xref: /freebsd/contrib/llvm-project/lldb/source/Plugins/Instruction/RISCV/EmulateInstructionRISCV.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- EmulateInstructionRISCV.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "EmulateInstructionRISCV.h"
10 #include "Plugins/Process/Utility/RegisterInfoPOSIX_riscv64.h"
11 #include "Plugins/Process/Utility/lldb-riscv-register-enums.h"
12 #include "RISCVCInstructions.h"
13 #include "RISCVInstructions.h"
14 
15 #include "lldb/Core/Address.h"
16 #include "lldb/Core/PluginManager.h"
17 #include "lldb/Interpreter/OptionValueArray.h"
18 #include "lldb/Interpreter/OptionValueDictionary.h"
19 #include "lldb/Symbol/UnwindPlan.h"
20 #include "lldb/Utility/ArchSpec.h"
21 #include "lldb/Utility/LLDBLog.h"
22 #include "lldb/Utility/Stream.h"
23 
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/MathExtras.h"
26 #include <optional>
27 
28 using namespace llvm;
29 using namespace lldb;
30 using namespace lldb_private;
31 
32 LLDB_PLUGIN_DEFINE_ADV(EmulateInstructionRISCV, InstructionRISCV)
33 
34 namespace lldb_private {
35 
36 /// Returns all values wrapped in Optional, or std::nullopt if any of the values
37 /// is std::nullopt.
38 template <typename... Ts>
zipOpt(std::optional<Ts> &&...ts)39 static std::optional<std::tuple<Ts...>> zipOpt(std::optional<Ts> &&...ts) {
40   if ((ts.has_value() && ...))
41     return std::optional<std::tuple<Ts...>>(std::make_tuple(std::move(*ts)...));
42   else
43     return std::nullopt;
44 }
45 
46 // The funct3 is the type of compare in B<CMP> instructions.
47 // funct3 means "3-bits function selector", which RISC-V ISA uses as minor
48 // opcode. It reuses the major opcode encoding space.
49 constexpr uint32_t BEQ = 0b000;
50 constexpr uint32_t BNE = 0b001;
51 constexpr uint32_t BLT = 0b100;
52 constexpr uint32_t BGE = 0b101;
53 constexpr uint32_t BLTU = 0b110;
54 constexpr uint32_t BGEU = 0b111;
55 
56 // used in decoder
SignExt(uint32_t imm)57 constexpr int32_t SignExt(uint32_t imm) { return int32_t(imm); }
58 
59 // used in executor
60 template <typename T>
SextW(T value)61 constexpr std::enable_if_t<sizeof(T) <= 4, uint64_t> SextW(T value) {
62   return uint64_t(int64_t(int32_t(value)));
63 }
64 
65 // used in executor
ZextD(T value)66 template <typename T> constexpr uint64_t ZextD(T value) {
67   return uint64_t(value);
68 }
69 
DecodeJImm(uint32_t inst)70 constexpr uint32_t DecodeJImm(uint32_t inst) {
71   return (uint64_t(int64_t(int32_t(inst & 0x80000000)) >> 11)) // imm[20]
72          | (inst & 0xff000)                                    // imm[19:12]
73          | ((inst >> 9) & 0x800)                               // imm[11]
74          | ((inst >> 20) & 0x7fe);                             // imm[10:1]
75 }
76 
DecodeIImm(uint32_t inst)77 constexpr uint32_t DecodeIImm(uint32_t inst) {
78   return int64_t(int32_t(inst)) >> 20; // imm[11:0]
79 }
80 
DecodeBImm(uint32_t inst)81 constexpr uint32_t DecodeBImm(uint32_t inst) {
82   return (uint64_t(int64_t(int32_t(inst & 0x80000000)) >> 19)) // imm[12]
83          | ((inst & 0x80) << 4)                                // imm[11]
84          | ((inst >> 20) & 0x7e0)                              // imm[10:5]
85          | ((inst >> 7) & 0x1e);                               // imm[4:1]
86 }
87 
DecodeSImm(uint32_t inst)88 constexpr uint32_t DecodeSImm(uint32_t inst) {
89   return (uint64_t(int64_t(int32_t(inst & 0xFE000000)) >> 20)) // imm[11:5]
90          | ((inst & 0xF80) >> 7);                              // imm[4:0]
91 }
92 
DecodeUImm(uint32_t inst)93 constexpr uint32_t DecodeUImm(uint32_t inst) {
94   return SextW(inst & 0xFFFFF000); // imm[31:12]
95 }
96 
GPREncodingToLLDB(uint32_t reg_encode)97 static uint32_t GPREncodingToLLDB(uint32_t reg_encode) {
98   if (reg_encode == 0)
99     return gpr_x0_riscv;
100   if (reg_encode >= 1 && reg_encode <= 31)
101     return gpr_x1_riscv + reg_encode - 1;
102   return LLDB_INVALID_REGNUM;
103 }
104 
FPREncodingToLLDB(uint32_t reg_encode)105 static uint32_t FPREncodingToLLDB(uint32_t reg_encode) {
106   if (reg_encode <= 31)
107     return fpr_f0_riscv + reg_encode;
108   return LLDB_INVALID_REGNUM;
109 }
110 
Write(EmulateInstructionRISCV & emulator,uint64_t value)111 bool Rd::Write(EmulateInstructionRISCV &emulator, uint64_t value) {
112   uint32_t lldb_reg = GPREncodingToLLDB(rd);
113   EmulateInstruction::Context ctx;
114   ctx.type = EmulateInstruction::eContextRegisterStore;
115   ctx.SetNoArgs();
116   RegisterValue registerValue;
117   registerValue.SetUInt64(value);
118   return emulator.WriteRegister(ctx, eRegisterKindLLDB, lldb_reg,
119                                 registerValue);
120 }
121 
WriteAPFloat(EmulateInstructionRISCV & emulator,APFloat value)122 bool Rd::WriteAPFloat(EmulateInstructionRISCV &emulator, APFloat value) {
123   uint32_t lldb_reg = FPREncodingToLLDB(rd);
124   EmulateInstruction::Context ctx;
125   ctx.type = EmulateInstruction::eContextRegisterStore;
126   ctx.SetNoArgs();
127   RegisterValue registerValue;
128   registerValue.SetUInt64(value.bitcastToAPInt().getZExtValue());
129   return emulator.WriteRegister(ctx, eRegisterKindLLDB, lldb_reg,
130                                 registerValue);
131 }
132 
Read(EmulateInstructionRISCV & emulator)133 std::optional<uint64_t> Rs::Read(EmulateInstructionRISCV &emulator) {
134   uint32_t lldbReg = GPREncodingToLLDB(rs);
135   RegisterValue value;
136   return emulator.ReadRegister(eRegisterKindLLDB, lldbReg, value)
137              ? std::optional<uint64_t>(value.GetAsUInt64())
138              : std::nullopt;
139 }
140 
ReadI32(EmulateInstructionRISCV & emulator)141 std::optional<int32_t> Rs::ReadI32(EmulateInstructionRISCV &emulator) {
142   return transformOptional(
143       Read(emulator), [](uint64_t value) { return int32_t(uint32_t(value)); });
144 }
145 
ReadI64(EmulateInstructionRISCV & emulator)146 std::optional<int64_t> Rs::ReadI64(EmulateInstructionRISCV &emulator) {
147   return transformOptional(Read(emulator),
148                            [](uint64_t value) { return int64_t(value); });
149 }
150 
ReadU32(EmulateInstructionRISCV & emulator)151 std::optional<uint32_t> Rs::ReadU32(EmulateInstructionRISCV &emulator) {
152   return transformOptional(Read(emulator),
153                            [](uint64_t value) { return uint32_t(value); });
154 }
155 
ReadAPFloat(EmulateInstructionRISCV & emulator,bool isDouble)156 std::optional<APFloat> Rs::ReadAPFloat(EmulateInstructionRISCV &emulator,
157                                        bool isDouble) {
158   uint32_t lldbReg = FPREncodingToLLDB(rs);
159   RegisterValue value;
160   if (!emulator.ReadRegister(eRegisterKindLLDB, lldbReg, value))
161     return std::nullopt;
162   uint64_t bits = value.GetAsUInt64();
163   APInt api(64, bits, false);
164   return APFloat(isDouble ? APFloat(api.bitsToDouble())
165                           : APFloat(api.bitsToFloat()));
166 }
167 
CompareB(uint64_t rs1,uint64_t rs2,uint32_t funct3)168 static bool CompareB(uint64_t rs1, uint64_t rs2, uint32_t funct3) {
169   switch (funct3) {
170   case BEQ:
171     return rs1 == rs2;
172   case BNE:
173     return rs1 != rs2;
174   case BLT:
175     return int64_t(rs1) < int64_t(rs2);
176   case BGE:
177     return int64_t(rs1) >= int64_t(rs2);
178   case BLTU:
179     return rs1 < rs2;
180   case BGEU:
181     return rs1 >= rs2;
182   default:
183     llvm_unreachable("unexpected funct3");
184   }
185 }
186 
187 template <typename T>
188 constexpr bool is_load =
189     std::is_same_v<T, LB> || std::is_same_v<T, LH> || std::is_same_v<T, LW> ||
190     std::is_same_v<T, LD> || std::is_same_v<T, LBU> || std::is_same_v<T, LHU> ||
191     std::is_same_v<T, LWU>;
192 
193 template <typename T>
194 constexpr bool is_store = std::is_same_v<T, SB> || std::is_same_v<T, SH> ||
195                           std::is_same_v<T, SW> || std::is_same_v<T, SD>;
196 
197 template <typename T>
198 constexpr bool is_amo_add =
199     std::is_same_v<T, AMOADD_W> || std::is_same_v<T, AMOADD_D>;
200 
201 template <typename T>
202 constexpr bool is_amo_bit_op =
203     std::is_same_v<T, AMOXOR_W> || std::is_same_v<T, AMOXOR_D> ||
204     std::is_same_v<T, AMOAND_W> || std::is_same_v<T, AMOAND_D> ||
205     std::is_same_v<T, AMOOR_W> || std::is_same_v<T, AMOOR_D>;
206 
207 template <typename T>
208 constexpr bool is_amo_swap =
209     std::is_same_v<T, AMOSWAP_W> || std::is_same_v<T, AMOSWAP_D>;
210 
211 template <typename T>
212 constexpr bool is_amo_cmp =
213     std::is_same_v<T, AMOMIN_W> || std::is_same_v<T, AMOMIN_D> ||
214     std::is_same_v<T, AMOMAX_W> || std::is_same_v<T, AMOMAX_D> ||
215     std::is_same_v<T, AMOMINU_W> || std::is_same_v<T, AMOMINU_D> ||
216     std::is_same_v<T, AMOMAXU_W> || std::is_same_v<T, AMOMAXU_D>;
217 
218 template <typename I>
219 static std::enable_if_t<is_load<I> || is_store<I>, std::optional<uint64_t>>
LoadStoreAddr(EmulateInstructionRISCV & emulator,I inst)220 LoadStoreAddr(EmulateInstructionRISCV &emulator, I inst) {
221   return transformOptional(inst.rs1.Read(emulator), [&](uint64_t rs1) {
222     return rs1 + uint64_t(SignExt(inst.imm));
223   });
224 }
225 
226 // Read T from memory, then load its sign-extended value m_emu to register.
227 template <typename I, typename T, typename E>
228 static std::enable_if_t<is_load<I>, bool>
Load(EmulateInstructionRISCV & emulator,I inst,uint64_t (* extend)(E))229 Load(EmulateInstructionRISCV &emulator, I inst, uint64_t (*extend)(E)) {
230   auto addr = LoadStoreAddr(emulator, inst);
231   if (!addr)
232     return false;
233   return transformOptional(
234              emulator.ReadMem<T>(*addr),
235              [&](T t) { return inst.rd.Write(emulator, extend(E(t))); })
236       .value_or(false);
237 }
238 
239 template <typename I, typename T>
240 static std::enable_if_t<is_store<I>, bool>
Store(EmulateInstructionRISCV & emulator,I inst)241 Store(EmulateInstructionRISCV &emulator, I inst) {
242   auto addr = LoadStoreAddr(emulator, inst);
243   if (!addr)
244     return false;
245   return transformOptional(
246              inst.rs2.Read(emulator),
247              [&](uint64_t rs2) { return emulator.WriteMem<T>(*addr, rs2); })
248       .value_or(false);
249 }
250 
251 template <typename I>
252 static std::enable_if_t<is_amo_add<I> || is_amo_bit_op<I> || is_amo_swap<I> ||
253                             is_amo_cmp<I>,
254                         std::optional<uint64_t>>
AtomicAddr(EmulateInstructionRISCV & emulator,I inst,unsigned int align)255 AtomicAddr(EmulateInstructionRISCV &emulator, I inst, unsigned int align) {
256   return transformOptional(inst.rs1.Read(emulator),
257                            [&](uint64_t rs1) {
258                              return rs1 % align == 0
259                                         ? std::optional<uint64_t>(rs1)
260                                         : std::nullopt;
261                            })
262       .value_or(std::nullopt);
263 }
264 
265 template <typename I, typename T>
266 static std::enable_if_t<is_amo_swap<I>, bool>
AtomicSwap(EmulateInstructionRISCV & emulator,I inst,int align,uint64_t (* extend)(T))267 AtomicSwap(EmulateInstructionRISCV &emulator, I inst, int align,
268            uint64_t (*extend)(T)) {
269   auto addr = AtomicAddr(emulator, inst, align);
270   if (!addr)
271     return false;
272   return transformOptional(
273              zipOpt(emulator.ReadMem<T>(*addr), inst.rs2.Read(emulator)),
274              [&](auto &&tup) {
275                auto [tmp, rs2] = tup;
276                return emulator.WriteMem<T>(*addr, T(rs2)) &&
277                       inst.rd.Write(emulator, extend(tmp));
278              })
279       .value_or(false);
280 }
281 
282 template <typename I, typename T>
283 static std::enable_if_t<is_amo_add<I>, bool>
AtomicADD(EmulateInstructionRISCV & emulator,I inst,int align,uint64_t (* extend)(T))284 AtomicADD(EmulateInstructionRISCV &emulator, I inst, int align,
285           uint64_t (*extend)(T)) {
286   auto addr = AtomicAddr(emulator, inst, align);
287   if (!addr)
288     return false;
289   return transformOptional(
290              zipOpt(emulator.ReadMem<T>(*addr), inst.rs2.Read(emulator)),
291              [&](auto &&tup) {
292                auto [tmp, rs2] = tup;
293                return emulator.WriteMem<T>(*addr, T(tmp + rs2)) &&
294                       inst.rd.Write(emulator, extend(tmp));
295              })
296       .value_or(false);
297 }
298 
299 template <typename I, typename T>
300 static std::enable_if_t<is_amo_bit_op<I>, bool>
AtomicBitOperate(EmulateInstructionRISCV & emulator,I inst,int align,uint64_t (* extend)(T),T (* operate)(T,T))301 AtomicBitOperate(EmulateInstructionRISCV &emulator, I inst, int align,
302                  uint64_t (*extend)(T), T (*operate)(T, T)) {
303   auto addr = AtomicAddr(emulator, inst, align);
304   if (!addr)
305     return false;
306   return transformOptional(
307              zipOpt(emulator.ReadMem<T>(*addr), inst.rs2.Read(emulator)),
308              [&](auto &&tup) {
309                auto [value, rs2] = tup;
310                return emulator.WriteMem<T>(*addr, operate(value, T(rs2))) &&
311                       inst.rd.Write(emulator, extend(value));
312              })
313       .value_or(false);
314 }
315 
316 template <typename I, typename T>
317 static std::enable_if_t<is_amo_cmp<I>, bool>
AtomicCmp(EmulateInstructionRISCV & emulator,I inst,int align,uint64_t (* extend)(T),T (* cmp)(T,T))318 AtomicCmp(EmulateInstructionRISCV &emulator, I inst, int align,
319           uint64_t (*extend)(T), T (*cmp)(T, T)) {
320   auto addr = AtomicAddr(emulator, inst, align);
321   if (!addr)
322     return false;
323   return transformOptional(
324              zipOpt(emulator.ReadMem<T>(*addr), inst.rs2.Read(emulator)),
325              [&](auto &&tup) {
326                auto [value, rs2] = tup;
327                return emulator.WriteMem<T>(*addr, cmp(value, T(rs2))) &&
328                       inst.rd.Write(emulator, extend(value));
329              })
330       .value_or(false);
331 }
332 
AtomicSequence(EmulateInstructionRISCV & emulator)333 bool AtomicSequence(EmulateInstructionRISCV &emulator) {
334   // The atomic sequence is always 4 instructions long:
335   // example:
336   //   110cc:	100427af          	lr.w	a5,(s0)
337   //   110d0:	00079663          	bnez	a5,110dc
338   //   110d4:	1ce426af          	sc.w.aq	a3,a4,(s0)
339   //   110d8:	fe069ae3          	bnez	a3,110cc
340   //   110dc:   ........          	<next instruction>
341   const auto pc = emulator.ReadPC();
342   if (!pc)
343     return false;
344   auto current_pc = *pc;
345   const auto entry_pc = current_pc;
346 
347   // The first instruction should be LR.W or LR.D
348   auto inst = emulator.ReadInstructionAt(current_pc);
349   if (!inst || (!std::holds_alternative<LR_W>(inst->decoded) &&
350                 !std::holds_alternative<LR_D>(inst->decoded)))
351     return false;
352 
353   // The second instruction should be BNE to exit address
354   inst = emulator.ReadInstructionAt(current_pc += 4);
355   if (!inst || !std::holds_alternative<B>(inst->decoded))
356     return false;
357   auto bne_exit = std::get<B>(inst->decoded);
358   if (bne_exit.funct3 != BNE)
359     return false;
360   // save the exit address to check later
361   const auto exit_pc = current_pc + SextW(bne_exit.imm);
362 
363   // The third instruction should be SC.W or SC.D
364   inst = emulator.ReadInstructionAt(current_pc += 4);
365   if (!inst || (!std::holds_alternative<SC_W>(inst->decoded) &&
366                 !std::holds_alternative<SC_D>(inst->decoded)))
367     return false;
368 
369   // The fourth instruction should be BNE to entry address
370   inst = emulator.ReadInstructionAt(current_pc += 4);
371   if (!inst || !std::holds_alternative<B>(inst->decoded))
372     return false;
373   auto bne_start = std::get<B>(inst->decoded);
374   if (bne_start.funct3 != BNE)
375     return false;
376   if (entry_pc != current_pc + SextW(bne_start.imm))
377     return false;
378 
379   current_pc += 4;
380   // check the exit address and jump to it
381   return exit_pc == current_pc && emulator.WritePC(current_pc);
382 }
383 
DecodeUType(uint32_t inst)384 template <typename T> static RISCVInst DecodeUType(uint32_t inst) {
385   return T{Rd{DecodeRD(inst)}, DecodeUImm(inst)};
386 }
387 
DecodeJType(uint32_t inst)388 template <typename T> static RISCVInst DecodeJType(uint32_t inst) {
389   return T{Rd{DecodeRD(inst)}, DecodeJImm(inst)};
390 }
391 
DecodeIType(uint32_t inst)392 template <typename T> static RISCVInst DecodeIType(uint32_t inst) {
393   return T{Rd{DecodeRD(inst)}, Rs{DecodeRS1(inst)}, DecodeIImm(inst)};
394 }
395 
DecodeBType(uint32_t inst)396 template <typename T> static RISCVInst DecodeBType(uint32_t inst) {
397   return T{Rs{DecodeRS1(inst)}, Rs{DecodeRS2(inst)}, DecodeBImm(inst),
398            DecodeFunct3(inst)};
399 }
400 
DecodeSType(uint32_t inst)401 template <typename T> static RISCVInst DecodeSType(uint32_t inst) {
402   return T{Rs{DecodeRS1(inst)}, Rs{DecodeRS2(inst)}, DecodeSImm(inst)};
403 }
404 
DecodeRType(uint32_t inst)405 template <typename T> static RISCVInst DecodeRType(uint32_t inst) {
406   return T{Rd{DecodeRD(inst)}, Rs{DecodeRS1(inst)}, Rs{DecodeRS2(inst)}};
407 }
408 
DecodeRShamtType(uint32_t inst)409 template <typename T> static RISCVInst DecodeRShamtType(uint32_t inst) {
410   return T{Rd{DecodeRD(inst)}, Rs{DecodeRS1(inst)}, DecodeRS2(inst)};
411 }
412 
DecodeRRS1Type(uint32_t inst)413 template <typename T> static RISCVInst DecodeRRS1Type(uint32_t inst) {
414   return T{Rd{DecodeRD(inst)}, Rs{DecodeRS1(inst)}};
415 }
416 
DecodeR4Type(uint32_t inst)417 template <typename T> static RISCVInst DecodeR4Type(uint32_t inst) {
418   return T{Rd{DecodeRD(inst)}, Rs{DecodeRS1(inst)}, Rs{DecodeRS2(inst)},
419            Rs{DecodeRS3(inst)}, DecodeRM(inst)};
420 }
421 
422 static const InstrPattern PATTERNS[] = {
423     // RV32I & RV64I (The base integer ISA) //
424     {"LUI", 0x7F, 0x37, DecodeUType<LUI>},
425     {"AUIPC", 0x7F, 0x17, DecodeUType<AUIPC>},
426     {"JAL", 0x7F, 0x6F, DecodeJType<JAL>},
427     {"JALR", 0x707F, 0x67, DecodeIType<JALR>},
428     {"B", 0x7F, 0x63, DecodeBType<B>},
429     {"LB", 0x707F, 0x3, DecodeIType<LB>},
430     {"LH", 0x707F, 0x1003, DecodeIType<LH>},
431     {"LW", 0x707F, 0x2003, DecodeIType<LW>},
432     {"LBU", 0x707F, 0x4003, DecodeIType<LBU>},
433     {"LHU", 0x707F, 0x5003, DecodeIType<LHU>},
434     {"SB", 0x707F, 0x23, DecodeSType<SB>},
435     {"SH", 0x707F, 0x1023, DecodeSType<SH>},
436     {"SW", 0x707F, 0x2023, DecodeSType<SW>},
437     {"ADDI", 0x707F, 0x13, DecodeIType<ADDI>},
438     {"SLTI", 0x707F, 0x2013, DecodeIType<SLTI>},
439     {"SLTIU", 0x707F, 0x3013, DecodeIType<SLTIU>},
440     {"XORI", 0x707F, 0x4013, DecodeIType<XORI>},
441     {"ORI", 0x707F, 0x6013, DecodeIType<ORI>},
442     {"ANDI", 0x707F, 0x7013, DecodeIType<ANDI>},
443     {"SLLI", 0xF800707F, 0x1013, DecodeRShamtType<SLLI>},
444     {"SRLI", 0xF800707F, 0x5013, DecodeRShamtType<SRLI>},
445     {"SRAI", 0xF800707F, 0x40005013, DecodeRShamtType<SRAI>},
446     {"ADD", 0xFE00707F, 0x33, DecodeRType<ADD>},
447     {"SUB", 0xFE00707F, 0x40000033, DecodeRType<SUB>},
448     {"SLL", 0xFE00707F, 0x1033, DecodeRType<SLL>},
449     {"SLT", 0xFE00707F, 0x2033, DecodeRType<SLT>},
450     {"SLTU", 0xFE00707F, 0x3033, DecodeRType<SLTU>},
451     {"XOR", 0xFE00707F, 0x4033, DecodeRType<XOR>},
452     {"SRL", 0xFE00707F, 0x5033, DecodeRType<SRL>},
453     {"SRA", 0xFE00707F, 0x40005033, DecodeRType<SRA>},
454     {"OR", 0xFE00707F, 0x6033, DecodeRType<OR>},
455     {"AND", 0xFE00707F, 0x7033, DecodeRType<AND>},
456     {"LWU", 0x707F, 0x6003, DecodeIType<LWU>},
457     {"LD", 0x707F, 0x3003, DecodeIType<LD>},
458     {"SD", 0x707F, 0x3023, DecodeSType<SD>},
459     {"ADDIW", 0x707F, 0x1B, DecodeIType<ADDIW>},
460     {"SLLIW", 0xFE00707F, 0x101B, DecodeRShamtType<SLLIW>},
461     {"SRLIW", 0xFE00707F, 0x501B, DecodeRShamtType<SRLIW>},
462     {"SRAIW", 0xFE00707F, 0x4000501B, DecodeRShamtType<SRAIW>},
463     {"ADDW", 0xFE00707F, 0x3B, DecodeRType<ADDW>},
464     {"SUBW", 0xFE00707F, 0x4000003B, DecodeRType<SUBW>},
465     {"SLLW", 0xFE00707F, 0x103B, DecodeRType<SLLW>},
466     {"SRLW", 0xFE00707F, 0x503B, DecodeRType<SRLW>},
467     {"SRAW", 0xFE00707F, 0x4000503B, DecodeRType<SRAW>},
468 
469     // RV32M & RV64M (The integer multiplication and division extension) //
470     {"MUL", 0xFE00707F, 0x2000033, DecodeRType<MUL>},
471     {"MULH", 0xFE00707F, 0x2001033, DecodeRType<MULH>},
472     {"MULHSU", 0xFE00707F, 0x2002033, DecodeRType<MULHSU>},
473     {"MULHU", 0xFE00707F, 0x2003033, DecodeRType<MULHU>},
474     {"DIV", 0xFE00707F, 0x2004033, DecodeRType<DIV>},
475     {"DIVU", 0xFE00707F, 0x2005033, DecodeRType<DIVU>},
476     {"REM", 0xFE00707F, 0x2006033, DecodeRType<REM>},
477     {"REMU", 0xFE00707F, 0x2007033, DecodeRType<REMU>},
478     {"MULW", 0xFE00707F, 0x200003B, DecodeRType<MULW>},
479     {"DIVW", 0xFE00707F, 0x200403B, DecodeRType<DIVW>},
480     {"DIVUW", 0xFE00707F, 0x200503B, DecodeRType<DIVUW>},
481     {"REMW", 0xFE00707F, 0x200603B, DecodeRType<REMW>},
482     {"REMUW", 0xFE00707F, 0x200703B, DecodeRType<REMUW>},
483 
484     // RV32A & RV64A (The standard atomic instruction extension) //
485     {"LR_W", 0xF9F0707F, 0x1000202F, DecodeRRS1Type<LR_W>},
486     {"LR_D", 0xF9F0707F, 0x1000302F, DecodeRRS1Type<LR_D>},
487     {"SC_W", 0xF800707F, 0x1800202F, DecodeRType<SC_W>},
488     {"SC_D", 0xF800707F, 0x1800302F, DecodeRType<SC_D>},
489     {"AMOSWAP_W", 0xF800707F, 0x800202F, DecodeRType<AMOSWAP_W>},
490     {"AMOADD_W", 0xF800707F, 0x202F, DecodeRType<AMOADD_W>},
491     {"AMOXOR_W", 0xF800707F, 0x2000202F, DecodeRType<AMOXOR_W>},
492     {"AMOAND_W", 0xF800707F, 0x6000202F, DecodeRType<AMOAND_W>},
493     {"AMOOR_W", 0xF800707F, 0x4000202F, DecodeRType<AMOOR_W>},
494     {"AMOMIN_W", 0xF800707F, 0x8000202F, DecodeRType<AMOMIN_W>},
495     {"AMOMAX_W", 0xF800707F, 0xA000202F, DecodeRType<AMOMAX_W>},
496     {"AMOMINU_W", 0xF800707F, 0xC000202F, DecodeRType<AMOMINU_W>},
497     {"AMOMAXU_W", 0xF800707F, 0xE000202F, DecodeRType<AMOMAXU_W>},
498     {"AMOSWAP_D", 0xF800707F, 0x800302F, DecodeRType<AMOSWAP_D>},
499     {"AMOADD_D", 0xF800707F, 0x302F, DecodeRType<AMOADD_D>},
500     {"AMOXOR_D", 0xF800707F, 0x2000302F, DecodeRType<AMOXOR_D>},
501     {"AMOAND_D", 0xF800707F, 0x6000302F, DecodeRType<AMOAND_D>},
502     {"AMOOR_D", 0xF800707F, 0x4000302F, DecodeRType<AMOOR_D>},
503     {"AMOMIN_D", 0xF800707F, 0x8000302F, DecodeRType<AMOMIN_D>},
504     {"AMOMAX_D", 0xF800707F, 0xA000302F, DecodeRType<AMOMAX_D>},
505     {"AMOMINU_D", 0xF800707F, 0xC000302F, DecodeRType<AMOMINU_D>},
506     {"AMOMAXU_D", 0xF800707F, 0xE000302F, DecodeRType<AMOMAXU_D>},
507 
508     // RVC (Compressed Instructions) //
509     {"C_LWSP", 0xE003, 0x4002, DecodeC_LWSP},
510     {"C_LDSP", 0xE003, 0x6002, DecodeC_LDSP, RV64 | RV128},
511     {"C_SWSP", 0xE003, 0xC002, DecodeC_SWSP},
512     {"C_SDSP", 0xE003, 0xE002, DecodeC_SDSP, RV64 | RV128},
513     {"C_LW", 0xE003, 0x4000, DecodeC_LW},
514     {"C_LD", 0xE003, 0x6000, DecodeC_LD, RV64 | RV128},
515     {"C_SW", 0xE003, 0xC000, DecodeC_SW},
516     {"C_SD", 0xE003, 0xE000, DecodeC_SD, RV64 | RV128},
517     {"C_J", 0xE003, 0xA001, DecodeC_J},
518     {"C_JR", 0xF07F, 0x8002, DecodeC_JR},
519     {"C_JALR", 0xF07F, 0x9002, DecodeC_JALR},
520     {"C_BNEZ", 0xE003, 0xE001, DecodeC_BNEZ},
521     {"C_BEQZ", 0xE003, 0xC001, DecodeC_BEQZ},
522     {"C_LI", 0xE003, 0x4001, DecodeC_LI},
523     {"C_LUI_ADDI16SP", 0xE003, 0x6001, DecodeC_LUI_ADDI16SP},
524     {"C_ADDI", 0xE003, 0x1, DecodeC_ADDI},
525     {"C_ADDIW", 0xE003, 0x2001, DecodeC_ADDIW, RV64 | RV128},
526     {"C_ADDI4SPN", 0xE003, 0x0, DecodeC_ADDI4SPN},
527     {"C_SLLI", 0xE003, 0x2, DecodeC_SLLI, RV64 | RV128},
528     {"C_SRLI", 0xEC03, 0x8001, DecodeC_SRLI, RV64 | RV128},
529     {"C_SRAI", 0xEC03, 0x8401, DecodeC_SRAI, RV64 | RV128},
530     {"C_ANDI", 0xEC03, 0x8801, DecodeC_ANDI},
531     {"C_MV", 0xF003, 0x8002, DecodeC_MV},
532     {"C_ADD", 0xF003, 0x9002, DecodeC_ADD},
533     {"C_AND", 0xFC63, 0x8C61, DecodeC_AND},
534     {"C_OR", 0xFC63, 0x8C41, DecodeC_OR},
535     {"C_XOR", 0xFC63, 0x8C21, DecodeC_XOR},
536     {"C_SUB", 0xFC63, 0x8C01, DecodeC_SUB},
537     {"C_SUBW", 0xFC63, 0x9C01, DecodeC_SUBW, RV64 | RV128},
538     {"C_ADDW", 0xFC63, 0x9C21, DecodeC_ADDW, RV64 | RV128},
539     // RV32FC //
540     {"FLW", 0xE003, 0x6000, DecodeC_FLW, RV32},
541     {"FSW", 0xE003, 0xE000, DecodeC_FSW, RV32},
542     {"FLWSP", 0xE003, 0x6002, DecodeC_FLWSP, RV32},
543     {"FSWSP", 0xE003, 0xE002, DecodeC_FSWSP, RV32},
544     // RVDC //
545     {"FLDSP", 0xE003, 0x2002, DecodeC_FLDSP, RV32 | RV64},
546     {"FSDSP", 0xE003, 0xA002, DecodeC_FSDSP, RV32 | RV64},
547     {"FLD", 0xE003, 0x2000, DecodeC_FLD, RV32 | RV64},
548     {"FSD", 0xE003, 0xA000, DecodeC_FSD, RV32 | RV64},
549 
550     // RV32F (Extension for Single-Precision Floating-Point) //
551     {"FLW", 0x707F, 0x2007, DecodeIType<FLW>},
552     {"FSW", 0x707F, 0x2027, DecodeSType<FSW>},
553     {"FMADD_S", 0x600007F, 0x43, DecodeR4Type<FMADD_S>},
554     {"FMSUB_S", 0x600007F, 0x47, DecodeR4Type<FMSUB_S>},
555     {"FNMSUB_S", 0x600007F, 0x4B, DecodeR4Type<FNMSUB_S>},
556     {"FNMADD_S", 0x600007F, 0x4F, DecodeR4Type<FNMADD_S>},
557     {"FADD_S", 0xFE00007F, 0x53, DecodeRType<FADD_S>},
558     {"FSUB_S", 0xFE00007F, 0x8000053, DecodeRType<FSUB_S>},
559     {"FMUL_S", 0xFE00007F, 0x10000053, DecodeRType<FMUL_S>},
560     {"FDIV_S", 0xFE00007F, 0x18000053, DecodeRType<FDIV_S>},
561     {"FSQRT_S", 0xFFF0007F, 0x58000053, DecodeIType<FSQRT_S>},
562     {"FSGNJ_S", 0xFE00707F, 0x20000053, DecodeRType<FSGNJ_S>},
563     {"FSGNJN_S", 0xFE00707F, 0x20001053, DecodeRType<FSGNJN_S>},
564     {"FSGNJX_S", 0xFE00707F, 0x20002053, DecodeRType<FSGNJX_S>},
565     {"FMIN_S", 0xFE00707F, 0x28000053, DecodeRType<FMIN_S>},
566     {"FMAX_S", 0xFE00707F, 0x28001053, DecodeRType<FMAX_S>},
567     {"FCVT_W_S", 0xFFF0007F, 0xC0000053, DecodeIType<FCVT_W_S>},
568     {"FCVT_WU_S", 0xFFF0007F, 0xC0100053, DecodeIType<FCVT_WU_S>},
569     {"FMV_X_W", 0xFFF0707F, 0xE0000053, DecodeIType<FMV_X_W>},
570     {"FEQ_S", 0xFE00707F, 0xA0002053, DecodeRType<FEQ_S>},
571     {"FLT_S", 0xFE00707F, 0xA0001053, DecodeRType<FLT_S>},
572     {"FLE_S", 0xFE00707F, 0xA0000053, DecodeRType<FLE_S>},
573     {"FCLASS_S", 0xFFF0707F, 0xE0001053, DecodeIType<FCLASS_S>},
574     {"FCVT_S_W", 0xFFF0007F, 0xD0000053, DecodeIType<FCVT_S_W>},
575     {"FCVT_S_WU", 0xFFF0007F, 0xD0100053, DecodeIType<FCVT_S_WU>},
576     {"FMV_W_X", 0xFFF0707F, 0xF0000053, DecodeIType<FMV_W_X>},
577 
578     // RV64F (Extension for Single-Precision Floating-Point) //
579     {"FCVT_L_S", 0xFFF0007F, 0xC0200053, DecodeIType<FCVT_L_S>},
580     {"FCVT_LU_S", 0xFFF0007F, 0xC0300053, DecodeIType<FCVT_LU_S>},
581     {"FCVT_S_L", 0xFFF0007F, 0xD0200053, DecodeIType<FCVT_S_L>},
582     {"FCVT_S_LU", 0xFFF0007F, 0xD0300053, DecodeIType<FCVT_S_LU>},
583 
584     // RV32D (Extension for Double-Precision Floating-Point) //
585     {"FLD", 0x707F, 0x3007, DecodeIType<FLD>},
586     {"FSD", 0x707F, 0x3027, DecodeSType<FSD>},
587     {"FMADD_D", 0x600007F, 0x2000043, DecodeR4Type<FMADD_D>},
588     {"FMSUB_D", 0x600007F, 0x2000047, DecodeR4Type<FMSUB_D>},
589     {"FNMSUB_D", 0x600007F, 0x200004B, DecodeR4Type<FNMSUB_D>},
590     {"FNMADD_D", 0x600007F, 0x200004F, DecodeR4Type<FNMADD_D>},
591     {"FADD_D", 0xFE00007F, 0x2000053, DecodeRType<FADD_D>},
592     {"FSUB_D", 0xFE00007F, 0xA000053, DecodeRType<FSUB_D>},
593     {"FMUL_D", 0xFE00007F, 0x12000053, DecodeRType<FMUL_D>},
594     {"FDIV_D", 0xFE00007F, 0x1A000053, DecodeRType<FDIV_D>},
595     {"FSQRT_D", 0xFFF0007F, 0x5A000053, DecodeIType<FSQRT_D>},
596     {"FSGNJ_D", 0xFE00707F, 0x22000053, DecodeRType<FSGNJ_D>},
597     {"FSGNJN_D", 0xFE00707F, 0x22001053, DecodeRType<FSGNJN_D>},
598     {"FSGNJX_D", 0xFE00707F, 0x22002053, DecodeRType<FSGNJX_D>},
599     {"FMIN_D", 0xFE00707F, 0x2A000053, DecodeRType<FMIN_D>},
600     {"FMAX_D", 0xFE00707F, 0x2A001053, DecodeRType<FMAX_D>},
601     {"FCVT_S_D", 0xFFF0007F, 0x40100053, DecodeIType<FCVT_S_D>},
602     {"FCVT_D_S", 0xFFF0007F, 0x42000053, DecodeIType<FCVT_D_S>},
603     {"FEQ_D", 0xFE00707F, 0xA2002053, DecodeRType<FEQ_D>},
604     {"FLT_D", 0xFE00707F, 0xA2001053, DecodeRType<FLT_D>},
605     {"FLE_D", 0xFE00707F, 0xA2000053, DecodeRType<FLE_D>},
606     {"FCLASS_D", 0xFFF0707F, 0xE2001053, DecodeIType<FCLASS_D>},
607     {"FCVT_W_D", 0xFFF0007F, 0xC2000053, DecodeIType<FCVT_W_D>},
608     {"FCVT_WU_D", 0xFFF0007F, 0xC2100053, DecodeIType<FCVT_WU_D>},
609     {"FCVT_D_W", 0xFFF0007F, 0xD2000053, DecodeIType<FCVT_D_W>},
610     {"FCVT_D_WU", 0xFFF0007F, 0xD2100053, DecodeIType<FCVT_D_WU>},
611 
612     // RV64D (Extension for Double-Precision Floating-Point) //
613     {"FCVT_L_D", 0xFFF0007F, 0xC2200053, DecodeIType<FCVT_L_D>},
614     {"FCVT_LU_D", 0xFFF0007F, 0xC2300053, DecodeIType<FCVT_LU_D>},
615     {"FMV_X_D", 0xFFF0707F, 0xE2000053, DecodeIType<FMV_X_D>},
616     {"FCVT_D_L", 0xFFF0007F, 0xD2200053, DecodeIType<FCVT_D_L>},
617     {"FCVT_D_LU", 0xFFF0007F, 0xD2300053, DecodeIType<FCVT_D_LU>},
618     {"FMV_D_X", 0xFFF0707F, 0xF2000053, DecodeIType<FMV_D_X>},
619 };
620 
Decode(uint32_t inst)621 std::optional<DecodeResult> EmulateInstructionRISCV::Decode(uint32_t inst) {
622   Log *log = GetLog(LLDBLog::Unwind);
623 
624   uint16_t try_rvc = uint16_t(inst & 0x0000ffff);
625   uint8_t inst_type = RV64;
626 
627   // Try to get size of RISCV instruction.
628   // 1.2 Instruction Length Encoding
629   bool is_16b = (inst & 0b11) != 0b11;
630   bool is_32b = (inst & 0x1f) != 0x1f;
631   bool is_48b = (inst & 0x3f) != 0x1f;
632   bool is_64b = (inst & 0x7f) != 0x3f;
633   if (is_16b)
634     m_last_size = 2;
635   else if (is_32b)
636     m_last_size = 4;
637   else if (is_48b)
638     m_last_size = 6;
639   else if (is_64b)
640     m_last_size = 8;
641   else
642     // Not Valid
643     m_last_size = std::nullopt;
644 
645   // if we have ArchSpec::eCore_riscv128 in the future,
646   // we also need to check it here
647   if (m_arch.GetCore() == ArchSpec::eCore_riscv32)
648     inst_type = RV32;
649 
650   for (const InstrPattern &pat : PATTERNS) {
651     if ((inst & pat.type_mask) == pat.eigen &&
652         (inst_type & pat.inst_type) != 0) {
653       LLDB_LOGF(
654           log, "EmulateInstructionRISCV::%s: inst(%x at %" PRIx64 ") was decoded to %s",
655           __FUNCTION__, inst, m_addr, pat.name);
656       auto decoded = is_16b ? pat.decode(try_rvc) : pat.decode(inst);
657       return DecodeResult{decoded, inst, is_16b, pat};
658     }
659   }
660   LLDB_LOGF(log, "EmulateInstructionRISCV::%s: inst(0x%x) was unsupported",
661             __FUNCTION__, inst);
662   return std::nullopt;
663 }
664 
665 class Executor {
666   EmulateInstructionRISCV &m_emu;
667   bool m_ignore_cond;
668   bool m_is_rvc;
669 
670 public:
671   // also used in EvaluateInstruction()
size(bool is_rvc)672   static uint64_t size(bool is_rvc) { return is_rvc ? 2 : 4; }
673 
674 private:
delta()675   uint64_t delta() { return size(m_is_rvc); }
676 
677 public:
Executor(EmulateInstructionRISCV & emulator,bool ignoreCond,bool is_rvc)678   Executor(EmulateInstructionRISCV &emulator, bool ignoreCond, bool is_rvc)
679       : m_emu(emulator), m_ignore_cond(ignoreCond), m_is_rvc(is_rvc) {}
680 
operator ()(LUI inst)681   bool operator()(LUI inst) { return inst.rd.Write(m_emu, SignExt(inst.imm)); }
operator ()(AUIPC inst)682   bool operator()(AUIPC inst) {
683     return transformOptional(m_emu.ReadPC(),
684                              [&](uint64_t pc) {
685                                return inst.rd.Write(m_emu,
686                                                     SignExt(inst.imm) + pc);
687                              })
688         .value_or(false);
689   }
operator ()(JAL inst)690   bool operator()(JAL inst) {
691     return transformOptional(m_emu.ReadPC(),
692                              [&](uint64_t pc) {
693                                return inst.rd.Write(m_emu, pc + delta()) &&
694                                       m_emu.WritePC(SignExt(inst.imm) + pc);
695                              })
696         .value_or(false);
697   }
operator ()(JALR inst)698   bool operator()(JALR inst) {
699     return transformOptional(zipOpt(m_emu.ReadPC(), inst.rs1.Read(m_emu)),
700                              [&](auto &&tup) {
701                                auto [pc, rs1] = tup;
702                                return inst.rd.Write(m_emu, pc + delta()) &&
703                                       m_emu.WritePC((SignExt(inst.imm) + rs1) &
704                                                     ~1);
705                              })
706         .value_or(false);
707   }
operator ()(B inst)708   bool operator()(B inst) {
709     return transformOptional(zipOpt(m_emu.ReadPC(), inst.rs1.Read(m_emu),
710                                     inst.rs2.Read(m_emu)),
711                              [&](auto &&tup) {
712                                auto [pc, rs1, rs2] = tup;
713                                if (m_ignore_cond ||
714                                    CompareB(rs1, rs2, inst.funct3))
715                                  return m_emu.WritePC(SignExt(inst.imm) + pc);
716                                return true;
717                              })
718         .value_or(false);
719   }
operator ()(LB inst)720   bool operator()(LB inst) {
721     return Load<LB, uint8_t, int8_t>(m_emu, inst, SextW);
722   }
operator ()(LH inst)723   bool operator()(LH inst) {
724     return Load<LH, uint16_t, int16_t>(m_emu, inst, SextW);
725   }
operator ()(LW inst)726   bool operator()(LW inst) {
727     return Load<LW, uint32_t, int32_t>(m_emu, inst, SextW);
728   }
operator ()(LBU inst)729   bool operator()(LBU inst) {
730     return Load<LBU, uint8_t, uint8_t>(m_emu, inst, ZextD);
731   }
operator ()(LHU inst)732   bool operator()(LHU inst) {
733     return Load<LHU, uint16_t, uint16_t>(m_emu, inst, ZextD);
734   }
operator ()(SB inst)735   bool operator()(SB inst) { return Store<SB, uint8_t>(m_emu, inst); }
operator ()(SH inst)736   bool operator()(SH inst) { return Store<SH, uint16_t>(m_emu, inst); }
operator ()(SW inst)737   bool operator()(SW inst) { return Store<SW, uint32_t>(m_emu, inst); }
operator ()(ADDI inst)738   bool operator()(ADDI inst) {
739     return transformOptional(inst.rs1.ReadI64(m_emu),
740                              [&](int64_t rs1) {
741                                return inst.rd.Write(
742                                    m_emu, rs1 + int64_t(SignExt(inst.imm)));
743                              })
744         .value_or(false);
745   }
operator ()(SLTI inst)746   bool operator()(SLTI inst) {
747     return transformOptional(inst.rs1.ReadI64(m_emu),
748                              [&](int64_t rs1) {
749                                return inst.rd.Write(
750                                    m_emu, rs1 < int64_t(SignExt(inst.imm)));
751                              })
752         .value_or(false);
753   }
operator ()(SLTIU inst)754   bool operator()(SLTIU inst) {
755     return transformOptional(inst.rs1.Read(m_emu),
756                              [&](uint64_t rs1) {
757                                return inst.rd.Write(
758                                    m_emu, rs1 < uint64_t(SignExt(inst.imm)));
759                              })
760         .value_or(false);
761   }
operator ()(XORI inst)762   bool operator()(XORI inst) {
763     return transformOptional(inst.rs1.Read(m_emu),
764                              [&](uint64_t rs1) {
765                                return inst.rd.Write(
766                                    m_emu, rs1 ^ uint64_t(SignExt(inst.imm)));
767                              })
768         .value_or(false);
769   }
operator ()(ORI inst)770   bool operator()(ORI inst) {
771     return transformOptional(inst.rs1.Read(m_emu),
772                              [&](uint64_t rs1) {
773                                return inst.rd.Write(
774                                    m_emu, rs1 | uint64_t(SignExt(inst.imm)));
775                              })
776         .value_or(false);
777   }
operator ()(ANDI inst)778   bool operator()(ANDI inst) {
779     return transformOptional(inst.rs1.Read(m_emu),
780                              [&](uint64_t rs1) {
781                                return inst.rd.Write(
782                                    m_emu, rs1 & uint64_t(SignExt(inst.imm)));
783                              })
784         .value_or(false);
785   }
operator ()(ADD inst)786   bool operator()(ADD inst) {
787     return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
788                              [&](auto &&tup) {
789                                auto [rs1, rs2] = tup;
790                                return inst.rd.Write(m_emu, rs1 + rs2);
791                              })
792         .value_or(false);
793   }
operator ()(SUB inst)794   bool operator()(SUB inst) {
795     return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
796                              [&](auto &&tup) {
797                                auto [rs1, rs2] = tup;
798                                return inst.rd.Write(m_emu, rs1 - rs2);
799                              })
800         .value_or(false);
801   }
operator ()(SLL inst)802   bool operator()(SLL inst) {
803     return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
804                              [&](auto &&tup) {
805                                auto [rs1, rs2] = tup;
806                                return inst.rd.Write(m_emu,
807                                                     rs1 << (rs2 & 0b111111));
808                              })
809         .value_or(false);
810   }
operator ()(SLT inst)811   bool operator()(SLT inst) {
812     return transformOptional(
813                zipOpt(inst.rs1.ReadI64(m_emu), inst.rs2.ReadI64(m_emu)),
814                [&](auto &&tup) {
815                  auto [rs1, rs2] = tup;
816                  return inst.rd.Write(m_emu, rs1 < rs2);
817                })
818         .value_or(false);
819   }
operator ()(SLTU inst)820   bool operator()(SLTU inst) {
821     return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
822                              [&](auto &&tup) {
823                                auto [rs1, rs2] = tup;
824                                return inst.rd.Write(m_emu, rs1 < rs2);
825                              })
826         .value_or(false);
827   }
operator ()(XOR inst)828   bool operator()(XOR inst) {
829     return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
830                              [&](auto &&tup) {
831                                auto [rs1, rs2] = tup;
832                                return inst.rd.Write(m_emu, rs1 ^ rs2);
833                              })
834         .value_or(false);
835   }
operator ()(SRL inst)836   bool operator()(SRL inst) {
837     return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
838                              [&](auto &&tup) {
839                                auto [rs1, rs2] = tup;
840                                return inst.rd.Write(m_emu,
841                                                     rs1 >> (rs2 & 0b111111));
842                              })
843         .value_or(false);
844   }
operator ()(SRA inst)845   bool operator()(SRA inst) {
846     return transformOptional(
847                zipOpt(inst.rs1.ReadI64(m_emu), inst.rs2.Read(m_emu)),
848                [&](auto &&tup) {
849                  auto [rs1, rs2] = tup;
850                  return inst.rd.Write(m_emu, rs1 >> (rs2 & 0b111111));
851                })
852         .value_or(false);
853   }
operator ()(OR inst)854   bool operator()(OR inst) {
855     return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
856                              [&](auto &&tup) {
857                                auto [rs1, rs2] = tup;
858                                return inst.rd.Write(m_emu, rs1 | rs2);
859                              })
860         .value_or(false);
861   }
operator ()(AND inst)862   bool operator()(AND inst) {
863     return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
864                              [&](auto &&tup) {
865                                auto [rs1, rs2] = tup;
866                                return inst.rd.Write(m_emu, rs1 & rs2);
867                              })
868         .value_or(false);
869   }
operator ()(LWU inst)870   bool operator()(LWU inst) {
871     return Load<LWU, uint32_t, uint32_t>(m_emu, inst, ZextD);
872   }
operator ()(LD inst)873   bool operator()(LD inst) {
874     return Load<LD, uint64_t, uint64_t>(m_emu, inst, ZextD);
875   }
operator ()(SD inst)876   bool operator()(SD inst) { return Store<SD, uint64_t>(m_emu, inst); }
operator ()(SLLI inst)877   bool operator()(SLLI inst) {
878     return transformOptional(inst.rs1.Read(m_emu),
879                              [&](uint64_t rs1) {
880                                return inst.rd.Write(m_emu, rs1 << inst.shamt);
881                              })
882         .value_or(false);
883   }
operator ()(SRLI inst)884   bool operator()(SRLI inst) {
885     return transformOptional(inst.rs1.Read(m_emu),
886                              [&](uint64_t rs1) {
887                                return inst.rd.Write(m_emu, rs1 >> inst.shamt);
888                              })
889         .value_or(false);
890   }
operator ()(SRAI inst)891   bool operator()(SRAI inst) {
892     return transformOptional(inst.rs1.ReadI64(m_emu),
893                              [&](int64_t rs1) {
894                                return inst.rd.Write(m_emu, rs1 >> inst.shamt);
895                              })
896         .value_or(false);
897   }
operator ()(ADDIW inst)898   bool operator()(ADDIW inst) {
899     return transformOptional(inst.rs1.ReadI32(m_emu),
900                              [&](int32_t rs1) {
901                                return inst.rd.Write(
902                                    m_emu, SextW(rs1 + SignExt(inst.imm)));
903                              })
904         .value_or(false);
905   }
operator ()(SLLIW inst)906   bool operator()(SLLIW inst) {
907     return transformOptional(inst.rs1.ReadU32(m_emu),
908                              [&](uint32_t rs1) {
909                                return inst.rd.Write(m_emu,
910                                                     SextW(rs1 << inst.shamt));
911                              })
912         .value_or(false);
913   }
operator ()(SRLIW inst)914   bool operator()(SRLIW inst) {
915     return transformOptional(inst.rs1.ReadU32(m_emu),
916                              [&](uint32_t rs1) {
917                                return inst.rd.Write(m_emu,
918                                                     SextW(rs1 >> inst.shamt));
919                              })
920         .value_or(false);
921   }
operator ()(SRAIW inst)922   bool operator()(SRAIW inst) {
923     return transformOptional(inst.rs1.ReadI32(m_emu),
924                              [&](int32_t rs1) {
925                                return inst.rd.Write(m_emu,
926                                                     SextW(rs1 >> inst.shamt));
927                              })
928         .value_or(false);
929   }
operator ()(ADDW inst)930   bool operator()(ADDW inst) {
931     return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
932                              [&](auto &&tup) {
933                                auto [rs1, rs2] = tup;
934                                return inst.rd.Write(m_emu,
935                                                     SextW(uint32_t(rs1 + rs2)));
936                              })
937         .value_or(false);
938   }
operator ()(SUBW inst)939   bool operator()(SUBW inst) {
940     return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
941                              [&](auto &&tup) {
942                                auto [rs1, rs2] = tup;
943                                return inst.rd.Write(m_emu,
944                                                     SextW(uint32_t(rs1 - rs2)));
945                              })
946         .value_or(false);
947   }
operator ()(SLLW inst)948   bool operator()(SLLW inst) {
949     return transformOptional(
950                zipOpt(inst.rs1.ReadU32(m_emu), inst.rs2.ReadU32(m_emu)),
951                [&](auto &&tup) {
952                  auto [rs1, rs2] = tup;
953                  return inst.rd.Write(m_emu, SextW(rs1 << (rs2 & 0b11111)));
954                })
955         .value_or(false);
956   }
operator ()(SRLW inst)957   bool operator()(SRLW inst) {
958     return transformOptional(
959                zipOpt(inst.rs1.ReadU32(m_emu), inst.rs2.ReadU32(m_emu)),
960                [&](auto &&tup) {
961                  auto [rs1, rs2] = tup;
962                  return inst.rd.Write(m_emu, SextW(rs1 >> (rs2 & 0b11111)));
963                })
964         .value_or(false);
965   }
operator ()(SRAW inst)966   bool operator()(SRAW inst) {
967     return transformOptional(
968                zipOpt(inst.rs1.ReadI32(m_emu), inst.rs2.Read(m_emu)),
969                [&](auto &&tup) {
970                  auto [rs1, rs2] = tup;
971                  return inst.rd.Write(m_emu, SextW(rs1 >> (rs2 & 0b11111)));
972                })
973         .value_or(false);
974   }
975   // RV32M & RV64M (Integer Multiplication and Division Extension) //
operator ()(MUL inst)976   bool operator()(MUL inst) {
977     return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
978                              [&](auto &&tup) {
979                                auto [rs1, rs2] = tup;
980                                return inst.rd.Write(m_emu, rs1 * rs2);
981                              })
982         .value_or(false);
983   }
operator ()(MULH inst)984   bool operator()(MULH inst) {
985     return transformOptional(
986                zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
987                [&](auto &&tup) {
988                  auto [rs1, rs2] = tup;
989                  // signed * signed
990                  auto mul = APInt(128, rs1, true) * APInt(128, rs2, true);
991                  return inst.rd.Write(m_emu,
992                                       mul.ashr(64).trunc(64).getZExtValue());
993                })
994         .value_or(false);
995   }
operator ()(MULHSU inst)996   bool operator()(MULHSU inst) {
997     return transformOptional(
998                zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
999                [&](auto &&tup) {
1000                  auto [rs1, rs2] = tup;
1001                  // signed * unsigned
1002                  auto mul =
1003                      APInt(128, rs1, true).zext(128) * APInt(128, rs2, false);
1004                  return inst.rd.Write(m_emu,
1005                                       mul.lshr(64).trunc(64).getZExtValue());
1006                })
1007         .value_or(false);
1008   }
operator ()(MULHU inst)1009   bool operator()(MULHU inst) {
1010     return transformOptional(
1011                zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
1012                [&](auto &&tup) {
1013                  auto [rs1, rs2] = tup;
1014                  // unsigned * unsigned
1015                  auto mul = APInt(128, rs1, false) * APInt(128, rs2, false);
1016                  return inst.rd.Write(m_emu,
1017                                       mul.lshr(64).trunc(64).getZExtValue());
1018                })
1019         .value_or(false);
1020   }
operator ()(DIV inst)1021   bool operator()(DIV inst) {
1022     return transformOptional(
1023                zipOpt(inst.rs1.ReadI64(m_emu), inst.rs2.ReadI64(m_emu)),
1024                [&](auto &&tup) {
1025                  auto [dividend, divisor] = tup;
1026 
1027                  if (divisor == 0)
1028                    return inst.rd.Write(m_emu, UINT64_MAX);
1029 
1030                  if (dividend == INT64_MIN && divisor == -1)
1031                    return inst.rd.Write(m_emu, dividend);
1032 
1033                  return inst.rd.Write(m_emu, dividend / divisor);
1034                })
1035         .value_or(false);
1036   }
operator ()(DIVU inst)1037   bool operator()(DIVU inst) {
1038     return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
1039                              [&](auto &&tup) {
1040                                auto [dividend, divisor] = tup;
1041 
1042                                if (divisor == 0)
1043                                  return inst.rd.Write(m_emu, UINT64_MAX);
1044 
1045                                return inst.rd.Write(m_emu, dividend / divisor);
1046                              })
1047         .value_or(false);
1048   }
operator ()(REM inst)1049   bool operator()(REM inst) {
1050     return transformOptional(
1051                zipOpt(inst.rs1.ReadI64(m_emu), inst.rs2.ReadI64(m_emu)),
1052                [&](auto &&tup) {
1053                  auto [dividend, divisor] = tup;
1054 
1055                  if (divisor == 0)
1056                    return inst.rd.Write(m_emu, dividend);
1057 
1058                  if (dividend == INT64_MIN && divisor == -1)
1059                    return inst.rd.Write(m_emu, 0);
1060 
1061                  return inst.rd.Write(m_emu, dividend % divisor);
1062                })
1063         .value_or(false);
1064   }
operator ()(REMU inst)1065   bool operator()(REMU inst) {
1066     return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
1067                              [&](auto &&tup) {
1068                                auto [dividend, divisor] = tup;
1069 
1070                                if (divisor == 0)
1071                                  return inst.rd.Write(m_emu, dividend);
1072 
1073                                return inst.rd.Write(m_emu, dividend % divisor);
1074                              })
1075         .value_or(false);
1076   }
operator ()(MULW inst)1077   bool operator()(MULW inst) {
1078     return transformOptional(
1079                zipOpt(inst.rs1.ReadI32(m_emu), inst.rs2.ReadI32(m_emu)),
1080                [&](auto &&tup) {
1081                  auto [rs1, rs2] = tup;
1082                  return inst.rd.Write(m_emu, SextW(rs1 * rs2));
1083                })
1084         .value_or(false);
1085   }
operator ()(DIVW inst)1086   bool operator()(DIVW inst) {
1087     return transformOptional(
1088                zipOpt(inst.rs1.ReadI32(m_emu), inst.rs2.ReadI32(m_emu)),
1089                [&](auto &&tup) {
1090                  auto [dividend, divisor] = tup;
1091 
1092                  if (divisor == 0)
1093                    return inst.rd.Write(m_emu, UINT64_MAX);
1094 
1095                  if (dividend == INT32_MIN && divisor == -1)
1096                    return inst.rd.Write(m_emu, SextW(dividend));
1097 
1098                  return inst.rd.Write(m_emu, SextW(dividend / divisor));
1099                })
1100         .value_or(false);
1101   }
operator ()(DIVUW inst)1102   bool operator()(DIVUW inst) {
1103     return transformOptional(
1104                zipOpt(inst.rs1.ReadU32(m_emu), inst.rs2.ReadU32(m_emu)),
1105                [&](auto &&tup) {
1106                  auto [dividend, divisor] = tup;
1107 
1108                  if (divisor == 0)
1109                    return inst.rd.Write(m_emu, UINT64_MAX);
1110 
1111                  return inst.rd.Write(m_emu, SextW(dividend / divisor));
1112                })
1113         .value_or(false);
1114   }
operator ()(REMW inst)1115   bool operator()(REMW inst) {
1116     return transformOptional(
1117                zipOpt(inst.rs1.ReadI32(m_emu), inst.rs2.ReadI32(m_emu)),
1118                [&](auto &&tup) {
1119                  auto [dividend, divisor] = tup;
1120 
1121                  if (divisor == 0)
1122                    return inst.rd.Write(m_emu, SextW(dividend));
1123 
1124                  if (dividend == INT32_MIN && divisor == -1)
1125                    return inst.rd.Write(m_emu, 0);
1126 
1127                  return inst.rd.Write(m_emu, SextW(dividend % divisor));
1128                })
1129         .value_or(false);
1130   }
operator ()(REMUW inst)1131   bool operator()(REMUW inst) {
1132     return transformOptional(
1133                zipOpt(inst.rs1.ReadU32(m_emu), inst.rs2.ReadU32(m_emu)),
1134                [&](auto &&tup) {
1135                  auto [dividend, divisor] = tup;
1136 
1137                  if (divisor == 0)
1138                    return inst.rd.Write(m_emu, SextW(dividend));
1139 
1140                  return inst.rd.Write(m_emu, SextW(dividend % divisor));
1141                })
1142         .value_or(false);
1143   }
1144   // RV32A & RV64A (The standard atomic instruction extension) //
operator ()(LR_W)1145   bool operator()(LR_W) { return AtomicSequence(m_emu); }
operator ()(LR_D)1146   bool operator()(LR_D) { return AtomicSequence(m_emu); }
operator ()(SC_W)1147   bool operator()(SC_W) {
1148     llvm_unreachable("should be handled in AtomicSequence");
1149   }
operator ()(SC_D)1150   bool operator()(SC_D) {
1151     llvm_unreachable("should be handled in AtomicSequence");
1152   }
operator ()(AMOSWAP_W inst)1153   bool operator()(AMOSWAP_W inst) {
1154     return AtomicSwap<AMOSWAP_W, uint32_t>(m_emu, inst, 4, SextW);
1155   }
operator ()(AMOADD_W inst)1156   bool operator()(AMOADD_W inst) {
1157     return AtomicADD<AMOADD_W, uint32_t>(m_emu, inst, 4, SextW);
1158   }
operator ()(AMOXOR_W inst)1159   bool operator()(AMOXOR_W inst) {
1160     return AtomicBitOperate<AMOXOR_W, uint32_t>(
1161         m_emu, inst, 4, SextW, [](uint32_t a, uint32_t b) { return a ^ b; });
1162   }
operator ()(AMOAND_W inst)1163   bool operator()(AMOAND_W inst) {
1164     return AtomicBitOperate<AMOAND_W, uint32_t>(
1165         m_emu, inst, 4, SextW, [](uint32_t a, uint32_t b) { return a & b; });
1166   }
operator ()(AMOOR_W inst)1167   bool operator()(AMOOR_W inst) {
1168     return AtomicBitOperate<AMOOR_W, uint32_t>(
1169         m_emu, inst, 4, SextW, [](uint32_t a, uint32_t b) { return a | b; });
1170   }
operator ()(AMOMIN_W inst)1171   bool operator()(AMOMIN_W inst) {
1172     return AtomicCmp<AMOMIN_W, uint32_t>(
1173         m_emu, inst, 4, SextW, [](uint32_t a, uint32_t b) {
1174           return uint32_t(std::min(int32_t(a), int32_t(b)));
1175         });
1176   }
operator ()(AMOMAX_W inst)1177   bool operator()(AMOMAX_W inst) {
1178     return AtomicCmp<AMOMAX_W, uint32_t>(
1179         m_emu, inst, 4, SextW, [](uint32_t a, uint32_t b) {
1180           return uint32_t(std::max(int32_t(a), int32_t(b)));
1181         });
1182   }
operator ()(AMOMINU_W inst)1183   bool operator()(AMOMINU_W inst) {
1184     return AtomicCmp<AMOMINU_W, uint32_t>(
1185         m_emu, inst, 4, SextW,
1186         [](uint32_t a, uint32_t b) { return std::min(a, b); });
1187   }
operator ()(AMOMAXU_W inst)1188   bool operator()(AMOMAXU_W inst) {
1189     return AtomicCmp<AMOMAXU_W, uint32_t>(
1190         m_emu, inst, 4, SextW,
1191         [](uint32_t a, uint32_t b) { return std::max(a, b); });
1192   }
operator ()(AMOSWAP_D inst)1193   bool operator()(AMOSWAP_D inst) {
1194     return AtomicSwap<AMOSWAP_D, uint64_t>(m_emu, inst, 8, ZextD);
1195   }
operator ()(AMOADD_D inst)1196   bool operator()(AMOADD_D inst) {
1197     return AtomicADD<AMOADD_D, uint64_t>(m_emu, inst, 8, ZextD);
1198   }
operator ()(AMOXOR_D inst)1199   bool operator()(AMOXOR_D inst) {
1200     return AtomicBitOperate<AMOXOR_D, uint64_t>(
1201         m_emu, inst, 8, ZextD, [](uint64_t a, uint64_t b) { return a ^ b; });
1202   }
operator ()(AMOAND_D inst)1203   bool operator()(AMOAND_D inst) {
1204     return AtomicBitOperate<AMOAND_D, uint64_t>(
1205         m_emu, inst, 8, ZextD, [](uint64_t a, uint64_t b) { return a & b; });
1206   }
operator ()(AMOOR_D inst)1207   bool operator()(AMOOR_D inst) {
1208     return AtomicBitOperate<AMOOR_D, uint64_t>(
1209         m_emu, inst, 8, ZextD, [](uint64_t a, uint64_t b) { return a | b; });
1210   }
operator ()(AMOMIN_D inst)1211   bool operator()(AMOMIN_D inst) {
1212     return AtomicCmp<AMOMIN_D, uint64_t>(
1213         m_emu, inst, 8, ZextD, [](uint64_t a, uint64_t b) {
1214           return uint64_t(std::min(int64_t(a), int64_t(b)));
1215         });
1216   }
operator ()(AMOMAX_D inst)1217   bool operator()(AMOMAX_D inst) {
1218     return AtomicCmp<AMOMAX_D, uint64_t>(
1219         m_emu, inst, 8, ZextD, [](uint64_t a, uint64_t b) {
1220           return uint64_t(std::max(int64_t(a), int64_t(b)));
1221         });
1222   }
operator ()(AMOMINU_D inst)1223   bool operator()(AMOMINU_D inst) {
1224     return AtomicCmp<AMOMINU_D, uint64_t>(
1225         m_emu, inst, 8, ZextD,
1226         [](uint64_t a, uint64_t b) { return std::min(a, b); });
1227   }
operator ()(AMOMAXU_D inst)1228   bool operator()(AMOMAXU_D inst) {
1229     return AtomicCmp<AMOMAXU_D, uint64_t>(
1230         m_emu, inst, 8, ZextD,
1231         [](uint64_t a, uint64_t b) { return std::max(a, b); });
1232   }
1233   template <typename T>
F_Load(T inst,const fltSemantics & (* semantics)(),unsigned int numBits)1234   bool F_Load(T inst, const fltSemantics &(*semantics)(),
1235               unsigned int numBits) {
1236     return transformOptional(inst.rs1.Read(m_emu),
1237                              [&](auto &&rs1) {
1238                                uint64_t addr = rs1 + uint64_t(inst.imm);
1239                                uint64_t bits = *m_emu.ReadMem<uint64_t>(addr);
1240                                APFloat f(semantics(), APInt(numBits, bits));
1241                                return inst.rd.WriteAPFloat(m_emu, f);
1242                              })
1243         .value_or(false);
1244   }
operator ()(FLW inst)1245   bool operator()(FLW inst) { return F_Load(inst, &APFloat::IEEEsingle, 32); }
F_Store(T inst,bool isDouble)1246   template <typename T> bool F_Store(T inst, bool isDouble) {
1247     return transformOptional(zipOpt(inst.rs1.Read(m_emu),
1248                                     inst.rs2.ReadAPFloat(m_emu, isDouble)),
1249                              [&](auto &&tup) {
1250                                auto [rs1, rs2] = tup;
1251                                uint64_t addr = rs1 + uint64_t(inst.imm);
1252                                uint64_t bits =
1253                                    rs2.bitcastToAPInt().getZExtValue();
1254                                return m_emu.WriteMem<uint64_t>(addr, bits);
1255                              })
1256         .value_or(false);
1257   }
operator ()(FSW inst)1258   bool operator()(FSW inst) { return F_Store(inst, false); }
FusedMultiplyAdd(APFloat rs1,APFloat rs2,APFloat rs3)1259   std::tuple<bool, APFloat> FusedMultiplyAdd(APFloat rs1, APFloat rs2,
1260                                              APFloat rs3) {
1261     auto opStatus = rs1.fusedMultiplyAdd(rs2, rs3, m_emu.GetRoundingMode());
1262     auto res = m_emu.SetAccruedExceptions(opStatus);
1263     return {res, rs1};
1264   }
1265   template <typename T>
FMA(T inst,bool isDouble,float rs2_sign,float rs3_sign)1266   bool FMA(T inst, bool isDouble, float rs2_sign, float rs3_sign) {
1267     return transformOptional(zipOpt(inst.rs1.ReadAPFloat(m_emu, isDouble),
1268                                     inst.rs2.ReadAPFloat(m_emu, isDouble),
1269                                     inst.rs3.ReadAPFloat(m_emu, isDouble)),
1270                              [&](auto &&tup) {
1271                                auto [rs1, rs2, rs3] = tup;
1272                                rs2.copySign(APFloat(rs2_sign));
1273                                rs3.copySign(APFloat(rs3_sign));
1274                                auto [res, f] = FusedMultiplyAdd(rs1, rs2, rs3);
1275                                return res && inst.rd.WriteAPFloat(m_emu, f);
1276                              })
1277         .value_or(false);
1278   }
operator ()(FMADD_S inst)1279   bool operator()(FMADD_S inst) { return FMA(inst, false, 1.0f, 1.0f); }
operator ()(FMSUB_S inst)1280   bool operator()(FMSUB_S inst) { return FMA(inst, false, 1.0f, -1.0f); }
operator ()(FNMSUB_S inst)1281   bool operator()(FNMSUB_S inst) { return FMA(inst, false, -1.0f, 1.0f); }
operator ()(FNMADD_S inst)1282   bool operator()(FNMADD_S inst) { return FMA(inst, false, -1.0f, -1.0f); }
1283   template <typename T>
F_Op(T inst,bool isDouble,APFloat::opStatus (APFloat::* f)(const APFloat & RHS,APFloat::roundingMode RM))1284   bool F_Op(T inst, bool isDouble,
1285             APFloat::opStatus (APFloat::*f)(const APFloat &RHS,
1286                                             APFloat::roundingMode RM)) {
1287     return transformOptional(zipOpt(inst.rs1.ReadAPFloat(m_emu, isDouble),
1288                                     inst.rs2.ReadAPFloat(m_emu, isDouble)),
1289                              [&](auto &&tup) {
1290                                auto [rs1, rs2] = tup;
1291                                auto res =
1292                                    ((&rs1)->*f)(rs2, m_emu.GetRoundingMode());
1293                                inst.rd.WriteAPFloat(m_emu, rs1);
1294                                return m_emu.SetAccruedExceptions(res);
1295                              })
1296         .value_or(false);
1297   }
operator ()(FADD_S inst)1298   bool operator()(FADD_S inst) { return F_Op(inst, false, &APFloat::add); }
operator ()(FSUB_S inst)1299   bool operator()(FSUB_S inst) { return F_Op(inst, false, &APFloat::subtract); }
operator ()(FMUL_S inst)1300   bool operator()(FMUL_S inst) { return F_Op(inst, false, &APFloat::multiply); }
operator ()(FDIV_S inst)1301   bool operator()(FDIV_S inst) { return F_Op(inst, false, &APFloat::divide); }
operator ()(FSQRT_S inst)1302   bool operator()(FSQRT_S inst) {
1303     // TODO: APFloat doesn't have a sqrt function.
1304     return false;
1305   }
F_SignInj(T inst,bool isDouble,bool isNegate)1306   template <typename T> bool F_SignInj(T inst, bool isDouble, bool isNegate) {
1307     return transformOptional(zipOpt(inst.rs1.ReadAPFloat(m_emu, isDouble),
1308                                     inst.rs2.ReadAPFloat(m_emu, isDouble)),
1309                              [&](auto &&tup) {
1310                                auto [rs1, rs2] = tup;
1311                                if (isNegate)
1312                                  rs2.changeSign();
1313                                rs1.copySign(rs2);
1314                                return inst.rd.WriteAPFloat(m_emu, rs1);
1315                              })
1316         .value_or(false);
1317   }
operator ()(FSGNJ_S inst)1318   bool operator()(FSGNJ_S inst) { return F_SignInj(inst, false, false); }
operator ()(FSGNJN_S inst)1319   bool operator()(FSGNJN_S inst) { return F_SignInj(inst, false, true); }
F_SignInjXor(T inst,bool isDouble)1320   template <typename T> bool F_SignInjXor(T inst, bool isDouble) {
1321     return transformOptional(zipOpt(inst.rs1.ReadAPFloat(m_emu, isDouble),
1322                                     inst.rs2.ReadAPFloat(m_emu, isDouble)),
1323                              [&](auto &&tup) {
1324                                auto [rs1, rs2] = tup;
1325                                // spec: the sign bit is the XOR of the sign bits
1326                                // of rs1 and rs2. if rs1 and rs2 have the same
1327                                // signs set rs1 to positive else set rs1 to
1328                                // negative
1329                                if (rs1.isNegative() == rs2.isNegative()) {
1330                                  rs1.clearSign();
1331                                } else {
1332                                  rs1.clearSign();
1333                                  rs1.changeSign();
1334                                }
1335                                return inst.rd.WriteAPFloat(m_emu, rs1);
1336                              })
1337         .value_or(false);
1338   }
operator ()(FSGNJX_S inst)1339   bool operator()(FSGNJX_S inst) { return F_SignInjXor(inst, false); }
1340   template <typename T>
F_MAX_MIN(T inst,bool isDouble,APFloat (* f)(const APFloat & A,const APFloat & B))1341   bool F_MAX_MIN(T inst, bool isDouble,
1342                  APFloat (*f)(const APFloat &A, const APFloat &B)) {
1343     return transformOptional(
1344                zipOpt(inst.rs1.ReadAPFloat(m_emu, isDouble),
1345                       inst.rs2.ReadAPFloat(m_emu, isDouble)),
1346                [&](auto &&tup) {
1347                  auto [rs1, rs2] = tup;
1348                  // If both inputs are NaNs, the result is the canonical NaN.
1349                  // If only one operand is a NaN, the result is the non-NaN
1350                  // operand. Signaling NaN inputs set the invalid operation
1351                  // exception flag, even when the result is not NaN.
1352                  if (rs1.isNaN() || rs2.isNaN())
1353                    m_emu.SetAccruedExceptions(APFloat::opInvalidOp);
1354                  if (rs1.isNaN() && rs2.isNaN()) {
1355                    auto canonicalNaN = APFloat::getQNaN(rs1.getSemantics());
1356                    return inst.rd.WriteAPFloat(m_emu, canonicalNaN);
1357                  }
1358                  return inst.rd.WriteAPFloat(m_emu, f(rs1, rs2));
1359                })
1360         .value_or(false);
1361   }
operator ()(FMIN_S inst)1362   bool operator()(FMIN_S inst) { return F_MAX_MIN(inst, false, minnum); }
operator ()(FMAX_S inst)1363   bool operator()(FMAX_S inst) { return F_MAX_MIN(inst, false, maxnum); }
operator ()(FCVT_W_S inst)1364   bool operator()(FCVT_W_S inst) {
1365     return FCVT_i2f<FCVT_W_S, int32_t, float>(inst, false,
1366                                               &APFloat::convertToFloat);
1367   }
operator ()(FCVT_WU_S inst)1368   bool operator()(FCVT_WU_S inst) {
1369     return FCVT_i2f<FCVT_WU_S, uint32_t, float>(inst, false,
1370                                                 &APFloat::convertToFloat);
1371   }
FMV_f2i(T inst,bool isDouble)1372   template <typename T> bool FMV_f2i(T inst, bool isDouble) {
1373     return transformOptional(
1374                inst.rs1.ReadAPFloat(m_emu, isDouble),
1375                [&](auto &&rs1) {
1376                  if (rs1.isNaN()) {
1377                    if (isDouble)
1378                      return inst.rd.Write(m_emu, 0x7ff8'0000'0000'0000);
1379                    else
1380                      return inst.rd.Write(m_emu, 0x7fc0'0000);
1381                  }
1382                  auto bits = rs1.bitcastToAPInt().getZExtValue();
1383                  if (isDouble)
1384                    return inst.rd.Write(m_emu, bits);
1385                  else
1386                    return inst.rd.Write(m_emu, uint64_t(bits & 0xffff'ffff));
1387                })
1388         .value_or(false);
1389   }
operator ()(FMV_X_W inst)1390   bool operator()(FMV_X_W inst) { return FMV_f2i(inst, false); }
1391   enum F_CMP {
1392     FEQ,
1393     FLT,
1394     FLE,
1395   };
F_Compare(T inst,bool isDouble,F_CMP cmp)1396   template <typename T> bool F_Compare(T inst, bool isDouble, F_CMP cmp) {
1397     return transformOptional(
1398                zipOpt(inst.rs1.ReadAPFloat(m_emu, isDouble),
1399                       inst.rs2.ReadAPFloat(m_emu, isDouble)),
1400                [&](auto &&tup) {
1401                  auto [rs1, rs2] = tup;
1402                  if (rs1.isNaN() || rs2.isNaN()) {
1403                    if (cmp == FEQ) {
1404                      if (rs1.isSignaling() || rs2.isSignaling()) {
1405                        auto res =
1406                            m_emu.SetAccruedExceptions(APFloat::opInvalidOp);
1407                        return res && inst.rd.Write(m_emu, 0);
1408                      }
1409                    }
1410                    auto res = m_emu.SetAccruedExceptions(APFloat::opInvalidOp);
1411                    return res && inst.rd.Write(m_emu, 0);
1412                  }
1413                  switch (cmp) {
1414                  case FEQ:
1415                    return inst.rd.Write(m_emu,
1416                                         rs1.compare(rs2) == APFloat::cmpEqual);
1417                  case FLT:
1418                    return inst.rd.Write(m_emu, rs1.compare(rs2) ==
1419                                                    APFloat::cmpLessThan);
1420                  case FLE:
1421                    return inst.rd.Write(m_emu, rs1.compare(rs2) !=
1422                                                    APFloat::cmpGreaterThan);
1423                  }
1424                  llvm_unreachable("unsupported F_CMP");
1425                })
1426         .value_or(false);
1427   }
1428 
operator ()(FEQ_S inst)1429   bool operator()(FEQ_S inst) { return F_Compare(inst, false, FEQ); }
operator ()(FLT_S inst)1430   bool operator()(FLT_S inst) { return F_Compare(inst, false, FLT); }
operator ()(FLE_S inst)1431   bool operator()(FLE_S inst) { return F_Compare(inst, false, FLE); }
FCLASS(T inst,bool isDouble)1432   template <typename T> bool FCLASS(T inst, bool isDouble) {
1433     return transformOptional(inst.rs1.ReadAPFloat(m_emu, isDouble),
1434                              [&](auto &&rs1) {
1435                                uint64_t result = 0;
1436                                if (rs1.isInfinity() && rs1.isNegative())
1437                                  result |= 1 << 0;
1438                                // neg normal
1439                                if (rs1.isNormal() && rs1.isNegative())
1440                                  result |= 1 << 1;
1441                                // neg subnormal
1442                                if (rs1.isDenormal() && rs1.isNegative())
1443                                  result |= 1 << 2;
1444                                if (rs1.isNegZero())
1445                                  result |= 1 << 3;
1446                                if (rs1.isPosZero())
1447                                  result |= 1 << 4;
1448                                // pos normal
1449                                if (rs1.isNormal() && !rs1.isNegative())
1450                                  result |= 1 << 5;
1451                                // pos subnormal
1452                                if (rs1.isDenormal() && !rs1.isNegative())
1453                                  result |= 1 << 6;
1454                                if (rs1.isInfinity() && !rs1.isNegative())
1455                                  result |= 1 << 7;
1456                                if (rs1.isNaN()) {
1457                                  if (rs1.isSignaling())
1458                                    result |= 1 << 8;
1459                                  else
1460                                    result |= 1 << 9;
1461                                }
1462                                return inst.rd.Write(m_emu, result);
1463                              })
1464         .value_or(false);
1465   }
operator ()(FCLASS_S inst)1466   bool operator()(FCLASS_S inst) { return FCLASS(inst, false); }
1467   template <typename T, typename E>
FCVT_f2i(T inst,std::optional<E> (Rs::* f)(EmulateInstructionRISCV & emu),const fltSemantics & semantics)1468   bool FCVT_f2i(T inst, std::optional<E> (Rs::*f)(EmulateInstructionRISCV &emu),
1469                 const fltSemantics &semantics) {
1470     return transformOptional(((&inst.rs1)->*f)(m_emu),
1471                              [&](auto &&rs1) {
1472                                APFloat apf(semantics, rs1);
1473                                return inst.rd.WriteAPFloat(m_emu, apf);
1474                              })
1475         .value_or(false);
1476   }
operator ()(FCVT_S_W inst)1477   bool operator()(FCVT_S_W inst) {
1478     return FCVT_f2i(inst, &Rs::ReadI32, APFloat::IEEEsingle());
1479   }
operator ()(FCVT_S_WU inst)1480   bool operator()(FCVT_S_WU inst) {
1481     return FCVT_f2i(inst, &Rs::ReadU32, APFloat::IEEEsingle());
1482   }
1483   template <typename T, typename E>
FMV_i2f(T inst,unsigned int numBits,E (APInt::* f)()const)1484   bool FMV_i2f(T inst, unsigned int numBits, E (APInt::*f)() const) {
1485     return transformOptional(inst.rs1.Read(m_emu),
1486                              [&](auto &&rs1) {
1487                                APInt apInt(numBits, rs1);
1488                                if (numBits == 32) // a.k.a. float
1489                                  apInt = APInt(numBits, NanUnBoxing(rs1));
1490                                APFloat apf((&apInt->*f)());
1491                                return inst.rd.WriteAPFloat(m_emu, apf);
1492                              })
1493         .value_or(false);
1494   }
operator ()(FMV_W_X inst)1495   bool operator()(FMV_W_X inst) {
1496     return FMV_i2f(inst, 32, &APInt::bitsToFloat);
1497   }
1498   template <typename I, typename E, typename T>
FCVT_i2f(I inst,bool isDouble,T (APFloat::* f)()const)1499   bool FCVT_i2f(I inst, bool isDouble, T (APFloat::*f)() const) {
1500     return transformOptional(inst.rs1.ReadAPFloat(m_emu, isDouble),
1501                              [&](auto &&rs1) {
1502                                E res = E((&rs1->*f)());
1503                                return inst.rd.Write(m_emu, uint64_t(res));
1504                              })
1505         .value_or(false);
1506   }
operator ()(FCVT_L_S inst)1507   bool operator()(FCVT_L_S inst) {
1508     return FCVT_i2f<FCVT_L_S, int64_t, float>(inst, false,
1509                                               &APFloat::convertToFloat);
1510   }
operator ()(FCVT_LU_S inst)1511   bool operator()(FCVT_LU_S inst) {
1512     return FCVT_i2f<FCVT_LU_S, uint64_t, float>(inst, false,
1513                                                 &APFloat::convertToFloat);
1514   }
operator ()(FCVT_S_L inst)1515   bool operator()(FCVT_S_L inst) {
1516     return FCVT_f2i(inst, &Rs::ReadI64, APFloat::IEEEsingle());
1517   }
operator ()(FCVT_S_LU inst)1518   bool operator()(FCVT_S_LU inst) {
1519     return FCVT_f2i(inst, &Rs::Read, APFloat::IEEEsingle());
1520   }
operator ()(FLD inst)1521   bool operator()(FLD inst) { return F_Load(inst, &APFloat::IEEEdouble, 64); }
operator ()(FSD inst)1522   bool operator()(FSD inst) { return F_Store(inst, true); }
operator ()(FMADD_D inst)1523   bool operator()(FMADD_D inst) { return FMA(inst, true, 1.0f, 1.0f); }
operator ()(FMSUB_D inst)1524   bool operator()(FMSUB_D inst) { return FMA(inst, true, 1.0f, -1.0f); }
operator ()(FNMSUB_D inst)1525   bool operator()(FNMSUB_D inst) { return FMA(inst, true, -1.0f, 1.0f); }
operator ()(FNMADD_D inst)1526   bool operator()(FNMADD_D inst) { return FMA(inst, true, -1.0f, -1.0f); }
operator ()(FADD_D inst)1527   bool operator()(FADD_D inst) { return F_Op(inst, true, &APFloat::add); }
operator ()(FSUB_D inst)1528   bool operator()(FSUB_D inst) { return F_Op(inst, true, &APFloat::subtract); }
operator ()(FMUL_D inst)1529   bool operator()(FMUL_D inst) { return F_Op(inst, true, &APFloat::multiply); }
operator ()(FDIV_D inst)1530   bool operator()(FDIV_D inst) { return F_Op(inst, true, &APFloat::divide); }
operator ()(FSQRT_D inst)1531   bool operator()(FSQRT_D inst) {
1532     // TODO: APFloat doesn't have a sqrt function.
1533     return false;
1534   }
operator ()(FSGNJ_D inst)1535   bool operator()(FSGNJ_D inst) { return F_SignInj(inst, true, false); }
operator ()(FSGNJN_D inst)1536   bool operator()(FSGNJN_D inst) { return F_SignInj(inst, true, true); }
operator ()(FSGNJX_D inst)1537   bool operator()(FSGNJX_D inst) { return F_SignInjXor(inst, true); }
operator ()(FMIN_D inst)1538   bool operator()(FMIN_D inst) { return F_MAX_MIN(inst, true, minnum); }
operator ()(FMAX_D inst)1539   bool operator()(FMAX_D inst) { return F_MAX_MIN(inst, true, maxnum); }
operator ()(FCVT_S_D inst)1540   bool operator()(FCVT_S_D inst) {
1541     return transformOptional(inst.rs1.ReadAPFloat(m_emu, true),
1542                              [&](auto &&rs1) {
1543                                double d = rs1.convertToDouble();
1544                                APFloat apf((float(d)));
1545                                return inst.rd.WriteAPFloat(m_emu, apf);
1546                              })
1547         .value_or(false);
1548   }
operator ()(FCVT_D_S inst)1549   bool operator()(FCVT_D_S inst) {
1550     return transformOptional(inst.rs1.ReadAPFloat(m_emu, false),
1551                              [&](auto &&rs1) {
1552                                float f = rs1.convertToFloat();
1553                                APFloat apf((double(f)));
1554                                return inst.rd.WriteAPFloat(m_emu, apf);
1555                              })
1556         .value_or(false);
1557   }
operator ()(FEQ_D inst)1558   bool operator()(FEQ_D inst) { return F_Compare(inst, true, FEQ); }
operator ()(FLT_D inst)1559   bool operator()(FLT_D inst) { return F_Compare(inst, true, FLT); }
operator ()(FLE_D inst)1560   bool operator()(FLE_D inst) { return F_Compare(inst, true, FLE); }
operator ()(FCLASS_D inst)1561   bool operator()(FCLASS_D inst) { return FCLASS(inst, true); }
operator ()(FCVT_W_D inst)1562   bool operator()(FCVT_W_D inst) {
1563     return FCVT_i2f<FCVT_W_D, int32_t, double>(inst, true,
1564                                                &APFloat::convertToDouble);
1565   }
operator ()(FCVT_WU_D inst)1566   bool operator()(FCVT_WU_D inst) {
1567     return FCVT_i2f<FCVT_WU_D, uint32_t, double>(inst, true,
1568                                                  &APFloat::convertToDouble);
1569   }
operator ()(FCVT_D_W inst)1570   bool operator()(FCVT_D_W inst) {
1571     return FCVT_f2i(inst, &Rs::ReadI32, APFloat::IEEEdouble());
1572   }
operator ()(FCVT_D_WU inst)1573   bool operator()(FCVT_D_WU inst) {
1574     return FCVT_f2i(inst, &Rs::ReadU32, APFloat::IEEEdouble());
1575   }
operator ()(FCVT_L_D inst)1576   bool operator()(FCVT_L_D inst) {
1577     return FCVT_i2f<FCVT_L_D, int64_t, double>(inst, true,
1578                                                &APFloat::convertToDouble);
1579   }
operator ()(FCVT_LU_D inst)1580   bool operator()(FCVT_LU_D inst) {
1581     return FCVT_i2f<FCVT_LU_D, uint64_t, double>(inst, true,
1582                                                  &APFloat::convertToDouble);
1583   }
operator ()(FMV_X_D inst)1584   bool operator()(FMV_X_D inst) { return FMV_f2i(inst, true); }
operator ()(FCVT_D_L inst)1585   bool operator()(FCVT_D_L inst) {
1586     return FCVT_f2i(inst, &Rs::ReadI64, APFloat::IEEEdouble());
1587   }
operator ()(FCVT_D_LU inst)1588   bool operator()(FCVT_D_LU inst) {
1589     return FCVT_f2i(inst, &Rs::Read, APFloat::IEEEdouble());
1590   }
operator ()(FMV_D_X inst)1591   bool operator()(FMV_D_X inst) {
1592     return FMV_i2f(inst, 64, &APInt::bitsToDouble);
1593   }
operator ()(INVALID inst)1594   bool operator()(INVALID inst) { return false; }
operator ()(RESERVED inst)1595   bool operator()(RESERVED inst) { return false; }
operator ()(EBREAK inst)1596   bool operator()(EBREAK inst) { return false; }
operator ()(HINT inst)1597   bool operator()(HINT inst) { return true; }
operator ()(NOP inst)1598   bool operator()(NOP inst) { return true; }
1599 };
1600 
Execute(DecodeResult inst,bool ignore_cond)1601 bool EmulateInstructionRISCV::Execute(DecodeResult inst, bool ignore_cond) {
1602   return std::visit(Executor(*this, ignore_cond, inst.is_rvc), inst.decoded);
1603 }
1604 
EvaluateInstruction(uint32_t options)1605 bool EmulateInstructionRISCV::EvaluateInstruction(uint32_t options) {
1606   bool increase_pc = options & eEmulateInstructionOptionAutoAdvancePC;
1607   bool ignore_cond = options & eEmulateInstructionOptionIgnoreConditions;
1608 
1609   if (!increase_pc)
1610     return Execute(m_decoded, ignore_cond);
1611 
1612   auto old_pc = ReadPC();
1613   if (!old_pc)
1614     return false;
1615 
1616   bool success = Execute(m_decoded, ignore_cond);
1617   if (!success)
1618     return false;
1619 
1620   auto new_pc = ReadPC();
1621   if (!new_pc)
1622     return false;
1623 
1624   // If the pc is not updated during execution, we do it here.
1625   return new_pc != old_pc ||
1626          WritePC(*old_pc + Executor::size(m_decoded.is_rvc));
1627 }
1628 
1629 std::optional<DecodeResult>
ReadInstructionAt(addr_t addr)1630 EmulateInstructionRISCV::ReadInstructionAt(addr_t addr) {
1631   return transformOptional(ReadMem<uint32_t>(addr),
1632                            [&](uint32_t inst) { return Decode(inst); })
1633       .value_or(std::nullopt);
1634 }
1635 
ReadInstruction()1636 bool EmulateInstructionRISCV::ReadInstruction() {
1637   auto addr = ReadPC();
1638   m_addr = addr.value_or(LLDB_INVALID_ADDRESS);
1639   if (!addr)
1640     return false;
1641   auto inst = ReadInstructionAt(*addr);
1642   if (!inst)
1643     return false;
1644   m_decoded = *inst;
1645   if (inst->is_rvc)
1646     m_opcode.SetOpcode16(inst->inst, GetByteOrder());
1647   else
1648     m_opcode.SetOpcode32(inst->inst, GetByteOrder());
1649   return true;
1650 }
1651 
ReadPC()1652 std::optional<addr_t> EmulateInstructionRISCV::ReadPC() {
1653   bool success = false;
1654   auto addr = ReadRegisterUnsigned(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC,
1655                                    LLDB_INVALID_ADDRESS, &success);
1656   return success ? std::optional<addr_t>(addr) : std::nullopt;
1657 }
1658 
WritePC(addr_t pc)1659 bool EmulateInstructionRISCV::WritePC(addr_t pc) {
1660   EmulateInstruction::Context ctx;
1661   ctx.type = eContextAdvancePC;
1662   ctx.SetNoArgs();
1663   return WriteRegisterUnsigned(ctx, eRegisterKindGeneric,
1664                                LLDB_REGNUM_GENERIC_PC, pc);
1665 }
1666 
GetRoundingMode()1667 RoundingMode EmulateInstructionRISCV::GetRoundingMode() {
1668   bool success = false;
1669   auto fcsr = ReadRegisterUnsigned(eRegisterKindLLDB, fpr_fcsr_riscv,
1670                                    LLDB_INVALID_ADDRESS, &success);
1671   if (!success)
1672     return RoundingMode::Invalid;
1673   auto frm = (fcsr >> 5) & 0x7;
1674   switch (frm) {
1675   case 0b000:
1676     return RoundingMode::NearestTiesToEven;
1677   case 0b001:
1678     return RoundingMode::TowardZero;
1679   case 0b010:
1680     return RoundingMode::TowardNegative;
1681   case 0b011:
1682     return RoundingMode::TowardPositive;
1683   case 0b111:
1684     return RoundingMode::Dynamic;
1685   default:
1686     // Reserved for future use.
1687     return RoundingMode::Invalid;
1688   }
1689 }
1690 
SetAccruedExceptions(APFloatBase::opStatus opStatus)1691 bool EmulateInstructionRISCV::SetAccruedExceptions(
1692     APFloatBase::opStatus opStatus) {
1693   bool success = false;
1694   auto fcsr = ReadRegisterUnsigned(eRegisterKindLLDB, fpr_fcsr_riscv,
1695                                    LLDB_INVALID_ADDRESS, &success);
1696   if (!success)
1697     return false;
1698   switch (opStatus) {
1699   case APFloatBase::opInvalidOp:
1700     fcsr |= 1 << 4;
1701     break;
1702   case APFloatBase::opDivByZero:
1703     fcsr |= 1 << 3;
1704     break;
1705   case APFloatBase::opOverflow:
1706     fcsr |= 1 << 2;
1707     break;
1708   case APFloatBase::opUnderflow:
1709     fcsr |= 1 << 1;
1710     break;
1711   case APFloatBase::opInexact:
1712     fcsr |= 1 << 0;
1713     break;
1714   case APFloatBase::opOK:
1715     break;
1716   }
1717   EmulateInstruction::Context ctx;
1718   ctx.type = eContextRegisterStore;
1719   ctx.SetNoArgs();
1720   return WriteRegisterUnsigned(ctx, eRegisterKindLLDB, fpr_fcsr_riscv, fcsr);
1721 }
1722 
1723 std::optional<RegisterInfo>
GetRegisterInfo(RegisterKind reg_kind,uint32_t reg_index)1724 EmulateInstructionRISCV::GetRegisterInfo(RegisterKind reg_kind,
1725                                          uint32_t reg_index) {
1726   if (reg_kind == eRegisterKindGeneric) {
1727     switch (reg_index) {
1728     case LLDB_REGNUM_GENERIC_PC:
1729       reg_kind = eRegisterKindLLDB;
1730       reg_index = gpr_pc_riscv;
1731       break;
1732     case LLDB_REGNUM_GENERIC_SP:
1733       reg_kind = eRegisterKindLLDB;
1734       reg_index = gpr_sp_riscv;
1735       break;
1736     case LLDB_REGNUM_GENERIC_FP:
1737       reg_kind = eRegisterKindLLDB;
1738       reg_index = gpr_fp_riscv;
1739       break;
1740     case LLDB_REGNUM_GENERIC_RA:
1741       reg_kind = eRegisterKindLLDB;
1742       reg_index = gpr_ra_riscv;
1743       break;
1744     // We may handle LLDB_REGNUM_GENERIC_ARGx when more instructions are
1745     // supported.
1746     default:
1747       llvm_unreachable("unsupported register");
1748     }
1749   }
1750 
1751   const RegisterInfo *array =
1752       RegisterInfoPOSIX_riscv64::GetRegisterInfoPtr(m_arch);
1753   const uint32_t length =
1754       RegisterInfoPOSIX_riscv64::GetRegisterInfoCount(m_arch);
1755 
1756   if (reg_index >= length || reg_kind != eRegisterKindLLDB)
1757     return {};
1758 
1759   return array[reg_index];
1760 }
1761 
SetTargetTriple(const ArchSpec & arch)1762 bool EmulateInstructionRISCV::SetTargetTriple(const ArchSpec &arch) {
1763   return SupportsThisArch(arch);
1764 }
1765 
TestEmulation(Stream & out_stream,ArchSpec & arch,OptionValueDictionary * test_data)1766 bool EmulateInstructionRISCV::TestEmulation(Stream &out_stream, ArchSpec &arch,
1767                                             OptionValueDictionary *test_data) {
1768   return false;
1769 }
1770 
Initialize()1771 void EmulateInstructionRISCV::Initialize() {
1772   PluginManager::RegisterPlugin(GetPluginNameStatic(),
1773                                 GetPluginDescriptionStatic(), CreateInstance);
1774 }
1775 
Terminate()1776 void EmulateInstructionRISCV::Terminate() {
1777   PluginManager::UnregisterPlugin(CreateInstance);
1778 }
1779 
1780 lldb_private::EmulateInstruction *
CreateInstance(const ArchSpec & arch,InstructionType inst_type)1781 EmulateInstructionRISCV::CreateInstance(const ArchSpec &arch,
1782                                         InstructionType inst_type) {
1783   if (EmulateInstructionRISCV::SupportsThisInstructionType(inst_type) &&
1784       SupportsThisArch(arch)) {
1785     return new EmulateInstructionRISCV(arch);
1786   }
1787 
1788   return nullptr;
1789 }
1790 
SupportsThisArch(const ArchSpec & arch)1791 bool EmulateInstructionRISCV::SupportsThisArch(const ArchSpec &arch) {
1792   return arch.GetTriple().isRISCV();
1793 }
1794 
1795 } // namespace lldb_private
1796