xref: /freebsd/sys/net/bpf.c (revision 72ca89482afcdec7db1d7555bdb3505498c729c2)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2019 Andrey V. Elsukov <ae@FreeBSD.org>
7  *
8  * This code is derived from the Stanford/CMU enet packet filter,
9  * (net/enet.c) distributed as part of 4.3BSD, and code contributed
10  * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
11  * Berkeley Laboratory.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 #include "opt_bpf.h"
40 #include "opt_netgraph.h"
41 
42 #include <sys/param.h>
43 #include <sys/conf.h>
44 #include <sys/eventhandler.h>
45 #include <sys/fcntl.h>
46 #include <sys/jail.h>
47 #include <sys/ktr.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/mutex.h>
52 #include <sys/time.h>
53 #include <sys/priv.h>
54 #include <sys/proc.h>
55 #include <sys/signalvar.h>
56 #include <sys/filio.h>
57 #include <sys/sockio.h>
58 #include <sys/ttycom.h>
59 #include <sys/uio.h>
60 #include <sys/sysent.h>
61 #include <sys/systm.h>
62 
63 #include <sys/event.h>
64 #include <sys/file.h>
65 #include <sys/poll.h>
66 #include <sys/proc.h>
67 
68 #include <sys/socket.h>
69 
70 #include <net/if.h>
71 #include <net/if_var.h>
72 #include <net/if_private.h>
73 #include <net/if_vlan_var.h>
74 #include <net/if_dl.h>
75 #include <net/bpf.h>
76 #include <net/bpf_buffer.h>
77 #ifdef BPF_JITTER
78 #include <net/bpf_jitter.h>
79 #endif
80 #include <net/bpf_zerocopy.h>
81 #include <net/bpfdesc.h>
82 #include <net/route.h>
83 #include <net/vnet.h>
84 
85 #include <netinet/in.h>
86 #include <netinet/if_ether.h>
87 #include <sys/kernel.h>
88 #include <sys/sysctl.h>
89 
90 #include <net80211/ieee80211_freebsd.h>
91 
92 #include <security/mac/mac_framework.h>
93 
94 MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
95 
96 static const struct bpfd_list dead_bpf_if = CK_LIST_HEAD_INITIALIZER();
97 
98 struct bpf_if {
99 	struct bpfd_list	bif_dlist;	/* list of all interfaces */
100 	LIST_ENTRY(bpf_if)	bif_next;	/* descriptor list */
101 	u_int		bif_dlt;	/* link layer type */
102 	u_int		bif_hdrlen;	/* length of link header */
103 	struct bpfd_list bif_wlist;	/* writer-only list */
104 	struct ifnet	*bif_ifp;	/* corresponding interface */
105 	struct bpf_if	**bif_bpf;	/* Pointer to pointer to us */
106 	volatile u_int	bif_refcnt;
107 	struct epoch_context epoch_ctx;
108 };
109 
110 /* See bpf_peers_present() in bpf.h. */
111 _Static_assert(offsetof(struct bpf_if, bif_dlist) == 0,
112     "bpf_if shall start with bif_dlist");
113 
114 struct bpf_program_buffer {
115 	struct epoch_context	epoch_ctx;
116 #ifdef BPF_JITTER
117 	bpf_jit_filter		*func;
118 #endif
119 	void			*buffer[0];
120 };
121 
122 #if defined(DEV_BPF) || defined(NETGRAPH_BPF)
123 
124 #define PRINET  26			/* interruptible */
125 #define BPF_PRIO_MAX	7
126 
127 #define	SIZEOF_BPF_HDR(type)	\
128     (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
129 
130 #ifdef COMPAT_FREEBSD32
131 #include <sys/mount.h>
132 #include <compat/freebsd32/freebsd32.h>
133 #define BPF_ALIGNMENT32 sizeof(int32_t)
134 #define	BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32)
135 
136 #ifndef BURN_BRIDGES
137 /*
138  * 32-bit version of structure prepended to each packet.  We use this header
139  * instead of the standard one for 32-bit streams.  We mark the a stream as
140  * 32-bit the first time we see a 32-bit compat ioctl request.
141  */
142 struct bpf_hdr32 {
143 	struct timeval32 bh_tstamp;	/* time stamp */
144 	uint32_t	bh_caplen;	/* length of captured portion */
145 	uint32_t	bh_datalen;	/* original length of packet */
146 	uint16_t	bh_hdrlen;	/* length of bpf header (this struct
147 					   plus alignment padding) */
148 };
149 #endif
150 
151 struct bpf_program32 {
152 	u_int bf_len;
153 	uint32_t bf_insns;
154 };
155 
156 struct bpf_dltlist32 {
157 	u_int	bfl_len;
158 	u_int	bfl_list;
159 };
160 
161 #define	BIOCSETF32	_IOW('B', 103, struct bpf_program32)
162 #define	BIOCSRTIMEOUT32	_IOW('B', 109, struct timeval32)
163 #define	BIOCGRTIMEOUT32	_IOR('B', 110, struct timeval32)
164 #define	BIOCGDLTLIST32	_IOWR('B', 121, struct bpf_dltlist32)
165 #define	BIOCSETWF32	_IOW('B', 123, struct bpf_program32)
166 #define	BIOCSETFNR32	_IOW('B', 130, struct bpf_program32)
167 #endif
168 
169 #define BPF_LOCK()		sx_xlock(&bpf_sx)
170 #define BPF_UNLOCK()		sx_xunlock(&bpf_sx)
171 #define BPF_LOCK_ASSERT()	sx_assert(&bpf_sx, SA_XLOCKED)
172 /*
173  * bpf_iflist is a list of BPF interface structures, each corresponding to a
174  * specific DLT. The same network interface might have several BPF interface
175  * structures registered by different layers in the stack (i.e., 802.11
176  * frames, ethernet frames, etc).
177  */
178 LIST_HEAD(bpf_iflist, bpf_if);
179 static struct bpf_iflist bpf_iflist = LIST_HEAD_INITIALIZER();
180 static struct sx	bpf_sx;		/* bpf global lock */
181 
182 static void	bpfif_ref(struct bpf_if *);
183 static void	bpfif_rele(struct bpf_if *);
184 
185 static void	bpfd_ref(struct bpf_d *);
186 static void	bpfd_rele(struct bpf_d *);
187 static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
188 static void	bpf_detachd(struct bpf_d *, bool);
189 static void	bpfd_free(epoch_context_t);
190 static int	bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
191 		    struct sockaddr *, int *, struct bpf_d *);
192 static int	bpf_setif(struct bpf_d *, struct ifreq *);
193 static void	bpf_timed_out(void *);
194 static __inline void
195 		bpf_wakeup(struct bpf_d *);
196 static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
197 		    void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
198 		    struct bintime *);
199 static void	reset_d(struct bpf_d *);
200 static int	bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
201 static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
202 static int	bpf_setdlt(struct bpf_d *, u_int);
203 static void	filt_bpfdetach(struct knote *);
204 static int	filt_bpfread(struct knote *, long);
205 static int	filt_bpfwrite(struct knote *, long);
206 static void	bpf_drvinit(void *);
207 static int	bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
208 
209 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
210     "bpf sysctl");
211 int bpf_maxinsns = BPF_MAXINSNS;
212 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
213     &bpf_maxinsns, 0, "Maximum bpf program instructions");
214 static int bpf_zerocopy_enable = 0;
215 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
216     &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
217 static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
218     bpf_stats_sysctl, "bpf statistics portal");
219 
220 VNET_DEFINE_STATIC(int, bpf_optimize_writers) = 0;
221 #define	V_bpf_optimize_writers VNET(bpf_optimize_writers)
222 SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RWTUN,
223     &VNET_NAME(bpf_optimize_writers), 0,
224     "Do not send packets until BPF program is set");
225 
226 static	d_open_t	bpfopen;
227 static	d_read_t	bpfread;
228 static	d_write_t	bpfwrite;
229 static	d_ioctl_t	bpfioctl;
230 static	d_poll_t	bpfpoll;
231 static	d_kqfilter_t	bpfkqfilter;
232 
233 static struct cdevsw bpf_cdevsw = {
234 	.d_version =	D_VERSION,
235 	.d_open =	bpfopen,
236 	.d_read =	bpfread,
237 	.d_write =	bpfwrite,
238 	.d_ioctl =	bpfioctl,
239 	.d_poll =	bpfpoll,
240 	.d_name =	"bpf",
241 	.d_kqfilter =	bpfkqfilter,
242 };
243 
244 static const struct filterops bpfread_filtops = {
245 	.f_isfd = 1,
246 	.f_detach = filt_bpfdetach,
247 	.f_event = filt_bpfread,
248 	.f_copy = knote_triv_copy,
249 };
250 
251 static const struct filterops bpfwrite_filtops = {
252 	.f_isfd = 1,
253 	.f_detach = filt_bpfdetach,
254 	.f_event = filt_bpfwrite,
255 	.f_copy = knote_triv_copy,
256 };
257 
258 /*
259  * LOCKING MODEL USED BY BPF
260  *
261  * Locks:
262  * 1) global lock (BPF_LOCK). Sx, used to protect some global counters,
263  * every bpf_iflist changes, serializes ioctl access to bpf descriptors.
264  * 2) Descriptor lock. Mutex, used to protect BPF buffers and various
265  * structure fields used by bpf_*tap* code.
266  *
267  * Lock order: global lock, then descriptor lock.
268  *
269  * There are several possible consumers:
270  *
271  * 1. The kernel registers interface pointer with bpfattach().
272  * Each call allocates new bpf_if structure, references ifnet pointer
273  * and links bpf_if into bpf_iflist chain. This is protected with global
274  * lock.
275  *
276  * 2. An userland application uses ioctl() call to bpf_d descriptor.
277  * All such call are serialized with global lock. BPF filters can be
278  * changed, but pointer to old filter will be freed using NET_EPOCH_CALL().
279  * Thus it should be safe for bpf_tap/bpf_mtap* code to do access to
280  * filter pointers, even if change will happen during bpf_tap execution.
281  * Destroying of bpf_d descriptor also is doing using NET_EPOCH_CALL().
282  *
283  * 3. An userland application can write packets into bpf_d descriptor.
284  * There we need to be sure, that ifnet won't disappear during bpfwrite().
285  *
286  * 4. The kernel invokes bpf_tap/bpf_mtap* functions. The access to
287  * bif_dlist is protected with net_epoch_preempt section. So, it should
288  * be safe to make access to bpf_d descriptor inside the section.
289  *
290  * 5. The kernel invokes bpfdetach() on interface destroying. All lists
291  * are modified with global lock held and actual free() is done using
292  * NET_EPOCH_CALL().
293  */
294 
295 static void
bpfif_free(epoch_context_t ctx)296 bpfif_free(epoch_context_t ctx)
297 {
298 	struct bpf_if *bp;
299 
300 	bp = __containerof(ctx, struct bpf_if, epoch_ctx);
301 	if_rele(bp->bif_ifp);
302 	free(bp, M_BPF);
303 }
304 
305 static void
bpfif_ref(struct bpf_if * bp)306 bpfif_ref(struct bpf_if *bp)
307 {
308 
309 	refcount_acquire(&bp->bif_refcnt);
310 }
311 
312 static void
bpfif_rele(struct bpf_if * bp)313 bpfif_rele(struct bpf_if *bp)
314 {
315 
316 	if (!refcount_release(&bp->bif_refcnt))
317 		return;
318 	NET_EPOCH_CALL(bpfif_free, &bp->epoch_ctx);
319 }
320 
321 static void
bpfd_ref(struct bpf_d * d)322 bpfd_ref(struct bpf_d *d)
323 {
324 
325 	refcount_acquire(&d->bd_refcnt);
326 }
327 
328 static void
bpfd_rele(struct bpf_d * d)329 bpfd_rele(struct bpf_d *d)
330 {
331 
332 	if (!refcount_release(&d->bd_refcnt))
333 		return;
334 	NET_EPOCH_CALL(bpfd_free, &d->epoch_ctx);
335 }
336 
337 static struct bpf_program_buffer*
bpf_program_buffer_alloc(size_t size,int flags)338 bpf_program_buffer_alloc(size_t size, int flags)
339 {
340 
341 	return (malloc(sizeof(struct bpf_program_buffer) + size,
342 	    M_BPF, flags));
343 }
344 
345 static void
bpf_program_buffer_free(epoch_context_t ctx)346 bpf_program_buffer_free(epoch_context_t ctx)
347 {
348 	struct bpf_program_buffer *ptr;
349 
350 	ptr = __containerof(ctx, struct bpf_program_buffer, epoch_ctx);
351 #ifdef BPF_JITTER
352 	if (ptr->func != NULL)
353 		bpf_destroy_jit_filter(ptr->func);
354 #endif
355 	free(ptr, M_BPF);
356 }
357 
358 /*
359  * Wrapper functions for various buffering methods.  If the set of buffer
360  * modes expands, we will probably want to introduce a switch data structure
361  * similar to protosw, et.
362  */
363 static void
bpf_append_bytes(struct bpf_d * d,caddr_t buf,u_int offset,void * src,u_int len)364 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
365     u_int len)
366 {
367 
368 	BPFD_LOCK_ASSERT(d);
369 
370 	switch (d->bd_bufmode) {
371 	case BPF_BUFMODE_BUFFER:
372 		return (bpf_buffer_append_bytes(d, buf, offset, src, len));
373 
374 	case BPF_BUFMODE_ZBUF:
375 		counter_u64_add(d->bd_zcopy, 1);
376 		return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
377 
378 	default:
379 		panic("bpf_buf_append_bytes");
380 	}
381 }
382 
383 static void
bpf_append_mbuf(struct bpf_d * d,caddr_t buf,u_int offset,void * src,u_int len)384 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
385     u_int len)
386 {
387 
388 	BPFD_LOCK_ASSERT(d);
389 
390 	switch (d->bd_bufmode) {
391 	case BPF_BUFMODE_BUFFER:
392 		return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
393 
394 	case BPF_BUFMODE_ZBUF:
395 		counter_u64_add(d->bd_zcopy, 1);
396 		return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
397 
398 	default:
399 		panic("bpf_buf_append_mbuf");
400 	}
401 }
402 
403 /*
404  * This function gets called when the free buffer is re-assigned.
405  */
406 static void
bpf_buf_reclaimed(struct bpf_d * d)407 bpf_buf_reclaimed(struct bpf_d *d)
408 {
409 
410 	BPFD_LOCK_ASSERT(d);
411 
412 	switch (d->bd_bufmode) {
413 	case BPF_BUFMODE_BUFFER:
414 		return;
415 
416 	case BPF_BUFMODE_ZBUF:
417 		bpf_zerocopy_buf_reclaimed(d);
418 		return;
419 
420 	default:
421 		panic("bpf_buf_reclaimed");
422 	}
423 }
424 
425 /*
426  * If the buffer mechanism has a way to decide that a held buffer can be made
427  * free, then it is exposed via the bpf_canfreebuf() interface.  (1) is
428  * returned if the buffer can be discarded, (0) is returned if it cannot.
429  */
430 static int
bpf_canfreebuf(struct bpf_d * d)431 bpf_canfreebuf(struct bpf_d *d)
432 {
433 
434 	BPFD_LOCK_ASSERT(d);
435 
436 	switch (d->bd_bufmode) {
437 	case BPF_BUFMODE_ZBUF:
438 		return (bpf_zerocopy_canfreebuf(d));
439 	}
440 	return (0);
441 }
442 
443 /*
444  * Allow the buffer model to indicate that the current store buffer is
445  * immutable, regardless of the appearance of space.  Return (1) if the
446  * buffer is writable, and (0) if not.
447  */
448 static int
bpf_canwritebuf(struct bpf_d * d)449 bpf_canwritebuf(struct bpf_d *d)
450 {
451 	BPFD_LOCK_ASSERT(d);
452 
453 	switch (d->bd_bufmode) {
454 	case BPF_BUFMODE_ZBUF:
455 		return (bpf_zerocopy_canwritebuf(d));
456 	}
457 	return (1);
458 }
459 
460 /*
461  * Notify buffer model that an attempt to write to the store buffer has
462  * resulted in a dropped packet, in which case the buffer may be considered
463  * full.
464  */
465 static void
bpf_buffull(struct bpf_d * d)466 bpf_buffull(struct bpf_d *d)
467 {
468 
469 	BPFD_LOCK_ASSERT(d);
470 
471 	switch (d->bd_bufmode) {
472 	case BPF_BUFMODE_ZBUF:
473 		bpf_zerocopy_buffull(d);
474 		break;
475 	}
476 }
477 
478 /*
479  * Notify the buffer model that a buffer has moved into the hold position.
480  */
481 void
bpf_bufheld(struct bpf_d * d)482 bpf_bufheld(struct bpf_d *d)
483 {
484 
485 	BPFD_LOCK_ASSERT(d);
486 
487 	switch (d->bd_bufmode) {
488 	case BPF_BUFMODE_ZBUF:
489 		bpf_zerocopy_bufheld(d);
490 		break;
491 	}
492 }
493 
494 static void
bpf_free(struct bpf_d * d)495 bpf_free(struct bpf_d *d)
496 {
497 
498 	switch (d->bd_bufmode) {
499 	case BPF_BUFMODE_BUFFER:
500 		return (bpf_buffer_free(d));
501 
502 	case BPF_BUFMODE_ZBUF:
503 		return (bpf_zerocopy_free(d));
504 
505 	default:
506 		panic("bpf_buf_free");
507 	}
508 }
509 
510 static int
bpf_uiomove(struct bpf_d * d,caddr_t buf,u_int len,struct uio * uio)511 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
512 {
513 
514 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
515 		return (EOPNOTSUPP);
516 	return (bpf_buffer_uiomove(d, buf, len, uio));
517 }
518 
519 static int
bpf_ioctl_sblen(struct bpf_d * d,u_int * i)520 bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
521 {
522 
523 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
524 		return (EOPNOTSUPP);
525 	return (bpf_buffer_ioctl_sblen(d, i));
526 }
527 
528 static int
bpf_ioctl_getzmax(struct thread * td,struct bpf_d * d,size_t * i)529 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
530 {
531 
532 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
533 		return (EOPNOTSUPP);
534 	return (bpf_zerocopy_ioctl_getzmax(td, d, i));
535 }
536 
537 static int
bpf_ioctl_rotzbuf(struct thread * td,struct bpf_d * d,struct bpf_zbuf * bz)538 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
539 {
540 
541 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
542 		return (EOPNOTSUPP);
543 	return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
544 }
545 
546 static int
bpf_ioctl_setzbuf(struct thread * td,struct bpf_d * d,struct bpf_zbuf * bz)547 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
548 {
549 
550 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
551 		return (EOPNOTSUPP);
552 	return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
553 }
554 
555 /*
556  * General BPF functions.
557  */
558 static int
bpf_movein(struct uio * uio,int linktype,struct ifnet * ifp,struct mbuf ** mp,struct sockaddr * sockp,int * hdrlen,struct bpf_d * d)559 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
560     struct sockaddr *sockp, int *hdrlen, struct bpf_d *d)
561 {
562 	const struct ieee80211_bpf_params *p;
563 	struct ether_header *eh;
564 	struct mbuf *m;
565 	int error;
566 	int len;
567 	int hlen;
568 	int slen;
569 
570 	/*
571 	 * Build a sockaddr based on the data link layer type.
572 	 * We do this at this level because the ethernet header
573 	 * is copied directly into the data field of the sockaddr.
574 	 * In the case of SLIP, there is no header and the packet
575 	 * is forwarded as is.
576 	 * Also, we are careful to leave room at the front of the mbuf
577 	 * for the link level header.
578 	 */
579 	switch (linktype) {
580 	case DLT_SLIP:
581 		sockp->sa_family = AF_INET;
582 		hlen = 0;
583 		break;
584 
585 	case DLT_EN10MB:
586 		sockp->sa_family = AF_UNSPEC;
587 		/* XXX Would MAXLINKHDR be better? */
588 		hlen = ETHER_HDR_LEN;
589 		break;
590 
591 	case DLT_FDDI:
592 		sockp->sa_family = AF_IMPLINK;
593 		hlen = 0;
594 		break;
595 
596 	case DLT_RAW:
597 		sockp->sa_family = AF_UNSPEC;
598 		hlen = 0;
599 		break;
600 
601 	case DLT_NULL:
602 		/*
603 		 * null interface types require a 4 byte pseudo header which
604 		 * corresponds to the address family of the packet.
605 		 */
606 		sockp->sa_family = AF_UNSPEC;
607 		hlen = 4;
608 		break;
609 
610 	case DLT_ATM_RFC1483:
611 		/*
612 		 * en atm driver requires 4-byte atm pseudo header.
613 		 * though it isn't standard, vpi:vci needs to be
614 		 * specified anyway.
615 		 */
616 		sockp->sa_family = AF_UNSPEC;
617 		hlen = 12;	/* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
618 		break;
619 
620 	case DLT_PPP:
621 		sockp->sa_family = AF_UNSPEC;
622 		hlen = 4;	/* This should match PPP_HDRLEN */
623 		break;
624 
625 	case DLT_IEEE802_11:		/* IEEE 802.11 wireless */
626 		sockp->sa_family = AF_IEEE80211;
627 		hlen = 0;
628 		break;
629 
630 	case DLT_IEEE802_11_RADIO:	/* IEEE 802.11 wireless w/ phy params */
631 		sockp->sa_family = AF_IEEE80211;
632 		sockp->sa_len = 12;	/* XXX != 0 */
633 		hlen = sizeof(struct ieee80211_bpf_params);
634 		break;
635 
636 	default:
637 		return (EIO);
638 	}
639 
640 	len = uio->uio_resid;
641 	if (len < hlen || len - hlen > ifp->if_mtu)
642 		return (EMSGSIZE);
643 
644 	/* Allocate a mbuf, up to MJUM16BYTES bytes, for our write. */
645 	m = m_get3(len, M_WAITOK, MT_DATA, M_PKTHDR);
646 	if (m == NULL)
647 		return (EIO);
648 	m->m_pkthdr.len = m->m_len = len;
649 	*mp = m;
650 
651 	error = uiomove(mtod(m, u_char *), len, uio);
652 	if (error)
653 		goto bad;
654 
655 	slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len);
656 	if (slen == 0) {
657 		error = EPERM;
658 		goto bad;
659 	}
660 
661 	/* Check for multicast destination */
662 	switch (linktype) {
663 	case DLT_EN10MB:
664 		eh = mtod(m, struct ether_header *);
665 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
666 			if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
667 			    ETHER_ADDR_LEN) == 0)
668 				m->m_flags |= M_BCAST;
669 			else
670 				m->m_flags |= M_MCAST;
671 		}
672 		if (d->bd_hdrcmplt == 0) {
673 			memcpy(eh->ether_shost, IF_LLADDR(ifp),
674 			    sizeof(eh->ether_shost));
675 		}
676 		break;
677 	}
678 
679 	/*
680 	 * Make room for link header, and copy it to sockaddr
681 	 */
682 	if (hlen != 0) {
683 		if (sockp->sa_family == AF_IEEE80211) {
684 			/*
685 			 * Collect true length from the parameter header
686 			 * NB: sockp is known to be zero'd so if we do a
687 			 *     short copy unspecified parameters will be
688 			 *     zero.
689 			 * NB: packet may not be aligned after stripping
690 			 *     bpf params
691 			 * XXX check ibp_vers
692 			 */
693 			p = mtod(m, const struct ieee80211_bpf_params *);
694 			hlen = p->ibp_len;
695 			if (hlen > sizeof(sockp->sa_data)) {
696 				error = EINVAL;
697 				goto bad;
698 			}
699 		}
700 		bcopy(mtod(m, const void *), sockp->sa_data, hlen);
701 	}
702 	*hdrlen = hlen;
703 
704 	return (0);
705 bad:
706 	m_freem(m);
707 	return (error);
708 }
709 
710 /*
711  * Attach descriptor to the bpf interface, i.e. make d listen on bp,
712  * then reset its buffers and counters with reset_d().
713  */
714 static void
bpf_attachd(struct bpf_d * d,struct bpf_if * bp)715 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
716 {
717 	int op_w;
718 
719 	BPF_LOCK_ASSERT();
720 
721 	/*
722 	 * Save sysctl value to protect from sysctl change
723 	 * between reads
724 	 */
725 	op_w = V_bpf_optimize_writers || d->bd_writer;
726 
727 	if (d->bd_bif != NULL)
728 		bpf_detachd(d, false);
729 	/*
730 	 * Point d at bp, and add d to the interface's list.
731 	 * Since there are many applications using BPF for
732 	 * sending raw packets only (dhcpd, cdpd are good examples)
733 	 * we can delay adding d to the list of active listeners until
734 	 * some filter is configured.
735 	 */
736 
737 	BPFD_LOCK(d);
738 	/*
739 	 * Hold reference to bpif while descriptor uses this interface.
740 	 */
741 	bpfif_ref(bp);
742 	d->bd_bif = bp;
743 	if (op_w != 0) {
744 		/* Add to writers-only list */
745 		CK_LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
746 		/*
747 		 * We decrement bd_writer on every filter set operation.
748 		 * First BIOCSETF is done by pcap_open_live() to set up
749 		 * snap length. After that appliation usually sets its own
750 		 * filter.
751 		 */
752 		d->bd_writer = 2;
753 	} else
754 		CK_LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
755 
756 	reset_d(d);
757 
758 	/* Trigger EVFILT_WRITE events. */
759 	bpf_wakeup(d);
760 
761 	BPFD_UNLOCK(d);
762 
763 	CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
764 	    __func__, d->bd_pid, d->bd_writer ? "writer" : "active");
765 
766 	if (op_w == 0)
767 		EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
768 }
769 
770 /*
771  * Check if we need to upgrade our descriptor @d from write-only mode.
772  */
773 static int
bpf_check_upgrade(u_long cmd,struct bpf_d * d,struct bpf_insn * fcode,int flen)774 bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode,
775     int flen)
776 {
777 	int is_snap, need_upgrade;
778 
779 	/*
780 	 * Check if we've already upgraded or new filter is empty.
781 	 */
782 	if (d->bd_writer == 0 || fcode == NULL)
783 		return (0);
784 
785 	need_upgrade = 0;
786 
787 	/*
788 	 * Check if cmd looks like snaplen setting from
789 	 * pcap_bpf.c:pcap_open_live().
790 	 * Note we're not checking .k value here:
791 	 * while pcap_open_live() definitely sets to non-zero value,
792 	 * we'd prefer to treat k=0 (deny ALL) case the same way: e.g.
793 	 * do not consider upgrading immediately
794 	 */
795 	if (cmd == BIOCSETF && flen == 1 &&
796 	    fcode[0].code == (BPF_RET | BPF_K))
797 		is_snap = 1;
798 	else
799 		is_snap = 0;
800 
801 	if (is_snap == 0) {
802 		/*
803 		 * We're setting first filter and it doesn't look like
804 		 * setting snaplen.  We're probably using bpf directly.
805 		 * Upgrade immediately.
806 		 */
807 		need_upgrade = 1;
808 	} else {
809 		/*
810 		 * Do not require upgrade by first BIOCSETF
811 		 * (used to set snaplen) by pcap_open_live().
812 		 */
813 
814 		if (--d->bd_writer == 0) {
815 			/*
816 			 * First snaplen filter has already
817 			 * been set. This is probably catch-all
818 			 * filter
819 			 */
820 			need_upgrade = 1;
821 		}
822 	}
823 
824 	CTR5(KTR_NET,
825 	    "%s: filter function set by pid %d, "
826 	    "bd_writer counter %d, snap %d upgrade %d",
827 	    __func__, d->bd_pid, d->bd_writer,
828 	    is_snap, need_upgrade);
829 
830 	return (need_upgrade);
831 }
832 
833 /*
834  * Detach a file from its interface.
835  */
836 static void
bpf_detachd(struct bpf_d * d,bool detached_ifp)837 bpf_detachd(struct bpf_d *d, bool detached_ifp)
838 {
839 	struct bpf_if *bp;
840 	struct ifnet *ifp;
841 	int error;
842 
843 	BPF_LOCK_ASSERT();
844 	CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
845 
846 	/* Check if descriptor is attached */
847 	if ((bp = d->bd_bif) == NULL)
848 		return;
849 
850 	BPFD_LOCK(d);
851 	/* Remove d from the interface's descriptor list. */
852 	CK_LIST_REMOVE(d, bd_next);
853 	/* Save bd_writer value */
854 	error = d->bd_writer;
855 	ifp = bp->bif_ifp;
856 	d->bd_bif = NULL;
857 	if (detached_ifp) {
858 		/*
859 		 * Notify descriptor as it's detached, so that any
860 		 * sleepers wake up and get ENXIO.
861 		 */
862 		bpf_wakeup(d);
863 	}
864 	BPFD_UNLOCK(d);
865 
866 	/* Call event handler iff d is attached */
867 	if (error == 0)
868 		EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
869 
870 	/*
871 	 * Check if this descriptor had requested promiscuous mode.
872 	 * If so and ifnet is not detached, turn it off.
873 	 */
874 	if (d->bd_promisc && !detached_ifp) {
875 		d->bd_promisc = 0;
876 		CURVNET_SET(ifp->if_vnet);
877 		error = ifpromisc(ifp, 0);
878 		CURVNET_RESTORE();
879 		if (error != 0 && error != ENXIO) {
880 			/*
881 			 * ENXIO can happen if a pccard is unplugged
882 			 * Something is really wrong if we were able to put
883 			 * the driver into promiscuous mode, but can't
884 			 * take it out.
885 			 */
886 			if_printf(bp->bif_ifp,
887 				"bpf_detach: ifpromisc failed (%d)\n", error);
888 		}
889 	}
890 	bpfif_rele(bp);
891 }
892 
893 /*
894  * Close the descriptor by detaching it from its interface,
895  * deallocating its buffers, and marking it free.
896  */
897 static void
bpf_dtor(void * data)898 bpf_dtor(void *data)
899 {
900 	struct bpf_d *d = data;
901 
902 	BPFD_LOCK(d);
903 	if (d->bd_state == BPF_WAITING)
904 		callout_stop(&d->bd_callout);
905 	d->bd_state = BPF_IDLE;
906 	BPFD_UNLOCK(d);
907 	funsetown(&d->bd_sigio);
908 	BPF_LOCK();
909 	bpf_detachd(d, false);
910 	BPF_UNLOCK();
911 #ifdef MAC
912 	mac_bpfdesc_destroy(d);
913 #endif /* MAC */
914 	seldrain(&d->bd_sel);
915 	knlist_destroy(&d->bd_sel.si_note);
916 	callout_drain(&d->bd_callout);
917 	bpfd_rele(d);
918 }
919 
920 /*
921  * Open ethernet device.  Returns ENXIO for illegal minor device number,
922  * EBUSY if file is open by another process.
923  */
924 /* ARGSUSED */
925 static	int
bpfopen(struct cdev * dev,int flags,int fmt,struct thread * td)926 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
927 {
928 	struct bpf_d *d;
929 	int error;
930 
931 	d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
932 	error = devfs_set_cdevpriv(d, bpf_dtor);
933 	if (error != 0) {
934 		free(d, M_BPF);
935 		return (error);
936 	}
937 
938 	/* Setup counters */
939 	d->bd_rcount = counter_u64_alloc(M_WAITOK);
940 	d->bd_dcount = counter_u64_alloc(M_WAITOK);
941 	d->bd_fcount = counter_u64_alloc(M_WAITOK);
942 	d->bd_wcount = counter_u64_alloc(M_WAITOK);
943 	d->bd_wfcount = counter_u64_alloc(M_WAITOK);
944 	d->bd_wdcount = counter_u64_alloc(M_WAITOK);
945 	d->bd_zcopy = counter_u64_alloc(M_WAITOK);
946 
947 	/*
948 	 * For historical reasons, perform a one-time initialization call to
949 	 * the buffer routines, even though we're not yet committed to a
950 	 * particular buffer method.
951 	 */
952 	bpf_buffer_init(d);
953 	if ((flags & FREAD) == 0)
954 		d->bd_writer = 2;
955 	d->bd_hbuf_in_use = 0;
956 	d->bd_bufmode = BPF_BUFMODE_BUFFER;
957 	d->bd_sig = SIGIO;
958 	d->bd_direction = BPF_D_INOUT;
959 	refcount_init(&d->bd_refcnt, 1);
960 	BPF_PID_REFRESH(d, td);
961 #ifdef MAC
962 	mac_bpfdesc_init(d);
963 	mac_bpfdesc_create(td->td_ucred, d);
964 #endif
965 	mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF);
966 	callout_init_mtx(&d->bd_callout, &d->bd_lock, 0);
967 	knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock);
968 
969 	/* Disable VLAN pcp tagging. */
970 	d->bd_pcp = 0;
971 
972 	return (0);
973 }
974 
975 /*
976  *  bpfread - read next chunk of packets from buffers
977  */
978 static	int
bpfread(struct cdev * dev,struct uio * uio,int ioflag)979 bpfread(struct cdev *dev, struct uio *uio, int ioflag)
980 {
981 	struct bpf_d *d;
982 	int error;
983 	int non_block;
984 	int timed_out;
985 
986 	error = devfs_get_cdevpriv((void **)&d);
987 	if (error != 0)
988 		return (error);
989 
990 	/*
991 	 * Restrict application to use a buffer the same size as
992 	 * as kernel buffers.
993 	 */
994 	if (uio->uio_resid != d->bd_bufsize)
995 		return (EINVAL);
996 
997 	non_block = ((ioflag & O_NONBLOCK) != 0);
998 
999 	BPFD_LOCK(d);
1000 	BPF_PID_REFRESH_CUR(d);
1001 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
1002 		BPFD_UNLOCK(d);
1003 		return (EOPNOTSUPP);
1004 	}
1005 	if (d->bd_state == BPF_WAITING)
1006 		callout_stop(&d->bd_callout);
1007 	timed_out = (d->bd_state == BPF_TIMED_OUT);
1008 	d->bd_state = BPF_IDLE;
1009 	while (d->bd_hbuf_in_use) {
1010 		error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1011 		    PRINET | PCATCH, "bd_hbuf", 0);
1012 		if (error != 0) {
1013 			BPFD_UNLOCK(d);
1014 			return (error);
1015 		}
1016 	}
1017 	/*
1018 	 * If the hold buffer is empty, then do a timed sleep, which
1019 	 * ends when the timeout expires or when enough packets
1020 	 * have arrived to fill the store buffer.
1021 	 */
1022 	while (d->bd_hbuf == NULL) {
1023 		if (d->bd_slen != 0) {
1024 			/*
1025 			 * A packet(s) either arrived since the previous
1026 			 * read or arrived while we were asleep.
1027 			 */
1028 			if (d->bd_immediate || non_block || timed_out) {
1029 				/*
1030 				 * Rotate the buffers and return what's here
1031 				 * if we are in immediate mode, non-blocking
1032 				 * flag is set, or this descriptor timed out.
1033 				 */
1034 				ROTATE_BUFFERS(d);
1035 				break;
1036 			}
1037 		}
1038 
1039 		/*
1040 		 * No data is available, check to see if the bpf device
1041 		 * is still pointed at a real interface.  If not, return
1042 		 * ENXIO so that the userland process knows to rebind
1043 		 * it before using it again.
1044 		 */
1045 		if (d->bd_bif == NULL) {
1046 			BPFD_UNLOCK(d);
1047 			return (ENXIO);
1048 		}
1049 
1050 		if (non_block) {
1051 			BPFD_UNLOCK(d);
1052 			return (EWOULDBLOCK);
1053 		}
1054 		error = msleep(d, &d->bd_lock, PRINET | PCATCH,
1055 		     "bpf", d->bd_rtout);
1056 		if (error == EINTR || error == ERESTART) {
1057 			BPFD_UNLOCK(d);
1058 			return (error);
1059 		}
1060 		if (error == EWOULDBLOCK) {
1061 			/*
1062 			 * On a timeout, return what's in the buffer,
1063 			 * which may be nothing.  If there is something
1064 			 * in the store buffer, we can rotate the buffers.
1065 			 */
1066 			if (d->bd_hbuf)
1067 				/*
1068 				 * We filled up the buffer in between
1069 				 * getting the timeout and arriving
1070 				 * here, so we don't need to rotate.
1071 				 */
1072 				break;
1073 
1074 			if (d->bd_slen == 0) {
1075 				BPFD_UNLOCK(d);
1076 				return (0);
1077 			}
1078 			ROTATE_BUFFERS(d);
1079 			break;
1080 		}
1081 	}
1082 	/*
1083 	 * At this point, we know we have something in the hold slot.
1084 	 */
1085 	d->bd_hbuf_in_use = 1;
1086 	BPFD_UNLOCK(d);
1087 
1088 	/*
1089 	 * Move data from hold buffer into user space.
1090 	 * We know the entire buffer is transferred since
1091 	 * we checked above that the read buffer is bpf_bufsize bytes.
1092   	 *
1093 	 * We do not have to worry about simultaneous reads because
1094 	 * we waited for sole access to the hold buffer above.
1095 	 */
1096 	error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
1097 
1098 	BPFD_LOCK(d);
1099 	if (d->bd_hbuf_in_use) {
1100 		KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf"));
1101 		d->bd_fbuf = d->bd_hbuf;
1102 		d->bd_hbuf = NULL;
1103 		d->bd_hlen = 0;
1104 		bpf_buf_reclaimed(d);
1105 		d->bd_hbuf_in_use = 0;
1106 		wakeup(&d->bd_hbuf_in_use);
1107 	}
1108 	BPFD_UNLOCK(d);
1109 
1110 	return (error);
1111 }
1112 
1113 /*
1114  * If there are processes sleeping on this descriptor, wake them up.
1115  */
1116 static __inline void
bpf_wakeup(struct bpf_d * d)1117 bpf_wakeup(struct bpf_d *d)
1118 {
1119 
1120 	BPFD_LOCK_ASSERT(d);
1121 	if (d->bd_state == BPF_WAITING) {
1122 		callout_stop(&d->bd_callout);
1123 		d->bd_state = BPF_IDLE;
1124 	}
1125 	wakeup(d);
1126 	if (d->bd_async && d->bd_sig && d->bd_sigio)
1127 		pgsigio(&d->bd_sigio, d->bd_sig, 0);
1128 
1129 	selwakeuppri(&d->bd_sel, PRINET);
1130 	KNOTE_LOCKED(&d->bd_sel.si_note, 0);
1131 }
1132 
1133 static void
bpf_timed_out(void * arg)1134 bpf_timed_out(void *arg)
1135 {
1136 	struct bpf_d *d = (struct bpf_d *)arg;
1137 
1138 	BPFD_LOCK_ASSERT(d);
1139 
1140 	if (callout_pending(&d->bd_callout) ||
1141 	    !callout_active(&d->bd_callout))
1142 		return;
1143 	if (d->bd_state == BPF_WAITING) {
1144 		d->bd_state = BPF_TIMED_OUT;
1145 		if (d->bd_slen != 0)
1146 			bpf_wakeup(d);
1147 	}
1148 }
1149 
1150 static int
bpf_ready(struct bpf_d * d)1151 bpf_ready(struct bpf_d *d)
1152 {
1153 
1154 	BPFD_LOCK_ASSERT(d);
1155 
1156 	if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
1157 		return (1);
1158 	if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1159 	    d->bd_slen != 0)
1160 		return (1);
1161 	return (0);
1162 }
1163 
1164 static int
bpfwrite(struct cdev * dev,struct uio * uio,int ioflag)1165 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
1166 {
1167 	struct route ro;
1168 	struct sockaddr dst;
1169 	struct epoch_tracker et;
1170 	struct bpf_if *bp;
1171 	struct bpf_d *d;
1172 	struct ifnet *ifp;
1173 	struct mbuf *m, *mc;
1174 	int error, hlen;
1175 
1176 	error = devfs_get_cdevpriv((void **)&d);
1177 	if (error != 0)
1178 		return (error);
1179 
1180 	NET_EPOCH_ENTER(et);
1181 	BPFD_LOCK(d);
1182 	BPF_PID_REFRESH_CUR(d);
1183 	counter_u64_add(d->bd_wcount, 1);
1184 	if ((bp = d->bd_bif) == NULL) {
1185 		error = ENXIO;
1186 		goto out_locked;
1187 	}
1188 
1189 	ifp = bp->bif_ifp;
1190 	if ((ifp->if_flags & IFF_UP) == 0) {
1191 		error = ENETDOWN;
1192 		goto out_locked;
1193 	}
1194 
1195 	if (uio->uio_resid == 0)
1196 		goto out_locked;
1197 
1198 	bzero(&dst, sizeof(dst));
1199 	m = NULL;
1200 	hlen = 0;
1201 
1202 	/*
1203 	 * Take extra reference, unlock d and exit from epoch section,
1204 	 * since bpf_movein() can sleep.
1205 	 */
1206 	bpfd_ref(d);
1207 	NET_EPOCH_EXIT(et);
1208 	BPFD_UNLOCK(d);
1209 
1210 	error = bpf_movein(uio, (int)bp->bif_dlt, ifp,
1211 	    &m, &dst, &hlen, d);
1212 
1213 	if (error != 0) {
1214 		counter_u64_add(d->bd_wdcount, 1);
1215 		bpfd_rele(d);
1216 		return (error);
1217 	}
1218 
1219 	BPFD_LOCK(d);
1220 	/*
1221 	 * Check that descriptor is still attached to the interface.
1222 	 * This can happen on bpfdetach(). To avoid access to detached
1223 	 * ifnet, free mbuf and return ENXIO.
1224 	 */
1225 	if (d->bd_bif == NULL) {
1226 		counter_u64_add(d->bd_wdcount, 1);
1227 		BPFD_UNLOCK(d);
1228 		bpfd_rele(d);
1229 		m_freem(m);
1230 		return (ENXIO);
1231 	}
1232 	counter_u64_add(d->bd_wfcount, 1);
1233 	if (d->bd_hdrcmplt)
1234 		dst.sa_family = pseudo_AF_HDRCMPLT;
1235 
1236 	if (d->bd_feedback) {
1237 		mc = m_dup(m, M_NOWAIT);
1238 		if (mc != NULL)
1239 			mc->m_pkthdr.rcvif = ifp;
1240 		/* Set M_PROMISC for outgoing packets to be discarded. */
1241 		if (d->bd_direction == BPF_D_INOUT)
1242 			m->m_flags |= M_PROMISC;
1243 	} else
1244 		mc = NULL;
1245 
1246 	m->m_pkthdr.len -= hlen;
1247 	m->m_len -= hlen;
1248 	m->m_data += hlen;	/* XXX */
1249 
1250 	CURVNET_SET(ifp->if_vnet);
1251 #ifdef MAC
1252 	mac_bpfdesc_create_mbuf(d, m);
1253 	if (mc != NULL)
1254 		mac_bpfdesc_create_mbuf(d, mc);
1255 #endif
1256 
1257 	bzero(&ro, sizeof(ro));
1258 	if (hlen != 0) {
1259 		ro.ro_prepend = (u_char *)&dst.sa_data;
1260 		ro.ro_plen = hlen;
1261 		ro.ro_flags = RT_HAS_HEADER;
1262 	}
1263 
1264 	if (d->bd_pcp != 0)
1265 		vlan_set_pcp(m, d->bd_pcp);
1266 
1267 	/* Avoid possible recursion on BPFD_LOCK(). */
1268 	NET_EPOCH_ENTER(et);
1269 	BPFD_UNLOCK(d);
1270 	error = (*ifp->if_output)(ifp, m, &dst, &ro);
1271 	if (error)
1272 		counter_u64_add(d->bd_wdcount, 1);
1273 
1274 	if (mc != NULL) {
1275 		if (error == 0)
1276 			(*ifp->if_input)(ifp, mc);
1277 		else
1278 			m_freem(mc);
1279 	}
1280 	NET_EPOCH_EXIT(et);
1281 	CURVNET_RESTORE();
1282 	bpfd_rele(d);
1283 	return (error);
1284 
1285 out_locked:
1286 	counter_u64_add(d->bd_wdcount, 1);
1287 	NET_EPOCH_EXIT(et);
1288 	BPFD_UNLOCK(d);
1289 	return (error);
1290 }
1291 
1292 /*
1293  * Reset a descriptor by flushing its packet buffer and clearing the receive
1294  * and drop counts.  This is doable for kernel-only buffers, but with
1295  * zero-copy buffers, we can't write to (or rotate) buffers that are
1296  * currently owned by userspace.  It would be nice if we could encapsulate
1297  * this logic in the buffer code rather than here.
1298  */
1299 static void
reset_d(struct bpf_d * d)1300 reset_d(struct bpf_d *d)
1301 {
1302 
1303 	BPFD_LOCK_ASSERT(d);
1304 
1305 	while (d->bd_hbuf_in_use)
1306 		mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET,
1307 		    "bd_hbuf", 0);
1308 	if ((d->bd_hbuf != NULL) &&
1309 	    (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
1310 		/* Free the hold buffer. */
1311 		d->bd_fbuf = d->bd_hbuf;
1312 		d->bd_hbuf = NULL;
1313 		d->bd_hlen = 0;
1314 		bpf_buf_reclaimed(d);
1315 	}
1316 	if (bpf_canwritebuf(d))
1317 		d->bd_slen = 0;
1318 	counter_u64_zero(d->bd_rcount);
1319 	counter_u64_zero(d->bd_dcount);
1320 	counter_u64_zero(d->bd_fcount);
1321 	counter_u64_zero(d->bd_wcount);
1322 	counter_u64_zero(d->bd_wfcount);
1323 	counter_u64_zero(d->bd_wdcount);
1324 	counter_u64_zero(d->bd_zcopy);
1325 }
1326 
1327 /*
1328  *  FIONREAD		Check for read packet available.
1329  *  BIOCGBLEN		Get buffer len [for read()].
1330  *  BIOCSETF		Set read filter.
1331  *  BIOCSETFNR		Set read filter without resetting descriptor.
1332  *  BIOCSETWF		Set write filter.
1333  *  BIOCFLUSH		Flush read packet buffer.
1334  *  BIOCPROMISC		Put interface into promiscuous mode.
1335  *  BIOCGDLT		Get link layer type.
1336  *  BIOCGETIF		Get interface name.
1337  *  BIOCSETIF		Set interface.
1338  *  BIOCSRTIMEOUT	Set read timeout.
1339  *  BIOCGRTIMEOUT	Get read timeout.
1340  *  BIOCGSTATS		Get packet stats.
1341  *  BIOCIMMEDIATE	Set immediate mode.
1342  *  BIOCVERSION		Get filter language version.
1343  *  BIOCGHDRCMPLT	Get "header already complete" flag
1344  *  BIOCSHDRCMPLT	Set "header already complete" flag
1345  *  BIOCGDIRECTION	Get packet direction flag
1346  *  BIOCSDIRECTION	Set packet direction flag
1347  *  BIOCGTSTAMP		Get time stamp format and resolution.
1348  *  BIOCSTSTAMP		Set time stamp format and resolution.
1349  *  BIOCLOCK		Set "locked" flag
1350  *  BIOCFEEDBACK	Set packet feedback mode.
1351  *  BIOCSETZBUF		Set current zero-copy buffer locations.
1352  *  BIOCGETZMAX		Get maximum zero-copy buffer size.
1353  *  BIOCROTZBUF		Force rotation of zero-copy buffer
1354  *  BIOCSETBUFMODE	Set buffer mode.
1355  *  BIOCGETBUFMODE	Get current buffer mode.
1356  *  BIOCSETVLANPCP	Set VLAN PCP tag.
1357  */
1358 /* ARGSUSED */
1359 static	int
bpfioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flags,struct thread * td)1360 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1361     struct thread *td)
1362 {
1363 	struct bpf_d *d;
1364 	int error;
1365 
1366 	error = devfs_get_cdevpriv((void **)&d);
1367 	if (error != 0)
1368 		return (error);
1369 
1370 	/*
1371 	 * Refresh PID associated with this descriptor.
1372 	 */
1373 	BPFD_LOCK(d);
1374 	BPF_PID_REFRESH(d, td);
1375 	if (d->bd_state == BPF_WAITING)
1376 		callout_stop(&d->bd_callout);
1377 	d->bd_state = BPF_IDLE;
1378 	BPFD_UNLOCK(d);
1379 
1380 	if (d->bd_locked == 1) {
1381 		switch (cmd) {
1382 		case BIOCGBLEN:
1383 		case BIOCFLUSH:
1384 		case BIOCGDLT:
1385 		case BIOCGDLTLIST:
1386 #ifdef COMPAT_FREEBSD32
1387 		case BIOCGDLTLIST32:
1388 #endif
1389 		case BIOCGETIF:
1390 		case BIOCGRTIMEOUT:
1391 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1392 		case BIOCGRTIMEOUT32:
1393 #endif
1394 		case BIOCGSTATS:
1395 		case BIOCVERSION:
1396 		case BIOCGRSIG:
1397 		case BIOCGHDRCMPLT:
1398 		case BIOCSTSTAMP:
1399 		case BIOCFEEDBACK:
1400 		case FIONREAD:
1401 		case BIOCLOCK:
1402 		case BIOCSRTIMEOUT:
1403 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1404 		case BIOCSRTIMEOUT32:
1405 #endif
1406 		case BIOCIMMEDIATE:
1407 		case TIOCGPGRP:
1408 		case BIOCROTZBUF:
1409 			break;
1410 		default:
1411 			return (EPERM);
1412 		}
1413 	}
1414 #ifdef COMPAT_FREEBSD32
1415 	/*
1416 	 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1417 	 * that it will get 32-bit packet headers.
1418 	 */
1419 	switch (cmd) {
1420 	case BIOCSETF32:
1421 	case BIOCSETFNR32:
1422 	case BIOCSETWF32:
1423 	case BIOCGDLTLIST32:
1424 	case BIOCGRTIMEOUT32:
1425 	case BIOCSRTIMEOUT32:
1426 		if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1427 			BPFD_LOCK(d);
1428 			d->bd_compat32 = 1;
1429 			BPFD_UNLOCK(d);
1430 		}
1431 	}
1432 #endif
1433 
1434 	CURVNET_SET(TD_TO_VNET(td));
1435 	switch (cmd) {
1436 	default:
1437 		error = EINVAL;
1438 		break;
1439 
1440 	/*
1441 	 * Check for read packet available.
1442 	 */
1443 	case FIONREAD:
1444 		{
1445 			int n;
1446 
1447 			BPFD_LOCK(d);
1448 			n = d->bd_slen;
1449 			while (d->bd_hbuf_in_use)
1450 				mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1451 				    PRINET, "bd_hbuf", 0);
1452 			if (d->bd_hbuf)
1453 				n += d->bd_hlen;
1454 			BPFD_UNLOCK(d);
1455 
1456 			*(int *)addr = n;
1457 			break;
1458 		}
1459 
1460 	/*
1461 	 * Get buffer len [for read()].
1462 	 */
1463 	case BIOCGBLEN:
1464 		BPFD_LOCK(d);
1465 		*(u_int *)addr = d->bd_bufsize;
1466 		BPFD_UNLOCK(d);
1467 		break;
1468 
1469 	/*
1470 	 * Set buffer length.
1471 	 */
1472 	case BIOCSBLEN:
1473 		error = bpf_ioctl_sblen(d, (u_int *)addr);
1474 		break;
1475 
1476 	/*
1477 	 * Set link layer read filter.
1478 	 */
1479 	case BIOCSETF:
1480 	case BIOCSETFNR:
1481 	case BIOCSETWF:
1482 #ifdef COMPAT_FREEBSD32
1483 	case BIOCSETF32:
1484 	case BIOCSETFNR32:
1485 	case BIOCSETWF32:
1486 #endif
1487 		error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1488 		break;
1489 
1490 	/*
1491 	 * Flush read packet buffer.
1492 	 */
1493 	case BIOCFLUSH:
1494 		BPFD_LOCK(d);
1495 		reset_d(d);
1496 		BPFD_UNLOCK(d);
1497 		break;
1498 
1499 	/*
1500 	 * Put interface into promiscuous mode.
1501 	 */
1502 	case BIOCPROMISC:
1503 		BPF_LOCK();
1504 		if (d->bd_bif == NULL) {
1505 			/*
1506 			 * No interface attached yet.
1507 			 */
1508 			error = EINVAL;
1509 		} else if (d->bd_promisc == 0) {
1510 			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1511 			if (error == 0)
1512 				d->bd_promisc = 1;
1513 		}
1514 		BPF_UNLOCK();
1515 		break;
1516 
1517 	/*
1518 	 * Get current data link type.
1519 	 */
1520 	case BIOCGDLT:
1521 		BPF_LOCK();
1522 		if (d->bd_bif == NULL)
1523 			error = EINVAL;
1524 		else
1525 			*(u_int *)addr = d->bd_bif->bif_dlt;
1526 		BPF_UNLOCK();
1527 		break;
1528 
1529 	/*
1530 	 * Get a list of supported data link types.
1531 	 */
1532 #ifdef COMPAT_FREEBSD32
1533 	case BIOCGDLTLIST32:
1534 		{
1535 			struct bpf_dltlist32 *list32;
1536 			struct bpf_dltlist dltlist;
1537 
1538 			list32 = (struct bpf_dltlist32 *)addr;
1539 			dltlist.bfl_len = list32->bfl_len;
1540 			dltlist.bfl_list = PTRIN(list32->bfl_list);
1541 			BPF_LOCK();
1542 			if (d->bd_bif == NULL)
1543 				error = EINVAL;
1544 			else {
1545 				error = bpf_getdltlist(d, &dltlist);
1546 				if (error == 0)
1547 					list32->bfl_len = dltlist.bfl_len;
1548 			}
1549 			BPF_UNLOCK();
1550 			break;
1551 		}
1552 #endif
1553 
1554 	case BIOCGDLTLIST:
1555 		BPF_LOCK();
1556 		if (d->bd_bif == NULL)
1557 			error = EINVAL;
1558 		else
1559 			error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1560 		BPF_UNLOCK();
1561 		break;
1562 
1563 	/*
1564 	 * Set data link type.
1565 	 */
1566 	case BIOCSDLT:
1567 		BPF_LOCK();
1568 		if (d->bd_bif == NULL)
1569 			error = EINVAL;
1570 		else
1571 			error = bpf_setdlt(d, *(u_int *)addr);
1572 		BPF_UNLOCK();
1573 		break;
1574 
1575 	/*
1576 	 * Get interface name.
1577 	 */
1578 	case BIOCGETIF:
1579 		BPF_LOCK();
1580 		if (d->bd_bif == NULL)
1581 			error = EINVAL;
1582 		else {
1583 			struct ifnet *const ifp = d->bd_bif->bif_ifp;
1584 			struct ifreq *const ifr = (struct ifreq *)addr;
1585 
1586 			strlcpy(ifr->ifr_name, ifp->if_xname,
1587 			    sizeof(ifr->ifr_name));
1588 		}
1589 		BPF_UNLOCK();
1590 		break;
1591 
1592 	/*
1593 	 * Set interface.
1594 	 */
1595 	case BIOCSETIF:
1596 		/*
1597 		 * Behavior here depends on the buffering model.  If we're
1598 		 * using kernel memory buffers, then we can allocate them here.
1599 		 * If we're using zero-copy, then the user process must have
1600 		 * registered buffers by the time we get here.
1601 		 */
1602 		BPFD_LOCK(d);
1603 		if (d->bd_bufmode == BPF_BUFMODE_BUFFER &&
1604 		    d->bd_sbuf == NULL) {
1605 			u_int size;
1606 
1607 			size = d->bd_bufsize;
1608 			BPFD_UNLOCK(d);
1609 			error = bpf_buffer_ioctl_sblen(d, &size);
1610 			if (error != 0)
1611 				break;
1612 		} else
1613 			BPFD_UNLOCK(d);
1614 		BPF_LOCK();
1615 		error = bpf_setif(d, (struct ifreq *)addr);
1616 		BPF_UNLOCK();
1617 		break;
1618 
1619 	/*
1620 	 * Set read timeout.
1621 	 */
1622 	case BIOCSRTIMEOUT:
1623 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1624 	case BIOCSRTIMEOUT32:
1625 #endif
1626 		{
1627 			struct timeval *tv = (struct timeval *)addr;
1628 #if defined(COMPAT_FREEBSD32)
1629 			struct timeval32 *tv32;
1630 			struct timeval tv64;
1631 
1632 			if (cmd == BIOCSRTIMEOUT32) {
1633 				tv32 = (struct timeval32 *)addr;
1634 				tv = &tv64;
1635 				tv->tv_sec = tv32->tv_sec;
1636 				tv->tv_usec = tv32->tv_usec;
1637 			} else
1638 #endif
1639 				tv = (struct timeval *)addr;
1640 
1641 			/*
1642 			 * Subtract 1 tick from tvtohz() since this isn't
1643 			 * a one-shot timer.
1644 			 */
1645 			if ((error = itimerfix(tv)) == 0)
1646 				d->bd_rtout = tvtohz(tv) - 1;
1647 			break;
1648 		}
1649 
1650 	/*
1651 	 * Get read timeout.
1652 	 */
1653 	case BIOCGRTIMEOUT:
1654 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1655 	case BIOCGRTIMEOUT32:
1656 #endif
1657 		{
1658 			struct timeval *tv;
1659 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1660 			struct timeval32 *tv32;
1661 			struct timeval tv64;
1662 
1663 			if (cmd == BIOCGRTIMEOUT32)
1664 				tv = &tv64;
1665 			else
1666 #endif
1667 				tv = (struct timeval *)addr;
1668 
1669 			tv->tv_sec = d->bd_rtout / hz;
1670 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1671 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1672 			if (cmd == BIOCGRTIMEOUT32) {
1673 				tv32 = (struct timeval32 *)addr;
1674 				tv32->tv_sec = tv->tv_sec;
1675 				tv32->tv_usec = tv->tv_usec;
1676 			}
1677 #endif
1678 
1679 			break;
1680 		}
1681 
1682 	/*
1683 	 * Get packet stats.
1684 	 */
1685 	case BIOCGSTATS:
1686 		{
1687 			struct bpf_stat *bs = (struct bpf_stat *)addr;
1688 
1689 			/* XXXCSJP overflow */
1690 			bs->bs_recv = (u_int)counter_u64_fetch(d->bd_rcount);
1691 			bs->bs_drop = (u_int)counter_u64_fetch(d->bd_dcount);
1692 			break;
1693 		}
1694 
1695 	/*
1696 	 * Set immediate mode.
1697 	 */
1698 	case BIOCIMMEDIATE:
1699 		BPFD_LOCK(d);
1700 		d->bd_immediate = *(u_int *)addr;
1701 		BPFD_UNLOCK(d);
1702 		break;
1703 
1704 	case BIOCVERSION:
1705 		{
1706 			struct bpf_version *bv = (struct bpf_version *)addr;
1707 
1708 			bv->bv_major = BPF_MAJOR_VERSION;
1709 			bv->bv_minor = BPF_MINOR_VERSION;
1710 			break;
1711 		}
1712 
1713 	/*
1714 	 * Get "header already complete" flag
1715 	 */
1716 	case BIOCGHDRCMPLT:
1717 		BPFD_LOCK(d);
1718 		*(u_int *)addr = d->bd_hdrcmplt;
1719 		BPFD_UNLOCK(d);
1720 		break;
1721 
1722 	/*
1723 	 * Set "header already complete" flag
1724 	 */
1725 	case BIOCSHDRCMPLT:
1726 		BPFD_LOCK(d);
1727 		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1728 		BPFD_UNLOCK(d);
1729 		break;
1730 
1731 	/*
1732 	 * Get packet direction flag
1733 	 */
1734 	case BIOCGDIRECTION:
1735 		BPFD_LOCK(d);
1736 		*(u_int *)addr = d->bd_direction;
1737 		BPFD_UNLOCK(d);
1738 		break;
1739 
1740 	/*
1741 	 * Set packet direction flag
1742 	 */
1743 	case BIOCSDIRECTION:
1744 		{
1745 			u_int	direction;
1746 
1747 			direction = *(u_int *)addr;
1748 			switch (direction) {
1749 			case BPF_D_IN:
1750 			case BPF_D_INOUT:
1751 			case BPF_D_OUT:
1752 				BPFD_LOCK(d);
1753 				d->bd_direction = direction;
1754 				BPFD_UNLOCK(d);
1755 				break;
1756 			default:
1757 				error = EINVAL;
1758 			}
1759 		}
1760 		break;
1761 
1762 	/*
1763 	 * Get packet timestamp format and resolution.
1764 	 */
1765 	case BIOCGTSTAMP:
1766 		BPFD_LOCK(d);
1767 		*(u_int *)addr = d->bd_tstamp;
1768 		BPFD_UNLOCK(d);
1769 		break;
1770 
1771 	/*
1772 	 * Set packet timestamp format and resolution.
1773 	 */
1774 	case BIOCSTSTAMP:
1775 		{
1776 			u_int	func;
1777 
1778 			func = *(u_int *)addr;
1779 			if (BPF_T_VALID(func))
1780 				d->bd_tstamp = func;
1781 			else
1782 				error = EINVAL;
1783 		}
1784 		break;
1785 
1786 	case BIOCFEEDBACK:
1787 		BPFD_LOCK(d);
1788 		d->bd_feedback = *(u_int *)addr;
1789 		BPFD_UNLOCK(d);
1790 		break;
1791 
1792 	case BIOCLOCK:
1793 		BPFD_LOCK(d);
1794 		d->bd_locked = 1;
1795 		BPFD_UNLOCK(d);
1796 		break;
1797 
1798 	case FIONBIO:		/* Non-blocking I/O */
1799 		break;
1800 
1801 	case FIOASYNC:		/* Send signal on receive packets */
1802 		BPFD_LOCK(d);
1803 		d->bd_async = *(int *)addr;
1804 		BPFD_UNLOCK(d);
1805 		break;
1806 
1807 	case FIOSETOWN:
1808 		/*
1809 		 * XXX: Add some sort of locking here?
1810 		 * fsetown() can sleep.
1811 		 */
1812 		error = fsetown(*(int *)addr, &d->bd_sigio);
1813 		break;
1814 
1815 	case FIOGETOWN:
1816 		BPFD_LOCK(d);
1817 		*(int *)addr = fgetown(&d->bd_sigio);
1818 		BPFD_UNLOCK(d);
1819 		break;
1820 
1821 	/* This is deprecated, FIOSETOWN should be used instead. */
1822 	case TIOCSPGRP:
1823 		error = fsetown(-(*(int *)addr), &d->bd_sigio);
1824 		break;
1825 
1826 	/* This is deprecated, FIOGETOWN should be used instead. */
1827 	case TIOCGPGRP:
1828 		*(int *)addr = -fgetown(&d->bd_sigio);
1829 		break;
1830 
1831 	case BIOCSRSIG:		/* Set receive signal */
1832 		{
1833 			u_int sig;
1834 
1835 			sig = *(u_int *)addr;
1836 
1837 			if (sig >= NSIG)
1838 				error = EINVAL;
1839 			else {
1840 				BPFD_LOCK(d);
1841 				d->bd_sig = sig;
1842 				BPFD_UNLOCK(d);
1843 			}
1844 			break;
1845 		}
1846 	case BIOCGRSIG:
1847 		BPFD_LOCK(d);
1848 		*(u_int *)addr = d->bd_sig;
1849 		BPFD_UNLOCK(d);
1850 		break;
1851 
1852 	case BIOCGETBUFMODE:
1853 		BPFD_LOCK(d);
1854 		*(u_int *)addr = d->bd_bufmode;
1855 		BPFD_UNLOCK(d);
1856 		break;
1857 
1858 	case BIOCSETBUFMODE:
1859 		/*
1860 		 * Allow the buffering mode to be changed as long as we
1861 		 * haven't yet committed to a particular mode.  Our
1862 		 * definition of commitment, for now, is whether or not a
1863 		 * buffer has been allocated or an interface attached, since
1864 		 * that's the point where things get tricky.
1865 		 */
1866 		switch (*(u_int *)addr) {
1867 		case BPF_BUFMODE_BUFFER:
1868 			break;
1869 
1870 		case BPF_BUFMODE_ZBUF:
1871 			if (bpf_zerocopy_enable)
1872 				break;
1873 			/* FALLSTHROUGH */
1874 
1875 		default:
1876 			CURVNET_RESTORE();
1877 			return (EINVAL);
1878 		}
1879 
1880 		BPFD_LOCK(d);
1881 		if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1882 		    d->bd_fbuf != NULL || d->bd_bif != NULL) {
1883 			BPFD_UNLOCK(d);
1884 			CURVNET_RESTORE();
1885 			return (EBUSY);
1886 		}
1887 		d->bd_bufmode = *(u_int *)addr;
1888 		BPFD_UNLOCK(d);
1889 		break;
1890 
1891 	case BIOCGETZMAX:
1892 		error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1893 		break;
1894 
1895 	case BIOCSETZBUF:
1896 		error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1897 		break;
1898 
1899 	case BIOCROTZBUF:
1900 		error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1901 		break;
1902 
1903 	case BIOCSETVLANPCP:
1904 		{
1905 			u_int pcp;
1906 
1907 			pcp = *(u_int *)addr;
1908 			if (pcp > BPF_PRIO_MAX || pcp < 0) {
1909 				error = EINVAL;
1910 				break;
1911 			}
1912 			d->bd_pcp = pcp;
1913 			break;
1914 		}
1915 	}
1916 	CURVNET_RESTORE();
1917 	return (error);
1918 }
1919 
1920 /*
1921  * Set d's packet filter program to fp. If this file already has a filter,
1922  * free it and replace it. Returns EINVAL for bogus requests.
1923  *
1924  * Note we use global lock here to serialize bpf_setf() and bpf_setif()
1925  * calls.
1926  */
1927 static int
bpf_setf(struct bpf_d * d,struct bpf_program * fp,u_long cmd)1928 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1929 {
1930 #ifdef COMPAT_FREEBSD32
1931 	struct bpf_program fp_swab;
1932 	struct bpf_program32 *fp32;
1933 #endif
1934 	struct bpf_program_buffer *fcode;
1935 	struct bpf_insn *filter;
1936 #ifdef BPF_JITTER
1937 	bpf_jit_filter *jfunc;
1938 #endif
1939 	size_t size;
1940 	u_int flen;
1941 	bool track_event;
1942 
1943 #ifdef COMPAT_FREEBSD32
1944 	switch (cmd) {
1945 	case BIOCSETF32:
1946 	case BIOCSETWF32:
1947 	case BIOCSETFNR32:
1948 		fp32 = (struct bpf_program32 *)fp;
1949 		fp_swab.bf_len = fp32->bf_len;
1950 		fp_swab.bf_insns =
1951 		    (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1952 		fp = &fp_swab;
1953 		switch (cmd) {
1954 		case BIOCSETF32:
1955 			cmd = BIOCSETF;
1956 			break;
1957 		case BIOCSETWF32:
1958 			cmd = BIOCSETWF;
1959 			break;
1960 		}
1961 		break;
1962 	}
1963 #endif
1964 
1965 	filter = NULL;
1966 #ifdef BPF_JITTER
1967 	jfunc = NULL;
1968 #endif
1969 	/*
1970 	 * Check new filter validness before acquiring any locks.
1971 	 * Allocate memory for new filter, if needed.
1972 	 */
1973 	flen = fp->bf_len;
1974 	if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0))
1975 		return (EINVAL);
1976 	size = flen * sizeof(*fp->bf_insns);
1977 	if (size > 0) {
1978 		/* We're setting up new filter. Copy and check actual data. */
1979 		fcode = bpf_program_buffer_alloc(size, M_WAITOK);
1980 		filter = (struct bpf_insn *)fcode->buffer;
1981 		if (copyin(fp->bf_insns, filter, size) != 0 ||
1982 		    !bpf_validate(filter, flen)) {
1983 			free(fcode, M_BPF);
1984 			return (EINVAL);
1985 		}
1986 #ifdef BPF_JITTER
1987 		if (cmd != BIOCSETWF) {
1988 			/*
1989 			 * Filter is copied inside fcode and is
1990 			 * perfectly valid.
1991 			 */
1992 			jfunc = bpf_jitter(filter, flen);
1993 		}
1994 #endif
1995 	}
1996 
1997 	track_event = false;
1998 	fcode = NULL;
1999 
2000 	BPF_LOCK();
2001 	BPFD_LOCK(d);
2002 	/* Set up new filter. */
2003 	if (cmd == BIOCSETWF) {
2004 		if (d->bd_wfilter != NULL) {
2005 			fcode = __containerof((void *)d->bd_wfilter,
2006 			    struct bpf_program_buffer, buffer);
2007 #ifdef BPF_JITTER
2008 			fcode->func = NULL;
2009 #endif
2010 		}
2011 		d->bd_wfilter = filter;
2012 	} else {
2013 		if (d->bd_rfilter != NULL) {
2014 			fcode = __containerof((void *)d->bd_rfilter,
2015 			    struct bpf_program_buffer, buffer);
2016 #ifdef BPF_JITTER
2017 			fcode->func = d->bd_bfilter;
2018 #endif
2019 		}
2020 		d->bd_rfilter = filter;
2021 #ifdef BPF_JITTER
2022 		d->bd_bfilter = jfunc;
2023 #endif
2024 		if (cmd == BIOCSETF)
2025 			reset_d(d);
2026 
2027 		if (bpf_check_upgrade(cmd, d, filter, flen) != 0) {
2028 			/*
2029 			 * Filter can be set several times without
2030 			 * specifying interface. In this case just mark d
2031 			 * as reader.
2032 			 */
2033 			d->bd_writer = 0;
2034 			if (d->bd_bif != NULL) {
2035 				/*
2036 				 * Remove descriptor from writers-only list
2037 				 * and add it to active readers list.
2038 				 */
2039 				CK_LIST_REMOVE(d, bd_next);
2040 				CK_LIST_INSERT_HEAD(&d->bd_bif->bif_dlist,
2041 				    d, bd_next);
2042 				CTR2(KTR_NET,
2043 				    "%s: upgrade required by pid %d",
2044 				    __func__, d->bd_pid);
2045 				track_event = true;
2046 			}
2047 		}
2048 	}
2049 	BPFD_UNLOCK(d);
2050 
2051 	if (fcode != NULL)
2052 		NET_EPOCH_CALL(bpf_program_buffer_free, &fcode->epoch_ctx);
2053 
2054 	if (track_event)
2055 		EVENTHANDLER_INVOKE(bpf_track,
2056 		    d->bd_bif->bif_ifp, d->bd_bif->bif_dlt, 1);
2057 
2058 	BPF_UNLOCK();
2059 	return (0);
2060 }
2061 
2062 /*
2063  * Detach a file from its current interface (if attached at all) and attach
2064  * to the interface indicated by the name stored in ifr.
2065  * Return an errno or 0.
2066  */
2067 static int
bpf_setif(struct bpf_d * d,struct ifreq * ifr)2068 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
2069 {
2070 	struct bpf_if *bp;
2071 	struct ifnet *theywant;
2072 
2073 	BPF_LOCK_ASSERT();
2074 
2075 	theywant = ifunit(ifr->ifr_name);
2076 	if (theywant == NULL)
2077 		return (ENXIO);
2078 	/*
2079 	 * Look through attached interfaces for the named one.
2080 	 */
2081 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2082 		if (bp->bif_ifp == theywant &&
2083 		    bp->bif_bpf == &theywant->if_bpf)
2084 			break;
2085 	}
2086 	if (bp == NULL)
2087 		return (ENXIO);
2088 
2089 	MPASS(bp == theywant->if_bpf);
2090 	/*
2091 	 * At this point, we expect the buffer is already allocated.  If not,
2092 	 * return an error.
2093 	 */
2094 	switch (d->bd_bufmode) {
2095 	case BPF_BUFMODE_BUFFER:
2096 	case BPF_BUFMODE_ZBUF:
2097 		if (d->bd_sbuf == NULL)
2098 			return (EINVAL);
2099 		break;
2100 
2101 	default:
2102 		panic("bpf_setif: bufmode %d", d->bd_bufmode);
2103 	}
2104 	if (bp != d->bd_bif)
2105 		bpf_attachd(d, bp);
2106 	else {
2107 		BPFD_LOCK(d);
2108 		reset_d(d);
2109 		BPFD_UNLOCK(d);
2110 	}
2111 	return (0);
2112 }
2113 
2114 /*
2115  * Support for select() and poll() system calls
2116  *
2117  * Return true iff the specific operation will not block indefinitely.
2118  * Otherwise, return false but make a note that a selwakeup() must be done.
2119  */
2120 static int
bpfpoll(struct cdev * dev,int events,struct thread * td)2121 bpfpoll(struct cdev *dev, int events, struct thread *td)
2122 {
2123 	struct bpf_d *d;
2124 	int revents;
2125 
2126 	if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
2127 		return (events &
2128 		    (POLLHUP | POLLIN | POLLRDNORM | POLLOUT | POLLWRNORM));
2129 
2130 	/*
2131 	 * Refresh PID associated with this descriptor.
2132 	 */
2133 	revents = events & (POLLOUT | POLLWRNORM);
2134 	BPFD_LOCK(d);
2135 	BPF_PID_REFRESH(d, td);
2136 	if (events & (POLLIN | POLLRDNORM)) {
2137 		if (bpf_ready(d))
2138 			revents |= events & (POLLIN | POLLRDNORM);
2139 		else {
2140 			selrecord(td, &d->bd_sel);
2141 			/* Start the read timeout if necessary. */
2142 			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2143 				callout_reset(&d->bd_callout, d->bd_rtout,
2144 				    bpf_timed_out, d);
2145 				d->bd_state = BPF_WAITING;
2146 			}
2147 		}
2148 	}
2149 	BPFD_UNLOCK(d);
2150 	return (revents);
2151 }
2152 
2153 /*
2154  * Support for kevent() system call.  Register EVFILT_READ filters and
2155  * reject all others.
2156  */
2157 int
bpfkqfilter(struct cdev * dev,struct knote * kn)2158 bpfkqfilter(struct cdev *dev, struct knote *kn)
2159 {
2160 	struct bpf_d *d;
2161 
2162 	if (devfs_get_cdevpriv((void **)&d) != 0)
2163 		return (1);
2164 
2165 	switch (kn->kn_filter) {
2166 	case EVFILT_READ:
2167 		kn->kn_fop = &bpfread_filtops;
2168 		break;
2169 
2170 	case EVFILT_WRITE:
2171 		kn->kn_fop = &bpfwrite_filtops;
2172 		break;
2173 
2174 	default:
2175 		return (1);
2176 	}
2177 
2178 	/*
2179 	 * Refresh PID associated with this descriptor.
2180 	 */
2181 	BPFD_LOCK(d);
2182 	BPF_PID_REFRESH_CUR(d);
2183 	kn->kn_hook = d;
2184 	knlist_add(&d->bd_sel.si_note, kn, 1);
2185 	BPFD_UNLOCK(d);
2186 
2187 	return (0);
2188 }
2189 
2190 static void
filt_bpfdetach(struct knote * kn)2191 filt_bpfdetach(struct knote *kn)
2192 {
2193 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2194 
2195 	knlist_remove(&d->bd_sel.si_note, kn, 0);
2196 }
2197 
2198 static int
filt_bpfread(struct knote * kn,long hint)2199 filt_bpfread(struct knote *kn, long hint)
2200 {
2201 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2202 	int ready;
2203 
2204 	BPFD_LOCK_ASSERT(d);
2205 	ready = bpf_ready(d);
2206 	if (ready) {
2207 		kn->kn_data = d->bd_slen;
2208 		/*
2209 		 * Ignore the hold buffer if it is being copied to user space.
2210 		 */
2211 		if (!d->bd_hbuf_in_use && d->bd_hbuf)
2212 			kn->kn_data += d->bd_hlen;
2213 	} else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2214 		callout_reset(&d->bd_callout, d->bd_rtout,
2215 		    bpf_timed_out, d);
2216 		d->bd_state = BPF_WAITING;
2217 	}
2218 
2219 	return (ready);
2220 }
2221 
2222 static int
filt_bpfwrite(struct knote * kn,long hint)2223 filt_bpfwrite(struct knote *kn, long hint)
2224 {
2225 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2226 
2227 	BPFD_LOCK_ASSERT(d);
2228 
2229 	if (d->bd_bif == NULL) {
2230 		kn->kn_data = 0;
2231 		return (0);
2232 	} else {
2233 		kn->kn_data = d->bd_bif->bif_ifp->if_mtu;
2234 		return (1);
2235 	}
2236 }
2237 
2238 #define	BPF_TSTAMP_NONE		0
2239 #define	BPF_TSTAMP_FAST		1
2240 #define	BPF_TSTAMP_NORMAL	2
2241 #define	BPF_TSTAMP_EXTERN	3
2242 
2243 static int
bpf_ts_quality(int tstype)2244 bpf_ts_quality(int tstype)
2245 {
2246 
2247 	if (tstype == BPF_T_NONE)
2248 		return (BPF_TSTAMP_NONE);
2249 	if ((tstype & BPF_T_FAST) != 0)
2250 		return (BPF_TSTAMP_FAST);
2251 
2252 	return (BPF_TSTAMP_NORMAL);
2253 }
2254 
2255 static int
bpf_gettime(struct bintime * bt,int tstype,struct mbuf * m)2256 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
2257 {
2258 	struct timespec ts;
2259 	struct m_tag *tag;
2260 	int quality;
2261 
2262 	quality = bpf_ts_quality(tstype);
2263 	if (quality == BPF_TSTAMP_NONE)
2264 		return (quality);
2265 
2266 	if (m != NULL) {
2267 		if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) {
2268 			mbuf_tstmp2timespec(m, &ts);
2269 			timespec2bintime(&ts, bt);
2270 			return (BPF_TSTAMP_EXTERN);
2271 		}
2272 		tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
2273 		if (tag != NULL) {
2274 			*bt = *(struct bintime *)(tag + 1);
2275 			return (BPF_TSTAMP_EXTERN);
2276 		}
2277 	}
2278 	if (quality == BPF_TSTAMP_NORMAL)
2279 		binuptime(bt);
2280 	else
2281 		getbinuptime(bt);
2282 
2283 	return (quality);
2284 }
2285 
2286 /*
2287  * Incoming linkage from device drivers.  Process the packet pkt, of length
2288  * pktlen, which is stored in a contiguous buffer.  The packet is parsed
2289  * by each process' filter, and if accepted, stashed into the corresponding
2290  * buffer.
2291  */
2292 void
bpf_tap(struct bpf_if * bp,u_char * pkt,u_int pktlen)2293 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2294 {
2295 	struct epoch_tracker et;
2296 	struct bintime bt;
2297 	struct bpf_d *d;
2298 #ifdef BPF_JITTER
2299 	bpf_jit_filter *bf;
2300 #endif
2301 	u_int slen;
2302 	int gottime;
2303 
2304 	gottime = BPF_TSTAMP_NONE;
2305 	NET_EPOCH_ENTER(et);
2306 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2307 		counter_u64_add(d->bd_rcount, 1);
2308 		/*
2309 		 * NB: We dont call BPF_CHECK_DIRECTION() here since there
2310 		 * is no way for the caller to indiciate to us whether this
2311 		 * packet is inbound or outbound. In the bpf_mtap() routines,
2312 		 * we use the interface pointers on the mbuf to figure it out.
2313 		 */
2314 #ifdef BPF_JITTER
2315 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2316 		if (bf != NULL)
2317 			slen = (*(bf->func))(pkt, pktlen, pktlen);
2318 		else
2319 #endif
2320 		slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
2321 		if (slen != 0) {
2322 			/*
2323 			 * Filter matches. Let's to acquire write lock.
2324 			 */
2325 			BPFD_LOCK(d);
2326 			counter_u64_add(d->bd_fcount, 1);
2327 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2328 				gottime = bpf_gettime(&bt, d->bd_tstamp,
2329 				    NULL);
2330 #ifdef MAC
2331 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2332 #endif
2333 				catchpacket(d, pkt, pktlen, slen,
2334 				    bpf_append_bytes, &bt);
2335 			BPFD_UNLOCK(d);
2336 		}
2337 	}
2338 	NET_EPOCH_EXIT(et);
2339 }
2340 
2341 void
bpf_tap_if(if_t ifp,u_char * pkt,u_int pktlen)2342 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
2343 {
2344 	if (bpf_peers_present(ifp->if_bpf))
2345 		bpf_tap(ifp->if_bpf, pkt, pktlen);
2346 }
2347 
2348 #define	BPF_CHECK_DIRECTION(d, r, i)				\
2349 	    (((d)->bd_direction == BPF_D_IN && (r) != (i)) ||	\
2350 	    ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
2351 
2352 /*
2353  * Incoming linkage from device drivers, when packet is in an mbuf chain.
2354  * Locking model is explained in bpf_tap().
2355  */
2356 void
bpf_mtap(struct bpf_if * bp,struct mbuf * m)2357 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2358 {
2359 	struct epoch_tracker et;
2360 	struct bintime bt;
2361 	struct bpf_d *d;
2362 #ifdef BPF_JITTER
2363 	bpf_jit_filter *bf;
2364 #endif
2365 	u_int pktlen, slen;
2366 	int gottime;
2367 
2368 	/* Skip outgoing duplicate packets. */
2369 	if ((m->m_flags & M_PROMISC) != 0 && m_rcvif(m) == NULL) {
2370 		m->m_flags &= ~M_PROMISC;
2371 		return;
2372 	}
2373 
2374 	pktlen = m_length(m, NULL);
2375 	gottime = BPF_TSTAMP_NONE;
2376 
2377 	NET_EPOCH_ENTER(et);
2378 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2379 		if (BPF_CHECK_DIRECTION(d, m_rcvif(m), bp->bif_ifp))
2380 			continue;
2381 		counter_u64_add(d->bd_rcount, 1);
2382 #ifdef BPF_JITTER
2383 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2384 		/* XXX We cannot handle multiple mbufs. */
2385 		if (bf != NULL && m->m_next == NULL)
2386 			slen = (*(bf->func))(mtod(m, u_char *), pktlen,
2387 			    pktlen);
2388 		else
2389 #endif
2390 		slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
2391 		if (slen != 0) {
2392 			BPFD_LOCK(d);
2393 
2394 			counter_u64_add(d->bd_fcount, 1);
2395 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2396 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2397 #ifdef MAC
2398 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2399 #endif
2400 				catchpacket(d, (u_char *)m, pktlen, slen,
2401 				    bpf_append_mbuf, &bt);
2402 			BPFD_UNLOCK(d);
2403 		}
2404 	}
2405 	NET_EPOCH_EXIT(et);
2406 }
2407 
2408 void
bpf_mtap_if(if_t ifp,struct mbuf * m)2409 bpf_mtap_if(if_t ifp, struct mbuf *m)
2410 {
2411 	if (bpf_peers_present(ifp->if_bpf)) {
2412 		M_ASSERTVALID(m);
2413 		bpf_mtap(ifp->if_bpf, m);
2414 	}
2415 }
2416 
2417 /*
2418  * Incoming linkage from device drivers, when packet is in
2419  * an mbuf chain and to be prepended by a contiguous header.
2420  */
2421 void
bpf_mtap2(struct bpf_if * bp,void * data,u_int dlen,struct mbuf * m)2422 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
2423 {
2424 	struct epoch_tracker et;
2425 	struct bintime bt;
2426 	struct mbuf mb;
2427 	struct bpf_d *d;
2428 	u_int pktlen, slen;
2429 	int gottime;
2430 
2431 	/* Skip outgoing duplicate packets. */
2432 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2433 		m->m_flags &= ~M_PROMISC;
2434 		return;
2435 	}
2436 
2437 	pktlen = m_length(m, NULL);
2438 	/*
2439 	 * Craft on-stack mbuf suitable for passing to bpf_filter.
2440 	 * Note that we cut corners here; we only setup what's
2441 	 * absolutely needed--this mbuf should never go anywhere else.
2442 	 */
2443 	mb.m_flags = 0;
2444 	mb.m_next = m;
2445 	mb.m_data = data;
2446 	mb.m_len = dlen;
2447 	pktlen += dlen;
2448 
2449 	gottime = BPF_TSTAMP_NONE;
2450 
2451 	NET_EPOCH_ENTER(et);
2452 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2453 		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2454 			continue;
2455 		counter_u64_add(d->bd_rcount, 1);
2456 		slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
2457 		if (slen != 0) {
2458 			BPFD_LOCK(d);
2459 
2460 			counter_u64_add(d->bd_fcount, 1);
2461 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2462 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2463 #ifdef MAC
2464 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2465 #endif
2466 				catchpacket(d, (u_char *)&mb, pktlen, slen,
2467 				    bpf_append_mbuf, &bt);
2468 			BPFD_UNLOCK(d);
2469 		}
2470 	}
2471 	NET_EPOCH_EXIT(et);
2472 }
2473 
2474 void
bpf_mtap2_if(if_t ifp,void * data,u_int dlen,struct mbuf * m)2475 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
2476 {
2477 	if (bpf_peers_present(ifp->if_bpf)) {
2478 		M_ASSERTVALID(m);
2479 		bpf_mtap2(ifp->if_bpf, data, dlen, m);
2480 	}
2481 }
2482 
2483 #undef	BPF_CHECK_DIRECTION
2484 #undef	BPF_TSTAMP_NONE
2485 #undef	BPF_TSTAMP_FAST
2486 #undef	BPF_TSTAMP_NORMAL
2487 #undef	BPF_TSTAMP_EXTERN
2488 
2489 static int
bpf_hdrlen(struct bpf_d * d)2490 bpf_hdrlen(struct bpf_d *d)
2491 {
2492 	int hdrlen;
2493 
2494 	hdrlen = d->bd_bif->bif_hdrlen;
2495 #ifndef BURN_BRIDGES
2496 	if (d->bd_tstamp == BPF_T_NONE ||
2497 	    BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
2498 #ifdef COMPAT_FREEBSD32
2499 		if (d->bd_compat32)
2500 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
2501 		else
2502 #endif
2503 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
2504 	else
2505 #endif
2506 		hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
2507 #ifdef COMPAT_FREEBSD32
2508 	if (d->bd_compat32)
2509 		hdrlen = BPF_WORDALIGN32(hdrlen);
2510 	else
2511 #endif
2512 		hdrlen = BPF_WORDALIGN(hdrlen);
2513 
2514 	return (hdrlen - d->bd_bif->bif_hdrlen);
2515 }
2516 
2517 static void
bpf_bintime2ts(struct bintime * bt,struct bpf_ts * ts,int tstype)2518 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2519 {
2520 	struct bintime bt2, boottimebin;
2521 	struct timeval tsm;
2522 	struct timespec tsn;
2523 
2524 	if ((tstype & BPF_T_MONOTONIC) == 0) {
2525 		bt2 = *bt;
2526 		getboottimebin(&boottimebin);
2527 		bintime_add(&bt2, &boottimebin);
2528 		bt = &bt2;
2529 	}
2530 	switch (BPF_T_FORMAT(tstype)) {
2531 	case BPF_T_MICROTIME:
2532 		bintime2timeval(bt, &tsm);
2533 		ts->bt_sec = tsm.tv_sec;
2534 		ts->bt_frac = tsm.tv_usec;
2535 		break;
2536 	case BPF_T_NANOTIME:
2537 		bintime2timespec(bt, &tsn);
2538 		ts->bt_sec = tsn.tv_sec;
2539 		ts->bt_frac = tsn.tv_nsec;
2540 		break;
2541 	case BPF_T_BINTIME:
2542 		ts->bt_sec = bt->sec;
2543 		ts->bt_frac = bt->frac;
2544 		break;
2545 	}
2546 }
2547 
2548 /*
2549  * Move the packet data from interface memory (pkt) into the
2550  * store buffer.  "cpfn" is the routine called to do the actual data
2551  * transfer.  bcopy is passed in to copy contiguous chunks, while
2552  * bpf_append_mbuf is passed in to copy mbuf chains.  In the latter case,
2553  * pkt is really an mbuf.
2554  */
2555 static void
catchpacket(struct bpf_d * d,u_char * pkt,u_int pktlen,u_int snaplen,void (* cpfn)(struct bpf_d *,caddr_t,u_int,void *,u_int),struct bintime * bt)2556 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2557     void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2558     struct bintime *bt)
2559 {
2560 	static char zeroes[BPF_ALIGNMENT];
2561 	struct bpf_xhdr hdr;
2562 #ifndef BURN_BRIDGES
2563 	struct bpf_hdr hdr_old;
2564 #ifdef COMPAT_FREEBSD32
2565 	struct bpf_hdr32 hdr32_old;
2566 #endif
2567 #endif
2568 	int caplen, curlen, hdrlen, pad, totlen;
2569 	int do_wakeup = 0;
2570 	int do_timestamp;
2571 	int tstype;
2572 
2573 	BPFD_LOCK_ASSERT(d);
2574 	if (d->bd_bif == NULL) {
2575 		/* Descriptor was detached in concurrent thread */
2576 		counter_u64_add(d->bd_dcount, 1);
2577 		return;
2578 	}
2579 
2580 	/*
2581 	 * Detect whether user space has released a buffer back to us, and if
2582 	 * so, move it from being a hold buffer to a free buffer.  This may
2583 	 * not be the best place to do it (for example, we might only want to
2584 	 * run this check if we need the space), but for now it's a reliable
2585 	 * spot to do it.
2586 	 */
2587 	if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2588 		d->bd_fbuf = d->bd_hbuf;
2589 		d->bd_hbuf = NULL;
2590 		d->bd_hlen = 0;
2591 		bpf_buf_reclaimed(d);
2592 	}
2593 
2594 	/*
2595 	 * Figure out how many bytes to move.  If the packet is
2596 	 * greater or equal to the snapshot length, transfer that
2597 	 * much.  Otherwise, transfer the whole packet (unless
2598 	 * we hit the buffer size limit).
2599 	 */
2600 	hdrlen = bpf_hdrlen(d);
2601 	totlen = hdrlen + min(snaplen, pktlen);
2602 	if (totlen > d->bd_bufsize)
2603 		totlen = d->bd_bufsize;
2604 
2605 	/*
2606 	 * Round up the end of the previous packet to the next longword.
2607 	 *
2608 	 * Drop the packet if there's no room and no hope of room
2609 	 * If the packet would overflow the storage buffer or the storage
2610 	 * buffer is considered immutable by the buffer model, try to rotate
2611 	 * the buffer and wakeup pending processes.
2612 	 */
2613 #ifdef COMPAT_FREEBSD32
2614 	if (d->bd_compat32)
2615 		curlen = BPF_WORDALIGN32(d->bd_slen);
2616 	else
2617 #endif
2618 		curlen = BPF_WORDALIGN(d->bd_slen);
2619 	if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2620 		if (d->bd_fbuf == NULL) {
2621 			/*
2622 			 * There's no room in the store buffer, and no
2623 			 * prospect of room, so drop the packet.  Notify the
2624 			 * buffer model.
2625 			 */
2626 			bpf_buffull(d);
2627 			counter_u64_add(d->bd_dcount, 1);
2628 			return;
2629 		}
2630 		KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use"));
2631 		ROTATE_BUFFERS(d);
2632 		do_wakeup = 1;
2633 		curlen = 0;
2634 	} else {
2635 		if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
2636 			/*
2637 			 * Immediate mode is set, or the read timeout has
2638 			 * already expired during a select call.  A packet
2639 			 * arrived, so the reader should be woken up.
2640 			 */
2641 			do_wakeup = 1;
2642 		}
2643 		pad = curlen - d->bd_slen;
2644 		KASSERT(pad >= 0 && pad <= sizeof(zeroes),
2645 		    ("%s: invalid pad byte count %d", __func__, pad));
2646 		if (pad > 0) {
2647 			/* Zero pad bytes. */
2648 			bpf_append_bytes(d, d->bd_sbuf, d->bd_slen, zeroes,
2649 			    pad);
2650 		}
2651 	}
2652 
2653 	caplen = totlen - hdrlen;
2654 	tstype = d->bd_tstamp;
2655 	do_timestamp = tstype != BPF_T_NONE;
2656 #ifndef BURN_BRIDGES
2657 	if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2658 		struct bpf_ts ts;
2659 		if (do_timestamp)
2660 			bpf_bintime2ts(bt, &ts, tstype);
2661 #ifdef COMPAT_FREEBSD32
2662 		if (d->bd_compat32) {
2663 			bzero(&hdr32_old, sizeof(hdr32_old));
2664 			if (do_timestamp) {
2665 				hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2666 				hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2667 			}
2668 			hdr32_old.bh_datalen = pktlen;
2669 			hdr32_old.bh_hdrlen = hdrlen;
2670 			hdr32_old.bh_caplen = caplen;
2671 			bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2672 			    sizeof(hdr32_old));
2673 			goto copy;
2674 		}
2675 #endif
2676 		bzero(&hdr_old, sizeof(hdr_old));
2677 		if (do_timestamp) {
2678 			hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2679 			hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2680 		}
2681 		hdr_old.bh_datalen = pktlen;
2682 		hdr_old.bh_hdrlen = hdrlen;
2683 		hdr_old.bh_caplen = caplen;
2684 		bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2685 		    sizeof(hdr_old));
2686 		goto copy;
2687 	}
2688 #endif
2689 
2690 	/*
2691 	 * Append the bpf header.  Note we append the actual header size, but
2692 	 * move forward the length of the header plus padding.
2693 	 */
2694 	bzero(&hdr, sizeof(hdr));
2695 	if (do_timestamp)
2696 		bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2697 	hdr.bh_datalen = pktlen;
2698 	hdr.bh_hdrlen = hdrlen;
2699 	hdr.bh_caplen = caplen;
2700 	bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2701 
2702 	/*
2703 	 * Copy the packet data into the store buffer and update its length.
2704 	 */
2705 #ifndef BURN_BRIDGES
2706 copy:
2707 #endif
2708 	(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2709 	d->bd_slen = curlen + totlen;
2710 
2711 	if (do_wakeup)
2712 		bpf_wakeup(d);
2713 }
2714 
2715 /*
2716  * Free buffers currently in use by a descriptor.
2717  * Called on close.
2718  */
2719 static void
bpfd_free(epoch_context_t ctx)2720 bpfd_free(epoch_context_t ctx)
2721 {
2722 	struct bpf_d *d;
2723 	struct bpf_program_buffer *p;
2724 
2725 	/*
2726 	 * We don't need to lock out interrupts since this descriptor has
2727 	 * been detached from its interface and it yet hasn't been marked
2728 	 * free.
2729 	 */
2730 	d = __containerof(ctx, struct bpf_d, epoch_ctx);
2731 	bpf_free(d);
2732 	if (d->bd_rfilter != NULL) {
2733 		p = __containerof((void *)d->bd_rfilter,
2734 		    struct bpf_program_buffer, buffer);
2735 #ifdef BPF_JITTER
2736 		p->func = d->bd_bfilter;
2737 #endif
2738 		bpf_program_buffer_free(&p->epoch_ctx);
2739 	}
2740 	if (d->bd_wfilter != NULL) {
2741 		p = __containerof((void *)d->bd_wfilter,
2742 		    struct bpf_program_buffer, buffer);
2743 #ifdef BPF_JITTER
2744 		p->func = NULL;
2745 #endif
2746 		bpf_program_buffer_free(&p->epoch_ctx);
2747 	}
2748 
2749 	mtx_destroy(&d->bd_lock);
2750 	counter_u64_free(d->bd_rcount);
2751 	counter_u64_free(d->bd_dcount);
2752 	counter_u64_free(d->bd_fcount);
2753 	counter_u64_free(d->bd_wcount);
2754 	counter_u64_free(d->bd_wfcount);
2755 	counter_u64_free(d->bd_wdcount);
2756 	counter_u64_free(d->bd_zcopy);
2757 	free(d, M_BPF);
2758 }
2759 
2760 /*
2761  * Attach an interface to bpf.  dlt is the link layer type; hdrlen is the
2762  * fixed size of the link header (variable length headers not yet supported).
2763  */
2764 void
bpfattach(struct ifnet * ifp,u_int dlt,u_int hdrlen)2765 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2766 {
2767 
2768 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2769 }
2770 
2771 /*
2772  * Attach an interface to bpf.  ifp is a pointer to the structure
2773  * defining the interface to be attached, dlt is the link layer type,
2774  * and hdrlen is the fixed size of the link header (variable length
2775  * headers are not yet supporrted).
2776  */
2777 void
bpfattach2(struct ifnet * ifp,u_int dlt,u_int hdrlen,struct bpf_if ** driverp)2778 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen,
2779     struct bpf_if **driverp)
2780 {
2781 	struct bpf_if *bp;
2782 
2783 	KASSERT(*driverp == NULL,
2784 	    ("bpfattach2: driverp already initialized"));
2785 
2786 	bp = malloc(sizeof(*bp), M_BPF, M_WAITOK | M_ZERO);
2787 
2788 	CK_LIST_INIT(&bp->bif_dlist);
2789 	CK_LIST_INIT(&bp->bif_wlist);
2790 	bp->bif_ifp = ifp;
2791 	bp->bif_dlt = dlt;
2792 	bp->bif_hdrlen = hdrlen;
2793 	bp->bif_bpf = driverp;
2794 	refcount_init(&bp->bif_refcnt, 1);
2795 	*driverp = bp;
2796 	/*
2797 	 * Reference ifnet pointer, so it won't freed until
2798 	 * we release it.
2799 	 */
2800 	if_ref(ifp);
2801 	BPF_LOCK();
2802 	LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2803 	BPF_UNLOCK();
2804 
2805 	if (bootverbose && IS_DEFAULT_VNET(curvnet))
2806 		if_printf(ifp, "bpf attached\n");
2807 }
2808 
2809 #ifdef VIMAGE
2810 /*
2811  * Detach descriptors on interface's vmove event.
2812  */
2813 void
bpf_ifdetach(struct ifnet * ifp)2814 bpf_ifdetach(struct ifnet *ifp)
2815 {
2816 	struct bpf_if *bp;
2817 	struct bpf_d *d;
2818 
2819 	BPF_LOCK();
2820 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2821 		if (bp->bif_ifp != ifp)
2822 			continue;
2823 
2824 		/* Detach common descriptors */
2825 		while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2826 			bpf_detachd(d, true);
2827 		}
2828 
2829 		/* Detach writer-only descriptors */
2830 		while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2831 			bpf_detachd(d, true);
2832 		}
2833 	}
2834 	BPF_UNLOCK();
2835 }
2836 #endif
2837 
2838 /*
2839  * Detach bpf from an interface. This involves detaching each descriptor
2840  * associated with the interface. Notify each descriptor as it's detached
2841  * so that any sleepers wake up and get ENXIO.
2842  */
2843 void
bpfdetach(struct ifnet * ifp)2844 bpfdetach(struct ifnet *ifp)
2845 {
2846 	struct bpf_if *bp, *bp_temp;
2847 	struct bpf_d *d;
2848 
2849 	BPF_LOCK();
2850 	/* Find all bpf_if struct's which reference ifp and detach them. */
2851 	LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) {
2852 		if (ifp != bp->bif_ifp)
2853 			continue;
2854 
2855 		LIST_REMOVE(bp, bif_next);
2856 		*bp->bif_bpf = __DECONST(struct bpf_if *, &dead_bpf_if);
2857 
2858 		CTR4(KTR_NET,
2859 		    "%s: sheduling free for encap %d (%p) for if %p",
2860 		    __func__, bp->bif_dlt, bp, ifp);
2861 
2862 		/* Detach common descriptors */
2863 		while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2864 			bpf_detachd(d, true);
2865 		}
2866 
2867 		/* Detach writer-only descriptors */
2868 		while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2869 			bpf_detachd(d, true);
2870 		}
2871 		bpfif_rele(bp);
2872 	}
2873 	BPF_UNLOCK();
2874 }
2875 
2876 bool
bpf_peers_present_if(struct ifnet * ifp)2877 bpf_peers_present_if(struct ifnet *ifp)
2878 {
2879 	return (bpf_peers_present(ifp->if_bpf));
2880 }
2881 
2882 /*
2883  * Get a list of available data link type of the interface.
2884  */
2885 static int
bpf_getdltlist(struct bpf_d * d,struct bpf_dltlist * bfl)2886 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2887 {
2888 	struct ifnet *ifp;
2889 	struct bpf_if *bp;
2890 	u_int *lst;
2891 	int error, n, n1;
2892 
2893 	BPF_LOCK_ASSERT();
2894 
2895 	ifp = d->bd_bif->bif_ifp;
2896 	n1 = 0;
2897 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2898 		if (bp->bif_ifp == ifp)
2899 			n1++;
2900 	}
2901 	if (bfl->bfl_list == NULL) {
2902 		bfl->bfl_len = n1;
2903 		return (0);
2904 	}
2905 	if (n1 > bfl->bfl_len)
2906 		return (ENOMEM);
2907 
2908 	lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK);
2909 	n = 0;
2910 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2911 		if (bp->bif_ifp != ifp)
2912 			continue;
2913 		lst[n++] = bp->bif_dlt;
2914 	}
2915 	error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n);
2916 	free(lst, M_TEMP);
2917 	bfl->bfl_len = n;
2918 	return (error);
2919 }
2920 
2921 /*
2922  * Set the data link type of a BPF instance.
2923  */
2924 static int
bpf_setdlt(struct bpf_d * d,u_int dlt)2925 bpf_setdlt(struct bpf_d *d, u_int dlt)
2926 {
2927 	int error, opromisc;
2928 	struct ifnet *ifp;
2929 	struct bpf_if *bp;
2930 
2931 	BPF_LOCK_ASSERT();
2932 	MPASS(d->bd_bif != NULL);
2933 
2934 	/*
2935 	 * It is safe to check bd_bif without BPFD_LOCK, it can not be
2936 	 * changed while we hold global lock.
2937 	 */
2938 	if (d->bd_bif->bif_dlt == dlt)
2939 		return (0);
2940 
2941 	ifp = d->bd_bif->bif_ifp;
2942 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2943 		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2944 			break;
2945 	}
2946 	if (bp == NULL)
2947 		return (EINVAL);
2948 
2949 	opromisc = d->bd_promisc;
2950 	bpf_attachd(d, bp);
2951 	if (opromisc) {
2952 		error = ifpromisc(bp->bif_ifp, 1);
2953 		if (error)
2954 			if_printf(bp->bif_ifp, "%s: ifpromisc failed (%d)\n",
2955 			    __func__, error);
2956 		else
2957 			d->bd_promisc = 1;
2958 	}
2959 	return (0);
2960 }
2961 
2962 static void
bpf_drvinit(void * unused)2963 bpf_drvinit(void *unused)
2964 {
2965 	struct cdev *dev;
2966 
2967 	sx_init(&bpf_sx, "bpf global lock");
2968 	dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
2969 	/* For compatibility */
2970 	make_dev_alias(dev, "bpf0");
2971 }
2972 
2973 /*
2974  * Zero out the various packet counters associated with all of the bpf
2975  * descriptors.  At some point, we will probably want to get a bit more
2976  * granular and allow the user to specify descriptors to be zeroed.
2977  */
2978 static void
bpf_zero_counters(void)2979 bpf_zero_counters(void)
2980 {
2981 	struct bpf_if *bp;
2982 	struct bpf_d *bd;
2983 
2984 	BPF_LOCK();
2985 	/*
2986 	 * We are protected by global lock here, interfaces and
2987 	 * descriptors can not be deleted while we hold it.
2988 	 */
2989 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2990 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2991 			counter_u64_zero(bd->bd_rcount);
2992 			counter_u64_zero(bd->bd_dcount);
2993 			counter_u64_zero(bd->bd_fcount);
2994 			counter_u64_zero(bd->bd_wcount);
2995 			counter_u64_zero(bd->bd_wfcount);
2996 			counter_u64_zero(bd->bd_zcopy);
2997 		}
2998 	}
2999 	BPF_UNLOCK();
3000 }
3001 
3002 /*
3003  * Fill filter statistics
3004  */
3005 static void
bpfstats_fill_xbpf(struct xbpf_d * d,struct bpf_d * bd)3006 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
3007 {
3008 
3009 	BPF_LOCK_ASSERT();
3010 	bzero(d, sizeof(*d));
3011 	d->bd_structsize = sizeof(*d);
3012 	d->bd_immediate = bd->bd_immediate;
3013 	d->bd_promisc = bd->bd_promisc;
3014 	d->bd_hdrcmplt = bd->bd_hdrcmplt;
3015 	d->bd_direction = bd->bd_direction;
3016 	d->bd_feedback = bd->bd_feedback;
3017 	d->bd_async = bd->bd_async;
3018 	d->bd_rcount = counter_u64_fetch(bd->bd_rcount);
3019 	d->bd_dcount = counter_u64_fetch(bd->bd_dcount);
3020 	d->bd_fcount = counter_u64_fetch(bd->bd_fcount);
3021 	d->bd_sig = bd->bd_sig;
3022 	d->bd_slen = bd->bd_slen;
3023 	d->bd_hlen = bd->bd_hlen;
3024 	d->bd_bufsize = bd->bd_bufsize;
3025 	d->bd_pid = bd->bd_pid;
3026 	strlcpy(d->bd_ifname,
3027 	    bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
3028 	d->bd_locked = bd->bd_locked;
3029 	d->bd_wcount = counter_u64_fetch(bd->bd_wcount);
3030 	d->bd_wdcount = counter_u64_fetch(bd->bd_wdcount);
3031 	d->bd_wfcount = counter_u64_fetch(bd->bd_wfcount);
3032 	d->bd_zcopy = counter_u64_fetch(bd->bd_zcopy);
3033 	d->bd_bufmode = bd->bd_bufmode;
3034 }
3035 
3036 /*
3037  * Handle `netstat -B' stats request
3038  */
3039 static int
bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)3040 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
3041 {
3042 	static const struct xbpf_d zerostats;
3043 	struct xbpf_d *xbdbuf, *xbd, tempstats;
3044 	u_int bpfd_cnt, index;
3045 	int error;
3046 	struct bpf_if *bp;
3047 	struct bpf_d *bd;
3048 
3049 	/*
3050 	 * XXX This is not technically correct. It is possible for non
3051 	 * privileged users to open bpf devices. It would make sense
3052 	 * if the users who opened the devices were able to retrieve
3053 	 * the statistics for them, too.
3054 	 */
3055 	error = priv_check(req->td, PRIV_NET_BPF);
3056 	if (error)
3057 		return (error);
3058 	/*
3059 	 * Check to see if the user is requesting that the counters be
3060 	 * zeroed out.  Explicitly check that the supplied data is zeroed,
3061 	 * as we aren't allowing the user to set the counters currently.
3062 	 */
3063 	if (req->newptr != NULL) {
3064 		if (req->newlen != sizeof(tempstats))
3065 			return (EINVAL);
3066 		memset(&tempstats, 0, sizeof(tempstats));
3067 		error = SYSCTL_IN(req, &tempstats, sizeof(tempstats));
3068 		if (error)
3069 			return (error);
3070 		if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0)
3071 			return (EINVAL);
3072 		bpf_zero_counters();
3073 		return (0);
3074 	}
3075 	bpfd_cnt = 0;
3076 	BPF_LOCK();
3077 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3078 		CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next)
3079 			bpfd_cnt++;
3080 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next)
3081 			bpfd_cnt++;
3082 	}
3083 	if (bpfd_cnt == 0 || req->oldptr == NULL) {
3084 		BPF_UNLOCK();
3085 		return (SYSCTL_OUT(req, 0, bpfd_cnt * sizeof(*xbd)));
3086 	}
3087 	if (req->oldlen < bpfd_cnt * sizeof(*xbd)) {
3088 		BPF_UNLOCK();
3089 		return (ENOMEM);
3090 	}
3091 	xbdbuf = malloc(bpfd_cnt * sizeof(*xbd), M_BPF, M_WAITOK);
3092 	index = 0;
3093 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3094 		/* Send writers-only first */
3095 		CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
3096 			MPASS(index <= bpfd_cnt);
3097 			xbd = &xbdbuf[index++];
3098 			bpfstats_fill_xbpf(xbd, bd);
3099 		}
3100 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3101 			MPASS(index <= bpfd_cnt);
3102 			xbd = &xbdbuf[index++];
3103 			bpfstats_fill_xbpf(xbd, bd);
3104 		}
3105 	}
3106 	BPF_UNLOCK();
3107 	error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
3108 	free(xbdbuf, M_BPF);
3109 	return (error);
3110 }
3111 
3112 SYSINIT(bpfdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, bpf_drvinit, NULL);
3113 
3114 #else /* !DEV_BPF && !NETGRAPH_BPF */
3115 
3116 /*
3117  * NOP stubs to allow bpf-using drivers to load and function.
3118  *
3119  * A 'better' implementation would allow the core bpf functionality
3120  * to be loaded at runtime.
3121  */
3122 
3123 void
bpf_tap(struct bpf_if * bp,u_char * pkt,u_int pktlen)3124 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
3125 {
3126 }
3127 
3128 void
bpf_tap_if(if_t ifp,u_char * pkt,u_int pktlen)3129 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
3130 {
3131 }
3132 
3133 void
bpf_mtap(struct bpf_if * bp,struct mbuf * m)3134 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
3135 {
3136 }
3137 
3138 void
bpf_mtap_if(if_t ifp,struct mbuf * m)3139 bpf_mtap_if(if_t ifp, struct mbuf *m)
3140 {
3141 }
3142 
3143 void
bpf_mtap2(struct bpf_if * bp,void * d,u_int l,struct mbuf * m)3144 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
3145 {
3146 }
3147 
3148 void
bpf_mtap2_if(if_t ifp,void * data,u_int dlen,struct mbuf * m)3149 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
3150 {
3151 }
3152 
3153 void
bpfattach(struct ifnet * ifp,u_int dlt,u_int hdrlen)3154 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
3155 {
3156 
3157 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
3158 }
3159 
3160 void
bpfattach2(struct ifnet * ifp,u_int dlt,u_int hdrlen,struct bpf_if ** driverp)3161 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
3162 {
3163 
3164 	*driverp = __DECONST(struct bpf_if *, &dead_bpf_if);
3165 }
3166 
3167 void
bpfdetach(struct ifnet * ifp)3168 bpfdetach(struct ifnet *ifp)
3169 {
3170 }
3171 
3172 bool
bpf_peers_present_if(struct ifnet * ifp)3173 bpf_peers_present_if(struct ifnet *ifp)
3174 {
3175 	return (false);
3176 }
3177 
3178 u_int
bpf_filter(const struct bpf_insn * pc,u_char * p,u_int wirelen,u_int buflen)3179 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
3180 {
3181 	return (-1);	/* "no filter" behaviour */
3182 }
3183 
3184 int
bpf_validate(const struct bpf_insn * f,int len)3185 bpf_validate(const struct bpf_insn *f, int len)
3186 {
3187 	return (0);	/* false */
3188 }
3189 
3190 #endif /* !DEV_BPF && !NETGRAPH_BPF */
3191