ" at this point due to potential locking order issues;
6786 * we assume that between the hat_pageunload() above and holding
6787 * the SE_EXCL lock that the mapping list *cannot* change at this
6788 * point.
6789 */
6790 ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6791 if (ret != 0) {
6792 /*
6793 * EIO translates to fatal error, for all others cleanup
6794 * and return EAGAIN.
6795 */
6796 ASSERT(ret != EIO);
6797 hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6798 PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6799 kreloc_thread = NULL;
6800 mutex_exit(&kpr_mutex);
6801 return (EAGAIN);
6802 }
6803
6804 /*
6805 * acquire p_mapping list lock for both the target and replacement
6806 * root pages.
6807 *
6808 * low and high refer to the need to grab the mlist locks in a
6809 * specific order in order to prevent race conditions. Thus the
6810 * lower lock must be grabbed before the higher lock.
6811 *
6812 * This will block hat_unload's accessing p_mapping list. Since
6813 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6814 * blocked. Thus, no one else will be accessing the p_mapping list
6815 * while we suspend and reload the locked mapping below.
6816 */
6817 tpp = targ;
6818 rpp = repl;
6819 sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6820
6821 kpreempt_disable();
6822
6823 /*
6824 * We raise our PIL to 13 so that we don't get captured by
6825 * another CPU or pinned by an interrupt thread. We can't go to
6826 * PIL 14 since the nexus driver(s) may need to interrupt at
6827 * that level in the case of IOMMU pseudo mappings.
6828 */
6829 cpuset = cpu_ready_set;
6830 CPUSET_DEL(cpuset, CPU->cpu_id);
6831 if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6832 old_pil = splr(XCALL_PIL);
6833 } else {
6834 old_pil = -1;
6835 xc_attention(cpuset);
6836 }
6837 ASSERT(getpil() == XCALL_PIL);
6838
6839 /*
6840 * Now do suspend callbacks. In the case of an IOMMU mapping
6841 * this will suspend all DMA activity to the page while it is
6842 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6843 * may be captured at this point we should have acquired any needed
6844 * locks in the presuspend callback.
6845 */
6846 ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6847 if (ret != 0) {
6848 repl = targ;
6849 goto suspend_fail;
6850 }
6851
6852 /*
6853 * Raise the PIL yet again, this time to block all high-level
6854 * interrupts on this CPU. This is necessary to prevent an
6855 * interrupt routine from pinning the thread which holds the
6856 * mapping suspended and then touching the suspended page.
6857 *
6858 * Once the page is suspended we also need to be careful to
6859 * avoid calling any functions which touch any seg_kmem memory
6860 * since that memory may be backed by the very page we are
6861 * relocating in here!
6862 */
6863 hat_pagesuspend(targ);
6864
6865 /*
6866 * Now that we are confident everybody has stopped using this page,
6867 * copy the page contents. Note we use a physical copy to prevent
6868 * locking issues and to avoid fpRAS because we can't handle it in
6869 * this context.
6870 */
6871 for (i = 0; i < npages; i++, tpp++, rpp++) {
6872 #ifdef VAC
6873 /*
6874 * If the replacement has a different vcolor than
6875 * the one being replacd, we need to handle VAC
6876 * consistency for it just as we were setting up
6877 * a new mapping to it.
6878 */
6879 if ((PP_GET_VCOLOR(rpp) != NO_VCOLOR) &&
6880 (tpp->p_vcolor != rpp->p_vcolor) &&
6881 !CacheColor_IsFlushed(cflags, PP_GET_VCOLOR(rpp))) {
6882 CacheColor_SetFlushed(cflags, PP_GET_VCOLOR(rpp));
6883 sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6884 rpp->p_pagenum);
6885 }
6886 #endif
6887 /*
6888 * Copy the contents of the page.
6889 */
6890 ppcopy_kernel(tpp, rpp);
6891 }
6892
6893 tpp = targ;
6894 rpp = repl;
6895 for (i = 0; i < npages; i++, tpp++, rpp++) {
6896 /*
6897 * Copy attributes. VAC consistency was handled above,
6898 * if required.
6899 */
6900 rpp->p_nrm = tpp->p_nrm;
6901 tpp->p_nrm = 0;
6902 rpp->p_index = tpp->p_index;
6903 tpp->p_index = 0;
6904 #ifdef VAC
6905 rpp->p_vcolor = tpp->p_vcolor;
6906 #endif
6907 }
6908
6909 /*
6910 * First, unsuspend the page, if we set the suspend bit, and transfer
6911 * the mapping list from the target page to the replacement page.
6912 * Next process postcallbacks; since pa_hment's are linked only to the
6913 * p_mapping list of root page, we don't iterate over the constituent
6914 * pages.
6915 */
6916 hat_pagereload(targ, repl);
6917
6918 suspend_fail:
6919 hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6920
6921 /*
6922 * Now lower our PIL and release any captured CPUs since we
6923 * are out of the "danger zone". After this it will again be
6924 * safe to acquire adaptive mutex locks, or to drop them...
6925 */
6926 if (old_pil != -1) {
6927 splx(old_pil);
6928 } else {
6929 xc_dismissed(cpuset);
6930 }
6931
6932 kpreempt_enable();
6933
6934 sfmmu_mlist_reloc_exit(low, high);
6935
6936 /*
6937 * Postsuspend callbacks should drop any locks held across
6938 * the suspend callbacks. As before, we don't hold the mapping
6939 * list lock at this point.. our assumption is that the mapping
6940 * list still can't change due to our holding SE_EXCL lock and
6941 * there being no unlocked mappings left. Hence the restriction
6942 * on calling context to hat_delete_callback()
6943 */
6944 hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6945 if (ret != 0) {
6946 /*
6947 * The second presuspend call failed: we got here through
6948 * the suspend_fail label above.
6949 */
6950 ASSERT(ret != EIO);
6951 PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6952 kreloc_thread = NULL;
6953 mutex_exit(&kpr_mutex);
6954 return (EAGAIN);
6955 }
6956
6957 /*
6958 * Now that we're out of the performance critical section we can
6959 * take care of updating the hash table, since we still
6960 * hold all the pages locked SE_EXCL at this point we
6961 * needn't worry about things changing out from under us.
6962 */
6963 tpp = targ;
6964 rpp = repl;
6965 for (i = 0; i < npages; i++, tpp++, rpp++) {
6966
6967 /*
6968 * replace targ with replacement in page_hash table
6969 */
6970 targ = tpp;
6971 page_relocate_hash(rpp, targ);
6972
6973 /*
6974 * concatenate target; caller of platform_page_relocate()
6975 * expects target to be concatenated after returning.
6976 */
6977 ASSERT(targ->p_next == targ);
6978 ASSERT(targ->p_prev == targ);
6979 page_list_concat(&pl, &targ);
6980 }
6981
6982 ASSERT(*target == pl);
6983 *nrelocp = npages;
6984 PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6985 kreloc_thread = NULL;
6986 mutex_exit(&kpr_mutex);
6987 return (0);
6988 }
6989
6990 /*
6991 * Called when stray pa_hments are found attached to a page which is
6992 * being freed. Notify the subsystem which attached the pa_hment of
6993 * the error if it registered a suitable handler, else panic.
6994 */
6995 static void
sfmmu_pahment_leaked(struct pa_hment * pahmep)6996 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6997 {
6998 id_t cb_id = pahmep->cb_id;
6999
7000 ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
7001 if (sfmmu_cb_table[cb_id].errhandler != NULL) {
7002 if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
7003 HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
7004 return; /* non-fatal */
7005 }
7006 panic("pa_hment leaked: 0x%p", (void *)pahmep);
7007 }
7008
7009 /*
7010 * Remove all mappings to page 'pp'.
7011 */
7012 int
hat_pageunload(struct page * pp,uint_t forceflag)7013 hat_pageunload(struct page *pp, uint_t forceflag)
7014 {
7015 struct page *origpp = pp;
7016 struct sf_hment *sfhme, *tmphme;
7017 struct hme_blk *hmeblkp;
7018 kmutex_t *pml;
7019 #ifdef VAC
7020 kmutex_t *pmtx;
7021 #endif
7022 cpuset_t cpuset, tset;
7023 int index, cons;
7024 int pa_hments;
7025
7026 ASSERT(PAGE_EXCL(pp));
7027
7028 tmphme = NULL;
7029 pa_hments = 0;
7030 CPUSET_ZERO(cpuset);
7031
7032 pml = sfmmu_mlist_enter(pp);
7033
7034 #ifdef VAC
7035 if (pp->p_kpmref)
7036 sfmmu_kpm_pageunload(pp);
7037 ASSERT(!PP_ISMAPPED_KPM(pp));
7038 #endif
7039 /*
7040 * Clear vpm reference. Since the page is exclusively locked
7041 * vpm cannot be referencing it.
7042 */
7043 if (vpm_enable) {
7044 pp->p_vpmref = 0;
7045 }
7046
7047 index = PP_MAPINDEX(pp);
7048 cons = TTE8K;
7049 retry:
7050 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7051 tmphme = sfhme->hme_next;
7052
7053 if (IS_PAHME(sfhme)) {
7054 ASSERT(sfhme->hme_data != NULL);
7055 pa_hments++;
7056 continue;
7057 }
7058
7059 hmeblkp = sfmmu_hmetohblk(sfhme);
7060
7061 /*
7062 * If there are kernel mappings don't unload them, they will
7063 * be suspended.
7064 */
7065 if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
7066 hmeblkp->hblk_tag.htag_id == ksfmmup)
7067 continue;
7068
7069 tset = sfmmu_pageunload(pp, sfhme, cons);
7070 CPUSET_OR(cpuset, tset);
7071 }
7072
7073 while (index != 0) {
7074 index = index >> 1;
7075 if (index != 0)
7076 cons++;
7077 if (index & 0x1) {
7078 /* Go to leading page */
7079 pp = PP_GROUPLEADER(pp, cons);
7080 ASSERT(sfmmu_mlist_held(pp));
7081 goto retry;
7082 }
7083 }
7084
7085 /*
7086 * cpuset may be empty if the page was only mapped by segkpm,
7087 * in which case we won't actually cross-trap.
7088 */
7089 xt_sync(cpuset);
7090
7091 /*
7092 * The page should have no mappings at this point, unless
7093 * we were called from hat_page_relocate() in which case we
7094 * leave the locked mappings which will be suspended later.
7095 */
7096 ASSERT(!PP_ISMAPPED(origpp) || pa_hments ||
7097 (forceflag == SFMMU_KERNEL_RELOC));
7098
7099 #ifdef VAC
7100 if (PP_ISTNC(pp)) {
7101 if (cons == TTE8K) {
7102 pmtx = sfmmu_page_enter(pp);
7103 PP_CLRTNC(pp);
7104 sfmmu_page_exit(pmtx);
7105 } else {
7106 conv_tnc(pp, cons);
7107 }
7108 }
7109 #endif /* VAC */
7110
7111 if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
7112 /*
7113 * Unlink any pa_hments and free them, calling back
7114 * the responsible subsystem to notify it of the error.
7115 * This can occur in situations such as drivers leaking
7116 * DMA handles: naughty, but common enough that we'd like
7117 * to keep the system running rather than bringing it
7118 * down with an obscure error like "pa_hment leaked"
7119 * which doesn't aid the user in debugging their driver.
7120 */
7121 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7122 tmphme = sfhme->hme_next;
7123 if (IS_PAHME(sfhme)) {
7124 struct pa_hment *pahmep = sfhme->hme_data;
7125 sfmmu_pahment_leaked(pahmep);
7126 HME_SUB(sfhme, pp);
7127 kmem_cache_free(pa_hment_cache, pahmep);
7128 }
7129 }
7130
7131 ASSERT(!PP_ISMAPPED(origpp));
7132 }
7133
7134 sfmmu_mlist_exit(pml);
7135
7136 return (0);
7137 }
7138
7139 cpuset_t
sfmmu_pageunload(page_t * pp,struct sf_hment * sfhme,int cons)7140 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
7141 {
7142 struct hme_blk *hmeblkp;
7143 sfmmu_t *sfmmup;
7144 tte_t tte, ttemod;
7145 #ifdef DEBUG
7146 tte_t orig_old;
7147 #endif /* DEBUG */
7148 caddr_t addr;
7149 int ttesz;
7150 int ret;
7151 cpuset_t cpuset;
7152
7153 ASSERT(pp != NULL);
7154 ASSERT(sfmmu_mlist_held(pp));
7155 ASSERT(!PP_ISKAS(pp));
7156
7157 CPUSET_ZERO(cpuset);
7158
7159 hmeblkp = sfmmu_hmetohblk(sfhme);
7160
7161 readtte:
7162 sfmmu_copytte(&sfhme->hme_tte, &tte);
7163 if (TTE_IS_VALID(&tte)) {
7164 sfmmup = hblktosfmmu(hmeblkp);
7165 ttesz = get_hblk_ttesz(hmeblkp);
7166 /*
7167 * Only unload mappings of 'cons' size.
7168 */
7169 if (ttesz != cons)
7170 return (cpuset);
7171
7172 /*
7173 * Note that we have p_mapping lock, but no hash lock here.
7174 * hblk_unload() has to have both hash lock AND p_mapping
7175 * lock before it tries to modify tte. So, the tte could
7176 * not become invalid in the sfmmu_modifytte_try() below.
7177 */
7178 ttemod = tte;
7179 #ifdef DEBUG
7180 orig_old = tte;
7181 #endif /* DEBUG */
7182
7183 TTE_SET_INVALID(&ttemod);
7184 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7185 if (ret < 0) {
7186 #ifdef DEBUG
7187 /* only R/M bits can change. */
7188 chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
7189 #endif /* DEBUG */
7190 goto readtte;
7191 }
7192
7193 if (ret == 0) {
7194 panic("pageunload: cas failed?");
7195 }
7196
7197 addr = tte_to_vaddr(hmeblkp, tte);
7198
7199 if (hmeblkp->hblk_shared) {
7200 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7201 uint_t rid = hmeblkp->hblk_tag.htag_rid;
7202 sf_region_t *rgnp;
7203 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7204 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7205 ASSERT(srdp != NULL);
7206 rgnp = srdp->srd_hmergnp[rid];
7207 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7208 cpuset = sfmmu_rgntlb_demap(addr, rgnp, hmeblkp, 1);
7209 sfmmu_ttesync(NULL, addr, &tte, pp);
7210 ASSERT(rgnp->rgn_ttecnt[ttesz] > 0);
7211 atomic_dec_ulong(&rgnp->rgn_ttecnt[ttesz]);
7212 } else {
7213 sfmmu_ttesync(sfmmup, addr, &tte, pp);
7214 atomic_dec_ulong(&sfmmup->sfmmu_ttecnt[ttesz]);
7215
7216 /*
7217 * We need to flush the page from the virtual cache
7218 * in order to prevent a virtual cache alias
7219 * inconsistency. The particular scenario we need
7220 * to worry about is:
7221 * Given: va1 and va2 are two virtual address that
7222 * alias and will map the same physical address.
7223 * 1. mapping exists from va1 to pa and data has
7224 * been read into the cache.
7225 * 2. unload va1.
7226 * 3. load va2 and modify data using va2.
7227 * 4 unload va2.
7228 * 5. load va1 and reference data. Unless we flush
7229 * the data cache when we unload we will get
7230 * stale data.
7231 * This scenario is taken care of by using virtual
7232 * page coloring.
7233 */
7234 if (sfmmup->sfmmu_ismhat) {
7235 /*
7236 * Flush TSBs, TLBs and caches
7237 * of every process
7238 * sharing this ism segment.
7239 */
7240 sfmmu_hat_lock_all();
7241 mutex_enter(&ism_mlist_lock);
7242 kpreempt_disable();
7243 sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
7244 pp->p_pagenum, CACHE_NO_FLUSH);
7245 kpreempt_enable();
7246 mutex_exit(&ism_mlist_lock);
7247 sfmmu_hat_unlock_all();
7248 cpuset = cpu_ready_set;
7249 } else {
7250 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7251 cpuset = sfmmup->sfmmu_cpusran;
7252 }
7253 }
7254
7255 /*
7256 * Hme_sub has to run after ttesync() and a_rss update.
7257 * See hblk_unload().
7258 */
7259 HME_SUB(sfhme, pp);
7260 membar_stst();
7261
7262 /*
7263 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
7264 * since pteload may have done a HME_ADD() right after
7265 * we did the HME_SUB() above. Hmecnt is now maintained
7266 * by cas only. no lock guranteed its value. The only
7267 * gurantee we have is the hmecnt should not be less than
7268 * what it should be so the hblk will not be taken away.
7269 * It's also important that we decremented the hmecnt after
7270 * we are done with hmeblkp so that this hmeblk won't be
7271 * stolen.
7272 */
7273 ASSERT(hmeblkp->hblk_hmecnt > 0);
7274 ASSERT(hmeblkp->hblk_vcnt > 0);
7275 atomic_dec_16(&hmeblkp->hblk_vcnt);
7276 atomic_dec_16(&hmeblkp->hblk_hmecnt);
7277 /*
7278 * This is bug 4063182.
7279 * XXX: fixme
7280 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
7281 * !hmeblkp->hblk_lckcnt);
7282 */
7283 } else {
7284 panic("invalid tte? pp %p &tte %p",
7285 (void *)pp, (void *)&tte);
7286 }
7287
7288 return (cpuset);
7289 }
7290
7291 /*
7292 * While relocating a kernel page, this function will move the mappings
7293 * from tpp to dpp and modify any associated data with these mappings.
7294 * It also unsuspends the suspended kernel mapping.
7295 */
7296 static void
hat_pagereload(struct page * tpp,struct page * dpp)7297 hat_pagereload(struct page *tpp, struct page *dpp)
7298 {
7299 struct sf_hment *sfhme;
7300 tte_t tte, ttemod;
7301 int index, cons;
7302
7303 ASSERT(getpil() == PIL_MAX);
7304 ASSERT(sfmmu_mlist_held(tpp));
7305 ASSERT(sfmmu_mlist_held(dpp));
7306
7307 index = PP_MAPINDEX(tpp);
7308 cons = TTE8K;
7309
7310 /* Update real mappings to the page */
7311 retry:
7312 for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
7313 if (IS_PAHME(sfhme))
7314 continue;
7315 sfmmu_copytte(&sfhme->hme_tte, &tte);
7316 ttemod = tte;
7317
7318 /*
7319 * replace old pfn with new pfn in TTE
7320 */
7321 PFN_TO_TTE(ttemod, dpp->p_pagenum);
7322
7323 /*
7324 * clear suspend bit
7325 */
7326 ASSERT(TTE_IS_SUSPEND(&ttemod));
7327 TTE_CLR_SUSPEND(&ttemod);
7328
7329 if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
7330 panic("hat_pagereload(): sfmmu_modifytte_try() failed");
7331
7332 /*
7333 * set hme_page point to new page
7334 */
7335 sfhme->hme_page = dpp;
7336 }
7337
7338 /*
7339 * move p_mapping list from old page to new page
7340 */
7341 dpp->p_mapping = tpp->p_mapping;
7342 tpp->p_mapping = NULL;
7343 dpp->p_share = tpp->p_share;
7344 tpp->p_share = 0;
7345
7346 while (index != 0) {
7347 index = index >> 1;
7348 if (index != 0)
7349 cons++;
7350 if (index & 0x1) {
7351 tpp = PP_GROUPLEADER(tpp, cons);
7352 dpp = PP_GROUPLEADER(dpp, cons);
7353 goto retry;
7354 }
7355 }
7356
7357 curthread->t_flag &= ~T_DONTDTRACE;
7358 mutex_exit(&kpr_suspendlock);
7359 }
7360
7361 uint_t
hat_pagesync(struct page * pp,uint_t clearflag)7362 hat_pagesync(struct page *pp, uint_t clearflag)
7363 {
7364 struct sf_hment *sfhme, *tmphme = NULL;
7365 struct hme_blk *hmeblkp;
7366 kmutex_t *pml;
7367 cpuset_t cpuset, tset;
7368 int index, cons;
7369 extern ulong_t po_share;
7370 page_t *save_pp = pp;
7371 int stop_on_sh = 0;
7372 uint_t shcnt;
7373
7374 CPUSET_ZERO(cpuset);
7375
7376 if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
7377 return (PP_GENERIC_ATTR(pp));
7378 }
7379
7380 if ((clearflag & HAT_SYNC_ZERORM) == 0) {
7381 if ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(pp)) {
7382 return (PP_GENERIC_ATTR(pp));
7383 }
7384 if ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(pp)) {
7385 return (PP_GENERIC_ATTR(pp));
7386 }
7387 if (clearflag & HAT_SYNC_STOPON_SHARED) {
7388 if (pp->p_share > po_share) {
7389 hat_page_setattr(pp, P_REF);
7390 return (PP_GENERIC_ATTR(pp));
7391 }
7392 stop_on_sh = 1;
7393 shcnt = 0;
7394 }
7395 }
7396
7397 clearflag &= ~HAT_SYNC_STOPON_SHARED;
7398 pml = sfmmu_mlist_enter(pp);
7399 index = PP_MAPINDEX(pp);
7400 cons = TTE8K;
7401 retry:
7402 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7403 /*
7404 * We need to save the next hment on the list since
7405 * it is possible for pagesync to remove an invalid hment
7406 * from the list.
7407 */
7408 tmphme = sfhme->hme_next;
7409 if (IS_PAHME(sfhme))
7410 continue;
7411 /*
7412 * If we are looking for large mappings and this hme doesn't
7413 * reach the range we are seeking, just ignore it.
7414 */
7415 hmeblkp = sfmmu_hmetohblk(sfhme);
7416
7417 if (hme_size(sfhme) < cons)
7418 continue;
7419
7420 if (stop_on_sh) {
7421 if (hmeblkp->hblk_shared) {
7422 sf_srd_t *srdp = hblktosrd(hmeblkp);
7423 uint_t rid = hmeblkp->hblk_tag.htag_rid;
7424 sf_region_t *rgnp;
7425 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7426 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7427 ASSERT(srdp != NULL);
7428 rgnp = srdp->srd_hmergnp[rid];
7429 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
7430 rgnp, rid);
7431 shcnt += rgnp->rgn_refcnt;
7432 } else {
7433 shcnt++;
7434 }
7435 if (shcnt > po_share) {
7436 /*
7437 * tell the pager to spare the page this time
7438 * around.
7439 */
7440 hat_page_setattr(save_pp, P_REF);
7441 index = 0;
7442 break;
7443 }
7444 }
7445 tset = sfmmu_pagesync(pp, sfhme,
7446 clearflag & ~HAT_SYNC_STOPON_RM);
7447 CPUSET_OR(cpuset, tset);
7448
7449 /*
7450 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
7451 * as the "ref" or "mod" is set or share cnt exceeds po_share.
7452 */
7453 if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
7454 (((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
7455 ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)))) {
7456 index = 0;
7457 break;
7458 }
7459 }
7460
7461 while (index) {
7462 index = index >> 1;
7463 cons++;
7464 if (index & 0x1) {
7465 /* Go to leading page */
7466 pp = PP_GROUPLEADER(pp, cons);
7467 goto retry;
7468 }
7469 }
7470
7471 xt_sync(cpuset);
7472 sfmmu_mlist_exit(pml);
7473 return (PP_GENERIC_ATTR(save_pp));
7474 }
7475
7476 /*
7477 * Get all the hardware dependent attributes for a page struct
7478 */
7479 static cpuset_t
sfmmu_pagesync(struct page * pp,struct sf_hment * sfhme,uint_t clearflag)7480 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
7481 uint_t clearflag)
7482 {
7483 caddr_t addr;
7484 tte_t tte, ttemod;
7485 struct hme_blk *hmeblkp;
7486 int ret;
7487 sfmmu_t *sfmmup;
7488 cpuset_t cpuset;
7489
7490 ASSERT(pp != NULL);
7491 ASSERT(sfmmu_mlist_held(pp));
7492 ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
7493 (clearflag == HAT_SYNC_ZERORM));
7494
7495 SFMMU_STAT(sf_pagesync);
7496
7497 CPUSET_ZERO(cpuset);
7498
7499 sfmmu_pagesync_retry:
7500
7501 sfmmu_copytte(&sfhme->hme_tte, &tte);
7502 if (TTE_IS_VALID(&tte)) {
7503 hmeblkp = sfmmu_hmetohblk(sfhme);
7504 sfmmup = hblktosfmmu(hmeblkp);
7505 addr = tte_to_vaddr(hmeblkp, tte);
7506 if (clearflag == HAT_SYNC_ZERORM) {
7507 ttemod = tte;
7508 TTE_CLR_RM(&ttemod);
7509 ret = sfmmu_modifytte_try(&tte, &ttemod,
7510 &sfhme->hme_tte);
7511 if (ret < 0) {
7512 /*
7513 * cas failed and the new value is not what
7514 * we want.
7515 */
7516 goto sfmmu_pagesync_retry;
7517 }
7518
7519 if (ret > 0) {
7520 /* we win the cas */
7521 if (hmeblkp->hblk_shared) {
7522 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7523 uint_t rid =
7524 hmeblkp->hblk_tag.htag_rid;
7525 sf_region_t *rgnp;
7526 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7527 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7528 ASSERT(srdp != NULL);
7529 rgnp = srdp->srd_hmergnp[rid];
7530 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7531 srdp, rgnp, rid);
7532 cpuset = sfmmu_rgntlb_demap(addr,
7533 rgnp, hmeblkp, 1);
7534 } else {
7535 sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
7536 0, 0);
7537 cpuset = sfmmup->sfmmu_cpusran;
7538 }
7539 }
7540 }
7541 sfmmu_ttesync(hmeblkp->hblk_shared ? NULL : sfmmup, addr,
7542 &tte, pp);
7543 }
7544 return (cpuset);
7545 }
7546
7547 /*
7548 * Remove write permission from a mappings to a page, so that
7549 * we can detect the next modification of it. This requires modifying
7550 * the TTE then invalidating (demap) any TLB entry using that TTE.
7551 * This code is similar to sfmmu_pagesync().
7552 */
7553 static cpuset_t
sfmmu_pageclrwrt(struct page * pp,struct sf_hment * sfhme)7554 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
7555 {
7556 caddr_t addr;
7557 tte_t tte;
7558 tte_t ttemod;
7559 struct hme_blk *hmeblkp;
7560 int ret;
7561 sfmmu_t *sfmmup;
7562 cpuset_t cpuset;
7563
7564 ASSERT(pp != NULL);
7565 ASSERT(sfmmu_mlist_held(pp));
7566
7567 CPUSET_ZERO(cpuset);
7568 SFMMU_STAT(sf_clrwrt);
7569
7570 retry:
7571
7572 sfmmu_copytte(&sfhme->hme_tte, &tte);
7573 if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
7574 hmeblkp = sfmmu_hmetohblk(sfhme);
7575 sfmmup = hblktosfmmu(hmeblkp);
7576 addr = tte_to_vaddr(hmeblkp, tte);
7577
7578 ttemod = tte;
7579 TTE_CLR_WRT(&ttemod);
7580 TTE_CLR_MOD(&ttemod);
7581 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7582
7583 /*
7584 * if cas failed and the new value is not what
7585 * we want retry
7586 */
7587 if (ret < 0)
7588 goto retry;
7589
7590 /* we win the cas */
7591 if (ret > 0) {
7592 if (hmeblkp->hblk_shared) {
7593 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7594 uint_t rid = hmeblkp->hblk_tag.htag_rid;
7595 sf_region_t *rgnp;
7596 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7597 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7598 ASSERT(srdp != NULL);
7599 rgnp = srdp->srd_hmergnp[rid];
7600 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7601 srdp, rgnp, rid);
7602 cpuset = sfmmu_rgntlb_demap(addr,
7603 rgnp, hmeblkp, 1);
7604 } else {
7605 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7606 cpuset = sfmmup->sfmmu_cpusran;
7607 }
7608 }
7609 }
7610
7611 return (cpuset);
7612 }
7613
7614 /*
7615 * Walk all mappings of a page, removing write permission and clearing the
7616 * ref/mod bits. This code is similar to hat_pagesync()
7617 */
7618 static void
hat_page_clrwrt(page_t * pp)7619 hat_page_clrwrt(page_t *pp)
7620 {
7621 struct sf_hment *sfhme;
7622 struct sf_hment *tmphme = NULL;
7623 kmutex_t *pml;
7624 cpuset_t cpuset;
7625 cpuset_t tset;
7626 int index;
7627 int cons;
7628
7629 CPUSET_ZERO(cpuset);
7630
7631 pml = sfmmu_mlist_enter(pp);
7632 index = PP_MAPINDEX(pp);
7633 cons = TTE8K;
7634 retry:
7635 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7636 tmphme = sfhme->hme_next;
7637
7638 /*
7639 * If we are looking for large mappings and this hme doesn't
7640 * reach the range we are seeking, just ignore its.
7641 */
7642
7643 if (hme_size(sfhme) < cons)
7644 continue;
7645
7646 tset = sfmmu_pageclrwrt(pp, sfhme);
7647 CPUSET_OR(cpuset, tset);
7648 }
7649
7650 while (index) {
7651 index = index >> 1;
7652 cons++;
7653 if (index & 0x1) {
7654 /* Go to leading page */
7655 pp = PP_GROUPLEADER(pp, cons);
7656 goto retry;
7657 }
7658 }
7659
7660 xt_sync(cpuset);
7661 sfmmu_mlist_exit(pml);
7662 }
7663
7664 /*
7665 * Set the given REF/MOD/RO bits for the given page.
7666 * For a vnode with a sorted v_pages list, we need to change
7667 * the attributes and the v_pages list together under page_vnode_mutex.
7668 */
7669 void
hat_page_setattr(page_t * pp,uint_t flag)7670 hat_page_setattr(page_t *pp, uint_t flag)
7671 {
7672 vnode_t *vp = pp->p_vnode;
7673 page_t **listp;
7674 kmutex_t *pmtx;
7675 kmutex_t *vphm = NULL;
7676 int noshuffle;
7677
7678 noshuffle = flag & P_NSH;
7679 flag &= ~P_NSH;
7680
7681 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7682
7683 /*
7684 * nothing to do if attribute already set
7685 */
7686 if ((pp->p_nrm & flag) == flag)
7687 return;
7688
7689 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
7690 !noshuffle) {
7691 vphm = page_vnode_mutex(vp);
7692 mutex_enter(vphm);
7693 }
7694
7695 pmtx = sfmmu_page_enter(pp);
7696 pp->p_nrm |= flag;
7697 sfmmu_page_exit(pmtx);
7698
7699 if (vphm != NULL) {
7700 /*
7701 * Some File Systems examine v_pages for NULL w/o
7702 * grabbing the vphm mutex. Must not let it become NULL when
7703 * pp is the only page on the list.
7704 */
7705 if (pp->p_vpnext != pp) {
7706 page_vpsub(&vp->v_pages, pp);
7707 if (vp->v_pages != NULL)
7708 listp = &vp->v_pages->p_vpprev->p_vpnext;
7709 else
7710 listp = &vp->v_pages;
7711 page_vpadd(listp, pp);
7712 }
7713 mutex_exit(vphm);
7714 }
7715 }
7716
7717 void
hat_page_clrattr(page_t * pp,uint_t flag)7718 hat_page_clrattr(page_t *pp, uint_t flag)
7719 {
7720 vnode_t *vp = pp->p_vnode;
7721 kmutex_t *pmtx;
7722
7723 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7724
7725 pmtx = sfmmu_page_enter(pp);
7726
7727 /*
7728 * Caller is expected to hold page's io lock for VMODSORT to work
7729 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7730 * bit is cleared.
7731 * We don't have assert to avoid tripping some existing third party
7732 * code. The dirty page is moved back to top of the v_page list
7733 * after IO is done in pvn_write_done().
7734 */
7735 pp->p_nrm &= ~flag;
7736 sfmmu_page_exit(pmtx);
7737
7738 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7739
7740 /*
7741 * VMODSORT works by removing write permissions and getting
7742 * a fault when a page is made dirty. At this point
7743 * we need to remove write permission from all mappings
7744 * to this page.
7745 */
7746 hat_page_clrwrt(pp);
7747 }
7748 }
7749
7750 uint_t
hat_page_getattr(page_t * pp,uint_t flag)7751 hat_page_getattr(page_t *pp, uint_t flag)
7752 {
7753 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7754 return ((uint_t)(pp->p_nrm & flag));
7755 }
7756
7757 /*
7758 * DEBUG kernels: verify that a kernel va<->pa translation
7759 * is safe by checking the underlying page_t is in a page
7760 * relocation-safe state.
7761 */
7762 #ifdef DEBUG
7763 void
sfmmu_check_kpfn(pfn_t pfn)7764 sfmmu_check_kpfn(pfn_t pfn)
7765 {
7766 page_t *pp;
7767 int index, cons;
7768
7769 if (hat_check_vtop == 0)
7770 return;
7771
7772 if (kvseg.s_base == NULL || panicstr)
7773 return;
7774
7775 pp = page_numtopp_nolock(pfn);
7776 if (!pp)
7777 return;
7778
7779 if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7780 return;
7781
7782 /*
7783 * Handed a large kernel page, we dig up the root page since we
7784 * know the root page might have the lock also.
7785 */
7786 if (pp->p_szc != 0) {
7787 index = PP_MAPINDEX(pp);
7788 cons = TTE8K;
7789 again:
7790 while (index != 0) {
7791 index >>= 1;
7792 if (index != 0)
7793 cons++;
7794 if (index & 0x1) {
7795 pp = PP_GROUPLEADER(pp, cons);
7796 goto again;
7797 }
7798 }
7799 }
7800
7801 if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7802 return;
7803
7804 /*
7805 * Pages need to be locked or allocated "permanent" (either from
7806 * static_arena arena or explicitly setting PG_NORELOC when calling
7807 * page_create_va()) for VA->PA translations to be valid.
7808 */
7809 if (!PP_ISNORELOC(pp))
7810 panic("Illegal VA->PA translation, pp 0x%p not permanent",
7811 (void *)pp);
7812 else
7813 panic("Illegal VA->PA translation, pp 0x%p not locked",
7814 (void *)pp);
7815 }
7816 #endif /* DEBUG */
7817
7818 /*
7819 * Returns a page frame number for a given virtual address.
7820 * Returns PFN_INVALID to indicate an invalid mapping
7821 */
7822 pfn_t
hat_getpfnum(struct hat * hat,caddr_t addr)7823 hat_getpfnum(struct hat *hat, caddr_t addr)
7824 {
7825 pfn_t pfn;
7826 tte_t tte;
7827
7828 /*
7829 * We would like to
7830 * ASSERT(AS_LOCK_HELD(as));
7831 * but we can't because the iommu driver will call this
7832 * routine at interrupt time and it can't grab the as lock
7833 * or it will deadlock: A thread could have the as lock
7834 * and be waiting for io. The io can't complete
7835 * because the interrupt thread is blocked trying to grab
7836 * the as lock.
7837 */
7838
7839 if (hat == ksfmmup) {
7840 if (IS_KMEM_VA_LARGEPAGE(addr)) {
7841 ASSERT(segkmem_lpszc > 0);
7842 pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7843 if (pfn != PFN_INVALID) {
7844 sfmmu_check_kpfn(pfn);
7845 return (pfn);
7846 }
7847 } else if (segkpm && IS_KPM_ADDR(addr)) {
7848 return (sfmmu_kpm_vatopfn(addr));
7849 }
7850 while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7851 == PFN_SUSPENDED) {
7852 sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7853 }
7854 sfmmu_check_kpfn(pfn);
7855 return (pfn);
7856 } else {
7857 return (sfmmu_uvatopfn(addr, hat, NULL));
7858 }
7859 }
7860
7861 /*
7862 * This routine will return both pfn and tte for the vaddr.
7863 */
7864 static pfn_t
sfmmu_uvatopfn(caddr_t vaddr,struct hat * sfmmup,tte_t * ttep)7865 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup, tte_t *ttep)
7866 {
7867 struct hmehash_bucket *hmebp;
7868 hmeblk_tag hblktag;
7869 int hmeshift, hashno = 1;
7870 struct hme_blk *hmeblkp = NULL;
7871 tte_t tte;
7872
7873 struct sf_hment *sfhmep;
7874 pfn_t pfn;
7875
7876 /* support for ISM */
7877 ism_map_t *ism_map;
7878 ism_blk_t *ism_blkp;
7879 int i;
7880 sfmmu_t *ism_hatid = NULL;
7881 sfmmu_t *locked_hatid = NULL;
7882 sfmmu_t *sv_sfmmup = sfmmup;
7883 caddr_t sv_vaddr = vaddr;
7884 sf_srd_t *srdp;
7885
7886 if (ttep == NULL) {
7887 ttep = &tte;
7888 } else {
7889 ttep->ll = 0;
7890 }
7891
7892 ASSERT(sfmmup != ksfmmup);
7893 SFMMU_STAT(sf_user_vtop);
7894 /*
7895 * Set ism_hatid if vaddr falls in a ISM segment.
7896 */
7897 ism_blkp = sfmmup->sfmmu_iblk;
7898 if (ism_blkp != NULL) {
7899 sfmmu_ismhat_enter(sfmmup, 0);
7900 locked_hatid = sfmmup;
7901 }
7902 while (ism_blkp != NULL && ism_hatid == NULL) {
7903 ism_map = ism_blkp->iblk_maps;
7904 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7905 if (vaddr >= ism_start(ism_map[i]) &&
7906 vaddr < ism_end(ism_map[i])) {
7907 sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7908 vaddr = (caddr_t)(vaddr -
7909 ism_start(ism_map[i]));
7910 break;
7911 }
7912 }
7913 ism_blkp = ism_blkp->iblk_next;
7914 }
7915 if (locked_hatid) {
7916 sfmmu_ismhat_exit(locked_hatid, 0);
7917 }
7918
7919 hblktag.htag_id = sfmmup;
7920 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
7921 do {
7922 hmeshift = HME_HASH_SHIFT(hashno);
7923 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7924 hblktag.htag_rehash = hashno;
7925 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7926
7927 SFMMU_HASH_LOCK(hmebp);
7928
7929 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7930 if (hmeblkp != NULL) {
7931 ASSERT(!hmeblkp->hblk_shared);
7932 HBLKTOHME(sfhmep, hmeblkp, vaddr);
7933 sfmmu_copytte(&sfhmep->hme_tte, ttep);
7934 SFMMU_HASH_UNLOCK(hmebp);
7935 if (TTE_IS_VALID(ttep)) {
7936 pfn = TTE_TO_PFN(vaddr, ttep);
7937 return (pfn);
7938 }
7939 break;
7940 }
7941 SFMMU_HASH_UNLOCK(hmebp);
7942 hashno++;
7943 } while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7944
7945 if (SF_HMERGNMAP_ISNULL(sv_sfmmup)) {
7946 return (PFN_INVALID);
7947 }
7948 srdp = sv_sfmmup->sfmmu_srdp;
7949 ASSERT(srdp != NULL);
7950 ASSERT(srdp->srd_refcnt != 0);
7951 hblktag.htag_id = srdp;
7952 hashno = 1;
7953 do {
7954 hmeshift = HME_HASH_SHIFT(hashno);
7955 hblktag.htag_bspage = HME_HASH_BSPAGE(sv_vaddr, hmeshift);
7956 hblktag.htag_rehash = hashno;
7957 hmebp = HME_HASH_FUNCTION(srdp, sv_vaddr, hmeshift);
7958
7959 SFMMU_HASH_LOCK(hmebp);
7960 for (hmeblkp = hmebp->hmeblkp; hmeblkp != NULL;
7961 hmeblkp = hmeblkp->hblk_next) {
7962 uint_t rid;
7963 sf_region_t *rgnp;
7964 caddr_t rsaddr;
7965 caddr_t readdr;
7966
7967 if (!HTAGS_EQ_SHME(hmeblkp->hblk_tag, hblktag,
7968 sv_sfmmup->sfmmu_hmeregion_map)) {
7969 continue;
7970 }
7971 ASSERT(hmeblkp->hblk_shared);
7972 rid = hmeblkp->hblk_tag.htag_rid;
7973 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7974 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7975 rgnp = srdp->srd_hmergnp[rid];
7976 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7977 HBLKTOHME(sfhmep, hmeblkp, sv_vaddr);
7978 sfmmu_copytte(&sfhmep->hme_tte, ttep);
7979 rsaddr = rgnp->rgn_saddr;
7980 readdr = rsaddr + rgnp->rgn_size;
7981 #ifdef DEBUG
7982 if (TTE_IS_VALID(ttep) ||
7983 get_hblk_ttesz(hmeblkp) > TTE8K) {
7984 caddr_t eva = tte_to_evaddr(hmeblkp, ttep);
7985 ASSERT(eva > sv_vaddr);
7986 ASSERT(sv_vaddr >= rsaddr);
7987 ASSERT(sv_vaddr < readdr);
7988 ASSERT(eva <= readdr);
7989 }
7990 #endif /* DEBUG */
7991 /*
7992 * Continue the search if we
7993 * found an invalid 8K tte outside of the area
7994 * covered by this hmeblk's region.
7995 */
7996 if (TTE_IS_VALID(ttep)) {
7997 SFMMU_HASH_UNLOCK(hmebp);
7998 pfn = TTE_TO_PFN(sv_vaddr, ttep);
7999 return (pfn);
8000 } else if (get_hblk_ttesz(hmeblkp) > TTE8K ||
8001 (sv_vaddr >= rsaddr && sv_vaddr < readdr)) {
8002 SFMMU_HASH_UNLOCK(hmebp);
8003 pfn = PFN_INVALID;
8004 return (pfn);
8005 }
8006 }
8007 SFMMU_HASH_UNLOCK(hmebp);
8008 hashno++;
8009 } while (hashno <= mmu_hashcnt);
8010 return (PFN_INVALID);
8011 }
8012
8013
8014 /*
8015 * For compatability with AT&T and later optimizations
8016 */
8017 /* ARGSUSED */
8018 void
hat_map(struct hat * hat,caddr_t addr,size_t len,uint_t flags)8019 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
8020 {
8021 ASSERT(hat != NULL);
8022 }
8023
8024 /*
8025 * Return the number of mappings to a particular page. This number is an
8026 * approximation of the number of people sharing the page.
8027 *
8028 * shared hmeblks or ism hmeblks are counted as 1 mapping here.
8029 * hat_page_checkshare() can be used to compare threshold to share
8030 * count that reflects the number of region sharers albeit at higher cost.
8031 */
8032 ulong_t
hat_page_getshare(page_t * pp)8033 hat_page_getshare(page_t *pp)
8034 {
8035 page_t *spp = pp; /* start page */
8036 kmutex_t *pml;
8037 ulong_t cnt;
8038 int index, sz = TTE64K;
8039
8040 /*
8041 * We need to grab the mlist lock to make sure any outstanding
8042 * load/unloads complete. Otherwise we could return zero
8043 * even though the unload(s) hasn't finished yet.
8044 */
8045 pml = sfmmu_mlist_enter(spp);
8046 cnt = spp->p_share;
8047
8048 #ifdef VAC
8049 if (kpm_enable)
8050 cnt += spp->p_kpmref;
8051 #endif
8052 if (vpm_enable && pp->p_vpmref) {
8053 cnt += 1;
8054 }
8055
8056 /*
8057 * If we have any large mappings, we count the number of
8058 * mappings that this large page is part of.
8059 */
8060 index = PP_MAPINDEX(spp);
8061 index >>= 1;
8062 while (index) {
8063 pp = PP_GROUPLEADER(spp, sz);
8064 if ((index & 0x1) && pp != spp) {
8065 cnt += pp->p_share;
8066 spp = pp;
8067 }
8068 index >>= 1;
8069 sz++;
8070 }
8071 sfmmu_mlist_exit(pml);
8072 return (cnt);
8073 }
8074
8075 /*
8076 * Return 1 if the number of mappings exceeds sh_thresh. Return 0
8077 * otherwise. Count shared hmeblks by region's refcnt.
8078 */
8079 int
hat_page_checkshare(page_t * pp,ulong_t sh_thresh)8080 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
8081 {
8082 kmutex_t *pml;
8083 ulong_t cnt = 0;
8084 int index, sz = TTE8K;
8085 struct sf_hment *sfhme, *tmphme = NULL;
8086 struct hme_blk *hmeblkp;
8087
8088 pml = sfmmu_mlist_enter(pp);
8089
8090 #ifdef VAC
8091 if (kpm_enable)
8092 cnt = pp->p_kpmref;
8093 #endif
8094
8095 if (vpm_enable && pp->p_vpmref) {
8096 cnt += 1;
8097 }
8098
8099 if (pp->p_share + cnt > sh_thresh) {
8100 sfmmu_mlist_exit(pml);
8101 return (1);
8102 }
8103
8104 index = PP_MAPINDEX(pp);
8105
8106 again:
8107 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
8108 tmphme = sfhme->hme_next;
8109 if (IS_PAHME(sfhme)) {
8110 continue;
8111 }
8112
8113 hmeblkp = sfmmu_hmetohblk(sfhme);
8114 if (hme_size(sfhme) != sz) {
8115 continue;
8116 }
8117
8118 if (hmeblkp->hblk_shared) {
8119 sf_srd_t *srdp = hblktosrd(hmeblkp);
8120 uint_t rid = hmeblkp->hblk_tag.htag_rid;
8121 sf_region_t *rgnp;
8122 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8123 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8124 ASSERT(srdp != NULL);
8125 rgnp = srdp->srd_hmergnp[rid];
8126 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
8127 rgnp, rid);
8128 cnt += rgnp->rgn_refcnt;
8129 } else {
8130 cnt++;
8131 }
8132 if (cnt > sh_thresh) {
8133 sfmmu_mlist_exit(pml);
8134 return (1);
8135 }
8136 }
8137
8138 index >>= 1;
8139 sz++;
8140 while (index) {
8141 pp = PP_GROUPLEADER(pp, sz);
8142 ASSERT(sfmmu_mlist_held(pp));
8143 if (index & 0x1) {
8144 goto again;
8145 }
8146 index >>= 1;
8147 sz++;
8148 }
8149 sfmmu_mlist_exit(pml);
8150 return (0);
8151 }
8152
8153 /*
8154 * Unload all large mappings to the pp and reset the p_szc field of every
8155 * constituent page according to the remaining mappings.
8156 *
8157 * pp must be locked SE_EXCL. Even though no other constituent pages are
8158 * locked it's legal to unload the large mappings to the pp because all
8159 * constituent pages of large locked mappings have to be locked SE_SHARED.
8160 * This means if we have SE_EXCL lock on one of constituent pages none of the
8161 * large mappings to pp are locked.
8162 *
8163 * Decrease p_szc field starting from the last constituent page and ending
8164 * with the root page. This method is used because other threads rely on the
8165 * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
8166 * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
8167 * ensures that p_szc changes of the constituent pages appears atomic for all
8168 * threads that use sfmmu_mlspl_enter() to examine p_szc field.
8169 *
8170 * This mechanism is only used for file system pages where it's not always
8171 * possible to get SE_EXCL locks on all constituent pages to demote the size
8172 * code (as is done for anonymous or kernel large pages).
8173 *
8174 * See more comments in front of sfmmu_mlspl_enter().
8175 */
8176 void
hat_page_demote(page_t * pp)8177 hat_page_demote(page_t *pp)
8178 {
8179 int index;
8180 int sz;
8181 cpuset_t cpuset;
8182 int sync = 0;
8183 page_t *rootpp;
8184 struct sf_hment *sfhme;
8185 struct sf_hment *tmphme = NULL;
8186 struct hme_blk *hmeblkp;
8187 uint_t pszc;
8188 page_t *lastpp;
8189 cpuset_t tset;
8190 pgcnt_t npgs;
8191 kmutex_t *pml;
8192 kmutex_t *pmtx = NULL;
8193
8194 ASSERT(PAGE_EXCL(pp));
8195 ASSERT(!PP_ISFREE(pp));
8196 ASSERT(!PP_ISKAS(pp));
8197 ASSERT(page_szc_lock_assert(pp));
8198 pml = sfmmu_mlist_enter(pp);
8199
8200 pszc = pp->p_szc;
8201 if (pszc == 0) {
8202 goto out;
8203 }
8204
8205 index = PP_MAPINDEX(pp) >> 1;
8206
8207 if (index) {
8208 CPUSET_ZERO(cpuset);
8209 sz = TTE64K;
8210 sync = 1;
8211 }
8212
8213 while (index) {
8214 if (!(index & 0x1)) {
8215 index >>= 1;
8216 sz++;
8217 continue;
8218 }
8219 ASSERT(sz <= pszc);
8220 rootpp = PP_GROUPLEADER(pp, sz);
8221 for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
8222 tmphme = sfhme->hme_next;
8223 ASSERT(!IS_PAHME(sfhme));
8224 hmeblkp = sfmmu_hmetohblk(sfhme);
8225 if (hme_size(sfhme) != sz) {
8226 continue;
8227 }
8228 tset = sfmmu_pageunload(rootpp, sfhme, sz);
8229 CPUSET_OR(cpuset, tset);
8230 }
8231 if (index >>= 1) {
8232 sz++;
8233 }
8234 }
8235
8236 ASSERT(!PP_ISMAPPED_LARGE(pp));
8237
8238 if (sync) {
8239 xt_sync(cpuset);
8240 #ifdef VAC
8241 if (PP_ISTNC(pp)) {
8242 conv_tnc(rootpp, sz);
8243 }
8244 #endif /* VAC */
8245 }
8246
8247 pmtx = sfmmu_page_enter(pp);
8248
8249 ASSERT(pp->p_szc == pszc);
8250 rootpp = PP_PAGEROOT(pp);
8251 ASSERT(rootpp->p_szc == pszc);
8252 lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
8253
8254 while (lastpp != rootpp) {
8255 sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
8256 ASSERT(sz < pszc);
8257 npgs = (sz == 0) ? 1 : TTEPAGES(sz);
8258 ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
8259 while (--npgs > 0) {
8260 lastpp->p_szc = (uchar_t)sz;
8261 lastpp = PP_PAGEPREV(lastpp);
8262 }
8263 if (sz) {
8264 /*
8265 * make sure before current root's pszc
8266 * is updated all updates to constituent pages pszc
8267 * fields are globally visible.
8268 */
8269 membar_producer();
8270 }
8271 lastpp->p_szc = sz;
8272 ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
8273 if (lastpp != rootpp) {
8274 lastpp = PP_PAGEPREV(lastpp);
8275 }
8276 }
8277 if (sz == 0) {
8278 /* the loop above doesn't cover this case */
8279 rootpp->p_szc = 0;
8280 }
8281 out:
8282 ASSERT(pp->p_szc == 0);
8283 if (pmtx != NULL) {
8284 sfmmu_page_exit(pmtx);
8285 }
8286 sfmmu_mlist_exit(pml);
8287 }
8288
8289 /*
8290 * Refresh the HAT ismttecnt[] element for size szc.
8291 * Caller must have set ISM busy flag to prevent mapping
8292 * lists from changing while we're traversing them.
8293 */
8294 pgcnt_t
ism_tsb_entries(sfmmu_t * sfmmup,int szc)8295 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
8296 {
8297 ism_blk_t *ism_blkp = sfmmup->sfmmu_iblk;
8298 ism_map_t *ism_map;
8299 pgcnt_t npgs = 0;
8300 pgcnt_t npgs_scd = 0;
8301 int j;
8302 sf_scd_t *scdp;
8303 uchar_t rid;
8304
8305 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
8306 scdp = sfmmup->sfmmu_scdp;
8307
8308 for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
8309 ism_map = ism_blkp->iblk_maps;
8310 for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) {
8311 rid = ism_map[j].imap_rid;
8312 ASSERT(rid == SFMMU_INVALID_ISMRID ||
8313 rid < sfmmup->sfmmu_srdp->srd_next_ismrid);
8314
8315 if (scdp != NULL && rid != SFMMU_INVALID_ISMRID &&
8316 SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
8317 /* ISM is in sfmmup's SCD */
8318 npgs_scd +=
8319 ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8320 } else {
8321 /* ISMs is not in SCD */
8322 npgs +=
8323 ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8324 }
8325 }
8326 }
8327 sfmmup->sfmmu_ismttecnt[szc] = npgs;
8328 sfmmup->sfmmu_scdismttecnt[szc] = npgs_scd;
8329 return (npgs);
8330 }
8331
8332 /*
8333 * Yield the memory claim requirement for an address space.
8334 *
8335 * This is currently implemented as the number of bytes that have active
8336 * hardware translations that have page structures. Therefore, it can
8337 * underestimate the traditional resident set size, eg, if the
8338 * physical page is present and the hardware translation is missing;
8339 * and it can overestimate the rss, eg, if there are active
8340 * translations to a frame buffer with page structs.
8341 * Also, it does not take sharing into account.
8342 *
8343 * Note that we don't acquire locks here since this function is most often
8344 * called from the clock thread.
8345 */
8346 size_t
hat_get_mapped_size(struct hat * hat)8347 hat_get_mapped_size(struct hat *hat)
8348 {
8349 size_t assize = 0;
8350 int i;
8351
8352 if (hat == NULL)
8353 return (0);
8354
8355 for (i = 0; i < mmu_page_sizes; i++)
8356 assize += ((pgcnt_t)hat->sfmmu_ttecnt[i] +
8357 (pgcnt_t)hat->sfmmu_scdrttecnt[i]) * TTEBYTES(i);
8358
8359 if (hat->sfmmu_iblk == NULL)
8360 return (assize);
8361
8362 for (i = 0; i < mmu_page_sizes; i++)
8363 assize += ((pgcnt_t)hat->sfmmu_ismttecnt[i] +
8364 (pgcnt_t)hat->sfmmu_scdismttecnt[i]) * TTEBYTES(i);
8365
8366 return (assize);
8367 }
8368
8369 int
hat_stats_enable(struct hat * hat)8370 hat_stats_enable(struct hat *hat)
8371 {
8372 hatlock_t *hatlockp;
8373
8374 hatlockp = sfmmu_hat_enter(hat);
8375 hat->sfmmu_rmstat++;
8376 sfmmu_hat_exit(hatlockp);
8377 return (1);
8378 }
8379
8380 void
hat_stats_disable(struct hat * hat)8381 hat_stats_disable(struct hat *hat)
8382 {
8383 hatlock_t *hatlockp;
8384
8385 hatlockp = sfmmu_hat_enter(hat);
8386 hat->sfmmu_rmstat--;
8387 sfmmu_hat_exit(hatlockp);
8388 }
8389
8390 /*
8391 * Routines for entering or removing ourselves from the
8392 * ism_hat's mapping list. This is used for both private and
8393 * SCD hats.
8394 */
8395 static void
iment_add(struct ism_ment * iment,struct hat * ism_hat)8396 iment_add(struct ism_ment *iment, struct hat *ism_hat)
8397 {
8398 ASSERT(MUTEX_HELD(&ism_mlist_lock));
8399
8400 iment->iment_prev = NULL;
8401 iment->iment_next = ism_hat->sfmmu_iment;
8402 if (ism_hat->sfmmu_iment) {
8403 ism_hat->sfmmu_iment->iment_prev = iment;
8404 }
8405 ism_hat->sfmmu_iment = iment;
8406 }
8407
8408 static void
iment_sub(struct ism_ment * iment,struct hat * ism_hat)8409 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
8410 {
8411 ASSERT(MUTEX_HELD(&ism_mlist_lock));
8412
8413 if (ism_hat->sfmmu_iment == NULL) {
8414 panic("ism map entry remove - no entries");
8415 }
8416
8417 if (iment->iment_prev) {
8418 ASSERT(ism_hat->sfmmu_iment != iment);
8419 iment->iment_prev->iment_next = iment->iment_next;
8420 } else {
8421 ASSERT(ism_hat->sfmmu_iment == iment);
8422 ism_hat->sfmmu_iment = iment->iment_next;
8423 }
8424
8425 if (iment->iment_next) {
8426 iment->iment_next->iment_prev = iment->iment_prev;
8427 }
8428
8429 /*
8430 * zero out the entry
8431 */
8432 iment->iment_next = NULL;
8433 iment->iment_prev = NULL;
8434 iment->iment_hat = NULL;
8435 iment->iment_base_va = 0;
8436 }
8437
8438 /*
8439 * Hat_share()/unshare() return an (non-zero) error
8440 * when saddr and daddr are not properly aligned.
8441 *
8442 * The top level mapping element determines the alignment
8443 * requirement for saddr and daddr, depending on different
8444 * architectures.
8445 *
8446 * When hat_share()/unshare() are not supported,
8447 * HATOP_SHARE()/UNSHARE() return 0
8448 */
8449 int
hat_share(struct hat * sfmmup,caddr_t addr,struct hat * ism_hatid,caddr_t sptaddr,size_t len,uint_t ismszc)8450 hat_share(struct hat *sfmmup, caddr_t addr, struct hat *ism_hatid,
8451 caddr_t sptaddr, size_t len, uint_t ismszc)
8452 {
8453 ism_blk_t *ism_blkp;
8454 ism_blk_t *new_iblk;
8455 ism_map_t *ism_map;
8456 ism_ment_t *ism_ment;
8457 int i, added;
8458 hatlock_t *hatlockp;
8459 int reload_mmu = 0;
8460 uint_t ismshift = page_get_shift(ismszc);
8461 size_t ismpgsz = page_get_pagesize(ismszc);
8462 uint_t ismmask = (uint_t)ismpgsz - 1;
8463 size_t sh_size = ISM_SHIFT(ismshift, len);
8464 ushort_t ismhatflag;
8465 hat_region_cookie_t rcookie;
8466 sf_scd_t *old_scdp;
8467
8468 #ifdef DEBUG
8469 caddr_t eaddr = addr + len;
8470 #endif /* DEBUG */
8471
8472 ASSERT(ism_hatid != NULL && sfmmup != NULL);
8473 ASSERT(sptaddr == ISMID_STARTADDR);
8474 /*
8475 * Check the alignment.
8476 */
8477 if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
8478 return (EINVAL);
8479
8480 /*
8481 * Check size alignment.
8482 */
8483 if (!ISM_ALIGNED(ismshift, len))
8484 return (EINVAL);
8485
8486 /*
8487 * Allocate ism_ment for the ism_hat's mapping list, and an
8488 * ism map blk in case we need one. We must do our
8489 * allocations before acquiring locks to prevent a deadlock
8490 * in the kmem allocator on the mapping list lock.
8491 */
8492 new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
8493 ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
8494
8495 /*
8496 * Serialize ISM mappings with the ISM busy flag, and also the
8497 * trap handlers.
8498 */
8499 sfmmu_ismhat_enter(sfmmup, 0);
8500
8501 /*
8502 * Allocate an ism map blk if necessary.
8503 */
8504 if (sfmmup->sfmmu_iblk == NULL) {
8505 sfmmup->sfmmu_iblk = new_iblk;
8506 bzero(new_iblk, sizeof (*new_iblk));
8507 new_iblk->iblk_nextpa = (uint64_t)-1;
8508 membar_stst(); /* make sure next ptr visible to all CPUs */
8509 sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
8510 reload_mmu = 1;
8511 new_iblk = NULL;
8512 }
8513
8514 #ifdef DEBUG
8515 /*
8516 * Make sure mapping does not already exist.
8517 */
8518 ism_blkp = sfmmup->sfmmu_iblk;
8519 while (ism_blkp != NULL) {
8520 ism_map = ism_blkp->iblk_maps;
8521 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
8522 if ((addr >= ism_start(ism_map[i]) &&
8523 addr < ism_end(ism_map[i])) ||
8524 eaddr > ism_start(ism_map[i]) &&
8525 eaddr <= ism_end(ism_map[i])) {
8526 panic("sfmmu_share: Already mapped!");
8527 }
8528 }
8529 ism_blkp = ism_blkp->iblk_next;
8530 }
8531 #endif /* DEBUG */
8532
8533 ASSERT(ismszc >= TTE4M);
8534 if (ismszc == TTE4M) {
8535 ismhatflag = HAT_4M_FLAG;
8536 } else if (ismszc == TTE32M) {
8537 ismhatflag = HAT_32M_FLAG;
8538 } else if (ismszc == TTE256M) {
8539 ismhatflag = HAT_256M_FLAG;
8540 }
8541 /*
8542 * Add mapping to first available mapping slot.
8543 */
8544 ism_blkp = sfmmup->sfmmu_iblk;
8545 added = 0;
8546 while (!added) {
8547 ism_map = ism_blkp->iblk_maps;
8548 for (i = 0; i < ISM_MAP_SLOTS; i++) {
8549 if (ism_map[i].imap_ismhat == NULL) {
8550
8551 ism_map[i].imap_ismhat = ism_hatid;
8552 ism_map[i].imap_vb_shift = (uchar_t)ismshift;
8553 ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8554 ism_map[i].imap_hatflags = ismhatflag;
8555 ism_map[i].imap_sz_mask = ismmask;
8556 /*
8557 * imap_seg is checked in ISM_CHECK to see if
8558 * non-NULL, then other info assumed valid.
8559 */
8560 membar_stst();
8561 ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
8562 ism_map[i].imap_ment = ism_ment;
8563
8564 /*
8565 * Now add ourselves to the ism_hat's
8566 * mapping list.
8567 */
8568 ism_ment->iment_hat = sfmmup;
8569 ism_ment->iment_base_va = addr;
8570 ism_hatid->sfmmu_ismhat = 1;
8571 mutex_enter(&ism_mlist_lock);
8572 iment_add(ism_ment, ism_hatid);
8573 mutex_exit(&ism_mlist_lock);
8574 added = 1;
8575 break;
8576 }
8577 }
8578 if (!added && ism_blkp->iblk_next == NULL) {
8579 ism_blkp->iblk_next = new_iblk;
8580 new_iblk = NULL;
8581 bzero(ism_blkp->iblk_next,
8582 sizeof (*ism_blkp->iblk_next));
8583 ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
8584 membar_stst();
8585 ism_blkp->iblk_nextpa =
8586 va_to_pa((caddr_t)ism_blkp->iblk_next);
8587 }
8588 ism_blkp = ism_blkp->iblk_next;
8589 }
8590
8591 /*
8592 * After calling hat_join_region, sfmmup may join a new SCD or
8593 * move from the old scd to a new scd, in which case, we want to
8594 * shrink the sfmmup's private tsb size, i.e., pass shrink to
8595 * sfmmu_check_page_sizes at the end of this routine.
8596 */
8597 old_scdp = sfmmup->sfmmu_scdp;
8598
8599 rcookie = hat_join_region(sfmmup, addr, len, (void *)ism_hatid, 0,
8600 PROT_ALL, ismszc, NULL, HAT_REGION_ISM);
8601 if (rcookie != HAT_INVALID_REGION_COOKIE) {
8602 ism_map[i].imap_rid = (uchar_t)((uint64_t)rcookie);
8603 }
8604 /*
8605 * Update our counters for this sfmmup's ism mappings.
8606 */
8607 for (i = 0; i <= ismszc; i++) {
8608 if (!(disable_ism_large_pages & (1 << i)))
8609 (void) ism_tsb_entries(sfmmup, i);
8610 }
8611
8612 /*
8613 * For ISM and DISM we do not support 512K pages, so we only only
8614 * search the 4M and 8K/64K hashes for 4 pagesize cpus, and search the
8615 * 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
8616 *
8617 * Need to set 32M/256M ISM flags to make sure
8618 * sfmmu_check_page_sizes() enables them on Panther.
8619 */
8620 ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
8621
8622 switch (ismszc) {
8623 case TTE256M:
8624 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_ISM)) {
8625 hatlockp = sfmmu_hat_enter(sfmmup);
8626 SFMMU_FLAGS_SET(sfmmup, HAT_256M_ISM);
8627 sfmmu_hat_exit(hatlockp);
8628 }
8629 break;
8630 case TTE32M:
8631 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_ISM)) {
8632 hatlockp = sfmmu_hat_enter(sfmmup);
8633 SFMMU_FLAGS_SET(sfmmup, HAT_32M_ISM);
8634 sfmmu_hat_exit(hatlockp);
8635 }
8636 break;
8637 default:
8638 break;
8639 }
8640
8641 /*
8642 * If we updated the ismblkpa for this HAT we must make
8643 * sure all CPUs running this process reload their tsbmiss area.
8644 * Otherwise they will fail to load the mappings in the tsbmiss
8645 * handler and will loop calling pagefault().
8646 */
8647 if (reload_mmu) {
8648 hatlockp = sfmmu_hat_enter(sfmmup);
8649 sfmmu_sync_mmustate(sfmmup);
8650 sfmmu_hat_exit(hatlockp);
8651 }
8652
8653 sfmmu_ismhat_exit(sfmmup, 0);
8654
8655 /*
8656 * Free up ismblk if we didn't use it.
8657 */
8658 if (new_iblk != NULL)
8659 kmem_cache_free(ism_blk_cache, new_iblk);
8660
8661 /*
8662 * Check TSB and TLB page sizes.
8663 */
8664 if (sfmmup->sfmmu_scdp != NULL && old_scdp != sfmmup->sfmmu_scdp) {
8665 sfmmu_check_page_sizes(sfmmup, 0);
8666 } else {
8667 sfmmu_check_page_sizes(sfmmup, 1);
8668 }
8669 return (0);
8670 }
8671
8672 /*
8673 * hat_unshare removes exactly one ism_map from
8674 * this process's as. It expects multiple calls
8675 * to hat_unshare for multiple shm segments.
8676 */
8677 void
hat_unshare(struct hat * sfmmup,caddr_t addr,size_t len,uint_t ismszc)8678 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
8679 {
8680 ism_map_t *ism_map;
8681 ism_ment_t *free_ment = NULL;
8682 ism_blk_t *ism_blkp;
8683 struct hat *ism_hatid;
8684 int found, i;
8685 hatlock_t *hatlockp;
8686 struct tsb_info *tsbinfo;
8687 uint_t ismshift = page_get_shift(ismszc);
8688 size_t sh_size = ISM_SHIFT(ismshift, len);
8689 uchar_t ism_rid;
8690 sf_scd_t *old_scdp;
8691
8692 ASSERT(ISM_ALIGNED(ismshift, addr));
8693 ASSERT(ISM_ALIGNED(ismshift, len));
8694 ASSERT(sfmmup != NULL);
8695 ASSERT(sfmmup != ksfmmup);
8696
8697 ASSERT(sfmmup->sfmmu_as != NULL);
8698
8699 /*
8700 * Make sure that during the entire time ISM mappings are removed,
8701 * the trap handlers serialize behind us, and that no one else
8702 * can be mucking with ISM mappings. This also lets us get away
8703 * with not doing expensive cross calls to flush the TLB -- we
8704 * just discard the context, flush the entire TSB, and call it
8705 * a day.
8706 */
8707 sfmmu_ismhat_enter(sfmmup, 0);
8708
8709 /*
8710 * Remove the mapping.
8711 *
8712 * We can't have any holes in the ism map.
8713 * The tsb miss code while searching the ism map will
8714 * stop on an empty map slot. So we must move
8715 * everyone past the hole up 1 if any.
8716 *
8717 * Also empty ism map blks are not freed until the
8718 * process exits. This is to prevent a MT race condition
8719 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
8720 */
8721 found = 0;
8722 ism_blkp = sfmmup->sfmmu_iblk;
8723 while (!found && ism_blkp != NULL) {
8724 ism_map = ism_blkp->iblk_maps;
8725 for (i = 0; i < ISM_MAP_SLOTS; i++) {
8726 if (addr == ism_start(ism_map[i]) &&
8727 sh_size == (size_t)(ism_size(ism_map[i]))) {
8728 found = 1;
8729 break;
8730 }
8731 }
8732 if (!found)
8733 ism_blkp = ism_blkp->iblk_next;
8734 }
8735
8736 if (found) {
8737 ism_hatid = ism_map[i].imap_ismhat;
8738 ism_rid = ism_map[i].imap_rid;
8739 ASSERT(ism_hatid != NULL);
8740 ASSERT(ism_hatid->sfmmu_ismhat == 1);
8741
8742 /*
8743 * After hat_leave_region, the sfmmup may leave SCD,
8744 * in which case, we want to grow the private tsb size when
8745 * calling sfmmu_check_page_sizes at the end of the routine.
8746 */
8747 old_scdp = sfmmup->sfmmu_scdp;
8748 /*
8749 * Then remove ourselves from the region.
8750 */
8751 if (ism_rid != SFMMU_INVALID_ISMRID) {
8752 hat_leave_region(sfmmup, (void *)((uint64_t)ism_rid),
8753 HAT_REGION_ISM);
8754 }
8755
8756 /*
8757 * And now guarantee that any other cpu
8758 * that tries to process an ISM miss
8759 * will go to tl=0.
8760 */
8761 hatlockp = sfmmu_hat_enter(sfmmup);
8762 sfmmu_invalidate_ctx(sfmmup);
8763 sfmmu_hat_exit(hatlockp);
8764
8765 /*
8766 * Remove ourselves from the ism mapping list.
8767 */
8768 mutex_enter(&ism_mlist_lock);
8769 iment_sub(ism_map[i].imap_ment, ism_hatid);
8770 mutex_exit(&ism_mlist_lock);
8771 free_ment = ism_map[i].imap_ment;
8772
8773 /*
8774 * We delete the ism map by copying
8775 * the next map over the current one.
8776 * We will take the next one in the maps
8777 * array or from the next ism_blk.
8778 */
8779 while (ism_blkp != NULL) {
8780 ism_map = ism_blkp->iblk_maps;
8781 while (i < (ISM_MAP_SLOTS - 1)) {
8782 ism_map[i] = ism_map[i + 1];
8783 i++;
8784 }
8785 /* i == (ISM_MAP_SLOTS - 1) */
8786 ism_blkp = ism_blkp->iblk_next;
8787 if (ism_blkp != NULL) {
8788 ism_map[i] = ism_blkp->iblk_maps[0];
8789 i = 0;
8790 } else {
8791 ism_map[i].imap_seg = 0;
8792 ism_map[i].imap_vb_shift = 0;
8793 ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8794 ism_map[i].imap_hatflags = 0;
8795 ism_map[i].imap_sz_mask = 0;
8796 ism_map[i].imap_ismhat = NULL;
8797 ism_map[i].imap_ment = NULL;
8798 }
8799 }
8800
8801 /*
8802 * Now flush entire TSB for the process, since
8803 * demapping page by page can be too expensive.
8804 * We don't have to flush the TLB here anymore
8805 * since we switch to a new TLB ctx instead.
8806 * Also, there is no need to flush if the process
8807 * is exiting since the TSB will be freed later.
8808 */
8809 if (!sfmmup->sfmmu_free) {
8810 hatlockp = sfmmu_hat_enter(sfmmup);
8811 for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
8812 tsbinfo = tsbinfo->tsb_next) {
8813 if (tsbinfo->tsb_flags & TSB_SWAPPED)
8814 continue;
8815 if (tsbinfo->tsb_flags & TSB_RELOC_FLAG) {
8816 tsbinfo->tsb_flags |=
8817 TSB_FLUSH_NEEDED;
8818 continue;
8819 }
8820
8821 sfmmu_inv_tsb(tsbinfo->tsb_va,
8822 TSB_BYTES(tsbinfo->tsb_szc));
8823 }
8824 sfmmu_hat_exit(hatlockp);
8825 }
8826 }
8827
8828 /*
8829 * Update our counters for this sfmmup's ism mappings.
8830 */
8831 for (i = 0; i <= ismszc; i++) {
8832 if (!(disable_ism_large_pages & (1 << i)))
8833 (void) ism_tsb_entries(sfmmup, i);
8834 }
8835
8836 sfmmu_ismhat_exit(sfmmup, 0);
8837
8838 /*
8839 * We must do our freeing here after dropping locks
8840 * to prevent a deadlock in the kmem allocator on the
8841 * mapping list lock.
8842 */
8843 if (free_ment != NULL)
8844 kmem_cache_free(ism_ment_cache, free_ment);
8845
8846 /*
8847 * Check TSB and TLB page sizes if the process isn't exiting.
8848 */
8849 if (!sfmmup->sfmmu_free) {
8850 if (found && old_scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
8851 sfmmu_check_page_sizes(sfmmup, 1);
8852 } else {
8853 sfmmu_check_page_sizes(sfmmup, 0);
8854 }
8855 }
8856 }
8857
8858 /* ARGSUSED */
8859 static int
sfmmu_idcache_constructor(void * buf,void * cdrarg,int kmflags)8860 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8861 {
8862 /* void *buf is sfmmu_t pointer */
8863 bzero(buf, sizeof (sfmmu_t));
8864
8865 return (0);
8866 }
8867
8868 /* ARGSUSED */
8869 static void
sfmmu_idcache_destructor(void * buf,void * cdrarg)8870 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8871 {
8872 /* void *buf is sfmmu_t pointer */
8873 }
8874
8875 /*
8876 * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8877 * field to be the pa of this hmeblk
8878 */
8879 /* ARGSUSED */
8880 static int
sfmmu_hblkcache_constructor(void * buf,void * cdrarg,int kmflags)8881 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8882 {
8883 struct hme_blk *hmeblkp;
8884
8885 bzero(buf, (size_t)cdrarg);
8886 hmeblkp = (struct hme_blk *)buf;
8887 hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8888
8889 #ifdef HBLK_TRACE
8890 mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8891 #endif /* HBLK_TRACE */
8892
8893 return (0);
8894 }
8895
8896 /* ARGSUSED */
8897 static void
sfmmu_hblkcache_destructor(void * buf,void * cdrarg)8898 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8899 {
8900
8901 #ifdef HBLK_TRACE
8902
8903 struct hme_blk *hmeblkp;
8904
8905 hmeblkp = (struct hme_blk *)buf;
8906 mutex_destroy(&hmeblkp->hblk_audit_lock);
8907
8908 #endif /* HBLK_TRACE */
8909 }
8910
8911 #define SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8912 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8913 /*
8914 * The kmem allocator will callback into our reclaim routine when the system
8915 * is running low in memory. We traverse the hash and free up all unused but
8916 * still cached hme_blks. We also traverse the free list and free them up
8917 * as well.
8918 */
8919 /*ARGSUSED*/
8920 static void
sfmmu_hblkcache_reclaim(void * cdrarg)8921 sfmmu_hblkcache_reclaim(void *cdrarg)
8922 {
8923 int i;
8924 struct hmehash_bucket *hmebp;
8925 struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
8926 static struct hmehash_bucket *uhmehash_reclaim_hand;
8927 static struct hmehash_bucket *khmehash_reclaim_hand;
8928 struct hme_blk *list = NULL, *last_hmeblkp;
8929 cpuset_t cpuset = cpu_ready_set;
8930 cpu_hme_pend_t *cpuhp;
8931
8932 /* Free up hmeblks on the cpu pending lists */
8933 for (i = 0; i < NCPU; i++) {
8934 cpuhp = &cpu_hme_pend[i];
8935 if (cpuhp->chp_listp != NULL) {
8936 mutex_enter(&cpuhp->chp_mutex);
8937 if (cpuhp->chp_listp == NULL) {
8938 mutex_exit(&cpuhp->chp_mutex);
8939 continue;
8940 }
8941 for (last_hmeblkp = cpuhp->chp_listp;
8942 last_hmeblkp->hblk_next != NULL;
8943 last_hmeblkp = last_hmeblkp->hblk_next)
8944 ;
8945 last_hmeblkp->hblk_next = list;
8946 list = cpuhp->chp_listp;
8947 cpuhp->chp_listp = NULL;
8948 cpuhp->chp_count = 0;
8949 mutex_exit(&cpuhp->chp_mutex);
8950 }
8951
8952 }
8953
8954 if (list != NULL) {
8955 kpreempt_disable();
8956 CPUSET_DEL(cpuset, CPU->cpu_id);
8957 xt_sync(cpuset);
8958 xt_sync(cpuset);
8959 kpreempt_enable();
8960 sfmmu_hblk_free(&list);
8961 list = NULL;
8962 }
8963
8964 hmebp = uhmehash_reclaim_hand;
8965 if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
8966 uhmehash_reclaim_hand = hmebp = uhme_hash;
8967 uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8968
8969 for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8970 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8971 hmeblkp = hmebp->hmeblkp;
8972 pr_hblk = NULL;
8973 while (hmeblkp) {
8974 nx_hblk = hmeblkp->hblk_next;
8975 if (!hmeblkp->hblk_vcnt &&
8976 !hmeblkp->hblk_hmecnt) {
8977 sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8978 pr_hblk, &list, 0);
8979 } else {
8980 pr_hblk = hmeblkp;
8981 }
8982 hmeblkp = nx_hblk;
8983 }
8984 SFMMU_HASH_UNLOCK(hmebp);
8985 }
8986 if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
8987 hmebp = uhme_hash;
8988 }
8989
8990 hmebp = khmehash_reclaim_hand;
8991 if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
8992 khmehash_reclaim_hand = hmebp = khme_hash;
8993 khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8994
8995 for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8996 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8997 hmeblkp = hmebp->hmeblkp;
8998 pr_hblk = NULL;
8999 while (hmeblkp) {
9000 nx_hblk = hmeblkp->hblk_next;
9001 if (!hmeblkp->hblk_vcnt &&
9002 !hmeblkp->hblk_hmecnt) {
9003 sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9004 pr_hblk, &list, 0);
9005 } else {
9006 pr_hblk = hmeblkp;
9007 }
9008 hmeblkp = nx_hblk;
9009 }
9010 SFMMU_HASH_UNLOCK(hmebp);
9011 }
9012 if (hmebp++ == &khme_hash[KHMEHASH_SZ])
9013 hmebp = khme_hash;
9014 }
9015 sfmmu_hblks_list_purge(&list, 0);
9016 }
9017
9018 /*
9019 * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
9020 * same goes for sfmmu_get_addrvcolor().
9021 *
9022 * This function will return the virtual color for the specified page. The
9023 * virtual color corresponds to this page current mapping or its last mapping.
9024 * It is used by memory allocators to choose addresses with the correct
9025 * alignment so vac consistency is automatically maintained. If the page
9026 * has no color it returns -1.
9027 */
9028 /*ARGSUSED*/
9029 int
sfmmu_get_ppvcolor(struct page * pp)9030 sfmmu_get_ppvcolor(struct page *pp)
9031 {
9032 #ifdef VAC
9033 int color;
9034
9035 if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
9036 return (-1);
9037 }
9038 color = PP_GET_VCOLOR(pp);
9039 ASSERT(color < mmu_btop(shm_alignment));
9040 return (color);
9041 #else
9042 return (-1);
9043 #endif /* VAC */
9044 }
9045
9046 /*
9047 * This function will return the desired alignment for vac consistency
9048 * (vac color) given a virtual address. If no vac is present it returns -1.
9049 */
9050 /*ARGSUSED*/
9051 int
sfmmu_get_addrvcolor(caddr_t vaddr)9052 sfmmu_get_addrvcolor(caddr_t vaddr)
9053 {
9054 #ifdef VAC
9055 if (cache & CACHE_VAC) {
9056 return (addr_to_vcolor(vaddr));
9057 } else {
9058 return (-1);
9059 }
9060 #else
9061 return (-1);
9062 #endif /* VAC */
9063 }
9064
9065 #ifdef VAC
9066 /*
9067 * Check for conflicts.
9068 * A conflict exists if the new and existent mappings do not match in
9069 * their "shm_alignment fields. If conflicts exist, the existant mappings
9070 * are flushed unless one of them is locked. If one of them is locked, then
9071 * the mappings are flushed and converted to non-cacheable mappings.
9072 */
9073 static void
sfmmu_vac_conflict(struct hat * hat,caddr_t addr,page_t * pp)9074 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
9075 {
9076 struct hat *tmphat;
9077 struct sf_hment *sfhmep, *tmphme = NULL;
9078 struct hme_blk *hmeblkp;
9079 int vcolor;
9080 tte_t tte;
9081
9082 ASSERT(sfmmu_mlist_held(pp));
9083 ASSERT(!PP_ISNC(pp)); /* page better be cacheable */
9084
9085 vcolor = addr_to_vcolor(addr);
9086 if (PP_NEWPAGE(pp)) {
9087 PP_SET_VCOLOR(pp, vcolor);
9088 return;
9089 }
9090
9091 if (PP_GET_VCOLOR(pp) == vcolor) {
9092 return;
9093 }
9094
9095 if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
9096 /*
9097 * Previous user of page had a different color
9098 * but since there are no current users
9099 * we just flush the cache and change the color.
9100 */
9101 SFMMU_STAT(sf_pgcolor_conflict);
9102 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9103 PP_SET_VCOLOR(pp, vcolor);
9104 return;
9105 }
9106
9107 /*
9108 * If we get here we have a vac conflict with a current
9109 * mapping. VAC conflict policy is as follows.
9110 * - The default is to unload the other mappings unless:
9111 * - If we have a large mapping we uncache the page.
9112 * We need to uncache the rest of the large page too.
9113 * - If any of the mappings are locked we uncache the page.
9114 * - If the requested mapping is inconsistent
9115 * with another mapping and that mapping
9116 * is in the same address space we have to
9117 * make it non-cached. The default thing
9118 * to do is unload the inconsistent mapping
9119 * but if they are in the same address space
9120 * we run the risk of unmapping the pc or the
9121 * stack which we will use as we return to the user,
9122 * in which case we can then fault on the thing
9123 * we just unloaded and get into an infinite loop.
9124 */
9125 if (PP_ISMAPPED_LARGE(pp)) {
9126 int sz;
9127
9128 /*
9129 * Existing mapping is for big pages. We don't unload
9130 * existing big mappings to satisfy new mappings.
9131 * Always convert all mappings to TNC.
9132 */
9133 sz = fnd_mapping_sz(pp);
9134 pp = PP_GROUPLEADER(pp, sz);
9135 SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
9136 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
9137 TTEPAGES(sz));
9138
9139 return;
9140 }
9141
9142 /*
9143 * check if any mapping is in same as or if it is locked
9144 * since in that case we need to uncache.
9145 */
9146 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9147 tmphme = sfhmep->hme_next;
9148 if (IS_PAHME(sfhmep))
9149 continue;
9150 hmeblkp = sfmmu_hmetohblk(sfhmep);
9151 tmphat = hblktosfmmu(hmeblkp);
9152 sfmmu_copytte(&sfhmep->hme_tte, &tte);
9153 ASSERT(TTE_IS_VALID(&tte));
9154 if (hmeblkp->hblk_shared || tmphat == hat ||
9155 hmeblkp->hblk_lckcnt) {
9156 /*
9157 * We have an uncache conflict
9158 */
9159 SFMMU_STAT(sf_uncache_conflict);
9160 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
9161 return;
9162 }
9163 }
9164
9165 /*
9166 * We have an unload conflict
9167 * We have already checked for LARGE mappings, therefore
9168 * the remaining mapping(s) must be TTE8K.
9169 */
9170 SFMMU_STAT(sf_unload_conflict);
9171
9172 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9173 tmphme = sfhmep->hme_next;
9174 if (IS_PAHME(sfhmep))
9175 continue;
9176 hmeblkp = sfmmu_hmetohblk(sfhmep);
9177 ASSERT(!hmeblkp->hblk_shared);
9178 (void) sfmmu_pageunload(pp, sfhmep, TTE8K);
9179 }
9180
9181 if (PP_ISMAPPED_KPM(pp))
9182 sfmmu_kpm_vac_unload(pp, addr);
9183
9184 /*
9185 * Unloads only do TLB flushes so we need to flush the
9186 * cache here.
9187 */
9188 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9189 PP_SET_VCOLOR(pp, vcolor);
9190 }
9191
9192 /*
9193 * Whenever a mapping is unloaded and the page is in TNC state,
9194 * we see if the page can be made cacheable again. 'pp' is
9195 * the page that we just unloaded a mapping from, the size
9196 * of mapping that was unloaded is 'ottesz'.
9197 * Remark:
9198 * The recache policy for mpss pages can leave a performance problem
9199 * under the following circumstances:
9200 * . A large page in uncached mode has just been unmapped.
9201 * . All constituent pages are TNC due to a conflicting small mapping.
9202 * . There are many other, non conflicting, small mappings around for
9203 * a lot of the constituent pages.
9204 * . We're called w/ the "old" groupleader page and the old ottesz,
9205 * but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
9206 * we end up w/ TTE8K or npages == 1.
9207 * . We call tst_tnc w/ the old groupleader only, and if there is no
9208 * conflict, we re-cache only this page.
9209 * . All other small mappings are not checked and will be left in TNC mode.
9210 * The problem is not very serious because:
9211 * . mpss is actually only defined for heap and stack, so the probability
9212 * is not very high that a large page mapping exists in parallel to a small
9213 * one (this is possible, but seems to be bad programming style in the
9214 * appl).
9215 * . The problem gets a little bit more serious, when those TNC pages
9216 * have to be mapped into kernel space, e.g. for networking.
9217 * . When VAC alias conflicts occur in applications, this is regarded
9218 * as an application bug. So if kstat's show them, the appl should
9219 * be changed anyway.
9220 */
9221 void
conv_tnc(page_t * pp,int ottesz)9222 conv_tnc(page_t *pp, int ottesz)
9223 {
9224 int cursz, dosz;
9225 pgcnt_t curnpgs, dopgs;
9226 pgcnt_t pg64k;
9227 page_t *pp2;
9228
9229 /*
9230 * Determine how big a range we check for TNC and find
9231 * leader page. cursz is the size of the biggest
9232 * mapping that still exist on 'pp'.
9233 */
9234 if (PP_ISMAPPED_LARGE(pp)) {
9235 cursz = fnd_mapping_sz(pp);
9236 } else {
9237 cursz = TTE8K;
9238 }
9239
9240 if (ottesz >= cursz) {
9241 dosz = ottesz;
9242 pp2 = pp;
9243 } else {
9244 dosz = cursz;
9245 pp2 = PP_GROUPLEADER(pp, dosz);
9246 }
9247
9248 pg64k = TTEPAGES(TTE64K);
9249 dopgs = TTEPAGES(dosz);
9250
9251 ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
9252
9253 while (dopgs != 0) {
9254 curnpgs = TTEPAGES(cursz);
9255 if (tst_tnc(pp2, curnpgs)) {
9256 SFMMU_STAT_ADD(sf_recache, curnpgs);
9257 sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
9258 curnpgs);
9259 }
9260
9261 ASSERT(dopgs >= curnpgs);
9262 dopgs -= curnpgs;
9263
9264 if (dopgs == 0) {
9265 break;
9266 }
9267
9268 pp2 = PP_PAGENEXT_N(pp2, curnpgs);
9269 if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
9270 cursz = fnd_mapping_sz(pp2);
9271 } else {
9272 cursz = TTE8K;
9273 }
9274 }
9275 }
9276
9277 /*
9278 * Returns 1 if page(s) can be converted from TNC to cacheable setting,
9279 * returns 0 otherwise. Note that oaddr argument is valid for only
9280 * 8k pages.
9281 */
9282 int
tst_tnc(page_t * pp,pgcnt_t npages)9283 tst_tnc(page_t *pp, pgcnt_t npages)
9284 {
9285 struct sf_hment *sfhme;
9286 struct hme_blk *hmeblkp;
9287 tte_t tte;
9288 caddr_t vaddr;
9289 int clr_valid = 0;
9290 int color, color1, bcolor;
9291 int i, ncolors;
9292
9293 ASSERT(pp != NULL);
9294 ASSERT(!(cache & CACHE_WRITEBACK));
9295
9296 if (npages > 1) {
9297 ncolors = CACHE_NUM_COLOR;
9298 }
9299
9300 for (i = 0; i < npages; i++) {
9301 ASSERT(sfmmu_mlist_held(pp));
9302 ASSERT(PP_ISTNC(pp));
9303 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
9304
9305 if (PP_ISPNC(pp)) {
9306 return (0);
9307 }
9308
9309 clr_valid = 0;
9310 if (PP_ISMAPPED_KPM(pp)) {
9311 caddr_t kpmvaddr;
9312
9313 ASSERT(kpm_enable);
9314 kpmvaddr = hat_kpm_page2va(pp, 1);
9315 ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
9316 color1 = addr_to_vcolor(kpmvaddr);
9317 clr_valid = 1;
9318 }
9319
9320 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9321 if (IS_PAHME(sfhme))
9322 continue;
9323 hmeblkp = sfmmu_hmetohblk(sfhme);
9324
9325 sfmmu_copytte(&sfhme->hme_tte, &tte);
9326 ASSERT(TTE_IS_VALID(&tte));
9327
9328 vaddr = tte_to_vaddr(hmeblkp, tte);
9329 color = addr_to_vcolor(vaddr);
9330
9331 if (npages > 1) {
9332 /*
9333 * If there is a big mapping, make sure
9334 * 8K mapping is consistent with the big
9335 * mapping.
9336 */
9337 bcolor = i % ncolors;
9338 if (color != bcolor) {
9339 return (0);
9340 }
9341 }
9342 if (!clr_valid) {
9343 clr_valid = 1;
9344 color1 = color;
9345 }
9346
9347 if (color1 != color) {
9348 return (0);
9349 }
9350 }
9351
9352 pp = PP_PAGENEXT(pp);
9353 }
9354
9355 return (1);
9356 }
9357
9358 void
sfmmu_page_cache_array(page_t * pp,int flags,int cache_flush_flag,pgcnt_t npages)9359 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
9360 pgcnt_t npages)
9361 {
9362 kmutex_t *pmtx;
9363 int i, ncolors, bcolor;
9364 kpm_hlk_t *kpmp;
9365 cpuset_t cpuset;
9366
9367 ASSERT(pp != NULL);
9368 ASSERT(!(cache & CACHE_WRITEBACK));
9369
9370 kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
9371 pmtx = sfmmu_page_enter(pp);
9372
9373 /*
9374 * Fast path caching single unmapped page
9375 */
9376 if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
9377 flags == HAT_CACHE) {
9378 PP_CLRTNC(pp);
9379 PP_CLRPNC(pp);
9380 sfmmu_page_exit(pmtx);
9381 sfmmu_kpm_kpmp_exit(kpmp);
9382 return;
9383 }
9384
9385 /*
9386 * We need to capture all cpus in order to change cacheability
9387 * because we can't allow one cpu to access the same physical
9388 * page using a cacheable and a non-cachebale mapping at the same
9389 * time. Since we may end up walking the ism mapping list
9390 * have to grab it's lock now since we can't after all the
9391 * cpus have been captured.
9392 */
9393 sfmmu_hat_lock_all();
9394 mutex_enter(&ism_mlist_lock);
9395 kpreempt_disable();
9396 cpuset = cpu_ready_set;
9397 xc_attention(cpuset);
9398
9399 if (npages > 1) {
9400 /*
9401 * Make sure all colors are flushed since the
9402 * sfmmu_page_cache() only flushes one color-
9403 * it does not know big pages.
9404 */
9405 ncolors = CACHE_NUM_COLOR;
9406 if (flags & HAT_TMPNC) {
9407 for (i = 0; i < ncolors; i++) {
9408 sfmmu_cache_flushcolor(i, pp->p_pagenum);
9409 }
9410 cache_flush_flag = CACHE_NO_FLUSH;
9411 }
9412 }
9413
9414 for (i = 0; i < npages; i++) {
9415
9416 ASSERT(sfmmu_mlist_held(pp));
9417
9418 if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
9419
9420 if (npages > 1) {
9421 bcolor = i % ncolors;
9422 } else {
9423 bcolor = NO_VCOLOR;
9424 }
9425
9426 sfmmu_page_cache(pp, flags, cache_flush_flag,
9427 bcolor);
9428 }
9429
9430 pp = PP_PAGENEXT(pp);
9431 }
9432
9433 xt_sync(cpuset);
9434 xc_dismissed(cpuset);
9435 mutex_exit(&ism_mlist_lock);
9436 sfmmu_hat_unlock_all();
9437 sfmmu_page_exit(pmtx);
9438 sfmmu_kpm_kpmp_exit(kpmp);
9439 kpreempt_enable();
9440 }
9441
9442 /*
9443 * This function changes the virtual cacheability of all mappings to a
9444 * particular page. When changing from uncache to cacheable the mappings will
9445 * only be changed if all of them have the same virtual color.
9446 * We need to flush the cache in all cpus. It is possible that
9447 * a process referenced a page as cacheable but has sinced exited
9448 * and cleared the mapping list. We still to flush it but have no
9449 * state so all cpus is the only alternative.
9450 */
9451 static void
sfmmu_page_cache(page_t * pp,int flags,int cache_flush_flag,int bcolor)9452 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
9453 {
9454 struct sf_hment *sfhme;
9455 struct hme_blk *hmeblkp;
9456 sfmmu_t *sfmmup;
9457 tte_t tte, ttemod;
9458 caddr_t vaddr;
9459 int ret, color;
9460 pfn_t pfn;
9461
9462 color = bcolor;
9463 pfn = pp->p_pagenum;
9464
9465 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9466
9467 if (IS_PAHME(sfhme))
9468 continue;
9469 hmeblkp = sfmmu_hmetohblk(sfhme);
9470
9471 sfmmu_copytte(&sfhme->hme_tte, &tte);
9472 ASSERT(TTE_IS_VALID(&tte));
9473 vaddr = tte_to_vaddr(hmeblkp, tte);
9474 color = addr_to_vcolor(vaddr);
9475
9476 #ifdef DEBUG
9477 if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
9478 ASSERT(color == bcolor);
9479 }
9480 #endif
9481
9482 ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
9483
9484 ttemod = tte;
9485 if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
9486 TTE_CLR_VCACHEABLE(&ttemod);
9487 } else { /* flags & HAT_CACHE */
9488 TTE_SET_VCACHEABLE(&ttemod);
9489 }
9490 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
9491 if (ret < 0) {
9492 /*
9493 * Since all cpus are captured modifytte should not
9494 * fail.
9495 */
9496 panic("sfmmu_page_cache: write to tte failed");
9497 }
9498
9499 sfmmup = hblktosfmmu(hmeblkp);
9500 if (cache_flush_flag == CACHE_FLUSH) {
9501 /*
9502 * Flush TSBs, TLBs and caches
9503 */
9504 if (hmeblkp->hblk_shared) {
9505 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9506 uint_t rid = hmeblkp->hblk_tag.htag_rid;
9507 sf_region_t *rgnp;
9508 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9509 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9510 ASSERT(srdp != NULL);
9511 rgnp = srdp->srd_hmergnp[rid];
9512 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9513 srdp, rgnp, rid);
9514 (void) sfmmu_rgntlb_demap(vaddr, rgnp,
9515 hmeblkp, 0);
9516 sfmmu_cache_flush(pfn, addr_to_vcolor(vaddr));
9517 } else if (sfmmup->sfmmu_ismhat) {
9518 if (flags & HAT_CACHE) {
9519 SFMMU_STAT(sf_ism_recache);
9520 } else {
9521 SFMMU_STAT(sf_ism_uncache);
9522 }
9523 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9524 pfn, CACHE_FLUSH);
9525 } else {
9526 sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
9527 pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
9528 }
9529
9530 /*
9531 * all cache entries belonging to this pfn are
9532 * now flushed.
9533 */
9534 cache_flush_flag = CACHE_NO_FLUSH;
9535 } else {
9536 /*
9537 * Flush only TSBs and TLBs.
9538 */
9539 if (hmeblkp->hblk_shared) {
9540 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9541 uint_t rid = hmeblkp->hblk_tag.htag_rid;
9542 sf_region_t *rgnp;
9543 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9544 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9545 ASSERT(srdp != NULL);
9546 rgnp = srdp->srd_hmergnp[rid];
9547 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9548 srdp, rgnp, rid);
9549 (void) sfmmu_rgntlb_demap(vaddr, rgnp,
9550 hmeblkp, 0);
9551 } else if (sfmmup->sfmmu_ismhat) {
9552 if (flags & HAT_CACHE) {
9553 SFMMU_STAT(sf_ism_recache);
9554 } else {
9555 SFMMU_STAT(sf_ism_uncache);
9556 }
9557 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9558 pfn, CACHE_NO_FLUSH);
9559 } else {
9560 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
9561 }
9562 }
9563 }
9564
9565 if (PP_ISMAPPED_KPM(pp))
9566 sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
9567
9568 switch (flags) {
9569
9570 default:
9571 panic("sfmmu_pagecache: unknown flags");
9572 break;
9573
9574 case HAT_CACHE:
9575 PP_CLRTNC(pp);
9576 PP_CLRPNC(pp);
9577 PP_SET_VCOLOR(pp, color);
9578 break;
9579
9580 case HAT_TMPNC:
9581 PP_SETTNC(pp);
9582 PP_SET_VCOLOR(pp, NO_VCOLOR);
9583 break;
9584
9585 case HAT_UNCACHE:
9586 PP_SETPNC(pp);
9587 PP_CLRTNC(pp);
9588 PP_SET_VCOLOR(pp, NO_VCOLOR);
9589 break;
9590 }
9591 }
9592 #endif /* VAC */
9593
9594
9595 /*
9596 * Wrapper routine used to return a context.
9597 *
9598 * It's the responsibility of the caller to guarantee that the
9599 * process serializes on calls here by taking the HAT lock for
9600 * the hat.
9601 *
9602 */
9603 static void
sfmmu_get_ctx(sfmmu_t * sfmmup)9604 sfmmu_get_ctx(sfmmu_t *sfmmup)
9605 {
9606 mmu_ctx_t *mmu_ctxp;
9607 uint_t pstate_save;
9608 int ret;
9609
9610 ASSERT(sfmmu_hat_lock_held(sfmmup));
9611 ASSERT(sfmmup != ksfmmup);
9612
9613 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)) {
9614 sfmmu_setup_tsbinfo(sfmmup);
9615 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ALLCTX_INVALID);
9616 }
9617
9618 kpreempt_disable();
9619
9620 mmu_ctxp = CPU_MMU_CTXP(CPU);
9621 ASSERT(mmu_ctxp);
9622 ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
9623 ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
9624
9625 /*
9626 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
9627 */
9628 if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
9629 sfmmu_ctx_wrap_around(mmu_ctxp, B_TRUE);
9630
9631 /*
9632 * Let the MMU set up the page sizes to use for
9633 * this context in the TLB. Don't program 2nd dtlb for ism hat.
9634 */
9635 if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
9636 mmu_set_ctx_page_sizes(sfmmup);
9637 }
9638
9639 /*
9640 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
9641 * interrupts disabled to prevent race condition with wrap-around
9642 * ctx invalidatation. In sun4v, ctx invalidation also involves
9643 * a HV call to set the number of TSBs to 0. If interrupts are not
9644 * disabled until after sfmmu_load_mmustate is complete TSBs may
9645 * become assigned to INVALID_CONTEXT. This is not allowed.
9646 */
9647 pstate_save = sfmmu_disable_intrs();
9648
9649 if (sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE) &&
9650 sfmmup->sfmmu_scdp != NULL) {
9651 sf_scd_t *scdp = sfmmup->sfmmu_scdp;
9652 sfmmu_t *scsfmmup = scdp->scd_sfmmup;
9653 ret = sfmmu_alloc_ctx(scsfmmup, 1, CPU, SFMMU_SHARED);
9654 /* debug purpose only */
9655 ASSERT(!ret || scsfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
9656 != INVALID_CONTEXT);
9657 }
9658 sfmmu_load_mmustate(sfmmup);
9659
9660 sfmmu_enable_intrs(pstate_save);
9661
9662 kpreempt_enable();
9663 }
9664
9665 /*
9666 * When all cnums are used up in a MMU, cnum will wrap around to the
9667 * next generation and start from 2.
9668 */
9669 static void
sfmmu_ctx_wrap_around(mmu_ctx_t * mmu_ctxp,boolean_t reset_cnum)9670 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp, boolean_t reset_cnum)
9671 {
9672
9673 /* caller must have disabled the preemption */
9674 ASSERT(curthread->t_preempt >= 1);
9675 ASSERT(mmu_ctxp != NULL);
9676
9677 /* acquire Per-MMU (PM) spin lock */
9678 mutex_enter(&mmu_ctxp->mmu_lock);
9679
9680 /* re-check to see if wrap-around is needed */
9681 if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
9682 goto done;
9683
9684 SFMMU_MMU_STAT(mmu_wrap_around);
9685
9686 /* update gnum */
9687 ASSERT(mmu_ctxp->mmu_gnum != 0);
9688 mmu_ctxp->mmu_gnum++;
9689 if (mmu_ctxp->mmu_gnum == 0 ||
9690 mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
9691 cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
9692 (void *)mmu_ctxp);
9693 }
9694
9695 if (mmu_ctxp->mmu_ncpus > 1) {
9696 cpuset_t cpuset;
9697
9698 membar_enter(); /* make sure updated gnum visible */
9699
9700 SFMMU_XCALL_STATS(NULL);
9701
9702 /* xcall to others on the same MMU to invalidate ctx */
9703 cpuset = mmu_ctxp->mmu_cpuset;
9704 ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id) || !reset_cnum);
9705 CPUSET_DEL(cpuset, CPU->cpu_id);
9706 CPUSET_AND(cpuset, cpu_ready_set);
9707
9708 /*
9709 * Pass in INVALID_CONTEXT as the first parameter to
9710 * sfmmu_raise_tsb_exception, which invalidates the context
9711 * of any process running on the CPUs in the MMU.
9712 */
9713 xt_some(cpuset, sfmmu_raise_tsb_exception,
9714 INVALID_CONTEXT, INVALID_CONTEXT);
9715 xt_sync(cpuset);
9716
9717 SFMMU_MMU_STAT(mmu_tsb_raise_exception);
9718 }
9719
9720 if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
9721 sfmmu_setctx_sec(INVALID_CONTEXT);
9722 sfmmu_clear_utsbinfo();
9723 }
9724
9725 /*
9726 * No xcall is needed here. For sun4u systems all CPUs in context
9727 * domain share a single physical MMU therefore it's enough to flush
9728 * TLB on local CPU. On sun4v systems we use 1 global context
9729 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
9730 * handler. Note that vtag_flushall_uctxs() is called
9731 * for Ultra II machine, where the equivalent flushall functionality
9732 * is implemented in SW, and only user ctx TLB entries are flushed.
9733 */
9734 if (&vtag_flushall_uctxs != NULL) {
9735 vtag_flushall_uctxs();
9736 } else {
9737 vtag_flushall();
9738 }
9739
9740 /* reset mmu cnum, skips cnum 0 and 1 */
9741 if (reset_cnum == B_TRUE)
9742 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
9743
9744 done:
9745 mutex_exit(&mmu_ctxp->mmu_lock);
9746 }
9747
9748
9749 /*
9750 * For multi-threaded process, set the process context to INVALID_CONTEXT
9751 * so that it faults and reloads the MMU state from TL=0. For single-threaded
9752 * process, we can just load the MMU state directly without having to
9753 * set context invalid. Caller must hold the hat lock since we don't
9754 * acquire it here.
9755 */
9756 static void
sfmmu_sync_mmustate(sfmmu_t * sfmmup)9757 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
9758 {
9759 uint_t cnum;
9760 uint_t pstate_save;
9761
9762 ASSERT(sfmmup != ksfmmup);
9763 ASSERT(sfmmu_hat_lock_held(sfmmup));
9764
9765 kpreempt_disable();
9766
9767 /*
9768 * We check whether the pass'ed-in sfmmup is the same as the
9769 * current running proc. This is to makes sure the current proc
9770 * stays single-threaded if it already is.
9771 */
9772 if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
9773 (curthread->t_procp->p_lwpcnt == 1)) {
9774 /* single-thread */
9775 cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
9776 if (cnum != INVALID_CONTEXT) {
9777 uint_t curcnum;
9778 /*
9779 * Disable interrupts to prevent race condition
9780 * with sfmmu_ctx_wrap_around ctx invalidation.
9781 * In sun4v, ctx invalidation involves setting
9782 * TSB to NULL, hence, interrupts should be disabled
9783 * untill after sfmmu_load_mmustate is completed.
9784 */
9785 pstate_save = sfmmu_disable_intrs();
9786 curcnum = sfmmu_getctx_sec();
9787 if (curcnum == cnum)
9788 sfmmu_load_mmustate(sfmmup);
9789 sfmmu_enable_intrs(pstate_save);
9790 ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
9791 }
9792 } else {
9793 /*
9794 * multi-thread
9795 * or when sfmmup is not the same as the curproc.
9796 */
9797 sfmmu_invalidate_ctx(sfmmup);
9798 }
9799
9800 kpreempt_enable();
9801 }
9802
9803
9804 /*
9805 * Replace the specified TSB with a new TSB. This function gets called when
9806 * we grow, shrink or swapin a TSB. When swapping in a TSB (TSB_SWAPIN), the
9807 * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
9808 * (8K).
9809 *
9810 * Caller must hold the HAT lock, but should assume any tsb_info
9811 * pointers it has are no longer valid after calling this function.
9812 *
9813 * Return values:
9814 * TSB_ALLOCFAIL Failed to allocate a TSB, due to memory constraints
9815 * TSB_LOSTRACE HAT is busy, i.e. another thread is already doing
9816 * something to this tsbinfo/TSB
9817 * TSB_SUCCESS Operation succeeded
9818 */
9819 static tsb_replace_rc_t
sfmmu_replace_tsb(sfmmu_t * sfmmup,struct tsb_info * old_tsbinfo,uint_t szc,hatlock_t * hatlockp,uint_t flags)9820 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
9821 hatlock_t *hatlockp, uint_t flags)
9822 {
9823 struct tsb_info *new_tsbinfo = NULL;
9824 struct tsb_info *curtsb, *prevtsb;
9825 uint_t tte_sz_mask;
9826 int i;
9827
9828 ASSERT(sfmmup != ksfmmup);
9829 ASSERT(sfmmup->sfmmu_ismhat == 0);
9830 ASSERT(sfmmu_hat_lock_held(sfmmup));
9831 ASSERT(szc <= tsb_max_growsize);
9832
9833 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
9834 return (TSB_LOSTRACE);
9835
9836 /*
9837 * Find the tsb_info ahead of this one in the list, and
9838 * also make sure that the tsb_info passed in really
9839 * exists!
9840 */
9841 for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9842 curtsb != old_tsbinfo && curtsb != NULL;
9843 prevtsb = curtsb, curtsb = curtsb->tsb_next)
9844 ;
9845 ASSERT(curtsb != NULL);
9846
9847 if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9848 /*
9849 * The process is swapped out, so just set the new size
9850 * code. When it swaps back in, we'll allocate a new one
9851 * of the new chosen size.
9852 */
9853 curtsb->tsb_szc = szc;
9854 return (TSB_SUCCESS);
9855 }
9856 SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
9857
9858 tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
9859
9860 /*
9861 * All initialization is done inside of sfmmu_tsbinfo_alloc().
9862 * If we fail to allocate a TSB, exit.
9863 *
9864 * If tsb grows with new tsb size > 4M and old tsb size < 4M,
9865 * then try 4M slab after the initial alloc fails.
9866 *
9867 * If tsb swapin with tsb size > 4M, then try 4M after the
9868 * initial alloc fails.
9869 */
9870 sfmmu_hat_exit(hatlockp);
9871 if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc,
9872 tte_sz_mask, flags, sfmmup) &&
9873 (!(flags & (TSB_GROW | TSB_SWAPIN)) || (szc <= TSB_4M_SZCODE) ||
9874 (!(flags & TSB_SWAPIN) &&
9875 (old_tsbinfo->tsb_szc >= TSB_4M_SZCODE)) ||
9876 sfmmu_tsbinfo_alloc(&new_tsbinfo, TSB_4M_SZCODE,
9877 tte_sz_mask, flags, sfmmup))) {
9878 (void) sfmmu_hat_enter(sfmmup);
9879 if (!(flags & TSB_SWAPIN))
9880 SFMMU_STAT(sf_tsb_resize_failures);
9881 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9882 return (TSB_ALLOCFAIL);
9883 }
9884 (void) sfmmu_hat_enter(sfmmup);
9885
9886 /*
9887 * Re-check to make sure somebody else didn't muck with us while we
9888 * didn't hold the HAT lock. If the process swapped out, fine, just
9889 * exit; this can happen if we try to shrink the TSB from the context
9890 * of another process (such as on an ISM unmap), though it is rare.
9891 */
9892 if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9893 SFMMU_STAT(sf_tsb_resize_failures);
9894 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9895 sfmmu_hat_exit(hatlockp);
9896 sfmmu_tsbinfo_free(new_tsbinfo);
9897 (void) sfmmu_hat_enter(sfmmup);
9898 return (TSB_LOSTRACE);
9899 }
9900
9901 #ifdef DEBUG
9902 /* Reverify that the tsb_info still exists.. for debugging only */
9903 for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9904 curtsb != old_tsbinfo && curtsb != NULL;
9905 prevtsb = curtsb, curtsb = curtsb->tsb_next)
9906 ;
9907 ASSERT(curtsb != NULL);
9908 #endif /* DEBUG */
9909
9910 /*
9911 * Quiesce any CPUs running this process on their next TLB miss
9912 * so they atomically see the new tsb_info. We temporarily set the
9913 * context to invalid context so new threads that come on processor
9914 * after we do the xcall to cpusran will also serialize behind the
9915 * HAT lock on TLB miss and will see the new TSB. Since this short
9916 * race with a new thread coming on processor is relatively rare,
9917 * this synchronization mechanism should be cheaper than always
9918 * pausing all CPUs for the duration of the setup, which is what
9919 * the old implementation did. This is particuarly true if we are
9920 * copying a huge chunk of memory around during that window.
9921 *
9922 * The memory barriers are to make sure things stay consistent
9923 * with resume() since it does not hold the HAT lock while
9924 * walking the list of tsb_info structures.
9925 */
9926 if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
9927 /* The TSB is either growing or shrinking. */
9928 sfmmu_invalidate_ctx(sfmmup);
9929 } else {
9930 /*
9931 * It is illegal to swap in TSBs from a process other
9932 * than a process being swapped in. This in turn
9933 * implies we do not have a valid MMU context here
9934 * since a process needs one to resolve translation
9935 * misses.
9936 */
9937 ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
9938 }
9939
9940 #ifdef DEBUG
9941 ASSERT(max_mmu_ctxdoms > 0);
9942
9943 /*
9944 * Process should have INVALID_CONTEXT on all MMUs
9945 */
9946 for (i = 0; i < max_mmu_ctxdoms; i++) {
9947
9948 ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
9949 }
9950 #endif
9951
9952 new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
9953 membar_stst(); /* strict ordering required */
9954 if (prevtsb)
9955 prevtsb->tsb_next = new_tsbinfo;
9956 else
9957 sfmmup->sfmmu_tsb = new_tsbinfo;
9958 membar_enter(); /* make sure new TSB globally visible */
9959
9960 /*
9961 * We need to migrate TSB entries from the old TSB to the new TSB
9962 * if tsb_remap_ttes is set and the TSB is growing.
9963 */
9964 if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9965 sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9966
9967 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9968
9969 /*
9970 * Drop the HAT lock to free our old tsb_info.
9971 */
9972 sfmmu_hat_exit(hatlockp);
9973
9974 if ((flags & TSB_GROW) == TSB_GROW) {
9975 SFMMU_STAT(sf_tsb_grow);
9976 } else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9977 SFMMU_STAT(sf_tsb_shrink);
9978 }
9979
9980 sfmmu_tsbinfo_free(old_tsbinfo);
9981
9982 (void) sfmmu_hat_enter(sfmmup);
9983 return (TSB_SUCCESS);
9984 }
9985
9986 /*
9987 * This function will re-program hat pgsz array, and invalidate the
9988 * process' context, forcing the process to switch to another
9989 * context on the next TLB miss, and therefore start using the
9990 * TLB that is reprogrammed for the new page sizes.
9991 */
9992 void
sfmmu_reprog_pgsz_arr(sfmmu_t * sfmmup,uint8_t * tmp_pgsz)9993 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9994 {
9995 int i;
9996 hatlock_t *hatlockp = NULL;
9997
9998 hatlockp = sfmmu_hat_enter(sfmmup);
9999 /* USIII+-IV+ optimization, requires hat lock */
10000 if (tmp_pgsz) {
10001 for (i = 0; i < mmu_page_sizes; i++)
10002 sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
10003 }
10004 SFMMU_STAT(sf_tlb_reprog_pgsz);
10005
10006 sfmmu_invalidate_ctx(sfmmup);
10007
10008 sfmmu_hat_exit(hatlockp);
10009 }
10010
10011 /*
10012 * The scd_rttecnt field in the SCD must be updated to take account of the
10013 * regions which it contains.
10014 */
10015 static void
sfmmu_set_scd_rttecnt(sf_srd_t * srdp,sf_scd_t * scdp)10016 sfmmu_set_scd_rttecnt(sf_srd_t *srdp, sf_scd_t *scdp)
10017 {
10018 uint_t rid;
10019 uint_t i, j;
10020 ulong_t w;
10021 sf_region_t *rgnp;
10022
10023 ASSERT(srdp != NULL);
10024
10025 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
10026 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
10027 continue;
10028 }
10029
10030 j = 0;
10031 while (w) {
10032 if (!(w & 0x1)) {
10033 j++;
10034 w >>= 1;
10035 continue;
10036 }
10037 rid = (i << BT_ULSHIFT) | j;
10038 j++;
10039 w >>= 1;
10040
10041 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
10042 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
10043 rgnp = srdp->srd_hmergnp[rid];
10044 ASSERT(rgnp->rgn_refcnt > 0);
10045 ASSERT(rgnp->rgn_id == rid);
10046
10047 scdp->scd_rttecnt[rgnp->rgn_pgszc] +=
10048 rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
10049
10050 /*
10051 * Maintain the tsb0 inflation cnt for the regions
10052 * in the SCD.
10053 */
10054 if (rgnp->rgn_pgszc >= TTE4M) {
10055 scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt +=
10056 rgnp->rgn_size >>
10057 (TTE_PAGE_SHIFT(TTE8K) + 2);
10058 }
10059 }
10060 }
10061 }
10062
10063 /*
10064 * This function assumes that there are either four or six supported page
10065 * sizes and at most two programmable TLBs, so we need to decide which
10066 * page sizes are most important and then tell the MMU layer so it
10067 * can adjust the TLB page sizes accordingly (if supported).
10068 *
10069 * If these assumptions change, this function will need to be
10070 * updated to support whatever the new limits are.
10071 *
10072 * The growing flag is nonzero if we are growing the address space,
10073 * and zero if it is shrinking. This allows us to decide whether
10074 * to grow or shrink our TSB, depending upon available memory
10075 * conditions.
10076 */
10077 static void
sfmmu_check_page_sizes(sfmmu_t * sfmmup,int growing)10078 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
10079 {
10080 uint64_t ttecnt[MMU_PAGE_SIZES];
10081 uint64_t tte8k_cnt, tte4m_cnt;
10082 uint8_t i;
10083 int sectsb_thresh;
10084
10085 /*
10086 * Kernel threads, processes with small address spaces not using
10087 * large pages, and dummy ISM HATs need not apply.
10088 */
10089 if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
10090 return;
10091
10092 if (!SFMMU_LGPGS_INUSE(sfmmup) &&
10093 sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
10094 return;
10095
10096 for (i = 0; i < mmu_page_sizes; i++) {
10097 ttecnt[i] = sfmmup->sfmmu_ttecnt[i] +
10098 sfmmup->sfmmu_ismttecnt[i];
10099 }
10100
10101 /* Check pagesizes in use, and possibly reprogram DTLB. */
10102 if (&mmu_check_page_sizes)
10103 mmu_check_page_sizes(sfmmup, ttecnt);
10104
10105 /*
10106 * Calculate the number of 8k ttes to represent the span of these
10107 * pages.
10108 */
10109 tte8k_cnt = ttecnt[TTE8K] +
10110 (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
10111 (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
10112 if (mmu_page_sizes == max_mmu_page_sizes) {
10113 tte4m_cnt = ttecnt[TTE4M] +
10114 (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
10115 (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
10116 } else {
10117 tte4m_cnt = ttecnt[TTE4M];
10118 }
10119
10120 /*
10121 * Inflate tte8k_cnt to allow for region large page allocation failure.
10122 */
10123 tte8k_cnt += sfmmup->sfmmu_tsb0_4minflcnt;
10124
10125 /*
10126 * Inflate TSB sizes by a factor of 2 if this process
10127 * uses 4M text pages to minimize extra conflict misses
10128 * in the first TSB since without counting text pages
10129 * 8K TSB may become too small.
10130 *
10131 * Also double the size of the second TSB to minimize
10132 * extra conflict misses due to competition between 4M text pages
10133 * and data pages.
10134 *
10135 * We need to adjust the second TSB allocation threshold by the
10136 * inflation factor, since there is no point in creating a second
10137 * TSB when we know all the mappings can fit in the I/D TLBs.
10138 */
10139 sectsb_thresh = tsb_sectsb_threshold;
10140 if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
10141 tte8k_cnt <<= 1;
10142 tte4m_cnt <<= 1;
10143 sectsb_thresh <<= 1;
10144 }
10145
10146 /*
10147 * Check to see if our TSB is the right size; we may need to
10148 * grow or shrink it. If the process is small, our work is
10149 * finished at this point.
10150 */
10151 if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
10152 return;
10153 }
10154 sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
10155 }
10156
10157 static void
sfmmu_size_tsb(sfmmu_t * sfmmup,int growing,uint64_t tte8k_cnt,uint64_t tte4m_cnt,int sectsb_thresh)10158 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
10159 uint64_t tte4m_cnt, int sectsb_thresh)
10160 {
10161 int tsb_bits;
10162 uint_t tsb_szc;
10163 struct tsb_info *tsbinfop;
10164 hatlock_t *hatlockp = NULL;
10165
10166 hatlockp = sfmmu_hat_enter(sfmmup);
10167 ASSERT(hatlockp != NULL);
10168 tsbinfop = sfmmup->sfmmu_tsb;
10169 ASSERT(tsbinfop != NULL);
10170
10171 /*
10172 * If we're growing, select the size based on RSS. If we're
10173 * shrinking, leave some room so we don't have to turn around and
10174 * grow again immediately.
10175 */
10176 if (growing)
10177 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
10178 else
10179 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
10180
10181 if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10182 (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10183 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10184 hatlockp, TSB_SHRINK);
10185 } else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
10186 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10187 hatlockp, TSB_GROW);
10188 }
10189 tsbinfop = sfmmup->sfmmu_tsb;
10190
10191 /*
10192 * With the TLB and first TSB out of the way, we need to see if
10193 * we need a second TSB for 4M pages. If we managed to reprogram
10194 * the TLB page sizes above, the process will start using this new
10195 * TSB right away; otherwise, it will start using it on the next
10196 * context switch. Either way, it's no big deal so there's no
10197 * synchronization with the trap handlers here unless we grow the
10198 * TSB (in which case it's required to prevent using the old one
10199 * after it's freed). Note: second tsb is required for 32M/256M
10200 * page sizes.
10201 */
10202 if (tte4m_cnt > sectsb_thresh) {
10203 /*
10204 * If we're growing, select the size based on RSS. If we're
10205 * shrinking, leave some room so we don't have to turn
10206 * around and grow again immediately.
10207 */
10208 if (growing)
10209 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
10210 else
10211 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
10212 if (tsbinfop->tsb_next == NULL) {
10213 struct tsb_info *newtsb;
10214 int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
10215 0 : TSB_ALLOC;
10216
10217 sfmmu_hat_exit(hatlockp);
10218
10219 /*
10220 * Try to allocate a TSB for 4[32|256]M pages. If we
10221 * can't get the size we want, retry w/a minimum sized
10222 * TSB. If that still didn't work, give up; we can
10223 * still run without one.
10224 */
10225 tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
10226 TSB4M|TSB32M|TSB256M:TSB4M;
10227 if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
10228 allocflags, sfmmup)) &&
10229 (tsb_szc <= TSB_4M_SZCODE ||
10230 sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
10231 tsb_bits, allocflags, sfmmup)) &&
10232 sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
10233 tsb_bits, allocflags, sfmmup)) {
10234 return;
10235 }
10236
10237 hatlockp = sfmmu_hat_enter(sfmmup);
10238
10239 sfmmu_invalidate_ctx(sfmmup);
10240
10241 if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
10242 sfmmup->sfmmu_tsb->tsb_next = newtsb;
10243 SFMMU_STAT(sf_tsb_sectsb_create);
10244 sfmmu_hat_exit(hatlockp);
10245 return;
10246 } else {
10247 /*
10248 * It's annoying, but possible for us
10249 * to get here.. we dropped the HAT lock
10250 * because of locking order in the kmem
10251 * allocator, and while we were off getting
10252 * our memory, some other thread decided to
10253 * do us a favor and won the race to get a
10254 * second TSB for this process. Sigh.
10255 */
10256 sfmmu_hat_exit(hatlockp);
10257 sfmmu_tsbinfo_free(newtsb);
10258 return;
10259 }
10260 }
10261
10262 /*
10263 * We have a second TSB, see if it's big enough.
10264 */
10265 tsbinfop = tsbinfop->tsb_next;
10266
10267 /*
10268 * Check to see if our second TSB is the right size;
10269 * we may need to grow or shrink it.
10270 * To prevent thrashing (e.g. growing the TSB on a
10271 * subsequent map operation), only try to shrink if
10272 * the TSB reach exceeds twice the virtual address
10273 * space size.
10274 */
10275 if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10276 (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10277 (void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10278 tsb_szc, hatlockp, TSB_SHRINK);
10279 } else if (growing && tsb_szc > tsbinfop->tsb_szc &&
10280 TSB_OK_GROW()) {
10281 (void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10282 tsb_szc, hatlockp, TSB_GROW);
10283 }
10284 }
10285
10286 sfmmu_hat_exit(hatlockp);
10287 }
10288
10289 /*
10290 * Free up a sfmmu
10291 * Since the sfmmu is currently embedded in the hat struct we simply zero
10292 * out our fields and free up the ism map blk list if any.
10293 */
10294 static void
sfmmu_free_sfmmu(sfmmu_t * sfmmup)10295 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
10296 {
10297 ism_blk_t *blkp, *nx_blkp;
10298 #ifdef DEBUG
10299 ism_map_t *map;
10300 int i;
10301 #endif
10302
10303 ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
10304 ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
10305 ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
10306 ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
10307 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
10308 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
10309 ASSERT(SF_RGNMAP_ISNULL(sfmmup));
10310
10311 sfmmup->sfmmu_free = 0;
10312 sfmmup->sfmmu_ismhat = 0;
10313
10314 blkp = sfmmup->sfmmu_iblk;
10315 sfmmup->sfmmu_iblk = NULL;
10316
10317 while (blkp) {
10318 #ifdef DEBUG
10319 map = blkp->iblk_maps;
10320 for (i = 0; i < ISM_MAP_SLOTS; i++) {
10321 ASSERT(map[i].imap_seg == 0);
10322 ASSERT(map[i].imap_ismhat == NULL);
10323 ASSERT(map[i].imap_ment == NULL);
10324 }
10325 #endif
10326 nx_blkp = blkp->iblk_next;
10327 blkp->iblk_next = NULL;
10328 blkp->iblk_nextpa = (uint64_t)-1;
10329 kmem_cache_free(ism_blk_cache, blkp);
10330 blkp = nx_blkp;
10331 }
10332 }
10333
10334 /*
10335 * Locking primitves accessed by HATLOCK macros
10336 */
10337
10338 #define SFMMU_SPL_MTX (0x0)
10339 #define SFMMU_ML_MTX (0x1)
10340
10341 #define SFMMU_MLSPL_MTX(type, pg) (((type) == SFMMU_SPL_MTX) ? \
10342 SPL_HASH(pg) : MLIST_HASH(pg))
10343
10344 kmutex_t *
sfmmu_page_enter(struct page * pp)10345 sfmmu_page_enter(struct page *pp)
10346 {
10347 return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
10348 }
10349
10350 void
sfmmu_page_exit(kmutex_t * spl)10351 sfmmu_page_exit(kmutex_t *spl)
10352 {
10353 mutex_exit(spl);
10354 }
10355
10356 int
sfmmu_page_spl_held(struct page * pp)10357 sfmmu_page_spl_held(struct page *pp)
10358 {
10359 return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
10360 }
10361
10362 kmutex_t *
sfmmu_mlist_enter(struct page * pp)10363 sfmmu_mlist_enter(struct page *pp)
10364 {
10365 return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
10366 }
10367
10368 void
sfmmu_mlist_exit(kmutex_t * mml)10369 sfmmu_mlist_exit(kmutex_t *mml)
10370 {
10371 mutex_exit(mml);
10372 }
10373
10374 int
sfmmu_mlist_held(struct page * pp)10375 sfmmu_mlist_held(struct page *pp)
10376 {
10377
10378 return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
10379 }
10380
10381 /*
10382 * Common code for sfmmu_mlist_enter() and sfmmu_page_enter(). For
10383 * sfmmu_mlist_enter() case mml_table lock array is used and for
10384 * sfmmu_page_enter() sfmmu_page_lock lock array is used.
10385 *
10386 * The lock is taken on a root page so that it protects an operation on all
10387 * constituent pages of a large page pp belongs to.
10388 *
10389 * The routine takes a lock from the appropriate array. The lock is determined
10390 * by hashing the root page. After taking the lock this routine checks if the
10391 * root page has the same size code that was used to determine the root (i.e
10392 * that root hasn't changed). If root page has the expected p_szc field we
10393 * have the right lock and it's returned to the caller. If root's p_szc
10394 * decreased we release the lock and retry from the beginning. This case can
10395 * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
10396 * value and taking the lock. The number of retries due to p_szc decrease is
10397 * limited by the maximum p_szc value. If p_szc is 0 we return the lock
10398 * determined by hashing pp itself.
10399 *
10400 * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
10401 * possible that p_szc can increase. To increase p_szc a thread has to lock
10402 * all constituent pages EXCL and do hat_pageunload() on all of them. All the
10403 * callers that don't hold a page locked recheck if hmeblk through which pp
10404 * was found still maps this pp. If it doesn't map it anymore returned lock
10405 * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
10406 * p_szc increase after taking the lock it returns this lock without further
10407 * retries because in this case the caller doesn't care about which lock was
10408 * taken. The caller will drop it right away.
10409 *
10410 * After the routine returns it's guaranteed that hat_page_demote() can't
10411 * change p_szc field of any of constituent pages of a large page pp belongs
10412 * to as long as pp was either locked at least SHARED prior to this call or
10413 * the caller finds that hment that pointed to this pp still references this
10414 * pp (this also assumes that the caller holds hme hash bucket lock so that
10415 * the same pp can't be remapped into the same hmeblk after it was unmapped by
10416 * hat_pageunload()).
10417 */
10418 static kmutex_t *
sfmmu_mlspl_enter(struct page * pp,int type)10419 sfmmu_mlspl_enter(struct page *pp, int type)
10420 {
10421 kmutex_t *mtx;
10422 uint_t prev_rszc = UINT_MAX;
10423 page_t *rootpp;
10424 uint_t szc;
10425 uint_t rszc;
10426 uint_t pszc = pp->p_szc;
10427
10428 ASSERT(pp != NULL);
10429
10430 again:
10431 if (pszc == 0) {
10432 mtx = SFMMU_MLSPL_MTX(type, pp);
10433 mutex_enter(mtx);
10434 return (mtx);
10435 }
10436
10437 /* The lock lives in the root page */
10438 rootpp = PP_GROUPLEADER(pp, pszc);
10439 mtx = SFMMU_MLSPL_MTX(type, rootpp);
10440 mutex_enter(mtx);
10441
10442 /*
10443 * Return mml in the following 3 cases:
10444 *
10445 * 1) If pp itself is root since if its p_szc decreased before we took
10446 * the lock pp is still the root of smaller szc page. And if its p_szc
10447 * increased it doesn't matter what lock we return (see comment in
10448 * front of this routine).
10449 *
10450 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
10451 * large page we have the right lock since any previous potential
10452 * hat_page_demote() is done demoting from greater than current root's
10453 * p_szc because hat_page_demote() changes root's p_szc last. No
10454 * further hat_page_demote() can start or be in progress since it
10455 * would need the same lock we currently hold.
10456 *
10457 * 3) If rootpp's p_szc increased since previous iteration it doesn't
10458 * matter what lock we return (see comment in front of this routine).
10459 */
10460 if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
10461 rszc >= prev_rszc) {
10462 return (mtx);
10463 }
10464
10465 /*
10466 * hat_page_demote() could have decreased root's p_szc.
10467 * In this case pp's p_szc must also be smaller than pszc.
10468 * Retry.
10469 */
10470 if (rszc < pszc) {
10471 szc = pp->p_szc;
10472 if (szc < pszc) {
10473 mutex_exit(mtx);
10474 pszc = szc;
10475 goto again;
10476 }
10477 /*
10478 * pp's p_szc increased after it was decreased.
10479 * page cannot be mapped. Return current lock. The caller
10480 * will drop it right away.
10481 */
10482 return (mtx);
10483 }
10484
10485 /*
10486 * root's p_szc is greater than pp's p_szc.
10487 * hat_page_demote() is not done with all pages
10488 * yet. Wait for it to complete.
10489 */
10490 mutex_exit(mtx);
10491 rootpp = PP_GROUPLEADER(rootpp, rszc);
10492 mtx = SFMMU_MLSPL_MTX(type, rootpp);
10493 mutex_enter(mtx);
10494 mutex_exit(mtx);
10495 prev_rszc = rszc;
10496 goto again;
10497 }
10498
10499 static int
sfmmu_mlspl_held(struct page * pp,int type)10500 sfmmu_mlspl_held(struct page *pp, int type)
10501 {
10502 kmutex_t *mtx;
10503
10504 ASSERT(pp != NULL);
10505 /* The lock lives in the root page */
10506 pp = PP_PAGEROOT(pp);
10507 ASSERT(pp != NULL);
10508
10509 mtx = SFMMU_MLSPL_MTX(type, pp);
10510 return (MUTEX_HELD(mtx));
10511 }
10512
10513 static uint_t
sfmmu_get_free_hblk(struct hme_blk ** hmeblkpp,uint_t critical)10514 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
10515 {
10516 struct hme_blk *hblkp;
10517
10518
10519 if (freehblkp != NULL) {
10520 mutex_enter(&freehblkp_lock);
10521 if (freehblkp != NULL) {
10522 /*
10523 * If the current thread is owning hblk_reserve OR
10524 * critical request from sfmmu_hblk_steal()
10525 * let it succeed even if freehblkcnt is really low.
10526 */
10527 if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
10528 SFMMU_STAT(sf_get_free_throttle);
10529 mutex_exit(&freehblkp_lock);
10530 return (0);
10531 }
10532 freehblkcnt--;
10533 *hmeblkpp = freehblkp;
10534 hblkp = *hmeblkpp;
10535 freehblkp = hblkp->hblk_next;
10536 mutex_exit(&freehblkp_lock);
10537 hblkp->hblk_next = NULL;
10538 SFMMU_STAT(sf_get_free_success);
10539
10540 ASSERT(hblkp->hblk_hmecnt == 0);
10541 ASSERT(hblkp->hblk_vcnt == 0);
10542 ASSERT(hblkp->hblk_nextpa == va_to_pa((caddr_t)hblkp));
10543
10544 return (1);
10545 }
10546 mutex_exit(&freehblkp_lock);
10547 }
10548
10549 /* Check cpu hblk pending queues */
10550 if ((*hmeblkpp = sfmmu_check_pending_hblks(TTE8K)) != NULL) {
10551 hblkp = *hmeblkpp;
10552 hblkp->hblk_next = NULL;
10553 hblkp->hblk_nextpa = va_to_pa((caddr_t)hblkp);
10554
10555 ASSERT(hblkp->hblk_hmecnt == 0);
10556 ASSERT(hblkp->hblk_vcnt == 0);
10557
10558 return (1);
10559 }
10560
10561 SFMMU_STAT(sf_get_free_fail);
10562 return (0);
10563 }
10564
10565 static uint_t
sfmmu_put_free_hblk(struct hme_blk * hmeblkp,uint_t critical)10566 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
10567 {
10568 struct hme_blk *hblkp;
10569
10570 ASSERT(hmeblkp->hblk_hmecnt == 0);
10571 ASSERT(hmeblkp->hblk_vcnt == 0);
10572 ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10573
10574 /*
10575 * If the current thread is mapping into kernel space,
10576 * let it succede even if freehblkcnt is max
10577 * so that it will avoid freeing it to kmem.
10578 * This will prevent stack overflow due to
10579 * possible recursion since kmem_cache_free()
10580 * might require creation of a slab which
10581 * in turn needs an hmeblk to map that slab;
10582 * let's break this vicious chain at the first
10583 * opportunity.
10584 */
10585 if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10586 mutex_enter(&freehblkp_lock);
10587 if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10588 SFMMU_STAT(sf_put_free_success);
10589 freehblkcnt++;
10590 hmeblkp->hblk_next = freehblkp;
10591 freehblkp = hmeblkp;
10592 mutex_exit(&freehblkp_lock);
10593 return (1);
10594 }
10595 mutex_exit(&freehblkp_lock);
10596 }
10597
10598 /*
10599 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
10600 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
10601 * we are not in the process of mapping into kernel space.
10602 */
10603 ASSERT(!critical);
10604 while (freehblkcnt > HBLK_RESERVE_CNT) {
10605 mutex_enter(&freehblkp_lock);
10606 if (freehblkcnt > HBLK_RESERVE_CNT) {
10607 freehblkcnt--;
10608 hblkp = freehblkp;
10609 freehblkp = hblkp->hblk_next;
10610 mutex_exit(&freehblkp_lock);
10611 ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
10612 kmem_cache_free(sfmmu8_cache, hblkp);
10613 continue;
10614 }
10615 mutex_exit(&freehblkp_lock);
10616 }
10617 SFMMU_STAT(sf_put_free_fail);
10618 return (0);
10619 }
10620
10621 static void
sfmmu_hblk_swap(struct hme_blk * new)10622 sfmmu_hblk_swap(struct hme_blk *new)
10623 {
10624 struct hme_blk *old, *hblkp, *prev;
10625 uint64_t newpa;
10626 caddr_t base, vaddr, endaddr;
10627 struct hmehash_bucket *hmebp;
10628 struct sf_hment *osfhme, *nsfhme;
10629 page_t *pp;
10630 kmutex_t *pml;
10631 tte_t tte;
10632 struct hme_blk *list = NULL;
10633
10634 #ifdef DEBUG
10635 hmeblk_tag hblktag;
10636 struct hme_blk *found;
10637 #endif
10638 old = HBLK_RESERVE;
10639 ASSERT(!old->hblk_shared);
10640
10641 /*
10642 * save pa before bcopy clobbers it
10643 */
10644 newpa = new->hblk_nextpa;
10645
10646 base = (caddr_t)get_hblk_base(old);
10647 endaddr = base + get_hblk_span(old);
10648
10649 /*
10650 * acquire hash bucket lock.
10651 */
10652 hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K,
10653 SFMMU_INVALID_SHMERID);
10654
10655 /*
10656 * copy contents from old to new
10657 */
10658 bcopy((void *)old, (void *)new, HME8BLK_SZ);
10659
10660 /*
10661 * add new to hash chain
10662 */
10663 sfmmu_hblk_hash_add(hmebp, new, newpa);
10664
10665 /*
10666 * search hash chain for hblk_reserve; this needs to be performed
10667 * after adding new, otherwise prev won't correspond to the hblk which
10668 * is prior to old in hash chain when we call sfmmu_hblk_hash_rm to
10669 * remove old later.
10670 */
10671 for (prev = NULL,
10672 hblkp = hmebp->hmeblkp; hblkp != NULL && hblkp != old;
10673 prev = hblkp, hblkp = hblkp->hblk_next)
10674 ;
10675
10676 if (hblkp != old)
10677 panic("sfmmu_hblk_swap: hblk_reserve not found");
10678
10679 /*
10680 * p_mapping list is still pointing to hments in hblk_reserve;
10681 * fix up p_mapping list so that they point to hments in new.
10682 *
10683 * Since all these mappings are created by hblk_reserve_thread
10684 * on the way and it's using at least one of the buffers from each of
10685 * the newly minted slabs, there is no danger of any of these
10686 * mappings getting unloaded by another thread.
10687 *
10688 * tsbmiss could only modify ref/mod bits of hments in old/new.
10689 * Since all of these hments hold mappings established by segkmem
10690 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
10691 * have no meaning for the mappings in hblk_reserve. hments in
10692 * old and new are identical except for ref/mod bits.
10693 */
10694 for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
10695
10696 HBLKTOHME(osfhme, old, vaddr);
10697 sfmmu_copytte(&osfhme->hme_tte, &tte);
10698
10699 if (TTE_IS_VALID(&tte)) {
10700 if ((pp = osfhme->hme_page) == NULL)
10701 panic("sfmmu_hblk_swap: page not mapped");
10702
10703 pml = sfmmu_mlist_enter(pp);
10704
10705 if (pp != osfhme->hme_page)
10706 panic("sfmmu_hblk_swap: mapping changed");
10707
10708 HBLKTOHME(nsfhme, new, vaddr);
10709
10710 HME_ADD(nsfhme, pp);
10711 HME_SUB(osfhme, pp);
10712
10713 sfmmu_mlist_exit(pml);
10714 }
10715 }
10716
10717 /*
10718 * remove old from hash chain
10719 */
10720 sfmmu_hblk_hash_rm(hmebp, old, prev, &list, 1);
10721
10722 #ifdef DEBUG
10723
10724 hblktag.htag_id = ksfmmup;
10725 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
10726 hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
10727 hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
10728 HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
10729
10730 if (found != new)
10731 panic("sfmmu_hblk_swap: new hblk not found");
10732 #endif
10733
10734 SFMMU_HASH_UNLOCK(hmebp);
10735
10736 /*
10737 * Reset hblk_reserve
10738 */
10739 bzero((void *)old, HME8BLK_SZ);
10740 old->hblk_nextpa = va_to_pa((caddr_t)old);
10741 }
10742
10743 /*
10744 * Grab the mlist mutex for both pages passed in.
10745 *
10746 * low and high will be returned as pointers to the mutexes for these pages.
10747 * low refers to the mutex residing in the lower bin of the mlist hash, while
10748 * high refers to the mutex residing in the higher bin of the mlist hash. This
10749 * is due to the locking order restrictions on the same thread grabbing
10750 * multiple mlist mutexes. The low lock must be acquired before the high lock.
10751 *
10752 * If both pages hash to the same mutex, only grab that single mutex, and
10753 * high will be returned as NULL
10754 * If the pages hash to different bins in the hash, grab the lower addressed
10755 * lock first and then the higher addressed lock in order to follow the locking
10756 * rules involved with the same thread grabbing multiple mlist mutexes.
10757 * low and high will both have non-NULL values.
10758 */
10759 static void
sfmmu_mlist_reloc_enter(struct page * targ,struct page * repl,kmutex_t ** low,kmutex_t ** high)10760 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
10761 kmutex_t **low, kmutex_t **high)
10762 {
10763 kmutex_t *mml_targ, *mml_repl;
10764
10765 /*
10766 * no need to do the dance around szc as in sfmmu_mlist_enter()
10767 * because this routine is only called by hat_page_relocate() and all
10768 * targ and repl pages are already locked EXCL so szc can't change.
10769 */
10770
10771 mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
10772 mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
10773
10774 if (mml_targ == mml_repl) {
10775 *low = mml_targ;
10776 *high = NULL;
10777 } else {
10778 if (mml_targ < mml_repl) {
10779 *low = mml_targ;
10780 *high = mml_repl;
10781 } else {
10782 *low = mml_repl;
10783 *high = mml_targ;
10784 }
10785 }
10786
10787 mutex_enter(*low);
10788 if (*high)
10789 mutex_enter(*high);
10790 }
10791
10792 static void
sfmmu_mlist_reloc_exit(kmutex_t * low,kmutex_t * high)10793 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
10794 {
10795 if (high)
10796 mutex_exit(high);
10797 mutex_exit(low);
10798 }
10799
10800 static hatlock_t *
sfmmu_hat_enter(sfmmu_t * sfmmup)10801 sfmmu_hat_enter(sfmmu_t *sfmmup)
10802 {
10803 hatlock_t *hatlockp;
10804
10805 if (sfmmup != ksfmmup) {
10806 hatlockp = TSB_HASH(sfmmup);
10807 mutex_enter(HATLOCK_MUTEXP(hatlockp));
10808 return (hatlockp);
10809 }
10810 return (NULL);
10811 }
10812
10813 static hatlock_t *
sfmmu_hat_tryenter(sfmmu_t * sfmmup)10814 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
10815 {
10816 hatlock_t *hatlockp;
10817
10818 if (sfmmup != ksfmmup) {
10819 hatlockp = TSB_HASH(sfmmup);
10820 if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
10821 return (NULL);
10822 return (hatlockp);
10823 }
10824 return (NULL);
10825 }
10826
10827 static void
sfmmu_hat_exit(hatlock_t * hatlockp)10828 sfmmu_hat_exit(hatlock_t *hatlockp)
10829 {
10830 if (hatlockp != NULL)
10831 mutex_exit(HATLOCK_MUTEXP(hatlockp));
10832 }
10833
10834 static void
sfmmu_hat_lock_all(void)10835 sfmmu_hat_lock_all(void)
10836 {
10837 int i;
10838 for (i = 0; i < SFMMU_NUM_LOCK; i++)
10839 mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
10840 }
10841
10842 static void
sfmmu_hat_unlock_all(void)10843 sfmmu_hat_unlock_all(void)
10844 {
10845 int i;
10846 for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
10847 mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
10848 }
10849
10850 int
sfmmu_hat_lock_held(sfmmu_t * sfmmup)10851 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
10852 {
10853 ASSERT(sfmmup != ksfmmup);
10854 return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
10855 }
10856
10857 /*
10858 * Locking primitives to provide consistency between ISM unmap
10859 * and other operations. Since ISM unmap can take a long time, we
10860 * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
10861 * contention on the hatlock buckets while ISM segments are being
10862 * unmapped. The tradeoff is that the flags don't prevent priority
10863 * inversion from occurring, so we must request kernel priority in
10864 * case we have to sleep to keep from getting buried while holding
10865 * the HAT_ISMBUSY flag set, which in turn could block other kernel
10866 * threads from running (for example, in sfmmu_uvatopfn()).
10867 */
10868 static void
sfmmu_ismhat_enter(sfmmu_t * sfmmup,int hatlock_held)10869 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
10870 {
10871 hatlock_t *hatlockp;
10872
10873 if (!hatlock_held)
10874 hatlockp = sfmmu_hat_enter(sfmmup);
10875 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
10876 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10877 SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
10878 if (!hatlock_held)
10879 sfmmu_hat_exit(hatlockp);
10880 }
10881
10882 static void
sfmmu_ismhat_exit(sfmmu_t * sfmmup,int hatlock_held)10883 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
10884 {
10885 hatlock_t *hatlockp;
10886
10887 if (!hatlock_held)
10888 hatlockp = sfmmu_hat_enter(sfmmup);
10889 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
10890 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
10891 cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10892 if (!hatlock_held)
10893 sfmmu_hat_exit(hatlockp);
10894 }
10895
10896 /*
10897 *
10898 * Algorithm:
10899 *
10900 * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
10901 * hblks.
10902 *
10903 * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
10904 *
10905 * (a) try to return an hblk from reserve pool of free hblks;
10906 * (b) if the reserve pool is empty, acquire hblk_reserve_lock
10907 * and return hblk_reserve.
10908 *
10909 * (3) call kmem_cache_alloc() to allocate hblk;
10910 *
10911 * (a) if hblk_reserve_lock is held by the current thread,
10912 * atomically replace hblk_reserve by the hblk that is
10913 * returned by kmem_cache_alloc; release hblk_reserve_lock
10914 * and call kmem_cache_alloc() again.
10915 * (b) if reserve pool is not full, add the hblk that is
10916 * returned by kmem_cache_alloc to reserve pool and
10917 * call kmem_cache_alloc again.
10918 *
10919 */
10920 static struct hme_blk *
sfmmu_hblk_alloc(sfmmu_t * sfmmup,caddr_t vaddr,struct hmehash_bucket * hmebp,uint_t size,hmeblk_tag hblktag,uint_t flags,uint_t rid)10921 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
10922 struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
10923 uint_t flags, uint_t rid)
10924 {
10925 struct hme_blk *hmeblkp = NULL;
10926 struct hme_blk *newhblkp;
10927 struct hme_blk *shw_hblkp = NULL;
10928 struct kmem_cache *sfmmu_cache = NULL;
10929 uint64_t hblkpa;
10930 ulong_t index;
10931 uint_t owner; /* set to 1 if using hblk_reserve */
10932 uint_t forcefree;
10933 int sleep;
10934 sf_srd_t *srdp;
10935 sf_region_t *rgnp;
10936
10937 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10938 ASSERT(hblktag.htag_rid == rid);
10939 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
10940 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
10941 IS_P2ALIGNED(vaddr, TTEBYTES(size)));
10942
10943 /*
10944 * If segkmem is not created yet, allocate from static hmeblks
10945 * created at the end of startup_modules(). See the block comment
10946 * in startup_modules() describing how we estimate the number of
10947 * static hmeblks that will be needed during re-map.
10948 */
10949 if (!hblk_alloc_dynamic) {
10950
10951 ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
10952
10953 if (size == TTE8K) {
10954 index = nucleus_hblk8.index;
10955 if (index >= nucleus_hblk8.len) {
10956 /*
10957 * If we panic here, see startup_modules() to
10958 * make sure that we are calculating the
10959 * number of hblk8's that we need correctly.
10960 */
10961 prom_panic("no nucleus hblk8 to allocate");
10962 }
10963 hmeblkp =
10964 (struct hme_blk *)&nucleus_hblk8.list[index];
10965 nucleus_hblk8.index++;
10966 SFMMU_STAT(sf_hblk8_nalloc);
10967 } else {
10968 index = nucleus_hblk1.index;
10969 if (nucleus_hblk1.index >= nucleus_hblk1.len) {
10970 /*
10971 * If we panic here, see startup_modules().
10972 * Most likely you need to update the
10973 * calculation of the number of hblk1 elements
10974 * that the kernel needs to boot.
10975 */
10976 prom_panic("no nucleus hblk1 to allocate");
10977 }
10978 hmeblkp =
10979 (struct hme_blk *)&nucleus_hblk1.list[index];
10980 nucleus_hblk1.index++;
10981 SFMMU_STAT(sf_hblk1_nalloc);
10982 }
10983
10984 goto hblk_init;
10985 }
10986
10987 SFMMU_HASH_UNLOCK(hmebp);
10988
10989 if (sfmmup != KHATID && !SFMMU_IS_SHMERID_VALID(rid)) {
10990 if (mmu_page_sizes == max_mmu_page_sizes) {
10991 if (size < TTE256M)
10992 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10993 size, flags);
10994 } else {
10995 if (size < TTE4M)
10996 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10997 size, flags);
10998 }
10999 } else if (SFMMU_IS_SHMERID_VALID(rid)) {
11000 /*
11001 * Shared hmes use per region bitmaps in rgn_hmeflag
11002 * rather than shadow hmeblks to keep track of the
11003 * mapping sizes which have been allocated for the region.
11004 * Here we cleanup old invalid hmeblks with this rid,
11005 * which may be left around by pageunload().
11006 */
11007 int ttesz;
11008 caddr_t va;
11009 caddr_t eva = vaddr + TTEBYTES(size);
11010
11011 ASSERT(sfmmup != KHATID);
11012
11013 srdp = sfmmup->sfmmu_srdp;
11014 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11015 rgnp = srdp->srd_hmergnp[rid];
11016 ASSERT(rgnp != NULL && rgnp->rgn_id == rid);
11017 ASSERT(rgnp->rgn_refcnt != 0);
11018 ASSERT(size <= rgnp->rgn_pgszc);
11019
11020 ttesz = HBLK_MIN_TTESZ;
11021 do {
11022 if (!(rgnp->rgn_hmeflags & (0x1 << ttesz))) {
11023 continue;
11024 }
11025
11026 if (ttesz > size && ttesz != HBLK_MIN_TTESZ) {
11027 sfmmu_cleanup_rhblk(srdp, vaddr, rid, ttesz);
11028 } else if (ttesz < size) {
11029 for (va = vaddr; va < eva;
11030 va += TTEBYTES(ttesz)) {
11031 sfmmu_cleanup_rhblk(srdp, va, rid,
11032 ttesz);
11033 }
11034 }
11035 } while (++ttesz <= rgnp->rgn_pgszc);
11036 }
11037
11038 fill_hblk:
11039 owner = (hblk_reserve_thread == curthread) ? 1 : 0;
11040
11041 if (owner && size == TTE8K) {
11042
11043 ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11044 /*
11045 * We are really in a tight spot. We already own
11046 * hblk_reserve and we need another hblk. In anticipation
11047 * of this kind of scenario, we specifically set aside
11048 * HBLK_RESERVE_MIN number of hblks to be used exclusively
11049 * by owner of hblk_reserve.
11050 */
11051 SFMMU_STAT(sf_hblk_recurse_cnt);
11052
11053 if (!sfmmu_get_free_hblk(&hmeblkp, 1))
11054 panic("sfmmu_hblk_alloc: reserve list is empty");
11055
11056 goto hblk_verify;
11057 }
11058
11059 ASSERT(!owner);
11060
11061 if ((flags & HAT_NO_KALLOC) == 0) {
11062
11063 sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
11064 sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
11065
11066 if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
11067 hmeblkp = sfmmu_hblk_steal(size);
11068 } else {
11069 /*
11070 * if we are the owner of hblk_reserve,
11071 * swap hblk_reserve with hmeblkp and
11072 * start a fresh life. Hope things go
11073 * better this time.
11074 */
11075 if (hblk_reserve_thread == curthread) {
11076 ASSERT(sfmmu_cache == sfmmu8_cache);
11077 sfmmu_hblk_swap(hmeblkp);
11078 hblk_reserve_thread = NULL;
11079 mutex_exit(&hblk_reserve_lock);
11080 goto fill_hblk;
11081 }
11082 /*
11083 * let's donate this hblk to our reserve list if
11084 * we are not mapping kernel range
11085 */
11086 if (size == TTE8K && sfmmup != KHATID) {
11087 if (sfmmu_put_free_hblk(hmeblkp, 0))
11088 goto fill_hblk;
11089 }
11090 }
11091 } else {
11092 /*
11093 * We are here to map the slab in sfmmu8_cache; let's
11094 * check if we could tap our reserve list; if successful,
11095 * this will avoid the pain of going thru sfmmu_hblk_swap
11096 */
11097 SFMMU_STAT(sf_hblk_slab_cnt);
11098 if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
11099 /*
11100 * let's start hblk_reserve dance
11101 */
11102 SFMMU_STAT(sf_hblk_reserve_cnt);
11103 owner = 1;
11104 mutex_enter(&hblk_reserve_lock);
11105 hmeblkp = HBLK_RESERVE;
11106 hblk_reserve_thread = curthread;
11107 }
11108 }
11109
11110 hblk_verify:
11111 ASSERT(hmeblkp != NULL);
11112 set_hblk_sz(hmeblkp, size);
11113 ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
11114 SFMMU_HASH_LOCK(hmebp);
11115 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11116 if (newhblkp != NULL) {
11117 SFMMU_HASH_UNLOCK(hmebp);
11118 if (hmeblkp != HBLK_RESERVE) {
11119 /*
11120 * This is really tricky!
11121 *
11122 * vmem_alloc(vmem_seg_arena)
11123 * vmem_alloc(vmem_internal_arena)
11124 * segkmem_alloc(heap_arena)
11125 * vmem_alloc(heap_arena)
11126 * page_create()
11127 * hat_memload()
11128 * kmem_cache_free()
11129 * kmem_cache_alloc()
11130 * kmem_slab_create()
11131 * vmem_alloc(kmem_internal_arena)
11132 * segkmem_alloc(heap_arena)
11133 * vmem_alloc(heap_arena)
11134 * page_create()
11135 * hat_memload()
11136 * kmem_cache_free()
11137 * ...
11138 *
11139 * Thus, hat_memload() could call kmem_cache_free
11140 * for enough number of times that we could easily
11141 * hit the bottom of the stack or run out of reserve
11142 * list of vmem_seg structs. So, we must donate
11143 * this hblk to reserve list if it's allocated
11144 * from sfmmu8_cache *and* mapping kernel range.
11145 * We don't need to worry about freeing hmeblk1's
11146 * to kmem since they don't map any kmem slabs.
11147 *
11148 * Note: When segkmem supports largepages, we must
11149 * free hmeblk1's to reserve list as well.
11150 */
11151 forcefree = (sfmmup == KHATID) ? 1 : 0;
11152 if (size == TTE8K &&
11153 sfmmu_put_free_hblk(hmeblkp, forcefree)) {
11154 goto re_verify;
11155 }
11156 ASSERT(sfmmup != KHATID);
11157 kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11158 } else {
11159 /*
11160 * Hey! we don't need hblk_reserve any more.
11161 */
11162 ASSERT(owner);
11163 hblk_reserve_thread = NULL;
11164 mutex_exit(&hblk_reserve_lock);
11165 owner = 0;
11166 }
11167 re_verify:
11168 /*
11169 * let's check if the goodies are still present
11170 */
11171 SFMMU_HASH_LOCK(hmebp);
11172 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11173 if (newhblkp != NULL) {
11174 /*
11175 * return newhblkp if it's not hblk_reserve;
11176 * if newhblkp is hblk_reserve, return it
11177 * _only if_ we are the owner of hblk_reserve.
11178 */
11179 if (newhblkp != HBLK_RESERVE || owner) {
11180 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11181 newhblkp->hblk_shared);
11182 ASSERT(SFMMU_IS_SHMERID_VALID(rid) ||
11183 !newhblkp->hblk_shared);
11184 return (newhblkp);
11185 } else {
11186 /*
11187 * we just hit hblk_reserve in the hash and
11188 * we are not the owner of that;
11189 *
11190 * block until hblk_reserve_thread completes
11191 * swapping hblk_reserve and try the dance
11192 * once again.
11193 */
11194 SFMMU_HASH_UNLOCK(hmebp);
11195 mutex_enter(&hblk_reserve_lock);
11196 mutex_exit(&hblk_reserve_lock);
11197 SFMMU_STAT(sf_hblk_reserve_hit);
11198 goto fill_hblk;
11199 }
11200 } else {
11201 /*
11202 * it's no more! try the dance once again.
11203 */
11204 SFMMU_HASH_UNLOCK(hmebp);
11205 goto fill_hblk;
11206 }
11207 }
11208
11209 hblk_init:
11210 if (SFMMU_IS_SHMERID_VALID(rid)) {
11211 uint16_t tteflag = 0x1 <<
11212 ((size < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : size);
11213
11214 if (!(rgnp->rgn_hmeflags & tteflag)) {
11215 atomic_or_16(&rgnp->rgn_hmeflags, tteflag);
11216 }
11217 hmeblkp->hblk_shared = 1;
11218 } else {
11219 hmeblkp->hblk_shared = 0;
11220 }
11221 set_hblk_sz(hmeblkp, size);
11222 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11223 hmeblkp->hblk_next = (struct hme_blk *)NULL;
11224 hmeblkp->hblk_tag = hblktag;
11225 hmeblkp->hblk_shadow = shw_hblkp;
11226 hblkpa = hmeblkp->hblk_nextpa;
11227 hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
11228
11229 ASSERT(get_hblk_ttesz(hmeblkp) == size);
11230 ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
11231 ASSERT(hmeblkp->hblk_hmecnt == 0);
11232 ASSERT(hmeblkp->hblk_vcnt == 0);
11233 ASSERT(hmeblkp->hblk_lckcnt == 0);
11234 ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11235 sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
11236 return (hmeblkp);
11237 }
11238
11239 /*
11240 * This function cleans up the hme_blk and returns it to the free list.
11241 */
11242 /* ARGSUSED */
11243 static void
sfmmu_hblk_free(struct hme_blk ** listp)11244 sfmmu_hblk_free(struct hme_blk **listp)
11245 {
11246 struct hme_blk *hmeblkp, *next_hmeblkp;
11247 int size;
11248 uint_t critical;
11249 uint64_t hblkpa;
11250
11251 ASSERT(*listp != NULL);
11252
11253 hmeblkp = *listp;
11254 while (hmeblkp != NULL) {
11255 next_hmeblkp = hmeblkp->hblk_next;
11256 ASSERT(!hmeblkp->hblk_hmecnt);
11257 ASSERT(!hmeblkp->hblk_vcnt);
11258 ASSERT(!hmeblkp->hblk_lckcnt);
11259 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
11260 ASSERT(hmeblkp->hblk_shared == 0);
11261 ASSERT(hmeblkp->hblk_shw_bit == 0);
11262 ASSERT(hmeblkp->hblk_shadow == NULL);
11263
11264 hblkpa = va_to_pa((caddr_t)hmeblkp);
11265 ASSERT(hblkpa != (uint64_t)-1);
11266 critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
11267
11268 size = get_hblk_ttesz(hmeblkp);
11269 hmeblkp->hblk_next = NULL;
11270 hmeblkp->hblk_nextpa = hblkpa;
11271
11272 if (hmeblkp->hblk_nuc_bit == 0) {
11273
11274 if (size != TTE8K ||
11275 !sfmmu_put_free_hblk(hmeblkp, critical))
11276 kmem_cache_free(get_hblk_cache(hmeblkp),
11277 hmeblkp);
11278 }
11279 hmeblkp = next_hmeblkp;
11280 }
11281 }
11282
11283 #define BUCKETS_TO_SEARCH_BEFORE_UNLOAD 30
11284 #define SFMMU_HBLK_STEAL_THRESHOLD 5
11285
11286 static uint_t sfmmu_hblk_steal_twice;
11287 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
11288
11289 /*
11290 * Steal a hmeblk from user or kernel hme hash lists.
11291 * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
11292 * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
11293 * tap into critical reserve of freehblkp.
11294 * Note: We remain looping in this routine until we find one.
11295 */
11296 static struct hme_blk *
sfmmu_hblk_steal(int size)11297 sfmmu_hblk_steal(int size)
11298 {
11299 static struct hmehash_bucket *uhmehash_steal_hand = NULL;
11300 struct hmehash_bucket *hmebp;
11301 struct hme_blk *hmeblkp = NULL, *pr_hblk;
11302 uint64_t hblkpa;
11303 int i;
11304 uint_t loop_cnt = 0, critical;
11305
11306 for (;;) {
11307 /* Check cpu hblk pending queues */
11308 if ((hmeblkp = sfmmu_check_pending_hblks(size)) != NULL) {
11309 hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
11310 ASSERT(hmeblkp->hblk_hmecnt == 0);
11311 ASSERT(hmeblkp->hblk_vcnt == 0);
11312 return (hmeblkp);
11313 }
11314
11315 if (size == TTE8K) {
11316 critical =
11317 (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
11318 if (sfmmu_get_free_hblk(&hmeblkp, critical))
11319 return (hmeblkp);
11320 }
11321
11322 hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
11323 uhmehash_steal_hand;
11324 ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
11325
11326 for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
11327 BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
11328 SFMMU_HASH_LOCK(hmebp);
11329 hmeblkp = hmebp->hmeblkp;
11330 hblkpa = hmebp->hmeh_nextpa;
11331 pr_hblk = NULL;
11332 while (hmeblkp) {
11333 /*
11334 * check if it is a hmeblk that is not locked
11335 * and not shared. skip shadow hmeblks with
11336 * shadow_mask set i.e valid count non zero.
11337 */
11338 if ((get_hblk_ttesz(hmeblkp) == size) &&
11339 (hmeblkp->hblk_shw_bit == 0 ||
11340 hmeblkp->hblk_vcnt == 0) &&
11341 (hmeblkp->hblk_lckcnt == 0)) {
11342 /*
11343 * there is a high probability that we
11344 * will find a free one. search some
11345 * buckets for a free hmeblk initially
11346 * before unloading a valid hmeblk.
11347 */
11348 if ((hmeblkp->hblk_vcnt == 0 &&
11349 hmeblkp->hblk_hmecnt == 0) || (i >=
11350 BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
11351 if (sfmmu_steal_this_hblk(hmebp,
11352 hmeblkp, hblkpa, pr_hblk)) {
11353 /*
11354 * Hblk is unloaded
11355 * successfully
11356 */
11357 break;
11358 }
11359 }
11360 }
11361 pr_hblk = hmeblkp;
11362 hblkpa = hmeblkp->hblk_nextpa;
11363 hmeblkp = hmeblkp->hblk_next;
11364 }
11365
11366 SFMMU_HASH_UNLOCK(hmebp);
11367 if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
11368 hmebp = uhme_hash;
11369 }
11370 uhmehash_steal_hand = hmebp;
11371
11372 if (hmeblkp != NULL)
11373 break;
11374
11375 /*
11376 * in the worst case, look for a free one in the kernel
11377 * hash table.
11378 */
11379 for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
11380 SFMMU_HASH_LOCK(hmebp);
11381 hmeblkp = hmebp->hmeblkp;
11382 hblkpa = hmebp->hmeh_nextpa;
11383 pr_hblk = NULL;
11384 while (hmeblkp) {
11385 /*
11386 * check if it is free hmeblk
11387 */
11388 if ((get_hblk_ttesz(hmeblkp) == size) &&
11389 (hmeblkp->hblk_lckcnt == 0) &&
11390 (hmeblkp->hblk_vcnt == 0) &&
11391 (hmeblkp->hblk_hmecnt == 0)) {
11392 if (sfmmu_steal_this_hblk(hmebp,
11393 hmeblkp, hblkpa, pr_hblk)) {
11394 break;
11395 } else {
11396 /*
11397 * Cannot fail since we have
11398 * hash lock.
11399 */
11400 panic("fail to steal?");
11401 }
11402 }
11403
11404 pr_hblk = hmeblkp;
11405 hblkpa = hmeblkp->hblk_nextpa;
11406 hmeblkp = hmeblkp->hblk_next;
11407 }
11408
11409 SFMMU_HASH_UNLOCK(hmebp);
11410 if (hmebp++ == &khme_hash[KHMEHASH_SZ])
11411 hmebp = khme_hash;
11412 }
11413
11414 if (hmeblkp != NULL)
11415 break;
11416 sfmmu_hblk_steal_twice++;
11417 }
11418 return (hmeblkp);
11419 }
11420
11421 /*
11422 * This routine does real work to prepare a hblk to be "stolen" by
11423 * unloading the mappings, updating shadow counts ....
11424 * It returns 1 if the block is ready to be reused (stolen), or 0
11425 * means the block cannot be stolen yet- pageunload is still working
11426 * on this hblk.
11427 */
11428 static int
sfmmu_steal_this_hblk(struct hmehash_bucket * hmebp,struct hme_blk * hmeblkp,uint64_t hblkpa,struct hme_blk * pr_hblk)11429 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11430 uint64_t hblkpa, struct hme_blk *pr_hblk)
11431 {
11432 int shw_size, vshift;
11433 struct hme_blk *shw_hblkp;
11434 caddr_t vaddr;
11435 uint_t shw_mask, newshw_mask;
11436 struct hme_blk *list = NULL;
11437
11438 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11439
11440 /*
11441 * check if the hmeblk is free, unload if necessary
11442 */
11443 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11444 sfmmu_t *sfmmup;
11445 demap_range_t dmr;
11446
11447 sfmmup = hblktosfmmu(hmeblkp);
11448 if (hmeblkp->hblk_shared || sfmmup->sfmmu_ismhat) {
11449 return (0);
11450 }
11451 DEMAP_RANGE_INIT(sfmmup, &dmr);
11452 (void) sfmmu_hblk_unload(sfmmup, hmeblkp,
11453 (caddr_t)get_hblk_base(hmeblkp),
11454 get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
11455 DEMAP_RANGE_FLUSH(&dmr);
11456 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11457 /*
11458 * Pageunload is working on the same hblk.
11459 */
11460 return (0);
11461 }
11462
11463 sfmmu_hblk_steal_unload_count++;
11464 }
11465
11466 ASSERT(hmeblkp->hblk_lckcnt == 0);
11467 ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
11468
11469 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 1);
11470 hmeblkp->hblk_nextpa = hblkpa;
11471
11472 shw_hblkp = hmeblkp->hblk_shadow;
11473 if (shw_hblkp) {
11474 ASSERT(!hmeblkp->hblk_shared);
11475 shw_size = get_hblk_ttesz(shw_hblkp);
11476 vaddr = (caddr_t)get_hblk_base(hmeblkp);
11477 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11478 ASSERT(vshift < 8);
11479 /*
11480 * Atomically clear shadow mask bit
11481 */
11482 do {
11483 shw_mask = shw_hblkp->hblk_shw_mask;
11484 ASSERT(shw_mask & (1 << vshift));
11485 newshw_mask = shw_mask & ~(1 << vshift);
11486 newshw_mask = atomic_cas_32(&shw_hblkp->hblk_shw_mask,
11487 shw_mask, newshw_mask);
11488 } while (newshw_mask != shw_mask);
11489 hmeblkp->hblk_shadow = NULL;
11490 }
11491
11492 /*
11493 * remove shadow bit if we are stealing an unused shadow hmeblk.
11494 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
11495 * we are indeed allocating a shadow hmeblk.
11496 */
11497 hmeblkp->hblk_shw_bit = 0;
11498
11499 if (hmeblkp->hblk_shared) {
11500 sf_srd_t *srdp;
11501 sf_region_t *rgnp;
11502 uint_t rid;
11503
11504 srdp = hblktosrd(hmeblkp);
11505 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11506 rid = hmeblkp->hblk_tag.htag_rid;
11507 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11508 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11509 rgnp = srdp->srd_hmergnp[rid];
11510 ASSERT(rgnp != NULL);
11511 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11512 hmeblkp->hblk_shared = 0;
11513 }
11514
11515 sfmmu_hblk_steal_count++;
11516 SFMMU_STAT(sf_steal_count);
11517
11518 return (1);
11519 }
11520
11521 struct hme_blk *
sfmmu_hmetohblk(struct sf_hment * sfhme)11522 sfmmu_hmetohblk(struct sf_hment *sfhme)
11523 {
11524 struct hme_blk *hmeblkp;
11525 struct sf_hment *sfhme0;
11526 struct hme_blk *hblk_dummy = 0;
11527
11528 /*
11529 * No dummy sf_hments, please.
11530 */
11531 ASSERT(sfhme->hme_tte.ll != 0);
11532
11533 sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
11534 hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
11535 (uintptr_t)&hblk_dummy->hblk_hme[0]);
11536
11537 return (hmeblkp);
11538 }
11539
11540 /*
11541 * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
11542 * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
11543 * KM_SLEEP allocation.
11544 *
11545 * Return 0 on success, -1 otherwise.
11546 */
11547 static void
sfmmu_tsb_swapin(sfmmu_t * sfmmup,hatlock_t * hatlockp)11548 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11549 {
11550 struct tsb_info *tsbinfop, *next;
11551 tsb_replace_rc_t rc;
11552 boolean_t gotfirst = B_FALSE;
11553
11554 ASSERT(sfmmup != ksfmmup);
11555 ASSERT(sfmmu_hat_lock_held(sfmmup));
11556
11557 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
11558 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11559 }
11560
11561 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11562 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
11563 } else {
11564 return;
11565 }
11566
11567 ASSERT(sfmmup->sfmmu_tsb != NULL);
11568
11569 /*
11570 * Loop over all tsbinfo's replacing them with ones that actually have
11571 * a TSB. If any of the replacements ever fail, bail out of the loop.
11572 */
11573 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
11574 ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
11575 next = tsbinfop->tsb_next;
11576 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
11577 hatlockp, TSB_SWAPIN);
11578 if (rc != TSB_SUCCESS) {
11579 break;
11580 }
11581 gotfirst = B_TRUE;
11582 }
11583
11584 switch (rc) {
11585 case TSB_SUCCESS:
11586 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11587 cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11588 return;
11589 case TSB_LOSTRACE:
11590 break;
11591 case TSB_ALLOCFAIL:
11592 break;
11593 default:
11594 panic("sfmmu_replace_tsb returned unrecognized failure code "
11595 "%d", rc);
11596 }
11597
11598 /*
11599 * In this case, we failed to get one of our TSBs. If we failed to
11600 * get the first TSB, get one of minimum size (8KB). Walk the list
11601 * and throw away the tsbinfos, starting where the allocation failed;
11602 * we can get by with just one TSB as long as we don't leave the
11603 * SWAPPED tsbinfo structures lying around.
11604 */
11605 tsbinfop = sfmmup->sfmmu_tsb;
11606 next = tsbinfop->tsb_next;
11607 tsbinfop->tsb_next = NULL;
11608
11609 sfmmu_hat_exit(hatlockp);
11610 for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
11611 next = tsbinfop->tsb_next;
11612 sfmmu_tsbinfo_free(tsbinfop);
11613 }
11614 hatlockp = sfmmu_hat_enter(sfmmup);
11615
11616 /*
11617 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
11618 * pages.
11619 */
11620 if (!gotfirst) {
11621 tsbinfop = sfmmup->sfmmu_tsb;
11622 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
11623 hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
11624 ASSERT(rc == TSB_SUCCESS);
11625 }
11626
11627 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11628 cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11629 }
11630
11631 static int
sfmmu_is_rgnva(sf_srd_t * srdp,caddr_t addr,ulong_t w,ulong_t bmw)11632 sfmmu_is_rgnva(sf_srd_t *srdp, caddr_t addr, ulong_t w, ulong_t bmw)
11633 {
11634 ulong_t bix = 0;
11635 uint_t rid;
11636 sf_region_t *rgnp;
11637
11638 ASSERT(srdp != NULL);
11639 ASSERT(srdp->srd_refcnt != 0);
11640
11641 w <<= BT_ULSHIFT;
11642 while (bmw) {
11643 if (!(bmw & 0x1)) {
11644 bix++;
11645 bmw >>= 1;
11646 continue;
11647 }
11648 rid = w | bix;
11649 rgnp = srdp->srd_hmergnp[rid];
11650 ASSERT(rgnp->rgn_refcnt > 0);
11651 ASSERT(rgnp->rgn_id == rid);
11652 if (addr < rgnp->rgn_saddr ||
11653 addr >= (rgnp->rgn_saddr + rgnp->rgn_size)) {
11654 bix++;
11655 bmw >>= 1;
11656 } else {
11657 return (1);
11658 }
11659 }
11660 return (0);
11661 }
11662
11663 /*
11664 * Handle exceptions for low level tsb_handler.
11665 *
11666 * There are many scenarios that could land us here:
11667 *
11668 * If the context is invalid we land here. The context can be invalid
11669 * for 3 reasons: 1) we couldn't allocate a new context and now need to
11670 * perform a wrap around operation in order to allocate a new context.
11671 * 2) Context was invalidated to change pagesize programming 3) ISMs or
11672 * TSBs configuration is changeing for this process and we are forced into
11673 * here to do a syncronization operation. If the context is valid we can
11674 * be here from window trap hanlder. In this case just call trap to handle
11675 * the fault.
11676 *
11677 * Note that the process will run in INVALID_CONTEXT before
11678 * faulting into here and subsequently loading the MMU registers
11679 * (including the TSB base register) associated with this process.
11680 * For this reason, the trap handlers must all test for
11681 * INVALID_CONTEXT before attempting to access any registers other
11682 * than the context registers.
11683 */
11684 void
sfmmu_tsbmiss_exception(struct regs * rp,uintptr_t tagaccess,uint_t traptype)11685 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
11686 {
11687 sfmmu_t *sfmmup, *shsfmmup;
11688 uint_t ctxtype;
11689 klwp_id_t lwp;
11690 char lwp_save_state;
11691 hatlock_t *hatlockp, *shatlockp;
11692 struct tsb_info *tsbinfop;
11693 struct tsbmiss *tsbmp;
11694 sf_scd_t *scdp;
11695
11696 SFMMU_STAT(sf_tsb_exceptions);
11697 SFMMU_MMU_STAT(mmu_tsb_exceptions);
11698 sfmmup = astosfmmu(curthread->t_procp->p_as);
11699 /*
11700 * note that in sun4u, tagacces register contains ctxnum
11701 * while sun4v passes ctxtype in the tagaccess register.
11702 */
11703 ctxtype = tagaccess & TAGACC_CTX_MASK;
11704
11705 ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
11706 ASSERT(sfmmup->sfmmu_ismhat == 0);
11707 ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
11708 ctxtype == INVALID_CONTEXT);
11709
11710 if (ctxtype != INVALID_CONTEXT && traptype != T_DATA_PROT) {
11711 /*
11712 * We may land here because shme bitmap and pagesize
11713 * flags are updated lazily in tsbmiss area on other cpus.
11714 * If we detect here that tsbmiss area is out of sync with
11715 * sfmmu update it and retry the trapped instruction.
11716 * Otherwise call trap().
11717 */
11718 int ret = 0;
11719 uchar_t tteflag_mask = (1 << TTE64K) | (1 << TTE8K);
11720 caddr_t addr = (caddr_t)(tagaccess & TAGACC_VADDR_MASK);
11721
11722 /*
11723 * Must set lwp state to LWP_SYS before
11724 * trying to acquire any adaptive lock
11725 */
11726 lwp = ttolwp(curthread);
11727 ASSERT(lwp);
11728 lwp_save_state = lwp->lwp_state;
11729 lwp->lwp_state = LWP_SYS;
11730
11731 hatlockp = sfmmu_hat_enter(sfmmup);
11732 kpreempt_disable();
11733 tsbmp = &tsbmiss_area[CPU->cpu_id];
11734 ASSERT(sfmmup == tsbmp->usfmmup);
11735 if (((tsbmp->uhat_tteflags ^ sfmmup->sfmmu_tteflags) &
11736 ~tteflag_mask) ||
11737 ((tsbmp->uhat_rtteflags ^ sfmmup->sfmmu_rtteflags) &
11738 ~tteflag_mask)) {
11739 tsbmp->uhat_tteflags = sfmmup->sfmmu_tteflags;
11740 tsbmp->uhat_rtteflags = sfmmup->sfmmu_rtteflags;
11741 ret = 1;
11742 }
11743 if (sfmmup->sfmmu_srdp != NULL) {
11744 ulong_t *sm = sfmmup->sfmmu_hmeregion_map.bitmap;
11745 ulong_t *tm = tsbmp->shmermap;
11746 ulong_t i;
11747 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
11748 ulong_t d = tm[i] ^ sm[i];
11749 if (d) {
11750 if (d & sm[i]) {
11751 if (!ret && sfmmu_is_rgnva(
11752 sfmmup->sfmmu_srdp,
11753 addr, i, d & sm[i])) {
11754 ret = 1;
11755 }
11756 }
11757 tm[i] = sm[i];
11758 }
11759 }
11760 }
11761 kpreempt_enable();
11762 sfmmu_hat_exit(hatlockp);
11763 lwp->lwp_state = lwp_save_state;
11764 if (ret) {
11765 return;
11766 }
11767 } else if (ctxtype == INVALID_CONTEXT) {
11768 /*
11769 * First, make sure we come out of here with a valid ctx,
11770 * since if we don't get one we'll simply loop on the
11771 * faulting instruction.
11772 *
11773 * If the ISM mappings are changing, the TSB is relocated,
11774 * the process is swapped, the process is joining SCD or
11775 * leaving SCD or shared regions we serialize behind the
11776 * controlling thread with hat lock, sfmmu_flags and
11777 * sfmmu_tsb_cv condition variable.
11778 */
11779
11780 /*
11781 * Must set lwp state to LWP_SYS before
11782 * trying to acquire any adaptive lock
11783 */
11784 lwp = ttolwp(curthread);
11785 ASSERT(lwp);
11786 lwp_save_state = lwp->lwp_state;
11787 lwp->lwp_state = LWP_SYS;
11788
11789 hatlockp = sfmmu_hat_enter(sfmmup);
11790 retry:
11791 if ((scdp = sfmmup->sfmmu_scdp) != NULL) {
11792 shsfmmup = scdp->scd_sfmmup;
11793 ASSERT(shsfmmup != NULL);
11794
11795 for (tsbinfop = shsfmmup->sfmmu_tsb; tsbinfop != NULL;
11796 tsbinfop = tsbinfop->tsb_next) {
11797 if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11798 /* drop the private hat lock */
11799 sfmmu_hat_exit(hatlockp);
11800 /* acquire the shared hat lock */
11801 shatlockp = sfmmu_hat_enter(shsfmmup);
11802 /*
11803 * recheck to see if anything changed
11804 * after we drop the private hat lock.
11805 */
11806 if (sfmmup->sfmmu_scdp == scdp &&
11807 shsfmmup == scdp->scd_sfmmup) {
11808 sfmmu_tsb_chk_reloc(shsfmmup,
11809 shatlockp);
11810 }
11811 sfmmu_hat_exit(shatlockp);
11812 hatlockp = sfmmu_hat_enter(sfmmup);
11813 goto retry;
11814 }
11815 }
11816 }
11817
11818 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
11819 tsbinfop = tsbinfop->tsb_next) {
11820 if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11821 cv_wait(&sfmmup->sfmmu_tsb_cv,
11822 HATLOCK_MUTEXP(hatlockp));
11823 goto retry;
11824 }
11825 }
11826
11827 /*
11828 * Wait for ISM maps to be updated.
11829 */
11830 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
11831 cv_wait(&sfmmup->sfmmu_tsb_cv,
11832 HATLOCK_MUTEXP(hatlockp));
11833 goto retry;
11834 }
11835
11836 /* Is this process joining an SCD? */
11837 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
11838 /*
11839 * Flush private TSB and setup shared TSB.
11840 * sfmmu_finish_join_scd() does not drop the
11841 * hat lock.
11842 */
11843 sfmmu_finish_join_scd(sfmmup);
11844 SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
11845 }
11846
11847 /*
11848 * If we're swapping in, get TSB(s). Note that we must do
11849 * this before we get a ctx or load the MMU state. Once
11850 * we swap in we have to recheck to make sure the TSB(s) and
11851 * ISM mappings didn't change while we slept.
11852 */
11853 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11854 sfmmu_tsb_swapin(sfmmup, hatlockp);
11855 goto retry;
11856 }
11857
11858 sfmmu_get_ctx(sfmmup);
11859
11860 sfmmu_hat_exit(hatlockp);
11861 /*
11862 * Must restore lwp_state if not calling
11863 * trap() for further processing. Restore
11864 * it anyway.
11865 */
11866 lwp->lwp_state = lwp_save_state;
11867 return;
11868 }
11869 trap(rp, (caddr_t)tagaccess, traptype, 0);
11870 }
11871
11872 static void
sfmmu_tsb_chk_reloc(sfmmu_t * sfmmup,hatlock_t * hatlockp)11873 sfmmu_tsb_chk_reloc(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11874 {
11875 struct tsb_info *tp;
11876
11877 ASSERT(sfmmu_hat_lock_held(sfmmup));
11878
11879 for (tp = sfmmup->sfmmu_tsb; tp != NULL; tp = tp->tsb_next) {
11880 if (tp->tsb_flags & TSB_RELOC_FLAG) {
11881 cv_wait(&sfmmup->sfmmu_tsb_cv,
11882 HATLOCK_MUTEXP(hatlockp));
11883 break;
11884 }
11885 }
11886 }
11887
11888 /*
11889 * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
11890 * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
11891 * rather than spinning to avoid send mondo timeouts with
11892 * interrupts enabled. When the lock is acquired it is immediately
11893 * released and we return back to sfmmu_vatopfn just after
11894 * the GET_TTE call.
11895 */
11896 void
sfmmu_vatopfn_suspended(caddr_t vaddr,sfmmu_t * sfmmu,tte_t * ttep)11897 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
11898 {
11899 struct page **pp;
11900
11901 (void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
11902 as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
11903 }
11904
11905 /*
11906 * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
11907 * TTE_SUSPENDED bit set in tte. We do this so that we can handle
11908 * cross traps which cannot be handled while spinning in the
11909 * trap handlers. Simply enter and exit the kpr_suspendlock spin
11910 * mutex, which is held by the holder of the suspend bit, and then
11911 * retry the trapped instruction after unwinding.
11912 */
11913 /*ARGSUSED*/
11914 void
sfmmu_tsbmiss_suspended(struct regs * rp,uintptr_t tagacc,uint_t traptype)11915 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
11916 {
11917 ASSERT(curthread != kreloc_thread);
11918 mutex_enter(&kpr_suspendlock);
11919 mutex_exit(&kpr_suspendlock);
11920 }
11921
11922 /*
11923 * This routine could be optimized to reduce the number of xcalls by flushing
11924 * the entire TLBs if region reference count is above some threshold but the
11925 * tradeoff will depend on the size of the TLB. So for now flush the specific
11926 * page a context at a time.
11927 *
11928 * If uselocks is 0 then it's called after all cpus were captured and all the
11929 * hat locks were taken. In this case don't take the region lock by relying on
11930 * the order of list region update operations in hat_join_region(),
11931 * hat_leave_region() and hat_dup_region(). The ordering in those routines
11932 * guarantees that list is always forward walkable and reaches active sfmmus
11933 * regardless of where xc_attention() captures a cpu.
11934 */
11935 cpuset_t
sfmmu_rgntlb_demap(caddr_t addr,sf_region_t * rgnp,struct hme_blk * hmeblkp,int uselocks)11936 sfmmu_rgntlb_demap(caddr_t addr, sf_region_t *rgnp,
11937 struct hme_blk *hmeblkp, int uselocks)
11938 {
11939 sfmmu_t *sfmmup;
11940 cpuset_t cpuset;
11941 cpuset_t rcpuset;
11942 hatlock_t *hatlockp;
11943 uint_t rid = rgnp->rgn_id;
11944 sf_rgn_link_t *rlink;
11945 sf_scd_t *scdp;
11946
11947 ASSERT(hmeblkp->hblk_shared);
11948 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11949 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11950
11951 CPUSET_ZERO(rcpuset);
11952 if (uselocks) {
11953 mutex_enter(&rgnp->rgn_mutex);
11954 }
11955 sfmmup = rgnp->rgn_sfmmu_head;
11956 while (sfmmup != NULL) {
11957 if (uselocks) {
11958 hatlockp = sfmmu_hat_enter(sfmmup);
11959 }
11960
11961 /*
11962 * When an SCD is created the SCD hat is linked on the sfmmu
11963 * region lists for each hme region which is part of the
11964 * SCD. If we find an SCD hat, when walking these lists,
11965 * then we flush the shared TSBs, if we find a private hat,
11966 * which is part of an SCD, but where the region
11967 * is not part of the SCD then we flush the private TSBs.
11968 */
11969 if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
11970 !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
11971 scdp = sfmmup->sfmmu_scdp;
11972 if (SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
11973 if (uselocks) {
11974 sfmmu_hat_exit(hatlockp);
11975 }
11976 goto next;
11977 }
11978 }
11979
11980 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
11981
11982 kpreempt_disable();
11983 cpuset = sfmmup->sfmmu_cpusran;
11984 CPUSET_AND(cpuset, cpu_ready_set);
11985 CPUSET_DEL(cpuset, CPU->cpu_id);
11986 SFMMU_XCALL_STATS(sfmmup);
11987 xt_some(cpuset, vtag_flushpage_tl1,
11988 (uint64_t)addr, (uint64_t)sfmmup);
11989 vtag_flushpage(addr, (uint64_t)sfmmup);
11990 if (uselocks) {
11991 sfmmu_hat_exit(hatlockp);
11992 }
11993 kpreempt_enable();
11994 CPUSET_OR(rcpuset, cpuset);
11995
11996 next:
11997 /* LINTED: constant in conditional context */
11998 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
11999 ASSERT(rlink != NULL);
12000 sfmmup = rlink->next;
12001 }
12002 if (uselocks) {
12003 mutex_exit(&rgnp->rgn_mutex);
12004 }
12005 return (rcpuset);
12006 }
12007
12008 /*
12009 * This routine takes an sfmmu pointer and the va for an adddress in an
12010 * ISM region as input and returns the corresponding region id in ism_rid.
12011 * The return value of 1 indicates that a region has been found and ism_rid
12012 * is valid, otherwise 0 is returned.
12013 */
12014 static int
find_ism_rid(sfmmu_t * sfmmup,sfmmu_t * ism_sfmmup,caddr_t va,uint_t * ism_rid)12015 find_ism_rid(sfmmu_t *sfmmup, sfmmu_t *ism_sfmmup, caddr_t va, uint_t *ism_rid)
12016 {
12017 ism_blk_t *ism_blkp;
12018 int i;
12019 ism_map_t *ism_map;
12020 #ifdef DEBUG
12021 struct hat *ism_hatid;
12022 #endif
12023 ASSERT(sfmmu_hat_lock_held(sfmmup));
12024
12025 ism_blkp = sfmmup->sfmmu_iblk;
12026 while (ism_blkp != NULL) {
12027 ism_map = ism_blkp->iblk_maps;
12028 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
12029 if ((va >= ism_start(ism_map[i])) &&
12030 (va < ism_end(ism_map[i]))) {
12031
12032 *ism_rid = ism_map[i].imap_rid;
12033 #ifdef DEBUG
12034 ism_hatid = ism_map[i].imap_ismhat;
12035 ASSERT(ism_hatid == ism_sfmmup);
12036 ASSERT(ism_hatid->sfmmu_ismhat);
12037 #endif
12038 return (1);
12039 }
12040 }
12041 ism_blkp = ism_blkp->iblk_next;
12042 }
12043 return (0);
12044 }
12045
12046 /*
12047 * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
12048 * This routine may be called with all cpu's captured. Therefore, the
12049 * caller is responsible for holding all locks and disabling kernel
12050 * preemption.
12051 */
12052 /* ARGSUSED */
12053 static void
sfmmu_ismtlbcache_demap(caddr_t addr,sfmmu_t * ism_sfmmup,struct hme_blk * hmeblkp,pfn_t pfnum,int cache_flush_flag)12054 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
12055 struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
12056 {
12057 cpuset_t cpuset;
12058 caddr_t va;
12059 ism_ment_t *ment;
12060 sfmmu_t *sfmmup;
12061 #ifdef VAC
12062 int vcolor;
12063 #endif
12064
12065 sf_scd_t *scdp;
12066 uint_t ism_rid;
12067
12068 ASSERT(!hmeblkp->hblk_shared);
12069 /*
12070 * Walk the ism_hat's mapping list and flush the page
12071 * from every hat sharing this ism_hat. This routine
12072 * may be called while all cpu's have been captured.
12073 * Therefore we can't attempt to grab any locks. For now
12074 * this means we will protect the ism mapping list under
12075 * a single lock which will be grabbed by the caller.
12076 * If hat_share/unshare scalibility becomes a performance
12077 * problem then we may need to re-think ism mapping list locking.
12078 */
12079 ASSERT(ism_sfmmup->sfmmu_ismhat);
12080 ASSERT(MUTEX_HELD(&ism_mlist_lock));
12081 addr = addr - ISMID_STARTADDR;
12082
12083 for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
12084
12085 sfmmup = ment->iment_hat;
12086
12087 va = ment->iment_base_va;
12088 va = (caddr_t)((uintptr_t)va + (uintptr_t)addr);
12089
12090 /*
12091 * When an SCD is created the SCD hat is linked on the ism
12092 * mapping lists for each ISM segment which is part of the
12093 * SCD. If we find an SCD hat, when walking these lists,
12094 * then we flush the shared TSBs, if we find a private hat,
12095 * which is part of an SCD, but where the region
12096 * corresponding to this va is not part of the SCD then we
12097 * flush the private TSBs.
12098 */
12099 if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12100 !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD) &&
12101 !SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12102 if (!find_ism_rid(sfmmup, ism_sfmmup, va,
12103 &ism_rid)) {
12104 cmn_err(CE_PANIC,
12105 "can't find matching ISM rid!");
12106 }
12107
12108 scdp = sfmmup->sfmmu_scdp;
12109 if (SFMMU_IS_ISMRID_VALID(ism_rid) &&
12110 SF_RGNMAP_TEST(scdp->scd_ismregion_map,
12111 ism_rid)) {
12112 continue;
12113 }
12114 }
12115 SFMMU_UNLOAD_TSB(va, sfmmup, hmeblkp, 1);
12116
12117 cpuset = sfmmup->sfmmu_cpusran;
12118 CPUSET_AND(cpuset, cpu_ready_set);
12119 CPUSET_DEL(cpuset, CPU->cpu_id);
12120 SFMMU_XCALL_STATS(sfmmup);
12121 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
12122 (uint64_t)sfmmup);
12123 vtag_flushpage(va, (uint64_t)sfmmup);
12124
12125 #ifdef VAC
12126 /*
12127 * Flush D$
12128 * When flushing D$ we must flush all
12129 * cpu's. See sfmmu_cache_flush().
12130 */
12131 if (cache_flush_flag == CACHE_FLUSH) {
12132 cpuset = cpu_ready_set;
12133 CPUSET_DEL(cpuset, CPU->cpu_id);
12134
12135 SFMMU_XCALL_STATS(sfmmup);
12136 vcolor = addr_to_vcolor(va);
12137 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12138 vac_flushpage(pfnum, vcolor);
12139 }
12140 #endif /* VAC */
12141 }
12142 }
12143
12144 /*
12145 * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
12146 * a particular virtual address and ctx. If noflush is set we do not
12147 * flush the TLB/TSB. This function may or may not be called with the
12148 * HAT lock held.
12149 */
12150 static void
sfmmu_tlbcache_demap(caddr_t addr,sfmmu_t * sfmmup,struct hme_blk * hmeblkp,pfn_t pfnum,int tlb_noflush,int cpu_flag,int cache_flush_flag,int hat_lock_held)12151 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12152 pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
12153 int hat_lock_held)
12154 {
12155 #ifdef VAC
12156 int vcolor;
12157 #endif
12158 cpuset_t cpuset;
12159 hatlock_t *hatlockp;
12160
12161 ASSERT(!hmeblkp->hblk_shared);
12162
12163 #if defined(lint) && !defined(VAC)
12164 pfnum = pfnum;
12165 cpu_flag = cpu_flag;
12166 cache_flush_flag = cache_flush_flag;
12167 #endif
12168
12169 /*
12170 * There is no longer a need to protect against ctx being
12171 * stolen here since we don't store the ctx in the TSB anymore.
12172 */
12173 #ifdef VAC
12174 vcolor = addr_to_vcolor(addr);
12175 #endif
12176
12177 /*
12178 * We must hold the hat lock during the flush of TLB,
12179 * to avoid a race with sfmmu_invalidate_ctx(), where
12180 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12181 * causing TLB demap routine to skip flush on that MMU.
12182 * If the context on a MMU has already been set to
12183 * INVALID_CONTEXT, we just get an extra flush on
12184 * that MMU.
12185 */
12186 if (!hat_lock_held && !tlb_noflush)
12187 hatlockp = sfmmu_hat_enter(sfmmup);
12188
12189 kpreempt_disable();
12190 if (!tlb_noflush) {
12191 /*
12192 * Flush the TSB and TLB.
12193 */
12194 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12195
12196 cpuset = sfmmup->sfmmu_cpusran;
12197 CPUSET_AND(cpuset, cpu_ready_set);
12198 CPUSET_DEL(cpuset, CPU->cpu_id);
12199
12200 SFMMU_XCALL_STATS(sfmmup);
12201
12202 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
12203 (uint64_t)sfmmup);
12204
12205 vtag_flushpage(addr, (uint64_t)sfmmup);
12206 }
12207
12208 if (!hat_lock_held && !tlb_noflush)
12209 sfmmu_hat_exit(hatlockp);
12210
12211 #ifdef VAC
12212 /*
12213 * Flush the D$
12214 *
12215 * Even if the ctx is stolen, we need to flush the
12216 * cache. Our ctx stealer only flushes the TLBs.
12217 */
12218 if (cache_flush_flag == CACHE_FLUSH) {
12219 if (cpu_flag & FLUSH_ALL_CPUS) {
12220 cpuset = cpu_ready_set;
12221 } else {
12222 cpuset = sfmmup->sfmmu_cpusran;
12223 CPUSET_AND(cpuset, cpu_ready_set);
12224 }
12225 CPUSET_DEL(cpuset, CPU->cpu_id);
12226 SFMMU_XCALL_STATS(sfmmup);
12227 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12228 vac_flushpage(pfnum, vcolor);
12229 }
12230 #endif /* VAC */
12231 kpreempt_enable();
12232 }
12233
12234 /*
12235 * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
12236 * address and ctx. If noflush is set we do not currently do anything.
12237 * This function may or may not be called with the HAT lock held.
12238 */
12239 static void
sfmmu_tlb_demap(caddr_t addr,sfmmu_t * sfmmup,struct hme_blk * hmeblkp,int tlb_noflush,int hat_lock_held)12240 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12241 int tlb_noflush, int hat_lock_held)
12242 {
12243 cpuset_t cpuset;
12244 hatlock_t *hatlockp;
12245
12246 ASSERT(!hmeblkp->hblk_shared);
12247
12248 /*
12249 * If the process is exiting we have nothing to do.
12250 */
12251 if (tlb_noflush)
12252 return;
12253
12254 /*
12255 * Flush TSB.
12256 */
12257 if (!hat_lock_held)
12258 hatlockp = sfmmu_hat_enter(sfmmup);
12259 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12260
12261 kpreempt_disable();
12262
12263 cpuset = sfmmup->sfmmu_cpusran;
12264 CPUSET_AND(cpuset, cpu_ready_set);
12265 CPUSET_DEL(cpuset, CPU->cpu_id);
12266
12267 SFMMU_XCALL_STATS(sfmmup);
12268 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
12269
12270 vtag_flushpage(addr, (uint64_t)sfmmup);
12271
12272 if (!hat_lock_held)
12273 sfmmu_hat_exit(hatlockp);
12274
12275 kpreempt_enable();
12276
12277 }
12278
12279 /*
12280 * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
12281 * call handler that can flush a range of pages to save on xcalls.
12282 */
12283 static int sfmmu_xcall_save;
12284
12285 /*
12286 * this routine is never used for demaping addresses backed by SRD hmeblks.
12287 */
12288 static void
sfmmu_tlb_range_demap(demap_range_t * dmrp)12289 sfmmu_tlb_range_demap(demap_range_t *dmrp)
12290 {
12291 sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
12292 hatlock_t *hatlockp;
12293 cpuset_t cpuset;
12294 uint64_t sfmmu_pgcnt;
12295 pgcnt_t pgcnt = 0;
12296 int pgunload = 0;
12297 int dirtypg = 0;
12298 caddr_t addr = dmrp->dmr_addr;
12299 caddr_t eaddr;
12300 uint64_t bitvec = dmrp->dmr_bitvec;
12301
12302 ASSERT(bitvec & 1);
12303
12304 /*
12305 * Flush TSB and calculate number of pages to flush.
12306 */
12307 while (bitvec != 0) {
12308 dirtypg = 0;
12309 /*
12310 * Find the first page to flush and then count how many
12311 * pages there are after it that also need to be flushed.
12312 * This way the number of TSB flushes is minimized.
12313 */
12314 while ((bitvec & 1) == 0) {
12315 pgcnt++;
12316 addr += MMU_PAGESIZE;
12317 bitvec >>= 1;
12318 }
12319 while (bitvec & 1) {
12320 dirtypg++;
12321 bitvec >>= 1;
12322 }
12323 eaddr = addr + ptob(dirtypg);
12324 hatlockp = sfmmu_hat_enter(sfmmup);
12325 sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
12326 sfmmu_hat_exit(hatlockp);
12327 pgunload += dirtypg;
12328 addr = eaddr;
12329 pgcnt += dirtypg;
12330 }
12331
12332 ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
12333 if (sfmmup->sfmmu_free == 0) {
12334 addr = dmrp->dmr_addr;
12335 bitvec = dmrp->dmr_bitvec;
12336
12337 /*
12338 * make sure it has SFMMU_PGCNT_SHIFT bits only,
12339 * as it will be used to pack argument for xt_some
12340 */
12341 ASSERT((pgcnt > 0) &&
12342 (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
12343
12344 /*
12345 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
12346 * the low 6 bits of sfmmup. This is doable since pgcnt
12347 * always >= 1.
12348 */
12349 ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
12350 sfmmu_pgcnt = (uint64_t)sfmmup |
12351 ((pgcnt - 1) & SFMMU_PGCNT_MASK);
12352
12353 /*
12354 * We must hold the hat lock during the flush of TLB,
12355 * to avoid a race with sfmmu_invalidate_ctx(), where
12356 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12357 * causing TLB demap routine to skip flush on that MMU.
12358 * If the context on a MMU has already been set to
12359 * INVALID_CONTEXT, we just get an extra flush on
12360 * that MMU.
12361 */
12362 hatlockp = sfmmu_hat_enter(sfmmup);
12363 kpreempt_disable();
12364
12365 cpuset = sfmmup->sfmmu_cpusran;
12366 CPUSET_AND(cpuset, cpu_ready_set);
12367 CPUSET_DEL(cpuset, CPU->cpu_id);
12368
12369 SFMMU_XCALL_STATS(sfmmup);
12370 xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
12371 sfmmu_pgcnt);
12372
12373 for (; bitvec != 0; bitvec >>= 1) {
12374 if (bitvec & 1)
12375 vtag_flushpage(addr, (uint64_t)sfmmup);
12376 addr += MMU_PAGESIZE;
12377 }
12378 kpreempt_enable();
12379 sfmmu_hat_exit(hatlockp);
12380
12381 sfmmu_xcall_save += (pgunload-1);
12382 }
12383 dmrp->dmr_bitvec = 0;
12384 }
12385
12386 /*
12387 * In cases where we need to synchronize with TLB/TSB miss trap
12388 * handlers, _and_ need to flush the TLB, it's a lot easier to
12389 * throw away the context from the process than to do a
12390 * special song and dance to keep things consistent for the
12391 * handlers.
12392 *
12393 * Since the process suddenly ends up without a context and our caller
12394 * holds the hat lock, threads that fault after this function is called
12395 * will pile up on the lock. We can then do whatever we need to
12396 * atomically from the context of the caller. The first blocked thread
12397 * to resume executing will get the process a new context, and the
12398 * process will resume executing.
12399 *
12400 * One added advantage of this approach is that on MMUs that
12401 * support a "flush all" operation, we will delay the flush until
12402 * cnum wrap-around, and then flush the TLB one time. This
12403 * is rather rare, so it's a lot less expensive than making 8000
12404 * x-calls to flush the TLB 8000 times.
12405 *
12406 * A per-process (PP) lock is used to synchronize ctx allocations in
12407 * resume() and ctx invalidations here.
12408 */
12409 static void
sfmmu_invalidate_ctx(sfmmu_t * sfmmup)12410 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
12411 {
12412 cpuset_t cpuset;
12413 int cnum, currcnum;
12414 mmu_ctx_t *mmu_ctxp;
12415 int i;
12416 uint_t pstate_save;
12417
12418 SFMMU_STAT(sf_ctx_inv);
12419
12420 ASSERT(sfmmu_hat_lock_held(sfmmup));
12421 ASSERT(sfmmup != ksfmmup);
12422
12423 kpreempt_disable();
12424
12425 mmu_ctxp = CPU_MMU_CTXP(CPU);
12426 ASSERT(mmu_ctxp);
12427 ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
12428 ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
12429
12430 currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
12431
12432 pstate_save = sfmmu_disable_intrs();
12433
12434 lock_set(&sfmmup->sfmmu_ctx_lock); /* acquire PP lock */
12435 /* set HAT cnum invalid across all context domains. */
12436 for (i = 0; i < max_mmu_ctxdoms; i++) {
12437
12438 cnum = sfmmup->sfmmu_ctxs[i].cnum;
12439 if (cnum == INVALID_CONTEXT) {
12440 continue;
12441 }
12442
12443 sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
12444 }
12445 membar_enter(); /* make sure globally visible to all CPUs */
12446 lock_clear(&sfmmup->sfmmu_ctx_lock); /* release PP lock */
12447
12448 sfmmu_enable_intrs(pstate_save);
12449
12450 cpuset = sfmmup->sfmmu_cpusran;
12451 CPUSET_DEL(cpuset, CPU->cpu_id);
12452 CPUSET_AND(cpuset, cpu_ready_set);
12453 if (!CPUSET_ISNULL(cpuset)) {
12454 SFMMU_XCALL_STATS(sfmmup);
12455 xt_some(cpuset, sfmmu_raise_tsb_exception,
12456 (uint64_t)sfmmup, INVALID_CONTEXT);
12457 xt_sync(cpuset);
12458 SFMMU_STAT(sf_tsb_raise_exception);
12459 SFMMU_MMU_STAT(mmu_tsb_raise_exception);
12460 }
12461
12462 /*
12463 * If the hat to-be-invalidated is the same as the current
12464 * process on local CPU we need to invalidate
12465 * this CPU context as well.
12466 */
12467 if ((sfmmu_getctx_sec() == currcnum) &&
12468 (currcnum != INVALID_CONTEXT)) {
12469 /* sets shared context to INVALID too */
12470 sfmmu_setctx_sec(INVALID_CONTEXT);
12471 sfmmu_clear_utsbinfo();
12472 }
12473
12474 SFMMU_FLAGS_SET(sfmmup, HAT_ALLCTX_INVALID);
12475
12476 kpreempt_enable();
12477
12478 /*
12479 * we hold the hat lock, so nobody should allocate a context
12480 * for us yet
12481 */
12482 ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
12483 }
12484
12485 #ifdef VAC
12486 /*
12487 * We need to flush the cache in all cpus. It is possible that
12488 * a process referenced a page as cacheable but has sinced exited
12489 * and cleared the mapping list. We still to flush it but have no
12490 * state so all cpus is the only alternative.
12491 */
12492 void
sfmmu_cache_flush(pfn_t pfnum,int vcolor)12493 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
12494 {
12495 cpuset_t cpuset;
12496
12497 kpreempt_disable();
12498 cpuset = cpu_ready_set;
12499 CPUSET_DEL(cpuset, CPU->cpu_id);
12500 SFMMU_XCALL_STATS(NULL); /* account to any ctx */
12501 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12502 xt_sync(cpuset);
12503 vac_flushpage(pfnum, vcolor);
12504 kpreempt_enable();
12505 }
12506
12507 void
sfmmu_cache_flushcolor(int vcolor,pfn_t pfnum)12508 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
12509 {
12510 cpuset_t cpuset;
12511
12512 ASSERT(vcolor >= 0);
12513
12514 kpreempt_disable();
12515 cpuset = cpu_ready_set;
12516 CPUSET_DEL(cpuset, CPU->cpu_id);
12517 SFMMU_XCALL_STATS(NULL); /* account to any ctx */
12518 xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
12519 xt_sync(cpuset);
12520 vac_flushcolor(vcolor, pfnum);
12521 kpreempt_enable();
12522 }
12523 #endif /* VAC */
12524
12525 /*
12526 * We need to prevent processes from accessing the TSB using a cached physical
12527 * address. It's alright if they try to access the TSB via virtual address
12528 * since they will just fault on that virtual address once the mapping has
12529 * been suspended.
12530 */
12531 #pragma weak sendmondo_in_recover
12532
12533 /* ARGSUSED */
12534 static int
sfmmu_tsb_pre_relocator(caddr_t va,uint_t tsbsz,uint_t flags,void * tsbinfo)12535 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
12536 {
12537 struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12538 sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12539 hatlock_t *hatlockp;
12540 sf_scd_t *scdp;
12541
12542 if (flags != HAT_PRESUSPEND)
12543 return (0);
12544
12545 /*
12546 * If tsb is a shared TSB with TSB_SHAREDCTX set, sfmmup must
12547 * be a shared hat, then set SCD's tsbinfo's flag.
12548 * If tsb is not shared, sfmmup is a private hat, then set
12549 * its private tsbinfo's flag.
12550 */
12551 hatlockp = sfmmu_hat_enter(sfmmup);
12552 tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
12553
12554 if (!(tsbinfop->tsb_flags & TSB_SHAREDCTX)) {
12555 sfmmu_tsb_inv_ctx(sfmmup);
12556 sfmmu_hat_exit(hatlockp);
12557 } else {
12558 /* release lock on the shared hat */
12559 sfmmu_hat_exit(hatlockp);
12560 /* sfmmup is a shared hat */
12561 ASSERT(sfmmup->sfmmu_scdhat);
12562 scdp = sfmmup->sfmmu_scdp;
12563 ASSERT(scdp != NULL);
12564 /* get private hat from the scd list */
12565 mutex_enter(&scdp->scd_mutex);
12566 sfmmup = scdp->scd_sf_list;
12567 while (sfmmup != NULL) {
12568 hatlockp = sfmmu_hat_enter(sfmmup);
12569 /*
12570 * We do not call sfmmu_tsb_inv_ctx here because
12571 * sendmondo_in_recover check is only needed for
12572 * sun4u.
12573 */
12574 sfmmu_invalidate_ctx(sfmmup);
12575 sfmmu_hat_exit(hatlockp);
12576 sfmmup = sfmmup->sfmmu_scd_link.next;
12577
12578 }
12579 mutex_exit(&scdp->scd_mutex);
12580 }
12581 return (0);
12582 }
12583
12584 static void
sfmmu_tsb_inv_ctx(sfmmu_t * sfmmup)12585 sfmmu_tsb_inv_ctx(sfmmu_t *sfmmup)
12586 {
12587 extern uint32_t sendmondo_in_recover;
12588
12589 ASSERT(sfmmu_hat_lock_held(sfmmup));
12590
12591 /*
12592 * For Cheetah+ Erratum 25:
12593 * Wait for any active recovery to finish. We can't risk
12594 * relocating the TSB of the thread running mondo_recover_proc()
12595 * since, if we did that, we would deadlock. The scenario we are
12596 * trying to avoid is as follows:
12597 *
12598 * THIS CPU RECOVER CPU
12599 * -------- -----------
12600 * Begins recovery, walking through TSB
12601 * hat_pagesuspend() TSB TTE
12602 * TLB miss on TSB TTE, spins at TL1
12603 * xt_sync()
12604 * send_mondo_timeout()
12605 * mondo_recover_proc()
12606 * ((deadlocked))
12607 *
12608 * The second half of the workaround is that mondo_recover_proc()
12609 * checks to see if the tsb_info has the RELOC flag set, and if it
12610 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
12611 * and hence avoiding the TLB miss that could result in a deadlock.
12612 */
12613 if (&sendmondo_in_recover) {
12614 membar_enter(); /* make sure RELOC flag visible */
12615 while (sendmondo_in_recover) {
12616 drv_usecwait(1);
12617 membar_consumer();
12618 }
12619 }
12620
12621 sfmmu_invalidate_ctx(sfmmup);
12622 }
12623
12624 /* ARGSUSED */
12625 static int
sfmmu_tsb_post_relocator(caddr_t va,uint_t tsbsz,uint_t flags,void * tsbinfo,pfn_t newpfn)12626 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
12627 void *tsbinfo, pfn_t newpfn)
12628 {
12629 hatlock_t *hatlockp;
12630 struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12631 sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12632
12633 if (flags != HAT_POSTUNSUSPEND)
12634 return (0);
12635
12636 hatlockp = sfmmu_hat_enter(sfmmup);
12637
12638 SFMMU_STAT(sf_tsb_reloc);
12639
12640 /*
12641 * The process may have swapped out while we were relocating one
12642 * of its TSBs. If so, don't bother doing the setup since the
12643 * process can't be using the memory anymore.
12644 */
12645 if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
12646 ASSERT(va == tsbinfop->tsb_va);
12647 sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
12648
12649 if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
12650 sfmmu_inv_tsb(tsbinfop->tsb_va,
12651 TSB_BYTES(tsbinfop->tsb_szc));
12652 tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
12653 }
12654 }
12655
12656 membar_exit();
12657 tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
12658 cv_broadcast(&sfmmup->sfmmu_tsb_cv);
12659
12660 sfmmu_hat_exit(hatlockp);
12661
12662 return (0);
12663 }
12664
12665 /*
12666 * Allocate and initialize a tsb_info structure. Note that we may or may not
12667 * allocate a TSB here, depending on the flags passed in.
12668 */
12669 static int
sfmmu_tsbinfo_alloc(struct tsb_info ** tsbinfopp,int tsb_szc,int tte_sz_mask,uint_t flags,sfmmu_t * sfmmup)12670 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
12671 uint_t flags, sfmmu_t *sfmmup)
12672 {
12673 int err;
12674
12675 *tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
12676 sfmmu_tsbinfo_cache, KM_SLEEP);
12677
12678 if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
12679 tsb_szc, flags, sfmmup)) != 0) {
12680 kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
12681 SFMMU_STAT(sf_tsb_allocfail);
12682 *tsbinfopp = NULL;
12683 return (err);
12684 }
12685 SFMMU_STAT(sf_tsb_alloc);
12686
12687 /*
12688 * Bump the TSB size counters for this TSB size.
12689 */
12690 (*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
12691 return (0);
12692 }
12693
12694 static void
sfmmu_tsb_free(struct tsb_info * tsbinfo)12695 sfmmu_tsb_free(struct tsb_info *tsbinfo)
12696 {
12697 caddr_t tsbva = tsbinfo->tsb_va;
12698 uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
12699 struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
12700 vmem_t *vmp = tsbinfo->tsb_vmp;
12701
12702 /*
12703 * If we allocated this TSB from relocatable kernel memory, then we
12704 * need to uninstall the callback handler.
12705 */
12706 if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
12707 uintptr_t slab_mask;
12708 caddr_t slab_vaddr;
12709 page_t **ppl;
12710 int ret;
12711
12712 ASSERT(tsb_size <= MMU_PAGESIZE4M || use_bigtsb_arena);
12713 if (tsb_size > MMU_PAGESIZE4M)
12714 slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12715 else
12716 slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12717 slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
12718
12719 ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
12720 ASSERT(ret == 0);
12721 hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
12722 0, NULL);
12723 as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
12724 }
12725
12726 if (kmem_cachep != NULL) {
12727 kmem_cache_free(kmem_cachep, tsbva);
12728 } else {
12729 vmem_xfree(vmp, (void *)tsbva, tsb_size);
12730 }
12731 tsbinfo->tsb_va = (caddr_t)0xbad00bad;
12732 atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
12733 }
12734
12735 static void
sfmmu_tsbinfo_free(struct tsb_info * tsbinfo)12736 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
12737 {
12738 if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
12739 sfmmu_tsb_free(tsbinfo);
12740 }
12741 kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
12742
12743 }
12744
12745 /*
12746 * Setup all the references to physical memory for this tsbinfo.
12747 * The underlying page(s) must be locked.
12748 */
12749 static void
sfmmu_tsbinfo_setup_phys(struct tsb_info * tsbinfo,pfn_t pfn)12750 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
12751 {
12752 ASSERT(pfn != PFN_INVALID);
12753 ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
12754
12755 #ifndef sun4v
12756 if (tsbinfo->tsb_szc == 0) {
12757 sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
12758 PROT_WRITE|PROT_READ, TTE8K);
12759 } else {
12760 /*
12761 * Round down PA and use a large mapping; the handlers will
12762 * compute the TSB pointer at the correct offset into the
12763 * big virtual page. NOTE: this assumes all TSBs larger
12764 * than 8K must come from physically contiguous slabs of
12765 * size tsb_slab_size.
12766 */
12767 sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
12768 PROT_WRITE|PROT_READ, tsb_slab_ttesz);
12769 }
12770 tsbinfo->tsb_pa = ptob(pfn);
12771
12772 TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
12773 TTE_SET_MOD(&tsbinfo->tsb_tte); /* enable writes */
12774
12775 ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
12776 ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
12777 #else /* sun4v */
12778 tsbinfo->tsb_pa = ptob(pfn);
12779 #endif /* sun4v */
12780 }
12781
12782
12783 /*
12784 * Returns zero on success, ENOMEM if over the high water mark,
12785 * or EAGAIN if the caller needs to retry with a smaller TSB
12786 * size (or specify TSB_FORCEALLOC if the allocation can't fail).
12787 *
12788 * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
12789 * is specified and the TSB requested is PAGESIZE, though it
12790 * may sleep waiting for memory if sufficient memory is not
12791 * available.
12792 */
12793 static int
sfmmu_init_tsbinfo(struct tsb_info * tsbinfo,int tteszmask,int tsbcode,uint_t flags,sfmmu_t * sfmmup)12794 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
12795 int tsbcode, uint_t flags, sfmmu_t *sfmmup)
12796 {
12797 caddr_t vaddr = NULL;
12798 caddr_t slab_vaddr;
12799 uintptr_t slab_mask;
12800 int tsbbytes = TSB_BYTES(tsbcode);
12801 int lowmem = 0;
12802 struct kmem_cache *kmem_cachep = NULL;
12803 vmem_t *vmp = NULL;
12804 lgrp_id_t lgrpid = LGRP_NONE;
12805 pfn_t pfn;
12806 uint_t cbflags = HAC_SLEEP;
12807 page_t **pplist;
12808 int ret;
12809
12810 ASSERT(tsbbytes <= MMU_PAGESIZE4M || use_bigtsb_arena);
12811 if (tsbbytes > MMU_PAGESIZE4M)
12812 slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12813 else
12814 slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12815
12816 if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
12817 flags |= TSB_ALLOC;
12818
12819 ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
12820
12821 tsbinfo->tsb_sfmmu = sfmmup;
12822
12823 /*
12824 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
12825 * return.
12826 */
12827 if ((flags & TSB_ALLOC) == 0) {
12828 tsbinfo->tsb_szc = tsbcode;
12829 tsbinfo->tsb_ttesz_mask = tteszmask;
12830 tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
12831 tsbinfo->tsb_pa = -1;
12832 tsbinfo->tsb_tte.ll = 0;
12833 tsbinfo->tsb_next = NULL;
12834 tsbinfo->tsb_flags = TSB_SWAPPED;
12835 tsbinfo->tsb_cache = NULL;
12836 tsbinfo->tsb_vmp = NULL;
12837 return (0);
12838 }
12839
12840 #ifdef DEBUG
12841 /*
12842 * For debugging:
12843 * Randomly force allocation failures every tsb_alloc_mtbf
12844 * tries if TSB_FORCEALLOC is not specified. This will
12845 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
12846 * it is even, to allow testing of both failure paths...
12847 */
12848 if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
12849 (tsb_alloc_count++ == tsb_alloc_mtbf)) {
12850 tsb_alloc_count = 0;
12851 tsb_alloc_fail_mtbf++;
12852 return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
12853 }
12854 #endif /* DEBUG */
12855
12856 /*
12857 * Enforce high water mark if we are not doing a forced allocation
12858 * and are not shrinking a process' TSB.
12859 */
12860 if ((flags & TSB_SHRINK) == 0 &&
12861 (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
12862 if ((flags & TSB_FORCEALLOC) == 0)
12863 return (ENOMEM);
12864 lowmem = 1;
12865 }
12866
12867 /*
12868 * Allocate from the correct location based upon the size of the TSB
12869 * compared to the base page size, and what memory conditions dictate.
12870 * Note we always do nonblocking allocations from the TSB arena since
12871 * we don't want memory fragmentation to cause processes to block
12872 * indefinitely waiting for memory; until the kernel algorithms that
12873 * coalesce large pages are improved this is our best option.
12874 *
12875 * Algorithm:
12876 * If allocating a "large" TSB (>8K), allocate from the
12877 * appropriate kmem_tsb_default_arena vmem arena
12878 * else if low on memory or the TSB_FORCEALLOC flag is set or
12879 * tsb_forceheap is set
12880 * Allocate from kernel heap via sfmmu_tsb8k_cache with
12881 * KM_SLEEP (never fails)
12882 * else
12883 * Allocate from appropriate sfmmu_tsb_cache with
12884 * KM_NOSLEEP
12885 * endif
12886 */
12887 if (tsb_lgrp_affinity)
12888 lgrpid = lgrp_home_id(curthread);
12889 if (lgrpid == LGRP_NONE)
12890 lgrpid = 0; /* use lgrp of boot CPU */
12891
12892 if (tsbbytes > MMU_PAGESIZE) {
12893 if (tsbbytes > MMU_PAGESIZE4M) {
12894 vmp = kmem_bigtsb_default_arena[lgrpid];
12895 vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
12896 0, 0, NULL, NULL, VM_NOSLEEP);
12897 } else {
12898 vmp = kmem_tsb_default_arena[lgrpid];
12899 vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
12900 0, 0, NULL, NULL, VM_NOSLEEP);
12901 }
12902 #ifdef DEBUG
12903 } else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
12904 #else /* !DEBUG */
12905 } else if (lowmem || (flags & TSB_FORCEALLOC)) {
12906 #endif /* DEBUG */
12907 kmem_cachep = sfmmu_tsb8k_cache;
12908 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
12909 ASSERT(vaddr != NULL);
12910 } else {
12911 kmem_cachep = sfmmu_tsb_cache[lgrpid];
12912 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
12913 }
12914
12915 tsbinfo->tsb_cache = kmem_cachep;
12916 tsbinfo->tsb_vmp = vmp;
12917
12918 if (vaddr == NULL) {
12919 return (EAGAIN);
12920 }
12921
12922 atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
12923 kmem_cachep = tsbinfo->tsb_cache;
12924
12925 /*
12926 * If we are allocating from outside the cage, then we need to
12927 * register a relocation callback handler. Note that for now
12928 * since pseudo mappings always hang off of the slab's root page,
12929 * we need only lock the first 8K of the TSB slab. This is a bit
12930 * hacky but it is good for performance.
12931 */
12932 if (kmem_cachep != sfmmu_tsb8k_cache) {
12933 slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
12934 ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
12935 ASSERT(ret == 0);
12936 ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
12937 cbflags, (void *)tsbinfo, &pfn, NULL);
12938
12939 /*
12940 * Need to free up resources if we could not successfully
12941 * add the callback function and return an error condition.
12942 */
12943 if (ret != 0) {
12944 if (kmem_cachep) {
12945 kmem_cache_free(kmem_cachep, vaddr);
12946 } else {
12947 vmem_xfree(vmp, (void *)vaddr, tsbbytes);
12948 }
12949 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
12950 S_WRITE);
12951 return (EAGAIN);
12952 }
12953 } else {
12954 /*
12955 * Since allocation of 8K TSBs from heap is rare and occurs
12956 * during memory pressure we allocate them from permanent
12957 * memory rather than using callbacks to get the PFN.
12958 */
12959 pfn = hat_getpfnum(kas.a_hat, vaddr);
12960 }
12961
12962 tsbinfo->tsb_va = vaddr;
12963 tsbinfo->tsb_szc = tsbcode;
12964 tsbinfo->tsb_ttesz_mask = tteszmask;
12965 tsbinfo->tsb_next = NULL;
12966 tsbinfo->tsb_flags = 0;
12967
12968 sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
12969
12970 sfmmu_inv_tsb(vaddr, tsbbytes);
12971
12972 if (kmem_cachep != sfmmu_tsb8k_cache) {
12973 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
12974 }
12975
12976 return (0);
12977 }
12978
12979 /*
12980 * Initialize per cpu tsb and per cpu tsbmiss_area
12981 */
12982 void
sfmmu_init_tsbs(void)12983 sfmmu_init_tsbs(void)
12984 {
12985 int i;
12986 struct tsbmiss *tsbmissp;
12987 struct kpmtsbm *kpmtsbmp;
12988 #ifndef sun4v
12989 extern int dcache_line_mask;
12990 #endif /* sun4v */
12991 extern uint_t vac_colors;
12992
12993 /*
12994 * Init. tsb miss area.
12995 */
12996 tsbmissp = tsbmiss_area;
12997
12998 for (i = 0; i < NCPU; tsbmissp++, i++) {
12999 /*
13000 * initialize the tsbmiss area.
13001 * Do this for all possible CPUs as some may be added
13002 * while the system is running. There is no cost to this.
13003 */
13004 tsbmissp->ksfmmup = ksfmmup;
13005 #ifndef sun4v
13006 tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
13007 #endif /* sun4v */
13008 tsbmissp->khashstart =
13009 (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
13010 tsbmissp->uhashstart =
13011 (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
13012 tsbmissp->khashsz = khmehash_num;
13013 tsbmissp->uhashsz = uhmehash_num;
13014 }
13015
13016 sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
13017 sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
13018
13019 if (kpm_enable == 0)
13020 return;
13021
13022 /* -- Begin KPM specific init -- */
13023
13024 if (kpm_smallpages) {
13025 /*
13026 * If we're using base pagesize pages for seg_kpm
13027 * mappings, we use the kernel TSB since we can't afford
13028 * to allocate a second huge TSB for these mappings.
13029 */
13030 kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13031 kpm_tsbsz = ktsb_szcode;
13032 kpmsm_tsbbase = kpm_tsbbase;
13033 kpmsm_tsbsz = kpm_tsbsz;
13034 } else {
13035 /*
13036 * In VAC conflict case, just put the entries in the
13037 * kernel 8K indexed TSB for now so we can find them.
13038 * This could really be changed in the future if we feel
13039 * the need...
13040 */
13041 kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13042 kpmsm_tsbsz = ktsb_szcode;
13043 kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
13044 kpm_tsbsz = ktsb4m_szcode;
13045 }
13046
13047 kpmtsbmp = kpmtsbm_area;
13048 for (i = 0; i < NCPU; kpmtsbmp++, i++) {
13049 /*
13050 * Initialize the kpmtsbm area.
13051 * Do this for all possible CPUs as some may be added
13052 * while the system is running. There is no cost to this.
13053 */
13054 kpmtsbmp->vbase = kpm_vbase;
13055 kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
13056 kpmtsbmp->sz_shift = kpm_size_shift;
13057 kpmtsbmp->kpmp_shift = kpmp_shift;
13058 kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
13059 if (kpm_smallpages == 0) {
13060 kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
13061 kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
13062 } else {
13063 kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
13064 kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
13065 }
13066 kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
13067 kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
13068 #ifdef DEBUG
13069 kpmtsbmp->flags |= (kpm_tsbmtl) ? KPMTSBM_TLTSBM_FLAG : 0;
13070 #endif /* DEBUG */
13071 if (ktsb_phys)
13072 kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
13073 }
13074
13075 /* -- End KPM specific init -- */
13076 }
13077
13078 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
13079 struct tsb_info ktsb_info[2];
13080
13081 /*
13082 * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
13083 */
13084 void
sfmmu_init_ktsbinfo()13085 sfmmu_init_ktsbinfo()
13086 {
13087 ASSERT(ksfmmup != NULL);
13088 ASSERT(ksfmmup->sfmmu_tsb == NULL);
13089 /*
13090 * Allocate tsbinfos for kernel and copy in data
13091 * to make debug easier and sun4v setup easier.
13092 */
13093 ktsb_info[0].tsb_sfmmu = ksfmmup;
13094 ktsb_info[0].tsb_szc = ktsb_szcode;
13095 ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
13096 ktsb_info[0].tsb_va = ktsb_base;
13097 ktsb_info[0].tsb_pa = ktsb_pbase;
13098 ktsb_info[0].tsb_flags = 0;
13099 ktsb_info[0].tsb_tte.ll = 0;
13100 ktsb_info[0].tsb_cache = NULL;
13101
13102 ktsb_info[1].tsb_sfmmu = ksfmmup;
13103 ktsb_info[1].tsb_szc = ktsb4m_szcode;
13104 ktsb_info[1].tsb_ttesz_mask = TSB4M;
13105 ktsb_info[1].tsb_va = ktsb4m_base;
13106 ktsb_info[1].tsb_pa = ktsb4m_pbase;
13107 ktsb_info[1].tsb_flags = 0;
13108 ktsb_info[1].tsb_tte.ll = 0;
13109 ktsb_info[1].tsb_cache = NULL;
13110
13111 /* Link them into ksfmmup. */
13112 ktsb_info[0].tsb_next = &ktsb_info[1];
13113 ktsb_info[1].tsb_next = NULL;
13114 ksfmmup->sfmmu_tsb = &ktsb_info[0];
13115
13116 sfmmu_setup_tsbinfo(ksfmmup);
13117 }
13118
13119 /*
13120 * Cache the last value returned from va_to_pa(). If the VA specified
13121 * in the current call to cached_va_to_pa() maps to the same Page (as the
13122 * previous call to cached_va_to_pa()), then compute the PA using
13123 * cached info, else call va_to_pa().
13124 *
13125 * Note: this function is neither MT-safe nor consistent in the presence
13126 * of multiple, interleaved threads. This function was created to enable
13127 * an optimization used during boot (at a point when there's only one thread
13128 * executing on the "boot CPU", and before startup_vm() has been called).
13129 */
13130 static uint64_t
cached_va_to_pa(void * vaddr)13131 cached_va_to_pa(void *vaddr)
13132 {
13133 static uint64_t prev_vaddr_base = 0;
13134 static uint64_t prev_pfn = 0;
13135
13136 if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
13137 return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
13138 } else {
13139 uint64_t pa = va_to_pa(vaddr);
13140
13141 if (pa != ((uint64_t)-1)) {
13142 /*
13143 * Computed physical address is valid. Cache its
13144 * related info for the next cached_va_to_pa() call.
13145 */
13146 prev_pfn = pa & MMU_PAGEMASK;
13147 prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
13148 }
13149
13150 return (pa);
13151 }
13152 }
13153
13154 /*
13155 * Carve up our nucleus hblk region. We may allocate more hblks than
13156 * asked due to rounding errors but we are guaranteed to have at least
13157 * enough space to allocate the requested number of hblk8's and hblk1's.
13158 */
13159 void
sfmmu_init_nucleus_hblks(caddr_t addr,size_t size,int nhblk8,int nhblk1)13160 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
13161 {
13162 struct hme_blk *hmeblkp;
13163 size_t hme8blk_sz, hme1blk_sz;
13164 size_t i;
13165 size_t hblk8_bound;
13166 ulong_t j = 0, k = 0;
13167
13168 ASSERT(addr != NULL && size != 0);
13169
13170 /* Need to use proper structure alignment */
13171 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
13172 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
13173
13174 nucleus_hblk8.list = (void *)addr;
13175 nucleus_hblk8.index = 0;
13176
13177 /*
13178 * Use as much memory as possible for hblk8's since we
13179 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
13180 * We need to hold back enough space for the hblk1's which
13181 * we'll allocate next.
13182 */
13183 hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
13184 for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
13185 hmeblkp = (struct hme_blk *)addr;
13186 addr += hme8blk_sz;
13187 hmeblkp->hblk_nuc_bit = 1;
13188 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13189 }
13190 nucleus_hblk8.len = j;
13191 ASSERT(j >= nhblk8);
13192 SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
13193
13194 nucleus_hblk1.list = (void *)addr;
13195 nucleus_hblk1.index = 0;
13196 for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
13197 hmeblkp = (struct hme_blk *)addr;
13198 addr += hme1blk_sz;
13199 hmeblkp->hblk_nuc_bit = 1;
13200 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13201 }
13202 ASSERT(k >= nhblk1);
13203 nucleus_hblk1.len = k;
13204 SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
13205 }
13206
13207 /*
13208 * This function is currently not supported on this platform. For what
13209 * it's supposed to do, see hat.c and hat_srmmu.c
13210 */
13211 /* ARGSUSED */
13212 faultcode_t
hat_softlock(struct hat * hat,caddr_t addr,size_t * lenp,page_t ** ppp,uint_t flags)13213 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
13214 uint_t flags)
13215 {
13216 return (FC_NOSUPPORT);
13217 }
13218
13219 /*
13220 * Searchs the mapping list of the page for a mapping of the same size. If not
13221 * found the corresponding bit is cleared in the p_index field. When large
13222 * pages are more prevalent in the system, we can maintain the mapping list
13223 * in order and we don't have to traverse the list each time. Just check the
13224 * next and prev entries, and if both are of different size, we clear the bit.
13225 */
13226 static void
sfmmu_rm_large_mappings(page_t * pp,int ttesz)13227 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
13228 {
13229 struct sf_hment *sfhmep;
13230 struct hme_blk *hmeblkp;
13231 int index;
13232 pgcnt_t npgs;
13233
13234 ASSERT(ttesz > TTE8K);
13235
13236 ASSERT(sfmmu_mlist_held(pp));
13237
13238 ASSERT(PP_ISMAPPED_LARGE(pp));
13239
13240 /*
13241 * Traverse mapping list looking for another mapping of same size.
13242 * since we only want to clear index field if all mappings of
13243 * that size are gone.
13244 */
13245
13246 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
13247 if (IS_PAHME(sfhmep))
13248 continue;
13249 hmeblkp = sfmmu_hmetohblk(sfhmep);
13250 if (hme_size(sfhmep) == ttesz) {
13251 /*
13252 * another mapping of the same size. don't clear index.
13253 */
13254 return;
13255 }
13256 }
13257
13258 /*
13259 * Clear the p_index bit for large page.
13260 */
13261 index = PAGESZ_TO_INDEX(ttesz);
13262 npgs = TTEPAGES(ttesz);
13263 while (npgs-- > 0) {
13264 ASSERT(pp->p_index & index);
13265 pp->p_index &= ~index;
13266 pp = PP_PAGENEXT(pp);
13267 }
13268 }
13269
13270 /*
13271 * return supported features
13272 */
13273 /* ARGSUSED */
13274 int
hat_supported(enum hat_features feature,void * arg)13275 hat_supported(enum hat_features feature, void *arg)
13276 {
13277 switch (feature) {
13278 case HAT_SHARED_PT:
13279 case HAT_DYNAMIC_ISM_UNMAP:
13280 case HAT_VMODSORT:
13281 return (1);
13282 case HAT_SHARED_REGIONS:
13283 if (shctx_on)
13284 return (1);
13285 else
13286 return (0);
13287 default:
13288 return (0);
13289 }
13290 }
13291
13292 void
hat_enter(struct hat * hat)13293 hat_enter(struct hat *hat)
13294 {
13295 hatlock_t *hatlockp;
13296
13297 if (hat != ksfmmup) {
13298 hatlockp = TSB_HASH(hat);
13299 mutex_enter(HATLOCK_MUTEXP(hatlockp));
13300 }
13301 }
13302
13303 void
hat_exit(struct hat * hat)13304 hat_exit(struct hat *hat)
13305 {
13306 hatlock_t *hatlockp;
13307
13308 if (hat != ksfmmup) {
13309 hatlockp = TSB_HASH(hat);
13310 mutex_exit(HATLOCK_MUTEXP(hatlockp));
13311 }
13312 }
13313
13314 /*ARGSUSED*/
13315 void
hat_reserve(struct as * as,caddr_t addr,size_t len)13316 hat_reserve(struct as *as, caddr_t addr, size_t len)
13317 {
13318 }
13319
13320 static void
hat_kstat_init(void)13321 hat_kstat_init(void)
13322 {
13323 kstat_t *ksp;
13324
13325 ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
13326 KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
13327 KSTAT_FLAG_VIRTUAL);
13328 if (ksp) {
13329 ksp->ks_data = (void *) &sfmmu_global_stat;
13330 kstat_install(ksp);
13331 }
13332 ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
13333 KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
13334 KSTAT_FLAG_VIRTUAL);
13335 if (ksp) {
13336 ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
13337 kstat_install(ksp);
13338 }
13339 ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
13340 KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
13341 KSTAT_FLAG_WRITABLE);
13342 if (ksp) {
13343 ksp->ks_update = sfmmu_kstat_percpu_update;
13344 kstat_install(ksp);
13345 }
13346 }
13347
13348 /* ARGSUSED */
13349 static int
sfmmu_kstat_percpu_update(kstat_t * ksp,int rw)13350 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
13351 {
13352 struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
13353 struct tsbmiss *tsbm = tsbmiss_area;
13354 struct kpmtsbm *kpmtsbm = kpmtsbm_area;
13355 int i;
13356
13357 ASSERT(cpu_kstat);
13358 if (rw == KSTAT_READ) {
13359 for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
13360 cpu_kstat->sf_itlb_misses = 0;
13361 cpu_kstat->sf_dtlb_misses = 0;
13362 cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
13363 tsbm->uprot_traps;
13364 cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
13365 kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
13366 cpu_kstat->sf_tsb_hits = 0;
13367 cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
13368 cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
13369 }
13370 } else {
13371 /* KSTAT_WRITE is used to clear stats */
13372 for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
13373 tsbm->utsb_misses = 0;
13374 tsbm->ktsb_misses = 0;
13375 tsbm->uprot_traps = 0;
13376 tsbm->kprot_traps = 0;
13377 kpmtsbm->kpm_dtlb_misses = 0;
13378 kpmtsbm->kpm_tsb_misses = 0;
13379 }
13380 }
13381 return (0);
13382 }
13383
13384 #ifdef DEBUG
13385
13386 tte_t *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
13387
13388 /*
13389 * A tte checker. *orig_old is the value we read before cas.
13390 * *cur is the value returned by cas.
13391 * *new is the desired value when we do the cas.
13392 *
13393 * *hmeblkp is currently unused.
13394 */
13395
13396 /* ARGSUSED */
13397 void
chk_tte(tte_t * orig_old,tte_t * cur,tte_t * new,struct hme_blk * hmeblkp)13398 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
13399 {
13400 pfn_t i, j, k;
13401 int cpuid = CPU->cpu_id;
13402
13403 gorig[cpuid] = orig_old;
13404 gcur[cpuid] = cur;
13405 gnew[cpuid] = new;
13406
13407 #ifdef lint
13408 hmeblkp = hmeblkp;
13409 #endif
13410
13411 if (TTE_IS_VALID(orig_old)) {
13412 if (TTE_IS_VALID(cur)) {
13413 i = TTE_TO_TTEPFN(orig_old);
13414 j = TTE_TO_TTEPFN(cur);
13415 k = TTE_TO_TTEPFN(new);
13416 if (i != j) {
13417 /* remap error? */
13418 panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
13419 }
13420
13421 if (i != k) {
13422 /* remap error? */
13423 panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
13424 }
13425 } else {
13426 if (TTE_IS_VALID(new)) {
13427 panic("chk_tte: invalid cur? ");
13428 }
13429
13430 i = TTE_TO_TTEPFN(orig_old);
13431 k = TTE_TO_TTEPFN(new);
13432 if (i != k) {
13433 panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
13434 }
13435 }
13436 } else {
13437 if (TTE_IS_VALID(cur)) {
13438 j = TTE_TO_TTEPFN(cur);
13439 if (TTE_IS_VALID(new)) {
13440 k = TTE_TO_TTEPFN(new);
13441 if (j != k) {
13442 panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
13443 j, k);
13444 }
13445 } else {
13446 panic("chk_tte: why here?");
13447 }
13448 } else {
13449 if (!TTE_IS_VALID(new)) {
13450 panic("chk_tte: why here2 ?");
13451 }
13452 }
13453 }
13454 }
13455
13456 #endif /* DEBUG */
13457
13458 extern void prefetch_tsbe_read(struct tsbe *);
13459 extern void prefetch_tsbe_write(struct tsbe *);
13460
13461
13462 /*
13463 * We want to prefetch 7 cache lines ahead for our read prefetch. This gives
13464 * us optimal performance on Cheetah+. You can only have 8 outstanding
13465 * prefetches at any one time, so we opted for 7 read prefetches and 1 write
13466 * prefetch to make the most utilization of the prefetch capability.
13467 */
13468 #define TSBE_PREFETCH_STRIDE (7)
13469
13470 void
sfmmu_copy_tsb(struct tsb_info * old_tsbinfo,struct tsb_info * new_tsbinfo)13471 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
13472 {
13473 int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
13474 int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
13475 int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
13476 int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
13477 struct tsbe *old;
13478 struct tsbe *new;
13479 struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
13480 uint64_t va;
13481 int new_offset;
13482 int i;
13483 int vpshift;
13484 int last_prefetch;
13485
13486 if (old_bytes == new_bytes) {
13487 bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
13488 } else {
13489
13490 /*
13491 * A TSBE is 16 bytes which means there are four TSBE's per
13492 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
13493 */
13494 old = (struct tsbe *)old_tsbinfo->tsb_va;
13495 last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
13496 for (i = 0; i < old_entries; i++, old++) {
13497 if (((i & (4-1)) == 0) && (i < last_prefetch))
13498 prefetch_tsbe_read(old);
13499 if (!old->tte_tag.tag_invalid) {
13500 /*
13501 * We have a valid TTE to remap. Check the
13502 * size. We won't remap 64K or 512K TTEs
13503 * because they span more than one TSB entry
13504 * and are indexed using an 8K virt. page.
13505 * Ditto for 32M and 256M TTEs.
13506 */
13507 if (TTE_CSZ(&old->tte_data) == TTE64K ||
13508 TTE_CSZ(&old->tte_data) == TTE512K)
13509 continue;
13510 if (mmu_page_sizes == max_mmu_page_sizes) {
13511 if (TTE_CSZ(&old->tte_data) == TTE32M ||
13512 TTE_CSZ(&old->tte_data) == TTE256M)
13513 continue;
13514 }
13515
13516 /* clear the lower 22 bits of the va */
13517 va = *(uint64_t *)old << 22;
13518 /* turn va into a virtual pfn */
13519 va >>= 22 - TSB_START_SIZE;
13520 /*
13521 * or in bits from the offset in the tsb
13522 * to get the real virtual pfn. These
13523 * correspond to bits [21:13] in the va
13524 */
13525 vpshift =
13526 TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
13527 0x1ff;
13528 va |= (i << vpshift);
13529 va >>= vpshift;
13530 new_offset = va & (new_entries - 1);
13531 new = new_base + new_offset;
13532 prefetch_tsbe_write(new);
13533 *new = *old;
13534 }
13535 }
13536 }
13537 }
13538
13539 /*
13540 * unused in sfmmu
13541 */
13542 void
hat_dump(void)13543 hat_dump(void)
13544 {
13545 }
13546
13547 /*
13548 * Called when a thread is exiting and we have switched to the kernel address
13549 * space. Perform the same VM initialization resume() uses when switching
13550 * processes.
13551 *
13552 * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
13553 * we call it anyway in case the semantics change in the future.
13554 */
13555 /*ARGSUSED*/
13556 void
hat_thread_exit(kthread_t * thd)13557 hat_thread_exit(kthread_t *thd)
13558 {
13559 uint_t pgsz_cnum;
13560 uint_t pstate_save;
13561
13562 ASSERT(thd->t_procp->p_as == &kas);
13563
13564 pgsz_cnum = KCONTEXT;
13565 #ifdef sun4u
13566 pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
13567 #endif
13568
13569 /*
13570 * Note that sfmmu_load_mmustate() is currently a no-op for
13571 * kernel threads. We need to disable interrupts here,
13572 * simply because otherwise sfmmu_load_mmustate() would panic
13573 * if the caller does not disable interrupts.
13574 */
13575 pstate_save = sfmmu_disable_intrs();
13576
13577 /* Compatibility Note: hw takes care of MMU_SCONTEXT1 */
13578 sfmmu_setctx_sec(pgsz_cnum);
13579 sfmmu_load_mmustate(ksfmmup);
13580 sfmmu_enable_intrs(pstate_save);
13581 }
13582
13583
13584 /*
13585 * SRD support
13586 */
13587 #define SRD_HASH_FUNCTION(vp) (((((uintptr_t)(vp)) >> 4) ^ \
13588 (((uintptr_t)(vp)) >> 11)) & \
13589 srd_hashmask)
13590
13591 /*
13592 * Attach the process to the srd struct associated with the exec vnode
13593 * from which the process is started.
13594 */
13595 void
hat_join_srd(struct hat * sfmmup,vnode_t * evp)13596 hat_join_srd(struct hat *sfmmup, vnode_t *evp)
13597 {
13598 uint_t hash = SRD_HASH_FUNCTION(evp);
13599 sf_srd_t *srdp;
13600 sf_srd_t *newsrdp;
13601
13602 ASSERT(sfmmup != ksfmmup);
13603 ASSERT(sfmmup->sfmmu_srdp == NULL);
13604
13605 if (!shctx_on) {
13606 return;
13607 }
13608
13609 VN_HOLD(evp);
13610
13611 if (srd_buckets[hash].srdb_srdp != NULL) {
13612 mutex_enter(&srd_buckets[hash].srdb_lock);
13613 for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13614 srdp = srdp->srd_hash) {
13615 if (srdp->srd_evp == evp) {
13616 ASSERT(srdp->srd_refcnt >= 0);
13617 sfmmup->sfmmu_srdp = srdp;
13618 atomic_inc_32(
13619 (volatile uint_t *)&srdp->srd_refcnt);
13620 mutex_exit(&srd_buckets[hash].srdb_lock);
13621 return;
13622 }
13623 }
13624 mutex_exit(&srd_buckets[hash].srdb_lock);
13625 }
13626 newsrdp = kmem_cache_alloc(srd_cache, KM_SLEEP);
13627 ASSERT(newsrdp->srd_next_ismrid == 0 && newsrdp->srd_next_hmerid == 0);
13628
13629 newsrdp->srd_evp = evp;
13630 newsrdp->srd_refcnt = 1;
13631 newsrdp->srd_hmergnfree = NULL;
13632 newsrdp->srd_ismrgnfree = NULL;
13633
13634 mutex_enter(&srd_buckets[hash].srdb_lock);
13635 for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13636 srdp = srdp->srd_hash) {
13637 if (srdp->srd_evp == evp) {
13638 ASSERT(srdp->srd_refcnt >= 0);
13639 sfmmup->sfmmu_srdp = srdp;
13640 atomic_inc_32((volatile uint_t *)&srdp->srd_refcnt);
13641 mutex_exit(&srd_buckets[hash].srdb_lock);
13642 kmem_cache_free(srd_cache, newsrdp);
13643 return;
13644 }
13645 }
13646 newsrdp->srd_hash = srd_buckets[hash].srdb_srdp;
13647 srd_buckets[hash].srdb_srdp = newsrdp;
13648 sfmmup->sfmmu_srdp = newsrdp;
13649
13650 mutex_exit(&srd_buckets[hash].srdb_lock);
13651
13652 }
13653
13654 static void
sfmmu_leave_srd(sfmmu_t * sfmmup)13655 sfmmu_leave_srd(sfmmu_t *sfmmup)
13656 {
13657 vnode_t *evp;
13658 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13659 uint_t hash;
13660 sf_srd_t **prev_srdpp;
13661 sf_region_t *rgnp;
13662 sf_region_t *nrgnp;
13663 #ifdef DEBUG
13664 int rgns = 0;
13665 #endif
13666 int i;
13667
13668 ASSERT(sfmmup != ksfmmup);
13669 ASSERT(srdp != NULL);
13670 ASSERT(srdp->srd_refcnt > 0);
13671 ASSERT(sfmmup->sfmmu_scdp == NULL);
13672 ASSERT(sfmmup->sfmmu_free == 1);
13673
13674 sfmmup->sfmmu_srdp = NULL;
13675 evp = srdp->srd_evp;
13676 ASSERT(evp != NULL);
13677 if (atomic_dec_32_nv((volatile uint_t *)&srdp->srd_refcnt)) {
13678 VN_RELE(evp);
13679 return;
13680 }
13681
13682 hash = SRD_HASH_FUNCTION(evp);
13683 mutex_enter(&srd_buckets[hash].srdb_lock);
13684 for (prev_srdpp = &srd_buckets[hash].srdb_srdp;
13685 (srdp = *prev_srdpp) != NULL; prev_srdpp = &srdp->srd_hash) {
13686 if (srdp->srd_evp == evp) {
13687 break;
13688 }
13689 }
13690 if (srdp == NULL || srdp->srd_refcnt) {
13691 mutex_exit(&srd_buckets[hash].srdb_lock);
13692 VN_RELE(evp);
13693 return;
13694 }
13695 *prev_srdpp = srdp->srd_hash;
13696 mutex_exit(&srd_buckets[hash].srdb_lock);
13697
13698 ASSERT(srdp->srd_refcnt == 0);
13699 VN_RELE(evp);
13700
13701 #ifdef DEBUG
13702 for (i = 0; i < SFMMU_MAX_REGION_BUCKETS; i++) {
13703 ASSERT(srdp->srd_rgnhash[i] == NULL);
13704 }
13705 #endif /* DEBUG */
13706
13707 /* free each hme regions in the srd */
13708 for (rgnp = srdp->srd_hmergnfree; rgnp != NULL; rgnp = nrgnp) {
13709 nrgnp = rgnp->rgn_next;
13710 ASSERT(rgnp->rgn_id < srdp->srd_next_hmerid);
13711 ASSERT(rgnp->rgn_refcnt == 0);
13712 ASSERT(rgnp->rgn_sfmmu_head == NULL);
13713 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13714 ASSERT(rgnp->rgn_hmeflags == 0);
13715 ASSERT(srdp->srd_hmergnp[rgnp->rgn_id] == rgnp);
13716 #ifdef DEBUG
13717 for (i = 0; i < MMU_PAGE_SIZES; i++) {
13718 ASSERT(rgnp->rgn_ttecnt[i] == 0);
13719 }
13720 rgns++;
13721 #endif /* DEBUG */
13722 kmem_cache_free(region_cache, rgnp);
13723 }
13724 ASSERT(rgns == srdp->srd_next_hmerid);
13725
13726 #ifdef DEBUG
13727 rgns = 0;
13728 #endif
13729 /* free each ism rgns in the srd */
13730 for (rgnp = srdp->srd_ismrgnfree; rgnp != NULL; rgnp = nrgnp) {
13731 nrgnp = rgnp->rgn_next;
13732 ASSERT(rgnp->rgn_id < srdp->srd_next_ismrid);
13733 ASSERT(rgnp->rgn_refcnt == 0);
13734 ASSERT(rgnp->rgn_sfmmu_head == NULL);
13735 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13736 ASSERT(srdp->srd_ismrgnp[rgnp->rgn_id] == rgnp);
13737 #ifdef DEBUG
13738 for (i = 0; i < MMU_PAGE_SIZES; i++) {
13739 ASSERT(rgnp->rgn_ttecnt[i] == 0);
13740 }
13741 rgns++;
13742 #endif /* DEBUG */
13743 kmem_cache_free(region_cache, rgnp);
13744 }
13745 ASSERT(rgns == srdp->srd_next_ismrid);
13746 ASSERT(srdp->srd_ismbusyrgns == 0);
13747 ASSERT(srdp->srd_hmebusyrgns == 0);
13748
13749 srdp->srd_next_ismrid = 0;
13750 srdp->srd_next_hmerid = 0;
13751
13752 bzero((void *)srdp->srd_ismrgnp,
13753 sizeof (sf_region_t *) * SFMMU_MAX_ISM_REGIONS);
13754 bzero((void *)srdp->srd_hmergnp,
13755 sizeof (sf_region_t *) * SFMMU_MAX_HME_REGIONS);
13756
13757 ASSERT(srdp->srd_scdp == NULL);
13758 kmem_cache_free(srd_cache, srdp);
13759 }
13760
13761 /* ARGSUSED */
13762 static int
sfmmu_srdcache_constructor(void * buf,void * cdrarg,int kmflags)13763 sfmmu_srdcache_constructor(void *buf, void *cdrarg, int kmflags)
13764 {
13765 sf_srd_t *srdp = (sf_srd_t *)buf;
13766 bzero(buf, sizeof (*srdp));
13767
13768 mutex_init(&srdp->srd_mutex, NULL, MUTEX_DEFAULT, NULL);
13769 mutex_init(&srdp->srd_scd_mutex, NULL, MUTEX_DEFAULT, NULL);
13770 return (0);
13771 }
13772
13773 /* ARGSUSED */
13774 static void
sfmmu_srdcache_destructor(void * buf,void * cdrarg)13775 sfmmu_srdcache_destructor(void *buf, void *cdrarg)
13776 {
13777 sf_srd_t *srdp = (sf_srd_t *)buf;
13778
13779 mutex_destroy(&srdp->srd_mutex);
13780 mutex_destroy(&srdp->srd_scd_mutex);
13781 }
13782
13783 /*
13784 * The caller makes sure hat_join_region()/hat_leave_region() can't be called
13785 * at the same time for the same process and address range. This is ensured by
13786 * the fact that address space is locked as writer when a process joins the
13787 * regions. Therefore there's no need to hold an srd lock during the entire
13788 * execution of hat_join_region()/hat_leave_region().
13789 */
13790
13791 #define RGN_HASH_FUNCTION(obj) (((((uintptr_t)(obj)) >> 4) ^ \
13792 (((uintptr_t)(obj)) >> 11)) & \
13793 srd_rgn_hashmask)
13794 /*
13795 * This routine implements the shared context functionality required when
13796 * attaching a segment to an address space. It must be called from
13797 * hat_share() for D(ISM) segments and from segvn_create() for segments
13798 * with the MAP_PRIVATE and MAP_TEXT flags set. It returns a region_cookie
13799 * which is saved in the private segment data for hme segments and
13800 * the ism_map structure for ism segments.
13801 */
13802 hat_region_cookie_t
hat_join_region(struct hat * sfmmup,caddr_t r_saddr,size_t r_size,void * r_obj,u_offset_t r_objoff,uchar_t r_perm,uchar_t r_pgszc,hat_rgn_cb_func_t r_cb_function,uint_t flags)13803 hat_join_region(struct hat *sfmmup, caddr_t r_saddr, size_t r_size,
13804 void *r_obj, u_offset_t r_objoff, uchar_t r_perm, uchar_t r_pgszc,
13805 hat_rgn_cb_func_t r_cb_function, uint_t flags)
13806 {
13807 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13808 uint_t rhash;
13809 uint_t rid;
13810 hatlock_t *hatlockp;
13811 sf_region_t *rgnp;
13812 sf_region_t *new_rgnp = NULL;
13813 int i;
13814 uint16_t *nextidp;
13815 sf_region_t **freelistp;
13816 int maxids;
13817 sf_region_t **rarrp;
13818 uint16_t *busyrgnsp;
13819 ulong_t rttecnt;
13820 uchar_t tteflag;
13821 uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
13822 int text = (r_type == HAT_REGION_TEXT);
13823
13824 if (srdp == NULL || r_size == 0) {
13825 return (HAT_INVALID_REGION_COOKIE);
13826 }
13827
13828 ASSERT(sfmmup != ksfmmup);
13829 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
13830 ASSERT(srdp->srd_refcnt > 0);
13831 ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
13832 ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
13833 ASSERT(r_pgszc < mmu_page_sizes);
13834 if (!IS_P2ALIGNED(r_saddr, TTEBYTES(r_pgszc)) ||
13835 !IS_P2ALIGNED(r_size, TTEBYTES(r_pgszc))) {
13836 panic("hat_join_region: region addr or size is not aligned\n");
13837 }
13838
13839
13840 r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
13841 SFMMU_REGION_HME;
13842 /*
13843 * Currently only support shared hmes for the read only main text
13844 * region.
13845 */
13846 if (r_type == SFMMU_REGION_HME && ((r_obj != srdp->srd_evp) ||
13847 (r_perm & PROT_WRITE))) {
13848 return (HAT_INVALID_REGION_COOKIE);
13849 }
13850
13851 rhash = RGN_HASH_FUNCTION(r_obj);
13852
13853 if (r_type == SFMMU_REGION_ISM) {
13854 nextidp = &srdp->srd_next_ismrid;
13855 freelistp = &srdp->srd_ismrgnfree;
13856 maxids = SFMMU_MAX_ISM_REGIONS;
13857 rarrp = srdp->srd_ismrgnp;
13858 busyrgnsp = &srdp->srd_ismbusyrgns;
13859 } else {
13860 nextidp = &srdp->srd_next_hmerid;
13861 freelistp = &srdp->srd_hmergnfree;
13862 maxids = SFMMU_MAX_HME_REGIONS;
13863 rarrp = srdp->srd_hmergnp;
13864 busyrgnsp = &srdp->srd_hmebusyrgns;
13865 }
13866
13867 mutex_enter(&srdp->srd_mutex);
13868
13869 for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
13870 rgnp = rgnp->rgn_hash) {
13871 if (rgnp->rgn_saddr == r_saddr && rgnp->rgn_size == r_size &&
13872 rgnp->rgn_obj == r_obj && rgnp->rgn_objoff == r_objoff &&
13873 rgnp->rgn_perm == r_perm && rgnp->rgn_pgszc == r_pgszc) {
13874 break;
13875 }
13876 }
13877
13878 rfound:
13879 if (rgnp != NULL) {
13880 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
13881 ASSERT(rgnp->rgn_cb_function == r_cb_function);
13882 ASSERT(rgnp->rgn_refcnt >= 0);
13883 rid = rgnp->rgn_id;
13884 ASSERT(rid < maxids);
13885 ASSERT(rarrp[rid] == rgnp);
13886 ASSERT(rid < *nextidp);
13887 atomic_inc_32((volatile uint_t *)&rgnp->rgn_refcnt);
13888 mutex_exit(&srdp->srd_mutex);
13889 if (new_rgnp != NULL) {
13890 kmem_cache_free(region_cache, new_rgnp);
13891 }
13892 if (r_type == SFMMU_REGION_HME) {
13893 int myjoin =
13894 (sfmmup == astosfmmu(curthread->t_procp->p_as));
13895
13896 sfmmu_link_to_hmeregion(sfmmup, rgnp);
13897 /*
13898 * bitmap should be updated after linking sfmmu on
13899 * region list so that pageunload() doesn't skip
13900 * TSB/TLB flush. As soon as bitmap is updated another
13901 * thread in this process can already start accessing
13902 * this region.
13903 */
13904 /*
13905 * Normally ttecnt accounting is done as part of
13906 * pagefault handling. But a process may not take any
13907 * pagefaults on shared hmeblks created by some other
13908 * process. To compensate for this assume that the
13909 * entire region will end up faulted in using
13910 * the region's pagesize.
13911 *
13912 */
13913 if (r_pgszc > TTE8K) {
13914 tteflag = 1 << r_pgszc;
13915 if (disable_large_pages & tteflag) {
13916 tteflag = 0;
13917 }
13918 } else {
13919 tteflag = 0;
13920 }
13921 if (tteflag && !(sfmmup->sfmmu_rtteflags & tteflag)) {
13922 hatlockp = sfmmu_hat_enter(sfmmup);
13923 sfmmup->sfmmu_rtteflags |= tteflag;
13924 sfmmu_hat_exit(hatlockp);
13925 }
13926 hatlockp = sfmmu_hat_enter(sfmmup);
13927
13928 /*
13929 * Preallocate 1/4 of ttecnt's in 8K TSB for >= 4M
13930 * region to allow for large page allocation failure.
13931 */
13932 if (r_pgszc >= TTE4M) {
13933 sfmmup->sfmmu_tsb0_4minflcnt +=
13934 r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
13935 }
13936
13937 /* update sfmmu_ttecnt with the shme rgn ttecnt */
13938 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
13939 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
13940 rttecnt);
13941
13942 if (text && r_pgszc >= TTE4M &&
13943 (tteflag || ((disable_large_pages >> TTE4M) &
13944 ((1 << (r_pgszc - TTE4M + 1)) - 1))) &&
13945 !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
13946 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
13947 }
13948
13949 sfmmu_hat_exit(hatlockp);
13950 /*
13951 * On Panther we need to make sure TLB is programmed
13952 * to accept 32M/256M pages. Call
13953 * sfmmu_check_page_sizes() now to make sure TLB is
13954 * setup before making hmeregions visible to other
13955 * threads.
13956 */
13957 sfmmu_check_page_sizes(sfmmup, 1);
13958 hatlockp = sfmmu_hat_enter(sfmmup);
13959 SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
13960
13961 /*
13962 * if context is invalid tsb miss exception code will
13963 * call sfmmu_check_page_sizes() and update tsbmiss
13964 * area later.
13965 */
13966 kpreempt_disable();
13967 if (myjoin &&
13968 (sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
13969 != INVALID_CONTEXT)) {
13970 struct tsbmiss *tsbmp;
13971
13972 tsbmp = &tsbmiss_area[CPU->cpu_id];
13973 ASSERT(sfmmup == tsbmp->usfmmup);
13974 BT_SET(tsbmp->shmermap, rid);
13975 if (r_pgszc > TTE64K) {
13976 tsbmp->uhat_rtteflags |= tteflag;
13977 }
13978
13979 }
13980 kpreempt_enable();
13981
13982 sfmmu_hat_exit(hatlockp);
13983 ASSERT((hat_region_cookie_t)((uint64_t)rid) !=
13984 HAT_INVALID_REGION_COOKIE);
13985 } else {
13986 hatlockp = sfmmu_hat_enter(sfmmup);
13987 SF_RGNMAP_ADD(sfmmup->sfmmu_ismregion_map, rid);
13988 sfmmu_hat_exit(hatlockp);
13989 }
13990 ASSERT(rid < maxids);
13991
13992 if (r_type == SFMMU_REGION_ISM) {
13993 sfmmu_find_scd(sfmmup);
13994 }
13995 return ((hat_region_cookie_t)((uint64_t)rid));
13996 }
13997
13998 ASSERT(new_rgnp == NULL);
13999
14000 if (*busyrgnsp >= maxids) {
14001 mutex_exit(&srdp->srd_mutex);
14002 return (HAT_INVALID_REGION_COOKIE);
14003 }
14004
14005 ASSERT(MUTEX_HELD(&srdp->srd_mutex));
14006 if (*freelistp != NULL) {
14007 rgnp = *freelistp;
14008 *freelistp = rgnp->rgn_next;
14009 ASSERT(rgnp->rgn_id < *nextidp);
14010 ASSERT(rgnp->rgn_id < maxids);
14011 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
14012 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK)
14013 == r_type);
14014 ASSERT(rarrp[rgnp->rgn_id] == rgnp);
14015 ASSERT(rgnp->rgn_hmeflags == 0);
14016 } else {
14017 /*
14018 * release local locks before memory allocation.
14019 */
14020 mutex_exit(&srdp->srd_mutex);
14021
14022 new_rgnp = kmem_cache_alloc(region_cache, KM_SLEEP);
14023
14024 mutex_enter(&srdp->srd_mutex);
14025 for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14026 rgnp = rgnp->rgn_hash) {
14027 if (rgnp->rgn_saddr == r_saddr &&
14028 rgnp->rgn_size == r_size &&
14029 rgnp->rgn_obj == r_obj &&
14030 rgnp->rgn_objoff == r_objoff &&
14031 rgnp->rgn_perm == r_perm &&
14032 rgnp->rgn_pgszc == r_pgszc) {
14033 break;
14034 }
14035 }
14036 if (rgnp != NULL) {
14037 goto rfound;
14038 }
14039
14040 if (*nextidp >= maxids) {
14041 mutex_exit(&srdp->srd_mutex);
14042 goto fail;
14043 }
14044 rgnp = new_rgnp;
14045 new_rgnp = NULL;
14046 rgnp->rgn_id = (*nextidp)++;
14047 ASSERT(rgnp->rgn_id < maxids);
14048 ASSERT(rarrp[rgnp->rgn_id] == NULL);
14049 rarrp[rgnp->rgn_id] = rgnp;
14050 }
14051
14052 ASSERT(rgnp->rgn_sfmmu_head == NULL);
14053 ASSERT(rgnp->rgn_hmeflags == 0);
14054 #ifdef DEBUG
14055 for (i = 0; i < MMU_PAGE_SIZES; i++) {
14056 ASSERT(rgnp->rgn_ttecnt[i] == 0);
14057 }
14058 #endif
14059 rgnp->rgn_saddr = r_saddr;
14060 rgnp->rgn_size = r_size;
14061 rgnp->rgn_obj = r_obj;
14062 rgnp->rgn_objoff = r_objoff;
14063 rgnp->rgn_perm = r_perm;
14064 rgnp->rgn_pgszc = r_pgszc;
14065 rgnp->rgn_flags = r_type;
14066 rgnp->rgn_refcnt = 0;
14067 rgnp->rgn_cb_function = r_cb_function;
14068 rgnp->rgn_hash = srdp->srd_rgnhash[rhash];
14069 srdp->srd_rgnhash[rhash] = rgnp;
14070 (*busyrgnsp)++;
14071 ASSERT(*busyrgnsp <= maxids);
14072 goto rfound;
14073
14074 fail:
14075 ASSERT(new_rgnp != NULL);
14076 kmem_cache_free(region_cache, new_rgnp);
14077 return (HAT_INVALID_REGION_COOKIE);
14078 }
14079
14080 /*
14081 * This function implements the shared context functionality required
14082 * when detaching a segment from an address space. It must be called
14083 * from hat_unshare() for all D(ISM) segments and from segvn_unmap(),
14084 * for segments with a valid region_cookie.
14085 * It will also be called from all seg_vn routines which change a
14086 * segment's attributes such as segvn_setprot(), segvn_setpagesize(),
14087 * segvn_clrszc() & segvn_advise(), as well as in the case of COW fault
14088 * from segvn_fault().
14089 */
14090 void
hat_leave_region(struct hat * sfmmup,hat_region_cookie_t rcookie,uint_t flags)14091 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags)
14092 {
14093 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14094 sf_scd_t *scdp;
14095 uint_t rhash;
14096 uint_t rid = (uint_t)((uint64_t)rcookie);
14097 hatlock_t *hatlockp = NULL;
14098 sf_region_t *rgnp;
14099 sf_region_t **prev_rgnpp;
14100 sf_region_t *cur_rgnp;
14101 void *r_obj;
14102 int i;
14103 caddr_t r_saddr;
14104 caddr_t r_eaddr;
14105 size_t r_size;
14106 uchar_t r_pgszc;
14107 uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14108
14109 ASSERT(sfmmup != ksfmmup);
14110 ASSERT(srdp != NULL);
14111 ASSERT(srdp->srd_refcnt > 0);
14112 ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14113 ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14114 ASSERT(!sfmmup->sfmmu_free || sfmmup->sfmmu_scdp == NULL);
14115
14116 r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14117 SFMMU_REGION_HME;
14118
14119 if (r_type == SFMMU_REGION_ISM) {
14120 ASSERT(SFMMU_IS_ISMRID_VALID(rid));
14121 ASSERT(rid < SFMMU_MAX_ISM_REGIONS);
14122 rgnp = srdp->srd_ismrgnp[rid];
14123 } else {
14124 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14125 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14126 rgnp = srdp->srd_hmergnp[rid];
14127 }
14128 ASSERT(rgnp != NULL);
14129 ASSERT(rgnp->rgn_id == rid);
14130 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14131 ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14132 ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as));
14133
14134 if (sfmmup->sfmmu_free) {
14135 ulong_t rttecnt;
14136 r_pgszc = rgnp->rgn_pgszc;
14137 r_size = rgnp->rgn_size;
14138
14139 ASSERT(sfmmup->sfmmu_scdp == NULL);
14140 if (r_type == SFMMU_REGION_ISM) {
14141 SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14142 } else {
14143 /* update shme rgns ttecnt in sfmmu_ttecnt */
14144 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14145 ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14146
14147 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14148 -rttecnt);
14149
14150 SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14151 }
14152 } else if (r_type == SFMMU_REGION_ISM) {
14153 hatlockp = sfmmu_hat_enter(sfmmup);
14154 ASSERT(rid < srdp->srd_next_ismrid);
14155 SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14156 scdp = sfmmup->sfmmu_scdp;
14157 if (scdp != NULL &&
14158 SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
14159 sfmmu_leave_scd(sfmmup, r_type);
14160 ASSERT(sfmmu_hat_lock_held(sfmmup));
14161 }
14162 sfmmu_hat_exit(hatlockp);
14163 } else {
14164 ulong_t rttecnt;
14165 r_pgszc = rgnp->rgn_pgszc;
14166 r_saddr = rgnp->rgn_saddr;
14167 r_size = rgnp->rgn_size;
14168 r_eaddr = r_saddr + r_size;
14169
14170 ASSERT(r_type == SFMMU_REGION_HME);
14171 hatlockp = sfmmu_hat_enter(sfmmup);
14172 ASSERT(rid < srdp->srd_next_hmerid);
14173 SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14174
14175 /*
14176 * If region is part of an SCD call sfmmu_leave_scd().
14177 * Otherwise if process is not exiting and has valid context
14178 * just drop the context on the floor to lose stale TLB
14179 * entries and force the update of tsb miss area to reflect
14180 * the new region map. After that clean our TSB entries.
14181 */
14182 scdp = sfmmup->sfmmu_scdp;
14183 if (scdp != NULL &&
14184 SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
14185 sfmmu_leave_scd(sfmmup, r_type);
14186 ASSERT(sfmmu_hat_lock_held(sfmmup));
14187 }
14188 sfmmu_invalidate_ctx(sfmmup);
14189
14190 i = TTE8K;
14191 while (i < mmu_page_sizes) {
14192 if (rgnp->rgn_ttecnt[i] != 0) {
14193 sfmmu_unload_tsb_range(sfmmup, r_saddr,
14194 r_eaddr, i);
14195 if (i < TTE4M) {
14196 i = TTE4M;
14197 continue;
14198 } else {
14199 break;
14200 }
14201 }
14202 i++;
14203 }
14204 /* Remove the preallocated 1/4 8k ttecnt for 4M regions. */
14205 if (r_pgszc >= TTE4M) {
14206 rttecnt = r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14207 ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14208 rttecnt);
14209 sfmmup->sfmmu_tsb0_4minflcnt -= rttecnt;
14210 }
14211
14212 /* update shme rgns ttecnt in sfmmu_ttecnt */
14213 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14214 ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14215 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], -rttecnt);
14216
14217 sfmmu_hat_exit(hatlockp);
14218 if (scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
14219 /* sfmmup left the scd, grow private tsb */
14220 sfmmu_check_page_sizes(sfmmup, 1);
14221 } else {
14222 sfmmu_check_page_sizes(sfmmup, 0);
14223 }
14224 }
14225
14226 if (r_type == SFMMU_REGION_HME) {
14227 sfmmu_unlink_from_hmeregion(sfmmup, rgnp);
14228 }
14229
14230 r_obj = rgnp->rgn_obj;
14231 if (atomic_dec_32_nv((volatile uint_t *)&rgnp->rgn_refcnt)) {
14232 return;
14233 }
14234
14235 /*
14236 * looks like nobody uses this region anymore. Free it.
14237 */
14238 rhash = RGN_HASH_FUNCTION(r_obj);
14239 mutex_enter(&srdp->srd_mutex);
14240 for (prev_rgnpp = &srdp->srd_rgnhash[rhash];
14241 (cur_rgnp = *prev_rgnpp) != NULL;
14242 prev_rgnpp = &cur_rgnp->rgn_hash) {
14243 if (cur_rgnp == rgnp && cur_rgnp->rgn_refcnt == 0) {
14244 break;
14245 }
14246 }
14247
14248 if (cur_rgnp == NULL) {
14249 mutex_exit(&srdp->srd_mutex);
14250 return;
14251 }
14252
14253 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14254 *prev_rgnpp = rgnp->rgn_hash;
14255 if (r_type == SFMMU_REGION_ISM) {
14256 rgnp->rgn_flags |= SFMMU_REGION_FREE;
14257 ASSERT(rid < srdp->srd_next_ismrid);
14258 rgnp->rgn_next = srdp->srd_ismrgnfree;
14259 srdp->srd_ismrgnfree = rgnp;
14260 ASSERT(srdp->srd_ismbusyrgns > 0);
14261 srdp->srd_ismbusyrgns--;
14262 mutex_exit(&srdp->srd_mutex);
14263 return;
14264 }
14265 mutex_exit(&srdp->srd_mutex);
14266
14267 /*
14268 * Destroy region's hmeblks.
14269 */
14270 sfmmu_unload_hmeregion(srdp, rgnp);
14271
14272 rgnp->rgn_hmeflags = 0;
14273
14274 ASSERT(rgnp->rgn_sfmmu_head == NULL);
14275 ASSERT(rgnp->rgn_id == rid);
14276 for (i = 0; i < MMU_PAGE_SIZES; i++) {
14277 rgnp->rgn_ttecnt[i] = 0;
14278 }
14279 rgnp->rgn_flags |= SFMMU_REGION_FREE;
14280 mutex_enter(&srdp->srd_mutex);
14281 ASSERT(rid < srdp->srd_next_hmerid);
14282 rgnp->rgn_next = srdp->srd_hmergnfree;
14283 srdp->srd_hmergnfree = rgnp;
14284 ASSERT(srdp->srd_hmebusyrgns > 0);
14285 srdp->srd_hmebusyrgns--;
14286 mutex_exit(&srdp->srd_mutex);
14287 }
14288
14289 /*
14290 * For now only called for hmeblk regions and not for ISM regions.
14291 */
14292 void
hat_dup_region(struct hat * sfmmup,hat_region_cookie_t rcookie)14293 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie)
14294 {
14295 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14296 uint_t rid = (uint_t)((uint64_t)rcookie);
14297 sf_region_t *rgnp;
14298 sf_rgn_link_t *rlink;
14299 sf_rgn_link_t *hrlink;
14300 ulong_t rttecnt;
14301
14302 ASSERT(sfmmup != ksfmmup);
14303 ASSERT(srdp != NULL);
14304 ASSERT(srdp->srd_refcnt > 0);
14305
14306 ASSERT(rid < srdp->srd_next_hmerid);
14307 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14308 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14309
14310 rgnp = srdp->srd_hmergnp[rid];
14311 ASSERT(rgnp->rgn_refcnt > 0);
14312 ASSERT(rgnp->rgn_id == rid);
14313 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == SFMMU_REGION_HME);
14314 ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14315
14316 atomic_inc_32((volatile uint_t *)&rgnp->rgn_refcnt);
14317
14318 /* LINTED: constant in conditional context */
14319 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 0);
14320 ASSERT(rlink != NULL);
14321 mutex_enter(&rgnp->rgn_mutex);
14322 ASSERT(rgnp->rgn_sfmmu_head != NULL);
14323 /* LINTED: constant in conditional context */
14324 SFMMU_HMERID2RLINKP(rgnp->rgn_sfmmu_head, rid, hrlink, 0, 0);
14325 ASSERT(hrlink != NULL);
14326 ASSERT(hrlink->prev == NULL);
14327 rlink->next = rgnp->rgn_sfmmu_head;
14328 rlink->prev = NULL;
14329 hrlink->prev = sfmmup;
14330 /*
14331 * make sure rlink's next field is correct
14332 * before making this link visible.
14333 */
14334 membar_stst();
14335 rgnp->rgn_sfmmu_head = sfmmup;
14336 mutex_exit(&rgnp->rgn_mutex);
14337
14338 /* update sfmmu_ttecnt with the shme rgn ttecnt */
14339 rttecnt = rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
14340 atomic_add_long(&sfmmup->sfmmu_ttecnt[rgnp->rgn_pgszc], rttecnt);
14341 /* update tsb0 inflation count */
14342 if (rgnp->rgn_pgszc >= TTE4M) {
14343 sfmmup->sfmmu_tsb0_4minflcnt +=
14344 rgnp->rgn_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14345 }
14346 /*
14347 * Update regionid bitmask without hat lock since no other thread
14348 * can update this region bitmask right now.
14349 */
14350 SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14351 }
14352
14353 /* ARGSUSED */
14354 static int
sfmmu_rgncache_constructor(void * buf,void * cdrarg,int kmflags)14355 sfmmu_rgncache_constructor(void *buf, void *cdrarg, int kmflags)
14356 {
14357 sf_region_t *rgnp = (sf_region_t *)buf;
14358 bzero(buf, sizeof (*rgnp));
14359
14360 mutex_init(&rgnp->rgn_mutex, NULL, MUTEX_DEFAULT, NULL);
14361
14362 return (0);
14363 }
14364
14365 /* ARGSUSED */
14366 static void
sfmmu_rgncache_destructor(void * buf,void * cdrarg)14367 sfmmu_rgncache_destructor(void *buf, void *cdrarg)
14368 {
14369 sf_region_t *rgnp = (sf_region_t *)buf;
14370 mutex_destroy(&rgnp->rgn_mutex);
14371 }
14372
14373 static int
sfrgnmap_isnull(sf_region_map_t * map)14374 sfrgnmap_isnull(sf_region_map_t *map)
14375 {
14376 int i;
14377
14378 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14379 if (map->bitmap[i] != 0) {
14380 return (0);
14381 }
14382 }
14383 return (1);
14384 }
14385
14386 static int
sfhmergnmap_isnull(sf_hmeregion_map_t * map)14387 sfhmergnmap_isnull(sf_hmeregion_map_t *map)
14388 {
14389 int i;
14390
14391 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
14392 if (map->bitmap[i] != 0) {
14393 return (0);
14394 }
14395 }
14396 return (1);
14397 }
14398
14399 #ifdef DEBUG
14400 static void
check_scd_sfmmu_list(sfmmu_t ** headp,sfmmu_t * sfmmup,int onlist)14401 check_scd_sfmmu_list(sfmmu_t **headp, sfmmu_t *sfmmup, int onlist)
14402 {
14403 sfmmu_t *sp;
14404 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14405
14406 for (sp = *headp; sp != NULL; sp = sp->sfmmu_scd_link.next) {
14407 ASSERT(srdp == sp->sfmmu_srdp);
14408 if (sp == sfmmup) {
14409 if (onlist) {
14410 return;
14411 } else {
14412 panic("shctx: sfmmu 0x%p found on scd"
14413 "list 0x%p", (void *)sfmmup,
14414 (void *)*headp);
14415 }
14416 }
14417 }
14418 if (onlist) {
14419 panic("shctx: sfmmu 0x%p not found on scd list 0x%p",
14420 (void *)sfmmup, (void *)*headp);
14421 } else {
14422 return;
14423 }
14424 }
14425 #else /* DEBUG */
14426 #define check_scd_sfmmu_list(headp, sfmmup, onlist)
14427 #endif /* DEBUG */
14428
14429 /*
14430 * Removes an sfmmu from the SCD sfmmu list.
14431 */
14432 static void
sfmmu_from_scd_list(sfmmu_t ** headp,sfmmu_t * sfmmup)14433 sfmmu_from_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14434 {
14435 ASSERT(sfmmup->sfmmu_srdp != NULL);
14436 check_scd_sfmmu_list(headp, sfmmup, 1);
14437 if (sfmmup->sfmmu_scd_link.prev != NULL) {
14438 ASSERT(*headp != sfmmup);
14439 sfmmup->sfmmu_scd_link.prev->sfmmu_scd_link.next =
14440 sfmmup->sfmmu_scd_link.next;
14441 } else {
14442 ASSERT(*headp == sfmmup);
14443 *headp = sfmmup->sfmmu_scd_link.next;
14444 }
14445 if (sfmmup->sfmmu_scd_link.next != NULL) {
14446 sfmmup->sfmmu_scd_link.next->sfmmu_scd_link.prev =
14447 sfmmup->sfmmu_scd_link.prev;
14448 }
14449 }
14450
14451
14452 /*
14453 * Adds an sfmmu to the start of the queue.
14454 */
14455 static void
sfmmu_to_scd_list(sfmmu_t ** headp,sfmmu_t * sfmmup)14456 sfmmu_to_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14457 {
14458 check_scd_sfmmu_list(headp, sfmmup, 0);
14459 sfmmup->sfmmu_scd_link.prev = NULL;
14460 sfmmup->sfmmu_scd_link.next = *headp;
14461 if (*headp != NULL)
14462 (*headp)->sfmmu_scd_link.prev = sfmmup;
14463 *headp = sfmmup;
14464 }
14465
14466 /*
14467 * Remove an scd from the start of the queue.
14468 */
14469 static void
sfmmu_remove_scd(sf_scd_t ** headp,sf_scd_t * scdp)14470 sfmmu_remove_scd(sf_scd_t **headp, sf_scd_t *scdp)
14471 {
14472 if (scdp->scd_prev != NULL) {
14473 ASSERT(*headp != scdp);
14474 scdp->scd_prev->scd_next = scdp->scd_next;
14475 } else {
14476 ASSERT(*headp == scdp);
14477 *headp = scdp->scd_next;
14478 }
14479
14480 if (scdp->scd_next != NULL) {
14481 scdp->scd_next->scd_prev = scdp->scd_prev;
14482 }
14483 }
14484
14485 /*
14486 * Add an scd to the start of the queue.
14487 */
14488 static void
sfmmu_add_scd(sf_scd_t ** headp,sf_scd_t * scdp)14489 sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *scdp)
14490 {
14491 scdp->scd_prev = NULL;
14492 scdp->scd_next = *headp;
14493 if (*headp != NULL) {
14494 (*headp)->scd_prev = scdp;
14495 }
14496 *headp = scdp;
14497 }
14498
14499 static int
sfmmu_alloc_scd_tsbs(sf_srd_t * srdp,sf_scd_t * scdp)14500 sfmmu_alloc_scd_tsbs(sf_srd_t *srdp, sf_scd_t *scdp)
14501 {
14502 uint_t rid;
14503 uint_t i;
14504 uint_t j;
14505 ulong_t w;
14506 sf_region_t *rgnp;
14507 ulong_t tte8k_cnt = 0;
14508 ulong_t tte4m_cnt = 0;
14509 uint_t tsb_szc;
14510 sfmmu_t *scsfmmup = scdp->scd_sfmmup;
14511 sfmmu_t *ism_hatid;
14512 struct tsb_info *newtsb;
14513 int szc;
14514
14515 ASSERT(srdp != NULL);
14516
14517 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14518 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14519 continue;
14520 }
14521 j = 0;
14522 while (w) {
14523 if (!(w & 0x1)) {
14524 j++;
14525 w >>= 1;
14526 continue;
14527 }
14528 rid = (i << BT_ULSHIFT) | j;
14529 j++;
14530 w >>= 1;
14531
14532 if (rid < SFMMU_MAX_HME_REGIONS) {
14533 rgnp = srdp->srd_hmergnp[rid];
14534 ASSERT(rgnp->rgn_id == rid);
14535 ASSERT(rgnp->rgn_refcnt > 0);
14536
14537 if (rgnp->rgn_pgszc < TTE4M) {
14538 tte8k_cnt += rgnp->rgn_size >>
14539 TTE_PAGE_SHIFT(TTE8K);
14540 } else {
14541 ASSERT(rgnp->rgn_pgszc >= TTE4M);
14542 tte4m_cnt += rgnp->rgn_size >>
14543 TTE_PAGE_SHIFT(TTE4M);
14544 /*
14545 * Inflate SCD tsb0 by preallocating
14546 * 1/4 8k ttecnt for 4M regions to
14547 * allow for lgpg alloc failure.
14548 */
14549 tte8k_cnt += rgnp->rgn_size >>
14550 (TTE_PAGE_SHIFT(TTE8K) + 2);
14551 }
14552 } else {
14553 rid -= SFMMU_MAX_HME_REGIONS;
14554 rgnp = srdp->srd_ismrgnp[rid];
14555 ASSERT(rgnp->rgn_id == rid);
14556 ASSERT(rgnp->rgn_refcnt > 0);
14557
14558 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14559 ASSERT(ism_hatid->sfmmu_ismhat);
14560
14561 for (szc = 0; szc < TTE4M; szc++) {
14562 tte8k_cnt +=
14563 ism_hatid->sfmmu_ttecnt[szc] <<
14564 TTE_BSZS_SHIFT(szc);
14565 }
14566
14567 ASSERT(rgnp->rgn_pgszc >= TTE4M);
14568 if (rgnp->rgn_pgszc >= TTE4M) {
14569 tte4m_cnt += rgnp->rgn_size >>
14570 TTE_PAGE_SHIFT(TTE4M);
14571 }
14572 }
14573 }
14574 }
14575
14576 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
14577
14578 /* Allocate both the SCD TSBs here. */
14579 if (sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14580 tsb_szc, TSB8K|TSB64K|TSB512K, TSB_ALLOC, scsfmmup) &&
14581 (tsb_szc <= TSB_4M_SZCODE ||
14582 sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14583 TSB_4M_SZCODE, TSB8K|TSB64K|TSB512K,
14584 TSB_ALLOC, scsfmmup))) {
14585
14586 SFMMU_STAT(sf_scd_1sttsb_allocfail);
14587 return (TSB_ALLOCFAIL);
14588 } else {
14589 scsfmmup->sfmmu_tsb->tsb_flags |= TSB_SHAREDCTX;
14590
14591 if (tte4m_cnt) {
14592 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
14593 if (sfmmu_tsbinfo_alloc(&newtsb, tsb_szc,
14594 TSB4M|TSB32M|TSB256M, TSB_ALLOC, scsfmmup) &&
14595 (tsb_szc <= TSB_4M_SZCODE ||
14596 sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
14597 TSB4M|TSB32M|TSB256M,
14598 TSB_ALLOC, scsfmmup))) {
14599 /*
14600 * If we fail to allocate the 2nd shared tsb,
14601 * just free the 1st tsb, return failure.
14602 */
14603 sfmmu_tsbinfo_free(scsfmmup->sfmmu_tsb);
14604 SFMMU_STAT(sf_scd_2ndtsb_allocfail);
14605 return (TSB_ALLOCFAIL);
14606 } else {
14607 ASSERT(scsfmmup->sfmmu_tsb->tsb_next == NULL);
14608 newtsb->tsb_flags |= TSB_SHAREDCTX;
14609 scsfmmup->sfmmu_tsb->tsb_next = newtsb;
14610 SFMMU_STAT(sf_scd_2ndtsb_alloc);
14611 }
14612 }
14613 SFMMU_STAT(sf_scd_1sttsb_alloc);
14614 }
14615 return (TSB_SUCCESS);
14616 }
14617
14618 static void
sfmmu_free_scd_tsbs(sfmmu_t * scd_sfmmu)14619 sfmmu_free_scd_tsbs(sfmmu_t *scd_sfmmu)
14620 {
14621 while (scd_sfmmu->sfmmu_tsb != NULL) {
14622 struct tsb_info *next = scd_sfmmu->sfmmu_tsb->tsb_next;
14623 sfmmu_tsbinfo_free(scd_sfmmu->sfmmu_tsb);
14624 scd_sfmmu->sfmmu_tsb = next;
14625 }
14626 }
14627
14628 /*
14629 * Link the sfmmu onto the hme region list.
14630 */
14631 void
sfmmu_link_to_hmeregion(sfmmu_t * sfmmup,sf_region_t * rgnp)14632 sfmmu_link_to_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14633 {
14634 uint_t rid;
14635 sf_rgn_link_t *rlink;
14636 sfmmu_t *head;
14637 sf_rgn_link_t *hrlink;
14638
14639 rid = rgnp->rgn_id;
14640 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14641
14642 /* LINTED: constant in conditional context */
14643 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 1);
14644 ASSERT(rlink != NULL);
14645 mutex_enter(&rgnp->rgn_mutex);
14646 if ((head = rgnp->rgn_sfmmu_head) == NULL) {
14647 rlink->next = NULL;
14648 rlink->prev = NULL;
14649 /*
14650 * make sure rlink's next field is NULL
14651 * before making this link visible.
14652 */
14653 membar_stst();
14654 rgnp->rgn_sfmmu_head = sfmmup;
14655 } else {
14656 /* LINTED: constant in conditional context */
14657 SFMMU_HMERID2RLINKP(head, rid, hrlink, 0, 0);
14658 ASSERT(hrlink != NULL);
14659 ASSERT(hrlink->prev == NULL);
14660 rlink->next = head;
14661 rlink->prev = NULL;
14662 hrlink->prev = sfmmup;
14663 /*
14664 * make sure rlink's next field is correct
14665 * before making this link visible.
14666 */
14667 membar_stst();
14668 rgnp->rgn_sfmmu_head = sfmmup;
14669 }
14670 mutex_exit(&rgnp->rgn_mutex);
14671 }
14672
14673 /*
14674 * Unlink the sfmmu from the hme region list.
14675 */
14676 void
sfmmu_unlink_from_hmeregion(sfmmu_t * sfmmup,sf_region_t * rgnp)14677 sfmmu_unlink_from_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14678 {
14679 uint_t rid;
14680 sf_rgn_link_t *rlink;
14681
14682 rid = rgnp->rgn_id;
14683 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14684
14685 /* LINTED: constant in conditional context */
14686 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
14687 ASSERT(rlink != NULL);
14688 mutex_enter(&rgnp->rgn_mutex);
14689 if (rgnp->rgn_sfmmu_head == sfmmup) {
14690 sfmmu_t *next = rlink->next;
14691 rgnp->rgn_sfmmu_head = next;
14692 /*
14693 * if we are stopped by xc_attention() after this
14694 * point the forward link walking in
14695 * sfmmu_rgntlb_demap() will work correctly since the
14696 * head correctly points to the next element.
14697 */
14698 membar_stst();
14699 rlink->next = NULL;
14700 ASSERT(rlink->prev == NULL);
14701 if (next != NULL) {
14702 sf_rgn_link_t *nrlink;
14703 /* LINTED: constant in conditional context */
14704 SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14705 ASSERT(nrlink != NULL);
14706 ASSERT(nrlink->prev == sfmmup);
14707 nrlink->prev = NULL;
14708 }
14709 } else {
14710 sfmmu_t *next = rlink->next;
14711 sfmmu_t *prev = rlink->prev;
14712 sf_rgn_link_t *prlink;
14713
14714 ASSERT(prev != NULL);
14715 /* LINTED: constant in conditional context */
14716 SFMMU_HMERID2RLINKP(prev, rid, prlink, 0, 0);
14717 ASSERT(prlink != NULL);
14718 ASSERT(prlink->next == sfmmup);
14719 prlink->next = next;
14720 /*
14721 * if we are stopped by xc_attention()
14722 * after this point the forward link walking
14723 * will work correctly since the prev element
14724 * correctly points to the next element.
14725 */
14726 membar_stst();
14727 rlink->next = NULL;
14728 rlink->prev = NULL;
14729 if (next != NULL) {
14730 sf_rgn_link_t *nrlink;
14731 /* LINTED: constant in conditional context */
14732 SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14733 ASSERT(nrlink != NULL);
14734 ASSERT(nrlink->prev == sfmmup);
14735 nrlink->prev = prev;
14736 }
14737 }
14738 mutex_exit(&rgnp->rgn_mutex);
14739 }
14740
14741 /*
14742 * Link scd sfmmu onto ism or hme region list for each region in the
14743 * scd region map.
14744 */
14745 void
sfmmu_link_scd_to_regions(sf_srd_t * srdp,sf_scd_t * scdp)14746 sfmmu_link_scd_to_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14747 {
14748 uint_t rid;
14749 uint_t i;
14750 uint_t j;
14751 ulong_t w;
14752 sf_region_t *rgnp;
14753 sfmmu_t *scsfmmup;
14754
14755 scsfmmup = scdp->scd_sfmmup;
14756 ASSERT(scsfmmup->sfmmu_scdhat);
14757 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14758 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14759 continue;
14760 }
14761 j = 0;
14762 while (w) {
14763 if (!(w & 0x1)) {
14764 j++;
14765 w >>= 1;
14766 continue;
14767 }
14768 rid = (i << BT_ULSHIFT) | j;
14769 j++;
14770 w >>= 1;
14771
14772 if (rid < SFMMU_MAX_HME_REGIONS) {
14773 rgnp = srdp->srd_hmergnp[rid];
14774 ASSERT(rgnp->rgn_id == rid);
14775 ASSERT(rgnp->rgn_refcnt > 0);
14776 sfmmu_link_to_hmeregion(scsfmmup, rgnp);
14777 } else {
14778 sfmmu_t *ism_hatid = NULL;
14779 ism_ment_t *ism_ment;
14780 rid -= SFMMU_MAX_HME_REGIONS;
14781 rgnp = srdp->srd_ismrgnp[rid];
14782 ASSERT(rgnp->rgn_id == rid);
14783 ASSERT(rgnp->rgn_refcnt > 0);
14784
14785 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14786 ASSERT(ism_hatid->sfmmu_ismhat);
14787 ism_ment = &scdp->scd_ism_links[rid];
14788 ism_ment->iment_hat = scsfmmup;
14789 ism_ment->iment_base_va = rgnp->rgn_saddr;
14790 mutex_enter(&ism_mlist_lock);
14791 iment_add(ism_ment, ism_hatid);
14792 mutex_exit(&ism_mlist_lock);
14793
14794 }
14795 }
14796 }
14797 }
14798 /*
14799 * Unlink scd sfmmu from ism or hme region list for each region in the
14800 * scd region map.
14801 */
14802 void
sfmmu_unlink_scd_from_regions(sf_srd_t * srdp,sf_scd_t * scdp)14803 sfmmu_unlink_scd_from_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14804 {
14805 uint_t rid;
14806 uint_t i;
14807 uint_t j;
14808 ulong_t w;
14809 sf_region_t *rgnp;
14810 sfmmu_t *scsfmmup;
14811
14812 scsfmmup = scdp->scd_sfmmup;
14813 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14814 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14815 continue;
14816 }
14817 j = 0;
14818 while (w) {
14819 if (!(w & 0x1)) {
14820 j++;
14821 w >>= 1;
14822 continue;
14823 }
14824 rid = (i << BT_ULSHIFT) | j;
14825 j++;
14826 w >>= 1;
14827
14828 if (rid < SFMMU_MAX_HME_REGIONS) {
14829 rgnp = srdp->srd_hmergnp[rid];
14830 ASSERT(rgnp->rgn_id == rid);
14831 ASSERT(rgnp->rgn_refcnt > 0);
14832 sfmmu_unlink_from_hmeregion(scsfmmup,
14833 rgnp);
14834
14835 } else {
14836 sfmmu_t *ism_hatid = NULL;
14837 ism_ment_t *ism_ment;
14838 rid -= SFMMU_MAX_HME_REGIONS;
14839 rgnp = srdp->srd_ismrgnp[rid];
14840 ASSERT(rgnp->rgn_id == rid);
14841 ASSERT(rgnp->rgn_refcnt > 0);
14842
14843 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14844 ASSERT(ism_hatid->sfmmu_ismhat);
14845 ism_ment = &scdp->scd_ism_links[rid];
14846 ASSERT(ism_ment->iment_hat == scdp->scd_sfmmup);
14847 ASSERT(ism_ment->iment_base_va ==
14848 rgnp->rgn_saddr);
14849 mutex_enter(&ism_mlist_lock);
14850 iment_sub(ism_ment, ism_hatid);
14851 mutex_exit(&ism_mlist_lock);
14852
14853 }
14854 }
14855 }
14856 }
14857 /*
14858 * Allocates and initialises a new SCD structure, this is called with
14859 * the srd_scd_mutex held and returns with the reference count
14860 * initialised to 1.
14861 */
14862 static sf_scd_t *
sfmmu_alloc_scd(sf_srd_t * srdp,sf_region_map_t * new_map)14863 sfmmu_alloc_scd(sf_srd_t *srdp, sf_region_map_t *new_map)
14864 {
14865 sf_scd_t *new_scdp;
14866 sfmmu_t *scsfmmup;
14867 int i;
14868
14869 ASSERT(MUTEX_HELD(&srdp->srd_scd_mutex));
14870 new_scdp = kmem_cache_alloc(scd_cache, KM_SLEEP);
14871
14872 scsfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
14873 new_scdp->scd_sfmmup = scsfmmup;
14874 scsfmmup->sfmmu_srdp = srdp;
14875 scsfmmup->sfmmu_scdp = new_scdp;
14876 scsfmmup->sfmmu_tsb0_4minflcnt = 0;
14877 scsfmmup->sfmmu_scdhat = 1;
14878 CPUSET_ALL(scsfmmup->sfmmu_cpusran);
14879 bzero(scsfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
14880
14881 ASSERT(max_mmu_ctxdoms > 0);
14882 for (i = 0; i < max_mmu_ctxdoms; i++) {
14883 scsfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
14884 scsfmmup->sfmmu_ctxs[i].gnum = 0;
14885 }
14886
14887 for (i = 0; i < MMU_PAGE_SIZES; i++) {
14888 new_scdp->scd_rttecnt[i] = 0;
14889 }
14890
14891 new_scdp->scd_region_map = *new_map;
14892 new_scdp->scd_refcnt = 1;
14893 if (sfmmu_alloc_scd_tsbs(srdp, new_scdp) != TSB_SUCCESS) {
14894 kmem_cache_free(scd_cache, new_scdp);
14895 kmem_cache_free(sfmmuid_cache, scsfmmup);
14896 return (NULL);
14897 }
14898 if (&mmu_init_scd) {
14899 mmu_init_scd(new_scdp);
14900 }
14901 return (new_scdp);
14902 }
14903
14904 /*
14905 * The first phase of a process joining an SCD. The hat structure is
14906 * linked to the SCD queue and then the HAT_JOIN_SCD sfmmu flag is set
14907 * and a cross-call with context invalidation is used to cause the
14908 * remaining work to be carried out in the sfmmu_tsbmiss_exception()
14909 * routine.
14910 */
14911 static void
sfmmu_join_scd(sf_scd_t * scdp,sfmmu_t * sfmmup)14912 sfmmu_join_scd(sf_scd_t *scdp, sfmmu_t *sfmmup)
14913 {
14914 hatlock_t *hatlockp;
14915 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14916 int i;
14917 sf_scd_t *old_scdp;
14918
14919 ASSERT(srdp != NULL);
14920 ASSERT(scdp != NULL);
14921 ASSERT(scdp->scd_refcnt > 0);
14922 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
14923
14924 if ((old_scdp = sfmmup->sfmmu_scdp) != NULL) {
14925 ASSERT(old_scdp != scdp);
14926
14927 mutex_enter(&old_scdp->scd_mutex);
14928 sfmmu_from_scd_list(&old_scdp->scd_sf_list, sfmmup);
14929 mutex_exit(&old_scdp->scd_mutex);
14930 /*
14931 * sfmmup leaves the old scd. Update sfmmu_ttecnt to
14932 * include the shme rgn ttecnt for rgns that
14933 * were in the old SCD
14934 */
14935 for (i = 0; i < mmu_page_sizes; i++) {
14936 ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
14937 old_scdp->scd_rttecnt[i]);
14938 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
14939 sfmmup->sfmmu_scdrttecnt[i]);
14940 }
14941 }
14942
14943 /*
14944 * Move sfmmu to the scd lists.
14945 */
14946 mutex_enter(&scdp->scd_mutex);
14947 sfmmu_to_scd_list(&scdp->scd_sf_list, sfmmup);
14948 mutex_exit(&scdp->scd_mutex);
14949 SF_SCD_INCR_REF(scdp);
14950
14951 hatlockp = sfmmu_hat_enter(sfmmup);
14952 /*
14953 * For a multi-thread process, we must stop
14954 * all the other threads before joining the scd.
14955 */
14956
14957 SFMMU_FLAGS_SET(sfmmup, HAT_JOIN_SCD);
14958
14959 sfmmu_invalidate_ctx(sfmmup);
14960 sfmmup->sfmmu_scdp = scdp;
14961
14962 /*
14963 * Copy scd_rttecnt into sfmmup's sfmmu_scdrttecnt, and update
14964 * sfmmu_ttecnt to not include the rgn ttecnt just joined in SCD.
14965 */
14966 for (i = 0; i < mmu_page_sizes; i++) {
14967 sfmmup->sfmmu_scdrttecnt[i] = scdp->scd_rttecnt[i];
14968 ASSERT(sfmmup->sfmmu_ttecnt[i] >= scdp->scd_rttecnt[i]);
14969 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
14970 -sfmmup->sfmmu_scdrttecnt[i]);
14971 }
14972 /* update tsb0 inflation count */
14973 if (old_scdp != NULL) {
14974 sfmmup->sfmmu_tsb0_4minflcnt +=
14975 old_scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
14976 }
14977 ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14978 scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt);
14979 sfmmup->sfmmu_tsb0_4minflcnt -= scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
14980
14981 sfmmu_hat_exit(hatlockp);
14982
14983 if (old_scdp != NULL) {
14984 SF_SCD_DECR_REF(srdp, old_scdp);
14985 }
14986
14987 }
14988
14989 /*
14990 * This routine is called by a process to become part of an SCD. It is called
14991 * from sfmmu_tsbmiss_exception() once most of the initial work has been
14992 * done by sfmmu_join_scd(). This routine must not drop the hat lock.
14993 */
14994 static void
sfmmu_finish_join_scd(sfmmu_t * sfmmup)14995 sfmmu_finish_join_scd(sfmmu_t *sfmmup)
14996 {
14997 struct tsb_info *tsbinfop;
14998
14999 ASSERT(sfmmu_hat_lock_held(sfmmup));
15000 ASSERT(sfmmup->sfmmu_scdp != NULL);
15001 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD));
15002 ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15003 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID));
15004
15005 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
15006 tsbinfop = tsbinfop->tsb_next) {
15007 if (tsbinfop->tsb_flags & TSB_SWAPPED) {
15008 continue;
15009 }
15010 ASSERT(!(tsbinfop->tsb_flags & TSB_RELOC_FLAG));
15011
15012 sfmmu_inv_tsb(tsbinfop->tsb_va,
15013 TSB_BYTES(tsbinfop->tsb_szc));
15014 }
15015
15016 /* Set HAT_CTX1_FLAG for all SCD ISMs */
15017 sfmmu_ism_hatflags(sfmmup, 1);
15018
15019 SFMMU_STAT(sf_join_scd);
15020 }
15021
15022 /*
15023 * This routine is called in order to check if there is an SCD which matches
15024 * the process's region map if not then a new SCD may be created.
15025 */
15026 static void
sfmmu_find_scd(sfmmu_t * sfmmup)15027 sfmmu_find_scd(sfmmu_t *sfmmup)
15028 {
15029 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15030 sf_scd_t *scdp, *new_scdp;
15031 int ret;
15032
15033 ASSERT(srdp != NULL);
15034 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
15035
15036 mutex_enter(&srdp->srd_scd_mutex);
15037 for (scdp = srdp->srd_scdp; scdp != NULL;
15038 scdp = scdp->scd_next) {
15039 SF_RGNMAP_EQUAL(&scdp->scd_region_map,
15040 &sfmmup->sfmmu_region_map, ret);
15041 if (ret == 1) {
15042 SF_SCD_INCR_REF(scdp);
15043 mutex_exit(&srdp->srd_scd_mutex);
15044 sfmmu_join_scd(scdp, sfmmup);
15045 ASSERT(scdp->scd_refcnt >= 2);
15046 atomic_dec_32((volatile uint32_t *)&scdp->scd_refcnt);
15047 return;
15048 } else {
15049 /*
15050 * If the sfmmu region map is a subset of the scd
15051 * region map, then the assumption is that this process
15052 * will continue attaching to ISM segments until the
15053 * region maps are equal.
15054 */
15055 SF_RGNMAP_IS_SUBSET(&scdp->scd_region_map,
15056 &sfmmup->sfmmu_region_map, ret);
15057 if (ret == 1) {
15058 mutex_exit(&srdp->srd_scd_mutex);
15059 return;
15060 }
15061 }
15062 }
15063
15064 ASSERT(scdp == NULL);
15065 /*
15066 * No matching SCD has been found, create a new one.
15067 */
15068 if ((new_scdp = sfmmu_alloc_scd(srdp, &sfmmup->sfmmu_region_map)) ==
15069 NULL) {
15070 mutex_exit(&srdp->srd_scd_mutex);
15071 return;
15072 }
15073
15074 /*
15075 * sfmmu_alloc_scd() returns with a ref count of 1 on the scd.
15076 */
15077
15078 /* Set scd_rttecnt for shme rgns in SCD */
15079 sfmmu_set_scd_rttecnt(srdp, new_scdp);
15080
15081 /*
15082 * Link scd onto srd_scdp list and scd sfmmu onto region/iment lists.
15083 */
15084 sfmmu_link_scd_to_regions(srdp, new_scdp);
15085 sfmmu_add_scd(&srdp->srd_scdp, new_scdp);
15086 SFMMU_STAT_ADD(sf_create_scd, 1);
15087
15088 mutex_exit(&srdp->srd_scd_mutex);
15089 sfmmu_join_scd(new_scdp, sfmmup);
15090 ASSERT(new_scdp->scd_refcnt >= 2);
15091 atomic_dec_32((volatile uint32_t *)&new_scdp->scd_refcnt);
15092 }
15093
15094 /*
15095 * This routine is called by a process to remove itself from an SCD. It is
15096 * either called when the processes has detached from a segment or from
15097 * hat_free_start() as a result of calling exit.
15098 */
15099 static void
sfmmu_leave_scd(sfmmu_t * sfmmup,uchar_t r_type)15100 sfmmu_leave_scd(sfmmu_t *sfmmup, uchar_t r_type)
15101 {
15102 sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15103 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15104 hatlock_t *hatlockp = TSB_HASH(sfmmup);
15105 int i;
15106
15107 ASSERT(scdp != NULL);
15108 ASSERT(srdp != NULL);
15109
15110 if (sfmmup->sfmmu_free) {
15111 /*
15112 * If the process is part of an SCD the sfmmu is unlinked
15113 * from scd_sf_list.
15114 */
15115 mutex_enter(&scdp->scd_mutex);
15116 sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15117 mutex_exit(&scdp->scd_mutex);
15118 /*
15119 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15120 * are about to leave the SCD
15121 */
15122 for (i = 0; i < mmu_page_sizes; i++) {
15123 ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15124 scdp->scd_rttecnt[i]);
15125 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15126 sfmmup->sfmmu_scdrttecnt[i]);
15127 sfmmup->sfmmu_scdrttecnt[i] = 0;
15128 }
15129 sfmmup->sfmmu_scdp = NULL;
15130
15131 SF_SCD_DECR_REF(srdp, scdp);
15132 return;
15133 }
15134
15135 ASSERT(r_type != SFMMU_REGION_ISM ||
15136 SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15137 ASSERT(scdp->scd_refcnt);
15138 ASSERT(!sfmmup->sfmmu_free);
15139 ASSERT(sfmmu_hat_lock_held(sfmmup));
15140 ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as));
15141
15142 /*
15143 * Wait for ISM maps to be updated.
15144 */
15145 if (r_type != SFMMU_REGION_ISM) {
15146 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY) &&
15147 sfmmup->sfmmu_scdp != NULL) {
15148 cv_wait(&sfmmup->sfmmu_tsb_cv,
15149 HATLOCK_MUTEXP(hatlockp));
15150 }
15151
15152 if (sfmmup->sfmmu_scdp == NULL) {
15153 sfmmu_hat_exit(hatlockp);
15154 return;
15155 }
15156 SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
15157 }
15158
15159 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
15160 SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
15161 /*
15162 * Since HAT_JOIN_SCD was set our context
15163 * is still invalid.
15164 */
15165 } else {
15166 /*
15167 * For a multi-thread process, we must stop
15168 * all the other threads before leaving the scd.
15169 */
15170
15171 sfmmu_invalidate_ctx(sfmmup);
15172 }
15173
15174 /* Clear all the rid's for ISM, delete flags, etc */
15175 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15176 sfmmu_ism_hatflags(sfmmup, 0);
15177
15178 /*
15179 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15180 * are in SCD before this sfmmup leaves the SCD.
15181 */
15182 for (i = 0; i < mmu_page_sizes; i++) {
15183 ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15184 scdp->scd_rttecnt[i]);
15185 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15186 sfmmup->sfmmu_scdrttecnt[i]);
15187 sfmmup->sfmmu_scdrttecnt[i] = 0;
15188 /* update ismttecnt to include SCD ism before hat leaves SCD */
15189 sfmmup->sfmmu_ismttecnt[i] += sfmmup->sfmmu_scdismttecnt[i];
15190 sfmmup->sfmmu_scdismttecnt[i] = 0;
15191 }
15192 /* update tsb0 inflation count */
15193 sfmmup->sfmmu_tsb0_4minflcnt += scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15194
15195 if (r_type != SFMMU_REGION_ISM) {
15196 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
15197 }
15198 sfmmup->sfmmu_scdp = NULL;
15199
15200 sfmmu_hat_exit(hatlockp);
15201
15202 /*
15203 * Unlink sfmmu from scd_sf_list this can be done without holding
15204 * the hat lock as we hold the sfmmu_as lock which prevents
15205 * hat_join_region from adding this thread to the scd again. Other
15206 * threads check if sfmmu_scdp is NULL under hat lock and if it's NULL
15207 * they won't get here, since sfmmu_leave_scd() clears sfmmu_scdp
15208 * while holding the hat lock.
15209 */
15210 mutex_enter(&scdp->scd_mutex);
15211 sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15212 mutex_exit(&scdp->scd_mutex);
15213 SFMMU_STAT(sf_leave_scd);
15214
15215 SF_SCD_DECR_REF(srdp, scdp);
15216 hatlockp = sfmmu_hat_enter(sfmmup);
15217
15218 }
15219
15220 /*
15221 * Unlink and free up an SCD structure with a reference count of 0.
15222 */
15223 static void
sfmmu_destroy_scd(sf_srd_t * srdp,sf_scd_t * scdp,sf_region_map_t * scd_rmap)15224 sfmmu_destroy_scd(sf_srd_t *srdp, sf_scd_t *scdp, sf_region_map_t *scd_rmap)
15225 {
15226 sfmmu_t *scsfmmup;
15227 sf_scd_t *sp;
15228 hatlock_t *shatlockp;
15229 int i, ret;
15230
15231 mutex_enter(&srdp->srd_scd_mutex);
15232 for (sp = srdp->srd_scdp; sp != NULL; sp = sp->scd_next) {
15233 if (sp == scdp)
15234 break;
15235 }
15236 if (sp == NULL || sp->scd_refcnt) {
15237 mutex_exit(&srdp->srd_scd_mutex);
15238 return;
15239 }
15240
15241 /*
15242 * It is possible that the scd has been freed and reallocated with a
15243 * different region map while we've been waiting for the srd_scd_mutex.
15244 */
15245 SF_RGNMAP_EQUAL(scd_rmap, &sp->scd_region_map, ret);
15246 if (ret != 1) {
15247 mutex_exit(&srdp->srd_scd_mutex);
15248 return;
15249 }
15250
15251 ASSERT(scdp->scd_sf_list == NULL);
15252 /*
15253 * Unlink scd from srd_scdp list.
15254 */
15255 sfmmu_remove_scd(&srdp->srd_scdp, scdp);
15256 mutex_exit(&srdp->srd_scd_mutex);
15257
15258 sfmmu_unlink_scd_from_regions(srdp, scdp);
15259
15260 /* Clear shared context tsb and release ctx */
15261 scsfmmup = scdp->scd_sfmmup;
15262
15263 /*
15264 * create a barrier so that scd will not be destroyed
15265 * if other thread still holds the same shared hat lock.
15266 * E.g., sfmmu_tsbmiss_exception() needs to acquire the
15267 * shared hat lock before checking the shared tsb reloc flag.
15268 */
15269 shatlockp = sfmmu_hat_enter(scsfmmup);
15270 sfmmu_hat_exit(shatlockp);
15271
15272 sfmmu_free_scd_tsbs(scsfmmup);
15273
15274 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
15275 if (scsfmmup->sfmmu_hmeregion_links[i] != NULL) {
15276 kmem_free(scsfmmup->sfmmu_hmeregion_links[i],
15277 SFMMU_L2_HMERLINKS_SIZE);
15278 scsfmmup->sfmmu_hmeregion_links[i] = NULL;
15279 }
15280 }
15281 kmem_cache_free(sfmmuid_cache, scsfmmup);
15282 kmem_cache_free(scd_cache, scdp);
15283 SFMMU_STAT(sf_destroy_scd);
15284 }
15285
15286 /*
15287 * Modifies the HAT_CTX1_FLAG for each of the ISM segments which correspond to
15288 * bits which are set in the ism_region_map parameter. This flag indicates to
15289 * the tsbmiss handler that mapping for these segments should be loaded using
15290 * the shared context.
15291 */
15292 static void
sfmmu_ism_hatflags(sfmmu_t * sfmmup,int addflag)15293 sfmmu_ism_hatflags(sfmmu_t *sfmmup, int addflag)
15294 {
15295 sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15296 ism_blk_t *ism_blkp;
15297 ism_map_t *ism_map;
15298 int i, rid;
15299
15300 ASSERT(sfmmup->sfmmu_iblk != NULL);
15301 ASSERT(scdp != NULL);
15302 /*
15303 * Note that the caller either set HAT_ISMBUSY flag or checked
15304 * under hat lock that HAT_ISMBUSY was not set by another thread.
15305 */
15306 ASSERT(sfmmu_hat_lock_held(sfmmup));
15307
15308 ism_blkp = sfmmup->sfmmu_iblk;
15309 while (ism_blkp != NULL) {
15310 ism_map = ism_blkp->iblk_maps;
15311 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
15312 rid = ism_map[i].imap_rid;
15313 if (rid == SFMMU_INVALID_ISMRID) {
15314 continue;
15315 }
15316 ASSERT(rid >= 0 && rid < SFMMU_MAX_ISM_REGIONS);
15317 if (SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid) &&
15318 addflag) {
15319 ism_map[i].imap_hatflags |=
15320 HAT_CTX1_FLAG;
15321 } else {
15322 ism_map[i].imap_hatflags &=
15323 ~HAT_CTX1_FLAG;
15324 }
15325 }
15326 ism_blkp = ism_blkp->iblk_next;
15327 }
15328 }
15329
15330 static int
sfmmu_srd_lock_held(sf_srd_t * srdp)15331 sfmmu_srd_lock_held(sf_srd_t *srdp)
15332 {
15333 return (MUTEX_HELD(&srdp->srd_mutex));
15334 }
15335
15336 /* ARGSUSED */
15337 static int
sfmmu_scdcache_constructor(void * buf,void * cdrarg,int kmflags)15338 sfmmu_scdcache_constructor(void *buf, void *cdrarg, int kmflags)
15339 {
15340 sf_scd_t *scdp = (sf_scd_t *)buf;
15341
15342 bzero(buf, sizeof (sf_scd_t));
15343 mutex_init(&scdp->scd_mutex, NULL, MUTEX_DEFAULT, NULL);
15344 return (0);
15345 }
15346
15347 /* ARGSUSED */
15348 static void
sfmmu_scdcache_destructor(void * buf,void * cdrarg)15349 sfmmu_scdcache_destructor(void *buf, void *cdrarg)
15350 {
15351 sf_scd_t *scdp = (sf_scd_t *)buf;
15352
15353 mutex_destroy(&scdp->scd_mutex);
15354 }
15355
15356 /*
15357 * The listp parameter is a pointer to a list of hmeblks which are partially
15358 * freed as result of calling sfmmu_hblk_hash_rm(), the last phase of the
15359 * freeing process is to cross-call all cpus to ensure that there are no
15360 * remaining cached references.
15361 *
15362 * If the local generation number is less than the global then we can free
15363 * hmeblks which are already on the pending queue as another cpu has completed
15364 * the cross-call.
15365 *
15366 * We cross-call to make sure that there are no threads on other cpus accessing
15367 * these hmblks and then complete the process of freeing them under the
15368 * following conditions:
15369 * The total number of pending hmeblks is greater than the threshold
15370 * The reserve list has fewer than HBLK_RESERVE_CNT hmeblks
15371 * It is at least 1 second since the last time we cross-called
15372 *
15373 * Otherwise, we add the hmeblks to the per-cpu pending queue.
15374 */
15375 static void
sfmmu_hblks_list_purge(struct hme_blk ** listp,int dontfree)15376 sfmmu_hblks_list_purge(struct hme_blk **listp, int dontfree)
15377 {
15378 struct hme_blk *hblkp, *pr_hblkp = NULL;
15379 int count = 0;
15380 cpuset_t cpuset = cpu_ready_set;
15381 cpu_hme_pend_t *cpuhp;
15382 timestruc_t now;
15383 int one_second_expired = 0;
15384
15385 gethrestime_lasttick(&now);
15386
15387 for (hblkp = *listp; hblkp != NULL; hblkp = hblkp->hblk_next) {
15388 ASSERT(hblkp->hblk_shw_bit == 0);
15389 ASSERT(hblkp->hblk_shared == 0);
15390 count++;
15391 pr_hblkp = hblkp;
15392 }
15393
15394 cpuhp = &cpu_hme_pend[CPU->cpu_seqid];
15395 mutex_enter(&cpuhp->chp_mutex);
15396
15397 if ((cpuhp->chp_count + count) == 0) {
15398 mutex_exit(&cpuhp->chp_mutex);
15399 return;
15400 }
15401
15402 if ((now.tv_sec - cpuhp->chp_timestamp) > 1) {
15403 one_second_expired = 1;
15404 }
15405
15406 if (!dontfree && (freehblkcnt < HBLK_RESERVE_CNT ||
15407 (cpuhp->chp_count + count) > cpu_hme_pend_thresh ||
15408 one_second_expired)) {
15409 /* Append global list to local */
15410 if (pr_hblkp == NULL) {
15411 *listp = cpuhp->chp_listp;
15412 } else {
15413 pr_hblkp->hblk_next = cpuhp->chp_listp;
15414 }
15415 cpuhp->chp_listp = NULL;
15416 cpuhp->chp_count = 0;
15417 cpuhp->chp_timestamp = now.tv_sec;
15418 mutex_exit(&cpuhp->chp_mutex);
15419
15420 kpreempt_disable();
15421 CPUSET_DEL(cpuset, CPU->cpu_id);
15422 xt_sync(cpuset);
15423 xt_sync(cpuset);
15424 kpreempt_enable();
15425
15426 /*
15427 * At this stage we know that no trap handlers on other
15428 * cpus can have references to hmeblks on the list.
15429 */
15430 sfmmu_hblk_free(listp);
15431 } else if (*listp != NULL) {
15432 pr_hblkp->hblk_next = cpuhp->chp_listp;
15433 cpuhp->chp_listp = *listp;
15434 cpuhp->chp_count += count;
15435 *listp = NULL;
15436 mutex_exit(&cpuhp->chp_mutex);
15437 } else {
15438 mutex_exit(&cpuhp->chp_mutex);
15439 }
15440 }
15441
15442 /*
15443 * Add an hmeblk to the the hash list.
15444 */
15445 void
sfmmu_hblk_hash_add(struct hmehash_bucket * hmebp,struct hme_blk * hmeblkp,uint64_t hblkpa)15446 sfmmu_hblk_hash_add(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15447 uint64_t hblkpa)
15448 {
15449 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15450 #ifdef DEBUG
15451 if (hmebp->hmeblkp == NULL) {
15452 ASSERT(hmebp->hmeh_nextpa == HMEBLK_ENDPA);
15453 }
15454 #endif /* DEBUG */
15455
15456 hmeblkp->hblk_nextpa = hmebp->hmeh_nextpa;
15457 /*
15458 * Since the TSB miss handler now does not lock the hash chain before
15459 * walking it, make sure that the hmeblks nextpa is globally visible
15460 * before we make the hmeblk globally visible by updating the chain root
15461 * pointer in the hash bucket.
15462 */
15463 membar_producer();
15464 hmebp->hmeh_nextpa = hblkpa;
15465 hmeblkp->hblk_next = hmebp->hmeblkp;
15466 hmebp->hmeblkp = hmeblkp;
15467
15468 }
15469
15470 /*
15471 * This function is the first part of a 2 part process to remove an hmeblk
15472 * from the hash chain. In this phase we unlink the hmeblk from the hash chain
15473 * but leave the next physical pointer unchanged. The hmeblk is then linked onto
15474 * a per-cpu pending list using the virtual address pointer.
15475 *
15476 * TSB miss trap handlers that start after this phase will no longer see
15477 * this hmeblk. TSB miss handlers that still cache this hmeblk in a register
15478 * can still use it for further chain traversal because we haven't yet modifed
15479 * the next physical pointer or freed it.
15480 *
15481 * In the second phase of hmeblk removal we'll issue a barrier xcall before
15482 * we reuse or free this hmeblk. This will make sure all lingering references to
15483 * the hmeblk after first phase disappear before we finally reclaim it.
15484 * This scheme eliminates the need for TSB miss handlers to lock hmeblk chains
15485 * during their traversal.
15486 *
15487 * The hmehash_mutex must be held when calling this function.
15488 *
15489 * Input:
15490 * hmebp - hme hash bucket pointer
15491 * hmeblkp - address of hmeblk to be removed
15492 * pr_hblk - virtual address of previous hmeblkp
15493 * listp - pointer to list of hmeblks linked by virtual address
15494 * free_now flag - indicates that a complete removal from the hash chains
15495 * is necessary.
15496 *
15497 * It is inefficient to use the free_now flag as a cross-call is required to
15498 * remove a single hmeblk from the hash chain but is necessary when hmeblks are
15499 * in short supply.
15500 */
15501 void
sfmmu_hblk_hash_rm(struct hmehash_bucket * hmebp,struct hme_blk * hmeblkp,struct hme_blk * pr_hblk,struct hme_blk ** listp,int free_now)15502 sfmmu_hblk_hash_rm(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15503 struct hme_blk *pr_hblk, struct hme_blk **listp, int free_now)
15504 {
15505 int shw_size, vshift;
15506 struct hme_blk *shw_hblkp;
15507 uint_t shw_mask, newshw_mask;
15508 caddr_t vaddr;
15509 int size;
15510 cpuset_t cpuset = cpu_ready_set;
15511
15512 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15513
15514 if (hmebp->hmeblkp == hmeblkp) {
15515 hmebp->hmeh_nextpa = hmeblkp->hblk_nextpa;
15516 hmebp->hmeblkp = hmeblkp->hblk_next;
15517 } else {
15518 pr_hblk->hblk_nextpa = hmeblkp->hblk_nextpa;
15519 pr_hblk->hblk_next = hmeblkp->hblk_next;
15520 }
15521
15522 size = get_hblk_ttesz(hmeblkp);
15523 shw_hblkp = hmeblkp->hblk_shadow;
15524 if (shw_hblkp) {
15525 ASSERT(hblktosfmmu(hmeblkp) != KHATID);
15526 ASSERT(!hmeblkp->hblk_shared);
15527 #ifdef DEBUG
15528 if (mmu_page_sizes == max_mmu_page_sizes) {
15529 ASSERT(size < TTE256M);
15530 } else {
15531 ASSERT(size < TTE4M);
15532 }
15533 #endif /* DEBUG */
15534
15535 shw_size = get_hblk_ttesz(shw_hblkp);
15536 vaddr = (caddr_t)get_hblk_base(hmeblkp);
15537 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
15538 ASSERT(vshift < 8);
15539 /*
15540 * Atomically clear shadow mask bit
15541 */
15542 do {
15543 shw_mask = shw_hblkp->hblk_shw_mask;
15544 ASSERT(shw_mask & (1 << vshift));
15545 newshw_mask = shw_mask & ~(1 << vshift);
15546 newshw_mask = atomic_cas_32(&shw_hblkp->hblk_shw_mask,
15547 shw_mask, newshw_mask);
15548 } while (newshw_mask != shw_mask);
15549 hmeblkp->hblk_shadow = NULL;
15550 }
15551 hmeblkp->hblk_shw_bit = 0;
15552
15553 if (hmeblkp->hblk_shared) {
15554 #ifdef DEBUG
15555 sf_srd_t *srdp;
15556 sf_region_t *rgnp;
15557 uint_t rid;
15558
15559 srdp = hblktosrd(hmeblkp);
15560 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
15561 rid = hmeblkp->hblk_tag.htag_rid;
15562 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
15563 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
15564 rgnp = srdp->srd_hmergnp[rid];
15565 ASSERT(rgnp != NULL);
15566 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
15567 #endif /* DEBUG */
15568 hmeblkp->hblk_shared = 0;
15569 }
15570 if (free_now) {
15571 kpreempt_disable();
15572 CPUSET_DEL(cpuset, CPU->cpu_id);
15573 xt_sync(cpuset);
15574 xt_sync(cpuset);
15575 kpreempt_enable();
15576
15577 hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
15578 hmeblkp->hblk_next = NULL;
15579 } else {
15580 /* Append hmeblkp to listp for processing later. */
15581 hmeblkp->hblk_next = *listp;
15582 *listp = hmeblkp;
15583 }
15584 }
15585
15586 /*
15587 * This routine is called when memory is in short supply and returns a free
15588 * hmeblk of the requested size from the cpu pending lists.
15589 */
15590 static struct hme_blk *
sfmmu_check_pending_hblks(int size)15591 sfmmu_check_pending_hblks(int size)
15592 {
15593 int i;
15594 struct hme_blk *hmeblkp = NULL, *last_hmeblkp;
15595 int found_hmeblk;
15596 cpuset_t cpuset = cpu_ready_set;
15597 cpu_hme_pend_t *cpuhp;
15598
15599 /* Flush cpu hblk pending queues */
15600 for (i = 0; i < NCPU; i++) {
15601 cpuhp = &cpu_hme_pend[i];
15602 if (cpuhp->chp_listp != NULL) {
15603 mutex_enter(&cpuhp->chp_mutex);
15604 if (cpuhp->chp_listp == NULL) {
15605 mutex_exit(&cpuhp->chp_mutex);
15606 continue;
15607 }
15608 found_hmeblk = 0;
15609 last_hmeblkp = NULL;
15610 for (hmeblkp = cpuhp->chp_listp; hmeblkp != NULL;
15611 hmeblkp = hmeblkp->hblk_next) {
15612 if (get_hblk_ttesz(hmeblkp) == size) {
15613 if (last_hmeblkp == NULL) {
15614 cpuhp->chp_listp =
15615 hmeblkp->hblk_next;
15616 } else {
15617 last_hmeblkp->hblk_next =
15618 hmeblkp->hblk_next;
15619 }
15620 ASSERT(cpuhp->chp_count > 0);
15621 cpuhp->chp_count--;
15622 found_hmeblk = 1;
15623 break;
15624 } else {
15625 last_hmeblkp = hmeblkp;
15626 }
15627 }
15628 mutex_exit(&cpuhp->chp_mutex);
15629
15630 if (found_hmeblk) {
15631 kpreempt_disable();
15632 CPUSET_DEL(cpuset, CPU->cpu_id);
15633 xt_sync(cpuset);
15634 xt_sync(cpuset);
15635 kpreempt_enable();
15636 return (hmeblkp);
15637 }
15638 }
15639 }
15640 return (NULL);
15641 }
15642