xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/LiveVariables.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveVariables analysis pass.  For each machine
10 // instruction in the function, this pass calculates the set of registers that
11 // are immediately dead after the instruction (i.e., the instruction calculates
12 // the value, but it is never used) and the set of registers that are used by
13 // the instruction, but are never used after the instruction (i.e., they are
14 // killed).
15 //
16 // This class computes live variables using a sparse implementation based on
17 // the machine code SSA form.  This class computes live variable information for
18 // each virtual and _register allocatable_ physical register in a function.  It
19 // uses the dominance properties of SSA form to efficiently compute live
20 // variables for virtual registers, and assumes that physical registers are only
21 // live within a single basic block (allowing it to do a single local analysis
22 // to resolve physical register lifetimes in each basic block).  If a physical
23 // register is not register allocatable, it is not tracked.  This is useful for
24 // things like the stack pointer and condition codes.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_CODEGEN_LIVEVARIABLES_H
29 #define LLVM_CODEGEN_LIVEVARIABLES_H
30 
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/IndexedMap.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/SparseBitVector.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachinePassManager.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/PassRegistry.h"
42 
43 namespace llvm {
44 
45 class MachineBasicBlock;
46 class MachineRegisterInfo;
47 
48 class LiveVariables {
49   friend class LiveVariablesWrapperPass;
50 
51 public:
52   /// VarInfo - This represents the regions where a virtual register is live in
53   /// the program.  We represent this with three different pieces of
54   /// information: the set of blocks in which the instruction is live
55   /// throughout, the set of blocks in which the instruction is actually used,
56   /// and the set of non-phi instructions that are the last users of the value.
57   ///
58   /// In the common case where a value is defined and killed in the same block,
59   /// There is one killing instruction, and AliveBlocks is empty.
60   ///
61   /// Otherwise, the value is live out of the block.  If the value is live
62   /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
63   /// where the liveness range ends are not included in AliveBlocks, instead
64   /// being captured by the Kills set.  In these blocks, the value is live into
65   /// the block (unless the value is defined and killed in the same block) and
66   /// lives until the specified instruction.  Note that there cannot ever be a
67   /// value whose Kills set contains two instructions from the same basic block.
68   ///
69   /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
70   /// value in one of its predecessor blocks, it is not listed in the kills set,
71   /// but does include the predecessor block in the AliveBlocks set (unless that
72   /// block also defines the value).  This leads to the (perfectly sensical)
73   /// situation where a value is defined in a block, and the last use is a phi
74   /// node in the successor.  In this case, AliveBlocks is empty (the value is
75   /// not live across any  blocks) and Kills is empty (phi nodes are not
76   /// included). This is sensical because the value must be live to the end of
77   /// the block, but is not live in any successor blocks.
78   struct VarInfo {
79     /// AliveBlocks - Set of blocks in which this value is alive completely
80     /// through.  This is a bit set which uses the basic block number as an
81     /// index.
82     ///
83     SparseBitVector<> AliveBlocks;
84 
85     /// Kills - List of MachineInstruction's which are the last use of this
86     /// virtual register (kill it) in their basic block.
87     ///
88     std::vector<MachineInstr*> Kills;
89 
90     /// removeKill - Delete a kill corresponding to the specified
91     /// machine instruction. Returns true if there was a kill
92     /// corresponding to this instruction, false otherwise.
removeKillVarInfo93     bool removeKill(MachineInstr &MI) {
94       std::vector<MachineInstr *>::iterator I = find(Kills, &MI);
95       if (I == Kills.end())
96         return false;
97       Kills.erase(I);
98       return true;
99     }
100 
101     /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
102     MachineInstr *findKill(const MachineBasicBlock *MBB) const;
103 
104     /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
105     /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
106     /// MBB, it is not considered live in.
107     bool isLiveIn(const MachineBasicBlock &MBB, Register Reg,
108                   MachineRegisterInfo &MRI);
109 
110     void print(raw_ostream &OS) const;
111 
112     void dump() const;
113   };
114 
115 private:
116   /// VirtRegInfo - This list is a mapping from virtual register number to
117   /// variable information.
118   ///
119   IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
120 
121 private:   // Intermediate data structures
122   MachineFunction *MF = nullptr;
123 
124   MachineRegisterInfo *MRI = nullptr;
125 
126   const TargetRegisterInfo *TRI = nullptr;
127 
128   // PhysRegInfo - Keep track of which instruction was the last def of a
129   // physical register. This is a purely local property, because all physical
130   // register references are presumed dead across basic blocks.
131   std::vector<MachineInstr *> PhysRegDef;
132 
133   // PhysRegInfo - Keep track of which instruction was the last use of a
134   // physical register. This is a purely local property, because all physical
135   // register references are presumed dead across basic blocks.
136   std::vector<MachineInstr *> PhysRegUse;
137 
138   std::vector<SmallVector<unsigned, 4>> PHIVarInfo;
139 
140   // DistanceMap - Keep track the distance of a MI from the start of the
141   // current basic block.
142   DenseMap<MachineInstr*, unsigned> DistanceMap;
143 
144   // For legacy pass.
145   LiveVariables() = default;
146 
147   void analyze(MachineFunction &MF);
148 
149   /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
150   /// uses. Pay special attention to the sub-register uses which may come below
151   /// the last use of the whole register.
152   bool HandlePhysRegKill(Register Reg, MachineInstr *MI);
153 
154   /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
155   void HandleRegMask(const MachineOperand &, unsigned);
156 
157   void HandlePhysRegUse(Register Reg, MachineInstr &MI);
158   void HandlePhysRegDef(Register Reg, MachineInstr *MI,
159                         SmallVectorImpl<unsigned> &Defs);
160   void UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
161 
162   /// FindLastRefOrPartRef - Return the last reference or partial reference of
163   /// the specified register.
164   MachineInstr *FindLastRefOrPartRef(Register Reg);
165 
166   /// FindLastPartialDef - Return the last partial def of the specified
167   /// register. Also returns the sub-registers that're defined by the
168   /// instruction.
169   MachineInstr *FindLastPartialDef(Register Reg,
170                                    SmallSet<unsigned, 4> &PartDefRegs);
171 
172   /// analyzePHINodes - Gather information about the PHI nodes in here. In
173   /// particular, we want to map the variable information of a virtual
174   /// register which is used in a PHI node. We map that to the BB the vreg
175   /// is coming from.
176   void analyzePHINodes(const MachineFunction& Fn);
177 
178   void runOnInstr(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs,
179                   unsigned NumRegs);
180 
181   void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs);
182 
183 public:
184   LiveVariables(MachineFunction &MF);
185 
186   void print(raw_ostream &OS) const;
187 
188   //===--------------------------------------------------------------------===//
189   //  API to update live variable information
190 
191   /// Recompute liveness from scratch for a virtual register \p Reg that is
192   /// known to have a single def that dominates all uses. This can be useful
193   /// after removing some uses of \p Reg. It is not necessary for the whole
194   /// machine function to be in SSA form.
195   void recomputeForSingleDefVirtReg(Register Reg);
196 
197   /// replaceKillInstruction - Update register kill info by replacing a kill
198   /// instruction with a new one.
199   void replaceKillInstruction(Register Reg, MachineInstr &OldMI,
200                               MachineInstr &NewMI);
201 
202   /// addVirtualRegisterKilled - Add information about the fact that the
203   /// specified register is killed after being used by the specified
204   /// instruction. If AddIfNotFound is true, add a implicit operand if it's
205   /// not found.
206   void addVirtualRegisterKilled(Register IncomingReg, MachineInstr &MI,
207                                 bool AddIfNotFound = false) {
208     if (MI.addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
209       getVarInfo(IncomingReg).Kills.push_back(&MI);
210   }
211 
212   /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
213   /// register from the live variable information. Returns true if the
214   /// variable was marked as killed by the specified instruction,
215   /// false otherwise.
removeVirtualRegisterKilled(Register Reg,MachineInstr & MI)216   bool removeVirtualRegisterKilled(Register Reg, MachineInstr &MI) {
217     if (!getVarInfo(Reg).removeKill(MI))
218       return false;
219 
220     bool Removed = false;
221     for (MachineOperand &MO : MI.operands()) {
222       if (MO.isReg() && MO.isKill() && MO.getReg() == Reg) {
223         MO.setIsKill(false);
224         Removed = true;
225         break;
226       }
227     }
228 
229     assert(Removed && "Register is not used by this instruction!");
230     (void)Removed;
231     return true;
232   }
233 
234   /// removeVirtualRegistersKilled - Remove all killed info for the specified
235   /// instruction.
236   void removeVirtualRegistersKilled(MachineInstr &MI);
237 
238   /// addVirtualRegisterDead - Add information about the fact that the specified
239   /// register is dead after being used by the specified instruction. If
240   /// AddIfNotFound is true, add a implicit operand if it's not found.
241   void addVirtualRegisterDead(Register IncomingReg, MachineInstr &MI,
242                               bool AddIfNotFound = false) {
243     if (MI.addRegisterDead(IncomingReg, TRI, AddIfNotFound))
244       getVarInfo(IncomingReg).Kills.push_back(&MI);
245   }
246 
247   /// removeVirtualRegisterDead - Remove the specified kill of the virtual
248   /// register from the live variable information. Returns true if the
249   /// variable was marked dead at the specified instruction, false
250   /// otherwise.
removeVirtualRegisterDead(Register Reg,MachineInstr & MI)251   bool removeVirtualRegisterDead(Register Reg, MachineInstr &MI) {
252     if (!getVarInfo(Reg).removeKill(MI))
253       return false;
254 
255     bool Removed = false;
256     for (MachineOperand &MO : MI.operands()) {
257       if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
258         MO.setIsDead(false);
259         Removed = true;
260         break;
261       }
262     }
263     assert(Removed && "Register is not defined by this instruction!");
264     (void)Removed;
265     return true;
266   }
267 
268   /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
269   /// register.
270   VarInfo &getVarInfo(Register Reg);
271 
272   void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
273                                MachineBasicBlock *BB);
274   void MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *DefBlock,
275                                MachineBasicBlock *BB,
276                                SmallVectorImpl<MachineBasicBlock *> &WorkList);
277 
278   void HandleVirtRegDef(Register reg, MachineInstr &MI);
279   void HandleVirtRegUse(Register reg, MachineBasicBlock *MBB, MachineInstr &MI);
280 
isLiveIn(Register Reg,const MachineBasicBlock & MBB)281   bool isLiveIn(Register Reg, const MachineBasicBlock &MBB) {
282     return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
283   }
284 
285   /// isLiveOut - Determine if Reg is live out from MBB, when not considering
286   /// PHI nodes. This means that Reg is either killed by a successor block or
287   /// passed through one.
288   bool isLiveOut(Register Reg, const MachineBasicBlock &MBB);
289 
290   /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
291   /// variables that are live out of DomBB and live into SuccBB will be marked
292   /// as passing live through BB. This method assumes that the machine code is
293   /// still in SSA form.
294   void addNewBlock(MachineBasicBlock *BB,
295                    MachineBasicBlock *DomBB,
296                    MachineBasicBlock *SuccBB);
297 
298   void addNewBlock(MachineBasicBlock *BB,
299                    MachineBasicBlock *DomBB,
300                    MachineBasicBlock *SuccBB,
301                    std::vector<SparseBitVector<>> &LiveInSets);
302 };
303 
304 class LiveVariablesAnalysis : public AnalysisInfoMixin<LiveVariablesAnalysis> {
305   friend AnalysisInfoMixin<LiveVariablesAnalysis>;
306   static AnalysisKey Key;
307 
308 public:
309   using Result = LiveVariables;
310   Result run(MachineFunction &MF, MachineFunctionAnalysisManager &);
311 };
312 
313 class LiveVariablesPrinterPass
314     : public PassInfoMixin<LiveVariablesPrinterPass> {
315   raw_ostream &OS;
316 
317 public:
LiveVariablesPrinterPass(raw_ostream & OS)318   explicit LiveVariablesPrinterPass(raw_ostream &OS) : OS(OS) {}
319   PreservedAnalyses run(MachineFunction &MF,
320                         MachineFunctionAnalysisManager &MFAM);
isRequired()321   static bool isRequired() { return true; }
322 };
323 
324 class LiveVariablesWrapperPass : public MachineFunctionPass {
325   LiveVariables LV;
326 
327 public:
328   static char ID; // Pass identification, replacement for typeid
329 
LiveVariablesWrapperPass()330   LiveVariablesWrapperPass() : MachineFunctionPass(ID) {
331     initializeLiveVariablesWrapperPassPass(*PassRegistry::getPassRegistry());
332   }
333 
runOnMachineFunction(MachineFunction & MF)334   bool runOnMachineFunction(MachineFunction &MF) override {
335     LV.analyze(MF);
336     return false;
337   }
338 
339   void getAnalysisUsage(AnalysisUsage &AU) const override;
340 
releaseMemory()341   void releaseMemory() override { LV.VirtRegInfo.clear(); }
342 
getLV()343   LiveVariables &getLV() { return LV; }
344 };
345 
346 } // End llvm namespace
347 
348 #endif
349