xref: /freebsd/crypto/openssl/crypto/bn/bn_gf2m.c (revision e0c4386e7e71d93b0edc0c8fa156263fc4a8b0b6)
1 /*
2  * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4  *
5  * Licensed under the Apache License 2.0 (the "License").  You may not use
6  * this file except in compliance with the License.  You can obtain a copy
7  * in the file LICENSE in the source distribution or at
8  * https://www.openssl.org/source/license.html
9  */
10 
11 #include <assert.h>
12 #include <limits.h>
13 #include <stdio.h>
14 #include "internal/cryptlib.h"
15 #include "bn_local.h"
16 
17 #ifndef OPENSSL_NO_EC2M
18 
19 /*
20  * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
21  * fail.
22  */
23 # define MAX_ITERATIONS 50
24 
25 # define SQR_nibble(w)   ((((w) & 8) << 3) \
26                        |  (((w) & 4) << 2) \
27                        |  (((w) & 2) << 1) \
28                        |   ((w) & 1))
29 
30 
31 /* Platform-specific macros to accelerate squaring. */
32 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
33 #  define SQR1(w) \
34     SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \
35     SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \
36     SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \
37     SQR_nibble((w) >> 36) <<  8 | SQR_nibble((w) >> 32)
38 #  define SQR0(w) \
39     SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \
40     SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \
41     SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >>  8) << 16 | \
42     SQR_nibble((w) >>  4) <<  8 | SQR_nibble((w)      )
43 # endif
44 # ifdef THIRTY_TWO_BIT
45 #  define SQR1(w) \
46     SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \
47     SQR_nibble((w) >> 20) <<  8 | SQR_nibble((w) >> 16)
48 #  define SQR0(w) \
49     SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >>  8) << 16 | \
50     SQR_nibble((w) >>  4) <<  8 | SQR_nibble((w)      )
51 # endif
52 
53 # if !defined(OPENSSL_BN_ASM_GF2m)
54 /*
55  * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
56  * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
57  * the variables have the right amount of space allocated.
58  */
59 #  ifdef THIRTY_TWO_BIT
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)60 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
61                             const BN_ULONG b)
62 {
63     register BN_ULONG h, l, s;
64     BN_ULONG tab[8], top2b = a >> 30;
65     register BN_ULONG a1, a2, a4;
66 
67     a1 = a & (0x3FFFFFFF);
68     a2 = a1 << 1;
69     a4 = a2 << 1;
70 
71     tab[0] = 0;
72     tab[1] = a1;
73     tab[2] = a2;
74     tab[3] = a1 ^ a2;
75     tab[4] = a4;
76     tab[5] = a1 ^ a4;
77     tab[6] = a2 ^ a4;
78     tab[7] = a1 ^ a2 ^ a4;
79 
80     s = tab[b & 0x7];
81     l = s;
82     s = tab[b >> 3 & 0x7];
83     l ^= s << 3;
84     h = s >> 29;
85     s = tab[b >> 6 & 0x7];
86     l ^= s << 6;
87     h ^= s >> 26;
88     s = tab[b >> 9 & 0x7];
89     l ^= s << 9;
90     h ^= s >> 23;
91     s = tab[b >> 12 & 0x7];
92     l ^= s << 12;
93     h ^= s >> 20;
94     s = tab[b >> 15 & 0x7];
95     l ^= s << 15;
96     h ^= s >> 17;
97     s = tab[b >> 18 & 0x7];
98     l ^= s << 18;
99     h ^= s >> 14;
100     s = tab[b >> 21 & 0x7];
101     l ^= s << 21;
102     h ^= s >> 11;
103     s = tab[b >> 24 & 0x7];
104     l ^= s << 24;
105     h ^= s >> 8;
106     s = tab[b >> 27 & 0x7];
107     l ^= s << 27;
108     h ^= s >> 5;
109     s = tab[b >> 30];
110     l ^= s << 30;
111     h ^= s >> 2;
112 
113     /* compensate for the top two bits of a */
114 
115     if (top2b & 01) {
116         l ^= b << 30;
117         h ^= b >> 2;
118     }
119     if (top2b & 02) {
120         l ^= b << 31;
121         h ^= b >> 1;
122     }
123 
124     *r1 = h;
125     *r0 = l;
126 }
127 #  endif
128 #  if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)129 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
130                             const BN_ULONG b)
131 {
132     register BN_ULONG h, l, s;
133     BN_ULONG tab[16], top3b = a >> 61;
134     register BN_ULONG a1, a2, a4, a8;
135 
136     a1 = a & (0x1FFFFFFFFFFFFFFFULL);
137     a2 = a1 << 1;
138     a4 = a2 << 1;
139     a8 = a4 << 1;
140 
141     tab[0] = 0;
142     tab[1] = a1;
143     tab[2] = a2;
144     tab[3] = a1 ^ a2;
145     tab[4] = a4;
146     tab[5] = a1 ^ a4;
147     tab[6] = a2 ^ a4;
148     tab[7] = a1 ^ a2 ^ a4;
149     tab[8] = a8;
150     tab[9] = a1 ^ a8;
151     tab[10] = a2 ^ a8;
152     tab[11] = a1 ^ a2 ^ a8;
153     tab[12] = a4 ^ a8;
154     tab[13] = a1 ^ a4 ^ a8;
155     tab[14] = a2 ^ a4 ^ a8;
156     tab[15] = a1 ^ a2 ^ a4 ^ a8;
157 
158     s = tab[b & 0xF];
159     l = s;
160     s = tab[b >> 4 & 0xF];
161     l ^= s << 4;
162     h = s >> 60;
163     s = tab[b >> 8 & 0xF];
164     l ^= s << 8;
165     h ^= s >> 56;
166     s = tab[b >> 12 & 0xF];
167     l ^= s << 12;
168     h ^= s >> 52;
169     s = tab[b >> 16 & 0xF];
170     l ^= s << 16;
171     h ^= s >> 48;
172     s = tab[b >> 20 & 0xF];
173     l ^= s << 20;
174     h ^= s >> 44;
175     s = tab[b >> 24 & 0xF];
176     l ^= s << 24;
177     h ^= s >> 40;
178     s = tab[b >> 28 & 0xF];
179     l ^= s << 28;
180     h ^= s >> 36;
181     s = tab[b >> 32 & 0xF];
182     l ^= s << 32;
183     h ^= s >> 32;
184     s = tab[b >> 36 & 0xF];
185     l ^= s << 36;
186     h ^= s >> 28;
187     s = tab[b >> 40 & 0xF];
188     l ^= s << 40;
189     h ^= s >> 24;
190     s = tab[b >> 44 & 0xF];
191     l ^= s << 44;
192     h ^= s >> 20;
193     s = tab[b >> 48 & 0xF];
194     l ^= s << 48;
195     h ^= s >> 16;
196     s = tab[b >> 52 & 0xF];
197     l ^= s << 52;
198     h ^= s >> 12;
199     s = tab[b >> 56 & 0xF];
200     l ^= s << 56;
201     h ^= s >> 8;
202     s = tab[b >> 60];
203     l ^= s << 60;
204     h ^= s >> 4;
205 
206     /* compensate for the top three bits of a */
207 
208     if (top3b & 01) {
209         l ^= b << 61;
210         h ^= b >> 3;
211     }
212     if (top3b & 02) {
213         l ^= b << 62;
214         h ^= b >> 2;
215     }
216     if (top3b & 04) {
217         l ^= b << 63;
218         h ^= b >> 1;
219     }
220 
221     *r1 = h;
222     *r0 = l;
223 }
224 #  endif
225 
226 /*
227  * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
228  * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
229  * ensure that the variables have the right amount of space allocated.
230  */
bn_GF2m_mul_2x2(BN_ULONG * r,const BN_ULONG a1,const BN_ULONG a0,const BN_ULONG b1,const BN_ULONG b0)231 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
232                             const BN_ULONG b1, const BN_ULONG b0)
233 {
234     BN_ULONG m1, m0;
235     /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
236     bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
237     bn_GF2m_mul_1x1(r + 1, r, a0, b0);
238     bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
239     /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
240     r[2] ^= m1 ^ r[1] ^ r[3];   /* h0 ^= m1 ^ l1 ^ h1; */
241     r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
242 }
243 # else
244 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
245                      BN_ULONG b0);
246 # endif
247 
248 /*
249  * Add polynomials a and b and store result in r; r could be a or b, a and b
250  * could be equal; r is the bitwise XOR of a and b.
251  */
BN_GF2m_add(BIGNUM * r,const BIGNUM * a,const BIGNUM * b)252 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
253 {
254     int i;
255     const BIGNUM *at, *bt;
256 
257     bn_check_top(a);
258     bn_check_top(b);
259 
260     if (a->top < b->top) {
261         at = b;
262         bt = a;
263     } else {
264         at = a;
265         bt = b;
266     }
267 
268     if (bn_wexpand(r, at->top) == NULL)
269         return 0;
270 
271     for (i = 0; i < bt->top; i++) {
272         r->d[i] = at->d[i] ^ bt->d[i];
273     }
274     for (; i < at->top; i++) {
275         r->d[i] = at->d[i];
276     }
277 
278     r->top = at->top;
279     bn_correct_top(r);
280 
281     return 1;
282 }
283 
284 /*-
285  * Some functions allow for representation of the irreducible polynomials
286  * as an int[], say p.  The irreducible f(t) is then of the form:
287  *     t^p[0] + t^p[1] + ... + t^p[k]
288  * where m = p[0] > p[1] > ... > p[k] = 0.
289  */
290 
291 /* Performs modular reduction of a and store result in r.  r could be a. */
BN_GF2m_mod_arr(BIGNUM * r,const BIGNUM * a,const int p[])292 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
293 {
294     int j, k;
295     int n, dN, d0, d1;
296     BN_ULONG zz, *z;
297 
298     bn_check_top(a);
299 
300     if (p[0] == 0) {
301         /* reduction mod 1 => return 0 */
302         BN_zero(r);
303         return 1;
304     }
305 
306     /*
307      * Since the algorithm does reduction in the r value, if a != r, copy the
308      * contents of a into r so we can do reduction in r.
309      */
310     if (a != r) {
311         if (!bn_wexpand(r, a->top))
312             return 0;
313         for (j = 0; j < a->top; j++) {
314             r->d[j] = a->d[j];
315         }
316         r->top = a->top;
317     }
318     z = r->d;
319 
320     /* start reduction */
321     dN = p[0] / BN_BITS2;
322     for (j = r->top - 1; j > dN;) {
323         zz = z[j];
324         if (z[j] == 0) {
325             j--;
326             continue;
327         }
328         z[j] = 0;
329 
330         for (k = 1; p[k] != 0; k++) {
331             /* reducing component t^p[k] */
332             n = p[0] - p[k];
333             d0 = n % BN_BITS2;
334             d1 = BN_BITS2 - d0;
335             n /= BN_BITS2;
336             z[j - n] ^= (zz >> d0);
337             if (d0)
338                 z[j - n - 1] ^= (zz << d1);
339         }
340 
341         /* reducing component t^0 */
342         n = dN;
343         d0 = p[0] % BN_BITS2;
344         d1 = BN_BITS2 - d0;
345         z[j - n] ^= (zz >> d0);
346         if (d0)
347             z[j - n - 1] ^= (zz << d1);
348     }
349 
350     /* final round of reduction */
351     while (j == dN) {
352 
353         d0 = p[0] % BN_BITS2;
354         zz = z[dN] >> d0;
355         if (zz == 0)
356             break;
357         d1 = BN_BITS2 - d0;
358 
359         /* clear up the top d1 bits */
360         if (d0)
361             z[dN] = (z[dN] << d1) >> d1;
362         else
363             z[dN] = 0;
364         z[0] ^= zz;             /* reduction t^0 component */
365 
366         for (k = 1; p[k] != 0; k++) {
367             BN_ULONG tmp_ulong;
368 
369             /* reducing component t^p[k] */
370             n = p[k] / BN_BITS2;
371             d0 = p[k] % BN_BITS2;
372             d1 = BN_BITS2 - d0;
373             z[n] ^= (zz << d0);
374             if (d0 && (tmp_ulong = zz >> d1))
375                 z[n + 1] ^= tmp_ulong;
376         }
377 
378     }
379 
380     bn_correct_top(r);
381     return 1;
382 }
383 
384 /*
385  * Performs modular reduction of a by p and store result in r.  r could be a.
386  * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
387  * function is only provided for convenience; for best performance, use the
388  * BN_GF2m_mod_arr function.
389  */
BN_GF2m_mod(BIGNUM * r,const BIGNUM * a,const BIGNUM * p)390 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
391 {
392     int ret = 0;
393     int arr[6];
394     bn_check_top(a);
395     bn_check_top(p);
396     ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
397     if (!ret || ret > (int)OSSL_NELEM(arr)) {
398         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
399         return 0;
400     }
401     ret = BN_GF2m_mod_arr(r, a, arr);
402     bn_check_top(r);
403     return ret;
404 }
405 
406 /*
407  * Compute the product of two polynomials a and b, reduce modulo p, and store
408  * the result in r.  r could be a or b; a could be b.
409  */
BN_GF2m_mod_mul_arr(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const int p[],BN_CTX * ctx)410 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
411                         const int p[], BN_CTX *ctx)
412 {
413     int zlen, i, j, k, ret = 0;
414     BIGNUM *s;
415     BN_ULONG x1, x0, y1, y0, zz[4];
416 
417     bn_check_top(a);
418     bn_check_top(b);
419 
420     if (a == b) {
421         return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
422     }
423 
424     BN_CTX_start(ctx);
425     if ((s = BN_CTX_get(ctx)) == NULL)
426         goto err;
427 
428     zlen = a->top + b->top + 4;
429     if (!bn_wexpand(s, zlen))
430         goto err;
431     s->top = zlen;
432 
433     for (i = 0; i < zlen; i++)
434         s->d[i] = 0;
435 
436     for (j = 0; j < b->top; j += 2) {
437         y0 = b->d[j];
438         y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
439         for (i = 0; i < a->top; i += 2) {
440             x0 = a->d[i];
441             x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
442             bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
443             for (k = 0; k < 4; k++)
444                 s->d[i + j + k] ^= zz[k];
445         }
446     }
447 
448     bn_correct_top(s);
449     if (BN_GF2m_mod_arr(r, s, p))
450         ret = 1;
451     bn_check_top(r);
452 
453  err:
454     BN_CTX_end(ctx);
455     return ret;
456 }
457 
458 /*
459  * Compute the product of two polynomials a and b, reduce modulo p, and store
460  * the result in r.  r could be a or b; a could equal b. This function calls
461  * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
462  * only provided for convenience; for best performance, use the
463  * BN_GF2m_mod_mul_arr function.
464  */
BN_GF2m_mod_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * p,BN_CTX * ctx)465 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
466                     const BIGNUM *p, BN_CTX *ctx)
467 {
468     int ret = 0;
469     const int max = BN_num_bits(p) + 1;
470     int *arr;
471 
472     bn_check_top(a);
473     bn_check_top(b);
474     bn_check_top(p);
475 
476     arr = OPENSSL_malloc(sizeof(*arr) * max);
477     if (arr == NULL) {
478         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
479         return 0;
480     }
481     ret = BN_GF2m_poly2arr(p, arr, max);
482     if (!ret || ret > max) {
483         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
484         goto err;
485     }
486     ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
487     bn_check_top(r);
488  err:
489     OPENSSL_free(arr);
490     return ret;
491 }
492 
493 /* Square a, reduce the result mod p, and store it in a.  r could be a. */
BN_GF2m_mod_sqr_arr(BIGNUM * r,const BIGNUM * a,const int p[],BN_CTX * ctx)494 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
495                         BN_CTX *ctx)
496 {
497     int i, ret = 0;
498     BIGNUM *s;
499 
500     bn_check_top(a);
501     BN_CTX_start(ctx);
502     if ((s = BN_CTX_get(ctx)) == NULL)
503         goto err;
504     if (!bn_wexpand(s, 2 * a->top))
505         goto err;
506 
507     for (i = a->top - 1; i >= 0; i--) {
508         s->d[2 * i + 1] = SQR1(a->d[i]);
509         s->d[2 * i] = SQR0(a->d[i]);
510     }
511 
512     s->top = 2 * a->top;
513     bn_correct_top(s);
514     if (!BN_GF2m_mod_arr(r, s, p))
515         goto err;
516     bn_check_top(r);
517     ret = 1;
518  err:
519     BN_CTX_end(ctx);
520     return ret;
521 }
522 
523 /*
524  * Square a, reduce the result mod p, and store it in a.  r could be a. This
525  * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
526  * wrapper function is only provided for convenience; for best performance,
527  * use the BN_GF2m_mod_sqr_arr function.
528  */
BN_GF2m_mod_sqr(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)529 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
530 {
531     int ret = 0;
532     const int max = BN_num_bits(p) + 1;
533     int *arr;
534 
535     bn_check_top(a);
536     bn_check_top(p);
537 
538     arr = OPENSSL_malloc(sizeof(*arr) * max);
539     if (arr == NULL) {
540         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
541         return 0;
542     }
543     ret = BN_GF2m_poly2arr(p, arr, max);
544     if (!ret || ret > max) {
545         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
546         goto err;
547     }
548     ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
549     bn_check_top(r);
550  err:
551     OPENSSL_free(arr);
552     return ret;
553 }
554 
555 /*
556  * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
557  * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
558  * Hernandez, J.L., and Menezes, A.  "Software Implementation of Elliptic
559  * Curve Cryptography Over Binary Fields".
560  */
BN_GF2m_mod_inv_vartime(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)561 static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a,
562                                    const BIGNUM *p, BN_CTX *ctx)
563 {
564     BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
565     int ret = 0;
566 
567     bn_check_top(a);
568     bn_check_top(p);
569 
570     BN_CTX_start(ctx);
571 
572     b = BN_CTX_get(ctx);
573     c = BN_CTX_get(ctx);
574     u = BN_CTX_get(ctx);
575     v = BN_CTX_get(ctx);
576     if (v == NULL)
577         goto err;
578 
579     if (!BN_GF2m_mod(u, a, p))
580         goto err;
581     if (BN_is_zero(u))
582         goto err;
583 
584     if (!BN_copy(v, p))
585         goto err;
586 # if 0
587     if (!BN_one(b))
588         goto err;
589 
590     while (1) {
591         while (!BN_is_odd(u)) {
592             if (BN_is_zero(u))
593                 goto err;
594             if (!BN_rshift1(u, u))
595                 goto err;
596             if (BN_is_odd(b)) {
597                 if (!BN_GF2m_add(b, b, p))
598                     goto err;
599             }
600             if (!BN_rshift1(b, b))
601                 goto err;
602         }
603 
604         if (BN_abs_is_word(u, 1))
605             break;
606 
607         if (BN_num_bits(u) < BN_num_bits(v)) {
608             tmp = u;
609             u = v;
610             v = tmp;
611             tmp = b;
612             b = c;
613             c = tmp;
614         }
615 
616         if (!BN_GF2m_add(u, u, v))
617             goto err;
618         if (!BN_GF2m_add(b, b, c))
619             goto err;
620     }
621 # else
622     {
623         int i;
624         int ubits = BN_num_bits(u);
625         int vbits = BN_num_bits(v); /* v is copy of p */
626         int top = p->top;
627         BN_ULONG *udp, *bdp, *vdp, *cdp;
628 
629         if (!bn_wexpand(u, top))
630             goto err;
631         udp = u->d;
632         for (i = u->top; i < top; i++)
633             udp[i] = 0;
634         u->top = top;
635         if (!bn_wexpand(b, top))
636           goto err;
637         bdp = b->d;
638         bdp[0] = 1;
639         for (i = 1; i < top; i++)
640             bdp[i] = 0;
641         b->top = top;
642         if (!bn_wexpand(c, top))
643           goto err;
644         cdp = c->d;
645         for (i = 0; i < top; i++)
646             cdp[i] = 0;
647         c->top = top;
648         vdp = v->d;             /* It pays off to "cache" *->d pointers,
649                                  * because it allows optimizer to be more
650                                  * aggressive. But we don't have to "cache"
651                                  * p->d, because *p is declared 'const'... */
652         while (1) {
653             while (ubits && !(udp[0] & 1)) {
654                 BN_ULONG u0, u1, b0, b1, mask;
655 
656                 u0 = udp[0];
657                 b0 = bdp[0];
658                 mask = (BN_ULONG)0 - (b0 & 1);
659                 b0 ^= p->d[0] & mask;
660                 for (i = 0; i < top - 1; i++) {
661                     u1 = udp[i + 1];
662                     udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
663                     u0 = u1;
664                     b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
665                     bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
666                     b0 = b1;
667                 }
668                 udp[i] = u0 >> 1;
669                 bdp[i] = b0 >> 1;
670                 ubits--;
671             }
672 
673             if (ubits <= BN_BITS2) {
674                 if (udp[0] == 0) /* poly was reducible */
675                     goto err;
676                 if (udp[0] == 1)
677                     break;
678             }
679 
680             if (ubits < vbits) {
681                 i = ubits;
682                 ubits = vbits;
683                 vbits = i;
684                 tmp = u;
685                 u = v;
686                 v = tmp;
687                 tmp = b;
688                 b = c;
689                 c = tmp;
690                 udp = vdp;
691                 vdp = v->d;
692                 bdp = cdp;
693                 cdp = c->d;
694             }
695             for (i = 0; i < top; i++) {
696                 udp[i] ^= vdp[i];
697                 bdp[i] ^= cdp[i];
698             }
699             if (ubits == vbits) {
700                 BN_ULONG ul;
701                 int utop = (ubits - 1) / BN_BITS2;
702 
703                 while ((ul = udp[utop]) == 0 && utop)
704                     utop--;
705                 ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
706             }
707         }
708         bn_correct_top(b);
709     }
710 # endif
711 
712     if (!BN_copy(r, b))
713         goto err;
714     bn_check_top(r);
715     ret = 1;
716 
717  err:
718 # ifdef BN_DEBUG
719     /* BN_CTX_end would complain about the expanded form */
720     bn_correct_top(c);
721     bn_correct_top(u);
722     bn_correct_top(v);
723 # endif
724     BN_CTX_end(ctx);
725     return ret;
726 }
727 
728 /*-
729  * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling.
730  * This is not constant time.
731  * But it does eliminate first order deduction on the input.
732  */
BN_GF2m_mod_inv(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)733 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
734 {
735     BIGNUM *b = NULL;
736     int ret = 0;
737     int numbits;
738 
739     BN_CTX_start(ctx);
740     if ((b = BN_CTX_get(ctx)) == NULL)
741         goto err;
742 
743     /* Fail on a non-sensical input p value */
744     numbits = BN_num_bits(p);
745     if (numbits <= 1)
746         goto err;
747 
748     /* generate blinding value */
749     do {
750         if (!BN_priv_rand_ex(b, numbits - 1,
751                              BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx))
752             goto err;
753     } while (BN_is_zero(b));
754 
755     /* r := a * b */
756     if (!BN_GF2m_mod_mul(r, a, b, p, ctx))
757         goto err;
758 
759     /* r := 1/(a * b) */
760     if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx))
761         goto err;
762 
763     /* r := b/(a * b) = 1/a */
764     if (!BN_GF2m_mod_mul(r, r, b, p, ctx))
765         goto err;
766 
767     ret = 1;
768 
769  err:
770     BN_CTX_end(ctx);
771     return ret;
772 }
773 
774 /*
775  * Invert xx, reduce modulo p, and store the result in r. r could be xx.
776  * This function calls down to the BN_GF2m_mod_inv implementation; this
777  * wrapper function is only provided for convenience; for best performance,
778  * use the BN_GF2m_mod_inv function.
779  */
BN_GF2m_mod_inv_arr(BIGNUM * r,const BIGNUM * xx,const int p[],BN_CTX * ctx)780 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
781                         BN_CTX *ctx)
782 {
783     BIGNUM *field;
784     int ret = 0;
785 
786     bn_check_top(xx);
787     BN_CTX_start(ctx);
788     if ((field = BN_CTX_get(ctx)) == NULL)
789         goto err;
790     if (!BN_GF2m_arr2poly(p, field))
791         goto err;
792 
793     ret = BN_GF2m_mod_inv(r, xx, field, ctx);
794     bn_check_top(r);
795 
796  err:
797     BN_CTX_end(ctx);
798     return ret;
799 }
800 
801 /*
802  * Divide y by x, reduce modulo p, and store the result in r. r could be x
803  * or y, x could equal y.
804  */
BN_GF2m_mod_div(BIGNUM * r,const BIGNUM * y,const BIGNUM * x,const BIGNUM * p,BN_CTX * ctx)805 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
806                     const BIGNUM *p, BN_CTX *ctx)
807 {
808     BIGNUM *xinv = NULL;
809     int ret = 0;
810 
811     bn_check_top(y);
812     bn_check_top(x);
813     bn_check_top(p);
814 
815     BN_CTX_start(ctx);
816     xinv = BN_CTX_get(ctx);
817     if (xinv == NULL)
818         goto err;
819 
820     if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
821         goto err;
822     if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
823         goto err;
824     bn_check_top(r);
825     ret = 1;
826 
827  err:
828     BN_CTX_end(ctx);
829     return ret;
830 }
831 
832 /*
833  * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
834  * * or yy, xx could equal yy. This function calls down to the
835  * BN_GF2m_mod_div implementation; this wrapper function is only provided for
836  * convenience; for best performance, use the BN_GF2m_mod_div function.
837  */
BN_GF2m_mod_div_arr(BIGNUM * r,const BIGNUM * yy,const BIGNUM * xx,const int p[],BN_CTX * ctx)838 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
839                         const int p[], BN_CTX *ctx)
840 {
841     BIGNUM *field;
842     int ret = 0;
843 
844     bn_check_top(yy);
845     bn_check_top(xx);
846 
847     BN_CTX_start(ctx);
848     if ((field = BN_CTX_get(ctx)) == NULL)
849         goto err;
850     if (!BN_GF2m_arr2poly(p, field))
851         goto err;
852 
853     ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
854     bn_check_top(r);
855 
856  err:
857     BN_CTX_end(ctx);
858     return ret;
859 }
860 
861 /*
862  * Compute the bth power of a, reduce modulo p, and store the result in r.  r
863  * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
864  * P1363.
865  */
BN_GF2m_mod_exp_arr(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const int p[],BN_CTX * ctx)866 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
867                         const int p[], BN_CTX *ctx)
868 {
869     int ret = 0, i, n;
870     BIGNUM *u;
871 
872     bn_check_top(a);
873     bn_check_top(b);
874 
875     if (BN_is_zero(b))
876         return BN_one(r);
877 
878     if (BN_abs_is_word(b, 1))
879         return (BN_copy(r, a) != NULL);
880 
881     BN_CTX_start(ctx);
882     if ((u = BN_CTX_get(ctx)) == NULL)
883         goto err;
884 
885     if (!BN_GF2m_mod_arr(u, a, p))
886         goto err;
887 
888     n = BN_num_bits(b) - 1;
889     for (i = n - 1; i >= 0; i--) {
890         if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
891             goto err;
892         if (BN_is_bit_set(b, i)) {
893             if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
894                 goto err;
895         }
896     }
897     if (!BN_copy(r, u))
898         goto err;
899     bn_check_top(r);
900     ret = 1;
901  err:
902     BN_CTX_end(ctx);
903     return ret;
904 }
905 
906 /*
907  * Compute the bth power of a, reduce modulo p, and store the result in r.  r
908  * could be a. This function calls down to the BN_GF2m_mod_exp_arr
909  * implementation; this wrapper function is only provided for convenience;
910  * for best performance, use the BN_GF2m_mod_exp_arr function.
911  */
BN_GF2m_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * p,BN_CTX * ctx)912 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
913                     const BIGNUM *p, BN_CTX *ctx)
914 {
915     int ret = 0;
916     const int max = BN_num_bits(p) + 1;
917     int *arr;
918 
919     bn_check_top(a);
920     bn_check_top(b);
921     bn_check_top(p);
922 
923     arr = OPENSSL_malloc(sizeof(*arr) * max);
924     if (arr == NULL) {
925         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
926         return 0;
927     }
928     ret = BN_GF2m_poly2arr(p, arr, max);
929     if (!ret || ret > max) {
930         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
931         goto err;
932     }
933     ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
934     bn_check_top(r);
935  err:
936     OPENSSL_free(arr);
937     return ret;
938 }
939 
940 /*
941  * Compute the square root of a, reduce modulo p, and store the result in r.
942  * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
943  */
BN_GF2m_mod_sqrt_arr(BIGNUM * r,const BIGNUM * a,const int p[],BN_CTX * ctx)944 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
945                          BN_CTX *ctx)
946 {
947     int ret = 0;
948     BIGNUM *u;
949 
950     bn_check_top(a);
951 
952     if (p[0] == 0) {
953         /* reduction mod 1 => return 0 */
954         BN_zero(r);
955         return 1;
956     }
957 
958     BN_CTX_start(ctx);
959     if ((u = BN_CTX_get(ctx)) == NULL)
960         goto err;
961 
962     if (!BN_set_bit(u, p[0] - 1))
963         goto err;
964     ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
965     bn_check_top(r);
966 
967  err:
968     BN_CTX_end(ctx);
969     return ret;
970 }
971 
972 /*
973  * Compute the square root of a, reduce modulo p, and store the result in r.
974  * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
975  * implementation; this wrapper function is only provided for convenience;
976  * for best performance, use the BN_GF2m_mod_sqrt_arr function.
977  */
BN_GF2m_mod_sqrt(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)978 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
979 {
980     int ret = 0;
981     const int max = BN_num_bits(p) + 1;
982     int *arr;
983 
984     bn_check_top(a);
985     bn_check_top(p);
986 
987     arr = OPENSSL_malloc(sizeof(*arr) * max);
988     if (arr == NULL) {
989         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
990         return 0;
991     }
992     ret = BN_GF2m_poly2arr(p, arr, max);
993     if (!ret || ret > max) {
994         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
995         goto err;
996     }
997     ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
998     bn_check_top(r);
999  err:
1000     OPENSSL_free(arr);
1001     return ret;
1002 }
1003 
1004 /*
1005  * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns
1006  * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1007  */
BN_GF2m_mod_solve_quad_arr(BIGNUM * r,const BIGNUM * a_,const int p[],BN_CTX * ctx)1008 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1009                                BN_CTX *ctx)
1010 {
1011     int ret = 0, count = 0, j;
1012     BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1013 
1014     bn_check_top(a_);
1015 
1016     if (p[0] == 0) {
1017         /* reduction mod 1 => return 0 */
1018         BN_zero(r);
1019         return 1;
1020     }
1021 
1022     BN_CTX_start(ctx);
1023     a = BN_CTX_get(ctx);
1024     z = BN_CTX_get(ctx);
1025     w = BN_CTX_get(ctx);
1026     if (w == NULL)
1027         goto err;
1028 
1029     if (!BN_GF2m_mod_arr(a, a_, p))
1030         goto err;
1031 
1032     if (BN_is_zero(a)) {
1033         BN_zero(r);
1034         ret = 1;
1035         goto err;
1036     }
1037 
1038     if (p[0] & 0x1) {           /* m is odd */
1039         /* compute half-trace of a */
1040         if (!BN_copy(z, a))
1041             goto err;
1042         for (j = 1; j <= (p[0] - 1) / 2; j++) {
1043             if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1044                 goto err;
1045             if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1046                 goto err;
1047             if (!BN_GF2m_add(z, z, a))
1048                 goto err;
1049         }
1050 
1051     } else {                    /* m is even */
1052 
1053         rho = BN_CTX_get(ctx);
1054         w2 = BN_CTX_get(ctx);
1055         tmp = BN_CTX_get(ctx);
1056         if (tmp == NULL)
1057             goto err;
1058         do {
1059             if (!BN_priv_rand_ex(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY,
1060                                  0, ctx))
1061                 goto err;
1062             if (!BN_GF2m_mod_arr(rho, rho, p))
1063                 goto err;
1064             BN_zero(z);
1065             if (!BN_copy(w, rho))
1066                 goto err;
1067             for (j = 1; j <= p[0] - 1; j++) {
1068                 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1069                     goto err;
1070                 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1071                     goto err;
1072                 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1073                     goto err;
1074                 if (!BN_GF2m_add(z, z, tmp))
1075                     goto err;
1076                 if (!BN_GF2m_add(w, w2, rho))
1077                     goto err;
1078             }
1079             count++;
1080         } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1081         if (BN_is_zero(w)) {
1082             ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS);
1083             goto err;
1084         }
1085     }
1086 
1087     if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1088         goto err;
1089     if (!BN_GF2m_add(w, z, w))
1090         goto err;
1091     if (BN_GF2m_cmp(w, a)) {
1092         ERR_raise(ERR_LIB_BN, BN_R_NO_SOLUTION);
1093         goto err;
1094     }
1095 
1096     if (!BN_copy(r, z))
1097         goto err;
1098     bn_check_top(r);
1099 
1100     ret = 1;
1101 
1102  err:
1103     BN_CTX_end(ctx);
1104     return ret;
1105 }
1106 
1107 /*
1108  * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns
1109  * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1110  * implementation; this wrapper function is only provided for convenience;
1111  * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1112  */
BN_GF2m_mod_solve_quad(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)1113 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1114                            BN_CTX *ctx)
1115 {
1116     int ret = 0;
1117     const int max = BN_num_bits(p) + 1;
1118     int *arr;
1119 
1120     bn_check_top(a);
1121     bn_check_top(p);
1122 
1123     arr = OPENSSL_malloc(sizeof(*arr) * max);
1124     if (arr == NULL) {
1125         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
1126         goto err;
1127     }
1128     ret = BN_GF2m_poly2arr(p, arr, max);
1129     if (!ret || ret > max) {
1130         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
1131         goto err;
1132     }
1133     ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1134     bn_check_top(r);
1135  err:
1136     OPENSSL_free(arr);
1137     return ret;
1138 }
1139 
1140 /*
1141  * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1142  * x^i) into an array of integers corresponding to the bits with non-zero
1143  * coefficient.  Array is terminated with -1. Up to max elements of the array
1144  * will be filled.  Return value is total number of array elements that would
1145  * be filled if array was large enough.
1146  */
BN_GF2m_poly2arr(const BIGNUM * a,int p[],int max)1147 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1148 {
1149     int i, j, k = 0;
1150     BN_ULONG mask;
1151 
1152     if (BN_is_zero(a))
1153         return 0;
1154 
1155     for (i = a->top - 1; i >= 0; i--) {
1156         if (!a->d[i])
1157             /* skip word if a->d[i] == 0 */
1158             continue;
1159         mask = BN_TBIT;
1160         for (j = BN_BITS2 - 1; j >= 0; j--) {
1161             if (a->d[i] & mask) {
1162                 if (k < max)
1163                     p[k] = BN_BITS2 * i + j;
1164                 k++;
1165             }
1166             mask >>= 1;
1167         }
1168     }
1169 
1170     if (k < max) {
1171         p[k] = -1;
1172         k++;
1173     }
1174 
1175     return k;
1176 }
1177 
1178 /*
1179  * Convert the coefficient array representation of a polynomial to a
1180  * bit-string.  The array must be terminated by -1.
1181  */
BN_GF2m_arr2poly(const int p[],BIGNUM * a)1182 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1183 {
1184     int i;
1185 
1186     bn_check_top(a);
1187     BN_zero(a);
1188     for (i = 0; p[i] != -1; i++) {
1189         if (BN_set_bit(a, p[i]) == 0)
1190             return 0;
1191     }
1192     bn_check_top(a);
1193 
1194     return 1;
1195 }
1196 
1197 #endif
1198