xref: /freebsd/contrib/llvm-project/compiler-rt/lib/lsan/lsan_common.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //=-- lsan_common.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of LeakSanitizer.
10 // Implementation of common leak checking functionality.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "lsan_common.h"
15 
16 #include "sanitizer_common/sanitizer_common.h"
17 #include "sanitizer_common/sanitizer_flag_parser.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_procmaps.h"
21 #include "sanitizer_common/sanitizer_report_decorator.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_suppressions.h"
25 #include "sanitizer_common/sanitizer_thread_registry.h"
26 #include "sanitizer_common/sanitizer_tls_get_addr.h"
27 
28 #if CAN_SANITIZE_LEAKS
29 
30 #  if SANITIZER_APPLE
31 // https://github.com/apple-oss-distributions/objc4/blob/8701d5672d3fd3cd817aeb84db1077aafe1a1604/runtime/objc-runtime-new.h#L127
32 #    if SANITIZER_IOS && !SANITIZER_IOSSIM
33 #      define OBJC_DATA_MASK 0x0000007ffffffff8UL
34 #    else
35 #      define OBJC_DATA_MASK 0x00007ffffffffff8UL
36 #    endif
37 #  endif
38 
39 namespace __lsan {
40 
41 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
42 // also to protect the global list of root regions.
43 static Mutex global_mutex;
44 
LockGlobal()45 void LockGlobal() SANITIZER_ACQUIRE(global_mutex) { global_mutex.Lock(); }
UnlockGlobal()46 void UnlockGlobal() SANITIZER_RELEASE(global_mutex) { global_mutex.Unlock(); }
47 
48 Flags lsan_flags;
49 
DisableCounterUnderflow()50 void DisableCounterUnderflow() {
51   if (common_flags()->detect_leaks) {
52     Report("Unmatched call to __lsan_enable().\n");
53     Die();
54   }
55 }
56 
SetDefaults()57 void Flags::SetDefaults() {
58 #  define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
59 #  include "lsan_flags.inc"
60 #  undef LSAN_FLAG
61 }
62 
RegisterLsanFlags(FlagParser * parser,Flags * f)63 void RegisterLsanFlags(FlagParser *parser, Flags *f) {
64 #  define LSAN_FLAG(Type, Name, DefaultValue, Description) \
65     RegisterFlag(parser, #Name, Description, &f->Name);
66 #  include "lsan_flags.inc"
67 #  undef LSAN_FLAG
68 }
69 
70 #  define LOG_POINTERS(...)      \
71     do {                         \
72       if (flags()->log_pointers) \
73         Report(__VA_ARGS__);     \
74     } while (0)
75 
76 #  define LOG_THREADS(...)      \
77     do {                        \
78       if (flags()->log_threads) \
79         Report(__VA_ARGS__);    \
80     } while (0)
81 
82 class LeakSuppressionContext {
83   bool parsed = false;
84   SuppressionContext context;
85   bool suppressed_stacks_sorted = true;
86   InternalMmapVector<u32> suppressed_stacks;
87   const LoadedModule *suppress_module = nullptr;
88 
89   void LazyInit();
90   Suppression *GetSuppressionForAddr(uptr addr);
91   bool SuppressInvalid(const StackTrace &stack);
92   bool SuppressByRule(const StackTrace &stack, uptr hit_count, uptr total_size);
93 
94  public:
LeakSuppressionContext(const char * supprression_types[],int suppression_types_num)95   LeakSuppressionContext(const char *supprression_types[],
96                          int suppression_types_num)
97       : context(supprression_types, suppression_types_num) {}
98 
99   bool Suppress(u32 stack_trace_id, uptr hit_count, uptr total_size);
100 
GetSortedSuppressedStacks()101   const InternalMmapVector<u32> &GetSortedSuppressedStacks() {
102     if (!suppressed_stacks_sorted) {
103       suppressed_stacks_sorted = true;
104       SortAndDedup(suppressed_stacks);
105     }
106     return suppressed_stacks;
107   }
108   void PrintMatchedSuppressions();
109 };
110 
111 alignas(64) static char suppression_placeholder[sizeof(LeakSuppressionContext)];
112 static LeakSuppressionContext *suppression_ctx = nullptr;
113 static const char kSuppressionLeak[] = "leak";
114 static const char *kSuppressionTypes[] = {kSuppressionLeak};
115 static const char kStdSuppressions[] =
116 #  if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
117     // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
118     // definition.
119     "leak:*pthread_exit*\n"
120 #  endif  // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
121 #  if SANITIZER_APPLE
122     // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
123     "leak:*_os_trace*\n"
124 #  endif
125     // TLS leak in some glibc versions, described in
126     // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
127     "leak:*tls_get_addr*\n";
128 
InitializeSuppressions()129 void InitializeSuppressions() {
130   CHECK_EQ(nullptr, suppression_ctx);
131   suppression_ctx = new (suppression_placeholder)
132       LeakSuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
133 }
134 
LazyInit()135 void LeakSuppressionContext::LazyInit() {
136   if (!parsed) {
137     parsed = true;
138     context.ParseFromFile(flags()->suppressions);
139     if (&__lsan_default_suppressions)
140       context.Parse(__lsan_default_suppressions());
141     context.Parse(kStdSuppressions);
142     if (flags()->use_tls && flags()->use_ld_allocations)
143       suppress_module = GetLinker();
144   }
145 }
146 
GetSuppressionForAddr(uptr addr)147 Suppression *LeakSuppressionContext::GetSuppressionForAddr(uptr addr) {
148   Suppression *s = nullptr;
149 
150   // Suppress by module name.
151   const char *module_name = Symbolizer::GetOrInit()->GetModuleNameForPc(addr);
152   if (!module_name)
153     module_name = "<unknown module>";
154   if (context.Match(module_name, kSuppressionLeak, &s))
155     return s;
156 
157   // Suppress by file or function name.
158   SymbolizedStackHolder symbolized_stack(
159       Symbolizer::GetOrInit()->SymbolizePC(addr));
160   const SymbolizedStack *frames = symbolized_stack.get();
161   for (const SymbolizedStack *cur = frames; cur; cur = cur->next) {
162     if (context.Match(cur->info.function, kSuppressionLeak, &s) ||
163         context.Match(cur->info.file, kSuppressionLeak, &s)) {
164       break;
165     }
166   }
167   return s;
168 }
169 
GetCallerPC(const StackTrace & stack)170 static uptr GetCallerPC(const StackTrace &stack) {
171   // The top frame is our malloc/calloc/etc. The next frame is the caller.
172   if (stack.size >= 2)
173     return stack.trace[1];
174   return 0;
175 }
176 
177 #  if SANITIZER_APPLE
178 // Several pointers in the Objective-C runtime (method cache and class_rw_t,
179 // for example) are tagged with additional bits we need to strip.
TransformPointer(void * p)180 static inline void *TransformPointer(void *p) {
181   uptr ptr = reinterpret_cast<uptr>(p);
182   return reinterpret_cast<void *>(ptr & OBJC_DATA_MASK);
183 }
184 #  endif
185 
186 // On Linux, treats all chunks allocated from ld-linux.so as reachable, which
187 // covers dynamically allocated TLS blocks, internal dynamic loader's loaded
188 // modules accounting etc.
189 // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
190 // They are allocated with a __libc_memalign() call in allocate_and_init()
191 // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
192 // blocks, but we can make sure they come from our own allocator by intercepting
193 // __libc_memalign(). On top of that, there is no easy way to reach them. Their
194 // addresses are stored in a dynamically allocated array (the DTV) which is
195 // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
196 // being reachable from the static TLS, and the dynamic TLS being reachable from
197 // the DTV. This is because the initial DTV is allocated before our interception
198 // mechanism kicks in, and thus we don't recognize it as allocated memory. We
199 // can't special-case it either, since we don't know its size.
200 // Our solution is to include in the root set all allocations made from
201 // ld-linux.so (which is where allocate_and_init() is implemented). This is
202 // guaranteed to include all dynamic TLS blocks (and possibly other allocations
203 // which we don't care about).
204 // On all other platforms, this simply checks to ensure that the caller pc is
205 // valid before reporting chunks as leaked.
SuppressInvalid(const StackTrace & stack)206 bool LeakSuppressionContext::SuppressInvalid(const StackTrace &stack) {
207   uptr caller_pc = GetCallerPC(stack);
208   // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
209   // it as reachable, as we can't properly report its allocation stack anyway.
210   return !caller_pc ||
211          (suppress_module && suppress_module->containsAddress(caller_pc));
212 }
213 
SuppressByRule(const StackTrace & stack,uptr hit_count,uptr total_size)214 bool LeakSuppressionContext::SuppressByRule(const StackTrace &stack,
215                                             uptr hit_count, uptr total_size) {
216   for (uptr i = 0; i < stack.size; i++) {
217     Suppression *s = GetSuppressionForAddr(
218         StackTrace::GetPreviousInstructionPc(stack.trace[i]));
219     if (s) {
220       s->weight += total_size;
221       atomic_fetch_add(&s->hit_count, hit_count, memory_order_relaxed);
222       return true;
223     }
224   }
225   return false;
226 }
227 
Suppress(u32 stack_trace_id,uptr hit_count,uptr total_size)228 bool LeakSuppressionContext::Suppress(u32 stack_trace_id, uptr hit_count,
229                                       uptr total_size) {
230   LazyInit();
231   StackTrace stack = StackDepotGet(stack_trace_id);
232   if (!SuppressInvalid(stack) && !SuppressByRule(stack, hit_count, total_size))
233     return false;
234   suppressed_stacks_sorted = false;
235   suppressed_stacks.push_back(stack_trace_id);
236   return true;
237 }
238 
GetSuppressionContext()239 static LeakSuppressionContext *GetSuppressionContext() {
240   CHECK(suppression_ctx);
241   return suppression_ctx;
242 }
243 
InitCommonLsan()244 void InitCommonLsan() {
245   if (common_flags()->detect_leaks) {
246     // Initialization which can fail or print warnings should only be done if
247     // LSan is actually enabled.
248     InitializeSuppressions();
249     InitializePlatformSpecificModules();
250   }
251 }
252 
253 class Decorator : public __sanitizer::SanitizerCommonDecorator {
254  public:
Decorator()255   Decorator() : SanitizerCommonDecorator() {}
Error()256   const char *Error() { return Red(); }
Leak()257   const char *Leak() { return Blue(); }
258 };
259 
MaybeUserPointer(uptr p)260 static inline bool MaybeUserPointer(uptr p) {
261   // Since our heap is located in mmap-ed memory, we can assume a sensible lower
262   // bound on heap addresses.
263   const uptr kMinAddress = 4 * 4096;
264   if (p < kMinAddress)
265     return false;
266 #  if defined(__x86_64__)
267   // TODO: support LAM48 and 5 level page tables.
268   // LAM_U57 mask format
269   //  * top byte: 0x81 because the format is: [0] [6-bit tag] [0]
270   //  * top-1 byte: 0xff because it should be 0
271   //  * top-2 byte: 0x80 because Linux uses 128 TB VMA ending at 0x7fffffffffff
272   constexpr uptr kLAM_U57Mask = 0x81ff80;
273   constexpr uptr kPointerMask = kLAM_U57Mask << 40;
274   return ((p & kPointerMask) == 0);
275 #  elif defined(__mips64)
276   return ((p >> 40) == 0);
277 #  elif defined(__aarch64__)
278   // TBI (Top Byte Ignore) feature of AArch64: bits [63:56] are ignored in
279   // address translation and can be used to store a tag.
280   constexpr uptr kPointerMask = 255ULL << 48;
281   // Accept up to 48 bit VMA.
282   return ((p & kPointerMask) == 0);
283 #  elif defined(__loongarch_lp64)
284   // Allow 47-bit user-space VMA at current.
285   return ((p >> 47) == 0);
286 #  else
287   return true;
288 #  endif
289 }
290 
291 // Scans the memory range, looking for byte patterns that point into allocator
292 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
293 // There are two usage modes for this function: finding reachable chunks
294 // (|tag| = kReachable) and finding indirectly leaked chunks
295 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
296 // so |frontier| = 0.
ScanRangeForPointers(uptr begin,uptr end,Frontier * frontier,const char * region_type,ChunkTag tag)297 void ScanRangeForPointers(uptr begin, uptr end, Frontier *frontier,
298                           const char *region_type, ChunkTag tag) {
299   CHECK(tag == kReachable || tag == kIndirectlyLeaked);
300   const uptr alignment = flags()->pointer_alignment();
301   LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, (void *)begin,
302                (void *)end);
303   uptr pp = begin;
304   if (pp % alignment)
305     pp = pp + alignment - pp % alignment;
306   for (; pp + sizeof(void *) <= end; pp += alignment) {
307     void *p = *reinterpret_cast<void **>(pp);
308 #  if SANITIZER_APPLE
309     p = TransformPointer(p);
310 #  endif
311     if (!MaybeUserPointer(reinterpret_cast<uptr>(p)))
312       continue;
313     uptr chunk = PointsIntoChunk(p);
314     if (!chunk)
315       continue;
316     // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
317     if (chunk == begin)
318       continue;
319     LsanMetadata m(chunk);
320     if (m.tag() == kReachable || m.tag() == kIgnored)
321       continue;
322 
323     // Do this check relatively late so we can log only the interesting cases.
324     if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
325       LOG_POINTERS(
326           "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
327           "%zu.\n",
328           (void *)pp, p, (void *)chunk, (void *)(chunk + m.requested_size()),
329           m.requested_size());
330       continue;
331     }
332 
333     m.set_tag(tag);
334     LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n",
335                  (void *)pp, p, (void *)chunk,
336                  (void *)(chunk + m.requested_size()), m.requested_size());
337     if (frontier)
338       frontier->push_back(chunk);
339   }
340 }
341 
342 // Scans a global range for pointers
ScanGlobalRange(uptr begin,uptr end,Frontier * frontier)343 void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
344   uptr allocator_begin = 0, allocator_end = 0;
345   GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
346   if (begin <= allocator_begin && allocator_begin < end) {
347     CHECK_LE(allocator_begin, allocator_end);
348     CHECK_LE(allocator_end, end);
349     if (begin < allocator_begin)
350       ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
351                            kReachable);
352     if (allocator_end < end)
353       ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
354   } else {
355     ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
356   }
357 }
358 
ScanExtraStackRanges(const InternalMmapVector<Range> & ranges,Frontier * frontier)359 void ScanExtraStackRanges(const InternalMmapVector<Range> &ranges,
360                           Frontier *frontier) {
361   for (uptr i = 0; i < ranges.size(); i++) {
362     ScanRangeForPointers(ranges[i].begin, ranges[i].end, frontier, "FAKE STACK",
363                          kReachable);
364   }
365 }
366 
367 #  if SANITIZER_FUCHSIA
368 
369 // Fuchsia handles all threads together with its own callback.
ProcessThreads(SuspendedThreadsList const &,Frontier *,tid_t,uptr)370 static void ProcessThreads(SuspendedThreadsList const &, Frontier *, tid_t,
371                            uptr) {}
372 
373 #  else
374 
375 #    if SANITIZER_ANDROID
376 // FIXME: Move this out into *libcdep.cpp
377 extern "C" SANITIZER_WEAK_ATTRIBUTE void __libc_iterate_dynamic_tls(
378     pid_t, void (*cb)(void *, void *, uptr, void *), void *);
379 #    endif
380 
ProcessThreadRegistry(Frontier * frontier)381 static void ProcessThreadRegistry(Frontier *frontier) {
382   InternalMmapVector<uptr> ptrs;
383   GetAdditionalThreadContextPtrsLocked(&ptrs);
384 
385   for (uptr i = 0; i < ptrs.size(); ++i) {
386     void *ptr = reinterpret_cast<void *>(ptrs[i]);
387     uptr chunk = PointsIntoChunk(ptr);
388     if (!chunk)
389       continue;
390     LsanMetadata m(chunk);
391     if (!m.allocated())
392       continue;
393 
394     // Mark as reachable and add to frontier.
395     LOG_POINTERS("Treating pointer %p from ThreadContext as reachable\n", ptr);
396     m.set_tag(kReachable);
397     frontier->push_back(chunk);
398   }
399 }
400 
401 // Scans thread data (stacks and TLS) for heap pointers.
ProcessThreads(SuspendedThreadsList const & suspended_threads,Frontier * frontier,tid_t caller_tid,uptr caller_sp)402 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
403                            Frontier *frontier, tid_t caller_tid,
404                            uptr caller_sp) {
405   InternalMmapVector<uptr> registers;
406   InternalMmapVector<Range> extra_ranges;
407   for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
408     tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
409     LOG_THREADS("Processing thread %llu.\n", os_id);
410     uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
411     DTLS *dtls;
412     bool thread_found =
413         GetThreadRangesLocked(os_id, &stack_begin, &stack_end, &tls_begin,
414                               &tls_end, &cache_begin, &cache_end, &dtls);
415     if (!thread_found) {
416       // If a thread can't be found in the thread registry, it's probably in the
417       // process of destruction. Log this event and move on.
418       LOG_THREADS("Thread %llu not found in registry.\n", os_id);
419       continue;
420     }
421     uptr sp;
422     PtraceRegistersStatus have_registers =
423         suspended_threads.GetRegistersAndSP(i, &registers, &sp);
424     if (have_registers != REGISTERS_AVAILABLE) {
425       Report("Unable to get registers from thread %llu.\n", os_id);
426       // If unable to get SP, consider the entire stack to be reachable unless
427       // GetRegistersAndSP failed with ESRCH.
428       if (have_registers == REGISTERS_UNAVAILABLE_FATAL)
429         continue;
430       sp = stack_begin;
431     }
432     if (suspended_threads.GetThreadID(i) == caller_tid) {
433       sp = caller_sp;
434     }
435 
436     if (flags()->use_registers && have_registers) {
437       uptr registers_begin = reinterpret_cast<uptr>(registers.data());
438       uptr registers_end =
439           reinterpret_cast<uptr>(registers.data() + registers.size());
440       ScanRangeForPointers(registers_begin, registers_end, frontier,
441                            "REGISTERS", kReachable);
442     }
443 
444     if (flags()->use_stacks) {
445       LOG_THREADS("Stack at %p-%p (SP = %p).\n", (void *)stack_begin,
446                   (void *)stack_end, (void *)sp);
447       if (sp < stack_begin || sp >= stack_end) {
448         // SP is outside the recorded stack range (e.g. the thread is running a
449         // signal handler on alternate stack, or swapcontext was used).
450         // Again, consider the entire stack range to be reachable.
451         LOG_THREADS("WARNING: stack pointer not in stack range.\n");
452         uptr page_size = GetPageSizeCached();
453         int skipped = 0;
454         while (stack_begin < stack_end &&
455                !IsAccessibleMemoryRange(stack_begin, 1)) {
456           skipped++;
457           stack_begin += page_size;
458         }
459         LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
460                     skipped, (void *)stack_begin, (void *)stack_end);
461       } else {
462         // Shrink the stack range to ignore out-of-scope values.
463         stack_begin = sp;
464       }
465       ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
466                            kReachable);
467       extra_ranges.clear();
468       GetThreadExtraStackRangesLocked(os_id, &extra_ranges);
469       ScanExtraStackRanges(extra_ranges, frontier);
470     }
471 
472     if (flags()->use_tls) {
473       if (tls_begin) {
474         LOG_THREADS("TLS at %p-%p.\n", (void *)tls_begin, (void *)tls_end);
475         // If the tls and cache ranges don't overlap, scan full tls range,
476         // otherwise, only scan the non-overlapping portions
477         if (cache_begin == cache_end || tls_end < cache_begin ||
478             tls_begin > cache_end) {
479           ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
480         } else {
481           if (tls_begin < cache_begin)
482             ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
483                                  kReachable);
484           if (tls_end > cache_end)
485             ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
486                                  kReachable);
487         }
488       }
489 #    if SANITIZER_ANDROID
490       auto *cb = +[](void *dtls_begin, void *dtls_end, uptr /*dso_idd*/,
491                      void *arg) -> void {
492         ScanRangeForPointers(reinterpret_cast<uptr>(dtls_begin),
493                              reinterpret_cast<uptr>(dtls_end),
494                              reinterpret_cast<Frontier *>(arg), "DTLS",
495                              kReachable);
496       };
497 
498       // FIXME: There might be a race-condition here (and in Bionic) if the
499       // thread is suspended in the middle of updating its DTLS. IOWs, we
500       // could scan already freed memory. (probably fine for now)
501       __libc_iterate_dynamic_tls(os_id, cb, frontier);
502 #    else
503       if (dtls && !DTLSInDestruction(dtls)) {
504         ForEachDVT(dtls, [&](const DTLS::DTV &dtv, int id) {
505           uptr dtls_beg = dtv.beg;
506           uptr dtls_end = dtls_beg + dtv.size;
507           if (dtls_beg < dtls_end) {
508             LOG_THREADS("DTLS %d at %p-%p.\n", id, (void *)dtls_beg,
509                         (void *)dtls_end);
510             ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
511                                  kReachable);
512           }
513         });
514       } else {
515         // We are handling a thread with DTLS under destruction. Log about
516         // this and continue.
517         LOG_THREADS("Thread %llu has DTLS under destruction.\n", os_id);
518       }
519 #    endif
520     }
521   }
522 
523   // Add pointers reachable from ThreadContexts
524   ProcessThreadRegistry(frontier);
525 }
526 
527 #  endif  // SANITIZER_FUCHSIA
528 
529 // A map that contains [region_begin, region_end) pairs.
530 using RootRegions = DenseMap<detail::DenseMapPair<uptr, uptr>, uptr>;
531 
GetRootRegionsLocked()532 static RootRegions &GetRootRegionsLocked() {
533   global_mutex.CheckLocked();
534   static RootRegions *regions = nullptr;
535   alignas(RootRegions) static char placeholder[sizeof(RootRegions)];
536   if (!regions)
537     regions = new (placeholder) RootRegions();
538   return *regions;
539 }
540 
HasRootRegions()541 bool HasRootRegions() { return !GetRootRegionsLocked().empty(); }
542 
ScanRootRegions(Frontier * frontier,const InternalMmapVectorNoCtor<Region> & mapped_regions)543 void ScanRootRegions(Frontier *frontier,
544                      const InternalMmapVectorNoCtor<Region> &mapped_regions) {
545   if (!flags()->use_root_regions)
546     return;
547 
548   InternalMmapVector<Region> regions;
549   GetRootRegionsLocked().forEach([&](const auto &kv) {
550     regions.push_back({kv.first.first, kv.first.second});
551     return true;
552   });
553 
554   InternalMmapVector<Region> intersection;
555   Intersect(mapped_regions, regions, intersection);
556 
557   for (const Region &r : intersection) {
558     LOG_POINTERS("Root region intersects with mapped region at %p-%p\n",
559                  (void *)r.begin, (void *)r.end);
560     ScanRangeForPointers(r.begin, r.end, frontier, "ROOT", kReachable);
561   }
562 }
563 
564 // Scans root regions for heap pointers.
ProcessRootRegions(Frontier * frontier)565 static void ProcessRootRegions(Frontier *frontier) {
566   if (!flags()->use_root_regions || !HasRootRegions())
567     return;
568   MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
569   MemoryMappedSegment segment;
570   InternalMmapVector<Region> mapped_regions;
571   while (proc_maps.Next(&segment))
572     if (segment.IsReadable())
573       mapped_regions.push_back({segment.start, segment.end});
574   ScanRootRegions(frontier, mapped_regions);
575 }
576 
FloodFillTag(Frontier * frontier,ChunkTag tag)577 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
578   while (frontier->size()) {
579     uptr next_chunk = frontier->back();
580     frontier->pop_back();
581     LsanMetadata m(next_chunk);
582     ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
583                          "HEAP", tag);
584   }
585 }
586 
587 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
588 // which are reachable from it as indirectly leaked.
MarkIndirectlyLeakedCb(uptr chunk,void * arg)589 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
590   chunk = GetUserBegin(chunk);
591   LsanMetadata m(chunk);
592   if (m.allocated() && m.tag() != kReachable) {
593     ScanRangeForPointers(chunk, chunk + m.requested_size(),
594                          /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
595   }
596 }
597 
IgnoredSuppressedCb(uptr chunk,void * arg)598 static void IgnoredSuppressedCb(uptr chunk, void *arg) {
599   CHECK(arg);
600   chunk = GetUserBegin(chunk);
601   LsanMetadata m(chunk);
602   if (!m.allocated() || m.tag() == kIgnored)
603     return;
604 
605   const InternalMmapVector<u32> &suppressed =
606       *static_cast<const InternalMmapVector<u32> *>(arg);
607   uptr idx = InternalLowerBound(suppressed, m.stack_trace_id());
608   if (idx >= suppressed.size() || m.stack_trace_id() != suppressed[idx])
609     return;
610 
611   LOG_POINTERS("Suppressed: chunk %p-%p of size %zu.\n", (void *)chunk,
612                (void *)(chunk + m.requested_size()), m.requested_size());
613   m.set_tag(kIgnored);
614 }
615 
616 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
617 // frontier.
CollectIgnoredCb(uptr chunk,void * arg)618 static void CollectIgnoredCb(uptr chunk, void *arg) {
619   CHECK(arg);
620   chunk = GetUserBegin(chunk);
621   LsanMetadata m(chunk);
622   if (m.allocated() && m.tag() == kIgnored) {
623     LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n", (void *)chunk,
624                  (void *)(chunk + m.requested_size()), m.requested_size());
625     reinterpret_cast<Frontier *>(arg)->push_back(chunk);
626   }
627 }
628 
629 // Sets the appropriate tag on each chunk.
ClassifyAllChunks(SuspendedThreadsList const & suspended_threads,Frontier * frontier,tid_t caller_tid,uptr caller_sp)630 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads,
631                               Frontier *frontier, tid_t caller_tid,
632                               uptr caller_sp) {
633   const InternalMmapVector<u32> &suppressed_stacks =
634       GetSuppressionContext()->GetSortedSuppressedStacks();
635   if (!suppressed_stacks.empty()) {
636     ForEachChunk(IgnoredSuppressedCb,
637                  const_cast<InternalMmapVector<u32> *>(&suppressed_stacks));
638   }
639   ForEachChunk(CollectIgnoredCb, frontier);
640   ProcessGlobalRegions(frontier);
641   ProcessThreads(suspended_threads, frontier, caller_tid, caller_sp);
642   ProcessRootRegions(frontier);
643   FloodFillTag(frontier, kReachable);
644 
645   // The check here is relatively expensive, so we do this in a separate flood
646   // fill. That way we can skip the check for chunks that are reachable
647   // otherwise.
648   LOG_POINTERS("Processing platform-specific allocations.\n");
649   ProcessPlatformSpecificAllocations(frontier);
650   FloodFillTag(frontier, kReachable);
651 
652   // Iterate over leaked chunks and mark those that are reachable from other
653   // leaked chunks.
654   LOG_POINTERS("Scanning leaked chunks.\n");
655   ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
656 }
657 
658 // ForEachChunk callback. Resets the tags to pre-leak-check state.
ResetTagsCb(uptr chunk,void * arg)659 static void ResetTagsCb(uptr chunk, void *arg) {
660   (void)arg;
661   chunk = GetUserBegin(chunk);
662   LsanMetadata m(chunk);
663   if (m.allocated() && m.tag() != kIgnored)
664     m.set_tag(kDirectlyLeaked);
665 }
666 
667 // ForEachChunk callback. Aggregates information about unreachable chunks into
668 // a LeakReport.
CollectLeaksCb(uptr chunk,void * arg)669 static void CollectLeaksCb(uptr chunk, void *arg) {
670   CHECK(arg);
671   LeakedChunks *leaks = reinterpret_cast<LeakedChunks *>(arg);
672   chunk = GetUserBegin(chunk);
673   LsanMetadata m(chunk);
674   if (!m.allocated())
675     return;
676   if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked)
677     leaks->push_back({chunk, m.stack_trace_id(), m.requested_size(), m.tag()});
678 }
679 
PrintMatchedSuppressions()680 void LeakSuppressionContext::PrintMatchedSuppressions() {
681   InternalMmapVector<Suppression *> matched;
682   context.GetMatched(&matched);
683   if (!matched.size())
684     return;
685   const char *line = "-----------------------------------------------------";
686   Printf("%s\n", line);
687   Printf("Suppressions used:\n");
688   Printf("  count      bytes template\n");
689   for (uptr i = 0; i < matched.size(); i++) {
690     Printf("%7zu %10zu %s\n",
691            static_cast<uptr>(atomic_load_relaxed(&matched[i]->hit_count)),
692            matched[i]->weight, matched[i]->templ);
693   }
694   Printf("%s\n\n", line);
695 }
696 
697 #  if SANITIZER_FUCHSIA
698 
699 // Fuchsia provides a libc interface that guarantees all threads are
700 // covered, and SuspendedThreadList is never really used.
ReportUnsuspendedThreads(const SuspendedThreadsList &)701 static void ReportUnsuspendedThreads(const SuspendedThreadsList &) {}
702 
703 #  else  // !SANITIZER_FUCHSIA
704 
ReportUnsuspendedThreads(const SuspendedThreadsList & suspended_threads)705 static void ReportUnsuspendedThreads(
706     const SuspendedThreadsList &suspended_threads) {
707   InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
708   for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
709     threads[i] = suspended_threads.GetThreadID(i);
710 
711   Sort(threads.data(), threads.size());
712 
713   InternalMmapVector<tid_t> unsuspended;
714   GetRunningThreadsLocked(&unsuspended);
715 
716   for (auto os_id : unsuspended) {
717     uptr i = InternalLowerBound(threads, os_id);
718     if (i >= threads.size() || threads[i] != os_id)
719       Report(
720           "Running thread %zu was not suspended. False leaks are possible.\n",
721           os_id);
722   }
723 }
724 
725 #  endif  // !SANITIZER_FUCHSIA
726 
CheckForLeaksCallback(const SuspendedThreadsList & suspended_threads,void * arg)727 static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
728                                   void *arg) {
729   CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
730   CHECK(param);
731   CHECK(!param->success);
732   ReportUnsuspendedThreads(suspended_threads);
733   ClassifyAllChunks(suspended_threads, &param->frontier, param->caller_tid,
734                     param->caller_sp);
735   ForEachChunk(CollectLeaksCb, &param->leaks);
736   // Clean up for subsequent leak checks. This assumes we did not overwrite any
737   // kIgnored tags.
738   ForEachChunk(ResetTagsCb, nullptr);
739   param->success = true;
740 }
741 
PrintResults(LeakReport & report)742 static bool PrintResults(LeakReport &report) {
743   uptr unsuppressed_count = report.UnsuppressedLeakCount();
744   if (unsuppressed_count) {
745     Decorator d;
746     Printf(
747         "\n"
748         "================================================================="
749         "\n");
750     Printf("%s", d.Error());
751     Report("ERROR: LeakSanitizer: detected memory leaks\n");
752     Printf("%s", d.Default());
753     report.ReportTopLeaks(flags()->max_leaks);
754   }
755   if (common_flags()->print_suppressions)
756     GetSuppressionContext()->PrintMatchedSuppressions();
757   if (unsuppressed_count > 0) {
758     report.PrintSummary();
759     return true;
760   }
761   return false;
762 }
763 
CheckForLeaks()764 static bool CheckForLeaks() {
765   if (&__lsan_is_turned_off && __lsan_is_turned_off()) {
766     VReport(1, "LeakSanitizer is disabled");
767     return false;
768   }
769   VReport(1, "LeakSanitizer: checking for leaks");
770   // Inside LockStuffAndStopTheWorld we can't run symbolizer, so we can't match
771   // suppressions. However if a stack id was previously suppressed, it should be
772   // suppressed in future checks as well.
773   for (int i = 0;; ++i) {
774     EnsureMainThreadIDIsCorrect();
775     CheckForLeaksParam param;
776     // Capture calling thread's stack pointer early, to avoid false negatives.
777     // Old frame with dead pointers might be overlapped by new frame inside
778     // CheckForLeaks which does not use bytes with pointers before the
779     // threads are suspended and stack pointers captured.
780     param.caller_tid = GetTid();
781     param.caller_sp = reinterpret_cast<uptr>(__builtin_frame_address(0));
782     LockStuffAndStopTheWorld(CheckForLeaksCallback, &param);
783     if (!param.success) {
784       Report("LeakSanitizer has encountered a fatal error.\n");
785       Report(
786           "HINT: For debugging, try setting environment variable "
787           "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
788       Report(
789           "HINT: LeakSanitizer does not work under ptrace (strace, gdb, "
790           "etc)\n");
791       Die();
792     }
793     LeakReport leak_report;
794     leak_report.AddLeakedChunks(param.leaks);
795 
796     // No new suppressions stacks, so rerun will not help and we can report.
797     if (!leak_report.ApplySuppressions())
798       return PrintResults(leak_report);
799 
800     // No indirect leaks to report, so we are done here.
801     if (!leak_report.IndirectUnsuppressedLeakCount())
802       return PrintResults(leak_report);
803 
804     if (i >= 8) {
805       Report("WARNING: LeakSanitizer gave up on indirect leaks suppression.\n");
806       return PrintResults(leak_report);
807     }
808 
809     // We found a new previously unseen suppressed call stack. Rerun to make
810     // sure it does not hold indirect leaks.
811     VReport(1, "Rerun with %zu suppressed stacks.",
812             GetSuppressionContext()->GetSortedSuppressedStacks().size());
813   }
814 }
815 
816 static bool has_reported_leaks = false;
HasReportedLeaks()817 bool HasReportedLeaks() { return has_reported_leaks; }
818 
DoLeakCheck()819 void DoLeakCheck() {
820   Lock l(&global_mutex);
821   static bool already_done;
822   if (already_done)
823     return;
824   already_done = true;
825   has_reported_leaks = CheckForLeaks();
826   if (has_reported_leaks)
827     HandleLeaks();
828 }
829 
DoRecoverableLeakCheck()830 static int DoRecoverableLeakCheck() {
831   Lock l(&global_mutex);
832   bool have_leaks = CheckForLeaks();
833   return have_leaks ? 1 : 0;
834 }
835 
DoRecoverableLeakCheckVoid()836 void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
837 
838 ///// LeakReport implementation. /////
839 
840 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
841 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
842 // in real-world applications.
843 // FIXME: Get rid of this limit by moving logic into DedupLeaks.
844 const uptr kMaxLeaksConsidered = 5000;
845 
AddLeakedChunks(const LeakedChunks & chunks)846 void LeakReport::AddLeakedChunks(const LeakedChunks &chunks) {
847   for (const LeakedChunk &leak : chunks) {
848     uptr chunk = leak.chunk;
849     u32 stack_trace_id = leak.stack_trace_id;
850     uptr leaked_size = leak.leaked_size;
851     ChunkTag tag = leak.tag;
852     CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
853 
854     if (u32 resolution = flags()->resolution) {
855       StackTrace stack = StackDepotGet(stack_trace_id);
856       stack.size = Min(stack.size, resolution);
857       stack_trace_id = StackDepotPut(stack);
858     }
859 
860     bool is_directly_leaked = (tag == kDirectlyLeaked);
861     uptr i;
862     for (i = 0; i < leaks_.size(); i++) {
863       if (leaks_[i].stack_trace_id == stack_trace_id &&
864           leaks_[i].is_directly_leaked == is_directly_leaked) {
865         leaks_[i].hit_count++;
866         leaks_[i].total_size += leaked_size;
867         break;
868       }
869     }
870     if (i == leaks_.size()) {
871       if (leaks_.size() == kMaxLeaksConsidered)
872         return;
873       Leak leak = {next_id_++,         /* hit_count */ 1,
874                    leaked_size,        stack_trace_id,
875                    is_directly_leaked, /* is_suppressed */ false};
876       leaks_.push_back(leak);
877     }
878     if (flags()->report_objects) {
879       LeakedObject obj = {leaks_[i].id, GetUserAddr(chunk), leaked_size};
880       leaked_objects_.push_back(obj);
881     }
882   }
883 }
884 
LeakComparator(const Leak & leak1,const Leak & leak2)885 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
886   if (leak1.is_directly_leaked == leak2.is_directly_leaked)
887     return leak1.total_size > leak2.total_size;
888   else
889     return leak1.is_directly_leaked;
890 }
891 
ReportTopLeaks(uptr num_leaks_to_report)892 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
893   CHECK(leaks_.size() <= kMaxLeaksConsidered);
894   Printf("\n");
895   if (leaks_.size() == kMaxLeaksConsidered)
896     Printf(
897         "Too many leaks! Only the first %zu leaks encountered will be "
898         "reported.\n",
899         kMaxLeaksConsidered);
900 
901   uptr unsuppressed_count = UnsuppressedLeakCount();
902   if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
903     Printf("The %zu top leak(s):\n", num_leaks_to_report);
904   Sort(leaks_.data(), leaks_.size(), &LeakComparator);
905   uptr leaks_reported = 0;
906   for (uptr i = 0; i < leaks_.size(); i++) {
907     if (leaks_[i].is_suppressed)
908       continue;
909     PrintReportForLeak(i);
910     leaks_reported++;
911     if (leaks_reported == num_leaks_to_report)
912       break;
913   }
914   if (leaks_reported < unsuppressed_count) {
915     uptr remaining = unsuppressed_count - leaks_reported;
916     Printf("Omitting %zu more leak(s).\n", remaining);
917   }
918 }
919 
PrintReportForLeak(uptr index)920 void LeakReport::PrintReportForLeak(uptr index) {
921   Decorator d;
922   Printf("%s", d.Leak());
923   Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
924          leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
925          leaks_[index].total_size, leaks_[index].hit_count);
926   Printf("%s", d.Default());
927 
928   CHECK(leaks_[index].stack_trace_id);
929   StackDepotGet(leaks_[index].stack_trace_id).Print();
930 
931   if (flags()->report_objects) {
932     Printf("Objects leaked above:\n");
933     PrintLeakedObjectsForLeak(index);
934     Printf("\n");
935   }
936 }
937 
PrintLeakedObjectsForLeak(uptr index)938 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
939   u32 leak_id = leaks_[index].id;
940   for (uptr j = 0; j < leaked_objects_.size(); j++) {
941     if (leaked_objects_[j].leak_id == leak_id)
942       Printf("%p (%zu bytes)\n", (void *)leaked_objects_[j].addr,
943              leaked_objects_[j].size);
944   }
945 }
946 
PrintSummary()947 void LeakReport::PrintSummary() {
948   CHECK(leaks_.size() <= kMaxLeaksConsidered);
949   uptr bytes = 0, allocations = 0;
950   for (uptr i = 0; i < leaks_.size(); i++) {
951     if (leaks_[i].is_suppressed)
952       continue;
953     bytes += leaks_[i].total_size;
954     allocations += leaks_[i].hit_count;
955   }
956   InternalScopedString summary;
957   summary.AppendF("%zu byte(s) leaked in %zu allocation(s).", bytes,
958                   allocations);
959   ReportErrorSummary(summary.data());
960 }
961 
ApplySuppressions()962 uptr LeakReport::ApplySuppressions() {
963   LeakSuppressionContext *suppressions = GetSuppressionContext();
964   uptr new_suppressions = 0;
965   for (uptr i = 0; i < leaks_.size(); i++) {
966     if (suppressions->Suppress(leaks_[i].stack_trace_id, leaks_[i].hit_count,
967                                leaks_[i].total_size)) {
968       leaks_[i].is_suppressed = true;
969       ++new_suppressions;
970     }
971   }
972   return new_suppressions;
973 }
974 
UnsuppressedLeakCount()975 uptr LeakReport::UnsuppressedLeakCount() {
976   uptr result = 0;
977   for (uptr i = 0; i < leaks_.size(); i++)
978     if (!leaks_[i].is_suppressed)
979       result++;
980   return result;
981 }
982 
IndirectUnsuppressedLeakCount()983 uptr LeakReport::IndirectUnsuppressedLeakCount() {
984   uptr result = 0;
985   for (uptr i = 0; i < leaks_.size(); i++)
986     if (!leaks_[i].is_suppressed && !leaks_[i].is_directly_leaked)
987       result++;
988   return result;
989 }
990 
991 }  // namespace __lsan
992 #else   // CAN_SANITIZE_LEAKS
993 namespace __lsan {
InitCommonLsan()994 void InitCommonLsan() {}
DoLeakCheck()995 void DoLeakCheck() {}
DoRecoverableLeakCheckVoid()996 void DoRecoverableLeakCheckVoid() {}
DisableInThisThread()997 void DisableInThisThread() {}
EnableInThisThread()998 void EnableInThisThread() {}
999 }  // namespace __lsan
1000 #endif  // CAN_SANITIZE_LEAKS
1001 
1002 using namespace __lsan;
1003 
1004 extern "C" {
1005 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_ignore_object(const void * p)1006 void __lsan_ignore_object(const void *p) {
1007 #if CAN_SANITIZE_LEAKS
1008   if (!common_flags()->detect_leaks)
1009     return;
1010   // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
1011   // locked.
1012   Lock l(&global_mutex);
1013   IgnoreObjectResult res = IgnoreObject(p);
1014   if (res == kIgnoreObjectInvalid)
1015     VReport(1, "__lsan_ignore_object(): no heap object found at %p\n", p);
1016   if (res == kIgnoreObjectAlreadyIgnored)
1017     VReport(1,
1018             "__lsan_ignore_object(): "
1019             "heap object at %p is already being ignored\n",
1020             p);
1021   if (res == kIgnoreObjectSuccess)
1022     VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
1023 #endif  // CAN_SANITIZE_LEAKS
1024 }
1025 
1026 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_register_root_region(const void * begin,uptr size)1027 void __lsan_register_root_region(const void *begin, uptr size) {
1028 #if CAN_SANITIZE_LEAKS
1029   VReport(1, "Registered root region at %p of size %zu\n", begin, size);
1030   uptr b = reinterpret_cast<uptr>(begin);
1031   uptr e = b + size;
1032   CHECK_LT(b, e);
1033 
1034   Lock l(&global_mutex);
1035   ++GetRootRegionsLocked()[{b, e}];
1036 #endif  // CAN_SANITIZE_LEAKS
1037 }
1038 
1039 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_unregister_root_region(const void * begin,uptr size)1040 void __lsan_unregister_root_region(const void *begin, uptr size) {
1041 #if CAN_SANITIZE_LEAKS
1042   uptr b = reinterpret_cast<uptr>(begin);
1043   uptr e = b + size;
1044   CHECK_LT(b, e);
1045   VReport(1, "Unregistered root region at %p of size %zu\n", begin, size);
1046 
1047   {
1048     Lock l(&global_mutex);
1049     if (auto *f = GetRootRegionsLocked().find({b, e})) {
1050       if (--(f->second) == 0)
1051         GetRootRegionsLocked().erase(f);
1052       return;
1053     }
1054   }
1055   Report(
1056       "__lsan_unregister_root_region(): region at %p of size %zu has not "
1057       "been registered.\n",
1058       begin, size);
1059   Die();
1060 #endif  // CAN_SANITIZE_LEAKS
1061 }
1062 
1063 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_disable()1064 void __lsan_disable() {
1065 #if CAN_SANITIZE_LEAKS
1066   __lsan::DisableInThisThread();
1067 #endif
1068 }
1069 
1070 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_enable()1071 void __lsan_enable() {
1072 #if CAN_SANITIZE_LEAKS
1073   __lsan::EnableInThisThread();
1074 #endif
1075 }
1076 
1077 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_leak_check()1078 void __lsan_do_leak_check() {
1079 #if CAN_SANITIZE_LEAKS
1080   if (common_flags()->detect_leaks)
1081     __lsan::DoLeakCheck();
1082 #endif  // CAN_SANITIZE_LEAKS
1083 }
1084 
1085 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_recoverable_leak_check()1086 int __lsan_do_recoverable_leak_check() {
1087 #if CAN_SANITIZE_LEAKS
1088   if (common_flags()->detect_leaks)
1089     return __lsan::DoRecoverableLeakCheck();
1090 #endif  // CAN_SANITIZE_LEAKS
1091   return 0;
1092 }
1093 
SANITIZER_INTERFACE_WEAK_DEF(const char *,__lsan_default_options,void)1094 SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_options, void) {
1095   return "";
1096 }
1097 
1098 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
SANITIZER_INTERFACE_WEAK_DEF(int,__lsan_is_turned_off,void)1099 SANITIZER_INTERFACE_WEAK_DEF(int, __lsan_is_turned_off, void) {
1100   return 0;
1101 }
1102 
SANITIZER_INTERFACE_WEAK_DEF(const char *,__lsan_default_suppressions,void)1103 SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_suppressions, void) {
1104   return "";
1105 }
1106 #endif
1107 }  // extern "C"
1108