1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2017-2025 Yandex LLC
5 * Copyright (c) 2017-2025 Andrey V. Elsukov <ae@FreeBSD.org>
6 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_ipfw.h"
34 #ifndef INET
35 #error IPFIREWALL requires INET.
36 #endif /* INET */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/hash.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/pcpu.h>
45 #include <sys/queue.h>
46 #include <sys/rmlock.h>
47 #include <sys/smp.h>
48 #include <sys/socket.h>
49 #include <sys/sysctl.h>
50 #include <sys/syslog.h>
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/vnet.h>
55
56 #include <netinet/in.h>
57 #include <netinet/ip.h>
58 #include <netinet/ip_var.h>
59 #include <netinet/ip_fw.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
62
63 #include <netinet/ip6.h> /* IN6_ARE_ADDR_EQUAL */
64 #ifdef INET6
65 #include <netinet6/in6_var.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/scope6_var.h>
68 #endif
69
70 #include <netpfil/ipfw/ip_fw_private.h>
71
72 #include <machine/in_cksum.h> /* XXX for in_cksum */
73
74 #ifdef MAC
75 #include <security/mac/mac_framework.h>
76 #endif
77
78 /*
79 * Description of dynamic states.
80 *
81 * Dynamic states are stored in lists accessed through a hash tables
82 * whose size is curr_dyn_buckets. This value can be modified through
83 * the sysctl variable dyn_buckets.
84 *
85 * Currently there are four tables: dyn_ipv4, dyn_ipv6, dyn_ipv4_parent,
86 * and dyn_ipv6_parent.
87 *
88 * When a packet is received, its address fields hashed, then matched
89 * against the entries in the corresponding list by addr_type.
90 * Dynamic states can be used for different purposes:
91 * + stateful rules;
92 * + enforcing limits on the number of sessions;
93 * + in-kernel NAT (not implemented yet)
94 *
95 * The lifetime of dynamic states is regulated by dyn_*_lifetime,
96 * measured in seconds and depending on the flags.
97 *
98 * The total number of dynamic states is equal to UMA zone items count.
99 * The max number of dynamic states is dyn_max. When we reach
100 * the maximum number of rules we do not create anymore. This is
101 * done to avoid consuming too much memory, but also too much
102 * time when searching on each packet (ideally, we should try instead
103 * to put a limit on the length of the list on each bucket...).
104 *
105 * Each state holds a pointer to the parent ipfw rule so we know what
106 * action to perform. Dynamic rules are removed when the parent rule is
107 * deleted.
108 *
109 * There are some limitations with dynamic rules -- we do not
110 * obey the 'randomized match', and we do not do multiple
111 * passes through the firewall. XXX check the latter!!!
112 */
113
114 /* By default use jenkins hash function */
115 #define IPFIREWALL_JENKINSHASH
116
117 #define DYN_COUNTER_INC(d, dir, pktlen) do { \
118 (d)->pcnt_ ## dir++; \
119 (d)->bcnt_ ## dir += pktlen; \
120 } while (0)
121
122 #define DYN_REFERENCED 0x01
123 /*
124 * DYN_REFERENCED flag is used to show that state keeps reference to named
125 * object, and this reference should be released when state becomes expired.
126 */
127
128 struct dyn_data {
129 void *parent; /* pointer to parent rule */
130 uint32_t chain_id; /* cached ruleset id */
131 uint32_t f_pos; /* cached rule index */
132
133 uint32_t hashval; /* hash value used for hash resize */
134 uint16_t fibnum; /* fib used to send keepalives */
135 uint8_t _pad;
136 uint8_t flags; /* internal flags */
137 uint32_t rulenum; /* parent rule number */
138 uint32_t ruleid; /* parent rule id */
139
140 uint32_t state; /* TCP session state and flags */
141 uint32_t ack_fwd; /* most recent ACKs in forward */
142 uint32_t ack_rev; /* and reverse direction (used */
143 /* to generate keepalives) */
144 uint32_t sync; /* synchronization time */
145 uint32_t expire; /* expire time */
146
147 uint64_t pcnt_fwd; /* packets counter in forward */
148 uint64_t bcnt_fwd; /* bytes counter in forward */
149 uint64_t pcnt_rev; /* packets counter in reverse */
150 uint64_t bcnt_rev; /* bytes counter in reverse */
151 };
152
153 #define DPARENT_COUNT_DEC(p) do { \
154 MPASS(p->count > 0); \
155 ck_pr_dec_32(&(p)->count); \
156 } while (0)
157 #define DPARENT_COUNT_INC(p) ck_pr_inc_32(&(p)->count)
158 #define DPARENT_COUNT(p) ck_pr_load_32(&(p)->count)
159 struct dyn_parent {
160 void *parent; /* pointer to parent rule */
161 uint32_t count; /* number of linked states */
162 uint32_t rulenum; /* parent rule number */
163 uint32_t ruleid; /* parent rule id */
164 uint32_t hashval; /* hash value used for hash resize */
165 uint32_t expire; /* expire time */
166 };
167
168 struct dyn_ipv4_state {
169 uint8_t type; /* State type */
170 uint8_t proto; /* UL Protocol */
171 uint16_t spare;
172 uint32_t kidx; /* named object index */
173 uint16_t sport, dport; /* ULP source and destination ports */
174 in_addr_t src, dst; /* IPv4 source and destination */
175
176 union {
177 struct dyn_data *data;
178 struct dyn_parent *limit;
179 };
180 CK_SLIST_ENTRY(dyn_ipv4_state) entry;
181 SLIST_ENTRY(dyn_ipv4_state) expired;
182 };
183 CK_SLIST_HEAD(dyn_ipv4ck_slist, dyn_ipv4_state);
184 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4);
185 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4_parent);
186
187 SLIST_HEAD(dyn_ipv4_slist, dyn_ipv4_state);
188 VNET_DEFINE_STATIC(struct dyn_ipv4_slist, dyn_expired_ipv4);
189 #define V_dyn_ipv4 VNET(dyn_ipv4)
190 #define V_dyn_ipv4_parent VNET(dyn_ipv4_parent)
191 #define V_dyn_expired_ipv4 VNET(dyn_expired_ipv4)
192
193 #ifdef INET6
194 struct dyn_ipv6_state {
195 uint8_t type; /* State type */
196 uint8_t proto; /* UL Protocol */
197 uint16_t kidx; /* named object index */
198 uint16_t sport, dport; /* ULP source and destination ports */
199 struct in6_addr src, dst; /* IPv6 source and destination */
200 uint32_t zoneid; /* IPv6 scope zone id */
201 union {
202 struct dyn_data *data;
203 struct dyn_parent *limit;
204 };
205 CK_SLIST_ENTRY(dyn_ipv6_state) entry;
206 SLIST_ENTRY(dyn_ipv6_state) expired;
207 };
208 CK_SLIST_HEAD(dyn_ipv6ck_slist, dyn_ipv6_state);
209 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6);
210 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6_parent);
211
212 SLIST_HEAD(dyn_ipv6_slist, dyn_ipv6_state);
213 VNET_DEFINE_STATIC(struct dyn_ipv6_slist, dyn_expired_ipv6);
214 #define V_dyn_ipv6 VNET(dyn_ipv6)
215 #define V_dyn_ipv6_parent VNET(dyn_ipv6_parent)
216 #define V_dyn_expired_ipv6 VNET(dyn_expired_ipv6)
217 #endif /* INET6 */
218
219 /*
220 * Per-CPU pointer indicates that specified state is currently in use
221 * and must not be reclaimed by expiration callout.
222 */
223 static void **dyn_hp_cache;
224 DPCPU_DEFINE_STATIC(void *, dyn_hp);
225 #define DYNSTATE_GET(cpu) ck_pr_load_ptr(DPCPU_ID_PTR((cpu), dyn_hp))
226 #define DYNSTATE_PROTECT(v) ck_pr_store_ptr(DPCPU_PTR(dyn_hp), (v))
227 #define DYNSTATE_RELEASE() DYNSTATE_PROTECT(NULL)
228 #define DYNSTATE_CRITICAL_ENTER() critical_enter()
229 #define DYNSTATE_CRITICAL_EXIT() do { \
230 DYNSTATE_RELEASE(); \
231 critical_exit(); \
232 } while (0);
233
234 /*
235 * We keep two version numbers, one is updated when new entry added to
236 * the list. Second is updated when an entry deleted from the list.
237 * Versions are updated under bucket lock.
238 *
239 * Bucket "add" version number is used to know, that in the time between
240 * state lookup (i.e. ipfw_dyn_lookup_state()) and the followed state
241 * creation (i.e. ipfw_dyn_install_state()) another concurrent thread did
242 * not install some state in this bucket. Using this info we can avoid
243 * additional state lookup, because we are sure that we will not install
244 * the state twice.
245 *
246 * Also doing the tracking of bucket "del" version during lookup we can
247 * be sure, that state entry was not unlinked and freed in time between
248 * we read the state pointer and protect it with hazard pointer.
249 *
250 * An entry unlinked from CK list keeps unchanged until it is freed.
251 * Unlinked entries are linked into expired lists using "expired" field.
252 */
253
254 /*
255 * dyn_expire_lock is used to protect access to dyn_expired_xxx lists.
256 * dyn_bucket_lock is used to get write access to lists in specific bucket.
257 * Currently one dyn_bucket_lock is used for all ipv4, ipv4_parent, ipv6,
258 * and ipv6_parent lists.
259 */
260 VNET_DEFINE_STATIC(struct mtx, dyn_expire_lock);
261 VNET_DEFINE_STATIC(struct mtx *, dyn_bucket_lock);
262 #define V_dyn_expire_lock VNET(dyn_expire_lock)
263 #define V_dyn_bucket_lock VNET(dyn_bucket_lock)
264
265 /*
266 * Bucket's add/delete generation versions.
267 */
268 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_add);
269 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_del);
270 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_add);
271 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_del);
272 #define V_dyn_ipv4_add VNET(dyn_ipv4_add)
273 #define V_dyn_ipv4_del VNET(dyn_ipv4_del)
274 #define V_dyn_ipv4_parent_add VNET(dyn_ipv4_parent_add)
275 #define V_dyn_ipv4_parent_del VNET(dyn_ipv4_parent_del)
276
277 #ifdef INET6
278 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_add);
279 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_del);
280 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_add);
281 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_del);
282 #define V_dyn_ipv6_add VNET(dyn_ipv6_add)
283 #define V_dyn_ipv6_del VNET(dyn_ipv6_del)
284 #define V_dyn_ipv6_parent_add VNET(dyn_ipv6_parent_add)
285 #define V_dyn_ipv6_parent_del VNET(dyn_ipv6_parent_del)
286 #endif /* INET6 */
287
288 #define DYN_BUCKET(h, b) ((h) & (b - 1))
289 #define DYN_BUCKET_VERSION(b, v) ck_pr_load_32(&V_dyn_ ## v[(b)])
290 #define DYN_BUCKET_VERSION_BUMP(b, v) ck_pr_inc_32(&V_dyn_ ## v[(b)])
291
292 #define DYN_BUCKET_LOCK_INIT(lock, b) \
293 mtx_init(&lock[(b)], "IPFW dynamic bucket", NULL, MTX_DEF)
294 #define DYN_BUCKET_LOCK_DESTROY(lock, b) mtx_destroy(&lock[(b)])
295 #define DYN_BUCKET_LOCK(b) mtx_lock(&V_dyn_bucket_lock[(b)])
296 #define DYN_BUCKET_UNLOCK(b) mtx_unlock(&V_dyn_bucket_lock[(b)])
297 #define DYN_BUCKET_ASSERT(b) mtx_assert(&V_dyn_bucket_lock[(b)], MA_OWNED)
298
299 #define DYN_EXPIRED_LOCK_INIT() \
300 mtx_init(&V_dyn_expire_lock, "IPFW expired states list", NULL, MTX_DEF)
301 #define DYN_EXPIRED_LOCK_DESTROY() mtx_destroy(&V_dyn_expire_lock)
302 #define DYN_EXPIRED_LOCK() mtx_lock(&V_dyn_expire_lock)
303 #define DYN_EXPIRED_UNLOCK() mtx_unlock(&V_dyn_expire_lock)
304
305 VNET_DEFINE_STATIC(uint32_t, dyn_buckets_max);
306 VNET_DEFINE_STATIC(uint32_t, curr_dyn_buckets);
307 VNET_DEFINE_STATIC(struct callout, dyn_timeout);
308 #define V_dyn_buckets_max VNET(dyn_buckets_max)
309 #define V_curr_dyn_buckets VNET(curr_dyn_buckets)
310 #define V_dyn_timeout VNET(dyn_timeout)
311
312 /* Maximum length of states chain in a bucket */
313 VNET_DEFINE_STATIC(uint32_t, curr_max_length);
314 #define V_curr_max_length VNET(curr_max_length)
315
316 VNET_DEFINE_STATIC(uint32_t, dyn_keep_states);
317 #define V_dyn_keep_states VNET(dyn_keep_states)
318
319 VNET_DEFINE_STATIC(uma_zone_t, dyn_data_zone);
320 VNET_DEFINE_STATIC(uma_zone_t, dyn_parent_zone);
321 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv4_zone);
322 #ifdef INET6
323 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv6_zone);
324 #define V_dyn_ipv6_zone VNET(dyn_ipv6_zone)
325 #endif /* INET6 */
326 #define V_dyn_data_zone VNET(dyn_data_zone)
327 #define V_dyn_parent_zone VNET(dyn_parent_zone)
328 #define V_dyn_ipv4_zone VNET(dyn_ipv4_zone)
329
330 /*
331 * Timeouts for various events in handing dynamic rules.
332 */
333 VNET_DEFINE_STATIC(uint32_t, dyn_ack_lifetime);
334 VNET_DEFINE_STATIC(uint32_t, dyn_syn_lifetime);
335 VNET_DEFINE_STATIC(uint32_t, dyn_fin_lifetime);
336 VNET_DEFINE_STATIC(uint32_t, dyn_rst_lifetime);
337 VNET_DEFINE_STATIC(uint32_t, dyn_udp_lifetime);
338 VNET_DEFINE_STATIC(uint32_t, dyn_short_lifetime);
339
340 #define V_dyn_ack_lifetime VNET(dyn_ack_lifetime)
341 #define V_dyn_syn_lifetime VNET(dyn_syn_lifetime)
342 #define V_dyn_fin_lifetime VNET(dyn_fin_lifetime)
343 #define V_dyn_rst_lifetime VNET(dyn_rst_lifetime)
344 #define V_dyn_udp_lifetime VNET(dyn_udp_lifetime)
345 #define V_dyn_short_lifetime VNET(dyn_short_lifetime)
346
347 /*
348 * Keepalives are sent if dyn_keepalive is set. They are sent every
349 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
350 * seconds of lifetime of a rule.
351 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
352 * than dyn_keepalive_period.
353 */
354 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_interval);
355 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_period);
356 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive);
357 VNET_DEFINE_STATIC(time_t, dyn_keepalive_last);
358
359 #define V_dyn_keepalive_interval VNET(dyn_keepalive_interval)
360 #define V_dyn_keepalive_period VNET(dyn_keepalive_period)
361 #define V_dyn_keepalive VNET(dyn_keepalive)
362 #define V_dyn_keepalive_last VNET(dyn_keepalive_last)
363
364 VNET_DEFINE_STATIC(uint32_t, dyn_max); /* max # of dynamic states */
365 VNET_DEFINE_STATIC(uint32_t, dyn_count); /* number of states */
366 VNET_DEFINE_STATIC(uint32_t, dyn_parent_max); /* max # of parent states */
367 VNET_DEFINE_STATIC(uint32_t, dyn_parent_count); /* number of parent states */
368
369 #define V_dyn_max VNET(dyn_max)
370 #define V_dyn_count VNET(dyn_count)
371 #define V_dyn_parent_max VNET(dyn_parent_max)
372 #define V_dyn_parent_count VNET(dyn_parent_count)
373
374 #define DYN_COUNT_DEC(name) do { \
375 MPASS((V_ ## name) > 0); \
376 ck_pr_dec_32(&(V_ ## name)); \
377 } while (0)
378 #define DYN_COUNT_INC(name) ck_pr_inc_32(&(V_ ## name))
379 #define DYN_COUNT(name) ck_pr_load_32(&(V_ ## name))
380
381 static time_t last_log; /* Log ratelimiting */
382
383 /*
384 * Get/set maximum number of dynamic states in given VNET instance.
385 */
386 static int
sysctl_dyn_max(SYSCTL_HANDLER_ARGS)387 sysctl_dyn_max(SYSCTL_HANDLER_ARGS)
388 {
389 uint32_t nstates;
390 int error;
391
392 nstates = V_dyn_max;
393 error = sysctl_handle_32(oidp, &nstates, 0, req);
394 /* Read operation or some error */
395 if ((error != 0) || (req->newptr == NULL))
396 return (error);
397
398 V_dyn_max = nstates;
399 uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
400 return (0);
401 }
402
403 static int
sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)404 sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)
405 {
406 uint32_t nstates;
407 int error;
408
409 nstates = V_dyn_parent_max;
410 error = sysctl_handle_32(oidp, &nstates, 0, req);
411 /* Read operation or some error */
412 if ((error != 0) || (req->newptr == NULL))
413 return (error);
414
415 V_dyn_parent_max = nstates;
416 uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
417 return (0);
418 }
419
420 static int
sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)421 sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
422 {
423 uint32_t nbuckets;
424 int error;
425
426 nbuckets = V_dyn_buckets_max;
427 error = sysctl_handle_32(oidp, &nbuckets, 0, req);
428 /* Read operation or some error */
429 if ((error != 0) || (req->newptr == NULL))
430 return (error);
431
432 if (nbuckets > 256)
433 V_dyn_buckets_max = 1 << fls(nbuckets - 1);
434 else
435 return (EINVAL);
436 return (0);
437 }
438
439 SYSCTL_DECL(_net_inet_ip_fw);
440
441 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_count,
442 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
443 "Current number of dynamic states.");
444 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_parent_count,
445 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_parent_count), 0,
446 "Current number of parent states. ");
447 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
448 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
449 "Current number of buckets for states hash table.");
450 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_max_length,
451 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_max_length), 0,
452 "Current maximum length of states chains in hash buckets.");
453 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
454 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
455 0, 0, sysctl_dyn_buckets, "IU",
456 "Max number of buckets for dynamic states hash table.");
457 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
458 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
459 0, 0, sysctl_dyn_max, "IU",
460 "Max number of dynamic states.");
461 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_parent_max,
462 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
463 0, 0, sysctl_dyn_parent_max, "IU",
464 "Max number of parent dynamic states.");
465 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
466 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
467 "Lifetime of dynamic states for TCP ACK.");
468 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
469 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
470 "Lifetime of dynamic states for TCP SYN.");
471 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
472 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
473 "Lifetime of dynamic states for TCP FIN.");
474 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
475 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
476 "Lifetime of dynamic states for TCP RST.");
477 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
478 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
479 "Lifetime of dynamic states for UDP.");
480 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
481 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
482 "Lifetime of dynamic states for other situations.");
483 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
484 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
485 "Enable keepalives for dynamic states.");
486 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
487 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
488 "Do not flush dynamic states on rule deletion");
489
490 #ifdef IPFIREWALL_DYNDEBUG
491 #define DYN_DEBUG(fmt, ...) do { \
492 printf("%s: " fmt "\n", __func__, __VA_ARGS__); \
493 } while (0)
494 #else
495 #define DYN_DEBUG(fmt, ...)
496 #endif /* !IPFIREWALL_DYNDEBUG */
497
498 #ifdef INET6
499 /* Functions to work with IPv6 states */
500 static struct dyn_ipv6_state *dyn_lookup_ipv6_state(
501 const struct ipfw_flow_id *, uint32_t, const void *,
502 struct ipfw_dyn_info *, int);
503 static int dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *,
504 uint32_t, const void *, int, uint32_t, uint32_t);
505 static struct dyn_ipv6_state *dyn_alloc_ipv6_state(
506 const struct ipfw_flow_id *, uint32_t, uint32_t, uint8_t);
507 static int dyn_add_ipv6_state(void *, uint32_t, uint32_t,
508 const struct ipfw_flow_id *, uint32_t, const void *, int, uint32_t,
509 struct ipfw_dyn_info *, uint16_t, uint32_t, uint8_t);
510 static void dyn_export_ipv6_state(const struct dyn_ipv6_state *,
511 ipfw_dyn_rule *);
512
513 static uint32_t dyn_getscopeid(const struct ip_fw_args *);
514 static void dyn_make_keepalive_ipv6(struct mbuf *, const struct in6_addr *,
515 const struct in6_addr *, uint32_t, uint32_t, uint32_t, uint16_t,
516 uint16_t);
517 static void dyn_enqueue_keepalive_ipv6(struct mbufq *,
518 const struct dyn_ipv6_state *);
519 static void dyn_send_keepalive_ipv6(struct ip_fw_chain *);
520
521 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent(
522 const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint32_t,
523 uint32_t);
524 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent_locked(
525 const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint32_t,
526 uint32_t);
527 static struct dyn_ipv6_state *dyn_add_ipv6_parent(void *, uint32_t, uint32_t,
528 const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t, uint32_t);
529 #endif /* INET6 */
530
531 /* Functions to work with limit states */
532 static void *dyn_get_parent_state(const struct ipfw_flow_id *, uint32_t,
533 struct ip_fw *, uint32_t, uint32_t, uint32_t);
534 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent(
535 const struct ipfw_flow_id *, const void *, uint32_t, uint32_t, uint32_t);
536 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent_locked(
537 const struct ipfw_flow_id *, const void *, uint32_t, uint32_t, uint32_t);
538 static struct dyn_parent *dyn_alloc_parent(void *, uint32_t, uint32_t,
539 uint32_t);
540 static struct dyn_ipv4_state *dyn_add_ipv4_parent(void *, uint32_t, uint32_t,
541 const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t);
542
543 static void dyn_tick(void *);
544 static void dyn_expire_states(struct ip_fw_chain *, ipfw_range_tlv *);
545 static void dyn_free_states(struct ip_fw_chain *);
546 static void dyn_export_parent(const struct dyn_parent *, uint32_t, uint8_t,
547 ipfw_dyn_rule *);
548 static void dyn_export_data(const struct dyn_data *, uint32_t, uint8_t,
549 uint8_t, ipfw_dyn_rule *);
550 static uint32_t dyn_update_tcp_state(struct dyn_data *,
551 const struct ipfw_flow_id *, const struct tcphdr *, int);
552 static void dyn_update_proto_state(struct dyn_data *,
553 const struct ipfw_flow_id *, const void *, int, int);
554
555 /* Functions to work with IPv4 states */
556 struct dyn_ipv4_state *dyn_lookup_ipv4_state(const struct ipfw_flow_id *,
557 const void *, struct ipfw_dyn_info *, int);
558 static int dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *,
559 const void *, int, uint32_t, uint32_t);
560 static struct dyn_ipv4_state *dyn_alloc_ipv4_state(
561 const struct ipfw_flow_id *, uint32_t, uint8_t);
562 static int dyn_add_ipv4_state(void *, uint32_t, uint32_t,
563 const struct ipfw_flow_id *, const void *, int, uint32_t,
564 struct ipfw_dyn_info *, uint16_t, uint32_t, uint8_t);
565 static void dyn_export_ipv4_state(const struct dyn_ipv4_state *,
566 ipfw_dyn_rule *);
567
568 /*
569 * Named states support.
570 */
571 static char *default_state_name = "default";
572 struct dyn_state_obj {
573 struct named_object no;
574 char name[64];
575 };
576
577 /*
578 * Classifier callback.
579 * Return 0 if opcode contains object that should be referenced
580 * or rewritten.
581 */
582 static int
dyn_classify(ipfw_insn * cmd0,uint32_t * puidx,uint8_t * ptype)583 dyn_classify(ipfw_insn *cmd0, uint32_t *puidx, uint8_t *ptype)
584 {
585 ipfw_insn_kidx *cmd;
586
587 if (F_LEN(cmd0) < 2)
588 return (EINVAL);
589
590 /*
591 * NOTE: ipfw_insn_kidx and ipfw_insn_limit has overlapped kidx
592 * field, so we can use one type to get access to kidx field.
593 */
594 cmd = insntod(cmd0, kidx);
595 DYN_DEBUG("opcode %u, kidx %u", cmd0->opcode, cmd->kidx);
596 /* Don't rewrite "check-state any" */
597 if (cmd->kidx == 0 &&
598 cmd0->opcode == O_CHECK_STATE)
599 return (1);
600
601 *puidx = cmd->kidx;
602 *ptype = 0;
603 return (0);
604 }
605
606 static void
dyn_update(ipfw_insn * cmd0,uint32_t idx)607 dyn_update(ipfw_insn *cmd0, uint32_t idx)
608 {
609
610 insntod(cmd0, kidx)->kidx = idx;
611 DYN_DEBUG("opcode %u, kidx %u", cmd0->opcode, idx);
612 }
613
614 static int
dyn_findbyname(struct ip_fw_chain * ch,struct tid_info * ti,struct named_object ** pno)615 dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
616 struct named_object **pno)
617 {
618 ipfw_obj_ntlv *ntlv;
619 const char *name;
620
621 DYN_DEBUG("uidx %u", ti->uidx);
622 if (ti->uidx != 0) {
623 if (ti->tlvs == NULL)
624 return (EINVAL);
625 /* Search ntlv in the buffer provided by user */
626 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
627 IPFW_TLV_STATE_NAME);
628 if (ntlv == NULL)
629 return (EINVAL);
630 name = ntlv->name;
631 } else
632 name = default_state_name;
633 /*
634 * Search named object with corresponding name.
635 * Since states objects are global - ignore the set value
636 * and use zero instead.
637 */
638 *pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
639 IPFW_TLV_STATE_NAME, name);
640 /*
641 * We always return success here.
642 * The caller will check *pno and mark object as unresolved,
643 * then it will automatically create "default" object.
644 */
645 return (0);
646 }
647
648 static struct named_object *
dyn_findbykidx(struct ip_fw_chain * ch,uint32_t idx)649 dyn_findbykidx(struct ip_fw_chain *ch, uint32_t idx)
650 {
651
652 DYN_DEBUG("kidx %u", idx);
653 return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
654 }
655
656 static int
dyn_create(struct ip_fw_chain * ch,struct tid_info * ti,uint32_t * pkidx)657 dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
658 uint32_t *pkidx)
659 {
660 struct namedobj_instance *ni;
661 struct dyn_state_obj *obj;
662 struct named_object *no;
663 ipfw_obj_ntlv *ntlv;
664 char *name;
665
666 DYN_DEBUG("uidx %u", ti->uidx);
667 if (ti->uidx != 0) {
668 if (ti->tlvs == NULL)
669 return (EINVAL);
670 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
671 IPFW_TLV_STATE_NAME);
672 if (ntlv == NULL)
673 return (EINVAL);
674 name = ntlv->name;
675 } else
676 name = default_state_name;
677
678 ni = CHAIN_TO_SRV(ch);
679 obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
680 obj->no.name = obj->name;
681 obj->no.etlv = IPFW_TLV_STATE_NAME;
682 strlcpy(obj->name, name, sizeof(obj->name));
683
684 IPFW_UH_WLOCK(ch);
685 no = ipfw_objhash_lookup_name_type(ni, 0,
686 IPFW_TLV_STATE_NAME, name);
687 if (no != NULL) {
688 /*
689 * Object is already created.
690 * Just return its kidx and bump refcount.
691 */
692 *pkidx = no->kidx;
693 no->refcnt++;
694 IPFW_UH_WUNLOCK(ch);
695 free(obj, M_IPFW);
696 DYN_DEBUG("\tfound kidx %u for name '%s'", *pkidx, no->name);
697 return (0);
698 }
699 if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
700 DYN_DEBUG("\talloc_idx failed for %s", name);
701 IPFW_UH_WUNLOCK(ch);
702 free(obj, M_IPFW);
703 return (ENOSPC);
704 }
705 ipfw_objhash_add(ni, &obj->no);
706 SRV_OBJECT(ch, obj->no.kidx) = obj;
707 obj->no.refcnt++;
708 *pkidx = obj->no.kidx;
709 IPFW_UH_WUNLOCK(ch);
710 DYN_DEBUG("\tcreated kidx %u for name '%s'", *pkidx, name);
711 return (0);
712 }
713
714 static void
dyn_destroy(struct ip_fw_chain * ch,struct named_object * no)715 dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
716 {
717 struct dyn_state_obj *obj;
718
719 IPFW_UH_WLOCK_ASSERT(ch);
720
721 KASSERT(no->etlv == IPFW_TLV_STATE_NAME,
722 ("%s: wrong object type %u", __func__, no->etlv));
723 KASSERT(no->refcnt == 1,
724 ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
725 no->name, no->etlv, no->kidx, no->refcnt));
726 DYN_DEBUG("kidx %u", no->kidx);
727 obj = SRV_OBJECT(ch, no->kidx);
728 SRV_OBJECT(ch, no->kidx) = NULL;
729 ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
730 ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
731
732 free(obj, M_IPFW);
733 }
734
735 static struct opcode_obj_rewrite dyn_opcodes[] = {
736 {
737 O_KEEP_STATE, IPFW_TLV_STATE_NAME,
738 dyn_classify, dyn_update,
739 dyn_findbyname, dyn_findbykidx,
740 dyn_create, dyn_destroy
741 },
742 {
743 O_CHECK_STATE, IPFW_TLV_STATE_NAME,
744 dyn_classify, dyn_update,
745 dyn_findbyname, dyn_findbykidx,
746 dyn_create, dyn_destroy
747 },
748 {
749 O_PROBE_STATE, IPFW_TLV_STATE_NAME,
750 dyn_classify, dyn_update,
751 dyn_findbyname, dyn_findbykidx,
752 dyn_create, dyn_destroy
753 },
754 {
755 O_LIMIT, IPFW_TLV_STATE_NAME,
756 dyn_classify, dyn_update,
757 dyn_findbyname, dyn_findbykidx,
758 dyn_create, dyn_destroy
759 },
760 };
761
762 /*
763 * IMPORTANT: the hash function for dynamic rules must be commutative
764 * in source and destination (ip,port), because rules are bidirectional
765 * and we want to find both in the same bucket.
766 */
767 #ifndef IPFIREWALL_JENKINSHASH
768 static __inline uint32_t
hash_packet(const struct ipfw_flow_id * id)769 hash_packet(const struct ipfw_flow_id *id)
770 {
771 uint32_t i;
772
773 #ifdef INET6
774 if (IS_IP6_FLOW_ID(id))
775 i = ntohl((id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
776 (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
777 (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
778 (id->src_ip6.__u6_addr.__u6_addr32[3]));
779 else
780 #endif /* INET6 */
781 i = (id->dst_ip) ^ (id->src_ip);
782 i ^= (id->dst_port) ^ (id->src_port);
783 return (i);
784 }
785
786 static __inline uint32_t
hash_parent(const struct ipfw_flow_id * id,const void * rule)787 hash_parent(const struct ipfw_flow_id *id, const void *rule)
788 {
789
790 return (hash_packet(id) ^ ((uintptr_t)rule));
791 }
792
793 #else /* IPFIREWALL_JENKINSHASH */
794
795 VNET_DEFINE_STATIC(uint32_t, dyn_hashseed);
796 #define V_dyn_hashseed VNET(dyn_hashseed)
797
798 static __inline int
addrcmp4(const struct ipfw_flow_id * id)799 addrcmp4(const struct ipfw_flow_id *id)
800 {
801
802 if (id->src_ip < id->dst_ip)
803 return (0);
804 if (id->src_ip > id->dst_ip)
805 return (1);
806 if (id->src_port <= id->dst_port)
807 return (0);
808 return (1);
809 }
810
811 #ifdef INET6
812 static __inline int
addrcmp6(const struct ipfw_flow_id * id)813 addrcmp6(const struct ipfw_flow_id *id)
814 {
815 int ret;
816
817 ret = memcmp(&id->src_ip6, &id->dst_ip6, sizeof(struct in6_addr));
818 if (ret < 0)
819 return (0);
820 if (ret > 0)
821 return (1);
822 if (id->src_port <= id->dst_port)
823 return (0);
824 return (1);
825 }
826
827 static __inline uint32_t
hash_packet6(const struct ipfw_flow_id * id)828 hash_packet6(const struct ipfw_flow_id *id)
829 {
830 struct tuple6 {
831 struct in6_addr addr[2];
832 uint16_t port[2];
833 } t6;
834
835 if (addrcmp6(id) == 0) {
836 t6.addr[0] = id->src_ip6;
837 t6.addr[1] = id->dst_ip6;
838 t6.port[0] = id->src_port;
839 t6.port[1] = id->dst_port;
840 } else {
841 t6.addr[0] = id->dst_ip6;
842 t6.addr[1] = id->src_ip6;
843 t6.port[0] = id->dst_port;
844 t6.port[1] = id->src_port;
845 }
846 return (jenkins_hash32((const uint32_t *)&t6,
847 sizeof(t6) / sizeof(uint32_t), V_dyn_hashseed));
848 }
849 #endif
850
851 static __inline uint32_t
hash_packet(const struct ipfw_flow_id * id)852 hash_packet(const struct ipfw_flow_id *id)
853 {
854 struct tuple4 {
855 in_addr_t addr[2];
856 uint16_t port[2];
857 } t4;
858
859 if (IS_IP4_FLOW_ID(id)) {
860 /* All fields are in host byte order */
861 if (addrcmp4(id) == 0) {
862 t4.addr[0] = id->src_ip;
863 t4.addr[1] = id->dst_ip;
864 t4.port[0] = id->src_port;
865 t4.port[1] = id->dst_port;
866 } else {
867 t4.addr[0] = id->dst_ip;
868 t4.addr[1] = id->src_ip;
869 t4.port[0] = id->dst_port;
870 t4.port[1] = id->src_port;
871 }
872 return (jenkins_hash32((const uint32_t *)&t4,
873 sizeof(t4) / sizeof(uint32_t), V_dyn_hashseed));
874 } else
875 #ifdef INET6
876 if (IS_IP6_FLOW_ID(id))
877 return (hash_packet6(id));
878 #endif
879 return (0);
880 }
881
882 static __inline uint32_t
hash_parent(const struct ipfw_flow_id * id,const void * rule)883 hash_parent(const struct ipfw_flow_id *id, const void *rule)
884 {
885
886 return (jenkins_hash32((const uint32_t *)&rule,
887 sizeof(rule) / sizeof(uint32_t), hash_packet(id)));
888 }
889 #endif /* IPFIREWALL_JENKINSHASH */
890
891 /*
892 * Print customizable flow id description via log(9) facility.
893 */
894 static void
print_dyn_rule_flags(const struct ipfw_flow_id * id,int dyn_type,int log_flags,char * prefix,char * postfix)895 print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
896 int log_flags, char *prefix, char *postfix)
897 {
898 struct in_addr da;
899 #ifdef INET6
900 char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
901 #else
902 char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
903 #endif
904
905 #ifdef INET6
906 if (IS_IP6_FLOW_ID(id)) {
907 ip6_sprintf(src, &id->src_ip6);
908 ip6_sprintf(dst, &id->dst_ip6);
909 } else
910 #endif
911 {
912 da.s_addr = htonl(id->src_ip);
913 inet_ntop(AF_INET, &da, src, sizeof(src));
914 da.s_addr = htonl(id->dst_ip);
915 inet_ntop(AF_INET, &da, dst, sizeof(dst));
916 }
917 log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
918 prefix, dyn_type, src, id->src_port, dst,
919 id->dst_port, V_dyn_count, postfix);
920 }
921
922 #define print_dyn_rule(id, dtype, prefix, postfix) \
923 print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
924
925 #define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
926 #define TIME_LE(a,b) ((int)((a)-(b)) < 0)
927 #define _SEQ_GE(a,b) ((int)((a)-(b)) >= 0)
928 #define BOTH_SYN (TH_SYN | (TH_SYN << 8))
929 #define BOTH_FIN (TH_FIN | (TH_FIN << 8))
930 #define BOTH_RST (TH_RST | (TH_RST << 8))
931 #define TCP_FLAGS (BOTH_SYN | BOTH_FIN | BOTH_RST)
932 #define ACK_FWD 0x00010000 /* fwd ack seen */
933 #define ACK_REV 0x00020000 /* rev ack seen */
934 #define ACK_BOTH (ACK_FWD | ACK_REV)
935
936 static uint32_t
dyn_update_tcp_state(struct dyn_data * data,const struct ipfw_flow_id * pkt,const struct tcphdr * tcp,int dir)937 dyn_update_tcp_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
938 const struct tcphdr *tcp, int dir)
939 {
940 uint32_t ack, expire;
941 uint32_t state, old;
942 uint8_t th_flags;
943
944 expire = data->expire;
945 old = state = data->state;
946 th_flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
947 state |= (dir == MATCH_FORWARD) ? th_flags: (th_flags << 8);
948 switch (state & TCP_FLAGS) {
949 case TH_SYN: /* opening */
950 expire = time_uptime + V_dyn_syn_lifetime;
951 break;
952
953 case BOTH_SYN: /* move to established */
954 case BOTH_SYN | TH_FIN: /* one side tries to close */
955 case BOTH_SYN | (TH_FIN << 8):
956 if (tcp == NULL)
957 break;
958 ack = ntohl(tcp->th_ack);
959 if (dir == MATCH_FORWARD) {
960 if (data->ack_fwd == 0 ||
961 _SEQ_GE(ack, data->ack_fwd)) {
962 state |= ACK_FWD;
963 if (data->ack_fwd != ack)
964 ck_pr_store_32(&data->ack_fwd, ack);
965 }
966 } else {
967 if (data->ack_rev == 0 ||
968 _SEQ_GE(ack, data->ack_rev)) {
969 state |= ACK_REV;
970 if (data->ack_rev != ack)
971 ck_pr_store_32(&data->ack_rev, ack);
972 }
973 }
974 if ((state & ACK_BOTH) == ACK_BOTH) {
975 /*
976 * Set expire time to V_dyn_ack_lifetime only if
977 * we got ACKs for both directions.
978 * We use XOR here to avoid possible state
979 * overwriting in concurrent thread.
980 */
981 expire = time_uptime + V_dyn_ack_lifetime;
982 ck_pr_xor_32(&data->state, ACK_BOTH);
983 } else if ((data->state & ACK_BOTH) != (state & ACK_BOTH))
984 ck_pr_or_32(&data->state, state & ACK_BOTH);
985 break;
986
987 case BOTH_SYN | BOTH_FIN: /* both sides closed */
988 if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
989 V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
990 expire = time_uptime + V_dyn_fin_lifetime;
991 break;
992
993 default:
994 if (V_dyn_keepalive != 0 &&
995 V_dyn_rst_lifetime >= V_dyn_keepalive_period)
996 V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
997 expire = time_uptime + V_dyn_rst_lifetime;
998 }
999 /* Save TCP state if it was changed */
1000 if ((state & TCP_FLAGS) != (old & TCP_FLAGS))
1001 ck_pr_or_32(&data->state, state & TCP_FLAGS);
1002 return (expire);
1003 }
1004
1005 /*
1006 * Update ULP specific state.
1007 * For TCP we keep sequence numbers and flags. For other protocols
1008 * currently we update only expire time. Packets and bytes counters
1009 * are also updated here.
1010 */
1011 static void
dyn_update_proto_state(struct dyn_data * data,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,int dir)1012 dyn_update_proto_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
1013 const void *ulp, int pktlen, int dir)
1014 {
1015 uint32_t expire;
1016
1017 /* NOTE: we are in critical section here. */
1018 switch (pkt->proto) {
1019 case IPPROTO_UDP:
1020 case IPPROTO_UDPLITE:
1021 expire = time_uptime + V_dyn_udp_lifetime;
1022 break;
1023 case IPPROTO_TCP:
1024 expire = dyn_update_tcp_state(data, pkt, ulp, dir);
1025 break;
1026 default:
1027 expire = time_uptime + V_dyn_short_lifetime;
1028 }
1029 /*
1030 * Expiration timer has the per-second granularity, no need to update
1031 * it every time when state is matched.
1032 */
1033 if (data->expire != expire)
1034 ck_pr_store_32(&data->expire, expire);
1035
1036 if (dir == MATCH_FORWARD)
1037 DYN_COUNTER_INC(data, fwd, pktlen);
1038 else
1039 DYN_COUNTER_INC(data, rev, pktlen);
1040 }
1041
1042 /*
1043 * Lookup IPv4 state.
1044 * Must be called in critical section.
1045 */
1046 struct dyn_ipv4_state *
dyn_lookup_ipv4_state(const struct ipfw_flow_id * pkt,const void * ulp,struct ipfw_dyn_info * info,int pktlen)1047 dyn_lookup_ipv4_state(const struct ipfw_flow_id *pkt, const void *ulp,
1048 struct ipfw_dyn_info *info, int pktlen)
1049 {
1050 struct dyn_ipv4_state *s;
1051 uint32_t version, bucket;
1052
1053 bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1054 info->version = DYN_BUCKET_VERSION(bucket, ipv4_add);
1055 restart:
1056 version = DYN_BUCKET_VERSION(bucket, ipv4_del);
1057 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1058 DYNSTATE_PROTECT(s);
1059 if (version != DYN_BUCKET_VERSION(bucket, ipv4_del))
1060 goto restart;
1061 if (s->proto != pkt->proto)
1062 continue;
1063 if (info->kidx != 0 && s->kidx != info->kidx)
1064 continue;
1065 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1066 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1067 info->direction = MATCH_FORWARD;
1068 break;
1069 }
1070 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1071 s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1072 info->direction = MATCH_REVERSE;
1073 break;
1074 }
1075 }
1076
1077 if (s != NULL)
1078 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1079 info->direction);
1080 return (s);
1081 }
1082
1083 /*
1084 * Lookup IPv4 state.
1085 * Simplifed version is used to check that matching state doesn't exist.
1086 */
1087 static int
dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t bucket,uint32_t kidx)1088 dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *pkt,
1089 const void *ulp, int pktlen, uint32_t bucket, uint32_t kidx)
1090 {
1091 struct dyn_ipv4_state *s;
1092 int dir;
1093
1094 dir = MATCH_NONE;
1095 DYN_BUCKET_ASSERT(bucket);
1096 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1097 if (s->proto != pkt->proto ||
1098 s->kidx != kidx)
1099 continue;
1100 if (s->sport == pkt->src_port &&
1101 s->dport == pkt->dst_port &&
1102 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1103 dir = MATCH_FORWARD;
1104 break;
1105 }
1106 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1107 s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1108 dir = MATCH_REVERSE;
1109 break;
1110 }
1111 }
1112 if (s != NULL)
1113 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1114 return (s != NULL);
1115 }
1116
1117 struct dyn_ipv4_state *
dyn_lookup_ipv4_parent(const struct ipfw_flow_id * pkt,const void * rule,uint32_t ruleid,uint32_t rulenum,uint32_t hashval)1118 dyn_lookup_ipv4_parent(const struct ipfw_flow_id *pkt, const void *rule,
1119 uint32_t ruleid, uint32_t rulenum, uint32_t hashval)
1120 {
1121 struct dyn_ipv4_state *s;
1122 uint32_t version, bucket;
1123
1124 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1125 restart:
1126 version = DYN_BUCKET_VERSION(bucket, ipv4_parent_del);
1127 CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1128 DYNSTATE_PROTECT(s);
1129 if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_del))
1130 goto restart;
1131 /*
1132 * NOTE: we do not need to check kidx, because parent rule
1133 * can not create states with different kidx.
1134 * And parent rule always created for forward direction.
1135 */
1136 if (s->limit->parent == rule &&
1137 s->limit->ruleid == ruleid &&
1138 s->limit->rulenum == rulenum &&
1139 s->proto == pkt->proto &&
1140 s->sport == pkt->src_port &&
1141 s->dport == pkt->dst_port &&
1142 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1143 if (s->limit->expire != time_uptime +
1144 V_dyn_short_lifetime)
1145 ck_pr_store_32(&s->limit->expire,
1146 time_uptime + V_dyn_short_lifetime);
1147 break;
1148 }
1149 }
1150 return (s);
1151 }
1152
1153 static struct dyn_ipv4_state *
dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id * pkt,const void * rule,uint32_t ruleid,uint32_t rulenum,uint32_t bucket)1154 dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id *pkt,
1155 const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t bucket)
1156 {
1157 struct dyn_ipv4_state *s;
1158
1159 DYN_BUCKET_ASSERT(bucket);
1160 CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1161 if (s->limit->parent == rule &&
1162 s->limit->ruleid == ruleid &&
1163 s->limit->rulenum == rulenum &&
1164 s->proto == pkt->proto &&
1165 s->sport == pkt->src_port &&
1166 s->dport == pkt->dst_port &&
1167 s->src == pkt->src_ip && s->dst == pkt->dst_ip)
1168 break;
1169 }
1170 return (s);
1171 }
1172
1173 #ifdef INET6
1174 static uint32_t
dyn_getscopeid(const struct ip_fw_args * args)1175 dyn_getscopeid(const struct ip_fw_args *args)
1176 {
1177
1178 /*
1179 * If source or destination address is an scopeid address, we need
1180 * determine the scope zone id to resolve address scope ambiguity.
1181 */
1182 if (IN6_IS_ADDR_LINKLOCAL(&args->f_id.src_ip6) ||
1183 IN6_IS_ADDR_LINKLOCAL(&args->f_id.dst_ip6))
1184 return (in6_getscopezone(args->ifp, IPV6_ADDR_SCOPE_LINKLOCAL));
1185
1186 return (0);
1187 }
1188
1189 /*
1190 * Lookup IPv6 state.
1191 * Must be called in critical section.
1192 */
1193 static struct dyn_ipv6_state *
dyn_lookup_ipv6_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,struct ipfw_dyn_info * info,int pktlen)1194 dyn_lookup_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1195 const void *ulp, struct ipfw_dyn_info *info, int pktlen)
1196 {
1197 struct dyn_ipv6_state *s;
1198 uint32_t version, bucket;
1199
1200 bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1201 info->version = DYN_BUCKET_VERSION(bucket, ipv6_add);
1202 restart:
1203 version = DYN_BUCKET_VERSION(bucket, ipv6_del);
1204 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1205 DYNSTATE_PROTECT(s);
1206 if (version != DYN_BUCKET_VERSION(bucket, ipv6_del))
1207 goto restart;
1208 if (s->proto != pkt->proto || s->zoneid != zoneid)
1209 continue;
1210 if (info->kidx != 0 && s->kidx != info->kidx)
1211 continue;
1212 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1213 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1214 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1215 info->direction = MATCH_FORWARD;
1216 break;
1217 }
1218 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1219 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1220 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1221 info->direction = MATCH_REVERSE;
1222 break;
1223 }
1224 }
1225 if (s != NULL)
1226 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1227 info->direction);
1228 return (s);
1229 }
1230
1231 /*
1232 * Lookup IPv6 state.
1233 * Simplifed version is used to check that matching state doesn't exist.
1234 */
1235 static int
dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,int pktlen,uint32_t bucket,uint32_t kidx)1236 dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1237 const void *ulp, int pktlen, uint32_t bucket, uint32_t kidx)
1238 {
1239 struct dyn_ipv6_state *s;
1240 int dir;
1241
1242 dir = MATCH_NONE;
1243 DYN_BUCKET_ASSERT(bucket);
1244 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1245 if (s->proto != pkt->proto || s->kidx != kidx ||
1246 s->zoneid != zoneid)
1247 continue;
1248 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1249 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1250 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1251 dir = MATCH_FORWARD;
1252 break;
1253 }
1254 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1255 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1256 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1257 dir = MATCH_REVERSE;
1258 break;
1259 }
1260 }
1261 if (s != NULL)
1262 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1263 return (s != NULL);
1264 }
1265
1266 static struct dyn_ipv6_state *
dyn_lookup_ipv6_parent(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * rule,uint32_t ruleid,uint32_t rulenum,uint32_t hashval)1267 dyn_lookup_ipv6_parent(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1268 const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t hashval)
1269 {
1270 struct dyn_ipv6_state *s;
1271 uint32_t version, bucket;
1272
1273 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1274 restart:
1275 version = DYN_BUCKET_VERSION(bucket, ipv6_parent_del);
1276 CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1277 DYNSTATE_PROTECT(s);
1278 if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_del))
1279 goto restart;
1280 /*
1281 * NOTE: we do not need to check kidx, because parent rule
1282 * can not create states with different kidx.
1283 * Also parent rule always created for forward direction.
1284 */
1285 if (s->limit->parent == rule &&
1286 s->limit->ruleid == ruleid &&
1287 s->limit->rulenum == rulenum &&
1288 s->proto == pkt->proto &&
1289 s->sport == pkt->src_port &&
1290 s->dport == pkt->dst_port && s->zoneid == zoneid &&
1291 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1292 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1293 if (s->limit->expire != time_uptime +
1294 V_dyn_short_lifetime)
1295 ck_pr_store_32(&s->limit->expire,
1296 time_uptime + V_dyn_short_lifetime);
1297 break;
1298 }
1299 }
1300 return (s);
1301 }
1302
1303 static struct dyn_ipv6_state *
dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * rule,uint32_t ruleid,uint32_t rulenum,uint32_t bucket)1304 dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1305 const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t bucket)
1306 {
1307 struct dyn_ipv6_state *s;
1308
1309 DYN_BUCKET_ASSERT(bucket);
1310 CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1311 if (s->limit->parent == rule &&
1312 s->limit->ruleid == ruleid &&
1313 s->limit->rulenum == rulenum &&
1314 s->proto == pkt->proto &&
1315 s->sport == pkt->src_port &&
1316 s->dport == pkt->dst_port && s->zoneid == zoneid &&
1317 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1318 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6))
1319 break;
1320 }
1321 return (s);
1322 }
1323
1324 #endif /* INET6 */
1325
1326 /*
1327 * Lookup dynamic state.
1328 * pkt - filled by ipfw_chk() ipfw_flow_id;
1329 * ulp - determined by ipfw_chk() upper level protocol header;
1330 * dyn_info - info about matched state to return back;
1331 * Returns pointer to state's parent rule and dyn_info. If there is
1332 * no state, NULL is returned.
1333 * On match ipfw_dyn_lookup() updates state's counters.
1334 */
1335 struct ip_fw *
ipfw_dyn_lookup_state(const struct ip_fw_args * args,const void * ulp,int pktlen,const ipfw_insn * cmd,struct ipfw_dyn_info * info)1336 ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp,
1337 int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info)
1338 {
1339 struct dyn_data *data;
1340 struct ip_fw *rule;
1341
1342 IPFW_RLOCK_ASSERT(&V_layer3_chain);
1343 MPASS(F_LEN(cmd) >= F_INSN_SIZE(ipfw_insn_kidx));
1344
1345 data = NULL;
1346 rule = NULL;
1347 info->kidx = insntoc(cmd, kidx)->kidx;
1348 info->direction = MATCH_NONE;
1349 info->hashval = hash_packet(&args->f_id);
1350
1351 DYNSTATE_CRITICAL_ENTER();
1352 if (IS_IP4_FLOW_ID(&args->f_id)) {
1353 struct dyn_ipv4_state *s;
1354
1355 s = dyn_lookup_ipv4_state(&args->f_id, ulp, info, pktlen);
1356 if (s != NULL) {
1357 /*
1358 * Dynamic states are created using the same 5-tuple,
1359 * so it is assumed, that parent rule for O_LIMIT
1360 * state has the same address family.
1361 */
1362 data = s->data;
1363 if (s->type == O_LIMIT) {
1364 s = data->parent;
1365 rule = s->limit->parent;
1366 } else
1367 rule = data->parent;
1368 }
1369 }
1370 #ifdef INET6
1371 else if (IS_IP6_FLOW_ID(&args->f_id)) {
1372 struct dyn_ipv6_state *s;
1373
1374 s = dyn_lookup_ipv6_state(&args->f_id, dyn_getscopeid(args),
1375 ulp, info, pktlen);
1376 if (s != NULL) {
1377 data = s->data;
1378 if (s->type == O_LIMIT) {
1379 s = data->parent;
1380 rule = s->limit->parent;
1381 } else
1382 rule = data->parent;
1383 }
1384 }
1385 #endif
1386 if (data != NULL) {
1387 /*
1388 * If cached chain id is the same, we can avoid rule index
1389 * lookup. Otherwise do lookup and update chain_id and f_pos.
1390 * It is safe even if there is concurrent thread that want
1391 * update the same state, because chain->id can be changed
1392 * only under IPFW_WLOCK().
1393 */
1394 if (data->chain_id != V_layer3_chain.id) {
1395 data->f_pos = ipfw_find_rule(&V_layer3_chain,
1396 data->rulenum, data->ruleid);
1397 /*
1398 * Check that found state has not orphaned.
1399 * When chain->id being changed the parent
1400 * rule can be deleted. If found rule doesn't
1401 * match the parent pointer, consider this
1402 * result as MATCH_NONE and return NULL.
1403 *
1404 * This will lead to creation of new similar state
1405 * that will be added into head of this bucket.
1406 * And the state that we currently have matched
1407 * should be deleted by dyn_expire_states().
1408 *
1409 * In case when dyn_keep_states is enabled, return
1410 * pointer to deleted rule and f_pos value
1411 * corresponding to penultimate rule.
1412 * When we have enabled V_dyn_keep_states, states
1413 * that become orphaned will get the DYN_REFERENCED
1414 * flag and rule will keep around. So we can return
1415 * it. But since it is not in the rules map, we need
1416 * return such f_pos value, so after the state
1417 * handling if the search will continue, the next rule
1418 * will be the last one - the default rule.
1419 */
1420 if (V_layer3_chain.map[data->f_pos] == rule) {
1421 data->chain_id = V_layer3_chain.id;
1422 } else if (V_dyn_keep_states != 0) {
1423 /*
1424 * The original rule pointer is still usable.
1425 * So, we return it, but f_pos need to be
1426 * changed to point to the penultimate rule.
1427 */
1428 MPASS(V_layer3_chain.n_rules > 1);
1429 data->chain_id = V_layer3_chain.id;
1430 data->f_pos = V_layer3_chain.n_rules - 2;
1431 } else {
1432 rule = NULL;
1433 info->direction = MATCH_NONE;
1434 DYN_DEBUG("rule %p [%u, %u] is considered "
1435 "invalid in data %p", rule, data->ruleid,
1436 data->rulenum, data);
1437 /* info->f_pos doesn't matter here. */
1438 }
1439 }
1440 info->f_pos = data->f_pos;
1441 }
1442 DYNSTATE_CRITICAL_EXIT();
1443 #if 0
1444 /*
1445 * Return MATCH_NONE if parent rule is in disabled set.
1446 * This will lead to creation of new similar state that
1447 * will be added into head of this bucket.
1448 *
1449 * XXXAE: we need to be able update state's set when parent
1450 * rule set is changed.
1451 */
1452 if (rule != NULL && (V_set_disable & (1 << rule->set))) {
1453 rule = NULL;
1454 info->direction = MATCH_NONE;
1455 }
1456 #endif
1457 return (rule);
1458 }
1459
1460 static struct dyn_parent *
dyn_alloc_parent(void * parent,uint32_t ruleid,uint32_t rulenum,uint32_t hashval)1461 dyn_alloc_parent(void *parent, uint32_t ruleid, uint32_t rulenum,
1462 uint32_t hashval)
1463 {
1464 struct dyn_parent *limit;
1465
1466 limit = uma_zalloc(V_dyn_parent_zone, M_NOWAIT | M_ZERO);
1467 if (limit == NULL) {
1468 if (last_log != time_uptime) {
1469 last_log = time_uptime;
1470 log(LOG_DEBUG,
1471 "ipfw: Cannot allocate parent dynamic state, "
1472 "consider increasing "
1473 "net.inet.ip.fw.dyn_parent_max\n");
1474 }
1475 return (NULL);
1476 }
1477
1478 limit->parent = parent;
1479 limit->ruleid = ruleid;
1480 limit->rulenum = rulenum;
1481 limit->hashval = hashval;
1482 limit->expire = time_uptime + V_dyn_short_lifetime;
1483 return (limit);
1484 }
1485
1486 static struct dyn_data *
dyn_alloc_dyndata(void * parent,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t hashval,uint16_t fibnum)1487 dyn_alloc_dyndata(void *parent, uint32_t ruleid, uint32_t rulenum,
1488 const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1489 uint32_t hashval, uint16_t fibnum)
1490 {
1491 struct dyn_data *data;
1492
1493 data = uma_zalloc(V_dyn_data_zone, M_NOWAIT | M_ZERO);
1494 if (data == NULL) {
1495 if (last_log != time_uptime) {
1496 last_log = time_uptime;
1497 log(LOG_DEBUG,
1498 "ipfw: Cannot allocate dynamic state, "
1499 "consider increasing net.inet.ip.fw.dyn_max\n");
1500 }
1501 return (NULL);
1502 }
1503
1504 data->parent = parent;
1505 data->ruleid = ruleid;
1506 data->rulenum = rulenum;
1507 data->fibnum = fibnum;
1508 data->hashval = hashval;
1509 data->expire = time_uptime + V_dyn_syn_lifetime;
1510 dyn_update_proto_state(data, pkt, ulp, pktlen, MATCH_FORWARD);
1511 return (data);
1512 }
1513
1514 static struct dyn_ipv4_state *
dyn_alloc_ipv4_state(const struct ipfw_flow_id * pkt,uint32_t kidx,uint8_t type)1515 dyn_alloc_ipv4_state(const struct ipfw_flow_id *pkt, uint32_t kidx,
1516 uint8_t type)
1517 {
1518 struct dyn_ipv4_state *s;
1519
1520 s = uma_zalloc(V_dyn_ipv4_zone, M_NOWAIT | M_ZERO);
1521 if (s == NULL)
1522 return (NULL);
1523
1524 s->type = type;
1525 s->kidx = kidx;
1526 s->proto = pkt->proto;
1527 s->sport = pkt->src_port;
1528 s->dport = pkt->dst_port;
1529 s->src = pkt->src_ip;
1530 s->dst = pkt->dst_ip;
1531 return (s);
1532 }
1533
1534 /*
1535 * Add IPv4 parent state.
1536 * Returns pointer to parent state. When it is not NULL we are in
1537 * critical section and pointer protected by hazard pointer.
1538 * When some error occurs, it returns NULL and exit from critical section
1539 * is not needed.
1540 */
1541 static struct dyn_ipv4_state *
dyn_add_ipv4_parent(void * rule,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,uint32_t hashval,uint32_t version,uint32_t kidx)1542 dyn_add_ipv4_parent(void *rule, uint32_t ruleid, uint32_t rulenum,
1543 const struct ipfw_flow_id *pkt, uint32_t hashval, uint32_t version,
1544 uint32_t kidx)
1545 {
1546 struct dyn_ipv4_state *s;
1547 struct dyn_parent *limit;
1548 uint32_t bucket;
1549
1550 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1551 DYN_BUCKET_LOCK(bucket);
1552 if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_add)) {
1553 /*
1554 * Bucket version has been changed since last lookup,
1555 * do lookup again to be sure that state does not exist.
1556 */
1557 s = dyn_lookup_ipv4_parent_locked(pkt, rule, ruleid,
1558 rulenum, bucket);
1559 if (s != NULL) {
1560 /*
1561 * Simultaneous thread has already created this
1562 * state. Just return it.
1563 */
1564 DYNSTATE_CRITICAL_ENTER();
1565 DYNSTATE_PROTECT(s);
1566 DYN_BUCKET_UNLOCK(bucket);
1567 return (s);
1568 }
1569 }
1570
1571 limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1572 if (limit == NULL) {
1573 DYN_BUCKET_UNLOCK(bucket);
1574 return (NULL);
1575 }
1576
1577 s = dyn_alloc_ipv4_state(pkt, kidx, O_LIMIT_PARENT);
1578 if (s == NULL) {
1579 DYN_BUCKET_UNLOCK(bucket);
1580 uma_zfree(V_dyn_parent_zone, limit);
1581 return (NULL);
1582 }
1583
1584 s->limit = limit;
1585 CK_SLIST_INSERT_HEAD(&V_dyn_ipv4_parent[bucket], s, entry);
1586 DYN_COUNT_INC(dyn_parent_count);
1587 DYN_BUCKET_VERSION_BUMP(bucket, ipv4_parent_add);
1588 DYNSTATE_CRITICAL_ENTER();
1589 DYNSTATE_PROTECT(s);
1590 DYN_BUCKET_UNLOCK(bucket);
1591 return (s);
1592 }
1593
1594 static int
dyn_add_ipv4_state(void * parent,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t hashval,struct ipfw_dyn_info * info,uint16_t fibnum,uint32_t kidx,uint8_t type)1595 dyn_add_ipv4_state(void *parent, uint32_t ruleid, uint32_t rulenum,
1596 const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1597 uint32_t hashval, struct ipfw_dyn_info *info, uint16_t fibnum,
1598 uint32_t kidx, uint8_t type)
1599 {
1600 struct dyn_ipv4_state *s;
1601 void *data;
1602 uint32_t bucket;
1603
1604 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1605 DYN_BUCKET_LOCK(bucket);
1606 if (info->direction == MATCH_UNKNOWN ||
1607 info->kidx != kidx ||
1608 info->hashval != hashval ||
1609 info->version != DYN_BUCKET_VERSION(bucket, ipv4_add)) {
1610 /*
1611 * Bucket version has been changed since last lookup,
1612 * do lookup again to be sure that state does not exist.
1613 */
1614 if (dyn_lookup_ipv4_state_locked(pkt, ulp, pktlen,
1615 bucket, kidx) != 0) {
1616 DYN_BUCKET_UNLOCK(bucket);
1617 return (EEXIST);
1618 }
1619 }
1620
1621 data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1622 pktlen, hashval, fibnum);
1623 if (data == NULL) {
1624 DYN_BUCKET_UNLOCK(bucket);
1625 return (ENOMEM);
1626 }
1627
1628 s = dyn_alloc_ipv4_state(pkt, kidx, type);
1629 if (s == NULL) {
1630 DYN_BUCKET_UNLOCK(bucket);
1631 uma_zfree(V_dyn_data_zone, data);
1632 return (ENOMEM);
1633 }
1634
1635 s->data = data;
1636 CK_SLIST_INSERT_HEAD(&V_dyn_ipv4[bucket], s, entry);
1637 DYN_COUNT_INC(dyn_count);
1638 DYN_BUCKET_VERSION_BUMP(bucket, ipv4_add);
1639 DYN_BUCKET_UNLOCK(bucket);
1640 return (0);
1641 }
1642
1643 #ifdef INET6
1644 static struct dyn_ipv6_state *
dyn_alloc_ipv6_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,uint32_t kidx,uint8_t type)1645 dyn_alloc_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1646 uint32_t kidx, uint8_t type)
1647 {
1648 struct dyn_ipv6_state *s;
1649
1650 s = uma_zalloc(V_dyn_ipv6_zone, M_NOWAIT | M_ZERO);
1651 if (s == NULL)
1652 return (NULL);
1653
1654 s->type = type;
1655 s->kidx = kidx;
1656 s->zoneid = zoneid;
1657 s->proto = pkt->proto;
1658 s->sport = pkt->src_port;
1659 s->dport = pkt->dst_port;
1660 s->src = pkt->src_ip6;
1661 s->dst = pkt->dst_ip6;
1662 return (s);
1663 }
1664
1665 /*
1666 * Add IPv6 parent state.
1667 * Returns pointer to parent state. When it is not NULL we are in
1668 * critical section and pointer protected by hazard pointer.
1669 * When some error occurs, it return NULL and exit from critical section
1670 * is not needed.
1671 */
1672 static struct dyn_ipv6_state *
dyn_add_ipv6_parent(void * rule,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,uint32_t zoneid,uint32_t hashval,uint32_t version,uint32_t kidx)1673 dyn_add_ipv6_parent(void *rule, uint32_t ruleid, uint32_t rulenum,
1674 const struct ipfw_flow_id *pkt, uint32_t zoneid, uint32_t hashval,
1675 uint32_t version, uint32_t kidx)
1676 {
1677 struct dyn_ipv6_state *s;
1678 struct dyn_parent *limit;
1679 uint32_t bucket;
1680
1681 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1682 DYN_BUCKET_LOCK(bucket);
1683 if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_add)) {
1684 /*
1685 * Bucket version has been changed since last lookup,
1686 * do lookup again to be sure that state does not exist.
1687 */
1688 s = dyn_lookup_ipv6_parent_locked(pkt, zoneid, rule, ruleid,
1689 rulenum, bucket);
1690 if (s != NULL) {
1691 /*
1692 * Simultaneous thread has already created this
1693 * state. Just return it.
1694 */
1695 DYNSTATE_CRITICAL_ENTER();
1696 DYNSTATE_PROTECT(s);
1697 DYN_BUCKET_UNLOCK(bucket);
1698 return (s);
1699 }
1700 }
1701
1702 limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1703 if (limit == NULL) {
1704 DYN_BUCKET_UNLOCK(bucket);
1705 return (NULL);
1706 }
1707
1708 s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, O_LIMIT_PARENT);
1709 if (s == NULL) {
1710 DYN_BUCKET_UNLOCK(bucket);
1711 uma_zfree(V_dyn_parent_zone, limit);
1712 return (NULL);
1713 }
1714
1715 s->limit = limit;
1716 CK_SLIST_INSERT_HEAD(&V_dyn_ipv6_parent[bucket], s, entry);
1717 DYN_COUNT_INC(dyn_parent_count);
1718 DYN_BUCKET_VERSION_BUMP(bucket, ipv6_parent_add);
1719 DYNSTATE_CRITICAL_ENTER();
1720 DYNSTATE_PROTECT(s);
1721 DYN_BUCKET_UNLOCK(bucket);
1722 return (s);
1723 }
1724
1725 static int
dyn_add_ipv6_state(void * parent,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,int pktlen,uint32_t hashval,struct ipfw_dyn_info * info,uint16_t fibnum,uint32_t kidx,uint8_t type)1726 dyn_add_ipv6_state(void *parent, uint32_t ruleid, uint32_t rulenum,
1727 const struct ipfw_flow_id *pkt, uint32_t zoneid, const void *ulp,
1728 int pktlen, uint32_t hashval, struct ipfw_dyn_info *info,
1729 uint16_t fibnum, uint32_t kidx, uint8_t type)
1730 {
1731 struct dyn_ipv6_state *s;
1732 struct dyn_data *data;
1733 uint32_t bucket;
1734
1735 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1736 DYN_BUCKET_LOCK(bucket);
1737 if (info->direction == MATCH_UNKNOWN ||
1738 info->kidx != kidx ||
1739 info->hashval != hashval ||
1740 info->version != DYN_BUCKET_VERSION(bucket, ipv6_add)) {
1741 /*
1742 * Bucket version has been changed since last lookup,
1743 * do lookup again to be sure that state does not exist.
1744 */
1745 if (dyn_lookup_ipv6_state_locked(pkt, zoneid, ulp, pktlen,
1746 bucket, kidx) != 0) {
1747 DYN_BUCKET_UNLOCK(bucket);
1748 return (EEXIST);
1749 }
1750 }
1751
1752 data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1753 pktlen, hashval, fibnum);
1754 if (data == NULL) {
1755 DYN_BUCKET_UNLOCK(bucket);
1756 return (ENOMEM);
1757 }
1758
1759 s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, type);
1760 if (s == NULL) {
1761 DYN_BUCKET_UNLOCK(bucket);
1762 uma_zfree(V_dyn_data_zone, data);
1763 return (ENOMEM);
1764 }
1765
1766 s->data = data;
1767 CK_SLIST_INSERT_HEAD(&V_dyn_ipv6[bucket], s, entry);
1768 DYN_COUNT_INC(dyn_count);
1769 DYN_BUCKET_VERSION_BUMP(bucket, ipv6_add);
1770 DYN_BUCKET_UNLOCK(bucket);
1771 return (0);
1772 }
1773 #endif /* INET6 */
1774
1775 static void *
dyn_get_parent_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,struct ip_fw * rule,uint32_t hashval,uint32_t limit,uint32_t kidx)1776 dyn_get_parent_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1777 struct ip_fw *rule, uint32_t hashval, uint32_t limit, uint32_t kidx)
1778 {
1779 char sbuf[24];
1780 struct dyn_parent *p;
1781 void *ret;
1782 uint32_t bucket, version;
1783
1784 p = NULL;
1785 ret = NULL;
1786 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1787 DYNSTATE_CRITICAL_ENTER();
1788 if (IS_IP4_FLOW_ID(pkt)) {
1789 struct dyn_ipv4_state *s;
1790
1791 version = DYN_BUCKET_VERSION(bucket, ipv4_parent_add);
1792 s = dyn_lookup_ipv4_parent(pkt, rule, rule->id,
1793 rule->rulenum, bucket);
1794 if (s == NULL) {
1795 /*
1796 * Exit from critical section because dyn_add_parent()
1797 * will acquire bucket lock.
1798 */
1799 DYNSTATE_CRITICAL_EXIT();
1800
1801 s = dyn_add_ipv4_parent(rule, rule->id,
1802 rule->rulenum, pkt, hashval, version, kidx);
1803 if (s == NULL)
1804 return (NULL);
1805 /* Now we are in critical section again. */
1806 }
1807 ret = s;
1808 p = s->limit;
1809 }
1810 #ifdef INET6
1811 else if (IS_IP6_FLOW_ID(pkt)) {
1812 struct dyn_ipv6_state *s;
1813
1814 version = DYN_BUCKET_VERSION(bucket, ipv6_parent_add);
1815 s = dyn_lookup_ipv6_parent(pkt, zoneid, rule, rule->id,
1816 rule->rulenum, bucket);
1817 if (s == NULL) {
1818 /*
1819 * Exit from critical section because dyn_add_parent()
1820 * can acquire bucket mutex.
1821 */
1822 DYNSTATE_CRITICAL_EXIT();
1823
1824 s = dyn_add_ipv6_parent(rule, rule->id,
1825 rule->rulenum, pkt, zoneid, hashval, version,
1826 kidx);
1827 if (s == NULL)
1828 return (NULL);
1829 /* Now we are in critical section again. */
1830 }
1831 ret = s;
1832 p = s->limit;
1833 }
1834 #endif
1835 else {
1836 DYNSTATE_CRITICAL_EXIT();
1837 return (NULL);
1838 }
1839
1840 /* Check the limit */
1841 if (DPARENT_COUNT(p) >= limit) {
1842 DYNSTATE_CRITICAL_EXIT();
1843 if (V_fw_verbose && last_log != time_uptime) {
1844 last_log = time_uptime;
1845 snprintf(sbuf, sizeof(sbuf), "%u drop session",
1846 rule->rulenum);
1847 print_dyn_rule_flags(pkt, O_LIMIT,
1848 LOG_SECURITY | LOG_DEBUG, sbuf,
1849 "too many entries");
1850 }
1851 return (NULL);
1852 }
1853
1854 /* Take new session into account. */
1855 DPARENT_COUNT_INC(p);
1856 /*
1857 * We must exit from critical section because the following code
1858 * can acquire bucket mutex.
1859 * We rely on the 'count' field. The state will not expire
1860 * until it has some child states, i.e. 'count' field is not zero.
1861 * Return state pointer, it will be used by child states as parent.
1862 */
1863 DYNSTATE_CRITICAL_EXIT();
1864 return (ret);
1865 }
1866
1867 static int
dyn_install_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,uint16_t fibnum,const void * ulp,int pktlen,struct ip_fw * rule,struct ipfw_dyn_info * info,uint32_t limit,uint16_t limit_mask,uint32_t kidx,uint8_t type)1868 dyn_install_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1869 uint16_t fibnum, const void *ulp, int pktlen, struct ip_fw *rule,
1870 struct ipfw_dyn_info *info, uint32_t limit, uint16_t limit_mask,
1871 uint32_t kidx, uint8_t type)
1872 {
1873 struct ipfw_flow_id id;
1874 uint32_t hashval, parent_hashval, ruleid, rulenum;
1875 int ret;
1876
1877 MPASS(type == O_LIMIT || type == O_KEEP_STATE);
1878
1879 ruleid = rule->id;
1880 rulenum = rule->rulenum;
1881 if (type == O_LIMIT) {
1882 /* Create masked flow id and calculate bucket */
1883 id.addr_type = pkt->addr_type;
1884 id.proto = pkt->proto;
1885 id.fib = fibnum; /* unused */
1886 id.src_port = (limit_mask & DYN_SRC_PORT) ?
1887 pkt->src_port: 0;
1888 id.dst_port = (limit_mask & DYN_DST_PORT) ?
1889 pkt->dst_port: 0;
1890 if (IS_IP4_FLOW_ID(pkt)) {
1891 id.src_ip = (limit_mask & DYN_SRC_ADDR) ?
1892 pkt->src_ip: 0;
1893 id.dst_ip = (limit_mask & DYN_DST_ADDR) ?
1894 pkt->dst_ip: 0;
1895 }
1896 #ifdef INET6
1897 else if (IS_IP6_FLOW_ID(pkt)) {
1898 if (limit_mask & DYN_SRC_ADDR)
1899 id.src_ip6 = pkt->src_ip6;
1900 else
1901 memset(&id.src_ip6, 0, sizeof(id.src_ip6));
1902 if (limit_mask & DYN_DST_ADDR)
1903 id.dst_ip6 = pkt->dst_ip6;
1904 else
1905 memset(&id.dst_ip6, 0, sizeof(id.dst_ip6));
1906 }
1907 #endif
1908 else
1909 return (EAFNOSUPPORT);
1910
1911 parent_hashval = hash_parent(&id, rule);
1912 rule = dyn_get_parent_state(&id, zoneid, rule, parent_hashval,
1913 limit, kidx);
1914 if (rule == NULL) {
1915 #if 0
1916 if (V_fw_verbose && last_log != time_uptime) {
1917 last_log = time_uptime;
1918 snprintf(sbuf, sizeof(sbuf),
1919 "%u drop session", rule->rulenum);
1920 print_dyn_rule_flags(pkt, O_LIMIT,
1921 LOG_SECURITY | LOG_DEBUG, sbuf,
1922 "too many entries");
1923 }
1924 #endif
1925 return (EACCES);
1926 }
1927 /*
1928 * Limit is not reached, create new state.
1929 * Now rule points to parent state.
1930 */
1931 }
1932
1933 hashval = hash_packet(pkt);
1934 if (IS_IP4_FLOW_ID(pkt))
1935 ret = dyn_add_ipv4_state(rule, ruleid, rulenum, pkt,
1936 ulp, pktlen, hashval, info, fibnum, kidx, type);
1937 #ifdef INET6
1938 else if (IS_IP6_FLOW_ID(pkt))
1939 ret = dyn_add_ipv6_state(rule, ruleid, rulenum, pkt,
1940 zoneid, ulp, pktlen, hashval, info, fibnum, kidx, type);
1941 #endif /* INET6 */
1942 else
1943 ret = EAFNOSUPPORT;
1944
1945 if (type == O_LIMIT) {
1946 if (ret != 0) {
1947 /*
1948 * We failed to create child state for O_LIMIT
1949 * opcode. Since we already counted it in the parent,
1950 * we must revert counter back. The 'rule' points to
1951 * parent state, use it to get dyn_parent.
1952 *
1953 * XXXAE: it should be safe to use 'rule' pointer
1954 * without extra lookup, parent state is referenced
1955 * and should not be freed.
1956 */
1957 if (IS_IP4_FLOW_ID(&id))
1958 DPARENT_COUNT_DEC(
1959 ((struct dyn_ipv4_state *)rule)->limit);
1960 #ifdef INET6
1961 else if (IS_IP6_FLOW_ID(&id))
1962 DPARENT_COUNT_DEC(
1963 ((struct dyn_ipv6_state *)rule)->limit);
1964 #endif
1965 }
1966 }
1967 /*
1968 * EEXIST means that simultaneous thread has created this
1969 * state. Consider this as success.
1970 *
1971 * XXXAE: should we invalidate 'info' content here?
1972 */
1973 if (ret == EEXIST)
1974 return (0);
1975 return (ret);
1976 }
1977
1978 /*
1979 * Install dynamic state.
1980 * chain - ipfw's instance;
1981 * rule - the parent rule that installs the state;
1982 * cmd - opcode that installs the state;
1983 * args - ipfw arguments;
1984 * ulp - upper level protocol header;
1985 * pktlen - packet length;
1986 * info - dynamic state lookup info;
1987 * tablearg - tablearg id.
1988 *
1989 * Returns non-zero value (failure) if state is not installed because
1990 * of errors or because session limitations are enforced.
1991 */
1992 int
ipfw_dyn_install_state(struct ip_fw_chain * chain,struct ip_fw * rule,const ipfw_insn_limit * cmd,const struct ip_fw_args * args,const void * ulp,int pktlen,struct ipfw_dyn_info * info,uint32_t tablearg)1993 ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
1994 const ipfw_insn_limit *cmd, const struct ip_fw_args *args,
1995 const void *ulp, int pktlen, struct ipfw_dyn_info *info,
1996 uint32_t tablearg)
1997 {
1998 uint32_t limit;
1999 uint16_t limit_mask;
2000
2001 if (cmd->o.opcode == O_LIMIT) {
2002 limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
2003 limit_mask = cmd->limit_mask;
2004 } else {
2005 limit = 0;
2006 limit_mask = 0;
2007 }
2008 /*
2009 * NOTE: we assume that kidx field of struct ipfw_insn_kidx
2010 * located in the same place as kidx field of ipfw_insn_limit.
2011 */
2012 return (dyn_install_state(&args->f_id,
2013 #ifdef INET6
2014 IS_IP6_FLOW_ID(&args->f_id) ? dyn_getscopeid(args):
2015 #endif
2016 0, M_GETFIB(args->m), ulp, pktlen, rule, info, limit,
2017 limit_mask, cmd->kidx, cmd->o.opcode));
2018 }
2019
2020 /*
2021 * Free safe to remove state entries from expired lists.
2022 */
2023 static void
dyn_free_states(struct ip_fw_chain * chain)2024 dyn_free_states(struct ip_fw_chain *chain)
2025 {
2026 struct dyn_ipv4_state *s4, *s4n;
2027 #ifdef INET6
2028 struct dyn_ipv6_state *s6, *s6n;
2029 #endif
2030 int cached_count, i;
2031
2032 /*
2033 * We keep pointers to objects that are in use on each CPU
2034 * in the per-cpu dyn_hp pointer. When object is going to be
2035 * removed, first of it is unlinked from the corresponding
2036 * list. This leads to changing of dyn_bucket_xxx_delver version.
2037 * Unlinked objects is placed into corresponding dyn_expired_xxx
2038 * list. Reader that is going to dereference object pointer checks
2039 * dyn_bucket_xxx_delver version before and after storing pointer
2040 * into dyn_hp. If version is the same, the object is protected
2041 * from freeing and it is safe to dereference. Othervise reader
2042 * tries to iterate list again from the beginning, but this object
2043 * now unlinked and thus will not be accessible.
2044 *
2045 * Copy dyn_hp pointers for each CPU into dyn_hp_cache array.
2046 * It does not matter that some pointer can be changed in
2047 * time while we are copying. We need to check, that objects
2048 * removed in the previous pass are not in use. And if dyn_hp
2049 * pointer does not contain it in the time when we are copying,
2050 * it will not appear there, because it is already unlinked.
2051 * And for new pointers we will not free objects that will be
2052 * unlinked in this pass.
2053 */
2054 cached_count = 0;
2055 CPU_FOREACH(i) {
2056 dyn_hp_cache[cached_count] = DYNSTATE_GET(i);
2057 if (dyn_hp_cache[cached_count] != NULL)
2058 cached_count++;
2059 }
2060
2061 /*
2062 * Free expired states that are safe to free.
2063 * Check each entry from previous pass in the dyn_expired_xxx
2064 * list, if pointer to the object is in the dyn_hp_cache array,
2065 * keep it until next pass. Otherwise it is safe to free the
2066 * object.
2067 *
2068 * XXXAE: optimize this to use SLIST_REMOVE_AFTER.
2069 */
2070 #define DYN_FREE_STATES(s, next, name) do { \
2071 s = SLIST_FIRST(&V_dyn_expired_ ## name); \
2072 while (s != NULL) { \
2073 next = SLIST_NEXT(s, expired); \
2074 for (i = 0; i < cached_count; i++) \
2075 if (dyn_hp_cache[i] == s) \
2076 break; \
2077 if (i == cached_count) { \
2078 if (s->type == O_LIMIT_PARENT && \
2079 s->limit->count != 0) { \
2080 s = next; \
2081 continue; \
2082 } \
2083 SLIST_REMOVE(&V_dyn_expired_ ## name, \
2084 s, dyn_ ## name ## _state, expired); \
2085 if (s->type == O_LIMIT_PARENT) \
2086 uma_zfree(V_dyn_parent_zone, s->limit); \
2087 else \
2088 uma_zfree(V_dyn_data_zone, s->data); \
2089 uma_zfree(V_dyn_ ## name ## _zone, s); \
2090 } \
2091 s = next; \
2092 } \
2093 } while (0)
2094
2095 /*
2096 * Protect access to expired lists with DYN_EXPIRED_LOCK.
2097 * Userland can invoke ipfw_expire_dyn_states() to delete
2098 * specific states, this will lead to modification of expired
2099 * lists.
2100 *
2101 * XXXAE: do we need DYN_EXPIRED_LOCK? We can just use
2102 * IPFW_UH_WLOCK to protect access to these lists.
2103 */
2104 DYN_EXPIRED_LOCK();
2105 DYN_FREE_STATES(s4, s4n, ipv4);
2106 #ifdef INET6
2107 DYN_FREE_STATES(s6, s6n, ipv6);
2108 #endif
2109 DYN_EXPIRED_UNLOCK();
2110 #undef DYN_FREE_STATES
2111 }
2112
2113 /*
2114 * Returns:
2115 * 0 when state is not matched by specified range;
2116 * 1 when state is matched by specified range;
2117 * 2 when state is matched by specified range and requested deletion of
2118 * dynamic states.
2119 */
2120 static int
dyn_match_range(uint32_t rulenum,uint8_t set,const ipfw_range_tlv * rt)2121 dyn_match_range(uint32_t rulenum, uint8_t set, const ipfw_range_tlv *rt)
2122 {
2123
2124 MPASS(rt != NULL);
2125 /* flush all states */
2126 if (rt->flags & IPFW_RCFLAG_ALL) {
2127 if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2128 return (2); /* forced */
2129 return (1);
2130 }
2131 if ((rt->flags & IPFW_RCFLAG_SET) != 0 && set != rt->set)
2132 return (0);
2133 if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
2134 (rulenum < rt->start_rule || rulenum > rt->end_rule))
2135 return (0);
2136 if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2137 return (2);
2138 return (1);
2139 }
2140
2141 static void
dyn_acquire_rule(struct ip_fw_chain * ch,struct dyn_data * data,struct ip_fw * rule,uint32_t kidx)2142 dyn_acquire_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2143 struct ip_fw *rule, uint32_t kidx)
2144 {
2145 struct dyn_state_obj *obj;
2146
2147 /*
2148 * Do not acquire reference twice.
2149 * This can happen when rule deletion executed for
2150 * the same range, but different ruleset id.
2151 */
2152 if (data->flags & DYN_REFERENCED)
2153 return;
2154
2155 IPFW_UH_WLOCK_ASSERT(ch);
2156 MPASS(kidx != 0);
2157
2158 data->flags |= DYN_REFERENCED;
2159 /* Reference the named object */
2160 obj = SRV_OBJECT(ch, kidx);
2161 obj->no.refcnt++;
2162 MPASS(obj->no.etlv == IPFW_TLV_STATE_NAME);
2163
2164 /* Reference the parent rule */
2165 rule->refcnt++;
2166 }
2167
2168 static void
dyn_release_rule(struct ip_fw_chain * ch,struct dyn_data * data,struct ip_fw * rule,uint32_t kidx)2169 dyn_release_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2170 struct ip_fw *rule, uint32_t kidx)
2171 {
2172 struct dyn_state_obj *obj;
2173
2174 IPFW_UH_WLOCK_ASSERT(ch);
2175 MPASS(kidx != 0);
2176
2177 obj = SRV_OBJECT(ch, kidx);
2178 if (obj->no.refcnt == 1)
2179 dyn_destroy(ch, &obj->no);
2180 else
2181 obj->no.refcnt--;
2182
2183 if (--rule->refcnt == 1)
2184 ipfw_free_rule(rule);
2185 }
2186
2187 /*
2188 * We do not keep O_LIMIT_PARENT states when V_dyn_keep_states is enabled.
2189 * O_LIMIT state is created when new connection is going to be established
2190 * and there is no matching state. So, since the old parent rule was deleted
2191 * we can't create new states with old parent, and thus we can not account
2192 * new connections with already established connections, and can not do
2193 * proper limiting.
2194 */
2195 static int
dyn_match_ipv4_state(struct ip_fw_chain * ch,struct dyn_ipv4_state * s,const ipfw_range_tlv * rt)2196 dyn_match_ipv4_state(struct ip_fw_chain *ch, struct dyn_ipv4_state *s,
2197 const ipfw_range_tlv *rt)
2198 {
2199 struct ip_fw *rule;
2200 int ret;
2201
2202 if (s->type == O_LIMIT_PARENT) {
2203 rule = s->limit->parent;
2204 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2205 }
2206
2207 rule = s->data->parent;
2208 if (s->type == O_LIMIT)
2209 rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2210
2211 ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2212 if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2213 return (ret);
2214
2215 dyn_acquire_rule(ch, s->data, rule, s->kidx);
2216 return (0);
2217 }
2218
2219 #ifdef INET6
2220 static int
dyn_match_ipv6_state(struct ip_fw_chain * ch,struct dyn_ipv6_state * s,const ipfw_range_tlv * rt)2221 dyn_match_ipv6_state(struct ip_fw_chain *ch, struct dyn_ipv6_state *s,
2222 const ipfw_range_tlv *rt)
2223 {
2224 struct ip_fw *rule;
2225 int ret;
2226
2227 if (s->type == O_LIMIT_PARENT) {
2228 rule = s->limit->parent;
2229 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2230 }
2231
2232 rule = s->data->parent;
2233 if (s->type == O_LIMIT)
2234 rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
2235
2236 ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2237 if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2238 return (ret);
2239
2240 dyn_acquire_rule(ch, s->data, rule, s->kidx);
2241 return (0);
2242 }
2243 #endif
2244
2245 /*
2246 * Unlink expired entries from states lists.
2247 * @rt can be used to specify the range of states for deletion.
2248 */
2249 static void
dyn_expire_states(struct ip_fw_chain * ch,ipfw_range_tlv * rt)2250 dyn_expire_states(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
2251 {
2252 struct dyn_ipv4_slist expired_ipv4;
2253 #ifdef INET6
2254 struct dyn_ipv6_slist expired_ipv6;
2255 struct dyn_ipv6_state *s6, *s6n, *s6p;
2256 #endif
2257 struct dyn_ipv4_state *s4, *s4n, *s4p;
2258 void *rule;
2259 int bucket, removed, length, max_length;
2260
2261 IPFW_UH_WLOCK_ASSERT(ch);
2262
2263 /*
2264 * Unlink expired states from each bucket.
2265 * With acquired bucket lock iterate entries of each lists:
2266 * ipv4, ipv4_parent, ipv6, and ipv6_parent. Check expired time
2267 * and unlink entry from the list, link entry into temporary
2268 * expired_xxx lists then bump "del" bucket version.
2269 *
2270 * When an entry is removed, corresponding states counter is
2271 * decremented. If entry has O_LIMIT type, parent's reference
2272 * counter is decremented.
2273 *
2274 * NOTE: this function can be called from userspace context
2275 * when user deletes rules. In this case all matched states
2276 * will be forcedly unlinked. O_LIMIT_PARENT states will be kept
2277 * in the expired lists until reference counter become zero.
2278 */
2279 #define DYN_UNLINK_STATES(s, prev, next, exp, af, name, extra) do { \
2280 length = 0; \
2281 removed = 0; \
2282 prev = NULL; \
2283 s = CK_SLIST_FIRST(&V_dyn_ ## name [bucket]); \
2284 while (s != NULL) { \
2285 next = CK_SLIST_NEXT(s, entry); \
2286 if ((TIME_LEQ((s)->exp, time_uptime) && extra) || \
2287 (rt != NULL && \
2288 dyn_match_ ## af ## _state(ch, s, rt))) { \
2289 if (prev != NULL) \
2290 CK_SLIST_REMOVE_AFTER(prev, entry); \
2291 else \
2292 CK_SLIST_REMOVE_HEAD( \
2293 &V_dyn_ ## name [bucket], entry); \
2294 removed++; \
2295 SLIST_INSERT_HEAD(&expired_ ## af, s, expired); \
2296 if (s->type == O_LIMIT_PARENT) \
2297 DYN_COUNT_DEC(dyn_parent_count); \
2298 else { \
2299 DYN_COUNT_DEC(dyn_count); \
2300 if (s->data->flags & DYN_REFERENCED) { \
2301 rule = s->data->parent; \
2302 if (s->type == O_LIMIT) \
2303 rule = ((__typeof(s)) \
2304 rule)->limit->parent;\
2305 dyn_release_rule(ch, s->data, \
2306 rule, s->kidx); \
2307 } \
2308 if (s->type == O_LIMIT) { \
2309 s = s->data->parent; \
2310 DPARENT_COUNT_DEC(s->limit); \
2311 } \
2312 } \
2313 } else { \
2314 prev = s; \
2315 length++; \
2316 } \
2317 s = next; \
2318 } \
2319 if (removed != 0) \
2320 DYN_BUCKET_VERSION_BUMP(bucket, name ## _del); \
2321 if (length > max_length) \
2322 max_length = length; \
2323 } while (0)
2324
2325 SLIST_INIT(&expired_ipv4);
2326 #ifdef INET6
2327 SLIST_INIT(&expired_ipv6);
2328 #endif
2329 max_length = 0;
2330 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2331 DYN_BUCKET_LOCK(bucket);
2332 DYN_UNLINK_STATES(s4, s4p, s4n, data->expire, ipv4, ipv4, 1);
2333 DYN_UNLINK_STATES(s4, s4p, s4n, limit->expire, ipv4,
2334 ipv4_parent, (s4->limit->count == 0));
2335 #ifdef INET6
2336 DYN_UNLINK_STATES(s6, s6p, s6n, data->expire, ipv6, ipv6, 1);
2337 DYN_UNLINK_STATES(s6, s6p, s6n, limit->expire, ipv6,
2338 ipv6_parent, (s6->limit->count == 0));
2339 #endif
2340 DYN_BUCKET_UNLOCK(bucket);
2341 }
2342 /* Update curr_max_length for statistics. */
2343 V_curr_max_length = max_length;
2344 /*
2345 * Concatenate temporary lists with global expired lists.
2346 */
2347 DYN_EXPIRED_LOCK();
2348 SLIST_CONCAT(&V_dyn_expired_ipv4, &expired_ipv4,
2349 dyn_ipv4_state, expired);
2350 #ifdef INET6
2351 SLIST_CONCAT(&V_dyn_expired_ipv6, &expired_ipv6,
2352 dyn_ipv6_state, expired);
2353 #endif
2354 DYN_EXPIRED_UNLOCK();
2355 #undef DYN_UNLINK_STATES
2356 #undef DYN_UNREF_STATES
2357 }
2358
2359 static struct mbuf *
dyn_mgethdr(int len,uint16_t fibnum)2360 dyn_mgethdr(int len, uint16_t fibnum)
2361 {
2362 struct mbuf *m;
2363
2364 m = m_gethdr(M_NOWAIT, MT_DATA);
2365 if (m == NULL)
2366 return (NULL);
2367 #ifdef MAC
2368 mac_netinet_firewall_send(m);
2369 #endif
2370 M_SETFIB(m, fibnum);
2371 m->m_data += max_linkhdr;
2372 m->m_flags |= M_SKIP_FIREWALL;
2373 m->m_len = m->m_pkthdr.len = len;
2374 bzero(m->m_data, len);
2375 return (m);
2376 }
2377
2378 static void
dyn_make_keepalive_ipv4(struct mbuf * m,in_addr_t src,in_addr_t dst,uint32_t seq,uint32_t ack,uint16_t sport,uint16_t dport)2379 dyn_make_keepalive_ipv4(struct mbuf *m, in_addr_t src, in_addr_t dst,
2380 uint32_t seq, uint32_t ack, uint16_t sport, uint16_t dport)
2381 {
2382 struct tcphdr *tcp;
2383 struct ip *ip;
2384
2385 ip = mtod(m, struct ip *);
2386 ip->ip_v = 4;
2387 ip->ip_hl = sizeof(*ip) >> 2;
2388 ip->ip_tos = IPTOS_LOWDELAY;
2389 ip->ip_len = htons(m->m_len);
2390 ip->ip_off |= htons(IP_DF);
2391 ip->ip_ttl = V_ip_defttl;
2392 ip->ip_p = IPPROTO_TCP;
2393 ip->ip_src.s_addr = htonl(src);
2394 ip->ip_dst.s_addr = htonl(dst);
2395
2396 tcp = mtodo(m, sizeof(struct ip));
2397 tcp->th_sport = htons(sport);
2398 tcp->th_dport = htons(dport);
2399 tcp->th_off = sizeof(struct tcphdr) >> 2;
2400 tcp->th_seq = htonl(seq);
2401 tcp->th_ack = htonl(ack);
2402 tcp_set_flags(tcp, TH_ACK);
2403 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2404 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
2405
2406 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2407 m->m_pkthdr.csum_flags = CSUM_TCP;
2408 }
2409
2410 static void
dyn_enqueue_keepalive_ipv4(struct mbufq * q,const struct dyn_ipv4_state * s)2411 dyn_enqueue_keepalive_ipv4(struct mbufq *q, const struct dyn_ipv4_state *s)
2412 {
2413 struct mbuf *m;
2414
2415 if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2416 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2417 s->data->fibnum);
2418 if (m != NULL) {
2419 dyn_make_keepalive_ipv4(m, s->dst, s->src,
2420 s->data->ack_fwd - 1, s->data->ack_rev,
2421 s->dport, s->sport);
2422 if (mbufq_enqueue(q, m)) {
2423 m_freem(m);
2424 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2425 "keepalive queue is reached.\n");
2426 return;
2427 }
2428 }
2429 }
2430
2431 if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2432 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2433 s->data->fibnum);
2434 if (m != NULL) {
2435 dyn_make_keepalive_ipv4(m, s->src, s->dst,
2436 s->data->ack_rev - 1, s->data->ack_fwd,
2437 s->sport, s->dport);
2438 if (mbufq_enqueue(q, m)) {
2439 m_freem(m);
2440 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2441 "keepalive queue is reached.\n");
2442 return;
2443 }
2444 }
2445 }
2446 }
2447
2448 /*
2449 * Prepare and send keep-alive packets.
2450 */
2451 static void
dyn_send_keepalive_ipv4(struct ip_fw_chain * chain)2452 dyn_send_keepalive_ipv4(struct ip_fw_chain *chain)
2453 {
2454 struct mbufq q;
2455 struct mbuf *m;
2456 struct dyn_ipv4_state *s;
2457 uint32_t bucket;
2458
2459 mbufq_init(&q, INT_MAX);
2460 IPFW_UH_RLOCK(chain);
2461 /*
2462 * It is safe to not use hazard pointer and just do lockless
2463 * access to the lists, because states entries can not be deleted
2464 * while we hold IPFW_UH_RLOCK.
2465 */
2466 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2467 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
2468 /*
2469 * Only established TCP connections that will
2470 * become expired within dyn_keepalive_interval.
2471 */
2472 if (s->proto != IPPROTO_TCP ||
2473 (s->data->state & BOTH_SYN) != BOTH_SYN ||
2474 TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2475 s->data->expire))
2476 continue;
2477 dyn_enqueue_keepalive_ipv4(&q, s);
2478 }
2479 }
2480 IPFW_UH_RUNLOCK(chain);
2481 while ((m = mbufq_dequeue(&q)) != NULL)
2482 ip_output(m, NULL, NULL, 0, NULL, NULL);
2483 }
2484
2485 #ifdef INET6
2486 static void
dyn_make_keepalive_ipv6(struct mbuf * m,const struct in6_addr * src,const struct in6_addr * dst,uint32_t zoneid,uint32_t seq,uint32_t ack,uint16_t sport,uint16_t dport)2487 dyn_make_keepalive_ipv6(struct mbuf *m, const struct in6_addr *src,
2488 const struct in6_addr *dst, uint32_t zoneid, uint32_t seq, uint32_t ack,
2489 uint16_t sport, uint16_t dport)
2490 {
2491 struct tcphdr *tcp;
2492 struct ip6_hdr *ip6;
2493
2494 ip6 = mtod(m, struct ip6_hdr *);
2495 ip6->ip6_vfc |= IPV6_VERSION;
2496 ip6->ip6_plen = htons(sizeof(struct tcphdr));
2497 ip6->ip6_nxt = IPPROTO_TCP;
2498 ip6->ip6_hlim = IPV6_DEFHLIM;
2499 ip6->ip6_src = *src;
2500 if (IN6_IS_ADDR_LINKLOCAL(src))
2501 ip6->ip6_src.s6_addr16[1] = htons(zoneid & 0xffff);
2502 ip6->ip6_dst = *dst;
2503 if (IN6_IS_ADDR_LINKLOCAL(dst))
2504 ip6->ip6_dst.s6_addr16[1] = htons(zoneid & 0xffff);
2505
2506 tcp = mtodo(m, sizeof(struct ip6_hdr));
2507 tcp->th_sport = htons(sport);
2508 tcp->th_dport = htons(dport);
2509 tcp->th_off = sizeof(struct tcphdr) >> 2;
2510 tcp->th_seq = htonl(seq);
2511 tcp->th_ack = htonl(ack);
2512 tcp_set_flags(tcp, TH_ACK);
2513 tcp->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr),
2514 IPPROTO_TCP, 0);
2515
2516 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2517 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2518 }
2519
2520 static void
dyn_enqueue_keepalive_ipv6(struct mbufq * q,const struct dyn_ipv6_state * s)2521 dyn_enqueue_keepalive_ipv6(struct mbufq *q, const struct dyn_ipv6_state *s)
2522 {
2523 struct mbuf *m;
2524
2525 if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2526 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2527 sizeof(struct tcphdr), s->data->fibnum);
2528 if (m != NULL) {
2529 dyn_make_keepalive_ipv6(m, &s->dst, &s->src,
2530 s->zoneid, s->data->ack_fwd - 1, s->data->ack_rev,
2531 s->dport, s->sport);
2532 if (mbufq_enqueue(q, m)) {
2533 m_freem(m);
2534 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2535 "keepalive queue is reached.\n");
2536 return;
2537 }
2538 }
2539 }
2540
2541 if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2542 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2543 sizeof(struct tcphdr), s->data->fibnum);
2544 if (m != NULL) {
2545 dyn_make_keepalive_ipv6(m, &s->src, &s->dst,
2546 s->zoneid, s->data->ack_rev - 1, s->data->ack_fwd,
2547 s->sport, s->dport);
2548 if (mbufq_enqueue(q, m)) {
2549 m_freem(m);
2550 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2551 "keepalive queue is reached.\n");
2552 return;
2553 }
2554 }
2555 }
2556 }
2557
2558 static void
dyn_send_keepalive_ipv6(struct ip_fw_chain * chain)2559 dyn_send_keepalive_ipv6(struct ip_fw_chain *chain)
2560 {
2561 struct mbufq q;
2562 struct mbuf *m;
2563 struct dyn_ipv6_state *s;
2564 uint32_t bucket;
2565
2566 mbufq_init(&q, INT_MAX);
2567 IPFW_UH_RLOCK(chain);
2568 /*
2569 * It is safe to not use hazard pointer and just do lockless
2570 * access to the lists, because states entries can not be deleted
2571 * while we hold IPFW_UH_RLOCK.
2572 */
2573 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2574 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
2575 /*
2576 * Only established TCP connections that will
2577 * become expired within dyn_keepalive_interval.
2578 */
2579 if (s->proto != IPPROTO_TCP ||
2580 (s->data->state & BOTH_SYN) != BOTH_SYN ||
2581 TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2582 s->data->expire))
2583 continue;
2584 dyn_enqueue_keepalive_ipv6(&q, s);
2585 }
2586 }
2587 IPFW_UH_RUNLOCK(chain);
2588 while ((m = mbufq_dequeue(&q)) != NULL)
2589 ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2590 }
2591 #endif /* INET6 */
2592
2593 static void
dyn_grow_hashtable(struct ip_fw_chain * chain,uint32_t new,int flags)2594 dyn_grow_hashtable(struct ip_fw_chain *chain, uint32_t new, int flags)
2595 {
2596 #ifdef INET6
2597 struct dyn_ipv6ck_slist *ipv6, *ipv6_parent;
2598 uint32_t *ipv6_add, *ipv6_del, *ipv6_parent_add, *ipv6_parent_del;
2599 struct dyn_ipv6_state *s6;
2600 #endif
2601 struct dyn_ipv4ck_slist *ipv4, *ipv4_parent;
2602 uint32_t *ipv4_add, *ipv4_del, *ipv4_parent_add, *ipv4_parent_del;
2603 struct dyn_ipv4_state *s4;
2604 struct mtx *bucket_lock;
2605 void *tmp;
2606 uint32_t bucket;
2607
2608 MPASS(powerof2(new));
2609 DYN_DEBUG("grow hash size %u -> %u", V_curr_dyn_buckets, new);
2610 /*
2611 * Allocate and initialize new lists.
2612 */
2613 bucket_lock = malloc(new * sizeof(struct mtx), M_IPFW,
2614 flags | M_ZERO);
2615 if (bucket_lock == NULL)
2616 return;
2617
2618 ipv4 = ipv4_parent = NULL;
2619 ipv4_add = ipv4_del = ipv4_parent_add = ipv4_parent_del = NULL;
2620 #ifdef INET6
2621 ipv6 = ipv6_parent = NULL;
2622 ipv6_add = ipv6_del = ipv6_parent_add = ipv6_parent_del = NULL;
2623 #endif
2624
2625 ipv4 = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2626 flags | M_ZERO);
2627 if (ipv4 == NULL)
2628 goto bad;
2629 ipv4_parent = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2630 flags | M_ZERO);
2631 if (ipv4_parent == NULL)
2632 goto bad;
2633 ipv4_add = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2634 if (ipv4_add == NULL)
2635 goto bad;
2636 ipv4_del = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2637 if (ipv4_del == NULL)
2638 goto bad;
2639 ipv4_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2640 flags | M_ZERO);
2641 if (ipv4_parent_add == NULL)
2642 goto bad;
2643 ipv4_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2644 flags | M_ZERO);
2645 if (ipv4_parent_del == NULL)
2646 goto bad;
2647 #ifdef INET6
2648 ipv6 = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2649 flags | M_ZERO);
2650 if (ipv6 == NULL)
2651 goto bad;
2652 ipv6_parent = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2653 flags | M_ZERO);
2654 if (ipv6_parent == NULL)
2655 goto bad;
2656 ipv6_add = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2657 if (ipv6_add == NULL)
2658 goto bad;
2659 ipv6_del = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2660 if (ipv6_del == NULL)
2661 goto bad;
2662 ipv6_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2663 flags | M_ZERO);
2664 if (ipv6_parent_add == NULL)
2665 goto bad;
2666 ipv6_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2667 flags | M_ZERO);
2668 if (ipv6_parent_del == NULL)
2669 goto bad;
2670 #endif
2671 for (bucket = 0; bucket < new; bucket++) {
2672 DYN_BUCKET_LOCK_INIT(bucket_lock, bucket);
2673 CK_SLIST_INIT(&ipv4[bucket]);
2674 CK_SLIST_INIT(&ipv4_parent[bucket]);
2675 #ifdef INET6
2676 CK_SLIST_INIT(&ipv6[bucket]);
2677 CK_SLIST_INIT(&ipv6_parent[bucket]);
2678 #endif
2679 }
2680
2681 #define DYN_RELINK_STATES(s, hval, i, head, ohead) do { \
2682 while ((s = CK_SLIST_FIRST(&V_dyn_ ## ohead[i])) != NULL) { \
2683 CK_SLIST_REMOVE_HEAD(&V_dyn_ ## ohead[i], entry); \
2684 CK_SLIST_INSERT_HEAD(&head[DYN_BUCKET(s->hval, new)], \
2685 s, entry); \
2686 } \
2687 } while (0)
2688 /*
2689 * Prevent rules changing from userland.
2690 */
2691 IPFW_UH_WLOCK(chain);
2692 /*
2693 * Hold traffic processing until we finish resize to
2694 * prevent access to states lists.
2695 */
2696 IPFW_WLOCK(chain);
2697 /* Re-link all dynamic states */
2698 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2699 DYN_RELINK_STATES(s4, data->hashval, bucket, ipv4, ipv4);
2700 DYN_RELINK_STATES(s4, limit->hashval, bucket, ipv4_parent,
2701 ipv4_parent);
2702 #ifdef INET6
2703 DYN_RELINK_STATES(s6, data->hashval, bucket, ipv6, ipv6);
2704 DYN_RELINK_STATES(s6, limit->hashval, bucket, ipv6_parent,
2705 ipv6_parent);
2706 #endif
2707 }
2708
2709 #define DYN_SWAP_PTR(old, new, tmp) do { \
2710 tmp = old; \
2711 old = new; \
2712 new = tmp; \
2713 } while (0)
2714 /* Swap pointers */
2715 DYN_SWAP_PTR(V_dyn_bucket_lock, bucket_lock, tmp);
2716 DYN_SWAP_PTR(V_dyn_ipv4, ipv4, tmp);
2717 DYN_SWAP_PTR(V_dyn_ipv4_parent, ipv4_parent, tmp);
2718 DYN_SWAP_PTR(V_dyn_ipv4_add, ipv4_add, tmp);
2719 DYN_SWAP_PTR(V_dyn_ipv4_parent_add, ipv4_parent_add, tmp);
2720 DYN_SWAP_PTR(V_dyn_ipv4_del, ipv4_del, tmp);
2721 DYN_SWAP_PTR(V_dyn_ipv4_parent_del, ipv4_parent_del, tmp);
2722
2723 #ifdef INET6
2724 DYN_SWAP_PTR(V_dyn_ipv6, ipv6, tmp);
2725 DYN_SWAP_PTR(V_dyn_ipv6_parent, ipv6_parent, tmp);
2726 DYN_SWAP_PTR(V_dyn_ipv6_add, ipv6_add, tmp);
2727 DYN_SWAP_PTR(V_dyn_ipv6_parent_add, ipv6_parent_add, tmp);
2728 DYN_SWAP_PTR(V_dyn_ipv6_del, ipv6_del, tmp);
2729 DYN_SWAP_PTR(V_dyn_ipv6_parent_del, ipv6_parent_del, tmp);
2730 #endif
2731 bucket = V_curr_dyn_buckets;
2732 V_curr_dyn_buckets = new;
2733
2734 IPFW_WUNLOCK(chain);
2735 IPFW_UH_WUNLOCK(chain);
2736
2737 /* Release old resources */
2738 while (bucket-- != 0)
2739 DYN_BUCKET_LOCK_DESTROY(bucket_lock, bucket);
2740 bad:
2741 free(bucket_lock, M_IPFW);
2742 free(ipv4, M_IPFW);
2743 free(ipv4_parent, M_IPFW);
2744 free(ipv4_add, M_IPFW);
2745 free(ipv4_parent_add, M_IPFW);
2746 free(ipv4_del, M_IPFW);
2747 free(ipv4_parent_del, M_IPFW);
2748 #ifdef INET6
2749 free(ipv6, M_IPFW);
2750 free(ipv6_parent, M_IPFW);
2751 free(ipv6_add, M_IPFW);
2752 free(ipv6_parent_add, M_IPFW);
2753 free(ipv6_del, M_IPFW);
2754 free(ipv6_parent_del, M_IPFW);
2755 #endif
2756 }
2757
2758 /*
2759 * This function is used to perform various maintenance
2760 * on dynamic hash lists. Currently it is called every second.
2761 */
2762 static void
dyn_tick(void * vnetx)2763 dyn_tick(void *vnetx)
2764 {
2765 struct epoch_tracker et;
2766 uint32_t buckets;
2767
2768 CURVNET_SET((struct vnet *)vnetx);
2769 /*
2770 * First free states unlinked in previous passes.
2771 */
2772 dyn_free_states(&V_layer3_chain);
2773 /*
2774 * Now unlink others expired states.
2775 * We use IPFW_UH_WLOCK to avoid concurrent call of
2776 * dyn_expire_states(). It is the only function that does
2777 * deletion of state entries from states lists.
2778 */
2779 IPFW_UH_WLOCK(&V_layer3_chain);
2780 dyn_expire_states(&V_layer3_chain, NULL);
2781 IPFW_UH_WUNLOCK(&V_layer3_chain);
2782 /*
2783 * Send keepalives if they are enabled and the time has come.
2784 */
2785 if (V_dyn_keepalive != 0 &&
2786 V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) {
2787 V_dyn_keepalive_last = time_uptime;
2788 NET_EPOCH_ENTER(et);
2789 dyn_send_keepalive_ipv4(&V_layer3_chain);
2790 #ifdef INET6
2791 dyn_send_keepalive_ipv6(&V_layer3_chain);
2792 #endif
2793 NET_EPOCH_EXIT(et);
2794 }
2795 /*
2796 * Check if we need to resize the hash:
2797 * if current number of states exceeds number of buckets in hash,
2798 * and dyn_buckets_max permits to grow the number of buckets, then
2799 * do it. Grow hash size to the minimum power of 2 which is bigger
2800 * than current states count.
2801 */
2802 if (V_curr_dyn_buckets < V_dyn_buckets_max &&
2803 (V_curr_dyn_buckets < V_dyn_count / 2 || (
2804 V_curr_dyn_buckets < V_dyn_count && V_curr_max_length > 8))) {
2805 buckets = 1 << fls(V_dyn_count);
2806 if (buckets > V_dyn_buckets_max)
2807 buckets = V_dyn_buckets_max;
2808 dyn_grow_hashtable(&V_layer3_chain, buckets, M_NOWAIT);
2809 }
2810
2811 callout_reset_on(&V_dyn_timeout, hz, dyn_tick, vnetx, 0);
2812 CURVNET_RESTORE();
2813 }
2814
2815 void
ipfw_expire_dyn_states(struct ip_fw_chain * chain,ipfw_range_tlv * rt)2816 ipfw_expire_dyn_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2817 {
2818 /*
2819 * Do not perform any checks if we currently have no dynamic states
2820 */
2821 if (V_dyn_count == 0)
2822 return;
2823
2824 IPFW_UH_WLOCK_ASSERT(chain);
2825 dyn_expire_states(chain, rt);
2826 }
2827
2828 /*
2829 * Pass through all states and reset eaction for orphaned rules.
2830 */
2831 void
ipfw_dyn_reset_eaction(struct ip_fw_chain * ch,uint32_t eaction_id,uint32_t default_id,uint32_t instance_id)2832 ipfw_dyn_reset_eaction(struct ip_fw_chain *ch, uint32_t eaction_id,
2833 uint32_t default_id, uint32_t instance_id)
2834 {
2835 #ifdef INET6
2836 struct dyn_ipv6_state *s6;
2837 #endif
2838 struct dyn_ipv4_state *s4;
2839 struct ip_fw *rule;
2840 uint32_t bucket;
2841
2842 #define DYN_RESET_EACTION(s, h, b) \
2843 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
2844 if ((s->data->flags & DYN_REFERENCED) == 0) \
2845 continue; \
2846 rule = s->data->parent; \
2847 if (s->type == O_LIMIT) \
2848 rule = ((__typeof(s))rule)->limit->parent; \
2849 ipfw_reset_eaction(ch, rule, eaction_id, \
2850 default_id, instance_id); \
2851 }
2852
2853 IPFW_UH_WLOCK_ASSERT(ch);
2854 if (V_dyn_count == 0)
2855 return;
2856 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2857 DYN_RESET_EACTION(s4, ipv4, bucket);
2858 #ifdef INET6
2859 DYN_RESET_EACTION(s6, ipv6, bucket);
2860 #endif
2861 }
2862 }
2863
2864 /*
2865 * Returns size of dynamic states in legacy format
2866 */
2867 int
ipfw_dyn_len(void)2868 ipfw_dyn_len(void)
2869 {
2870
2871 return ((V_dyn_count + V_dyn_parent_count) * sizeof(ipfw_dyn_rule));
2872 }
2873
2874 /*
2875 * Returns number of dynamic states.
2876 * Marks every named object index used by dynamic states with bit in @bmask.
2877 * Returns number of named objects accounted in bmask via @nocnt.
2878 * Used by dump format v1 (current).
2879 */
2880 uint32_t
ipfw_dyn_get_count(uint32_t * bmask,int * nocnt)2881 ipfw_dyn_get_count(uint32_t *bmask, int *nocnt)
2882 {
2883 #ifdef INET6
2884 struct dyn_ipv6_state *s6;
2885 #endif
2886 struct dyn_ipv4_state *s4;
2887 uint32_t bucket;
2888
2889 #define DYN_COUNT_OBJECTS(s, h, b) \
2890 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
2891 MPASS(s->kidx != 0); \
2892 if (ipfw_mark_object_kidx(bmask, IPFW_TLV_STATE_NAME, \
2893 s->kidx) != 0) \
2894 (*nocnt)++; \
2895 }
2896
2897 IPFW_UH_RLOCK_ASSERT(&V_layer3_chain);
2898
2899 /* No need to pass through all the buckets. */
2900 *nocnt = 0;
2901 if (V_dyn_count + V_dyn_parent_count == 0)
2902 return (0);
2903
2904 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2905 DYN_COUNT_OBJECTS(s4, ipv4, bucket);
2906 #ifdef INET6
2907 DYN_COUNT_OBJECTS(s6, ipv6, bucket);
2908 #endif
2909 }
2910
2911 return (V_dyn_count + V_dyn_parent_count);
2912 }
2913
2914 /*
2915 * Check if rule contains at least one dynamic opcode.
2916 *
2917 * Returns 1 if such opcode is found, 0 otherwise.
2918 */
2919 int
ipfw_is_dyn_rule(struct ip_fw * rule)2920 ipfw_is_dyn_rule(struct ip_fw *rule)
2921 {
2922 int cmdlen, l;
2923 ipfw_insn *cmd;
2924
2925 l = rule->cmd_len;
2926 cmd = rule->cmd;
2927 cmdlen = 0;
2928 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2929 cmdlen = F_LEN(cmd);
2930
2931 switch (cmd->opcode) {
2932 case O_LIMIT:
2933 case O_KEEP_STATE:
2934 case O_PROBE_STATE:
2935 case O_CHECK_STATE:
2936 return (1);
2937 }
2938 }
2939
2940 return (0);
2941 }
2942
2943 static void
dyn_export_parent(const struct dyn_parent * p,uint32_t kidx,uint8_t set,ipfw_dyn_rule * dst)2944 dyn_export_parent(const struct dyn_parent *p, uint32_t kidx, uint8_t set,
2945 ipfw_dyn_rule *dst)
2946 {
2947
2948 dst->type = O_LIMIT_PARENT;
2949 dst->set = set;
2950 dst->kidx = kidx;
2951 dst->rulenum = p->rulenum;
2952 dst->count = DPARENT_COUNT(p);
2953 dst->expire = TIME_LEQ(p->expire, time_uptime) ? 0:
2954 p->expire - time_uptime;
2955 dst->hashval = p->hashval;
2956
2957 /* unused fields */
2958 dst->pad = 0;
2959 dst->pcnt = 0;
2960 dst->bcnt = 0;
2961 dst->ack_fwd = 0;
2962 dst->ack_rev = 0;
2963 }
2964
2965 static void
dyn_export_data(const struct dyn_data * data,uint32_t kidx,uint8_t type,uint8_t set,ipfw_dyn_rule * dst)2966 dyn_export_data(const struct dyn_data *data, uint32_t kidx, uint8_t type,
2967 uint8_t set, ipfw_dyn_rule *dst)
2968 {
2969
2970 dst->type = type;
2971 dst->set = set;
2972 dst->kidx = kidx;
2973 dst->rulenum = data->rulenum;
2974 dst->pcnt = data->pcnt_fwd + data->pcnt_rev;
2975 dst->bcnt = data->bcnt_fwd + data->bcnt_rev;
2976 dst->expire = TIME_LEQ(data->expire, time_uptime) ? 0:
2977 data->expire - time_uptime;
2978 dst->state = data->state;
2979 if (data->flags & DYN_REFERENCED)
2980 dst->state |= IPFW_DYN_ORPHANED;
2981
2982 dst->ack_fwd = data->ack_fwd;
2983 dst->ack_rev = data->ack_rev;
2984 dst->hashval = data->hashval;
2985 }
2986
2987 static void
dyn_export_ipv4_state(const struct dyn_ipv4_state * s,ipfw_dyn_rule * dst)2988 dyn_export_ipv4_state(const struct dyn_ipv4_state *s, ipfw_dyn_rule *dst)
2989 {
2990 struct ip_fw *rule;
2991
2992 switch (s->type) {
2993 case O_LIMIT_PARENT:
2994 rule = s->limit->parent;
2995 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
2996 break;
2997 default:
2998 rule = s->data->parent;
2999 if (s->type == O_LIMIT)
3000 rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
3001 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3002 }
3003
3004 dst->id.dst_ip = s->dst;
3005 dst->id.src_ip = s->src;
3006 dst->id.dst_port = s->dport;
3007 dst->id.src_port = s->sport;
3008 dst->id.fib = s->data->fibnum;
3009 dst->id.proto = s->proto;
3010 dst->id._flags = 0;
3011 dst->id.addr_type = 4;
3012
3013 memset(&dst->id.dst_ip6, 0, sizeof(dst->id.dst_ip6));
3014 memset(&dst->id.src_ip6, 0, sizeof(dst->id.src_ip6));
3015 dst->id.flow_id6 = dst->id.extra = 0;
3016 }
3017
3018 #ifdef INET6
3019 static void
dyn_export_ipv6_state(const struct dyn_ipv6_state * s,ipfw_dyn_rule * dst)3020 dyn_export_ipv6_state(const struct dyn_ipv6_state *s, ipfw_dyn_rule *dst)
3021 {
3022 struct ip_fw *rule;
3023
3024 switch (s->type) {
3025 case O_LIMIT_PARENT:
3026 rule = s->limit->parent;
3027 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3028 break;
3029 default:
3030 rule = s->data->parent;
3031 if (s->type == O_LIMIT)
3032 rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
3033 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3034 }
3035
3036 dst->id.src_ip6 = s->src;
3037 dst->id.dst_ip6 = s->dst;
3038 dst->id.dst_port = s->dport;
3039 dst->id.src_port = s->sport;
3040 dst->id.fib = s->data->fibnum;
3041 dst->id.proto = s->proto;
3042 dst->id._flags = 0;
3043 dst->id.addr_type = 6;
3044
3045 dst->id.dst_ip = dst->id.src_ip = 0;
3046 dst->id.flow_id6 = dst->id.extra = 0;
3047 }
3048 #endif /* INET6 */
3049
3050 /*
3051 * Fills the buffer given by @sd with dynamic states.
3052 * Used by dump format v1 (current).
3053 *
3054 * Returns 0 on success.
3055 */
3056 int
ipfw_dump_states(struct ip_fw_chain * chain,struct sockopt_data * sd)3057 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
3058 {
3059 #ifdef INET6
3060 struct dyn_ipv6_state *s6;
3061 #endif
3062 struct dyn_ipv4_state *s4;
3063 ipfw_obj_dyntlv *dst, *last;
3064 ipfw_obj_ctlv *ctlv;
3065 uint32_t bucket;
3066
3067 if (V_dyn_count == 0)
3068 return (0);
3069
3070 /*
3071 * IPFW_UH_RLOCK garantees that another userland request
3072 * and callout thread will not delete entries from states
3073 * lists.
3074 */
3075 IPFW_UH_RLOCK_ASSERT(chain);
3076
3077 ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
3078 if (ctlv == NULL)
3079 return (ENOMEM);
3080 ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
3081 ctlv->objsize = sizeof(ipfw_obj_dyntlv);
3082 last = NULL;
3083
3084 #define DYN_EXPORT_STATES(s, af, h, b) \
3085 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
3086 dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd, \
3087 sizeof(ipfw_obj_dyntlv)); \
3088 if (dst == NULL) \
3089 return (ENOMEM); \
3090 dyn_export_ ## af ## _state(s, &dst->state); \
3091 dst->head.length = sizeof(ipfw_obj_dyntlv); \
3092 dst->head.type = IPFW_TLV_DYN_ENT; \
3093 last = dst; \
3094 }
3095
3096 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3097 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3098 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3099 #ifdef INET6
3100 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3101 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3102 #endif /* INET6 */
3103 }
3104
3105 /* mark last dynamic rule */
3106 if (last != NULL)
3107 last->head.flags = IPFW_DF_LAST; /* XXX: unused */
3108 return (0);
3109 #undef DYN_EXPORT_STATES
3110 }
3111
3112 void
ipfw_dyn_init(struct ip_fw_chain * chain)3113 ipfw_dyn_init(struct ip_fw_chain *chain)
3114 {
3115
3116 #ifdef IPFIREWALL_JENKINSHASH
3117 V_dyn_hashseed = arc4random();
3118 #endif
3119 V_dyn_max = 16384; /* max # of states */
3120 V_dyn_parent_max = 4096; /* max # of parent states */
3121 V_dyn_buckets_max = 8192; /* must be power of 2 */
3122
3123 V_dyn_ack_lifetime = 300;
3124 V_dyn_syn_lifetime = 20;
3125 V_dyn_fin_lifetime = 1;
3126 V_dyn_rst_lifetime = 1;
3127 V_dyn_udp_lifetime = 10;
3128 V_dyn_short_lifetime = 5;
3129
3130 V_dyn_keepalive_interval = 20;
3131 V_dyn_keepalive_period = 5;
3132 V_dyn_keepalive = 1; /* send keepalives */
3133 V_dyn_keepalive_last = time_uptime;
3134
3135 V_dyn_data_zone = uma_zcreate("IPFW dynamic states data",
3136 sizeof(struct dyn_data), NULL, NULL, NULL, NULL,
3137 UMA_ALIGN_PTR, 0);
3138 uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
3139
3140 V_dyn_parent_zone = uma_zcreate("IPFW parent dynamic states",
3141 sizeof(struct dyn_parent), NULL, NULL, NULL, NULL,
3142 UMA_ALIGN_PTR, 0);
3143 uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
3144
3145 SLIST_INIT(&V_dyn_expired_ipv4);
3146 V_dyn_ipv4 = NULL;
3147 V_dyn_ipv4_parent = NULL;
3148 V_dyn_ipv4_zone = uma_zcreate("IPFW IPv4 dynamic states",
3149 sizeof(struct dyn_ipv4_state), NULL, NULL, NULL, NULL,
3150 UMA_ALIGN_PTR, 0);
3151
3152 #ifdef INET6
3153 SLIST_INIT(&V_dyn_expired_ipv6);
3154 V_dyn_ipv6 = NULL;
3155 V_dyn_ipv6_parent = NULL;
3156 V_dyn_ipv6_zone = uma_zcreate("IPFW IPv6 dynamic states",
3157 sizeof(struct dyn_ipv6_state), NULL, NULL, NULL, NULL,
3158 UMA_ALIGN_PTR, 0);
3159 #endif
3160
3161 /* Initialize buckets. */
3162 V_curr_dyn_buckets = 0;
3163 V_dyn_bucket_lock = NULL;
3164 dyn_grow_hashtable(chain, 256, M_WAITOK);
3165
3166 if (IS_DEFAULT_VNET(curvnet))
3167 dyn_hp_cache = malloc(mp_ncpus * sizeof(void *), M_IPFW,
3168 M_WAITOK | M_ZERO);
3169
3170 DYN_EXPIRED_LOCK_INIT();
3171 callout_init(&V_dyn_timeout, 1);
3172 callout_reset(&V_dyn_timeout, hz, dyn_tick, curvnet);
3173 IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3174 }
3175
3176 void
ipfw_dyn_uninit(int pass)3177 ipfw_dyn_uninit(int pass)
3178 {
3179 #ifdef INET6
3180 struct dyn_ipv6_state *s6;
3181 #endif
3182 struct dyn_ipv4_state *s4;
3183 int bucket;
3184
3185 if (pass == 0) {
3186 callout_drain(&V_dyn_timeout);
3187 return;
3188 }
3189 IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3190 DYN_EXPIRED_LOCK_DESTROY();
3191
3192 #define DYN_FREE_STATES_FORCED(CK, s, af, name, en) do { \
3193 while ((s = CK ## SLIST_FIRST(&V_dyn_ ## name)) != NULL) { \
3194 CK ## SLIST_REMOVE_HEAD(&V_dyn_ ## name, en); \
3195 if (s->type == O_LIMIT_PARENT) \
3196 uma_zfree(V_dyn_parent_zone, s->limit); \
3197 else \
3198 uma_zfree(V_dyn_data_zone, s->data); \
3199 uma_zfree(V_dyn_ ## af ## _zone, s); \
3200 } \
3201 } while (0)
3202 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3203 DYN_BUCKET_LOCK_DESTROY(V_dyn_bucket_lock, bucket);
3204
3205 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4[bucket], entry);
3206 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4_parent[bucket],
3207 entry);
3208 #ifdef INET6
3209 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6[bucket], entry);
3210 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6_parent[bucket],
3211 entry);
3212 #endif /* INET6 */
3213 }
3214 DYN_FREE_STATES_FORCED(, s4, ipv4, expired_ipv4, expired);
3215 #ifdef INET6
3216 DYN_FREE_STATES_FORCED(, s6, ipv6, expired_ipv6, expired);
3217 #endif
3218 #undef DYN_FREE_STATES_FORCED
3219
3220 uma_zdestroy(V_dyn_ipv4_zone);
3221 uma_zdestroy(V_dyn_data_zone);
3222 uma_zdestroy(V_dyn_parent_zone);
3223 #ifdef INET6
3224 uma_zdestroy(V_dyn_ipv6_zone);
3225 free(V_dyn_ipv6, M_IPFW);
3226 free(V_dyn_ipv6_parent, M_IPFW);
3227 free(V_dyn_ipv6_add, M_IPFW);
3228 free(V_dyn_ipv6_parent_add, M_IPFW);
3229 free(V_dyn_ipv6_del, M_IPFW);
3230 free(V_dyn_ipv6_parent_del, M_IPFW);
3231 #endif
3232 free(V_dyn_bucket_lock, M_IPFW);
3233 free(V_dyn_ipv4, M_IPFW);
3234 free(V_dyn_ipv4_parent, M_IPFW);
3235 free(V_dyn_ipv4_add, M_IPFW);
3236 free(V_dyn_ipv4_parent_add, M_IPFW);
3237 free(V_dyn_ipv4_del, M_IPFW);
3238 free(V_dyn_ipv4_parent_del, M_IPFW);
3239 if (IS_DEFAULT_VNET(curvnet))
3240 free(dyn_hp_cache, M_IPFW);
3241 }
3242