1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the top level handling of macro expansion for the
10 // preprocessor.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Basic/AttributeCommonInfo.h"
15 #include "clang/Basic/Attributes.h"
16 #include "clang/Basic/Builtins.h"
17 #include "clang/Basic/FileManager.h"
18 #include "clang/Basic/IdentifierTable.h"
19 #include "clang/Basic/LLVM.h"
20 #include "clang/Basic/LangOptions.h"
21 #include "clang/Basic/ObjCRuntime.h"
22 #include "clang/Basic/SourceLocation.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Lex/CodeCompletionHandler.h"
25 #include "clang/Lex/DirectoryLookup.h"
26 #include "clang/Lex/ExternalPreprocessorSource.h"
27 #include "clang/Lex/HeaderSearch.h"
28 #include "clang/Lex/LexDiagnostic.h"
29 #include "clang/Lex/LiteralSupport.h"
30 #include "clang/Lex/MacroArgs.h"
31 #include "clang/Lex/MacroInfo.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Lex/PreprocessorLexer.h"
34 #include "clang/Lex/PreprocessorOptions.h"
35 #include "clang/Lex/Token.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/DenseSet.h"
39 #include "llvm/ADT/FoldingSet.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/ADT/SmallString.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/StringRef.h"
44 #include "llvm/ADT/StringSwitch.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/Format.h"
48 #include "llvm/Support/Path.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstddef>
53 #include <cstring>
54 #include <ctime>
55 #include <optional>
56 #include <string>
57 #include <tuple>
58 #include <utility>
59
60 using namespace clang;
61
62 MacroDirective *
getLocalMacroDirectiveHistory(const IdentifierInfo * II) const63 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
64 if (!II->hadMacroDefinition())
65 return nullptr;
66 auto Pos = CurSubmoduleState->Macros.find(II);
67 return Pos == CurSubmoduleState->Macros.end() ? nullptr
68 : Pos->second.getLatest();
69 }
70
appendMacroDirective(IdentifierInfo * II,MacroDirective * MD)71 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
72 assert(MD && "MacroDirective should be non-zero!");
73 assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
74
75 MacroState &StoredMD = CurSubmoduleState->Macros[II];
76 auto *OldMD = StoredMD.getLatest();
77 MD->setPrevious(OldMD);
78 StoredMD.setLatest(MD);
79 StoredMD.overrideActiveModuleMacros(*this, II);
80
81 if (needModuleMacros()) {
82 // Track that we created a new macro directive, so we know we should
83 // consider building a ModuleMacro for it when we get to the end of
84 // the module.
85 PendingModuleMacroNames.push_back(II);
86 }
87
88 // Set up the identifier as having associated macro history.
89 II->setHasMacroDefinition(true);
90 if (!MD->isDefined() && !LeafModuleMacros.contains(II))
91 II->setHasMacroDefinition(false);
92 if (II->isFromAST())
93 II->setChangedSinceDeserialization();
94 }
95
setLoadedMacroDirective(IdentifierInfo * II,MacroDirective * ED,MacroDirective * MD)96 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
97 MacroDirective *ED,
98 MacroDirective *MD) {
99 // Normally, when a macro is defined, it goes through appendMacroDirective()
100 // above, which chains a macro to previous defines, undefs, etc.
101 // However, in a pch, the whole macro history up to the end of the pch is
102 // stored, so ASTReader goes through this function instead.
103 // However, built-in macros are already registered in the Preprocessor
104 // ctor, and ASTWriter stops writing the macro chain at built-in macros,
105 // so in that case the chain from the pch needs to be spliced to the existing
106 // built-in.
107
108 assert(II && MD);
109 MacroState &StoredMD = CurSubmoduleState->Macros[II];
110
111 if (auto *OldMD = StoredMD.getLatest()) {
112 // shouldIgnoreMacro() in ASTWriter also stops at macros from the
113 // predefines buffer in module builds. However, in module builds, modules
114 // are loaded completely before predefines are processed, so StoredMD
115 // will be nullptr for them when they're loaded. StoredMD should only be
116 // non-nullptr for builtins read from a pch file.
117 assert(OldMD->getMacroInfo()->isBuiltinMacro() &&
118 "only built-ins should have an entry here");
119 assert(!OldMD->getPrevious() && "builtin should only have a single entry");
120 ED->setPrevious(OldMD);
121 StoredMD.setLatest(MD);
122 } else {
123 StoredMD = MD;
124 }
125
126 // Setup the identifier as having associated macro history.
127 II->setHasMacroDefinition(true);
128 if (!MD->isDefined() && !LeafModuleMacros.contains(II))
129 II->setHasMacroDefinition(false);
130 }
131
addModuleMacro(Module * Mod,IdentifierInfo * II,MacroInfo * Macro,ArrayRef<ModuleMacro * > Overrides,bool & New)132 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
133 MacroInfo *Macro,
134 ArrayRef<ModuleMacro *> Overrides,
135 bool &New) {
136 llvm::FoldingSetNodeID ID;
137 ModuleMacro::Profile(ID, Mod, II);
138
139 void *InsertPos;
140 if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
141 New = false;
142 return MM;
143 }
144
145 auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
146 ModuleMacros.InsertNode(MM, InsertPos);
147
148 // Each overridden macro is now overridden by one more macro.
149 bool HidAny = false;
150 for (auto *O : Overrides) {
151 HidAny |= (O->NumOverriddenBy == 0);
152 ++O->NumOverriddenBy;
153 }
154
155 // If we were the first overrider for any macro, it's no longer a leaf.
156 auto &LeafMacros = LeafModuleMacros[II];
157 if (HidAny) {
158 llvm::erase_if(LeafMacros,
159 [](ModuleMacro *MM) { return MM->NumOverriddenBy != 0; });
160 }
161
162 // The new macro is always a leaf macro.
163 LeafMacros.push_back(MM);
164 // The identifier now has defined macros (that may or may not be visible).
165 II->setHasMacroDefinition(true);
166
167 New = true;
168 return MM;
169 }
170
getModuleMacro(Module * Mod,const IdentifierInfo * II)171 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod,
172 const IdentifierInfo *II) {
173 llvm::FoldingSetNodeID ID;
174 ModuleMacro::Profile(ID, Mod, II);
175
176 void *InsertPos;
177 return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
178 }
179
updateModuleMacroInfo(const IdentifierInfo * II,ModuleMacroInfo & Info)180 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
181 ModuleMacroInfo &Info) {
182 assert(Info.ActiveModuleMacrosGeneration !=
183 CurSubmoduleState->VisibleModules.getGeneration() &&
184 "don't need to update this macro name info");
185 Info.ActiveModuleMacrosGeneration =
186 CurSubmoduleState->VisibleModules.getGeneration();
187
188 auto Leaf = LeafModuleMacros.find(II);
189 if (Leaf == LeafModuleMacros.end()) {
190 // No imported macros at all: nothing to do.
191 return;
192 }
193
194 Info.ActiveModuleMacros.clear();
195
196 // Every macro that's locally overridden is overridden by a visible macro.
197 llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
198 for (auto *O : Info.OverriddenMacros)
199 NumHiddenOverrides[O] = -1;
200
201 // Collect all macros that are not overridden by a visible macro.
202 llvm::SmallVector<ModuleMacro *, 16> Worklist;
203 for (auto *LeafMM : Leaf->second) {
204 assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden");
205 if (NumHiddenOverrides.lookup(LeafMM) == 0)
206 Worklist.push_back(LeafMM);
207 }
208 while (!Worklist.empty()) {
209 auto *MM = Worklist.pop_back_val();
210 if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
211 // We only care about collecting definitions; undefinitions only act
212 // to override other definitions.
213 if (MM->getMacroInfo())
214 Info.ActiveModuleMacros.push_back(MM);
215 } else {
216 for (auto *O : MM->overrides())
217 if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
218 Worklist.push_back(O);
219 }
220 }
221 // Our reverse postorder walk found the macros in reverse order.
222 std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
223
224 // Determine whether the macro name is ambiguous.
225 MacroInfo *MI = nullptr;
226 bool IsSystemMacro = true;
227 bool IsAmbiguous = false;
228 if (auto *MD = Info.MD) {
229 while (isa_and_nonnull<VisibilityMacroDirective>(MD))
230 MD = MD->getPrevious();
231 if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
232 MI = DMD->getInfo();
233 IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
234 }
235 }
236 for (auto *Active : Info.ActiveModuleMacros) {
237 auto *NewMI = Active->getMacroInfo();
238
239 // Before marking the macro as ambiguous, check if this is a case where
240 // both macros are in system headers. If so, we trust that the system
241 // did not get it wrong. This also handles cases where Clang's own
242 // headers have a different spelling of certain system macros:
243 // #define LONG_MAX __LONG_MAX__ (clang's limits.h)
244 // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
245 //
246 // FIXME: Remove the defined-in-system-headers check. clang's limits.h
247 // overrides the system limits.h's macros, so there's no conflict here.
248 if (MI && NewMI != MI &&
249 !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
250 IsAmbiguous = true;
251 IsSystemMacro &= Active->getOwningModule()->IsSystem ||
252 SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
253 MI = NewMI;
254 }
255 Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
256 }
257
dumpMacroInfo(const IdentifierInfo * II)258 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
259 ArrayRef<ModuleMacro*> Leaf;
260 auto LeafIt = LeafModuleMacros.find(II);
261 if (LeafIt != LeafModuleMacros.end())
262 Leaf = LeafIt->second;
263 const MacroState *State = nullptr;
264 auto Pos = CurSubmoduleState->Macros.find(II);
265 if (Pos != CurSubmoduleState->Macros.end())
266 State = &Pos->second;
267
268 llvm::errs() << "MacroState " << State << " " << II->getNameStart();
269 if (State && State->isAmbiguous(*this, II))
270 llvm::errs() << " ambiguous";
271 if (State && !State->getOverriddenMacros().empty()) {
272 llvm::errs() << " overrides";
273 for (auto *O : State->getOverriddenMacros())
274 llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
275 }
276 llvm::errs() << "\n";
277
278 // Dump local macro directives.
279 for (auto *MD = State ? State->getLatest() : nullptr; MD;
280 MD = MD->getPrevious()) {
281 llvm::errs() << " ";
282 MD->dump();
283 }
284
285 // Dump module macros.
286 llvm::DenseSet<ModuleMacro*> Active;
287 for (auto *MM :
288 State ? State->getActiveModuleMacros(*this, II) : std::nullopt)
289 Active.insert(MM);
290 llvm::DenseSet<ModuleMacro*> Visited;
291 llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end());
292 while (!Worklist.empty()) {
293 auto *MM = Worklist.pop_back_val();
294 llvm::errs() << " ModuleMacro " << MM << " "
295 << MM->getOwningModule()->getFullModuleName();
296 if (!MM->getMacroInfo())
297 llvm::errs() << " undef";
298
299 if (Active.count(MM))
300 llvm::errs() << " active";
301 else if (!CurSubmoduleState->VisibleModules.isVisible(
302 MM->getOwningModule()))
303 llvm::errs() << " hidden";
304 else if (MM->getMacroInfo())
305 llvm::errs() << " overridden";
306
307 if (!MM->overrides().empty()) {
308 llvm::errs() << " overrides";
309 for (auto *O : MM->overrides()) {
310 llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
311 if (Visited.insert(O).second)
312 Worklist.push_back(O);
313 }
314 }
315 llvm::errs() << "\n";
316 if (auto *MI = MM->getMacroInfo()) {
317 llvm::errs() << " ";
318 MI->dump();
319 llvm::errs() << "\n";
320 }
321 }
322 }
323
324 /// RegisterBuiltinMacro - Register the specified identifier in the identifier
325 /// table and mark it as a builtin macro to be expanded.
RegisterBuiltinMacro(Preprocessor & PP,const char * Name)326 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
327 // Get the identifier.
328 IdentifierInfo *Id = PP.getIdentifierInfo(Name);
329
330 // Mark it as being a macro that is builtin.
331 MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
332 MI->setIsBuiltinMacro();
333 PP.appendDefMacroDirective(Id, MI);
334 return Id;
335 }
336
337 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
338 /// identifier table.
RegisterBuiltinMacros()339 void Preprocessor::RegisterBuiltinMacros() {
340 Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
341 Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
342 Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
343 Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
344 Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
345 Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma");
346 Ident__FLT_EVAL_METHOD__ = RegisterBuiltinMacro(*this, "__FLT_EVAL_METHOD__");
347
348 // C++ Standing Document Extensions.
349 if (getLangOpts().CPlusPlus)
350 Ident__has_cpp_attribute =
351 RegisterBuiltinMacro(*this, "__has_cpp_attribute");
352 else
353 Ident__has_cpp_attribute = nullptr;
354
355 // GCC Extensions.
356 Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__");
357 Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
358 Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
359
360 // Microsoft Extensions.
361 if (getLangOpts().MicrosoftExt) {
362 Ident__identifier = RegisterBuiltinMacro(*this, "__identifier");
363 Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
364 } else {
365 Ident__identifier = nullptr;
366 Ident__pragma = nullptr;
367 }
368
369 // Clang Extensions.
370 Ident__FILE_NAME__ = RegisterBuiltinMacro(*this, "__FILE_NAME__");
371 Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature");
372 Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension");
373 Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin");
374 Ident__has_constexpr_builtin =
375 RegisterBuiltinMacro(*this, "__has_constexpr_builtin");
376 Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute");
377 if (!getLangOpts().CPlusPlus)
378 Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute");
379 else
380 Ident__has_c_attribute = nullptr;
381
382 Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute");
383 Ident__has_embed = RegisterBuiltinMacro(*this, "__has_embed");
384 Ident__has_include = RegisterBuiltinMacro(*this, "__has_include");
385 Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
386 Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning");
387 Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier");
388 Ident__is_target_arch = RegisterBuiltinMacro(*this, "__is_target_arch");
389 Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor");
390 Ident__is_target_os = RegisterBuiltinMacro(*this, "__is_target_os");
391 Ident__is_target_environment =
392 RegisterBuiltinMacro(*this, "__is_target_environment");
393 Ident__is_target_variant_os =
394 RegisterBuiltinMacro(*this, "__is_target_variant_os");
395 Ident__is_target_variant_environment =
396 RegisterBuiltinMacro(*this, "__is_target_variant_environment");
397
398 // Modules.
399 Ident__building_module = RegisterBuiltinMacro(*this, "__building_module");
400 if (!getLangOpts().CurrentModule.empty())
401 Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
402 else
403 Ident__MODULE__ = nullptr;
404 }
405
406 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
407 /// in its expansion, currently expands to that token literally.
isTrivialSingleTokenExpansion(const MacroInfo * MI,const IdentifierInfo * MacroIdent,Preprocessor & PP)408 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
409 const IdentifierInfo *MacroIdent,
410 Preprocessor &PP) {
411 IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
412
413 // If the token isn't an identifier, it's always literally expanded.
414 if (!II) return true;
415
416 // If the information about this identifier is out of date, update it from
417 // the external source.
418 if (II->isOutOfDate())
419 PP.getExternalSource()->updateOutOfDateIdentifier(*II);
420
421 // If the identifier is a macro, and if that macro is enabled, it may be
422 // expanded so it's not a trivial expansion.
423 if (auto *ExpansionMI = PP.getMacroInfo(II))
424 if (ExpansionMI->isEnabled() &&
425 // Fast expanding "#define X X" is ok, because X would be disabled.
426 II != MacroIdent)
427 return false;
428
429 // If this is an object-like macro invocation, it is safe to trivially expand
430 // it.
431 if (MI->isObjectLike()) return true;
432
433 // If this is a function-like macro invocation, it's safe to trivially expand
434 // as long as the identifier is not a macro argument.
435 return !llvm::is_contained(MI->params(), II);
436 }
437
438 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be
439 /// lexed is a '('. If so, consume the token and return true, if not, this
440 /// method should have no observable side-effect on the lexed tokens.
isNextPPTokenLParen()441 bool Preprocessor::isNextPPTokenLParen() {
442 // Do some quick tests for rejection cases.
443 unsigned Val;
444 if (CurLexer)
445 Val = CurLexer->isNextPPTokenLParen();
446 else
447 Val = CurTokenLexer->isNextTokenLParen();
448
449 if (Val == 2) {
450 // We have run off the end. If it's a source file we don't
451 // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the
452 // macro stack.
453 if (CurPPLexer)
454 return false;
455 for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) {
456 if (Entry.TheLexer)
457 Val = Entry.TheLexer->isNextPPTokenLParen();
458 else
459 Val = Entry.TheTokenLexer->isNextTokenLParen();
460
461 if (Val != 2)
462 break;
463
464 // Ran off the end of a source file?
465 if (Entry.ThePPLexer)
466 return false;
467 }
468 }
469
470 // Okay, if we know that the token is a '(', lex it and return. Otherwise we
471 // have found something that isn't a '(' or we found the end of the
472 // translation unit. In either case, return false.
473 return Val == 1;
474 }
475
476 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
477 /// expanded as a macro, handle it and return the next token as 'Identifier'.
HandleMacroExpandedIdentifier(Token & Identifier,const MacroDefinition & M)478 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
479 const MacroDefinition &M) {
480 emitMacroExpansionWarnings(Identifier);
481
482 MacroInfo *MI = M.getMacroInfo();
483
484 // If this is a macro expansion in the "#if !defined(x)" line for the file,
485 // then the macro could expand to different things in other contexts, we need
486 // to disable the optimization in this case.
487 if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
488
489 // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
490 if (MI->isBuiltinMacro()) {
491 if (Callbacks)
492 Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
493 /*Args=*/nullptr);
494 ExpandBuiltinMacro(Identifier);
495 return true;
496 }
497
498 /// Args - If this is a function-like macro expansion, this contains,
499 /// for each macro argument, the list of tokens that were provided to the
500 /// invocation.
501 MacroArgs *Args = nullptr;
502
503 // Remember where the end of the expansion occurred. For an object-like
504 // macro, this is the identifier. For a function-like macro, this is the ')'.
505 SourceLocation ExpansionEnd = Identifier.getLocation();
506
507 // If this is a function-like macro, read the arguments.
508 if (MI->isFunctionLike()) {
509 // Remember that we are now parsing the arguments to a macro invocation.
510 // Preprocessor directives used inside macro arguments are not portable, and
511 // this enables the warning.
512 InMacroArgs = true;
513 ArgMacro = &Identifier;
514
515 Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd);
516
517 // Finished parsing args.
518 InMacroArgs = false;
519 ArgMacro = nullptr;
520
521 // If there was an error parsing the arguments, bail out.
522 if (!Args) return true;
523
524 ++NumFnMacroExpanded;
525 } else {
526 ++NumMacroExpanded;
527 }
528
529 // Notice that this macro has been used.
530 markMacroAsUsed(MI);
531
532 // Remember where the token is expanded.
533 SourceLocation ExpandLoc = Identifier.getLocation();
534 SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
535
536 if (Callbacks) {
537 if (InMacroArgs) {
538 // We can have macro expansion inside a conditional directive while
539 // reading the function macro arguments. To ensure, in that case, that
540 // MacroExpands callbacks still happen in source order, queue this
541 // callback to have it happen after the function macro callback.
542 DelayedMacroExpandsCallbacks.push_back(
543 MacroExpandsInfo(Identifier, M, ExpansionRange));
544 } else {
545 Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
546 if (!DelayedMacroExpandsCallbacks.empty()) {
547 for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) {
548 // FIXME: We lose macro args info with delayed callback.
549 Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
550 /*Args=*/nullptr);
551 }
552 DelayedMacroExpandsCallbacks.clear();
553 }
554 }
555 }
556
557 // If the macro definition is ambiguous, complain.
558 if (M.isAmbiguous()) {
559 Diag(Identifier, diag::warn_pp_ambiguous_macro)
560 << Identifier.getIdentifierInfo();
561 Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
562 << Identifier.getIdentifierInfo();
563 M.forAllDefinitions([&](const MacroInfo *OtherMI) {
564 if (OtherMI != MI)
565 Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
566 << Identifier.getIdentifierInfo();
567 });
568 }
569
570 // If we started lexing a macro, enter the macro expansion body.
571
572 // If this macro expands to no tokens, don't bother to push it onto the
573 // expansion stack, only to take it right back off.
574 if (MI->getNumTokens() == 0) {
575 // No need for arg info.
576 if (Args) Args->destroy(*this);
577
578 // Propagate whitespace info as if we had pushed, then popped,
579 // a macro context.
580 Identifier.setFlag(Token::LeadingEmptyMacro);
581 PropagateLineStartLeadingSpaceInfo(Identifier);
582 ++NumFastMacroExpanded;
583 return false;
584 } else if (MI->getNumTokens() == 1 &&
585 isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
586 *this)) {
587 // Otherwise, if this macro expands into a single trivially-expanded
588 // token: expand it now. This handles common cases like
589 // "#define VAL 42".
590
591 // No need for arg info.
592 if (Args) Args->destroy(*this);
593
594 // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
595 // identifier to the expanded token.
596 bool isAtStartOfLine = Identifier.isAtStartOfLine();
597 bool hasLeadingSpace = Identifier.hasLeadingSpace();
598
599 // Replace the result token.
600 Identifier = MI->getReplacementToken(0);
601
602 // Restore the StartOfLine/LeadingSpace markers.
603 Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
604 Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
605
606 // Update the tokens location to include both its expansion and physical
607 // locations.
608 SourceLocation Loc =
609 SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
610 ExpansionEnd,Identifier.getLength());
611 Identifier.setLocation(Loc);
612
613 // If this is a disabled macro or #define X X, we must mark the result as
614 // unexpandable.
615 if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
616 if (MacroInfo *NewMI = getMacroInfo(NewII))
617 if (!NewMI->isEnabled() || NewMI == MI) {
618 Identifier.setFlag(Token::DisableExpand);
619 // Don't warn for "#define X X" like "#define bool bool" from
620 // stdbool.h.
621 if (NewMI != MI || MI->isFunctionLike())
622 Diag(Identifier, diag::pp_disabled_macro_expansion);
623 }
624 }
625
626 // Since this is not an identifier token, it can't be macro expanded, so
627 // we're done.
628 ++NumFastMacroExpanded;
629 return true;
630 }
631
632 // Start expanding the macro.
633 EnterMacro(Identifier, ExpansionEnd, MI, Args);
634 return false;
635 }
636
637 enum Bracket {
638 Brace,
639 Paren
640 };
641
642 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the
643 /// token vector are properly nested.
CheckMatchedBrackets(const SmallVectorImpl<Token> & Tokens)644 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
645 SmallVector<Bracket, 8> Brackets;
646 for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
647 E = Tokens.end();
648 I != E; ++I) {
649 if (I->is(tok::l_paren)) {
650 Brackets.push_back(Paren);
651 } else if (I->is(tok::r_paren)) {
652 if (Brackets.empty() || Brackets.back() == Brace)
653 return false;
654 Brackets.pop_back();
655 } else if (I->is(tok::l_brace)) {
656 Brackets.push_back(Brace);
657 } else if (I->is(tok::r_brace)) {
658 if (Brackets.empty() || Brackets.back() == Paren)
659 return false;
660 Brackets.pop_back();
661 }
662 }
663 return Brackets.empty();
664 }
665
666 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
667 /// vector of tokens in NewTokens. The new number of arguments will be placed
668 /// in NumArgs and the ranges which need to surrounded in parentheses will be
669 /// in ParenHints.
670 /// Returns false if the token stream cannot be changed. If this is because
671 /// of an initializer list starting a macro argument, the range of those
672 /// initializer lists will be place in InitLists.
GenerateNewArgTokens(Preprocessor & PP,SmallVectorImpl<Token> & OldTokens,SmallVectorImpl<Token> & NewTokens,unsigned & NumArgs,SmallVectorImpl<SourceRange> & ParenHints,SmallVectorImpl<SourceRange> & InitLists)673 static bool GenerateNewArgTokens(Preprocessor &PP,
674 SmallVectorImpl<Token> &OldTokens,
675 SmallVectorImpl<Token> &NewTokens,
676 unsigned &NumArgs,
677 SmallVectorImpl<SourceRange> &ParenHints,
678 SmallVectorImpl<SourceRange> &InitLists) {
679 if (!CheckMatchedBrackets(OldTokens))
680 return false;
681
682 // Once it is known that the brackets are matched, only a simple count of the
683 // braces is needed.
684 unsigned Braces = 0;
685
686 // First token of a new macro argument.
687 SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
688
689 // First closing brace in a new macro argument. Used to generate
690 // SourceRanges for InitLists.
691 SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
692 NumArgs = 0;
693 Token TempToken;
694 // Set to true when a macro separator token is found inside a braced list.
695 // If true, the fixed argument spans multiple old arguments and ParenHints
696 // will be updated.
697 bool FoundSeparatorToken = false;
698 for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
699 E = OldTokens.end();
700 I != E; ++I) {
701 if (I->is(tok::l_brace)) {
702 ++Braces;
703 } else if (I->is(tok::r_brace)) {
704 --Braces;
705 if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
706 ClosingBrace = I;
707 } else if (I->is(tok::eof)) {
708 // EOF token is used to separate macro arguments
709 if (Braces != 0) {
710 // Assume comma separator is actually braced list separator and change
711 // it back to a comma.
712 FoundSeparatorToken = true;
713 I->setKind(tok::comma);
714 I->setLength(1);
715 } else { // Braces == 0
716 // Separator token still separates arguments.
717 ++NumArgs;
718
719 // If the argument starts with a brace, it can't be fixed with
720 // parentheses. A different diagnostic will be given.
721 if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
722 InitLists.push_back(
723 SourceRange(ArgStartIterator->getLocation(),
724 PP.getLocForEndOfToken(ClosingBrace->getLocation())));
725 ClosingBrace = E;
726 }
727
728 // Add left paren
729 if (FoundSeparatorToken) {
730 TempToken.startToken();
731 TempToken.setKind(tok::l_paren);
732 TempToken.setLocation(ArgStartIterator->getLocation());
733 TempToken.setLength(0);
734 NewTokens.push_back(TempToken);
735 }
736
737 // Copy over argument tokens
738 NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
739
740 // Add right paren and store the paren locations in ParenHints
741 if (FoundSeparatorToken) {
742 SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
743 TempToken.startToken();
744 TempToken.setKind(tok::r_paren);
745 TempToken.setLocation(Loc);
746 TempToken.setLength(0);
747 NewTokens.push_back(TempToken);
748 ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
749 Loc));
750 }
751
752 // Copy separator token
753 NewTokens.push_back(*I);
754
755 // Reset values
756 ArgStartIterator = I + 1;
757 FoundSeparatorToken = false;
758 }
759 }
760 }
761
762 return !ParenHints.empty() && InitLists.empty();
763 }
764
765 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
766 /// token is the '(' of the macro, this method is invoked to read all of the
767 /// actual arguments specified for the macro invocation. This returns null on
768 /// error.
ReadMacroCallArgumentList(Token & MacroName,MacroInfo * MI,SourceLocation & MacroEnd)769 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName,
770 MacroInfo *MI,
771 SourceLocation &MacroEnd) {
772 // The number of fixed arguments to parse.
773 unsigned NumFixedArgsLeft = MI->getNumParams();
774 bool isVariadic = MI->isVariadic();
775
776 // Outer loop, while there are more arguments, keep reading them.
777 Token Tok;
778
779 // Read arguments as unexpanded tokens. This avoids issues, e.g., where
780 // an argument value in a macro could expand to ',' or '(' or ')'.
781 LexUnexpandedToken(Tok);
782 assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
783
784 // ArgTokens - Build up a list of tokens that make up each argument. Each
785 // argument is separated by an EOF token. Use a SmallVector so we can avoid
786 // heap allocations in the common case.
787 SmallVector<Token, 64> ArgTokens;
788 bool ContainsCodeCompletionTok = false;
789 bool FoundElidedComma = false;
790
791 SourceLocation TooManyArgsLoc;
792
793 unsigned NumActuals = 0;
794 while (Tok.isNot(tok::r_paren)) {
795 if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod))
796 break;
797
798 assert(Tok.isOneOf(tok::l_paren, tok::comma) &&
799 "only expect argument separators here");
800
801 size_t ArgTokenStart = ArgTokens.size();
802 SourceLocation ArgStartLoc = Tok.getLocation();
803
804 // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note
805 // that we already consumed the first one.
806 unsigned NumParens = 0;
807
808 while (true) {
809 // Read arguments as unexpanded tokens. This avoids issues, e.g., where
810 // an argument value in a macro could expand to ',' or '(' or ')'.
811 LexUnexpandedToken(Tok);
812
813 if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n"
814 if (!ContainsCodeCompletionTok) {
815 Diag(MacroName, diag::err_unterm_macro_invoc);
816 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
817 << MacroName.getIdentifierInfo();
818 // Do not lose the EOF/EOD. Return it to the client.
819 MacroName = Tok;
820 return nullptr;
821 }
822 // Do not lose the EOF/EOD.
823 auto Toks = std::make_unique<Token[]>(1);
824 Toks[0] = Tok;
825 EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false);
826 break;
827 } else if (Tok.is(tok::r_paren)) {
828 // If we found the ) token, the macro arg list is done.
829 if (NumParens-- == 0) {
830 MacroEnd = Tok.getLocation();
831 if (!ArgTokens.empty() &&
832 ArgTokens.back().commaAfterElided()) {
833 FoundElidedComma = true;
834 }
835 break;
836 }
837 } else if (Tok.is(tok::l_paren)) {
838 ++NumParens;
839 } else if (Tok.is(tok::comma)) {
840 // In Microsoft-compatibility mode, single commas from nested macro
841 // expansions should not be considered as argument separators. We test
842 // for this with the IgnoredComma token flag.
843 if (Tok.getFlags() & Token::IgnoredComma) {
844 // However, in MSVC's preprocessor, subsequent expansions do treat
845 // these commas as argument separators. This leads to a common
846 // workaround used in macros that need to work in both MSVC and
847 // compliant preprocessors. Therefore, the IgnoredComma flag can only
848 // apply once to any given token.
849 Tok.clearFlag(Token::IgnoredComma);
850 } else if (NumParens == 0) {
851 // Comma ends this argument if there are more fixed arguments
852 // expected. However, if this is a variadic macro, and this is part of
853 // the variadic part, then the comma is just an argument token.
854 if (!isVariadic)
855 break;
856 if (NumFixedArgsLeft > 1)
857 break;
858 }
859 } else if (Tok.is(tok::comment) && !KeepMacroComments) {
860 // If this is a comment token in the argument list and we're just in
861 // -C mode (not -CC mode), discard the comment.
862 continue;
863 } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
864 // Reading macro arguments can cause macros that we are currently
865 // expanding from to be popped off the expansion stack. Doing so causes
866 // them to be reenabled for expansion. Here we record whether any
867 // identifiers we lex as macro arguments correspond to disabled macros.
868 // If so, we mark the token as noexpand. This is a subtle aspect of
869 // C99 6.10.3.4p2.
870 if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
871 if (!MI->isEnabled())
872 Tok.setFlag(Token::DisableExpand);
873 } else if (Tok.is(tok::code_completion)) {
874 ContainsCodeCompletionTok = true;
875 if (CodeComplete)
876 CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
877 MI, NumActuals);
878 // Don't mark that we reached the code-completion point because the
879 // parser is going to handle the token and there will be another
880 // code-completion callback.
881 }
882
883 ArgTokens.push_back(Tok);
884 }
885
886 // If this was an empty argument list foo(), don't add this as an empty
887 // argument.
888 if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
889 break;
890
891 // If this is not a variadic macro, and too many args were specified, emit
892 // an error.
893 if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
894 if (ArgTokens.size() != ArgTokenStart)
895 TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
896 else
897 TooManyArgsLoc = ArgStartLoc;
898 }
899
900 // Empty arguments are standard in C99 and C++0x, and are supported as an
901 // extension in other modes.
902 if (ArgTokens.size() == ArgTokenStart && !getLangOpts().C99)
903 Diag(Tok, getLangOpts().CPlusPlus11
904 ? diag::warn_cxx98_compat_empty_fnmacro_arg
905 : diag::ext_empty_fnmacro_arg);
906
907 // Add a marker EOF token to the end of the token list for this argument.
908 Token EOFTok;
909 EOFTok.startToken();
910 EOFTok.setKind(tok::eof);
911 EOFTok.setLocation(Tok.getLocation());
912 EOFTok.setLength(0);
913 ArgTokens.push_back(EOFTok);
914 ++NumActuals;
915 if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
916 --NumFixedArgsLeft;
917 }
918
919 // Okay, we either found the r_paren. Check to see if we parsed too few
920 // arguments.
921 unsigned MinArgsExpected = MI->getNumParams();
922
923 // If this is not a variadic macro, and too many args were specified, emit
924 // an error.
925 if (!isVariadic && NumActuals > MinArgsExpected &&
926 !ContainsCodeCompletionTok) {
927 // Emit the diagnostic at the macro name in case there is a missing ).
928 // Emitting it at the , could be far away from the macro name.
929 Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
930 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
931 << MacroName.getIdentifierInfo();
932
933 // Commas from braced initializer lists will be treated as argument
934 // separators inside macros. Attempt to correct for this with parentheses.
935 // TODO: See if this can be generalized to angle brackets for templates
936 // inside macro arguments.
937
938 SmallVector<Token, 4> FixedArgTokens;
939 unsigned FixedNumArgs = 0;
940 SmallVector<SourceRange, 4> ParenHints, InitLists;
941 if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
942 ParenHints, InitLists)) {
943 if (!InitLists.empty()) {
944 DiagnosticBuilder DB =
945 Diag(MacroName,
946 diag::note_init_list_at_beginning_of_macro_argument);
947 for (SourceRange Range : InitLists)
948 DB << Range;
949 }
950 return nullptr;
951 }
952 if (FixedNumArgs != MinArgsExpected)
953 return nullptr;
954
955 DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
956 for (SourceRange ParenLocation : ParenHints) {
957 DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
958 DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
959 }
960 ArgTokens.swap(FixedArgTokens);
961 NumActuals = FixedNumArgs;
962 }
963
964 // See MacroArgs instance var for description of this.
965 bool isVarargsElided = false;
966
967 if (ContainsCodeCompletionTok) {
968 // Recover from not-fully-formed macro invocation during code-completion.
969 Token EOFTok;
970 EOFTok.startToken();
971 EOFTok.setKind(tok::eof);
972 EOFTok.setLocation(Tok.getLocation());
973 EOFTok.setLength(0);
974 for (; NumActuals < MinArgsExpected; ++NumActuals)
975 ArgTokens.push_back(EOFTok);
976 }
977
978 if (NumActuals < MinArgsExpected) {
979 // There are several cases where too few arguments is ok, handle them now.
980 if (NumActuals == 0 && MinArgsExpected == 1) {
981 // #define A(X) or #define A(...) ---> A()
982
983 // If there is exactly one argument, and that argument is missing,
984 // then we have an empty "()" argument empty list. This is fine, even if
985 // the macro expects one argument (the argument is just empty).
986 isVarargsElided = MI->isVariadic();
987 } else if ((FoundElidedComma || MI->isVariadic()) &&
988 (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X)
989 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
990 // Varargs where the named vararg parameter is missing: OK as extension.
991 // #define A(x, ...)
992 // A("blah")
993 //
994 // If the macro contains the comma pasting extension, the diagnostic
995 // is suppressed; we know we'll get another diagnostic later.
996 if (!MI->hasCommaPasting()) {
997 // C++20 [cpp.replace]p15, C23 6.10.5p12
998 //
999 // C++20 and C23 allow this construct, but standards before that
1000 // do not (we allow it as an extension).
1001 unsigned ID;
1002 if (getLangOpts().CPlusPlus20)
1003 ID = diag::warn_cxx17_compat_missing_varargs_arg;
1004 else if (getLangOpts().CPlusPlus)
1005 ID = diag::ext_cxx_missing_varargs_arg;
1006 else if (getLangOpts().C23)
1007 ID = diag::warn_c17_compat_missing_varargs_arg;
1008 else
1009 ID = diag::ext_c_missing_varargs_arg;
1010 Diag(Tok, ID);
1011 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1012 << MacroName.getIdentifierInfo();
1013 }
1014
1015 // Remember this occurred, allowing us to elide the comma when used for
1016 // cases like:
1017 // #define A(x, foo...) blah(a, ## foo)
1018 // #define B(x, ...) blah(a, ## __VA_ARGS__)
1019 // #define C(...) blah(a, ## __VA_ARGS__)
1020 // A(x) B(x) C()
1021 isVarargsElided = true;
1022 } else if (!ContainsCodeCompletionTok) {
1023 // Otherwise, emit the error.
1024 Diag(Tok, diag::err_too_few_args_in_macro_invoc);
1025 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1026 << MacroName.getIdentifierInfo();
1027 return nullptr;
1028 }
1029
1030 // Add a marker EOF token to the end of the token list for this argument.
1031 SourceLocation EndLoc = Tok.getLocation();
1032 Tok.startToken();
1033 Tok.setKind(tok::eof);
1034 Tok.setLocation(EndLoc);
1035 Tok.setLength(0);
1036 ArgTokens.push_back(Tok);
1037
1038 // If we expect two arguments, add both as empty.
1039 if (NumActuals == 0 && MinArgsExpected == 2)
1040 ArgTokens.push_back(Tok);
1041
1042 } else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
1043 !ContainsCodeCompletionTok) {
1044 // Emit the diagnostic at the macro name in case there is a missing ).
1045 // Emitting it at the , could be far away from the macro name.
1046 Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
1047 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1048 << MacroName.getIdentifierInfo();
1049 return nullptr;
1050 }
1051
1052 return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
1053 }
1054
1055 /// Keeps macro expanded tokens for TokenLexers.
1056 //
1057 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
1058 /// going to lex in the cache and when it finishes the tokens are removed
1059 /// from the end of the cache.
cacheMacroExpandedTokens(TokenLexer * tokLexer,ArrayRef<Token> tokens)1060 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
1061 ArrayRef<Token> tokens) {
1062 assert(tokLexer);
1063 if (tokens.empty())
1064 return nullptr;
1065
1066 size_t newIndex = MacroExpandedTokens.size();
1067 bool cacheNeedsToGrow = tokens.size() >
1068 MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
1069 MacroExpandedTokens.append(tokens.begin(), tokens.end());
1070
1071 if (cacheNeedsToGrow) {
1072 // Go through all the TokenLexers whose 'Tokens' pointer points in the
1073 // buffer and update the pointers to the (potential) new buffer array.
1074 for (const auto &Lexer : MacroExpandingLexersStack) {
1075 TokenLexer *prevLexer;
1076 size_t tokIndex;
1077 std::tie(prevLexer, tokIndex) = Lexer;
1078 prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
1079 }
1080 }
1081
1082 MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
1083 return MacroExpandedTokens.data() + newIndex;
1084 }
1085
removeCachedMacroExpandedTokensOfLastLexer()1086 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
1087 assert(!MacroExpandingLexersStack.empty());
1088 size_t tokIndex = MacroExpandingLexersStack.back().second;
1089 assert(tokIndex < MacroExpandedTokens.size());
1090 // Pop the cached macro expanded tokens from the end.
1091 MacroExpandedTokens.resize(tokIndex);
1092 MacroExpandingLexersStack.pop_back();
1093 }
1094
1095 /// ComputeDATE_TIME - Compute the current time, enter it into the specified
1096 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of
1097 /// the identifier tokens inserted.
ComputeDATE_TIME(SourceLocation & DATELoc,SourceLocation & TIMELoc,Preprocessor & PP)1098 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
1099 Preprocessor &PP) {
1100 time_t TT;
1101 std::tm *TM;
1102 if (PP.getPreprocessorOpts().SourceDateEpoch) {
1103 TT = *PP.getPreprocessorOpts().SourceDateEpoch;
1104 TM = std::gmtime(&TT);
1105 } else {
1106 TT = std::time(nullptr);
1107 TM = std::localtime(&TT);
1108 }
1109
1110 static const char * const Months[] = {
1111 "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
1112 };
1113
1114 {
1115 SmallString<32> TmpBuffer;
1116 llvm::raw_svector_ostream TmpStream(TmpBuffer);
1117 if (TM)
1118 TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
1119 TM->tm_mday, TM->tm_year + 1900);
1120 else
1121 TmpStream << "??? ?? ????";
1122 Token TmpTok;
1123 TmpTok.startToken();
1124 PP.CreateString(TmpStream.str(), TmpTok);
1125 DATELoc = TmpTok.getLocation();
1126 }
1127
1128 {
1129 SmallString<32> TmpBuffer;
1130 llvm::raw_svector_ostream TmpStream(TmpBuffer);
1131 if (TM)
1132 TmpStream << llvm::format("\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min,
1133 TM->tm_sec);
1134 else
1135 TmpStream << "??:??:??";
1136 Token TmpTok;
1137 TmpTok.startToken();
1138 PP.CreateString(TmpStream.str(), TmpTok);
1139 TIMELoc = TmpTok.getLocation();
1140 }
1141 }
1142
1143 /// HasFeature - Return true if we recognize and implement the feature
1144 /// specified by the identifier as a standard language feature.
HasFeature(const Preprocessor & PP,StringRef Feature)1145 static bool HasFeature(const Preprocessor &PP, StringRef Feature) {
1146 const LangOptions &LangOpts = PP.getLangOpts();
1147
1148 // Normalize the feature name, __foo__ becomes foo.
1149 if (Feature.starts_with("__") && Feature.ends_with("__") &&
1150 Feature.size() >= 4)
1151 Feature = Feature.substr(2, Feature.size() - 4);
1152
1153 #define FEATURE(Name, Predicate) .Case(#Name, Predicate)
1154 return llvm::StringSwitch<bool>(Feature)
1155 #include "clang/Basic/Features.def"
1156 .Default(false);
1157 #undef FEATURE
1158 }
1159
1160 /// HasExtension - Return true if we recognize and implement the feature
1161 /// specified by the identifier, either as an extension or a standard language
1162 /// feature.
HasExtension(const Preprocessor & PP,StringRef Extension)1163 static bool HasExtension(const Preprocessor &PP, StringRef Extension) {
1164 if (HasFeature(PP, Extension))
1165 return true;
1166
1167 // If the use of an extension results in an error diagnostic, extensions are
1168 // effectively unavailable, so just return false here.
1169 if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
1170 diag::Severity::Error)
1171 return false;
1172
1173 const LangOptions &LangOpts = PP.getLangOpts();
1174
1175 // Normalize the extension name, __foo__ becomes foo.
1176 if (Extension.starts_with("__") && Extension.ends_with("__") &&
1177 Extension.size() >= 4)
1178 Extension = Extension.substr(2, Extension.size() - 4);
1179
1180 // Because we inherit the feature list from HasFeature, this string switch
1181 // must be less restrictive than HasFeature's.
1182 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate)
1183 return llvm::StringSwitch<bool>(Extension)
1184 #include "clang/Basic/Features.def"
1185 .Default(false);
1186 #undef EXTENSION
1187 }
1188
1189 /// EvaluateHasIncludeCommon - Process a '__has_include("path")'
1190 /// or '__has_include_next("path")' expression.
1191 /// Returns true if successful.
EvaluateHasIncludeCommon(Token & Tok,IdentifierInfo * II,Preprocessor & PP,ConstSearchDirIterator LookupFrom,const FileEntry * LookupFromFile)1192 static bool EvaluateHasIncludeCommon(Token &Tok, IdentifierInfo *II,
1193 Preprocessor &PP,
1194 ConstSearchDirIterator LookupFrom,
1195 const FileEntry *LookupFromFile) {
1196 // Save the location of the current token. If a '(' is later found, use
1197 // that location. If not, use the end of this location instead.
1198 SourceLocation LParenLoc = Tok.getLocation();
1199
1200 // These expressions are only allowed within a preprocessor directive.
1201 if (!PP.isParsingIfOrElifDirective()) {
1202 PP.Diag(LParenLoc, diag::err_pp_directive_required) << II;
1203 // Return a valid identifier token.
1204 assert(Tok.is(tok::identifier));
1205 Tok.setIdentifierInfo(II);
1206 return false;
1207 }
1208
1209 // Get '('. If we don't have a '(', try to form a header-name token.
1210 do {
1211 if (PP.LexHeaderName(Tok))
1212 return false;
1213 } while (Tok.getKind() == tok::comment);
1214
1215 // Ensure we have a '('.
1216 if (Tok.isNot(tok::l_paren)) {
1217 // No '(', use end of last token.
1218 LParenLoc = PP.getLocForEndOfToken(LParenLoc);
1219 PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
1220 // If the next token looks like a filename or the start of one,
1221 // assume it is and process it as such.
1222 if (Tok.isNot(tok::header_name))
1223 return false;
1224 } else {
1225 // Save '(' location for possible missing ')' message.
1226 LParenLoc = Tok.getLocation();
1227 if (PP.LexHeaderName(Tok))
1228 return false;
1229 }
1230
1231 if (Tok.isNot(tok::header_name)) {
1232 PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
1233 return false;
1234 }
1235
1236 // Reserve a buffer to get the spelling.
1237 SmallString<128> FilenameBuffer;
1238 bool Invalid = false;
1239 StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
1240 if (Invalid)
1241 return false;
1242
1243 SourceLocation FilenameLoc = Tok.getLocation();
1244
1245 // Get ')'.
1246 PP.LexNonComment(Tok);
1247
1248 // Ensure we have a trailing ).
1249 if (Tok.isNot(tok::r_paren)) {
1250 PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
1251 << II << tok::r_paren;
1252 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1253 return false;
1254 }
1255
1256 bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
1257 // If GetIncludeFilenameSpelling set the start ptr to null, there was an
1258 // error.
1259 if (Filename.empty())
1260 return false;
1261
1262 // Passing this to LookupFile forces header search to check whether the found
1263 // file belongs to a module. Skipping that check could incorrectly mark
1264 // modular header as textual, causing issues down the line.
1265 ModuleMap::KnownHeader KH;
1266
1267 // Search include directories.
1268 OptionalFileEntryRef File =
1269 PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
1270 nullptr, nullptr, nullptr, &KH, nullptr, nullptr);
1271
1272 if (PPCallbacks *Callbacks = PP.getPPCallbacks()) {
1273 SrcMgr::CharacteristicKind FileType = SrcMgr::C_User;
1274 if (File)
1275 FileType = PP.getHeaderSearchInfo().getFileDirFlavor(*File);
1276 Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType);
1277 }
1278
1279 // Get the result value. A result of true means the file exists.
1280 return File.has_value();
1281 }
1282
1283 /// EvaluateHasEmbed - Process a '__has_embed("foo" params...)' expression.
1284 /// Returns a filled optional with the value if successful; otherwise, empty.
EvaluateHasEmbed(Token & Tok,IdentifierInfo * II)1285 EmbedResult Preprocessor::EvaluateHasEmbed(Token &Tok, IdentifierInfo *II) {
1286 // These expressions are only allowed within a preprocessor directive.
1287 if (!this->isParsingIfOrElifDirective()) {
1288 Diag(Tok, diag::err_pp_directive_required) << II;
1289 // Return a valid identifier token.
1290 assert(Tok.is(tok::identifier));
1291 Tok.setIdentifierInfo(II);
1292 return EmbedResult::Invalid;
1293 }
1294
1295 // Ensure we have a '('.
1296 LexUnexpandedToken(Tok);
1297 if (Tok.isNot(tok::l_paren)) {
1298 Diag(Tok, diag::err_pp_expected_after) << II << tok::l_paren;
1299 // If the next token looks like a filename or the start of one,
1300 // assume it is and process it as such.
1301 return EmbedResult::Invalid;
1302 }
1303
1304 // Save '(' location for possible missing ')' message and then lex the header
1305 // name token for the embed resource.
1306 SourceLocation LParenLoc = Tok.getLocation();
1307 if (this->LexHeaderName(Tok))
1308 return EmbedResult::Invalid;
1309
1310 if (Tok.isNot(tok::header_name)) {
1311 Diag(Tok.getLocation(), diag::err_pp_expects_filename);
1312 return EmbedResult::Invalid;
1313 }
1314
1315 SourceLocation FilenameLoc = Tok.getLocation();
1316 Token FilenameTok = Tok;
1317
1318 std::optional<LexEmbedParametersResult> Params =
1319 this->LexEmbedParameters(Tok, /*ForHasEmbed=*/true);
1320 assert((Params || Tok.is(tok::eod)) &&
1321 "expected success or to be at the end of the directive");
1322
1323 if (!Params)
1324 return EmbedResult::Invalid;
1325
1326 if (Params->UnrecognizedParams > 0)
1327 return EmbedResult::NotFound;
1328
1329 if (!Tok.is(tok::r_paren)) {
1330 Diag(this->getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
1331 << II << tok::r_paren;
1332 Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1333 if (Tok.isNot(tok::eod))
1334 DiscardUntilEndOfDirective();
1335 return EmbedResult::Invalid;
1336 }
1337
1338 SmallString<128> FilenameBuffer;
1339 StringRef Filename = this->getSpelling(FilenameTok, FilenameBuffer);
1340 bool isAngled =
1341 this->GetIncludeFilenameSpelling(FilenameTok.getLocation(), Filename);
1342 // If GetIncludeFilenameSpelling set the start ptr to null, there was an
1343 // error.
1344 assert(!Filename.empty());
1345 const FileEntry *LookupFromFile =
1346 this->getCurrentFileLexer() ? *this->getCurrentFileLexer()->getFileEntry()
1347 : static_cast<FileEntry *>(nullptr);
1348 OptionalFileEntryRef MaybeFileEntry =
1349 this->LookupEmbedFile(Filename, isAngled, false, LookupFromFile);
1350 if (Callbacks) {
1351 Callbacks->HasEmbed(LParenLoc, Filename, isAngled, MaybeFileEntry);
1352 }
1353 if (!MaybeFileEntry)
1354 return EmbedResult::NotFound;
1355
1356 size_t FileSize = MaybeFileEntry->getSize();
1357 // First, "offset" into the file (this reduces the amount of data we can read
1358 // from the file).
1359 if (Params->MaybeOffsetParam) {
1360 if (Params->MaybeOffsetParam->Offset > FileSize)
1361 FileSize = 0;
1362 else
1363 FileSize -= Params->MaybeOffsetParam->Offset;
1364 }
1365
1366 // Second, limit the data from the file (this also reduces the amount of data
1367 // we can read from the file).
1368 if (Params->MaybeLimitParam) {
1369 if (Params->MaybeLimitParam->Limit > FileSize)
1370 FileSize = 0;
1371 else
1372 FileSize = Params->MaybeLimitParam->Limit;
1373 }
1374
1375 // If we have no data left to read, the file is empty, otherwise we have the
1376 // expected resource.
1377 if (FileSize == 0)
1378 return EmbedResult::Empty;
1379 return EmbedResult::Found;
1380 }
1381
EvaluateHasInclude(Token & Tok,IdentifierInfo * II)1382 bool Preprocessor::EvaluateHasInclude(Token &Tok, IdentifierInfo *II) {
1383 return EvaluateHasIncludeCommon(Tok, II, *this, nullptr, nullptr);
1384 }
1385
EvaluateHasIncludeNext(Token & Tok,IdentifierInfo * II)1386 bool Preprocessor::EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II) {
1387 ConstSearchDirIterator Lookup = nullptr;
1388 const FileEntry *LookupFromFile;
1389 std::tie(Lookup, LookupFromFile) = getIncludeNextStart(Tok);
1390
1391 return EvaluateHasIncludeCommon(Tok, II, *this, Lookup, LookupFromFile);
1392 }
1393
1394 /// Process single-argument builtin feature-like macros that return
1395 /// integer values.
EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream & OS,Token & Tok,IdentifierInfo * II,Preprocessor & PP,bool ExpandArgs,llvm::function_ref<int (Token & Tok,bool & HasLexedNextTok)> Op)1396 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS,
1397 Token &Tok, IdentifierInfo *II,
1398 Preprocessor &PP, bool ExpandArgs,
1399 llvm::function_ref<
1400 int(Token &Tok,
1401 bool &HasLexedNextTok)> Op) {
1402 // Parse the initial '('.
1403 PP.LexUnexpandedToken(Tok);
1404 if (Tok.isNot(tok::l_paren)) {
1405 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
1406 << tok::l_paren;
1407
1408 // Provide a dummy '0' value on output stream to elide further errors.
1409 if (!Tok.isOneOf(tok::eof, tok::eod)) {
1410 OS << 0;
1411 Tok.setKind(tok::numeric_constant);
1412 }
1413 return;
1414 }
1415
1416 unsigned ParenDepth = 1;
1417 SourceLocation LParenLoc = Tok.getLocation();
1418 std::optional<int> Result;
1419
1420 Token ResultTok;
1421 bool SuppressDiagnostic = false;
1422 while (true) {
1423 // Parse next token.
1424 if (ExpandArgs)
1425 PP.Lex(Tok);
1426 else
1427 PP.LexUnexpandedToken(Tok);
1428
1429 already_lexed:
1430 switch (Tok.getKind()) {
1431 case tok::eof:
1432 case tok::eod:
1433 // Don't provide even a dummy value if the eod or eof marker is
1434 // reached. Simply provide a diagnostic.
1435 PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc);
1436 return;
1437
1438 case tok::comma:
1439 if (!SuppressDiagnostic) {
1440 PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc);
1441 SuppressDiagnostic = true;
1442 }
1443 continue;
1444
1445 case tok::l_paren:
1446 ++ParenDepth;
1447 if (Result)
1448 break;
1449 if (!SuppressDiagnostic) {
1450 PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II;
1451 SuppressDiagnostic = true;
1452 }
1453 continue;
1454
1455 case tok::r_paren:
1456 if (--ParenDepth > 0)
1457 continue;
1458
1459 // The last ')' has been reached; return the value if one found or
1460 // a diagnostic and a dummy value.
1461 if (Result) {
1462 OS << *Result;
1463 // For strict conformance to __has_cpp_attribute rules, use 'L'
1464 // suffix for dated literals.
1465 if (*Result > 1)
1466 OS << 'L';
1467 } else {
1468 OS << 0;
1469 if (!SuppressDiagnostic)
1470 PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc);
1471 }
1472 Tok.setKind(tok::numeric_constant);
1473 return;
1474
1475 default: {
1476 // Parse the macro argument, if one not found so far.
1477 if (Result)
1478 break;
1479
1480 bool HasLexedNextToken = false;
1481 Result = Op(Tok, HasLexedNextToken);
1482 ResultTok = Tok;
1483 if (HasLexedNextToken)
1484 goto already_lexed;
1485 continue;
1486 }
1487 }
1488
1489 // Diagnose missing ')'.
1490 if (!SuppressDiagnostic) {
1491 if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) {
1492 if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo())
1493 Diag << LastII;
1494 else
1495 Diag << ResultTok.getKind();
1496 Diag << tok::r_paren << ResultTok.getLocation();
1497 }
1498 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1499 SuppressDiagnostic = true;
1500 }
1501 }
1502 }
1503
1504 /// Helper function to return the IdentifierInfo structure of a Token
1505 /// or generate a diagnostic if none available.
ExpectFeatureIdentifierInfo(Token & Tok,Preprocessor & PP,signed DiagID)1506 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok,
1507 Preprocessor &PP,
1508 signed DiagID) {
1509 IdentifierInfo *II;
1510 if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo()))
1511 return II;
1512
1513 PP.Diag(Tok.getLocation(), DiagID);
1514 return nullptr;
1515 }
1516
1517 /// Implements the __is_target_arch builtin macro.
isTargetArch(const TargetInfo & TI,const IdentifierInfo * II)1518 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) {
1519 std::string ArchName = II->getName().lower() + "--";
1520 llvm::Triple Arch(ArchName);
1521 const llvm::Triple &TT = TI.getTriple();
1522 if (TT.isThumb()) {
1523 // arm matches thumb or thumbv7. armv7 matches thumbv7.
1524 if ((Arch.getSubArch() == llvm::Triple::NoSubArch ||
1525 Arch.getSubArch() == TT.getSubArch()) &&
1526 ((TT.getArch() == llvm::Triple::thumb &&
1527 Arch.getArch() == llvm::Triple::arm) ||
1528 (TT.getArch() == llvm::Triple::thumbeb &&
1529 Arch.getArch() == llvm::Triple::armeb)))
1530 return true;
1531 }
1532 // Check the parsed arch when it has no sub arch to allow Clang to
1533 // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7.
1534 return (Arch.getSubArch() == llvm::Triple::NoSubArch ||
1535 Arch.getSubArch() == TT.getSubArch()) &&
1536 Arch.getArch() == TT.getArch();
1537 }
1538
1539 /// Implements the __is_target_vendor builtin macro.
isTargetVendor(const TargetInfo & TI,const IdentifierInfo * II)1540 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) {
1541 StringRef VendorName = TI.getTriple().getVendorName();
1542 if (VendorName.empty())
1543 VendorName = "unknown";
1544 return VendorName.equals_insensitive(II->getName());
1545 }
1546
1547 /// Implements the __is_target_os builtin macro.
isTargetOS(const TargetInfo & TI,const IdentifierInfo * II)1548 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) {
1549 std::string OSName =
1550 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str();
1551 llvm::Triple OS(OSName);
1552 if (OS.getOS() == llvm::Triple::Darwin) {
1553 // Darwin matches macos, ios, etc.
1554 return TI.getTriple().isOSDarwin();
1555 }
1556 return TI.getTriple().getOS() == OS.getOS();
1557 }
1558
1559 /// Implements the __is_target_environment builtin macro.
isTargetEnvironment(const TargetInfo & TI,const IdentifierInfo * II)1560 static bool isTargetEnvironment(const TargetInfo &TI,
1561 const IdentifierInfo *II) {
1562 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str();
1563 llvm::Triple Env(EnvName);
1564 // The unknown environment is matched only if
1565 // '__is_target_environment(unknown)' is used.
1566 if (Env.getEnvironment() == llvm::Triple::UnknownEnvironment &&
1567 EnvName != "---unknown")
1568 return false;
1569 return TI.getTriple().getEnvironment() == Env.getEnvironment();
1570 }
1571
1572 /// Implements the __is_target_variant_os builtin macro.
isTargetVariantOS(const TargetInfo & TI,const IdentifierInfo * II)1573 static bool isTargetVariantOS(const TargetInfo &TI, const IdentifierInfo *II) {
1574 if (TI.getTriple().isOSDarwin()) {
1575 const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple();
1576 if (!VariantTriple)
1577 return false;
1578
1579 std::string OSName =
1580 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str();
1581 llvm::Triple OS(OSName);
1582 if (OS.getOS() == llvm::Triple::Darwin) {
1583 // Darwin matches macos, ios, etc.
1584 return VariantTriple->isOSDarwin();
1585 }
1586 return VariantTriple->getOS() == OS.getOS();
1587 }
1588 return false;
1589 }
1590
1591 /// Implements the __is_target_variant_environment builtin macro.
isTargetVariantEnvironment(const TargetInfo & TI,const IdentifierInfo * II)1592 static bool isTargetVariantEnvironment(const TargetInfo &TI,
1593 const IdentifierInfo *II) {
1594 if (TI.getTriple().isOSDarwin()) {
1595 const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple();
1596 if (!VariantTriple)
1597 return false;
1598 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str();
1599 llvm::Triple Env(EnvName);
1600 return VariantTriple->getEnvironment() == Env.getEnvironment();
1601 }
1602 return false;
1603 }
1604
IsBuiltinTrait(Token & Tok)1605 static bool IsBuiltinTrait(Token &Tok) {
1606
1607 #define TYPE_TRAIT_1(Spelling, Name, Key) \
1608 case tok::kw_##Spelling: \
1609 return true;
1610 #define TYPE_TRAIT_2(Spelling, Name, Key) \
1611 case tok::kw_##Spelling: \
1612 return true;
1613 #define TYPE_TRAIT_N(Spelling, Name, Key) \
1614 case tok::kw_##Spelling: \
1615 return true;
1616 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key) \
1617 case tok::kw_##Spelling: \
1618 return true;
1619 #define EXPRESSION_TRAIT(Spelling, Name, Key) \
1620 case tok::kw_##Spelling: \
1621 return true;
1622 #define TRANSFORM_TYPE_TRAIT_DEF(K, Spelling) \
1623 case tok::kw___##Spelling: \
1624 return true;
1625
1626 switch (Tok.getKind()) {
1627 default:
1628 return false;
1629 #include "clang/Basic/TokenKinds.def"
1630 }
1631 }
1632
1633 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
1634 /// as a builtin macro, handle it and return the next token as 'Tok'.
ExpandBuiltinMacro(Token & Tok)1635 void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
1636 // Figure out which token this is.
1637 IdentifierInfo *II = Tok.getIdentifierInfo();
1638 assert(II && "Can't be a macro without id info!");
1639
1640 // If this is an _Pragma or Microsoft __pragma directive, expand it,
1641 // invoke the pragma handler, then lex the token after it.
1642 if (II == Ident_Pragma)
1643 return Handle_Pragma(Tok);
1644 else if (II == Ident__pragma) // in non-MS mode this is null
1645 return HandleMicrosoft__pragma(Tok);
1646
1647 ++NumBuiltinMacroExpanded;
1648
1649 SmallString<128> TmpBuffer;
1650 llvm::raw_svector_ostream OS(TmpBuffer);
1651
1652 // Set up the return result.
1653 Tok.setIdentifierInfo(nullptr);
1654 Tok.clearFlag(Token::NeedsCleaning);
1655 bool IsAtStartOfLine = Tok.isAtStartOfLine();
1656 bool HasLeadingSpace = Tok.hasLeadingSpace();
1657
1658 if (II == Ident__LINE__) {
1659 // C99 6.10.8: "__LINE__: The presumed line number (within the current
1660 // source file) of the current source line (an integer constant)". This can
1661 // be affected by #line.
1662 SourceLocation Loc = Tok.getLocation();
1663
1664 // Advance to the location of the first _, this might not be the first byte
1665 // of the token if it starts with an escaped newline.
1666 Loc = AdvanceToTokenCharacter(Loc, 0);
1667
1668 // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
1669 // a macro expansion. This doesn't matter for object-like macros, but
1670 // can matter for a function-like macro that expands to contain __LINE__.
1671 // Skip down through expansion points until we find a file loc for the
1672 // end of the expansion history.
1673 Loc = SourceMgr.getExpansionRange(Loc).getEnd();
1674 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
1675
1676 // __LINE__ expands to a simple numeric value.
1677 OS << (PLoc.isValid()? PLoc.getLine() : 1);
1678 Tok.setKind(tok::numeric_constant);
1679 } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ ||
1680 II == Ident__FILE_NAME__) {
1681 // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
1682 // character string literal)". This can be affected by #line.
1683 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1684
1685 // __BASE_FILE__ is a GNU extension that returns the top of the presumed
1686 // #include stack instead of the current file.
1687 if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
1688 SourceLocation NextLoc = PLoc.getIncludeLoc();
1689 while (NextLoc.isValid()) {
1690 PLoc = SourceMgr.getPresumedLoc(NextLoc);
1691 if (PLoc.isInvalid())
1692 break;
1693
1694 NextLoc = PLoc.getIncludeLoc();
1695 }
1696 }
1697
1698 // Escape this filename. Turn '\' -> '\\' '"' -> '\"'
1699 SmallString<256> FN;
1700 if (PLoc.isValid()) {
1701 // __FILE_NAME__ is a Clang-specific extension that expands to the
1702 // the last part of __FILE__.
1703 if (II == Ident__FILE_NAME__) {
1704 processPathToFileName(FN, PLoc, getLangOpts(), getTargetInfo());
1705 } else {
1706 FN += PLoc.getFilename();
1707 processPathForFileMacro(FN, getLangOpts(), getTargetInfo());
1708 }
1709 Lexer::Stringify(FN);
1710 OS << '"' << FN << '"';
1711 }
1712 Tok.setKind(tok::string_literal);
1713 } else if (II == Ident__DATE__) {
1714 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1715 if (!DATELoc.isValid())
1716 ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1717 Tok.setKind(tok::string_literal);
1718 Tok.setLength(strlen("\"Mmm dd yyyy\""));
1719 Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
1720 Tok.getLocation(),
1721 Tok.getLength()));
1722 return;
1723 } else if (II == Ident__TIME__) {
1724 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1725 if (!TIMELoc.isValid())
1726 ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1727 Tok.setKind(tok::string_literal);
1728 Tok.setLength(strlen("\"hh:mm:ss\""));
1729 Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
1730 Tok.getLocation(),
1731 Tok.getLength()));
1732 return;
1733 } else if (II == Ident__INCLUDE_LEVEL__) {
1734 // Compute the presumed include depth of this token. This can be affected
1735 // by GNU line markers.
1736 unsigned Depth = 0;
1737
1738 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1739 if (PLoc.isValid()) {
1740 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1741 for (; PLoc.isValid(); ++Depth)
1742 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1743 }
1744
1745 // __INCLUDE_LEVEL__ expands to a simple numeric value.
1746 OS << Depth;
1747 Tok.setKind(tok::numeric_constant);
1748 } else if (II == Ident__TIMESTAMP__) {
1749 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1750 // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be
1751 // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
1752 const char *Result;
1753 if (getPreprocessorOpts().SourceDateEpoch) {
1754 time_t TT = *getPreprocessorOpts().SourceDateEpoch;
1755 std::tm *TM = std::gmtime(&TT);
1756 Result = asctime(TM);
1757 } else {
1758 // Get the file that we are lexing out of. If we're currently lexing from
1759 // a macro, dig into the include stack.
1760 const FileEntry *CurFile = nullptr;
1761 if (PreprocessorLexer *TheLexer = getCurrentFileLexer())
1762 CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
1763 if (CurFile) {
1764 time_t TT = CurFile->getModificationTime();
1765 struct tm *TM = localtime(&TT);
1766 Result = asctime(TM);
1767 } else {
1768 Result = "??? ??? ?? ??:??:?? ????\n";
1769 }
1770 }
1771 // Surround the string with " and strip the trailing newline.
1772 OS << '"' << StringRef(Result).drop_back() << '"';
1773 Tok.setKind(tok::string_literal);
1774 } else if (II == Ident__FLT_EVAL_METHOD__) {
1775 // __FLT_EVAL_METHOD__ is set to the default value.
1776 OS << getTUFPEvalMethod();
1777 // __FLT_EVAL_METHOD__ expands to a simple numeric value.
1778 Tok.setKind(tok::numeric_constant);
1779 if (getLastFPEvalPragmaLocation().isValid()) {
1780 // The program is ill-formed. The value of __FLT_EVAL_METHOD__ is altered
1781 // by the pragma.
1782 Diag(Tok, diag::err_illegal_use_of_flt_eval_macro);
1783 Diag(getLastFPEvalPragmaLocation(), diag::note_pragma_entered_here);
1784 }
1785 } else if (II == Ident__COUNTER__) {
1786 // __COUNTER__ expands to a simple numeric value.
1787 OS << CounterValue++;
1788 Tok.setKind(tok::numeric_constant);
1789 } else if (II == Ident__has_feature) {
1790 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1791 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1792 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1793 diag::err_feature_check_malformed);
1794 return II && HasFeature(*this, II->getName());
1795 });
1796 } else if (II == Ident__has_extension) {
1797 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1798 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1799 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1800 diag::err_feature_check_malformed);
1801 return II && HasExtension(*this, II->getName());
1802 });
1803 } else if (II == Ident__has_builtin) {
1804 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1805 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1806 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1807 diag::err_feature_check_malformed);
1808 if (!II)
1809 return false;
1810 else if (II->getBuiltinID() != 0) {
1811 switch (II->getBuiltinID()) {
1812 case Builtin::BI__builtin_cpu_is:
1813 return getTargetInfo().supportsCpuIs();
1814 case Builtin::BI__builtin_cpu_init:
1815 return getTargetInfo().supportsCpuInit();
1816 case Builtin::BI__builtin_cpu_supports:
1817 return getTargetInfo().supportsCpuSupports();
1818 case Builtin::BI__builtin_operator_new:
1819 case Builtin::BI__builtin_operator_delete:
1820 // denotes date of behavior change to support calling arbitrary
1821 // usual allocation and deallocation functions. Required by libc++
1822 return 201802;
1823 default:
1824 return Builtin::evaluateRequiredTargetFeatures(
1825 getBuiltinInfo().getRequiredFeatures(II->getBuiltinID()),
1826 getTargetInfo().getTargetOpts().FeatureMap);
1827 }
1828 return true;
1829 } else if (IsBuiltinTrait(Tok)) {
1830 return true;
1831 } else if (II->getTokenID() != tok::identifier &&
1832 II->getName().starts_with("__builtin_")) {
1833 return true;
1834 } else {
1835 return llvm::StringSwitch<bool>(II->getName())
1836 // Report builtin templates as being builtins.
1837 .Case("__make_integer_seq", getLangOpts().CPlusPlus)
1838 .Case("__type_pack_element", getLangOpts().CPlusPlus)
1839 // Likewise for some builtin preprocessor macros.
1840 // FIXME: This is inconsistent; we usually suggest detecting
1841 // builtin macros via #ifdef. Don't add more cases here.
1842 .Case("__is_target_arch", true)
1843 .Case("__is_target_vendor", true)
1844 .Case("__is_target_os", true)
1845 .Case("__is_target_environment", true)
1846 .Case("__is_target_variant_os", true)
1847 .Case("__is_target_variant_environment", true)
1848 .Default(false);
1849 }
1850 });
1851 } else if (II == Ident__has_constexpr_builtin) {
1852 EvaluateFeatureLikeBuiltinMacro(
1853 OS, Tok, II, *this, false,
1854 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1855 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1856 Tok, *this, diag::err_feature_check_malformed);
1857 if (!II)
1858 return false;
1859 unsigned BuiltinOp = II->getBuiltinID();
1860 return BuiltinOp != 0 &&
1861 this->getBuiltinInfo().isConstantEvaluated(BuiltinOp);
1862 });
1863 } else if (II == Ident__is_identifier) {
1864 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1865 [](Token &Tok, bool &HasLexedNextToken) -> int {
1866 return Tok.is(tok::identifier);
1867 });
1868 } else if (II == Ident__has_attribute) {
1869 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1870 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1871 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1872 diag::err_feature_check_malformed);
1873 return II ? hasAttribute(AttributeCommonInfo::Syntax::AS_GNU, nullptr,
1874 II, getTargetInfo(), getLangOpts())
1875 : 0;
1876 });
1877 } else if (II == Ident__has_declspec) {
1878 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1879 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1880 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1881 diag::err_feature_check_malformed);
1882 if (II) {
1883 const LangOptions &LangOpts = getLangOpts();
1884 return LangOpts.DeclSpecKeyword &&
1885 hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr,
1886 II, getTargetInfo(), LangOpts);
1887 }
1888
1889 return false;
1890 });
1891 } else if (II == Ident__has_cpp_attribute ||
1892 II == Ident__has_c_attribute) {
1893 bool IsCXX = II == Ident__has_cpp_attribute;
1894 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1895 [&](Token &Tok, bool &HasLexedNextToken) -> int {
1896 IdentifierInfo *ScopeII = nullptr;
1897 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1898 Tok, *this, diag::err_feature_check_malformed);
1899 if (!II)
1900 return false;
1901
1902 // It is possible to receive a scope token. Read the "::", if it is
1903 // available, and the subsequent identifier.
1904 LexUnexpandedToken(Tok);
1905 if (Tok.isNot(tok::coloncolon))
1906 HasLexedNextToken = true;
1907 else {
1908 ScopeII = II;
1909 // Lex an expanded token for the attribute name.
1910 Lex(Tok);
1911 II = ExpectFeatureIdentifierInfo(Tok, *this,
1912 diag::err_feature_check_malformed);
1913 }
1914
1915 AttributeCommonInfo::Syntax Syntax =
1916 IsCXX ? AttributeCommonInfo::Syntax::AS_CXX11
1917 : AttributeCommonInfo::Syntax::AS_C23;
1918 return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(),
1919 getLangOpts())
1920 : 0;
1921 });
1922 } else if (II == Ident__has_include ||
1923 II == Ident__has_include_next) {
1924 // The argument to these two builtins should be a parenthesized
1925 // file name string literal using angle brackets (<>) or
1926 // double-quotes ("").
1927 bool Value;
1928 if (II == Ident__has_include)
1929 Value = EvaluateHasInclude(Tok, II);
1930 else
1931 Value = EvaluateHasIncludeNext(Tok, II);
1932
1933 if (Tok.isNot(tok::r_paren))
1934 return;
1935 OS << (int)Value;
1936 Tok.setKind(tok::numeric_constant);
1937 } else if (II == Ident__has_embed) {
1938 // The argument to these two builtins should be a parenthesized
1939 // file name string literal using angle brackets (<>) or
1940 // double-quotes (""), optionally followed by a series of
1941 // arguments similar to form like attributes.
1942 EmbedResult Value = EvaluateHasEmbed(Tok, II);
1943 if (Value == EmbedResult::Invalid)
1944 return;
1945
1946 Tok.setKind(tok::numeric_constant);
1947 OS << static_cast<int>(Value);
1948 } else if (II == Ident__has_warning) {
1949 // The argument should be a parenthesized string literal.
1950 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1951 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1952 std::string WarningName;
1953 SourceLocation StrStartLoc = Tok.getLocation();
1954
1955 HasLexedNextToken = Tok.is(tok::string_literal);
1956 if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
1957 /*AllowMacroExpansion=*/false))
1958 return false;
1959
1960 // FIXME: Should we accept "-R..." flags here, or should that be
1961 // handled by a separate __has_remark?
1962 if (WarningName.size() < 3 || WarningName[0] != '-' ||
1963 WarningName[1] != 'W') {
1964 Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
1965 return false;
1966 }
1967
1968 // Finally, check if the warning flags maps to a diagnostic group.
1969 // We construct a SmallVector here to talk to getDiagnosticIDs().
1970 // Although we don't use the result, this isn't a hot path, and not
1971 // worth special casing.
1972 SmallVector<diag::kind, 10> Diags;
1973 return !getDiagnostics().getDiagnosticIDs()->
1974 getDiagnosticsInGroup(diag::Flavor::WarningOrError,
1975 WarningName.substr(2), Diags);
1976 });
1977 } else if (II == Ident__building_module) {
1978 // The argument to this builtin should be an identifier. The
1979 // builtin evaluates to 1 when that identifier names the module we are
1980 // currently building.
1981 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1982 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1983 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1984 diag::err_expected_id_building_module);
1985 return getLangOpts().isCompilingModule() && II &&
1986 (II->getName() == getLangOpts().CurrentModule);
1987 });
1988 } else if (II == Ident__MODULE__) {
1989 // The current module as an identifier.
1990 OS << getLangOpts().CurrentModule;
1991 IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
1992 Tok.setIdentifierInfo(ModuleII);
1993 Tok.setKind(ModuleII->getTokenID());
1994 } else if (II == Ident__identifier) {
1995 SourceLocation Loc = Tok.getLocation();
1996
1997 // We're expecting '__identifier' '(' identifier ')'. Try to recover
1998 // if the parens are missing.
1999 LexNonComment(Tok);
2000 if (Tok.isNot(tok::l_paren)) {
2001 // No '(', use end of last token.
2002 Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
2003 << II << tok::l_paren;
2004 // If the next token isn't valid as our argument, we can't recover.
2005 if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
2006 Tok.setKind(tok::identifier);
2007 return;
2008 }
2009
2010 SourceLocation LParenLoc = Tok.getLocation();
2011 LexNonComment(Tok);
2012
2013 if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
2014 Tok.setKind(tok::identifier);
2015 else if (Tok.is(tok::string_literal) && !Tok.hasUDSuffix()) {
2016 StringLiteralParser Literal(Tok, *this,
2017 StringLiteralEvalMethod::Unevaluated);
2018 if (Literal.hadError)
2019 return;
2020
2021 Tok.setIdentifierInfo(getIdentifierInfo(Literal.GetString()));
2022 Tok.setKind(tok::identifier);
2023 } else {
2024 Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
2025 << Tok.getKind();
2026 // Don't walk past anything that's not a real token.
2027 if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation())
2028 return;
2029 }
2030
2031 // Discard the ')', preserving 'Tok' as our result.
2032 Token RParen;
2033 LexNonComment(RParen);
2034 if (RParen.isNot(tok::r_paren)) {
2035 Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
2036 << Tok.getKind() << tok::r_paren;
2037 Diag(LParenLoc, diag::note_matching) << tok::l_paren;
2038 }
2039 return;
2040 } else if (II == Ident__is_target_arch) {
2041 EvaluateFeatureLikeBuiltinMacro(
2042 OS, Tok, II, *this, false,
2043 [this](Token &Tok, bool &HasLexedNextToken) -> int {
2044 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
2045 Tok, *this, diag::err_feature_check_malformed);
2046 return II && isTargetArch(getTargetInfo(), II);
2047 });
2048 } else if (II == Ident__is_target_vendor) {
2049 EvaluateFeatureLikeBuiltinMacro(
2050 OS, Tok, II, *this, false,
2051 [this](Token &Tok, bool &HasLexedNextToken) -> int {
2052 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
2053 Tok, *this, diag::err_feature_check_malformed);
2054 return II && isTargetVendor(getTargetInfo(), II);
2055 });
2056 } else if (II == Ident__is_target_os) {
2057 EvaluateFeatureLikeBuiltinMacro(
2058 OS, Tok, II, *this, false,
2059 [this](Token &Tok, bool &HasLexedNextToken) -> int {
2060 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
2061 Tok, *this, diag::err_feature_check_malformed);
2062 return II && isTargetOS(getTargetInfo(), II);
2063 });
2064 } else if (II == Ident__is_target_environment) {
2065 EvaluateFeatureLikeBuiltinMacro(
2066 OS, Tok, II, *this, false,
2067 [this](Token &Tok, bool &HasLexedNextToken) -> int {
2068 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
2069 Tok, *this, diag::err_feature_check_malformed);
2070 return II && isTargetEnvironment(getTargetInfo(), II);
2071 });
2072 } else if (II == Ident__is_target_variant_os) {
2073 EvaluateFeatureLikeBuiltinMacro(
2074 OS, Tok, II, *this, false,
2075 [this](Token &Tok, bool &HasLexedNextToken) -> int {
2076 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
2077 Tok, *this, diag::err_feature_check_malformed);
2078 return II && isTargetVariantOS(getTargetInfo(), II);
2079 });
2080 } else if (II == Ident__is_target_variant_environment) {
2081 EvaluateFeatureLikeBuiltinMacro(
2082 OS, Tok, II, *this, false,
2083 [this](Token &Tok, bool &HasLexedNextToken) -> int {
2084 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
2085 Tok, *this, diag::err_feature_check_malformed);
2086 return II && isTargetVariantEnvironment(getTargetInfo(), II);
2087 });
2088 } else {
2089 llvm_unreachable("Unknown identifier!");
2090 }
2091 CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
2092 Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine);
2093 Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
2094 }
2095
markMacroAsUsed(MacroInfo * MI)2096 void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
2097 // If the 'used' status changed, and the macro requires 'unused' warning,
2098 // remove its SourceLocation from the warn-for-unused-macro locations.
2099 if (MI->isWarnIfUnused() && !MI->isUsed())
2100 WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
2101 MI->setIsUsed(true);
2102 }
2103
processPathForFileMacro(SmallVectorImpl<char> & Path,const LangOptions & LangOpts,const TargetInfo & TI)2104 void Preprocessor::processPathForFileMacro(SmallVectorImpl<char> &Path,
2105 const LangOptions &LangOpts,
2106 const TargetInfo &TI) {
2107 LangOpts.remapPathPrefix(Path);
2108 if (LangOpts.UseTargetPathSeparator) {
2109 if (TI.getTriple().isOSWindows())
2110 llvm::sys::path::remove_dots(Path, false,
2111 llvm::sys::path::Style::windows_backslash);
2112 else
2113 llvm::sys::path::remove_dots(Path, false, llvm::sys::path::Style::posix);
2114 }
2115 }
2116
processPathToFileName(SmallVectorImpl<char> & FileName,const PresumedLoc & PLoc,const LangOptions & LangOpts,const TargetInfo & TI)2117 void Preprocessor::processPathToFileName(SmallVectorImpl<char> &FileName,
2118 const PresumedLoc &PLoc,
2119 const LangOptions &LangOpts,
2120 const TargetInfo &TI) {
2121 // Try to get the last path component, failing that return the original
2122 // presumed location.
2123 StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename());
2124 if (PLFileName.empty())
2125 PLFileName = PLoc.getFilename();
2126 FileName.append(PLFileName.begin(), PLFileName.end());
2127 processPathForFileMacro(FileName, LangOpts, TI);
2128 }
2129