1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 #ifndef BTRFS_BLOCK_GROUP_H
4 #define BTRFS_BLOCK_GROUP_H
5
6 #include <linux/atomic.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/spinlock.h>
10 #include <linux/refcount.h>
11 #include <linux/wait.h>
12 #include <linux/sizes.h>
13 #include <linux/rwsem.h>
14 #include <linux/rbtree.h>
15 #include <uapi/linux/btrfs_tree.h>
16 #include "free-space-cache.h"
17
18 struct btrfs_chunk_map;
19 struct btrfs_fs_info;
20 struct btrfs_inode;
21 struct btrfs_trans_handle;
22
23 enum btrfs_disk_cache_state {
24 BTRFS_DC_WRITTEN,
25 BTRFS_DC_ERROR,
26 BTRFS_DC_CLEAR,
27 BTRFS_DC_SETUP,
28 };
29
30 enum btrfs_block_group_size_class {
31 /* Unset */
32 BTRFS_BG_SZ_NONE,
33 /* 0 < size <= 128K */
34 BTRFS_BG_SZ_SMALL,
35 /* 128K < size <= 8M */
36 BTRFS_BG_SZ_MEDIUM,
37 /* 8M < size < BG_LENGTH */
38 BTRFS_BG_SZ_LARGE,
39 };
40
41 /*
42 * This describes the state of the block_group for async discard. This is due
43 * to the two pass nature of it where extent discarding is prioritized over
44 * bitmap discarding. BTRFS_DISCARD_RESET_CURSOR is set when we are resetting
45 * between lists to prevent contention for discard state variables
46 * (eg. discard_cursor).
47 */
48 enum btrfs_discard_state {
49 BTRFS_DISCARD_EXTENTS,
50 BTRFS_DISCARD_BITMAPS,
51 BTRFS_DISCARD_RESET_CURSOR,
52 };
53
54 /*
55 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to
56 * only allocate a chunk if we really need one.
57 *
58 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few
59 * chunks already allocated. This is used as part of the clustering code to
60 * help make sure we have a good pool of storage to cluster in, without filling
61 * the FS with empty chunks
62 *
63 * CHUNK_ALLOC_FORCE means it must try to allocate one
64 *
65 * CHUNK_ALLOC_FORCE_FOR_EXTENT like CHUNK_ALLOC_FORCE but called from
66 * find_free_extent() that also activaes the zone
67 */
68 enum btrfs_chunk_alloc_enum {
69 CHUNK_ALLOC_NO_FORCE,
70 CHUNK_ALLOC_LIMITED,
71 CHUNK_ALLOC_FORCE,
72 CHUNK_ALLOC_FORCE_FOR_EXTENT,
73 };
74
75 /* Block group flags set at runtime */
76 enum btrfs_block_group_flags {
77 BLOCK_GROUP_FLAG_IREF,
78 BLOCK_GROUP_FLAG_REMOVED,
79 BLOCK_GROUP_FLAG_TO_COPY,
80 BLOCK_GROUP_FLAG_RELOCATING_REPAIR,
81 BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
82 BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
83 BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
84 /* Does the block group need to be added to the free space tree? */
85 BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE,
86 /* Indicate that the block group is placed on a sequential zone */
87 BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE,
88 /*
89 * Indicate that block group is in the list of new block groups of a
90 * transaction.
91 */
92 BLOCK_GROUP_FLAG_NEW,
93 };
94
95 enum btrfs_caching_type {
96 BTRFS_CACHE_NO,
97 BTRFS_CACHE_STARTED,
98 BTRFS_CACHE_FINISHED,
99 BTRFS_CACHE_ERROR,
100 };
101
102 struct btrfs_caching_control {
103 struct list_head list;
104 struct mutex mutex;
105 wait_queue_head_t wait;
106 struct btrfs_work work;
107 struct btrfs_block_group *block_group;
108 /* Track progress of caching during allocation. */
109 atomic_t progress;
110 refcount_t count;
111 };
112
113 /* Once caching_thread() finds this much free space, it will wake up waiters. */
114 #define CACHING_CTL_WAKE_UP SZ_2M
115
116 struct btrfs_block_group {
117 struct btrfs_fs_info *fs_info;
118 struct btrfs_inode *inode;
119 spinlock_t lock;
120 u64 start;
121 u64 length;
122 u64 pinned;
123 u64 reserved;
124 u64 used;
125 u64 delalloc_bytes;
126 u64 bytes_super;
127 u64 flags;
128 u64 cache_generation;
129 u64 global_root_id;
130
131 /*
132 * The last committed used bytes of this block group, if the above @used
133 * is still the same as @commit_used, we don't need to update block
134 * group item of this block group.
135 */
136 u64 commit_used;
137 /*
138 * If the free space extent count exceeds this number, convert the block
139 * group to bitmaps.
140 */
141 u32 bitmap_high_thresh;
142
143 /*
144 * If the free space extent count drops below this number, convert the
145 * block group back to extents.
146 */
147 u32 bitmap_low_thresh;
148
149 /*
150 * It is just used for the delayed data space allocation because
151 * only the data space allocation and the relative metadata update
152 * can be done cross the transaction.
153 */
154 struct rw_semaphore data_rwsem;
155
156 /* For raid56, this is a full stripe, without parity */
157 unsigned long full_stripe_len;
158 unsigned long runtime_flags;
159
160 unsigned int ro;
161
162 int disk_cache_state;
163
164 /* Cache tracking stuff */
165 int cached;
166 struct btrfs_caching_control *caching_ctl;
167
168 struct btrfs_space_info *space_info;
169
170 /* Free space cache stuff */
171 struct btrfs_free_space_ctl *free_space_ctl;
172
173 /* Block group cache stuff */
174 struct rb_node cache_node;
175
176 /* For block groups in the same raid type */
177 struct list_head list;
178
179 refcount_t refs;
180
181 /*
182 * List of struct btrfs_free_clusters for this block group.
183 * Today it will only have one thing on it, but that may change
184 */
185 struct list_head cluster_list;
186
187 /*
188 * Used for several lists:
189 *
190 * 1) struct btrfs_fs_info::unused_bgs
191 * 2) struct btrfs_fs_info::reclaim_bgs
192 * 3) struct btrfs_transaction::deleted_bgs
193 * 4) struct btrfs_trans_handle::new_bgs
194 */
195 struct list_head bg_list;
196
197 /* For read-only block groups */
198 struct list_head ro_list;
199
200 /*
201 * When non-zero it means the block group's logical address and its
202 * device extents can not be reused for future block group allocations
203 * until the counter goes down to 0. This is to prevent them from being
204 * reused while some task is still using the block group after it was
205 * deleted - we want to make sure they can only be reused for new block
206 * groups after that task is done with the deleted block group.
207 */
208 atomic_t frozen;
209
210 /* For discard operations */
211 struct list_head discard_list;
212 int discard_index;
213 u64 discard_eligible_time;
214 u64 discard_cursor;
215 enum btrfs_discard_state discard_state;
216
217 /* For dirty block groups */
218 struct list_head dirty_list;
219 struct list_head io_list;
220
221 struct btrfs_io_ctl io_ctl;
222
223 /*
224 * Incremented when doing extent allocations and holding a read lock
225 * on the space_info's groups_sem semaphore.
226 * Decremented when an ordered extent that represents an IO against this
227 * block group's range is created (after it's added to its inode's
228 * root's list of ordered extents) or immediately after the allocation
229 * if it's a metadata extent or fallocate extent (for these cases we
230 * don't create ordered extents).
231 */
232 atomic_t reservations;
233
234 /*
235 * Incremented while holding the spinlock *lock* by a task checking if
236 * it can perform a nocow write (incremented if the value for the *ro*
237 * field is 0). Decremented by such tasks once they create an ordered
238 * extent or before that if some error happens before reaching that step.
239 * This is to prevent races between block group relocation and nocow
240 * writes through direct IO.
241 */
242 atomic_t nocow_writers;
243
244 /* Lock for free space tree operations. */
245 struct mutex free_space_lock;
246
247 /*
248 * Number of extents in this block group used for swap files.
249 * All accesses protected by the spinlock 'lock'.
250 */
251 int swap_extents;
252
253 /*
254 * Allocation offset for the block group to implement sequential
255 * allocation. This is used only on a zoned filesystem.
256 */
257 u64 alloc_offset;
258 u64 zone_unusable;
259 u64 zone_capacity;
260 u64 meta_write_pointer;
261 struct btrfs_chunk_map *physical_map;
262 struct list_head active_bg_list;
263 struct work_struct zone_finish_work;
264 struct extent_buffer *last_eb;
265 enum btrfs_block_group_size_class size_class;
266 u64 reclaim_mark;
267 };
268
btrfs_block_group_end(const struct btrfs_block_group * block_group)269 static inline u64 btrfs_block_group_end(const struct btrfs_block_group *block_group)
270 {
271 return (block_group->start + block_group->length);
272 }
273
btrfs_is_block_group_used(const struct btrfs_block_group * bg)274 static inline bool btrfs_is_block_group_used(const struct btrfs_block_group *bg)
275 {
276 lockdep_assert_held(&bg->lock);
277
278 return (bg->used > 0 || bg->reserved > 0 || bg->pinned > 0);
279 }
280
btrfs_is_block_group_data_only(const struct btrfs_block_group * block_group)281 static inline bool btrfs_is_block_group_data_only(const struct btrfs_block_group *block_group)
282 {
283 /*
284 * In mixed mode the fragmentation is expected to be high, lowering the
285 * efficiency, so only proper data block groups are considered.
286 */
287 return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
288 !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA);
289 }
290
291 #ifdef CONFIG_BTRFS_DEBUG
292 int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group);
293 #endif
294
295 struct btrfs_block_group *btrfs_lookup_first_block_group(
296 struct btrfs_fs_info *info, u64 bytenr);
297 struct btrfs_block_group *btrfs_lookup_block_group(
298 struct btrfs_fs_info *info, u64 bytenr);
299 struct btrfs_block_group *btrfs_next_block_group(
300 struct btrfs_block_group *cache);
301 void btrfs_get_block_group(struct btrfs_block_group *cache);
302 void btrfs_put_block_group(struct btrfs_block_group *cache);
303 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
304 const u64 start);
305 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg);
306 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
307 u64 bytenr);
308 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg);
309 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg);
310 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
311 u64 num_bytes);
312 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait);
313 struct btrfs_caching_control *btrfs_get_caching_control(
314 struct btrfs_block_group *cache);
315 int btrfs_add_new_free_space(struct btrfs_block_group *block_group,
316 u64 start, u64 end, u64 *total_added_ret);
317 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
318 struct btrfs_fs_info *fs_info,
319 const u64 chunk_offset);
320 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
321 struct btrfs_chunk_map *map);
322 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
323 void btrfs_mark_bg_unused(struct btrfs_block_group *bg);
324 void btrfs_reclaim_bgs_work(struct work_struct *work);
325 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info);
326 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg);
327 int btrfs_read_block_groups(struct btrfs_fs_info *info);
328 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
329 u64 type,
330 u64 chunk_offset, u64 size);
331 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans);
332 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
333 bool do_chunk_alloc);
334 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache);
335 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans);
336 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans);
337 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans);
338 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
339 u64 bytenr, u64 num_bytes, bool alloc);
340 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
341 u64 ram_bytes, u64 num_bytes, int delalloc,
342 bool force_wrong_size_class);
343 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
344 u64 num_bytes, int delalloc);
345 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
346 enum btrfs_chunk_alloc_enum force);
347 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type);
348 void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type);
349 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
350 bool is_item_insertion);
351 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags);
352 void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
353 int btrfs_free_block_groups(struct btrfs_fs_info *info);
354 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
355 u64 physical, u64 **logical, int *naddrs, int *stripe_len);
356
btrfs_data_alloc_profile(struct btrfs_fs_info * fs_info)357 static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
358 {
359 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
360 }
361
btrfs_metadata_alloc_profile(struct btrfs_fs_info * fs_info)362 static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
363 {
364 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
365 }
366
btrfs_system_alloc_profile(struct btrfs_fs_info * fs_info)367 static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
368 {
369 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
370 }
371
btrfs_block_group_done(const struct btrfs_block_group * cache)372 static inline int btrfs_block_group_done(const struct btrfs_block_group *cache)
373 {
374 smp_mb();
375 return cache->cached == BTRFS_CACHE_FINISHED ||
376 cache->cached == BTRFS_CACHE_ERROR;
377 }
378
379 void btrfs_freeze_block_group(struct btrfs_block_group *cache);
380 void btrfs_unfreeze_block_group(struct btrfs_block_group *cache);
381
382 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg);
383 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount);
384
385 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size);
386 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
387 enum btrfs_block_group_size_class size_class,
388 bool force_wrong_size_class);
389 bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg);
390
391 #endif /* BTRFS_BLOCK_GROUP_H */
392