xref: /linux/include/linux/bpf_verifier.h (revision 35f301dd4551fa731db4834f915e8351838f6f19)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_VERIFIER_H
5 #define _LINUX_BPF_VERIFIER_H 1
6 
7 #include <linux/bpf.h> /* for enum bpf_reg_type */
8 #include <linux/btf.h> /* for struct btf and btf_id() */
9 #include <linux/filter.h> /* for MAX_BPF_STACK */
10 #include <linux/tnum.h>
11 
12 /* Maximum variable offset umax_value permitted when resolving memory accesses.
13  * In practice this is far bigger than any realistic pointer offset; this limit
14  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15  */
16 #define BPF_MAX_VAR_OFF	(1 << 29)
17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
18  * that converting umax_value to int cannot overflow.
19  */
20 #define BPF_MAX_VAR_SIZ	(1 << 29)
21 /* size of tmp_str_buf in bpf_verifier.
22  * we need at least 306 bytes to fit full stack mask representation
23  * (in the "-8,-16,...,-512" form)
24  */
25 #define TMP_STR_BUF_LEN 320
26 /* Patch buffer size */
27 #define INSN_BUF_SIZE 32
28 
29 /* Liveness marks, used for registers and spilled-regs (in stack slots).
30  * Read marks propagate upwards until they find a write mark; they record that
31  * "one of this state's descendants read this reg" (and therefore the reg is
32  * relevant for states_equal() checks).
33  * Write marks collect downwards and do not propagate; they record that "the
34  * straight-line code that reached this state (from its parent) wrote this reg"
35  * (and therefore that reads propagated from this state or its descendants
36  * should not propagate to its parent).
37  * A state with a write mark can receive read marks; it just won't propagate
38  * them to its parent, since the write mark is a property, not of the state,
39  * but of the link between it and its parent.  See mark_reg_read() and
40  * mark_stack_slot_read() in kernel/bpf/verifier.c.
41  */
42 enum bpf_reg_liveness {
43 	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
44 	REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
45 	REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
46 	REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
47 	REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
48 	REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
49 };
50 
51 #define ITER_PREFIX "bpf_iter_"
52 
53 enum bpf_iter_state {
54 	BPF_ITER_STATE_INVALID, /* for non-first slot */
55 	BPF_ITER_STATE_ACTIVE,
56 	BPF_ITER_STATE_DRAINED,
57 };
58 
59 struct bpf_reg_state {
60 	/* Ordering of fields matters.  See states_equal() */
61 	enum bpf_reg_type type;
62 	/*
63 	 * Fixed part of pointer offset, pointer types only.
64 	 * Or constant delta between "linked" scalars with the same ID.
65 	 */
66 	s32 off;
67 	union {
68 		/* valid when type == PTR_TO_PACKET */
69 		int range;
70 
71 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
72 		 *   PTR_TO_MAP_VALUE_OR_NULL
73 		 */
74 		struct {
75 			struct bpf_map *map_ptr;
76 			/* To distinguish map lookups from outer map
77 			 * the map_uid is non-zero for registers
78 			 * pointing to inner maps.
79 			 */
80 			u32 map_uid;
81 		};
82 
83 		/* for PTR_TO_BTF_ID */
84 		struct {
85 			struct btf *btf;
86 			u32 btf_id;
87 		};
88 
89 		struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
90 			u32 mem_size;
91 			u32 dynptr_id; /* for dynptr slices */
92 		};
93 
94 		/* For dynptr stack slots */
95 		struct {
96 			enum bpf_dynptr_type type;
97 			/* A dynptr is 16 bytes so it takes up 2 stack slots.
98 			 * We need to track which slot is the first slot
99 			 * to protect against cases where the user may try to
100 			 * pass in an address starting at the second slot of the
101 			 * dynptr.
102 			 */
103 			bool first_slot;
104 		} dynptr;
105 
106 		/* For bpf_iter stack slots */
107 		struct {
108 			/* BTF container and BTF type ID describing
109 			 * struct bpf_iter_<type> of an iterator state
110 			 */
111 			struct btf *btf;
112 			u32 btf_id;
113 			/* packing following two fields to fit iter state into 16 bytes */
114 			enum bpf_iter_state state:2;
115 			int depth:30;
116 		} iter;
117 
118 		/* Max size from any of the above. */
119 		struct {
120 			unsigned long raw1;
121 			unsigned long raw2;
122 		} raw;
123 
124 		u32 subprogno; /* for PTR_TO_FUNC */
125 	};
126 	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
127 	 * the actual value.
128 	 * For pointer types, this represents the variable part of the offset
129 	 * from the pointed-to object, and is shared with all bpf_reg_states
130 	 * with the same id as us.
131 	 */
132 	struct tnum var_off;
133 	/* Used to determine if any memory access using this register will
134 	 * result in a bad access.
135 	 * These refer to the same value as var_off, not necessarily the actual
136 	 * contents of the register.
137 	 */
138 	s64 smin_value; /* minimum possible (s64)value */
139 	s64 smax_value; /* maximum possible (s64)value */
140 	u64 umin_value; /* minimum possible (u64)value */
141 	u64 umax_value; /* maximum possible (u64)value */
142 	s32 s32_min_value; /* minimum possible (s32)value */
143 	s32 s32_max_value; /* maximum possible (s32)value */
144 	u32 u32_min_value; /* minimum possible (u32)value */
145 	u32 u32_max_value; /* maximum possible (u32)value */
146 	/* For PTR_TO_PACKET, used to find other pointers with the same variable
147 	 * offset, so they can share range knowledge.
148 	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
149 	 * came from, when one is tested for != NULL.
150 	 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
151 	 * for the purpose of tracking that it's freed.
152 	 * For PTR_TO_SOCKET this is used to share which pointers retain the
153 	 * same reference to the socket, to determine proper reference freeing.
154 	 * For stack slots that are dynptrs, this is used to track references to
155 	 * the dynptr to determine proper reference freeing.
156 	 * Similarly to dynptrs, we use ID to track "belonging" of a reference
157 	 * to a specific instance of bpf_iter.
158 	 */
159 	/*
160 	 * Upper bit of ID is used to remember relationship between "linked"
161 	 * registers. Example:
162 	 * r1 = r2;    both will have r1->id == r2->id == N
163 	 * r1 += 10;   r1->id == N | BPF_ADD_CONST and r1->off == 10
164 	 */
165 #define BPF_ADD_CONST (1U << 31)
166 	u32 id;
167 	/* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
168 	 * from a pointer-cast helper, bpf_sk_fullsock() and
169 	 * bpf_tcp_sock().
170 	 *
171 	 * Consider the following where "sk" is a reference counted
172 	 * pointer returned from "sk = bpf_sk_lookup_tcp();":
173 	 *
174 	 * 1: sk = bpf_sk_lookup_tcp();
175 	 * 2: if (!sk) { return 0; }
176 	 * 3: fullsock = bpf_sk_fullsock(sk);
177 	 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
178 	 * 5: tp = bpf_tcp_sock(fullsock);
179 	 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
180 	 * 7: bpf_sk_release(sk);
181 	 * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
182 	 *
183 	 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
184 	 * "tp" ptr should be invalidated also.  In order to do that,
185 	 * the reg holding "fullsock" and "sk" need to remember
186 	 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
187 	 * such that the verifier can reset all regs which have
188 	 * ref_obj_id matching the sk_reg->id.
189 	 *
190 	 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
191 	 * sk_reg->id will stay as NULL-marking purpose only.
192 	 * After NULL-marking is done, sk_reg->id can be reset to 0.
193 	 *
194 	 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
195 	 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
196 	 *
197 	 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
198 	 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
199 	 * which is the same as sk_reg->ref_obj_id.
200 	 *
201 	 * From the verifier perspective, if sk, fullsock and tp
202 	 * are not NULL, they are the same ptr with different
203 	 * reg->type.  In particular, bpf_sk_release(tp) is also
204 	 * allowed and has the same effect as bpf_sk_release(sk).
205 	 */
206 	u32 ref_obj_id;
207 	/* parentage chain for liveness checking */
208 	struct bpf_reg_state *parent;
209 	/* Inside the callee two registers can be both PTR_TO_STACK like
210 	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
211 	 * while another to the caller's stack. To differentiate them 'frameno'
212 	 * is used which is an index in bpf_verifier_state->frame[] array
213 	 * pointing to bpf_func_state.
214 	 */
215 	u32 frameno;
216 	/* Tracks subreg definition. The stored value is the insn_idx of the
217 	 * writing insn. This is safe because subreg_def is used before any insn
218 	 * patching which only happens after main verification finished.
219 	 */
220 	s32 subreg_def;
221 	enum bpf_reg_liveness live;
222 	/* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
223 	bool precise;
224 };
225 
226 enum bpf_stack_slot_type {
227 	STACK_INVALID,    /* nothing was stored in this stack slot */
228 	STACK_SPILL,      /* register spilled into stack */
229 	STACK_MISC,	  /* BPF program wrote some data into this slot */
230 	STACK_ZERO,	  /* BPF program wrote constant zero */
231 	/* A dynptr is stored in this stack slot. The type of dynptr
232 	 * is stored in bpf_stack_state->spilled_ptr.dynptr.type
233 	 */
234 	STACK_DYNPTR,
235 	STACK_ITER,
236 };
237 
238 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
239 
240 #define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \
241 			  (1 << BPF_REG_3) | (1 << BPF_REG_4) | \
242 			  (1 << BPF_REG_5))
243 
244 #define BPF_DYNPTR_SIZE		sizeof(struct bpf_dynptr_kern)
245 #define BPF_DYNPTR_NR_SLOTS		(BPF_DYNPTR_SIZE / BPF_REG_SIZE)
246 
247 struct bpf_stack_state {
248 	struct bpf_reg_state spilled_ptr;
249 	u8 slot_type[BPF_REG_SIZE];
250 };
251 
252 struct bpf_reference_state {
253 	/* Each reference object has a type. Ensure REF_TYPE_PTR is zero to
254 	 * default to pointer reference on zero initialization of a state.
255 	 */
256 	enum ref_state_type {
257 		REF_TYPE_PTR = 0,
258 		REF_TYPE_LOCK,
259 	} type;
260 	/* Track each reference created with a unique id, even if the same
261 	 * instruction creates the reference multiple times (eg, via CALL).
262 	 */
263 	int id;
264 	/* Instruction where the allocation of this reference occurred. This
265 	 * is used purely to inform the user of a reference leak.
266 	 */
267 	int insn_idx;
268 	/* Use to keep track of the source object of a lock, to ensure
269 	 * it matches on unlock.
270 	 */
271 	void *ptr;
272 };
273 
274 struct bpf_retval_range {
275 	s32 minval;
276 	s32 maxval;
277 };
278 
279 /* state of the program:
280  * type of all registers and stack info
281  */
282 struct bpf_func_state {
283 	struct bpf_reg_state regs[MAX_BPF_REG];
284 	/* index of call instruction that called into this func */
285 	int callsite;
286 	/* stack frame number of this function state from pov of
287 	 * enclosing bpf_verifier_state.
288 	 * 0 = main function, 1 = first callee.
289 	 */
290 	u32 frameno;
291 	/* subprog number == index within subprog_info
292 	 * zero == main subprog
293 	 */
294 	u32 subprogno;
295 	/* Every bpf_timer_start will increment async_entry_cnt.
296 	 * It's used to distinguish:
297 	 * void foo(void) { for(;;); }
298 	 * void foo(void) { bpf_timer_set_callback(,foo); }
299 	 */
300 	u32 async_entry_cnt;
301 	struct bpf_retval_range callback_ret_range;
302 	bool in_callback_fn;
303 	bool in_async_callback_fn;
304 	bool in_exception_callback_fn;
305 	/* For callback calling functions that limit number of possible
306 	 * callback executions (e.g. bpf_loop) keeps track of current
307 	 * simulated iteration number.
308 	 * Value in frame N refers to number of times callback with frame
309 	 * N+1 was simulated, e.g. for the following call:
310 	 *
311 	 *   bpf_loop(..., fn, ...); | suppose current frame is N
312 	 *                           | fn would be simulated in frame N+1
313 	 *                           | number of simulations is tracked in frame N
314 	 */
315 	u32 callback_depth;
316 
317 	/* The following fields should be last. See copy_func_state() */
318 	int acquired_refs;
319 	int active_locks;
320 	struct bpf_reference_state *refs;
321 	/* The state of the stack. Each element of the array describes BPF_REG_SIZE
322 	 * (i.e. 8) bytes worth of stack memory.
323 	 * stack[0] represents bytes [*(r10-8)..*(r10-1)]
324 	 * stack[1] represents bytes [*(r10-16)..*(r10-9)]
325 	 * ...
326 	 * stack[allocated_stack/8 - 1] represents [*(r10-allocated_stack)..*(r10-allocated_stack+7)]
327 	 */
328 	struct bpf_stack_state *stack;
329 	/* Size of the current stack, in bytes. The stack state is tracked below, in
330 	 * `stack`. allocated_stack is always a multiple of BPF_REG_SIZE.
331 	 */
332 	int allocated_stack;
333 };
334 
335 #define MAX_CALL_FRAMES 8
336 
337 /* instruction history flags, used in bpf_insn_hist_entry.flags field */
338 enum {
339 	/* instruction references stack slot through PTR_TO_STACK register;
340 	 * we also store stack's frame number in lower 3 bits (MAX_CALL_FRAMES is 8)
341 	 * and accessed stack slot's index in next 6 bits (MAX_BPF_STACK is 512,
342 	 * 8 bytes per slot, so slot index (spi) is [0, 63])
343 	 */
344 	INSN_F_FRAMENO_MASK = 0x7, /* 3 bits */
345 
346 	INSN_F_SPI_MASK = 0x3f, /* 6 bits */
347 	INSN_F_SPI_SHIFT = 3, /* shifted 3 bits to the left */
348 
349 	INSN_F_STACK_ACCESS = BIT(9), /* we need 10 bits total */
350 };
351 
352 static_assert(INSN_F_FRAMENO_MASK + 1 >= MAX_CALL_FRAMES);
353 static_assert(INSN_F_SPI_MASK + 1 >= MAX_BPF_STACK / 8);
354 
355 struct bpf_insn_hist_entry {
356 	u32 idx;
357 	/* insn idx can't be bigger than 1 million */
358 	u32 prev_idx : 22;
359 	/* special flags, e.g., whether insn is doing register stack spill/load */
360 	u32 flags : 10;
361 	/* additional registers that need precision tracking when this
362 	 * jump is backtracked, vector of six 10-bit records
363 	 */
364 	u64 linked_regs;
365 };
366 
367 /* Maximum number of register states that can exist at once */
368 #define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES)
369 struct bpf_verifier_state {
370 	/* call stack tracking */
371 	struct bpf_func_state *frame[MAX_CALL_FRAMES];
372 	struct bpf_verifier_state *parent;
373 	/*
374 	 * 'branches' field is the number of branches left to explore:
375 	 * 0 - all possible paths from this state reached bpf_exit or
376 	 * were safely pruned
377 	 * 1 - at least one path is being explored.
378 	 * This state hasn't reached bpf_exit
379 	 * 2 - at least two paths are being explored.
380 	 * This state is an immediate parent of two children.
381 	 * One is fallthrough branch with branches==1 and another
382 	 * state is pushed into stack (to be explored later) also with
383 	 * branches==1. The parent of this state has branches==1.
384 	 * The verifier state tree connected via 'parent' pointer looks like:
385 	 * 1
386 	 * 1
387 	 * 2 -> 1 (first 'if' pushed into stack)
388 	 * 1
389 	 * 2 -> 1 (second 'if' pushed into stack)
390 	 * 1
391 	 * 1
392 	 * 1 bpf_exit.
393 	 *
394 	 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
395 	 * and the verifier state tree will look:
396 	 * 1
397 	 * 1
398 	 * 2 -> 1 (first 'if' pushed into stack)
399 	 * 1
400 	 * 1 -> 1 (second 'if' pushed into stack)
401 	 * 0
402 	 * 0
403 	 * 0 bpf_exit.
404 	 * After pop_stack() the do_check() will resume at second 'if'.
405 	 *
406 	 * If is_state_visited() sees a state with branches > 0 it means
407 	 * there is a loop. If such state is exactly equal to the current state
408 	 * it's an infinite loop. Note states_equal() checks for states
409 	 * equivalency, so two states being 'states_equal' does not mean
410 	 * infinite loop. The exact comparison is provided by
411 	 * states_maybe_looping() function. It's a stronger pre-check and
412 	 * much faster than states_equal().
413 	 *
414 	 * This algorithm may not find all possible infinite loops or
415 	 * loop iteration count may be too high.
416 	 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
417 	 */
418 	u32 branches;
419 	u32 insn_idx;
420 	u32 curframe;
421 
422 	bool speculative;
423 	bool active_rcu_lock;
424 	u32 active_preempt_lock;
425 	/* If this state was ever pointed-to by other state's loop_entry field
426 	 * this flag would be set to true. Used to avoid freeing such states
427 	 * while they are still in use.
428 	 */
429 	bool used_as_loop_entry;
430 	bool in_sleepable;
431 
432 	/* first and last insn idx of this verifier state */
433 	u32 first_insn_idx;
434 	u32 last_insn_idx;
435 	/* If this state is a part of states loop this field points to some
436 	 * parent of this state such that:
437 	 * - it is also a member of the same states loop;
438 	 * - DFS states traversal starting from initial state visits loop_entry
439 	 *   state before this state.
440 	 * Used to compute topmost loop entry for state loops.
441 	 * State loops might appear because of open coded iterators logic.
442 	 * See get_loop_entry() for more information.
443 	 */
444 	struct bpf_verifier_state *loop_entry;
445 	/* Sub-range of env->insn_hist[] corresponding to this state's
446 	 * instruction history.
447 	 * Backtracking is using it to go from last to first.
448 	 * For most states instruction history is short, 0-3 instructions.
449 	 * For loops can go up to ~40.
450 	 */
451 	u32 insn_hist_start;
452 	u32 insn_hist_end;
453 	u32 dfs_depth;
454 	u32 callback_unroll_depth;
455 	u32 may_goto_depth;
456 };
457 
458 #define bpf_get_spilled_reg(slot, frame, mask)				\
459 	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
460 	  ((1 << frame->stack[slot].slot_type[BPF_REG_SIZE - 1]) & (mask))) \
461 	 ? &frame->stack[slot].spilled_ptr : NULL)
462 
463 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
464 #define bpf_for_each_spilled_reg(iter, frame, reg, mask)			\
465 	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame, mask);		\
466 	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
467 	     iter++, reg = bpf_get_spilled_reg(iter, frame, mask))
468 
469 #define bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, __mask, __expr)   \
470 	({                                                               \
471 		struct bpf_verifier_state *___vstate = __vst;            \
472 		int ___i, ___j;                                          \
473 		for (___i = 0; ___i <= ___vstate->curframe; ___i++) {    \
474 			struct bpf_reg_state *___regs;                   \
475 			__state = ___vstate->frame[___i];                \
476 			___regs = __state->regs;                         \
477 			for (___j = 0; ___j < MAX_BPF_REG; ___j++) {     \
478 				__reg = &___regs[___j];                  \
479 				(void)(__expr);                          \
480 			}                                                \
481 			bpf_for_each_spilled_reg(___j, __state, __reg, __mask) { \
482 				if (!__reg)                              \
483 					continue;                        \
484 				(void)(__expr);                          \
485 			}                                                \
486 		}                                                        \
487 	})
488 
489 /* Invoke __expr over regsiters in __vst, setting __state and __reg */
490 #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \
491 	bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, 1 << STACK_SPILL, __expr)
492 
493 /* linked list of verifier states used to prune search */
494 struct bpf_verifier_state_list {
495 	struct bpf_verifier_state state;
496 	struct bpf_verifier_state_list *next;
497 	int miss_cnt, hit_cnt;
498 };
499 
500 struct bpf_loop_inline_state {
501 	unsigned int initialized:1; /* set to true upon first entry */
502 	unsigned int fit_for_inline:1; /* true if callback function is the same
503 					* at each call and flags are always zero
504 					*/
505 	u32 callback_subprogno; /* valid when fit_for_inline is true */
506 };
507 
508 /* pointer and state for maps */
509 struct bpf_map_ptr_state {
510 	struct bpf_map *map_ptr;
511 	bool poison;
512 	bool unpriv;
513 };
514 
515 /* Possible states for alu_state member. */
516 #define BPF_ALU_SANITIZE_SRC		(1U << 0)
517 #define BPF_ALU_SANITIZE_DST		(1U << 1)
518 #define BPF_ALU_NEG_VALUE		(1U << 2)
519 #define BPF_ALU_NON_POINTER		(1U << 3)
520 #define BPF_ALU_IMMEDIATE		(1U << 4)
521 #define BPF_ALU_SANITIZE		(BPF_ALU_SANITIZE_SRC | \
522 					 BPF_ALU_SANITIZE_DST)
523 
524 struct bpf_insn_aux_data {
525 	union {
526 		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
527 		struct bpf_map_ptr_state map_ptr_state;
528 		s32 call_imm;			/* saved imm field of call insn */
529 		u32 alu_limit;			/* limit for add/sub register with pointer */
530 		struct {
531 			u32 map_index;		/* index into used_maps[] */
532 			u32 map_off;		/* offset from value base address */
533 		};
534 		struct {
535 			enum bpf_reg_type reg_type;	/* type of pseudo_btf_id */
536 			union {
537 				struct {
538 					struct btf *btf;
539 					u32 btf_id;	/* btf_id for struct typed var */
540 				};
541 				u32 mem_size;	/* mem_size for non-struct typed var */
542 			};
543 		} btf_var;
544 		/* if instruction is a call to bpf_loop this field tracks
545 		 * the state of the relevant registers to make decision about inlining
546 		 */
547 		struct bpf_loop_inline_state loop_inline_state;
548 	};
549 	union {
550 		/* remember the size of type passed to bpf_obj_new to rewrite R1 */
551 		u64 obj_new_size;
552 		/* remember the offset of node field within type to rewrite */
553 		u64 insert_off;
554 	};
555 	struct btf_struct_meta *kptr_struct_meta;
556 	u64 map_key_state; /* constant (32 bit) key tracking for maps */
557 	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
558 	u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
559 	bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
560 	bool zext_dst; /* this insn zero extends dst reg */
561 	bool needs_zext; /* alu op needs to clear upper bits */
562 	bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */
563 	bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */
564 	bool call_with_percpu_alloc_ptr; /* {this,per}_cpu_ptr() with prog percpu alloc */
565 	u8 alu_state; /* used in combination with alu_limit */
566 	/* true if STX or LDX instruction is a part of a spill/fill
567 	 * pattern for a bpf_fastcall call.
568 	 */
569 	u8 fastcall_pattern:1;
570 	/* for CALL instructions, a number of spill/fill pairs in the
571 	 * bpf_fastcall pattern.
572 	 */
573 	u8 fastcall_spills_num:3;
574 
575 	/* below fields are initialized once */
576 	unsigned int orig_idx; /* original instruction index */
577 	bool jmp_point;
578 	bool prune_point;
579 	/* ensure we check state equivalence and save state checkpoint and
580 	 * this instruction, regardless of any heuristics
581 	 */
582 	bool force_checkpoint;
583 	/* true if instruction is a call to a helper function that
584 	 * accepts callback function as a parameter.
585 	 */
586 	bool calls_callback;
587 };
588 
589 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
590 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
591 
592 #define BPF_VERIFIER_TMP_LOG_SIZE	1024
593 
594 struct bpf_verifier_log {
595 	/* Logical start and end positions of a "log window" of the verifier log.
596 	 * start_pos == 0 means we haven't truncated anything.
597 	 * Once truncation starts to happen, start_pos + len_total == end_pos,
598 	 * except during log reset situations, in which (end_pos - start_pos)
599 	 * might get smaller than len_total (see bpf_vlog_reset()).
600 	 * Generally, (end_pos - start_pos) gives number of useful data in
601 	 * user log buffer.
602 	 */
603 	u64 start_pos;
604 	u64 end_pos;
605 	char __user *ubuf;
606 	u32 level;
607 	u32 len_total;
608 	u32 len_max;
609 	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
610 };
611 
612 #define BPF_LOG_LEVEL1	1
613 #define BPF_LOG_LEVEL2	2
614 #define BPF_LOG_STATS	4
615 #define BPF_LOG_FIXED	8
616 #define BPF_LOG_LEVEL	(BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
617 #define BPF_LOG_MASK	(BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED)
618 #define BPF_LOG_KERNEL	(BPF_LOG_MASK + 1) /* kernel internal flag */
619 #define BPF_LOG_MIN_ALIGNMENT 8U
620 #define BPF_LOG_ALIGNMENT 40U
621 
bpf_verifier_log_needed(const struct bpf_verifier_log * log)622 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
623 {
624 	return log && log->level;
625 }
626 
627 #define BPF_MAX_SUBPROGS 256
628 
629 struct bpf_subprog_arg_info {
630 	enum bpf_arg_type arg_type;
631 	union {
632 		u32 mem_size;
633 		u32 btf_id;
634 	};
635 };
636 
637 enum priv_stack_mode {
638 	PRIV_STACK_UNKNOWN,
639 	NO_PRIV_STACK,
640 	PRIV_STACK_ADAPTIVE,
641 };
642 
643 struct bpf_subprog_info {
644 	/* 'start' has to be the first field otherwise find_subprog() won't work */
645 	u32 start; /* insn idx of function entry point */
646 	u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
647 	u16 stack_depth; /* max. stack depth used by this function */
648 	u16 stack_extra;
649 	/* offsets in range [stack_depth .. fastcall_stack_off)
650 	 * are used for bpf_fastcall spills and fills.
651 	 */
652 	s16 fastcall_stack_off;
653 	bool has_tail_call: 1;
654 	bool tail_call_reachable: 1;
655 	bool has_ld_abs: 1;
656 	bool is_cb: 1;
657 	bool is_async_cb: 1;
658 	bool is_exception_cb: 1;
659 	bool args_cached: 1;
660 	/* true if bpf_fastcall stack region is used by functions that can't be inlined */
661 	bool keep_fastcall_stack: 1;
662 	bool changes_pkt_data: 1;
663 
664 	enum priv_stack_mode priv_stack_mode;
665 	u8 arg_cnt;
666 	struct bpf_subprog_arg_info args[MAX_BPF_FUNC_REG_ARGS];
667 };
668 
669 struct bpf_verifier_env;
670 
671 struct backtrack_state {
672 	struct bpf_verifier_env *env;
673 	u32 frame;
674 	u32 reg_masks[MAX_CALL_FRAMES];
675 	u64 stack_masks[MAX_CALL_FRAMES];
676 };
677 
678 struct bpf_id_pair {
679 	u32 old;
680 	u32 cur;
681 };
682 
683 struct bpf_idmap {
684 	u32 tmp_id_gen;
685 	struct bpf_id_pair map[BPF_ID_MAP_SIZE];
686 };
687 
688 struct bpf_idset {
689 	u32 count;
690 	u32 ids[BPF_ID_MAP_SIZE];
691 };
692 
693 /* single container for all structs
694  * one verifier_env per bpf_check() call
695  */
696 struct bpf_verifier_env {
697 	u32 insn_idx;
698 	u32 prev_insn_idx;
699 	struct bpf_prog *prog;		/* eBPF program being verified */
700 	const struct bpf_verifier_ops *ops;
701 	struct module *attach_btf_mod;	/* The owner module of prog->aux->attach_btf */
702 	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
703 	int stack_size;			/* number of states to be processed */
704 	bool strict_alignment;		/* perform strict pointer alignment checks */
705 	bool test_state_freq;		/* test verifier with different pruning frequency */
706 	bool test_reg_invariants;	/* fail verification on register invariants violations */
707 	struct bpf_verifier_state *cur_state; /* current verifier state */
708 	struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
709 	struct bpf_verifier_state_list *free_list;
710 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
711 	struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
712 	u32 used_map_cnt;		/* number of used maps */
713 	u32 used_btf_cnt;		/* number of used BTF objects */
714 	u32 id_gen;			/* used to generate unique reg IDs */
715 	u32 hidden_subprog_cnt;		/* number of hidden subprogs */
716 	int exception_callback_subprog;
717 	bool explore_alu_limits;
718 	bool allow_ptr_leaks;
719 	/* Allow access to uninitialized stack memory. Writes with fixed offset are
720 	 * always allowed, so this refers to reads (with fixed or variable offset),
721 	 * to writes with variable offset and to indirect (helper) accesses.
722 	 */
723 	bool allow_uninit_stack;
724 	bool bpf_capable;
725 	bool bypass_spec_v1;
726 	bool bypass_spec_v4;
727 	bool seen_direct_write;
728 	bool seen_exception;
729 	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
730 	const struct bpf_line_info *prev_linfo;
731 	struct bpf_verifier_log log;
732 	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 2]; /* max + 2 for the fake and exception subprogs */
733 	union {
734 		struct bpf_idmap idmap_scratch;
735 		struct bpf_idset idset_scratch;
736 	};
737 	struct {
738 		int *insn_state;
739 		int *insn_stack;
740 		int cur_stack;
741 	} cfg;
742 	struct backtrack_state bt;
743 	struct bpf_insn_hist_entry *insn_hist;
744 	struct bpf_insn_hist_entry *cur_hist_ent;
745 	u32 insn_hist_cap;
746 	u32 pass_cnt; /* number of times do_check() was called */
747 	u32 subprog_cnt;
748 	/* number of instructions analyzed by the verifier */
749 	u32 prev_insn_processed, insn_processed;
750 	/* number of jmps, calls, exits analyzed so far */
751 	u32 prev_jmps_processed, jmps_processed;
752 	/* total verification time */
753 	u64 verification_time;
754 	/* maximum number of verifier states kept in 'branching' instructions */
755 	u32 max_states_per_insn;
756 	/* total number of allocated verifier states */
757 	u32 total_states;
758 	/* some states are freed during program analysis.
759 	 * this is peak number of states. this number dominates kernel
760 	 * memory consumption during verification
761 	 */
762 	u32 peak_states;
763 	/* longest register parentage chain walked for liveness marking */
764 	u32 longest_mark_read_walk;
765 	bpfptr_t fd_array;
766 
767 	/* bit mask to keep track of whether a register has been accessed
768 	 * since the last time the function state was printed
769 	 */
770 	u32 scratched_regs;
771 	/* Same as scratched_regs but for stack slots */
772 	u64 scratched_stack_slots;
773 	u64 prev_log_pos, prev_insn_print_pos;
774 	/* buffer used to temporary hold constants as scalar registers */
775 	struct bpf_reg_state fake_reg[2];
776 	/* buffer used to generate temporary string representations,
777 	 * e.g., in reg_type_str() to generate reg_type string
778 	 */
779 	char tmp_str_buf[TMP_STR_BUF_LEN];
780 	struct bpf_insn insn_buf[INSN_BUF_SIZE];
781 	struct bpf_insn epilogue_buf[INSN_BUF_SIZE];
782 };
783 
subprog_aux(struct bpf_verifier_env * env,int subprog)784 static inline struct bpf_func_info_aux *subprog_aux(struct bpf_verifier_env *env, int subprog)
785 {
786 	return &env->prog->aux->func_info_aux[subprog];
787 }
788 
subprog_info(struct bpf_verifier_env * env,int subprog)789 static inline struct bpf_subprog_info *subprog_info(struct bpf_verifier_env *env, int subprog)
790 {
791 	return &env->subprog_info[subprog];
792 }
793 
794 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
795 				      const char *fmt, va_list args);
796 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
797 					   const char *fmt, ...);
798 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
799 			    const char *fmt, ...);
800 int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level,
801 		  char __user *log_buf, u32 log_size);
802 void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos);
803 int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual);
804 
805 __printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env,
806 				  u32 insn_off,
807 				  const char *prefix_fmt, ...);
808 
cur_func(struct bpf_verifier_env * env)809 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
810 {
811 	struct bpf_verifier_state *cur = env->cur_state;
812 
813 	return cur->frame[cur->curframe];
814 }
815 
cur_regs(struct bpf_verifier_env * env)816 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
817 {
818 	return cur_func(env)->regs;
819 }
820 
821 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
822 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
823 				 int insn_idx, int prev_insn_idx);
824 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
825 void
826 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
827 			      struct bpf_insn *insn);
828 void
829 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
830 
831 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
bpf_trampoline_compute_key(const struct bpf_prog * tgt_prog,struct btf * btf,u32 btf_id)832 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
833 					     struct btf *btf, u32 btf_id)
834 {
835 	if (tgt_prog)
836 		return ((u64)tgt_prog->aux->id << 32) | btf_id;
837 	else
838 		return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
839 }
840 
841 /* unpack the IDs from the key as constructed above */
bpf_trampoline_unpack_key(u64 key,u32 * obj_id,u32 * btf_id)842 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
843 {
844 	if (obj_id)
845 		*obj_id = key >> 32;
846 	if (btf_id)
847 		*btf_id = key & 0x7FFFFFFF;
848 }
849 
850 int bpf_check_attach_target(struct bpf_verifier_log *log,
851 			    const struct bpf_prog *prog,
852 			    const struct bpf_prog *tgt_prog,
853 			    u32 btf_id,
854 			    struct bpf_attach_target_info *tgt_info);
855 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab);
856 
857 int mark_chain_precision(struct bpf_verifier_env *env, int regno);
858 
859 #define BPF_BASE_TYPE_MASK	GENMASK(BPF_BASE_TYPE_BITS - 1, 0)
860 
861 /* extract base type from bpf_{arg, return, reg}_type. */
base_type(u32 type)862 static inline u32 base_type(u32 type)
863 {
864 	return type & BPF_BASE_TYPE_MASK;
865 }
866 
867 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */
type_flag(u32 type)868 static inline u32 type_flag(u32 type)
869 {
870 	return type & ~BPF_BASE_TYPE_MASK;
871 }
872 
873 /* only use after check_attach_btf_id() */
resolve_prog_type(const struct bpf_prog * prog)874 static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog)
875 {
876 	return (prog->type == BPF_PROG_TYPE_EXT && prog->aux->saved_dst_prog_type) ?
877 		prog->aux->saved_dst_prog_type : prog->type;
878 }
879 
bpf_prog_check_recur(const struct bpf_prog * prog)880 static inline bool bpf_prog_check_recur(const struct bpf_prog *prog)
881 {
882 	switch (resolve_prog_type(prog)) {
883 	case BPF_PROG_TYPE_TRACING:
884 		return prog->expected_attach_type != BPF_TRACE_ITER;
885 	case BPF_PROG_TYPE_STRUCT_OPS:
886 		return prog->aux->jits_use_priv_stack;
887 	case BPF_PROG_TYPE_LSM:
888 		return false;
889 	default:
890 		return true;
891 	}
892 }
893 
894 #define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF)
895 
bpf_type_has_unsafe_modifiers(u32 type)896 static inline bool bpf_type_has_unsafe_modifiers(u32 type)
897 {
898 	return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS;
899 }
900 
type_is_ptr_alloc_obj(u32 type)901 static inline bool type_is_ptr_alloc_obj(u32 type)
902 {
903 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
904 }
905 
type_is_non_owning_ref(u32 type)906 static inline bool type_is_non_owning_ref(u32 type)
907 {
908 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
909 }
910 
type_is_pkt_pointer(enum bpf_reg_type type)911 static inline bool type_is_pkt_pointer(enum bpf_reg_type type)
912 {
913 	type = base_type(type);
914 	return type == PTR_TO_PACKET ||
915 	       type == PTR_TO_PACKET_META;
916 }
917 
type_is_sk_pointer(enum bpf_reg_type type)918 static inline bool type_is_sk_pointer(enum bpf_reg_type type)
919 {
920 	return type == PTR_TO_SOCKET ||
921 		type == PTR_TO_SOCK_COMMON ||
922 		type == PTR_TO_TCP_SOCK ||
923 		type == PTR_TO_XDP_SOCK;
924 }
925 
type_may_be_null(u32 type)926 static inline bool type_may_be_null(u32 type)
927 {
928 	return type & PTR_MAYBE_NULL;
929 }
930 
mark_reg_scratched(struct bpf_verifier_env * env,u32 regno)931 static inline void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
932 {
933 	env->scratched_regs |= 1U << regno;
934 }
935 
mark_stack_slot_scratched(struct bpf_verifier_env * env,u32 spi)936 static inline void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
937 {
938 	env->scratched_stack_slots |= 1ULL << spi;
939 }
940 
reg_scratched(const struct bpf_verifier_env * env,u32 regno)941 static inline bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
942 {
943 	return (env->scratched_regs >> regno) & 1;
944 }
945 
stack_slot_scratched(const struct bpf_verifier_env * env,u64 regno)946 static inline bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
947 {
948 	return (env->scratched_stack_slots >> regno) & 1;
949 }
950 
verifier_state_scratched(const struct bpf_verifier_env * env)951 static inline bool verifier_state_scratched(const struct bpf_verifier_env *env)
952 {
953 	return env->scratched_regs || env->scratched_stack_slots;
954 }
955 
mark_verifier_state_clean(struct bpf_verifier_env * env)956 static inline void mark_verifier_state_clean(struct bpf_verifier_env *env)
957 {
958 	env->scratched_regs = 0U;
959 	env->scratched_stack_slots = 0ULL;
960 }
961 
962 /* Used for printing the entire verifier state. */
mark_verifier_state_scratched(struct bpf_verifier_env * env)963 static inline void mark_verifier_state_scratched(struct bpf_verifier_env *env)
964 {
965 	env->scratched_regs = ~0U;
966 	env->scratched_stack_slots = ~0ULL;
967 }
968 
bpf_stack_narrow_access_ok(int off,int fill_size,int spill_size)969 static inline bool bpf_stack_narrow_access_ok(int off, int fill_size, int spill_size)
970 {
971 #ifdef __BIG_ENDIAN
972 	off -= spill_size - fill_size;
973 #endif
974 
975 	return !(off % BPF_REG_SIZE);
976 }
977 
978 const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type);
979 const char *dynptr_type_str(enum bpf_dynptr_type type);
980 const char *iter_type_str(const struct btf *btf, u32 btf_id);
981 const char *iter_state_str(enum bpf_iter_state state);
982 
983 void print_verifier_state(struct bpf_verifier_env *env,
984 			  const struct bpf_func_state *state, bool print_all);
985 void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state);
986 
987 #endif /* _LINUX_BPF_VERIFIER_H */
988