1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/Driver/Driver.h"
10 #include "ToolChains/AIX.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AMDGPUOpenMP.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Arch/RISCV.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/CSKYToolChain.h"
17 #include "ToolChains/Clang.h"
18 #include "ToolChains/CrossWindows.h"
19 #include "ToolChains/Cuda.h"
20 #include "ToolChains/Darwin.h"
21 #include "ToolChains/DragonFly.h"
22 #include "ToolChains/FreeBSD.h"
23 #include "ToolChains/Fuchsia.h"
24 #include "ToolChains/Gnu.h"
25 #include "ToolChains/HIPAMD.h"
26 #include "ToolChains/HIPSPV.h"
27 #include "ToolChains/HLSL.h"
28 #include "ToolChains/Haiku.h"
29 #include "ToolChains/Hexagon.h"
30 #include "ToolChains/Hurd.h"
31 #include "ToolChains/Lanai.h"
32 #include "ToolChains/Linux.h"
33 #include "ToolChains/MSP430.h"
34 #include "ToolChains/MSVC.h"
35 #include "ToolChains/MinGW.h"
36 #include "ToolChains/MipsLinux.h"
37 #include "ToolChains/NaCl.h"
38 #include "ToolChains/NetBSD.h"
39 #include "ToolChains/OHOS.h"
40 #include "ToolChains/OpenBSD.h"
41 #include "ToolChains/PPCFreeBSD.h"
42 #include "ToolChains/PPCLinux.h"
43 #include "ToolChains/PS4CPU.h"
44 #include "ToolChains/RISCVToolchain.h"
45 #include "ToolChains/SPIRV.h"
46 #include "ToolChains/Solaris.h"
47 #include "ToolChains/TCE.h"
48 #include "ToolChains/VEToolchain.h"
49 #include "ToolChains/WebAssembly.h"
50 #include "ToolChains/XCore.h"
51 #include "ToolChains/ZOS.h"
52 #include "clang/Basic/DiagnosticDriver.h"
53 #include "clang/Basic/TargetID.h"
54 #include "clang/Basic/Version.h"
55 #include "clang/Config/config.h"
56 #include "clang/Driver/Action.h"
57 #include "clang/Driver/Compilation.h"
58 #include "clang/Driver/DriverDiagnostic.h"
59 #include "clang/Driver/InputInfo.h"
60 #include "clang/Driver/Job.h"
61 #include "clang/Driver/Options.h"
62 #include "clang/Driver/Phases.h"
63 #include "clang/Driver/SanitizerArgs.h"
64 #include "clang/Driver/Tool.h"
65 #include "clang/Driver/ToolChain.h"
66 #include "clang/Driver/Types.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/STLExtras.h"
69 #include "llvm/ADT/StringExtras.h"
70 #include "llvm/ADT/StringRef.h"
71 #include "llvm/ADT/StringSet.h"
72 #include "llvm/ADT/StringSwitch.h"
73 #include "llvm/Config/llvm-config.h"
74 #include "llvm/MC/TargetRegistry.h"
75 #include "llvm/Option/Arg.h"
76 #include "llvm/Option/ArgList.h"
77 #include "llvm/Option/OptSpecifier.h"
78 #include "llvm/Option/OptTable.h"
79 #include "llvm/Option/Option.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/ExitCodes.h"
83 #include "llvm/Support/FileSystem.h"
84 #include "llvm/Support/FormatVariadic.h"
85 #include "llvm/Support/MD5.h"
86 #include "llvm/Support/Path.h"
87 #include "llvm/Support/PrettyStackTrace.h"
88 #include "llvm/Support/Process.h"
89 #include "llvm/Support/Program.h"
90 #include "llvm/Support/Regex.h"
91 #include "llvm/Support/StringSaver.h"
92 #include "llvm/Support/VirtualFileSystem.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include "llvm/TargetParser/Host.h"
95 #include "llvm/TargetParser/RISCVISAInfo.h"
96 #include <cstdlib> // ::getenv
97 #include <map>
98 #include <memory>
99 #include <optional>
100 #include <set>
101 #include <utility>
102 #if LLVM_ON_UNIX
103 #include <unistd.h> // getpid
104 #endif
105
106 using namespace clang::driver;
107 using namespace clang;
108 using namespace llvm::opt;
109
getOffloadTargetTriple(const Driver & D,const ArgList & Args)110 static std::optional<llvm::Triple> getOffloadTargetTriple(const Driver &D,
111 const ArgList &Args) {
112 auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ);
113 // Offload compilation flow does not support multiple targets for now. We
114 // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
115 // to support multiple tool chains first.
116 switch (OffloadTargets.size()) {
117 default:
118 D.Diag(diag::err_drv_only_one_offload_target_supported);
119 return std::nullopt;
120 case 0:
121 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << "";
122 return std::nullopt;
123 case 1:
124 break;
125 }
126 return llvm::Triple(OffloadTargets[0]);
127 }
128
129 static std::optional<llvm::Triple>
getNVIDIAOffloadTargetTriple(const Driver & D,const ArgList & Args,const llvm::Triple & HostTriple)130 getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args,
131 const llvm::Triple &HostTriple) {
132 if (!Args.hasArg(options::OPT_offload_EQ)) {
133 return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda"
134 : "nvptx-nvidia-cuda");
135 }
136 auto TT = getOffloadTargetTriple(D, Args);
137 if (TT && (TT->getArch() == llvm::Triple::spirv32 ||
138 TT->getArch() == llvm::Triple::spirv64)) {
139 if (Args.hasArg(options::OPT_emit_llvm))
140 return TT;
141 D.Diag(diag::err_drv_cuda_offload_only_emit_bc);
142 return std::nullopt;
143 }
144 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
145 return std::nullopt;
146 }
147 static std::optional<llvm::Triple>
getHIPOffloadTargetTriple(const Driver & D,const ArgList & Args)148 getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) {
149 if (!Args.hasArg(options::OPT_offload_EQ)) {
150 auto OffloadArchs = Args.getAllArgValues(options::OPT_offload_arch_EQ);
151 if (llvm::find(OffloadArchs, "amdgcnspirv") != OffloadArchs.cend()) {
152 if (OffloadArchs.size() == 1)
153 return llvm::Triple("spirv64-amd-amdhsa");
154 // Mixing specific & SPIR-V compilation is not supported for now.
155 D.Diag(diag::err_drv_only_one_offload_target_supported);
156 return std::nullopt;
157 }
158 return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
159 }
160 auto TT = getOffloadTargetTriple(D, Args);
161 if (!TT)
162 return std::nullopt;
163 if (TT->getArch() == llvm::Triple::amdgcn &&
164 TT->getVendor() == llvm::Triple::AMD &&
165 TT->getOS() == llvm::Triple::AMDHSA)
166 return TT;
167 if (TT->getArch() == llvm::Triple::spirv64)
168 return TT;
169 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
170 return std::nullopt;
171 }
172
173 // static
GetResourcesPath(StringRef BinaryPath,StringRef CustomResourceDir)174 std::string Driver::GetResourcesPath(StringRef BinaryPath,
175 StringRef CustomResourceDir) {
176 // Since the resource directory is embedded in the module hash, it's important
177 // that all places that need it call this function, so that they get the
178 // exact same string ("a/../b/" and "b/" get different hashes, for example).
179
180 // Dir is bin/ or lib/, depending on where BinaryPath is.
181 std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
182
183 SmallString<128> P(Dir);
184 if (CustomResourceDir != "") {
185 llvm::sys::path::append(P, CustomResourceDir);
186 } else {
187 // On Windows, libclang.dll is in bin/.
188 // On non-Windows, libclang.so/.dylib is in lib/.
189 // With a static-library build of libclang, LibClangPath will contain the
190 // path of the embedding binary, which for LLVM binaries will be in bin/.
191 // ../lib gets us to lib/ in both cases.
192 P = llvm::sys::path::parent_path(Dir);
193 // This search path is also created in the COFF driver of lld, so any
194 // changes here also needs to happen in lld/COFF/Driver.cpp
195 llvm::sys::path::append(P, CLANG_INSTALL_LIBDIR_BASENAME, "clang",
196 CLANG_VERSION_MAJOR_STRING);
197 }
198
199 return std::string(P);
200 }
201
Driver(StringRef ClangExecutable,StringRef TargetTriple,DiagnosticsEngine & Diags,std::string Title,IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)202 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
203 DiagnosticsEngine &Diags, std::string Title,
204 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
205 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
206 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
207 Offload(OffloadHostDevice), CXX20HeaderType(HeaderMode_None),
208 ModulesModeCXX20(false), LTOMode(LTOK_None),
209 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
210 DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false),
211 CCLogDiagnostics(false), CCGenDiagnostics(false),
212 CCPrintProcessStats(false), CCPrintInternalStats(false),
213 TargetTriple(TargetTriple), Saver(Alloc), PrependArg(nullptr),
214 CheckInputsExist(true), ProbePrecompiled(true),
215 SuppressMissingInputWarning(false) {
216 // Provide a sane fallback if no VFS is specified.
217 if (!this->VFS)
218 this->VFS = llvm::vfs::getRealFileSystem();
219
220 Name = std::string(llvm::sys::path::filename(ClangExecutable));
221 Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
222
223 if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
224 // Prepend InstalledDir if SysRoot is relative
225 SmallString<128> P(Dir);
226 llvm::sys::path::append(P, SysRoot);
227 SysRoot = std::string(P);
228 }
229
230 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
231 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
232 #endif
233 #if defined(CLANG_CONFIG_FILE_USER_DIR)
234 {
235 SmallString<128> P;
236 llvm::sys::fs::expand_tilde(CLANG_CONFIG_FILE_USER_DIR, P);
237 UserConfigDir = static_cast<std::string>(P);
238 }
239 #endif
240
241 // Compute the path to the resource directory.
242 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
243 }
244
setDriverMode(StringRef Value)245 void Driver::setDriverMode(StringRef Value) {
246 static StringRef OptName =
247 getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
248 if (auto M = llvm::StringSwitch<std::optional<DriverMode>>(Value)
249 .Case("gcc", GCCMode)
250 .Case("g++", GXXMode)
251 .Case("cpp", CPPMode)
252 .Case("cl", CLMode)
253 .Case("flang", FlangMode)
254 .Case("dxc", DXCMode)
255 .Default(std::nullopt))
256 Mode = *M;
257 else
258 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
259 }
260
ParseArgStrings(ArrayRef<const char * > ArgStrings,bool UseDriverMode,bool & ContainsError)261 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
262 bool UseDriverMode, bool &ContainsError) {
263 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
264 ContainsError = false;
265
266 llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask(UseDriverMode);
267 unsigned MissingArgIndex, MissingArgCount;
268 InputArgList Args = getOpts().ParseArgs(ArgStrings, MissingArgIndex,
269 MissingArgCount, VisibilityMask);
270
271 // Check for missing argument error.
272 if (MissingArgCount) {
273 Diag(diag::err_drv_missing_argument)
274 << Args.getArgString(MissingArgIndex) << MissingArgCount;
275 ContainsError |=
276 Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
277 SourceLocation()) > DiagnosticsEngine::Warning;
278 }
279
280 // Check for unsupported options.
281 for (const Arg *A : Args) {
282 if (A->getOption().hasFlag(options::Unsupported)) {
283 Diag(diag::err_drv_unsupported_opt) << A->getAsString(Args);
284 ContainsError |= Diags.getDiagnosticLevel(diag::err_drv_unsupported_opt,
285 SourceLocation()) >
286 DiagnosticsEngine::Warning;
287 continue;
288 }
289
290 // Warn about -mcpu= without an argument.
291 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
292 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
293 ContainsError |= Diags.getDiagnosticLevel(
294 diag::warn_drv_empty_joined_argument,
295 SourceLocation()) > DiagnosticsEngine::Warning;
296 }
297 }
298
299 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
300 unsigned DiagID;
301 auto ArgString = A->getAsString(Args);
302 std::string Nearest;
303 if (getOpts().findNearest(ArgString, Nearest, VisibilityMask) > 1) {
304 if (!IsCLMode() &&
305 getOpts().findExact(ArgString, Nearest,
306 llvm::opt::Visibility(options::CC1Option))) {
307 DiagID = diag::err_drv_unknown_argument_with_suggestion;
308 Diags.Report(DiagID) << ArgString << "-Xclang " + Nearest;
309 } else {
310 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
311 : diag::err_drv_unknown_argument;
312 Diags.Report(DiagID) << ArgString;
313 }
314 } else {
315 DiagID = IsCLMode()
316 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
317 : diag::err_drv_unknown_argument_with_suggestion;
318 Diags.Report(DiagID) << ArgString << Nearest;
319 }
320 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
321 DiagnosticsEngine::Warning;
322 }
323
324 for (const Arg *A : Args.filtered(options::OPT_o)) {
325 if (ArgStrings[A->getIndex()] == A->getSpelling())
326 continue;
327
328 // Warn on joined arguments that are similar to a long argument.
329 std::string ArgString = ArgStrings[A->getIndex()];
330 std::string Nearest;
331 if (getOpts().findExact("-" + ArgString, Nearest, VisibilityMask))
332 Diags.Report(diag::warn_drv_potentially_misspelled_joined_argument)
333 << A->getAsString(Args) << Nearest;
334 }
335
336 return Args;
337 }
338
339 // Determine which compilation mode we are in. We look for options which
340 // affect the phase, starting with the earliest phases, and record which
341 // option we used to determine the final phase.
getFinalPhase(const DerivedArgList & DAL,Arg ** FinalPhaseArg) const342 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
343 Arg **FinalPhaseArg) const {
344 Arg *PhaseArg = nullptr;
345 phases::ID FinalPhase;
346
347 // -{E,EP,P,M,MM} only run the preprocessor.
348 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
349 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
350 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
351 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) ||
352 CCGenDiagnostics) {
353 FinalPhase = phases::Preprocess;
354
355 // --precompile only runs up to precompilation.
356 // Options that cause the output of C++20 compiled module interfaces or
357 // header units have the same effect.
358 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile)) ||
359 (PhaseArg = DAL.getLastArg(options::OPT_extract_api)) ||
360 (PhaseArg = DAL.getLastArg(options::OPT_fmodule_header,
361 options::OPT_fmodule_header_EQ))) {
362 FinalPhase = phases::Precompile;
363 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
364 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
365 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
366 (PhaseArg = DAL.getLastArg(options::OPT_print_enabled_extensions)) ||
367 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
368 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
369 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
370 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
371 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
372 (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
373 (PhaseArg = DAL.getLastArg(options::OPT_emit_cir)) ||
374 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
375 FinalPhase = phases::Compile;
376
377 // -S only runs up to the backend.
378 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
379 FinalPhase = phases::Backend;
380
381 // -c compilation only runs up to the assembler.
382 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
383 FinalPhase = phases::Assemble;
384
385 } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) {
386 FinalPhase = phases::IfsMerge;
387
388 // Otherwise do everything.
389 } else
390 FinalPhase = phases::Link;
391
392 if (FinalPhaseArg)
393 *FinalPhaseArg = PhaseArg;
394
395 return FinalPhase;
396 }
397
MakeInputArg(DerivedArgList & Args,const OptTable & Opts,StringRef Value,bool Claim=true)398 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
399 StringRef Value, bool Claim = true) {
400 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
401 Args.getBaseArgs().MakeIndex(Value), Value.data());
402 Args.AddSynthesizedArg(A);
403 if (Claim)
404 A->claim();
405 return A;
406 }
407
TranslateInputArgs(const InputArgList & Args) const408 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
409 const llvm::opt::OptTable &Opts = getOpts();
410 DerivedArgList *DAL = new DerivedArgList(Args);
411
412 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
413 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
414 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
415 bool IgnoreUnused = false;
416 for (Arg *A : Args) {
417 if (IgnoreUnused)
418 A->claim();
419
420 if (A->getOption().matches(options::OPT_start_no_unused_arguments)) {
421 IgnoreUnused = true;
422 continue;
423 }
424 if (A->getOption().matches(options::OPT_end_no_unused_arguments)) {
425 IgnoreUnused = false;
426 continue;
427 }
428
429 // Unfortunately, we have to parse some forwarding options (-Xassembler,
430 // -Xlinker, -Xpreprocessor) because we either integrate their functionality
431 // (assembler and preprocessor), or bypass a previous driver ('collect2').
432
433 // Rewrite linker options, to replace --no-demangle with a custom internal
434 // option.
435 if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
436 A->getOption().matches(options::OPT_Xlinker)) &&
437 A->containsValue("--no-demangle")) {
438 // Add the rewritten no-demangle argument.
439 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
440
441 // Add the remaining values as Xlinker arguments.
442 for (StringRef Val : A->getValues())
443 if (Val != "--no-demangle")
444 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
445
446 continue;
447 }
448
449 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
450 // some build systems. We don't try to be complete here because we don't
451 // care to encourage this usage model.
452 if (A->getOption().matches(options::OPT_Wp_COMMA) &&
453 (A->getValue(0) == StringRef("-MD") ||
454 A->getValue(0) == StringRef("-MMD"))) {
455 // Rewrite to -MD/-MMD along with -MF.
456 if (A->getValue(0) == StringRef("-MD"))
457 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
458 else
459 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
460 if (A->getNumValues() == 2)
461 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
462 continue;
463 }
464
465 // Rewrite reserved library names.
466 if (A->getOption().matches(options::OPT_l)) {
467 StringRef Value = A->getValue();
468
469 // Rewrite unless -nostdlib is present.
470 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
471 Value == "stdc++") {
472 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
473 continue;
474 }
475
476 // Rewrite unconditionally.
477 if (Value == "cc_kext") {
478 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
479 continue;
480 }
481 }
482
483 // Pick up inputs via the -- option.
484 if (A->getOption().matches(options::OPT__DASH_DASH)) {
485 A->claim();
486 for (StringRef Val : A->getValues())
487 DAL->append(MakeInputArg(*DAL, Opts, Val, false));
488 continue;
489 }
490
491 DAL->append(A);
492 }
493
494 // DXC mode quits before assembly if an output object file isn't specified.
495 if (IsDXCMode() && !Args.hasArg(options::OPT_dxc_Fo))
496 DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_S));
497
498 // Enforce -static if -miamcu is present.
499 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
500 DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static));
501
502 // Add a default value of -mlinker-version=, if one was given and the user
503 // didn't specify one.
504 #if defined(HOST_LINK_VERSION)
505 if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
506 strlen(HOST_LINK_VERSION) > 0) {
507 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
508 HOST_LINK_VERSION);
509 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
510 }
511 #endif
512
513 return DAL;
514 }
515
516 /// Compute target triple from args.
517 ///
518 /// This routine provides the logic to compute a target triple from various
519 /// args passed to the driver and the default triple string.
computeTargetTriple(const Driver & D,StringRef TargetTriple,const ArgList & Args,StringRef DarwinArchName="")520 static llvm::Triple computeTargetTriple(const Driver &D,
521 StringRef TargetTriple,
522 const ArgList &Args,
523 StringRef DarwinArchName = "") {
524 // FIXME: Already done in Compilation *Driver::BuildCompilation
525 if (const Arg *A = Args.getLastArg(options::OPT_target))
526 TargetTriple = A->getValue();
527
528 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
529
530 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
531 // -gnu* only, and we can not change this, so we have to detect that case as
532 // being the Hurd OS.
533 if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu"))
534 Target.setOSName("hurd");
535
536 // Handle Apple-specific options available here.
537 if (Target.isOSBinFormatMachO()) {
538 // If an explicit Darwin arch name is given, that trumps all.
539 if (!DarwinArchName.empty()) {
540 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName,
541 Args);
542 return Target;
543 }
544
545 // Handle the Darwin '-arch' flag.
546 if (Arg *A = Args.getLastArg(options::OPT_arch)) {
547 StringRef ArchName = A->getValue();
548 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName, Args);
549 }
550 }
551
552 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
553 // '-mbig-endian'/'-EB'.
554 if (Arg *A = Args.getLastArgNoClaim(options::OPT_mlittle_endian,
555 options::OPT_mbig_endian)) {
556 llvm::Triple T = A->getOption().matches(options::OPT_mlittle_endian)
557 ? Target.getLittleEndianArchVariant()
558 : Target.getBigEndianArchVariant();
559 if (T.getArch() != llvm::Triple::UnknownArch) {
560 Target = std::move(T);
561 Args.claimAllArgs(options::OPT_mlittle_endian, options::OPT_mbig_endian);
562 }
563 }
564
565 // Skip further flag support on OSes which don't support '-m32' or '-m64'.
566 if (Target.getArch() == llvm::Triple::tce)
567 return Target;
568
569 // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
570 if (Target.isOSAIX()) {
571 if (std::optional<std::string> ObjectModeValue =
572 llvm::sys::Process::GetEnv("OBJECT_MODE")) {
573 StringRef ObjectMode = *ObjectModeValue;
574 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
575
576 if (ObjectMode == "64") {
577 AT = Target.get64BitArchVariant().getArch();
578 } else if (ObjectMode == "32") {
579 AT = Target.get32BitArchVariant().getArch();
580 } else {
581 D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
582 }
583
584 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
585 Target.setArch(AT);
586 }
587 }
588
589 // The `-maix[32|64]` flags are only valid for AIX targets.
590 if (Arg *A = Args.getLastArgNoClaim(options::OPT_maix32, options::OPT_maix64);
591 A && !Target.isOSAIX())
592 D.Diag(diag::err_drv_unsupported_opt_for_target)
593 << A->getAsString(Args) << Target.str();
594
595 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
596 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
597 options::OPT_m32, options::OPT_m16,
598 options::OPT_maix32, options::OPT_maix64);
599 if (A) {
600 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
601
602 if (A->getOption().matches(options::OPT_m64) ||
603 A->getOption().matches(options::OPT_maix64)) {
604 AT = Target.get64BitArchVariant().getArch();
605 if (Target.getEnvironment() == llvm::Triple::GNUX32 ||
606 Target.getEnvironment() == llvm::Triple::GNUT64)
607 Target.setEnvironment(llvm::Triple::GNU);
608 else if (Target.getEnvironment() == llvm::Triple::MuslX32)
609 Target.setEnvironment(llvm::Triple::Musl);
610 } else if (A->getOption().matches(options::OPT_mx32) &&
611 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
612 AT = llvm::Triple::x86_64;
613 if (Target.getEnvironment() == llvm::Triple::Musl)
614 Target.setEnvironment(llvm::Triple::MuslX32);
615 else
616 Target.setEnvironment(llvm::Triple::GNUX32);
617 } else if (A->getOption().matches(options::OPT_m32) ||
618 A->getOption().matches(options::OPT_maix32)) {
619 AT = Target.get32BitArchVariant().getArch();
620 if (Target.getEnvironment() == llvm::Triple::GNUX32)
621 Target.setEnvironment(llvm::Triple::GNU);
622 else if (Target.getEnvironment() == llvm::Triple::MuslX32)
623 Target.setEnvironment(llvm::Triple::Musl);
624 } else if (A->getOption().matches(options::OPT_m16) &&
625 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
626 AT = llvm::Triple::x86;
627 Target.setEnvironment(llvm::Triple::CODE16);
628 }
629
630 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
631 Target.setArch(AT);
632 if (Target.isWindowsGNUEnvironment())
633 toolchains::MinGW::fixTripleArch(D, Target, Args);
634 }
635 }
636
637 // Handle -miamcu flag.
638 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
639 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
640 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
641 << Target.str();
642
643 if (A && !A->getOption().matches(options::OPT_m32))
644 D.Diag(diag::err_drv_argument_not_allowed_with)
645 << "-miamcu" << A->getBaseArg().getAsString(Args);
646
647 Target.setArch(llvm::Triple::x86);
648 Target.setArchName("i586");
649 Target.setEnvironment(llvm::Triple::UnknownEnvironment);
650 Target.setEnvironmentName("");
651 Target.setOS(llvm::Triple::ELFIAMCU);
652 Target.setVendor(llvm::Triple::UnknownVendor);
653 Target.setVendorName("intel");
654 }
655
656 // If target is MIPS adjust the target triple
657 // accordingly to provided ABI name.
658 if (Target.isMIPS()) {
659 if ((A = Args.getLastArg(options::OPT_mabi_EQ))) {
660 StringRef ABIName = A->getValue();
661 if (ABIName == "32") {
662 Target = Target.get32BitArchVariant();
663 if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
664 Target.getEnvironment() == llvm::Triple::GNUABIN32)
665 Target.setEnvironment(llvm::Triple::GNU);
666 } else if (ABIName == "n32") {
667 Target = Target.get64BitArchVariant();
668 if (Target.getEnvironment() == llvm::Triple::GNU ||
669 Target.getEnvironment() == llvm::Triple::GNUT64 ||
670 Target.getEnvironment() == llvm::Triple::GNUABI64)
671 Target.setEnvironment(llvm::Triple::GNUABIN32);
672 } else if (ABIName == "64") {
673 Target = Target.get64BitArchVariant();
674 if (Target.getEnvironment() == llvm::Triple::GNU ||
675 Target.getEnvironment() == llvm::Triple::GNUT64 ||
676 Target.getEnvironment() == llvm::Triple::GNUABIN32)
677 Target.setEnvironment(llvm::Triple::GNUABI64);
678 }
679 }
680 }
681
682 // If target is RISC-V adjust the target triple according to
683 // provided architecture name
684 if (Target.isRISCV()) {
685 if (Args.hasArg(options::OPT_march_EQ) ||
686 Args.hasArg(options::OPT_mcpu_EQ)) {
687 std::string ArchName = tools::riscv::getRISCVArch(Args, Target);
688 auto ISAInfo = llvm::RISCVISAInfo::parseArchString(
689 ArchName, /*EnableExperimentalExtensions=*/true);
690 if (!llvm::errorToBool(ISAInfo.takeError())) {
691 unsigned XLen = (*ISAInfo)->getXLen();
692 if (XLen == 32)
693 Target.setArch(llvm::Triple::riscv32);
694 else if (XLen == 64)
695 Target.setArch(llvm::Triple::riscv64);
696 }
697 }
698 }
699
700 return Target;
701 }
702
703 // Parse the LTO options and record the type of LTO compilation
704 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
705 // option occurs last.
parseLTOMode(Driver & D,const llvm::opt::ArgList & Args,OptSpecifier OptEq,OptSpecifier OptNeg)706 static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
707 OptSpecifier OptEq, OptSpecifier OptNeg) {
708 if (!Args.hasFlag(OptEq, OptNeg, false))
709 return LTOK_None;
710
711 const Arg *A = Args.getLastArg(OptEq);
712 StringRef LTOName = A->getValue();
713
714 driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
715 .Case("full", LTOK_Full)
716 .Case("thin", LTOK_Thin)
717 .Default(LTOK_Unknown);
718
719 if (LTOMode == LTOK_Unknown) {
720 D.Diag(diag::err_drv_unsupported_option_argument)
721 << A->getSpelling() << A->getValue();
722 return LTOK_None;
723 }
724 return LTOMode;
725 }
726
727 // Parse the LTO options.
setLTOMode(const llvm::opt::ArgList & Args)728 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
729 LTOMode =
730 parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
731
732 OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
733 options::OPT_fno_offload_lto);
734
735 // Try to enable `-foffload-lto=full` if `-fopenmp-target-jit` is on.
736 if (Args.hasFlag(options::OPT_fopenmp_target_jit,
737 options::OPT_fno_openmp_target_jit, false)) {
738 if (Arg *A = Args.getLastArg(options::OPT_foffload_lto_EQ,
739 options::OPT_fno_offload_lto))
740 if (OffloadLTOMode != LTOK_Full)
741 Diag(diag::err_drv_incompatible_options)
742 << A->getSpelling() << "-fopenmp-target-jit";
743 OffloadLTOMode = LTOK_Full;
744 }
745 }
746
747 /// Compute the desired OpenMP runtime from the flags provided.
getOpenMPRuntime(const ArgList & Args) const748 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
749 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
750
751 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
752 if (A)
753 RuntimeName = A->getValue();
754
755 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
756 .Case("libomp", OMPRT_OMP)
757 .Case("libgomp", OMPRT_GOMP)
758 .Case("libiomp5", OMPRT_IOMP5)
759 .Default(OMPRT_Unknown);
760
761 if (RT == OMPRT_Unknown) {
762 if (A)
763 Diag(diag::err_drv_unsupported_option_argument)
764 << A->getSpelling() << A->getValue();
765 else
766 // FIXME: We could use a nicer diagnostic here.
767 Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
768 }
769
770 return RT;
771 }
772
CreateOffloadingDeviceToolChains(Compilation & C,InputList & Inputs)773 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
774 InputList &Inputs) {
775
776 //
777 // CUDA/HIP
778 //
779 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
780 // or HIP type. However, mixed CUDA/HIP compilation is not supported.
781 bool IsCuda =
782 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
783 return types::isCuda(I.first);
784 });
785 bool IsHIP =
786 llvm::any_of(Inputs,
787 [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
788 return types::isHIP(I.first);
789 }) ||
790 C.getInputArgs().hasArg(options::OPT_hip_link) ||
791 C.getInputArgs().hasArg(options::OPT_hipstdpar);
792 if (IsCuda && IsHIP) {
793 Diag(clang::diag::err_drv_mix_cuda_hip);
794 return;
795 }
796 if (IsCuda) {
797 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
798 const llvm::Triple &HostTriple = HostTC->getTriple();
799 auto OFK = Action::OFK_Cuda;
800 auto CudaTriple =
801 getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple);
802 if (!CudaTriple)
803 return;
804 // Use the CUDA and host triples as the key into the ToolChains map,
805 // because the device toolchain we create depends on both.
806 auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()];
807 if (!CudaTC) {
808 CudaTC = std::make_unique<toolchains::CudaToolChain>(
809 *this, *CudaTriple, *HostTC, C.getInputArgs());
810
811 // Emit a warning if the detected CUDA version is too new.
812 CudaInstallationDetector &CudaInstallation =
813 static_cast<toolchains::CudaToolChain &>(*CudaTC).CudaInstallation;
814 if (CudaInstallation.isValid())
815 CudaInstallation.WarnIfUnsupportedVersion();
816 }
817 C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
818 } else if (IsHIP) {
819 if (auto *OMPTargetArg =
820 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
821 Diag(clang::diag::err_drv_unsupported_opt_for_language_mode)
822 << OMPTargetArg->getSpelling() << "HIP";
823 return;
824 }
825 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
826 auto OFK = Action::OFK_HIP;
827 auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
828 if (!HIPTriple)
829 return;
830 auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple,
831 *HostTC, OFK);
832 assert(HIPTC && "Could not create offloading device tool chain.");
833 C.addOffloadDeviceToolChain(HIPTC, OFK);
834 }
835
836 //
837 // OpenMP
838 //
839 // We need to generate an OpenMP toolchain if the user specified targets with
840 // the -fopenmp-targets option or used --offload-arch with OpenMP enabled.
841 bool IsOpenMPOffloading =
842 C.getInputArgs().hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ,
843 options::OPT_fno_openmp, false) &&
844 (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ) ||
845 C.getInputArgs().hasArg(options::OPT_offload_arch_EQ));
846 if (IsOpenMPOffloading) {
847 // We expect that -fopenmp-targets is always used in conjunction with the
848 // option -fopenmp specifying a valid runtime with offloading support, i.e.
849 // libomp or libiomp.
850 OpenMPRuntimeKind RuntimeKind = getOpenMPRuntime(C.getInputArgs());
851 if (RuntimeKind != OMPRT_OMP && RuntimeKind != OMPRT_IOMP5) {
852 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
853 return;
854 }
855
856 llvm::StringMap<llvm::DenseSet<StringRef>> DerivedArchs;
857 llvm::StringMap<StringRef> FoundNormalizedTriples;
858 std::multiset<StringRef> OpenMPTriples;
859
860 // If the user specified -fopenmp-targets= we create a toolchain for each
861 // valid triple. Otherwise, if only --offload-arch= was specified we instead
862 // attempt to derive the appropriate toolchains from the arguments.
863 if (Arg *OpenMPTargets =
864 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
865 if (OpenMPTargets && !OpenMPTargets->getNumValues()) {
866 Diag(clang::diag::warn_drv_empty_joined_argument)
867 << OpenMPTargets->getAsString(C.getInputArgs());
868 return;
869 }
870 for (StringRef T : OpenMPTargets->getValues())
871 OpenMPTriples.insert(T);
872 } else if (C.getInputArgs().hasArg(options::OPT_offload_arch_EQ) &&
873 !IsHIP && !IsCuda) {
874 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
875 auto AMDTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
876 auto NVPTXTriple = getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(),
877 HostTC->getTriple());
878
879 // Attempt to deduce the offloading triple from the set of architectures.
880 // We can only correctly deduce NVPTX / AMDGPU triples currently. We need
881 // to temporarily create these toolchains so that we can access tools for
882 // inferring architectures.
883 llvm::DenseSet<StringRef> Archs;
884 if (NVPTXTriple) {
885 auto TempTC = std::make_unique<toolchains::CudaToolChain>(
886 *this, *NVPTXTriple, *HostTC, C.getInputArgs());
887 for (StringRef Arch : getOffloadArchs(
888 C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
889 Archs.insert(Arch);
890 }
891 if (AMDTriple) {
892 auto TempTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
893 *this, *AMDTriple, *HostTC, C.getInputArgs());
894 for (StringRef Arch : getOffloadArchs(
895 C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
896 Archs.insert(Arch);
897 }
898 if (!AMDTriple && !NVPTXTriple) {
899 for (StringRef Arch :
900 getOffloadArchs(C, C.getArgs(), Action::OFK_OpenMP, nullptr, true))
901 Archs.insert(Arch);
902 }
903
904 for (StringRef Arch : Archs) {
905 if (NVPTXTriple && IsNVIDIAOffloadArch(StringToOffloadArch(
906 getProcessorFromTargetID(*NVPTXTriple, Arch)))) {
907 DerivedArchs[NVPTXTriple->getTriple()].insert(Arch);
908 } else if (AMDTriple &&
909 IsAMDOffloadArch(StringToOffloadArch(
910 getProcessorFromTargetID(*AMDTriple, Arch)))) {
911 DerivedArchs[AMDTriple->getTriple()].insert(Arch);
912 } else {
913 Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch) << Arch;
914 return;
915 }
916 }
917
918 // If the set is empty then we failed to find a native architecture.
919 if (Archs.empty()) {
920 Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch)
921 << "native";
922 return;
923 }
924
925 for (const auto &TripleAndArchs : DerivedArchs)
926 OpenMPTriples.insert(TripleAndArchs.first());
927 }
928
929 for (StringRef Val : OpenMPTriples) {
930 llvm::Triple TT(ToolChain::getOpenMPTriple(Val));
931 std::string NormalizedName = TT.normalize();
932
933 // Make sure we don't have a duplicate triple.
934 auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
935 if (Duplicate != FoundNormalizedTriples.end()) {
936 Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
937 << Val << Duplicate->second;
938 continue;
939 }
940
941 // Store the current triple so that we can check for duplicates in the
942 // following iterations.
943 FoundNormalizedTriples[NormalizedName] = Val;
944
945 // If the specified target is invalid, emit a diagnostic.
946 if (TT.getArch() == llvm::Triple::UnknownArch)
947 Diag(clang::diag::err_drv_invalid_omp_target) << Val;
948 else {
949 const ToolChain *TC;
950 // Device toolchains have to be selected differently. They pair host
951 // and device in their implementation.
952 if (TT.isNVPTX() || TT.isAMDGCN()) {
953 const ToolChain *HostTC =
954 C.getSingleOffloadToolChain<Action::OFK_Host>();
955 assert(HostTC && "Host toolchain should be always defined.");
956 auto &DeviceTC =
957 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
958 if (!DeviceTC) {
959 if (TT.isNVPTX())
960 DeviceTC = std::make_unique<toolchains::CudaToolChain>(
961 *this, TT, *HostTC, C.getInputArgs());
962 else if (TT.isAMDGCN())
963 DeviceTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
964 *this, TT, *HostTC, C.getInputArgs());
965 else
966 assert(DeviceTC && "Device toolchain not defined.");
967 }
968
969 TC = DeviceTC.get();
970 } else
971 TC = &getToolChain(C.getInputArgs(), TT);
972 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
973 if (DerivedArchs.contains(TT.getTriple()))
974 KnownArchs[TC] = DerivedArchs[TT.getTriple()];
975 }
976 }
977 } else if (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ)) {
978 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
979 return;
980 }
981
982 //
983 // TODO: Add support for other offloading programming models here.
984 //
985 }
986
appendOneArg(InputArgList & Args,const Arg * Opt,const Arg * BaseArg)987 static void appendOneArg(InputArgList &Args, const Arg *Opt,
988 const Arg *BaseArg) {
989 // The args for config files or /clang: flags belong to different InputArgList
990 // objects than Args. This copies an Arg from one of those other InputArgLists
991 // to the ownership of Args.
992 unsigned Index = Args.MakeIndex(Opt->getSpelling());
993 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
994 Index, BaseArg);
995 Copy->getValues() = Opt->getValues();
996 if (Opt->isClaimed())
997 Copy->claim();
998 Copy->setOwnsValues(Opt->getOwnsValues());
999 Opt->setOwnsValues(false);
1000 Args.append(Copy);
1001 }
1002
readConfigFile(StringRef FileName,llvm::cl::ExpansionContext & ExpCtx)1003 bool Driver::readConfigFile(StringRef FileName,
1004 llvm::cl::ExpansionContext &ExpCtx) {
1005 // Try opening the given file.
1006 auto Status = getVFS().status(FileName);
1007 if (!Status) {
1008 Diag(diag::err_drv_cannot_open_config_file)
1009 << FileName << Status.getError().message();
1010 return true;
1011 }
1012 if (Status->getType() != llvm::sys::fs::file_type::regular_file) {
1013 Diag(diag::err_drv_cannot_open_config_file)
1014 << FileName << "not a regular file";
1015 return true;
1016 }
1017
1018 // Try reading the given file.
1019 SmallVector<const char *, 32> NewCfgArgs;
1020 if (llvm::Error Err = ExpCtx.readConfigFile(FileName, NewCfgArgs)) {
1021 Diag(diag::err_drv_cannot_read_config_file)
1022 << FileName << toString(std::move(Err));
1023 return true;
1024 }
1025
1026 // Read options from config file.
1027 llvm::SmallString<128> CfgFileName(FileName);
1028 llvm::sys::path::native(CfgFileName);
1029 bool ContainErrors;
1030 std::unique_ptr<InputArgList> NewOptions = std::make_unique<InputArgList>(
1031 ParseArgStrings(NewCfgArgs, /*UseDriverMode=*/true, ContainErrors));
1032 if (ContainErrors)
1033 return true;
1034
1035 // Claim all arguments that come from a configuration file so that the driver
1036 // does not warn on any that is unused.
1037 for (Arg *A : *NewOptions)
1038 A->claim();
1039
1040 if (!CfgOptions)
1041 CfgOptions = std::move(NewOptions);
1042 else {
1043 // If this is a subsequent config file, append options to the previous one.
1044 for (auto *Opt : *NewOptions) {
1045 const Arg *BaseArg = &Opt->getBaseArg();
1046 if (BaseArg == Opt)
1047 BaseArg = nullptr;
1048 appendOneArg(*CfgOptions, Opt, BaseArg);
1049 }
1050 }
1051 ConfigFiles.push_back(std::string(CfgFileName));
1052 return false;
1053 }
1054
loadConfigFiles()1055 bool Driver::loadConfigFiles() {
1056 llvm::cl::ExpansionContext ExpCtx(Saver.getAllocator(),
1057 llvm::cl::tokenizeConfigFile);
1058 ExpCtx.setVFS(&getVFS());
1059
1060 // Process options that change search path for config files.
1061 if (CLOptions) {
1062 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
1063 SmallString<128> CfgDir;
1064 CfgDir.append(
1065 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
1066 if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1067 SystemConfigDir.clear();
1068 else
1069 SystemConfigDir = static_cast<std::string>(CfgDir);
1070 }
1071 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
1072 SmallString<128> CfgDir;
1073 llvm::sys::fs::expand_tilde(
1074 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ), CfgDir);
1075 if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1076 UserConfigDir.clear();
1077 else
1078 UserConfigDir = static_cast<std::string>(CfgDir);
1079 }
1080 }
1081
1082 // Prepare list of directories where config file is searched for.
1083 StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
1084 ExpCtx.setSearchDirs(CfgFileSearchDirs);
1085
1086 // First try to load configuration from the default files, return on error.
1087 if (loadDefaultConfigFiles(ExpCtx))
1088 return true;
1089
1090 // Then load configuration files specified explicitly.
1091 SmallString<128> CfgFilePath;
1092 if (CLOptions) {
1093 for (auto CfgFileName : CLOptions->getAllArgValues(options::OPT_config)) {
1094 // If argument contains directory separator, treat it as a path to
1095 // configuration file.
1096 if (llvm::sys::path::has_parent_path(CfgFileName)) {
1097 CfgFilePath.assign(CfgFileName);
1098 if (llvm::sys::path::is_relative(CfgFilePath)) {
1099 if (getVFS().makeAbsolute(CfgFilePath)) {
1100 Diag(diag::err_drv_cannot_open_config_file)
1101 << CfgFilePath << "cannot get absolute path";
1102 return true;
1103 }
1104 }
1105 } else if (!ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1106 // Report an error that the config file could not be found.
1107 Diag(diag::err_drv_config_file_not_found) << CfgFileName;
1108 for (const StringRef &SearchDir : CfgFileSearchDirs)
1109 if (!SearchDir.empty())
1110 Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1111 return true;
1112 }
1113
1114 // Try to read the config file, return on error.
1115 if (readConfigFile(CfgFilePath, ExpCtx))
1116 return true;
1117 }
1118 }
1119
1120 // No error occurred.
1121 return false;
1122 }
1123
loadDefaultConfigFiles(llvm::cl::ExpansionContext & ExpCtx)1124 bool Driver::loadDefaultConfigFiles(llvm::cl::ExpansionContext &ExpCtx) {
1125 // Disable default config if CLANG_NO_DEFAULT_CONFIG is set to a non-empty
1126 // value.
1127 if (const char *NoConfigEnv = ::getenv("CLANG_NO_DEFAULT_CONFIG")) {
1128 if (*NoConfigEnv)
1129 return false;
1130 }
1131 if (CLOptions && CLOptions->hasArg(options::OPT_no_default_config))
1132 return false;
1133
1134 std::string RealMode = getExecutableForDriverMode(Mode);
1135 std::string Triple;
1136
1137 // If name prefix is present, no --target= override was passed via CLOptions
1138 // and the name prefix is not a valid triple, force it for backwards
1139 // compatibility.
1140 if (!ClangNameParts.TargetPrefix.empty() &&
1141 computeTargetTriple(*this, "/invalid/", *CLOptions).str() ==
1142 "/invalid/") {
1143 llvm::Triple PrefixTriple{ClangNameParts.TargetPrefix};
1144 if (PrefixTriple.getArch() == llvm::Triple::UnknownArch ||
1145 PrefixTriple.isOSUnknown())
1146 Triple = PrefixTriple.str();
1147 }
1148
1149 // Otherwise, use the real triple as used by the driver.
1150 if (Triple.empty()) {
1151 llvm::Triple RealTriple =
1152 computeTargetTriple(*this, TargetTriple, *CLOptions);
1153 Triple = RealTriple.str();
1154 assert(!Triple.empty());
1155 }
1156
1157 // Search for config files in the following order:
1158 // 1. <triple>-<mode>.cfg using real driver mode
1159 // (e.g. i386-pc-linux-gnu-clang++.cfg).
1160 // 2. <triple>-<mode>.cfg using executable suffix
1161 // (e.g. i386-pc-linux-gnu-clang-g++.cfg for *clang-g++).
1162 // 3. <triple>.cfg + <mode>.cfg using real driver mode
1163 // (e.g. i386-pc-linux-gnu.cfg + clang++.cfg).
1164 // 4. <triple>.cfg + <mode>.cfg using executable suffix
1165 // (e.g. i386-pc-linux-gnu.cfg + clang-g++.cfg for *clang-g++).
1166
1167 // Try loading <triple>-<mode>.cfg, and return if we find a match.
1168 SmallString<128> CfgFilePath;
1169 std::string CfgFileName = Triple + '-' + RealMode + ".cfg";
1170 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1171 return readConfigFile(CfgFilePath, ExpCtx);
1172
1173 bool TryModeSuffix = !ClangNameParts.ModeSuffix.empty() &&
1174 ClangNameParts.ModeSuffix != RealMode;
1175 if (TryModeSuffix) {
1176 CfgFileName = Triple + '-' + ClangNameParts.ModeSuffix + ".cfg";
1177 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1178 return readConfigFile(CfgFilePath, ExpCtx);
1179 }
1180
1181 // Try loading <mode>.cfg, and return if loading failed. If a matching file
1182 // was not found, still proceed on to try <triple>.cfg.
1183 CfgFileName = RealMode + ".cfg";
1184 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1185 if (readConfigFile(CfgFilePath, ExpCtx))
1186 return true;
1187 } else if (TryModeSuffix) {
1188 CfgFileName = ClangNameParts.ModeSuffix + ".cfg";
1189 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath) &&
1190 readConfigFile(CfgFilePath, ExpCtx))
1191 return true;
1192 }
1193
1194 // Try loading <triple>.cfg and return if we find a match.
1195 CfgFileName = Triple + ".cfg";
1196 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1197 return readConfigFile(CfgFilePath, ExpCtx);
1198
1199 // If we were unable to find a config file deduced from executable name,
1200 // that is not an error.
1201 return false;
1202 }
1203
BuildCompilation(ArrayRef<const char * > ArgList)1204 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1205 llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1206
1207 // FIXME: Handle environment options which affect driver behavior, somewhere
1208 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1209
1210 // We look for the driver mode option early, because the mode can affect
1211 // how other options are parsed.
1212
1213 auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
1214 if (!DriverMode.empty())
1215 setDriverMode(DriverMode);
1216
1217 // FIXME: What are we going to do with -V and -b?
1218
1219 // Arguments specified in command line.
1220 bool ContainsError;
1221 CLOptions = std::make_unique<InputArgList>(
1222 ParseArgStrings(ArgList.slice(1), /*UseDriverMode=*/true, ContainsError));
1223
1224 // Try parsing configuration file.
1225 if (!ContainsError)
1226 ContainsError = loadConfigFiles();
1227 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1228
1229 // All arguments, from both config file and command line.
1230 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1231 : std::move(*CLOptions));
1232
1233 if (HasConfigFile)
1234 for (auto *Opt : *CLOptions) {
1235 if (Opt->getOption().matches(options::OPT_config))
1236 continue;
1237 const Arg *BaseArg = &Opt->getBaseArg();
1238 if (BaseArg == Opt)
1239 BaseArg = nullptr;
1240 appendOneArg(Args, Opt, BaseArg);
1241 }
1242
1243 // In CL mode, look for any pass-through arguments
1244 if (IsCLMode() && !ContainsError) {
1245 SmallVector<const char *, 16> CLModePassThroughArgList;
1246 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1247 A->claim();
1248 CLModePassThroughArgList.push_back(A->getValue());
1249 }
1250
1251 if (!CLModePassThroughArgList.empty()) {
1252 // Parse any pass through args using default clang processing rather
1253 // than clang-cl processing.
1254 auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1255 ParseArgStrings(CLModePassThroughArgList, /*UseDriverMode=*/false,
1256 ContainsError));
1257
1258 if (!ContainsError)
1259 for (auto *Opt : *CLModePassThroughOptions) {
1260 appendOneArg(Args, Opt, nullptr);
1261 }
1262 }
1263 }
1264
1265 // Check for working directory option before accessing any files
1266 if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1267 if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1268 Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1269
1270 // Check for missing include directories.
1271 if (!Diags.isIgnored(diag::warn_missing_include_dirs, SourceLocation())) {
1272 for (auto IncludeDir : Args.getAllArgValues(options::OPT_I_Group)) {
1273 if (!VFS->exists(IncludeDir))
1274 Diag(diag::warn_missing_include_dirs) << IncludeDir;
1275 }
1276 }
1277
1278 // FIXME: This stuff needs to go into the Compilation, not the driver.
1279 bool CCCPrintPhases;
1280
1281 // -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1282 Args.ClaimAllArgs(options::OPT_canonical_prefixes);
1283 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1284
1285 // f(no-)integated-cc1 is also used very early in main.
1286 Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1287 Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1288
1289 // Ignore -pipe.
1290 Args.ClaimAllArgs(options::OPT_pipe);
1291
1292 // Extract -ccc args.
1293 //
1294 // FIXME: We need to figure out where this behavior should live. Most of it
1295 // should be outside in the client; the parts that aren't should have proper
1296 // options, either by introducing new ones or by overloading gcc ones like -V
1297 // or -b.
1298 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1299 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1300 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1301 CCCGenericGCCName = A->getValue();
1302
1303 // Process -fproc-stat-report options.
1304 if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1305 CCPrintProcessStats = true;
1306 CCPrintStatReportFilename = A->getValue();
1307 }
1308 if (Args.hasArg(options::OPT_fproc_stat_report))
1309 CCPrintProcessStats = true;
1310
1311 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1312 // and getToolChain is const.
1313 if (IsCLMode()) {
1314 // clang-cl targets MSVC-style Win32.
1315 llvm::Triple T(TargetTriple);
1316 T.setOS(llvm::Triple::Win32);
1317 T.setVendor(llvm::Triple::PC);
1318 T.setEnvironment(llvm::Triple::MSVC);
1319 T.setObjectFormat(llvm::Triple::COFF);
1320 if (Args.hasArg(options::OPT__SLASH_arm64EC))
1321 T.setArch(llvm::Triple::aarch64, llvm::Triple::AArch64SubArch_arm64ec);
1322 TargetTriple = T.str();
1323 } else if (IsDXCMode()) {
1324 // Build TargetTriple from target_profile option for clang-dxc.
1325 if (const Arg *A = Args.getLastArg(options::OPT_target_profile)) {
1326 StringRef TargetProfile = A->getValue();
1327 if (auto Triple =
1328 toolchains::HLSLToolChain::parseTargetProfile(TargetProfile))
1329 TargetTriple = *Triple;
1330 else
1331 Diag(diag::err_drv_invalid_directx_shader_module) << TargetProfile;
1332
1333 A->claim();
1334
1335 if (Args.hasArg(options::OPT_spirv)) {
1336 llvm::Triple T(TargetTriple);
1337 T.setArch(llvm::Triple::spirv);
1338 T.setOS(llvm::Triple::Vulkan);
1339
1340 // Set specific Vulkan version if applicable.
1341 if (const Arg *A = Args.getLastArg(options::OPT_fspv_target_env_EQ)) {
1342 const llvm::StringSet<> ValidValues = {"vulkan1.2", "vulkan1.3"};
1343 if (ValidValues.contains(A->getValue())) {
1344 T.setOSName(A->getValue());
1345 } else {
1346 Diag(diag::err_drv_invalid_value)
1347 << A->getAsString(Args) << A->getValue();
1348 }
1349 A->claim();
1350 }
1351
1352 TargetTriple = T.str();
1353 }
1354 } else {
1355 Diag(diag::err_drv_dxc_missing_target_profile);
1356 }
1357 }
1358
1359 if (const Arg *A = Args.getLastArg(options::OPT_target))
1360 TargetTriple = A->getValue();
1361 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1362 Dir = Dir = A->getValue();
1363 for (const Arg *A : Args.filtered(options::OPT_B)) {
1364 A->claim();
1365 PrefixDirs.push_back(A->getValue(0));
1366 }
1367 if (std::optional<std::string> CompilerPathValue =
1368 llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1369 StringRef CompilerPath = *CompilerPathValue;
1370 while (!CompilerPath.empty()) {
1371 std::pair<StringRef, StringRef> Split =
1372 CompilerPath.split(llvm::sys::EnvPathSeparator);
1373 PrefixDirs.push_back(std::string(Split.first));
1374 CompilerPath = Split.second;
1375 }
1376 }
1377 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1378 SysRoot = A->getValue();
1379 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1380 DyldPrefix = A->getValue();
1381
1382 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1383 ResourceDir = A->getValue();
1384
1385 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1386 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1387 .Case("cwd", SaveTempsCwd)
1388 .Case("obj", SaveTempsObj)
1389 .Default(SaveTempsCwd);
1390 }
1391
1392 if (const Arg *A = Args.getLastArg(options::OPT_offload_host_only,
1393 options::OPT_offload_device_only,
1394 options::OPT_offload_host_device)) {
1395 if (A->getOption().matches(options::OPT_offload_host_only))
1396 Offload = OffloadHost;
1397 else if (A->getOption().matches(options::OPT_offload_device_only))
1398 Offload = OffloadDevice;
1399 else
1400 Offload = OffloadHostDevice;
1401 }
1402
1403 setLTOMode(Args);
1404
1405 // Process -fembed-bitcode= flags.
1406 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1407 StringRef Name = A->getValue();
1408 unsigned Model = llvm::StringSwitch<unsigned>(Name)
1409 .Case("off", EmbedNone)
1410 .Case("all", EmbedBitcode)
1411 .Case("bitcode", EmbedBitcode)
1412 .Case("marker", EmbedMarker)
1413 .Default(~0U);
1414 if (Model == ~0U) {
1415 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1416 << Name;
1417 } else
1418 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1419 }
1420
1421 // Remove existing compilation database so that each job can append to it.
1422 if (Arg *A = Args.getLastArg(options::OPT_MJ))
1423 llvm::sys::fs::remove(A->getValue());
1424
1425 // Setting up the jobs for some precompile cases depends on whether we are
1426 // treating them as PCH, implicit modules or C++20 ones.
1427 // TODO: inferring the mode like this seems fragile (it meets the objective
1428 // of not requiring anything new for operation, however).
1429 const Arg *Std = Args.getLastArg(options::OPT_std_EQ);
1430 ModulesModeCXX20 =
1431 !Args.hasArg(options::OPT_fmodules) && Std &&
1432 (Std->containsValue("c++20") || Std->containsValue("c++2a") ||
1433 Std->containsValue("c++23") || Std->containsValue("c++2b") ||
1434 Std->containsValue("c++26") || Std->containsValue("c++2c") ||
1435 Std->containsValue("c++latest"));
1436
1437 // Process -fmodule-header{=} flags.
1438 if (Arg *A = Args.getLastArg(options::OPT_fmodule_header_EQ,
1439 options::OPT_fmodule_header)) {
1440 // These flags force C++20 handling of headers.
1441 ModulesModeCXX20 = true;
1442 if (A->getOption().matches(options::OPT_fmodule_header))
1443 CXX20HeaderType = HeaderMode_Default;
1444 else {
1445 StringRef ArgName = A->getValue();
1446 unsigned Kind = llvm::StringSwitch<unsigned>(ArgName)
1447 .Case("user", HeaderMode_User)
1448 .Case("system", HeaderMode_System)
1449 .Default(~0U);
1450 if (Kind == ~0U) {
1451 Diags.Report(diag::err_drv_invalid_value)
1452 << A->getAsString(Args) << ArgName;
1453 } else
1454 CXX20HeaderType = static_cast<ModuleHeaderMode>(Kind);
1455 }
1456 }
1457
1458 std::unique_ptr<llvm::opt::InputArgList> UArgs =
1459 std::make_unique<InputArgList>(std::move(Args));
1460
1461 // Perform the default argument translations.
1462 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1463
1464 // Owned by the host.
1465 const ToolChain &TC = getToolChain(
1466 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1467
1468 // Check if the environment version is valid except wasm case.
1469 llvm::Triple Triple = TC.getTriple();
1470 if (!Triple.isWasm()) {
1471 StringRef TripleVersionName = Triple.getEnvironmentVersionString();
1472 StringRef TripleObjectFormat =
1473 Triple.getObjectFormatTypeName(Triple.getObjectFormat());
1474 if (Triple.getEnvironmentVersion().empty() && TripleVersionName != "" &&
1475 TripleVersionName != TripleObjectFormat) {
1476 Diags.Report(diag::err_drv_triple_version_invalid)
1477 << TripleVersionName << TC.getTripleString();
1478 ContainsError = true;
1479 }
1480 }
1481
1482 // Report warning when arm64EC option is overridden by specified target
1483 if ((TC.getTriple().getArch() != llvm::Triple::aarch64 ||
1484 TC.getTriple().getSubArch() != llvm::Triple::AArch64SubArch_arm64ec) &&
1485 UArgs->hasArg(options::OPT__SLASH_arm64EC)) {
1486 getDiags().Report(clang::diag::warn_target_override_arm64ec)
1487 << TC.getTriple().str();
1488 }
1489
1490 // A common user mistake is specifying a target of aarch64-none-eabi or
1491 // arm-none-elf whereas the correct names are aarch64-none-elf &
1492 // arm-none-eabi. Detect these cases and issue a warning.
1493 if (TC.getTriple().getOS() == llvm::Triple::UnknownOS &&
1494 TC.getTriple().getVendor() == llvm::Triple::UnknownVendor) {
1495 switch (TC.getTriple().getArch()) {
1496 case llvm::Triple::arm:
1497 case llvm::Triple::armeb:
1498 case llvm::Triple::thumb:
1499 case llvm::Triple::thumbeb:
1500 if (TC.getTriple().getEnvironmentName() == "elf") {
1501 Diag(diag::warn_target_unrecognized_env)
1502 << TargetTriple
1503 << (TC.getTriple().getArchName().str() + "-none-eabi");
1504 }
1505 break;
1506 case llvm::Triple::aarch64:
1507 case llvm::Triple::aarch64_be:
1508 case llvm::Triple::aarch64_32:
1509 if (TC.getTriple().getEnvironmentName().starts_with("eabi")) {
1510 Diag(diag::warn_target_unrecognized_env)
1511 << TargetTriple
1512 << (TC.getTriple().getArchName().str() + "-none-elf");
1513 }
1514 break;
1515 default:
1516 break;
1517 }
1518 }
1519
1520 // The compilation takes ownership of Args.
1521 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1522 ContainsError);
1523
1524 if (!HandleImmediateArgs(*C))
1525 return C;
1526
1527 // Construct the list of inputs.
1528 InputList Inputs;
1529 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1530
1531 // Populate the tool chains for the offloading devices, if any.
1532 CreateOffloadingDeviceToolChains(*C, Inputs);
1533
1534 // Construct the list of abstract actions to perform for this compilation. On
1535 // MachO targets this uses the driver-driver and universal actions.
1536 if (TC.getTriple().isOSBinFormatMachO())
1537 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1538 else
1539 BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1540
1541 if (CCCPrintPhases) {
1542 PrintActions(*C);
1543 return C;
1544 }
1545
1546 BuildJobs(*C);
1547
1548 return C;
1549 }
1550
printArgList(raw_ostream & OS,const llvm::opt::ArgList & Args)1551 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1552 llvm::opt::ArgStringList ASL;
1553 for (const auto *A : Args) {
1554 // Use user's original spelling of flags. For example, use
1555 // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
1556 // wrote the former.
1557 while (A->getAlias())
1558 A = A->getAlias();
1559 A->render(Args, ASL);
1560 }
1561
1562 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1563 if (I != ASL.begin())
1564 OS << ' ';
1565 llvm::sys::printArg(OS, *I, true);
1566 }
1567 OS << '\n';
1568 }
1569
getCrashDiagnosticFile(StringRef ReproCrashFilename,SmallString<128> & CrashDiagDir)1570 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1571 SmallString<128> &CrashDiagDir) {
1572 using namespace llvm::sys;
1573 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1574 "Only knows about .crash files on Darwin");
1575
1576 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1577 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1578 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1579 path::home_directory(CrashDiagDir);
1580 if (CrashDiagDir.starts_with("/var/root"))
1581 CrashDiagDir = "/";
1582 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1583 int PID =
1584 #if LLVM_ON_UNIX
1585 getpid();
1586 #else
1587 0;
1588 #endif
1589 std::error_code EC;
1590 fs::file_status FileStatus;
1591 TimePoint<> LastAccessTime;
1592 SmallString<128> CrashFilePath;
1593 // Lookup the .crash files and get the one generated by a subprocess spawned
1594 // by this driver invocation.
1595 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1596 File != FileEnd && !EC; File.increment(EC)) {
1597 StringRef FileName = path::filename(File->path());
1598 if (!FileName.starts_with(Name))
1599 continue;
1600 if (fs::status(File->path(), FileStatus))
1601 continue;
1602 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1603 llvm::MemoryBuffer::getFile(File->path());
1604 if (!CrashFile)
1605 continue;
1606 // The first line should start with "Process:", otherwise this isn't a real
1607 // .crash file.
1608 StringRef Data = CrashFile.get()->getBuffer();
1609 if (!Data.starts_with("Process:"))
1610 continue;
1611 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1612 size_t ParentProcPos = Data.find("Parent Process:");
1613 if (ParentProcPos == StringRef::npos)
1614 continue;
1615 size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1616 if (LineEnd == StringRef::npos)
1617 continue;
1618 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1619 int OpenBracket = -1, CloseBracket = -1;
1620 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1621 if (ParentProcess[i] == '[')
1622 OpenBracket = i;
1623 if (ParentProcess[i] == ']')
1624 CloseBracket = i;
1625 }
1626 // Extract the parent process PID from the .crash file and check whether
1627 // it matches this driver invocation pid.
1628 int CrashPID;
1629 if (OpenBracket < 0 || CloseBracket < 0 ||
1630 ParentProcess.slice(OpenBracket + 1, CloseBracket)
1631 .getAsInteger(10, CrashPID) || CrashPID != PID) {
1632 continue;
1633 }
1634
1635 // Found a .crash file matching the driver pid. To avoid getting an older
1636 // and misleading crash file, continue looking for the most recent.
1637 // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1638 // multiple crashes poiting to the same parent process. Since the driver
1639 // does not collect pid information for the dispatched invocation there's
1640 // currently no way to distinguish among them.
1641 const auto FileAccessTime = FileStatus.getLastModificationTime();
1642 if (FileAccessTime > LastAccessTime) {
1643 CrashFilePath.assign(File->path());
1644 LastAccessTime = FileAccessTime;
1645 }
1646 }
1647
1648 // If found, copy it over to the location of other reproducer files.
1649 if (!CrashFilePath.empty()) {
1650 EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1651 if (EC)
1652 return false;
1653 return true;
1654 }
1655
1656 return false;
1657 }
1658
1659 static const char BugReporMsg[] =
1660 "\n********************\n\n"
1661 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1662 "Preprocessed source(s) and associated run script(s) are located at:";
1663
1664 // When clang crashes, produce diagnostic information including the fully
1665 // preprocessed source file(s). Request that the developer attach the
1666 // diagnostic information to a bug report.
generateCompilationDiagnostics(Compilation & C,const Command & FailingCommand,StringRef AdditionalInformation,CompilationDiagnosticReport * Report)1667 void Driver::generateCompilationDiagnostics(
1668 Compilation &C, const Command &FailingCommand,
1669 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1670 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1671 return;
1672
1673 unsigned Level = 1;
1674 if (Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_EQ)) {
1675 Level = llvm::StringSwitch<unsigned>(A->getValue())
1676 .Case("off", 0)
1677 .Case("compiler", 1)
1678 .Case("all", 2)
1679 .Default(1);
1680 }
1681 if (!Level)
1682 return;
1683
1684 // Don't try to generate diagnostics for dsymutil jobs.
1685 if (FailingCommand.getCreator().isDsymutilJob())
1686 return;
1687
1688 bool IsLLD = false;
1689 ArgStringList SavedTemps;
1690 if (FailingCommand.getCreator().isLinkJob()) {
1691 C.getDefaultToolChain().GetLinkerPath(&IsLLD);
1692 if (!IsLLD || Level < 2)
1693 return;
1694
1695 // If lld crashed, we will re-run the same command with the input it used
1696 // to have. In that case we should not remove temp files in
1697 // initCompilationForDiagnostics yet. They will be added back and removed
1698 // later.
1699 SavedTemps = std::move(C.getTempFiles());
1700 assert(!C.getTempFiles().size());
1701 }
1702
1703 // Print the version of the compiler.
1704 PrintVersion(C, llvm::errs());
1705
1706 // Suppress driver output and emit preprocessor output to temp file.
1707 CCGenDiagnostics = true;
1708
1709 // Save the original job command(s).
1710 Command Cmd = FailingCommand;
1711
1712 // Keep track of whether we produce any errors while trying to produce
1713 // preprocessed sources.
1714 DiagnosticErrorTrap Trap(Diags);
1715
1716 // Suppress tool output.
1717 C.initCompilationForDiagnostics();
1718
1719 // If lld failed, rerun it again with --reproduce.
1720 if (IsLLD) {
1721 const char *TmpName = CreateTempFile(C, "linker-crash", "tar");
1722 Command NewLLDInvocation = Cmd;
1723 llvm::opt::ArgStringList ArgList = NewLLDInvocation.getArguments();
1724 StringRef ReproduceOption =
1725 C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment()
1726 ? "/reproduce:"
1727 : "--reproduce=";
1728 ArgList.push_back(Saver.save(Twine(ReproduceOption) + TmpName).data());
1729 NewLLDInvocation.replaceArguments(std::move(ArgList));
1730
1731 // Redirect stdout/stderr to /dev/null.
1732 NewLLDInvocation.Execute({std::nullopt, {""}, {""}}, nullptr, nullptr);
1733 Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1734 Diag(clang::diag::note_drv_command_failed_diag_msg) << TmpName;
1735 Diag(clang::diag::note_drv_command_failed_diag_msg)
1736 << "\n\n********************";
1737 if (Report)
1738 Report->TemporaryFiles.push_back(TmpName);
1739 return;
1740 }
1741
1742 // Construct the list of inputs.
1743 InputList Inputs;
1744 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1745
1746 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1747 bool IgnoreInput = false;
1748
1749 // Ignore input from stdin or any inputs that cannot be preprocessed.
1750 // Check type first as not all linker inputs have a value.
1751 if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1752 IgnoreInput = true;
1753 } else if (!strcmp(it->second->getValue(), "-")) {
1754 Diag(clang::diag::note_drv_command_failed_diag_msg)
1755 << "Error generating preprocessed source(s) - "
1756 "ignoring input from stdin.";
1757 IgnoreInput = true;
1758 }
1759
1760 if (IgnoreInput) {
1761 it = Inputs.erase(it);
1762 ie = Inputs.end();
1763 } else {
1764 ++it;
1765 }
1766 }
1767
1768 if (Inputs.empty()) {
1769 Diag(clang::diag::note_drv_command_failed_diag_msg)
1770 << "Error generating preprocessed source(s) - "
1771 "no preprocessable inputs.";
1772 return;
1773 }
1774
1775 // Don't attempt to generate preprocessed files if multiple -arch options are
1776 // used, unless they're all duplicates.
1777 llvm::StringSet<> ArchNames;
1778 for (const Arg *A : C.getArgs()) {
1779 if (A->getOption().matches(options::OPT_arch)) {
1780 StringRef ArchName = A->getValue();
1781 ArchNames.insert(ArchName);
1782 }
1783 }
1784 if (ArchNames.size() > 1) {
1785 Diag(clang::diag::note_drv_command_failed_diag_msg)
1786 << "Error generating preprocessed source(s) - cannot generate "
1787 "preprocessed source with multiple -arch options.";
1788 return;
1789 }
1790
1791 // Construct the list of abstract actions to perform for this compilation. On
1792 // Darwin OSes this uses the driver-driver and builds universal actions.
1793 const ToolChain &TC = C.getDefaultToolChain();
1794 if (TC.getTriple().isOSBinFormatMachO())
1795 BuildUniversalActions(C, TC, Inputs);
1796 else
1797 BuildActions(C, C.getArgs(), Inputs, C.getActions());
1798
1799 BuildJobs(C);
1800
1801 // If there were errors building the compilation, quit now.
1802 if (Trap.hasErrorOccurred()) {
1803 Diag(clang::diag::note_drv_command_failed_diag_msg)
1804 << "Error generating preprocessed source(s).";
1805 return;
1806 }
1807
1808 // Generate preprocessed output.
1809 SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1810 C.ExecuteJobs(C.getJobs(), FailingCommands);
1811
1812 // If any of the preprocessing commands failed, clean up and exit.
1813 if (!FailingCommands.empty()) {
1814 Diag(clang::diag::note_drv_command_failed_diag_msg)
1815 << "Error generating preprocessed source(s).";
1816 return;
1817 }
1818
1819 const ArgStringList &TempFiles = C.getTempFiles();
1820 if (TempFiles.empty()) {
1821 Diag(clang::diag::note_drv_command_failed_diag_msg)
1822 << "Error generating preprocessed source(s).";
1823 return;
1824 }
1825
1826 Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1827
1828 SmallString<128> VFS;
1829 SmallString<128> ReproCrashFilename;
1830 for (const char *TempFile : TempFiles) {
1831 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1832 if (Report)
1833 Report->TemporaryFiles.push_back(TempFile);
1834 if (ReproCrashFilename.empty()) {
1835 ReproCrashFilename = TempFile;
1836 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1837 }
1838 if (StringRef(TempFile).ends_with(".cache")) {
1839 // In some cases (modules) we'll dump extra data to help with reproducing
1840 // the crash into a directory next to the output.
1841 VFS = llvm::sys::path::filename(TempFile);
1842 llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1843 }
1844 }
1845
1846 for (const char *TempFile : SavedTemps)
1847 C.addTempFile(TempFile);
1848
1849 // Assume associated files are based off of the first temporary file.
1850 CrashReportInfo CrashInfo(TempFiles[0], VFS);
1851
1852 llvm::SmallString<128> Script(CrashInfo.Filename);
1853 llvm::sys::path::replace_extension(Script, "sh");
1854 std::error_code EC;
1855 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1856 llvm::sys::fs::FA_Write,
1857 llvm::sys::fs::OF_Text);
1858 if (EC) {
1859 Diag(clang::diag::note_drv_command_failed_diag_msg)
1860 << "Error generating run script: " << Script << " " << EC.message();
1861 } else {
1862 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1863 << "# Driver args: ";
1864 printArgList(ScriptOS, C.getInputArgs());
1865 ScriptOS << "# Original command: ";
1866 Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1867 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1868 if (!AdditionalInformation.empty())
1869 ScriptOS << "\n# Additional information: " << AdditionalInformation
1870 << "\n";
1871 if (Report)
1872 Report->TemporaryFiles.push_back(std::string(Script));
1873 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1874 }
1875
1876 // On darwin, provide information about the .crash diagnostic report.
1877 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1878 SmallString<128> CrashDiagDir;
1879 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1880 Diag(clang::diag::note_drv_command_failed_diag_msg)
1881 << ReproCrashFilename.str();
1882 } else { // Suggest a directory for the user to look for .crash files.
1883 llvm::sys::path::append(CrashDiagDir, Name);
1884 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1885 Diag(clang::diag::note_drv_command_failed_diag_msg)
1886 << "Crash backtrace is located in";
1887 Diag(clang::diag::note_drv_command_failed_diag_msg)
1888 << CrashDiagDir.str();
1889 Diag(clang::diag::note_drv_command_failed_diag_msg)
1890 << "(choose the .crash file that corresponds to your crash)";
1891 }
1892 }
1893
1894 Diag(clang::diag::note_drv_command_failed_diag_msg)
1895 << "\n\n********************";
1896 }
1897
setUpResponseFiles(Compilation & C,Command & Cmd)1898 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1899 // Since commandLineFitsWithinSystemLimits() may underestimate system's
1900 // capacity if the tool does not support response files, there is a chance/
1901 // that things will just work without a response file, so we silently just
1902 // skip it.
1903 if (Cmd.getResponseFileSupport().ResponseKind ==
1904 ResponseFileSupport::RF_None ||
1905 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1906 Cmd.getArguments()))
1907 return;
1908
1909 std::string TmpName = GetTemporaryPath("response", "txt");
1910 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1911 }
1912
ExecuteCompilation(Compilation & C,SmallVectorImpl<std::pair<int,const Command * >> & FailingCommands)1913 int Driver::ExecuteCompilation(
1914 Compilation &C,
1915 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1916 if (C.getArgs().hasArg(options::OPT_fdriver_only)) {
1917 if (C.getArgs().hasArg(options::OPT_v))
1918 C.getJobs().Print(llvm::errs(), "\n", true);
1919
1920 C.ExecuteJobs(C.getJobs(), FailingCommands, /*LogOnly=*/true);
1921
1922 // If there were errors building the compilation, quit now.
1923 if (!FailingCommands.empty() || Diags.hasErrorOccurred())
1924 return 1;
1925
1926 return 0;
1927 }
1928
1929 // Just print if -### was present.
1930 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1931 C.getJobs().Print(llvm::errs(), "\n", true);
1932 return Diags.hasErrorOccurred() ? 1 : 0;
1933 }
1934
1935 // If there were errors building the compilation, quit now.
1936 if (Diags.hasErrorOccurred())
1937 return 1;
1938
1939 // Set up response file names for each command, if necessary.
1940 for (auto &Job : C.getJobs())
1941 setUpResponseFiles(C, Job);
1942
1943 C.ExecuteJobs(C.getJobs(), FailingCommands);
1944
1945 // If the command succeeded, we are done.
1946 if (FailingCommands.empty())
1947 return 0;
1948
1949 // Otherwise, remove result files and print extra information about abnormal
1950 // failures.
1951 int Res = 0;
1952 for (const auto &CmdPair : FailingCommands) {
1953 int CommandRes = CmdPair.first;
1954 const Command *FailingCommand = CmdPair.second;
1955
1956 // Remove result files if we're not saving temps.
1957 if (!isSaveTempsEnabled()) {
1958 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1959 C.CleanupFileMap(C.getResultFiles(), JA, true);
1960
1961 // Failure result files are valid unless we crashed.
1962 if (CommandRes < 0)
1963 C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1964 }
1965
1966 // llvm/lib/Support/*/Signals.inc will exit with a special return code
1967 // for SIGPIPE. Do not print diagnostics for this case.
1968 if (CommandRes == EX_IOERR) {
1969 Res = CommandRes;
1970 continue;
1971 }
1972
1973 // Print extra information about abnormal failures, if possible.
1974 //
1975 // This is ad-hoc, but we don't want to be excessively noisy. If the result
1976 // status was 1, assume the command failed normally. In particular, if it
1977 // was the compiler then assume it gave a reasonable error code. Failures
1978 // in other tools are less common, and they generally have worse
1979 // diagnostics, so always print the diagnostic there.
1980 const Tool &FailingTool = FailingCommand->getCreator();
1981
1982 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1983 // FIXME: See FIXME above regarding result code interpretation.
1984 if (CommandRes < 0)
1985 Diag(clang::diag::err_drv_command_signalled)
1986 << FailingTool.getShortName();
1987 else
1988 Diag(clang::diag::err_drv_command_failed)
1989 << FailingTool.getShortName() << CommandRes;
1990 }
1991 }
1992 return Res;
1993 }
1994
PrintHelp(bool ShowHidden) const1995 void Driver::PrintHelp(bool ShowHidden) const {
1996 llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask();
1997
1998 std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1999 getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
2000 ShowHidden, /*ShowAllAliases=*/false,
2001 VisibilityMask);
2002 }
2003
PrintVersion(const Compilation & C,raw_ostream & OS) const2004 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
2005 if (IsFlangMode()) {
2006 OS << getClangToolFullVersion("flang-new") << '\n';
2007 } else {
2008 // FIXME: The following handlers should use a callback mechanism, we don't
2009 // know what the client would like to do.
2010 OS << getClangFullVersion() << '\n';
2011 }
2012 const ToolChain &TC = C.getDefaultToolChain();
2013 OS << "Target: " << TC.getTripleString() << '\n';
2014
2015 // Print the threading model.
2016 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
2017 // Don't print if the ToolChain would have barfed on it already
2018 if (TC.isThreadModelSupported(A->getValue()))
2019 OS << "Thread model: " << A->getValue();
2020 } else
2021 OS << "Thread model: " << TC.getThreadModel();
2022 OS << '\n';
2023
2024 // Print out the install directory.
2025 OS << "InstalledDir: " << Dir << '\n';
2026
2027 // Print the build config if it's non-default.
2028 // Intended to help LLVM developers understand the configs of compilers
2029 // they're investigating.
2030 if (!llvm::cl::getCompilerBuildConfig().empty())
2031 llvm::cl::printBuildConfig(OS);
2032
2033 // If configuration files were used, print their paths.
2034 for (auto ConfigFile : ConfigFiles)
2035 OS << "Configuration file: " << ConfigFile << '\n';
2036 }
2037
2038 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
2039 /// option.
PrintDiagnosticCategories(raw_ostream & OS)2040 static void PrintDiagnosticCategories(raw_ostream &OS) {
2041 // Skip the empty category.
2042 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
2043 ++i)
2044 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
2045 }
2046
HandleAutocompletions(StringRef PassedFlags) const2047 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
2048 if (PassedFlags == "")
2049 return;
2050 // Print out all options that start with a given argument. This is used for
2051 // shell autocompletion.
2052 std::vector<std::string> SuggestedCompletions;
2053 std::vector<std::string> Flags;
2054
2055 llvm::opt::Visibility VisibilityMask(options::ClangOption);
2056
2057 // Make sure that Flang-only options don't pollute the Clang output
2058 // TODO: Make sure that Clang-only options don't pollute Flang output
2059 if (IsFlangMode())
2060 VisibilityMask = llvm::opt::Visibility(options::FlangOption);
2061
2062 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
2063 // because the latter indicates that the user put space before pushing tab
2064 // which should end up in a file completion.
2065 const bool HasSpace = PassedFlags.ends_with(",");
2066
2067 // Parse PassedFlags by "," as all the command-line flags are passed to this
2068 // function separated by ","
2069 StringRef TargetFlags = PassedFlags;
2070 while (TargetFlags != "") {
2071 StringRef CurFlag;
2072 std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
2073 Flags.push_back(std::string(CurFlag));
2074 }
2075
2076 // We want to show cc1-only options only when clang is invoked with -cc1 or
2077 // -Xclang.
2078 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
2079 VisibilityMask = llvm::opt::Visibility(options::CC1Option);
2080
2081 const llvm::opt::OptTable &Opts = getOpts();
2082 StringRef Cur;
2083 Cur = Flags.at(Flags.size() - 1);
2084 StringRef Prev;
2085 if (Flags.size() >= 2) {
2086 Prev = Flags.at(Flags.size() - 2);
2087 SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
2088 }
2089
2090 if (SuggestedCompletions.empty())
2091 SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
2092
2093 // If Flags were empty, it means the user typed `clang [tab]` where we should
2094 // list all possible flags. If there was no value completion and the user
2095 // pressed tab after a space, we should fall back to a file completion.
2096 // We're printing a newline to be consistent with what we print at the end of
2097 // this function.
2098 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
2099 llvm::outs() << '\n';
2100 return;
2101 }
2102
2103 // When flag ends with '=' and there was no value completion, return empty
2104 // string and fall back to the file autocompletion.
2105 if (SuggestedCompletions.empty() && !Cur.ends_with("=")) {
2106 // If the flag is in the form of "--autocomplete=-foo",
2107 // we were requested to print out all option names that start with "-foo".
2108 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
2109 SuggestedCompletions = Opts.findByPrefix(
2110 Cur, VisibilityMask,
2111 /*DisableFlags=*/options::Unsupported | options::Ignored);
2112
2113 // We have to query the -W flags manually as they're not in the OptTable.
2114 // TODO: Find a good way to add them to OptTable instead and them remove
2115 // this code.
2116 for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
2117 if (S.starts_with(Cur))
2118 SuggestedCompletions.push_back(std::string(S));
2119 }
2120
2121 // Sort the autocomplete candidates so that shells print them out in a
2122 // deterministic order. We could sort in any way, but we chose
2123 // case-insensitive sorting for consistency with the -help option
2124 // which prints out options in the case-insensitive alphabetical order.
2125 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
2126 if (int X = A.compare_insensitive(B))
2127 return X < 0;
2128 return A.compare(B) > 0;
2129 });
2130
2131 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
2132 }
2133
HandleImmediateArgs(Compilation & C)2134 bool Driver::HandleImmediateArgs(Compilation &C) {
2135 // The order these options are handled in gcc is all over the place, but we
2136 // don't expect inconsistencies w.r.t. that to matter in practice.
2137
2138 if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
2139 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
2140 return false;
2141 }
2142
2143 if (C.getArgs().hasArg(options::OPT_dumpversion)) {
2144 // Since -dumpversion is only implemented for pedantic GCC compatibility, we
2145 // return an answer which matches our definition of __VERSION__.
2146 llvm::outs() << CLANG_VERSION_STRING << "\n";
2147 return false;
2148 }
2149
2150 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
2151 PrintDiagnosticCategories(llvm::outs());
2152 return false;
2153 }
2154
2155 if (C.getArgs().hasArg(options::OPT_help) ||
2156 C.getArgs().hasArg(options::OPT__help_hidden)) {
2157 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
2158 return false;
2159 }
2160
2161 if (C.getArgs().hasArg(options::OPT__version)) {
2162 // Follow gcc behavior and use stdout for --version and stderr for -v.
2163 PrintVersion(C, llvm::outs());
2164 return false;
2165 }
2166
2167 if (C.getArgs().hasArg(options::OPT_v) ||
2168 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
2169 C.getArgs().hasArg(options::OPT_print_supported_cpus) ||
2170 C.getArgs().hasArg(options::OPT_print_supported_extensions) ||
2171 C.getArgs().hasArg(options::OPT_print_enabled_extensions)) {
2172 PrintVersion(C, llvm::errs());
2173 SuppressMissingInputWarning = true;
2174 }
2175
2176 if (C.getArgs().hasArg(options::OPT_v)) {
2177 if (!SystemConfigDir.empty())
2178 llvm::errs() << "System configuration file directory: "
2179 << SystemConfigDir << "\n";
2180 if (!UserConfigDir.empty())
2181 llvm::errs() << "User configuration file directory: "
2182 << UserConfigDir << "\n";
2183 }
2184
2185 const ToolChain &TC = C.getDefaultToolChain();
2186
2187 if (C.getArgs().hasArg(options::OPT_v))
2188 TC.printVerboseInfo(llvm::errs());
2189
2190 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
2191 llvm::outs() << ResourceDir << '\n';
2192 return false;
2193 }
2194
2195 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
2196 llvm::outs() << "programs: =";
2197 bool separator = false;
2198 // Print -B and COMPILER_PATH.
2199 for (const std::string &Path : PrefixDirs) {
2200 if (separator)
2201 llvm::outs() << llvm::sys::EnvPathSeparator;
2202 llvm::outs() << Path;
2203 separator = true;
2204 }
2205 for (const std::string &Path : TC.getProgramPaths()) {
2206 if (separator)
2207 llvm::outs() << llvm::sys::EnvPathSeparator;
2208 llvm::outs() << Path;
2209 separator = true;
2210 }
2211 llvm::outs() << "\n";
2212 llvm::outs() << "libraries: =" << ResourceDir;
2213
2214 StringRef sysroot = C.getSysRoot();
2215
2216 for (const std::string &Path : TC.getFilePaths()) {
2217 // Always print a separator. ResourceDir was the first item shown.
2218 llvm::outs() << llvm::sys::EnvPathSeparator;
2219 // Interpretation of leading '=' is needed only for NetBSD.
2220 if (Path[0] == '=')
2221 llvm::outs() << sysroot << Path.substr(1);
2222 else
2223 llvm::outs() << Path;
2224 }
2225 llvm::outs() << "\n";
2226 return false;
2227 }
2228
2229 if (C.getArgs().hasArg(options::OPT_print_std_module_manifest_path)) {
2230 llvm::outs() << GetStdModuleManifestPath(C, C.getDefaultToolChain())
2231 << '\n';
2232 return false;
2233 }
2234
2235 if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
2236 if (std::optional<std::string> RuntimePath = TC.getRuntimePath())
2237 llvm::outs() << *RuntimePath << '\n';
2238 else
2239 llvm::outs() << TC.getCompilerRTPath() << '\n';
2240 return false;
2241 }
2242
2243 if (C.getArgs().hasArg(options::OPT_print_diagnostic_options)) {
2244 std::vector<std::string> Flags = DiagnosticIDs::getDiagnosticFlags();
2245 for (std::size_t I = 0; I != Flags.size(); I += 2)
2246 llvm::outs() << " " << Flags[I] << "\n " << Flags[I + 1] << "\n\n";
2247 return false;
2248 }
2249
2250 // FIXME: The following handlers should use a callback mechanism, we don't
2251 // know what the client would like to do.
2252 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
2253 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
2254 return false;
2255 }
2256
2257 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
2258 StringRef ProgName = A->getValue();
2259
2260 // Null program name cannot have a path.
2261 if (! ProgName.empty())
2262 llvm::outs() << GetProgramPath(ProgName, TC);
2263
2264 llvm::outs() << "\n";
2265 return false;
2266 }
2267
2268 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
2269 StringRef PassedFlags = A->getValue();
2270 HandleAutocompletions(PassedFlags);
2271 return false;
2272 }
2273
2274 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
2275 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
2276 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2277 // The 'Darwin' toolchain is initialized only when its arguments are
2278 // computed. Get the default arguments for OFK_None to ensure that
2279 // initialization is performed before trying to access properties of
2280 // the toolchain in the functions below.
2281 // FIXME: Remove when darwin's toolchain is initialized during construction.
2282 // FIXME: For some more esoteric targets the default toolchain is not the
2283 // correct one.
2284 C.getArgsForToolChain(&TC, Triple.getArchName(), Action::OFK_None);
2285 RegisterEffectiveTriple TripleRAII(TC, Triple);
2286 switch (RLT) {
2287 case ToolChain::RLT_CompilerRT:
2288 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
2289 break;
2290 case ToolChain::RLT_Libgcc:
2291 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
2292 break;
2293 }
2294 return false;
2295 }
2296
2297 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
2298 for (const Multilib &Multilib : TC.getMultilibs())
2299 llvm::outs() << Multilib << "\n";
2300 return false;
2301 }
2302
2303 if (C.getArgs().hasArg(options::OPT_print_multi_flags)) {
2304 Multilib::flags_list ArgFlags = TC.getMultilibFlags(C.getArgs());
2305 llvm::StringSet<> ExpandedFlags = TC.getMultilibs().expandFlags(ArgFlags);
2306 std::set<llvm::StringRef> SortedFlags;
2307 for (const auto &FlagEntry : ExpandedFlags)
2308 SortedFlags.insert(FlagEntry.getKey());
2309 for (auto Flag : SortedFlags)
2310 llvm::outs() << Flag << '\n';
2311 return false;
2312 }
2313
2314 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
2315 for (const Multilib &Multilib : TC.getSelectedMultilibs()) {
2316 if (Multilib.gccSuffix().empty())
2317 llvm::outs() << ".\n";
2318 else {
2319 StringRef Suffix(Multilib.gccSuffix());
2320 assert(Suffix.front() == '/');
2321 llvm::outs() << Suffix.substr(1) << "\n";
2322 }
2323 }
2324 return false;
2325 }
2326
2327 if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
2328 llvm::outs() << TC.getTripleString() << "\n";
2329 return false;
2330 }
2331
2332 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
2333 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2334 llvm::outs() << Triple.getTriple() << "\n";
2335 return false;
2336 }
2337
2338 if (C.getArgs().hasArg(options::OPT_print_targets)) {
2339 llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
2340 return false;
2341 }
2342
2343 return true;
2344 }
2345
2346 enum {
2347 TopLevelAction = 0,
2348 HeadSibAction = 1,
2349 OtherSibAction = 2,
2350 };
2351
2352 // Display an action graph human-readably. Action A is the "sink" node
2353 // and latest-occuring action. Traversal is in pre-order, visiting the
2354 // inputs to each action before printing the action itself.
PrintActions1(const Compilation & C,Action * A,std::map<Action *,unsigned> & Ids,Twine Indent={},int Kind=TopLevelAction)2355 static unsigned PrintActions1(const Compilation &C, Action *A,
2356 std::map<Action *, unsigned> &Ids,
2357 Twine Indent = {}, int Kind = TopLevelAction) {
2358 if (Ids.count(A)) // A was already visited.
2359 return Ids[A];
2360
2361 std::string str;
2362 llvm::raw_string_ostream os(str);
2363
__anon17dcc6010502(int K) 2364 auto getSibIndent = [](int K) -> Twine {
2365 return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : "";
2366 };
2367
2368 Twine SibIndent = Indent + getSibIndent(Kind);
2369 int SibKind = HeadSibAction;
2370 os << Action::getClassName(A->getKind()) << ", ";
2371 if (InputAction *IA = dyn_cast<InputAction>(A)) {
2372 os << "\"" << IA->getInputArg().getValue() << "\"";
2373 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
2374 os << '"' << BIA->getArchName() << '"' << ", {"
2375 << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
2376 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
2377 bool IsFirst = true;
2378 OA->doOnEachDependence(
__anon17dcc6010602(Action *A, const ToolChain *TC, const char *BoundArch) 2379 [&](Action *A, const ToolChain *TC, const char *BoundArch) {
2380 assert(TC && "Unknown host toolchain");
2381 // E.g. for two CUDA device dependences whose bound arch is sm_20 and
2382 // sm_35 this will generate:
2383 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
2384 // (nvptx64-nvidia-cuda:sm_35) {#ID}
2385 if (!IsFirst)
2386 os << ", ";
2387 os << '"';
2388 os << A->getOffloadingKindPrefix();
2389 os << " (";
2390 os << TC->getTriple().normalize();
2391 if (BoundArch)
2392 os << ":" << BoundArch;
2393 os << ")";
2394 os << '"';
2395 os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
2396 IsFirst = false;
2397 SibKind = OtherSibAction;
2398 });
2399 } else {
2400 const ActionList *AL = &A->getInputs();
2401
2402 if (AL->size()) {
2403 const char *Prefix = "{";
2404 for (Action *PreRequisite : *AL) {
2405 os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
2406 Prefix = ", ";
2407 SibKind = OtherSibAction;
2408 }
2409 os << "}";
2410 } else
2411 os << "{}";
2412 }
2413
2414 // Append offload info for all options other than the offloading action
2415 // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2416 std::string offload_str;
2417 llvm::raw_string_ostream offload_os(offload_str);
2418 if (!isa<OffloadAction>(A)) {
2419 auto S = A->getOffloadingKindPrefix();
2420 if (!S.empty()) {
2421 offload_os << ", (" << S;
2422 if (A->getOffloadingArch())
2423 offload_os << ", " << A->getOffloadingArch();
2424 offload_os << ")";
2425 }
2426 }
2427
__anon17dcc6010702(int K) 2428 auto getSelfIndent = [](int K) -> Twine {
2429 return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2430 };
2431
2432 unsigned Id = Ids.size();
2433 Ids[A] = Id;
2434 llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2435 << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2436
2437 return Id;
2438 }
2439
2440 // Print the action graphs in a compilation C.
2441 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
PrintActions(const Compilation & C) const2442 void Driver::PrintActions(const Compilation &C) const {
2443 std::map<Action *, unsigned> Ids;
2444 for (Action *A : C.getActions())
2445 PrintActions1(C, A, Ids);
2446 }
2447
2448 /// Check whether the given input tree contains any compilation or
2449 /// assembly actions.
ContainsCompileOrAssembleAction(const Action * A)2450 static bool ContainsCompileOrAssembleAction(const Action *A) {
2451 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2452 isa<AssembleJobAction>(A))
2453 return true;
2454
2455 return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction);
2456 }
2457
BuildUniversalActions(Compilation & C,const ToolChain & TC,const InputList & BAInputs) const2458 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2459 const InputList &BAInputs) const {
2460 DerivedArgList &Args = C.getArgs();
2461 ActionList &Actions = C.getActions();
2462 llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2463 // Collect the list of architectures. Duplicates are allowed, but should only
2464 // be handled once (in the order seen).
2465 llvm::StringSet<> ArchNames;
2466 SmallVector<const char *, 4> Archs;
2467 for (Arg *A : Args) {
2468 if (A->getOption().matches(options::OPT_arch)) {
2469 // Validate the option here; we don't save the type here because its
2470 // particular spelling may participate in other driver choices.
2471 llvm::Triple::ArchType Arch =
2472 tools::darwin::getArchTypeForMachOArchName(A->getValue());
2473 if (Arch == llvm::Triple::UnknownArch) {
2474 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2475 continue;
2476 }
2477
2478 A->claim();
2479 if (ArchNames.insert(A->getValue()).second)
2480 Archs.push_back(A->getValue());
2481 }
2482 }
2483
2484 // When there is no explicit arch for this platform, make sure we still bind
2485 // the architecture (to the default) so that -Xarch_ is handled correctly.
2486 if (!Archs.size())
2487 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2488
2489 ActionList SingleActions;
2490 BuildActions(C, Args, BAInputs, SingleActions);
2491
2492 // Add in arch bindings for every top level action, as well as lipo and
2493 // dsymutil steps if needed.
2494 for (Action* Act : SingleActions) {
2495 // Make sure we can lipo this kind of output. If not (and it is an actual
2496 // output) then we disallow, since we can't create an output file with the
2497 // right name without overwriting it. We could remove this oddity by just
2498 // changing the output names to include the arch, which would also fix
2499 // -save-temps. Compatibility wins for now.
2500
2501 if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2502 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2503 << types::getTypeName(Act->getType());
2504
2505 ActionList Inputs;
2506 for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2507 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2508
2509 // Lipo if necessary, we do it this way because we need to set the arch flag
2510 // so that -Xarch_ gets overwritten.
2511 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2512 Actions.append(Inputs.begin(), Inputs.end());
2513 else
2514 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2515
2516 // Handle debug info queries.
2517 Arg *A = Args.getLastArg(options::OPT_g_Group);
2518 bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2519 !A->getOption().matches(options::OPT_gstabs);
2520 if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2521 ContainsCompileOrAssembleAction(Actions.back())) {
2522
2523 // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2524 // have a compile input. We need to run 'dsymutil' ourselves in such cases
2525 // because the debug info will refer to a temporary object file which
2526 // will be removed at the end of the compilation process.
2527 if (Act->getType() == types::TY_Image) {
2528 ActionList Inputs;
2529 Inputs.push_back(Actions.back());
2530 Actions.pop_back();
2531 Actions.push_back(
2532 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2533 }
2534
2535 // Verify the debug info output.
2536 if (Args.hasArg(options::OPT_verify_debug_info)) {
2537 Action* LastAction = Actions.back();
2538 Actions.pop_back();
2539 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2540 LastAction, types::TY_Nothing));
2541 }
2542 }
2543 }
2544 }
2545
DiagnoseInputExistence(const DerivedArgList & Args,StringRef Value,types::ID Ty,bool TypoCorrect) const2546 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2547 types::ID Ty, bool TypoCorrect) const {
2548 if (!getCheckInputsExist())
2549 return true;
2550
2551 // stdin always exists.
2552 if (Value == "-")
2553 return true;
2554
2555 // If it's a header to be found in the system or user search path, then defer
2556 // complaints about its absence until those searches can be done. When we
2557 // are definitely processing headers for C++20 header units, extend this to
2558 // allow the user to put "-fmodule-header -xc++-header vector" for example.
2559 if (Ty == types::TY_CXXSHeader || Ty == types::TY_CXXUHeader ||
2560 (ModulesModeCXX20 && Ty == types::TY_CXXHeader))
2561 return true;
2562
2563 if (getVFS().exists(Value))
2564 return true;
2565
2566 if (TypoCorrect) {
2567 // Check if the filename is a typo for an option flag. OptTable thinks
2568 // that all args that are not known options and that start with / are
2569 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2570 // the option `/diagnostics:caret` than a reference to a file in the root
2571 // directory.
2572 std::string Nearest;
2573 if (getOpts().findNearest(Value, Nearest, getOptionVisibilityMask()) <= 1) {
2574 Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2575 << Value << Nearest;
2576 return false;
2577 }
2578 }
2579
2580 // In CL mode, don't error on apparently non-existent linker inputs, because
2581 // they can be influenced by linker flags the clang driver might not
2582 // understand.
2583 // Examples:
2584 // - `clang-cl main.cc ole32.lib` in a non-MSVC shell will make the driver
2585 // module look for an MSVC installation in the registry. (We could ask
2586 // the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2587 // look in the registry might move into lld-link in the future so that
2588 // lld-link invocations in non-MSVC shells just work too.)
2589 // - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2590 // including /libpath:, which is used to find .lib and .obj files.
2591 // So do not diagnose this on the driver level. Rely on the linker diagnosing
2592 // it. (If we don't end up invoking the linker, this means we'll emit a
2593 // "'linker' input unused [-Wunused-command-line-argument]" warning instead
2594 // of an error.)
2595 //
2596 // Only do this skip after the typo correction step above. `/Brepo` is treated
2597 // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2598 // an error if we have a flag that's within an edit distance of 1 from a
2599 // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2600 // driver in the unlikely case they run into this.)
2601 //
2602 // Don't do this for inputs that start with a '/', else we'd pass options
2603 // like /libpath: through to the linker silently.
2604 //
2605 // Emitting an error for linker inputs can also cause incorrect diagnostics
2606 // with the gcc driver. The command
2607 // clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
2608 // will make lld look for some/dir/file.o, while we will diagnose here that
2609 // `/file.o` does not exist. However, configure scripts check if
2610 // `clang /GR-` compiles without error to see if the compiler is cl.exe,
2611 // so we can't downgrade diagnostics for `/GR-` from an error to a warning
2612 // in cc mode. (We can in cl mode because cl.exe itself only warns on
2613 // unknown flags.)
2614 if (IsCLMode() && Ty == types::TY_Object && !Value.starts_with("/"))
2615 return true;
2616
2617 Diag(clang::diag::err_drv_no_such_file) << Value;
2618 return false;
2619 }
2620
2621 // Get the C++20 Header Unit type corresponding to the input type.
CXXHeaderUnitType(ModuleHeaderMode HM)2622 static types::ID CXXHeaderUnitType(ModuleHeaderMode HM) {
2623 switch (HM) {
2624 case HeaderMode_User:
2625 return types::TY_CXXUHeader;
2626 case HeaderMode_System:
2627 return types::TY_CXXSHeader;
2628 case HeaderMode_Default:
2629 break;
2630 case HeaderMode_None:
2631 llvm_unreachable("should not be called in this case");
2632 }
2633 return types::TY_CXXHUHeader;
2634 }
2635
2636 // Construct a the list of inputs and their types.
BuildInputs(const ToolChain & TC,DerivedArgList & Args,InputList & Inputs) const2637 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2638 InputList &Inputs) const {
2639 const llvm::opt::OptTable &Opts = getOpts();
2640 // Track the current user specified (-x) input. We also explicitly track the
2641 // argument used to set the type; we only want to claim the type when we
2642 // actually use it, so we warn about unused -x arguments.
2643 types::ID InputType = types::TY_Nothing;
2644 Arg *InputTypeArg = nullptr;
2645
2646 // The last /TC or /TP option sets the input type to C or C++ globally.
2647 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2648 options::OPT__SLASH_TP)) {
2649 InputTypeArg = TCTP;
2650 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2651 ? types::TY_C
2652 : types::TY_CXX;
2653
2654 Arg *Previous = nullptr;
2655 bool ShowNote = false;
2656 for (Arg *A :
2657 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2658 if (Previous) {
2659 Diag(clang::diag::warn_drv_overriding_option)
2660 << Previous->getSpelling() << A->getSpelling();
2661 ShowNote = true;
2662 }
2663 Previous = A;
2664 }
2665 if (ShowNote)
2666 Diag(clang::diag::note_drv_t_option_is_global);
2667 }
2668
2669 // Warn -x after last input file has no effect
2670 {
2671 Arg *LastXArg = Args.getLastArgNoClaim(options::OPT_x);
2672 Arg *LastInputArg = Args.getLastArgNoClaim(options::OPT_INPUT);
2673 if (LastXArg && LastInputArg &&
2674 LastInputArg->getIndex() < LastXArg->getIndex())
2675 Diag(clang::diag::warn_drv_unused_x) << LastXArg->getValue();
2676 }
2677
2678 for (Arg *A : Args) {
2679 if (A->getOption().getKind() == Option::InputClass) {
2680 const char *Value = A->getValue();
2681 types::ID Ty = types::TY_INVALID;
2682
2683 // Infer the input type if necessary.
2684 if (InputType == types::TY_Nothing) {
2685 // If there was an explicit arg for this, claim it.
2686 if (InputTypeArg)
2687 InputTypeArg->claim();
2688
2689 // stdin must be handled specially.
2690 if (memcmp(Value, "-", 2) == 0) {
2691 if (IsFlangMode()) {
2692 Ty = types::TY_Fortran;
2693 } else if (IsDXCMode()) {
2694 Ty = types::TY_HLSL;
2695 } else {
2696 // If running with -E, treat as a C input (this changes the
2697 // builtin macros, for example). This may be overridden by -ObjC
2698 // below.
2699 //
2700 // Otherwise emit an error but still use a valid type to avoid
2701 // spurious errors (e.g., no inputs).
2702 assert(!CCGenDiagnostics && "stdin produces no crash reproducer");
2703 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2704 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2705 : clang::diag::err_drv_unknown_stdin_type);
2706 Ty = types::TY_C;
2707 }
2708 } else {
2709 // Otherwise lookup by extension.
2710 // Fallback is C if invoked as C preprocessor, C++ if invoked with
2711 // clang-cl /E, or Object otherwise.
2712 // We use a host hook here because Darwin at least has its own
2713 // idea of what .s is.
2714 if (const char *Ext = strrchr(Value, '.'))
2715 Ty = TC.LookupTypeForExtension(Ext + 1);
2716
2717 if (Ty == types::TY_INVALID) {
2718 if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics))
2719 Ty = types::TY_CXX;
2720 else if (CCCIsCPP() || CCGenDiagnostics)
2721 Ty = types::TY_C;
2722 else
2723 Ty = types::TY_Object;
2724 }
2725
2726 // If the driver is invoked as C++ compiler (like clang++ or c++) it
2727 // should autodetect some input files as C++ for g++ compatibility.
2728 if (CCCIsCXX()) {
2729 types::ID OldTy = Ty;
2730 Ty = types::lookupCXXTypeForCType(Ty);
2731
2732 // Do not complain about foo.h, when we are known to be processing
2733 // it as a C++20 header unit.
2734 if (Ty != OldTy && !(OldTy == types::TY_CHeader && hasHeaderMode()))
2735 Diag(clang::diag::warn_drv_treating_input_as_cxx)
2736 << getTypeName(OldTy) << getTypeName(Ty);
2737 }
2738
2739 // If running with -fthinlto-index=, extensions that normally identify
2740 // native object files actually identify LLVM bitcode files.
2741 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2742 Ty == types::TY_Object)
2743 Ty = types::TY_LLVM_BC;
2744 }
2745
2746 // -ObjC and -ObjC++ override the default language, but only for "source
2747 // files". We just treat everything that isn't a linker input as a
2748 // source file.
2749 //
2750 // FIXME: Clean this up if we move the phase sequence into the type.
2751 if (Ty != types::TY_Object) {
2752 if (Args.hasArg(options::OPT_ObjC))
2753 Ty = types::TY_ObjC;
2754 else if (Args.hasArg(options::OPT_ObjCXX))
2755 Ty = types::TY_ObjCXX;
2756 }
2757
2758 // Disambiguate headers that are meant to be header units from those
2759 // intended to be PCH. Avoid missing '.h' cases that are counted as
2760 // C headers by default - we know we are in C++ mode and we do not
2761 // want to issue a complaint about compiling things in the wrong mode.
2762 if ((Ty == types::TY_CXXHeader || Ty == types::TY_CHeader) &&
2763 hasHeaderMode())
2764 Ty = CXXHeaderUnitType(CXX20HeaderType);
2765 } else {
2766 assert(InputTypeArg && "InputType set w/o InputTypeArg");
2767 if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2768 // If emulating cl.exe, make sure that /TC and /TP don't affect input
2769 // object files.
2770 const char *Ext = strrchr(Value, '.');
2771 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2772 Ty = types::TY_Object;
2773 }
2774 if (Ty == types::TY_INVALID) {
2775 Ty = InputType;
2776 InputTypeArg->claim();
2777 }
2778 }
2779
2780 if ((Ty == types::TY_C || Ty == types::TY_CXX) &&
2781 Args.hasArgNoClaim(options::OPT_hipstdpar))
2782 Ty = types::TY_HIP;
2783
2784 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2785 Inputs.push_back(std::make_pair(Ty, A));
2786
2787 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2788 StringRef Value = A->getValue();
2789 if (DiagnoseInputExistence(Args, Value, types::TY_C,
2790 /*TypoCorrect=*/false)) {
2791 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2792 Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2793 }
2794 A->claim();
2795 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2796 StringRef Value = A->getValue();
2797 if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2798 /*TypoCorrect=*/false)) {
2799 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2800 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2801 }
2802 A->claim();
2803 } else if (A->getOption().hasFlag(options::LinkerInput)) {
2804 // Just treat as object type, we could make a special type for this if
2805 // necessary.
2806 Inputs.push_back(std::make_pair(types::TY_Object, A));
2807
2808 } else if (A->getOption().matches(options::OPT_x)) {
2809 InputTypeArg = A;
2810 InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2811 A->claim();
2812
2813 // Follow gcc behavior and treat as linker input for invalid -x
2814 // options. Its not clear why we shouldn't just revert to unknown; but
2815 // this isn't very important, we might as well be bug compatible.
2816 if (!InputType) {
2817 Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2818 InputType = types::TY_Object;
2819 }
2820
2821 // If the user has put -fmodule-header{,=} then we treat C++ headers as
2822 // header unit inputs. So we 'promote' -xc++-header appropriately.
2823 if (InputType == types::TY_CXXHeader && hasHeaderMode())
2824 InputType = CXXHeaderUnitType(CXX20HeaderType);
2825 } else if (A->getOption().getID() == options::OPT_U) {
2826 assert(A->getNumValues() == 1 && "The /U option has one value.");
2827 StringRef Val = A->getValue(0);
2828 if (Val.find_first_of("/\\") != StringRef::npos) {
2829 // Warn about e.g. "/Users/me/myfile.c".
2830 Diag(diag::warn_slash_u_filename) << Val;
2831 Diag(diag::note_use_dashdash);
2832 }
2833 }
2834 }
2835 if (CCCIsCPP() && Inputs.empty()) {
2836 // If called as standalone preprocessor, stdin is processed
2837 // if no other input is present.
2838 Arg *A = MakeInputArg(Args, Opts, "-");
2839 Inputs.push_back(std::make_pair(types::TY_C, A));
2840 }
2841 }
2842
2843 namespace {
2844 /// Provides a convenient interface for different programming models to generate
2845 /// the required device actions.
2846 class OffloadingActionBuilder final {
2847 /// Flag used to trace errors in the builder.
2848 bool IsValid = false;
2849
2850 /// The compilation that is using this builder.
2851 Compilation &C;
2852
2853 /// Map between an input argument and the offload kinds used to process it.
2854 std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2855
2856 /// Map between a host action and its originating input argument.
2857 std::map<Action *, const Arg *> HostActionToInputArgMap;
2858
2859 /// Builder interface. It doesn't build anything or keep any state.
2860 class DeviceActionBuilder {
2861 public:
2862 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2863
2864 enum ActionBuilderReturnCode {
2865 // The builder acted successfully on the current action.
2866 ABRT_Success,
2867 // The builder didn't have to act on the current action.
2868 ABRT_Inactive,
2869 // The builder was successful and requested the host action to not be
2870 // generated.
2871 ABRT_Ignore_Host,
2872 };
2873
2874 protected:
2875 /// Compilation associated with this builder.
2876 Compilation &C;
2877
2878 /// Tool chains associated with this builder. The same programming
2879 /// model may have associated one or more tool chains.
2880 SmallVector<const ToolChain *, 2> ToolChains;
2881
2882 /// The derived arguments associated with this builder.
2883 DerivedArgList &Args;
2884
2885 /// The inputs associated with this builder.
2886 const Driver::InputList &Inputs;
2887
2888 /// The associated offload kind.
2889 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2890
2891 public:
DeviceActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs,Action::OffloadKind AssociatedOffloadKind)2892 DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2893 const Driver::InputList &Inputs,
2894 Action::OffloadKind AssociatedOffloadKind)
2895 : C(C), Args(Args), Inputs(Inputs),
2896 AssociatedOffloadKind(AssociatedOffloadKind) {}
~DeviceActionBuilder()2897 virtual ~DeviceActionBuilder() {}
2898
2899 /// Fill up the array \a DA with all the device dependences that should be
2900 /// added to the provided host action \a HostAction. By default it is
2901 /// inactive.
2902 virtual ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)2903 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2904 phases::ID CurPhase, phases::ID FinalPhase,
2905 PhasesTy &Phases) {
2906 return ABRT_Inactive;
2907 }
2908
2909 /// Update the state to include the provided host action \a HostAction as a
2910 /// dependency of the current device action. By default it is inactive.
addDeviceDependences(Action * HostAction)2911 virtual ActionBuilderReturnCode addDeviceDependences(Action *HostAction) {
2912 return ABRT_Inactive;
2913 }
2914
2915 /// Append top level actions generated by the builder.
appendTopLevelActions(ActionList & AL)2916 virtual void appendTopLevelActions(ActionList &AL) {}
2917
2918 /// Append linker device actions generated by the builder.
appendLinkDeviceActions(ActionList & AL)2919 virtual void appendLinkDeviceActions(ActionList &AL) {}
2920
2921 /// Append linker host action generated by the builder.
appendLinkHostActions(ActionList & AL)2922 virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2923
2924 /// Append linker actions generated by the builder.
appendLinkDependences(OffloadAction::DeviceDependences & DA)2925 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2926
2927 /// Initialize the builder. Return true if any initialization errors are
2928 /// found.
initialize()2929 virtual bool initialize() { return false; }
2930
2931 /// Return true if the builder can use bundling/unbundling.
canUseBundlerUnbundler() const2932 virtual bool canUseBundlerUnbundler() const { return false; }
2933
2934 /// Return true if this builder is valid. We have a valid builder if we have
2935 /// associated device tool chains.
isValid()2936 bool isValid() { return !ToolChains.empty(); }
2937
2938 /// Return the associated offload kind.
getAssociatedOffloadKind()2939 Action::OffloadKind getAssociatedOffloadKind() {
2940 return AssociatedOffloadKind;
2941 }
2942 };
2943
2944 /// Base class for CUDA/HIP action builder. It injects device code in
2945 /// the host backend action.
2946 class CudaActionBuilderBase : public DeviceActionBuilder {
2947 protected:
2948 /// Flags to signal if the user requested host-only or device-only
2949 /// compilation.
2950 bool CompileHostOnly = false;
2951 bool CompileDeviceOnly = false;
2952 bool EmitLLVM = false;
2953 bool EmitAsm = false;
2954
2955 /// ID to identify each device compilation. For CUDA it is simply the
2956 /// GPU arch string. For HIP it is either the GPU arch string or GPU
2957 /// arch string plus feature strings delimited by a plus sign, e.g.
2958 /// gfx906+xnack.
2959 struct TargetID {
2960 /// Target ID string which is persistent throughout the compilation.
2961 const char *ID;
TargetID__anon17dcc6010811::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2962 TargetID(OffloadArch Arch) { ID = OffloadArchToString(Arch); }
TargetID__anon17dcc6010811::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2963 TargetID(const char *ID) : ID(ID) {}
operator const char*__anon17dcc6010811::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2964 operator const char *() { return ID; }
operator StringRef__anon17dcc6010811::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2965 operator StringRef() { return StringRef(ID); }
2966 };
2967 /// List of GPU architectures to use in this compilation.
2968 SmallVector<TargetID, 4> GpuArchList;
2969
2970 /// The CUDA actions for the current input.
2971 ActionList CudaDeviceActions;
2972
2973 /// The CUDA fat binary if it was generated for the current input.
2974 Action *CudaFatBinary = nullptr;
2975
2976 /// Flag that is set to true if this builder acted on the current input.
2977 bool IsActive = false;
2978
2979 /// Flag for -fgpu-rdc.
2980 bool Relocatable = false;
2981
2982 /// Default GPU architecture if there's no one specified.
2983 OffloadArch DefaultOffloadArch = OffloadArch::UNKNOWN;
2984
2985 /// Method to generate compilation unit ID specified by option
2986 /// '-fuse-cuid='.
2987 enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2988 UseCUIDKind UseCUID = CUID_Hash;
2989
2990 /// Compilation unit ID specified by option '-cuid='.
2991 StringRef FixedCUID;
2992
2993 public:
CudaActionBuilderBase(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs,Action::OffloadKind OFKind)2994 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2995 const Driver::InputList &Inputs,
2996 Action::OffloadKind OFKind)
2997 : DeviceActionBuilder(C, Args, Inputs, OFKind) {
2998
2999 CompileDeviceOnly = C.getDriver().offloadDeviceOnly();
3000 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
3001 options::OPT_fno_gpu_rdc, /*Default=*/false);
3002 }
3003
addDeviceDependences(Action * HostAction)3004 ActionBuilderReturnCode addDeviceDependences(Action *HostAction) override {
3005 // While generating code for CUDA, we only depend on the host input action
3006 // to trigger the creation of all the CUDA device actions.
3007
3008 // If we are dealing with an input action, replicate it for each GPU
3009 // architecture. If we are in host-only mode we return 'success' so that
3010 // the host uses the CUDA offload kind.
3011 if (auto *IA = dyn_cast<InputAction>(HostAction)) {
3012 assert(!GpuArchList.empty() &&
3013 "We should have at least one GPU architecture.");
3014
3015 // If the host input is not CUDA or HIP, we don't need to bother about
3016 // this input.
3017 if (!(IA->getType() == types::TY_CUDA ||
3018 IA->getType() == types::TY_HIP ||
3019 IA->getType() == types::TY_PP_HIP)) {
3020 // The builder will ignore this input.
3021 IsActive = false;
3022 return ABRT_Inactive;
3023 }
3024
3025 // Set the flag to true, so that the builder acts on the current input.
3026 IsActive = true;
3027
3028 if (CompileHostOnly)
3029 return ABRT_Success;
3030
3031 // Replicate inputs for each GPU architecture.
3032 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
3033 : types::TY_CUDA_DEVICE;
3034 std::string CUID = FixedCUID.str();
3035 if (CUID.empty()) {
3036 if (UseCUID == CUID_Random)
3037 CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
3038 /*LowerCase=*/true);
3039 else if (UseCUID == CUID_Hash) {
3040 llvm::MD5 Hasher;
3041 llvm::MD5::MD5Result Hash;
3042 SmallString<256> RealPath;
3043 llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
3044 /*expand_tilde=*/true);
3045 Hasher.update(RealPath);
3046 for (auto *A : Args) {
3047 if (A->getOption().matches(options::OPT_INPUT))
3048 continue;
3049 Hasher.update(A->getAsString(Args));
3050 }
3051 Hasher.final(Hash);
3052 CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
3053 }
3054 }
3055 IA->setId(CUID);
3056
3057 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3058 CudaDeviceActions.push_back(
3059 C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
3060 }
3061
3062 return ABRT_Success;
3063 }
3064
3065 // If this is an unbundling action use it as is for each CUDA toolchain.
3066 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3067
3068 // If -fgpu-rdc is disabled, should not unbundle since there is no
3069 // device code to link.
3070 if (UA->getType() == types::TY_Object && !Relocatable)
3071 return ABRT_Inactive;
3072
3073 CudaDeviceActions.clear();
3074 auto *IA = cast<InputAction>(UA->getInputs().back());
3075 std::string FileName = IA->getInputArg().getAsString(Args);
3076 // Check if the type of the file is the same as the action. Do not
3077 // unbundle it if it is not. Do not unbundle .so files, for example,
3078 // which are not object files. Files with extension ".lib" is classified
3079 // as TY_Object but they are actually archives, therefore should not be
3080 // unbundled here as objects. They will be handled at other places.
3081 const StringRef LibFileExt = ".lib";
3082 if (IA->getType() == types::TY_Object &&
3083 (!llvm::sys::path::has_extension(FileName) ||
3084 types::lookupTypeForExtension(
3085 llvm::sys::path::extension(FileName).drop_front()) !=
3086 types::TY_Object ||
3087 llvm::sys::path::extension(FileName) == LibFileExt))
3088 return ABRT_Inactive;
3089
3090 for (auto Arch : GpuArchList) {
3091 CudaDeviceActions.push_back(UA);
3092 UA->registerDependentActionInfo(ToolChains[0], Arch,
3093 AssociatedOffloadKind);
3094 }
3095 IsActive = true;
3096 return ABRT_Success;
3097 }
3098
3099 return IsActive ? ABRT_Success : ABRT_Inactive;
3100 }
3101
appendTopLevelActions(ActionList & AL)3102 void appendTopLevelActions(ActionList &AL) override {
3103 // Utility to append actions to the top level list.
3104 auto AddTopLevel = [&](Action *A, TargetID TargetID) {
3105 OffloadAction::DeviceDependences Dep;
3106 Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
3107 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3108 };
3109
3110 // If we have a fat binary, add it to the list.
3111 if (CudaFatBinary) {
3112 AddTopLevel(CudaFatBinary, OffloadArch::UNUSED);
3113 CudaDeviceActions.clear();
3114 CudaFatBinary = nullptr;
3115 return;
3116 }
3117
3118 if (CudaDeviceActions.empty())
3119 return;
3120
3121 // If we have CUDA actions at this point, that's because we have a have
3122 // partial compilation, so we should have an action for each GPU
3123 // architecture.
3124 assert(CudaDeviceActions.size() == GpuArchList.size() &&
3125 "Expecting one action per GPU architecture.");
3126 assert(ToolChains.size() == 1 &&
3127 "Expecting to have a single CUDA toolchain.");
3128 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
3129 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
3130
3131 CudaDeviceActions.clear();
3132 }
3133
3134 /// Get canonicalized offload arch option. \returns empty StringRef if the
3135 /// option is invalid.
3136 virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
3137
3138 virtual std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3139 getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
3140
initialize()3141 bool initialize() override {
3142 assert(AssociatedOffloadKind == Action::OFK_Cuda ||
3143 AssociatedOffloadKind == Action::OFK_HIP);
3144
3145 // We don't need to support CUDA.
3146 if (AssociatedOffloadKind == Action::OFK_Cuda &&
3147 !C.hasOffloadToolChain<Action::OFK_Cuda>())
3148 return false;
3149
3150 // We don't need to support HIP.
3151 if (AssociatedOffloadKind == Action::OFK_HIP &&
3152 !C.hasOffloadToolChain<Action::OFK_HIP>())
3153 return false;
3154
3155 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
3156 assert(HostTC && "No toolchain for host compilation.");
3157 if (HostTC->getTriple().isNVPTX() ||
3158 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
3159 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
3160 // an error and abort pipeline construction early so we don't trip
3161 // asserts that assume device-side compilation.
3162 C.getDriver().Diag(diag::err_drv_cuda_host_arch)
3163 << HostTC->getTriple().getArchName();
3164 return true;
3165 }
3166
3167 ToolChains.push_back(
3168 AssociatedOffloadKind == Action::OFK_Cuda
3169 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
3170 : C.getSingleOffloadToolChain<Action::OFK_HIP>());
3171
3172 CompileHostOnly = C.getDriver().offloadHostOnly();
3173 EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
3174 EmitAsm = Args.getLastArg(options::OPT_S);
3175 FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
3176 if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
3177 StringRef UseCUIDStr = A->getValue();
3178 UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
3179 .Case("hash", CUID_Hash)
3180 .Case("random", CUID_Random)
3181 .Case("none", CUID_None)
3182 .Default(CUID_Invalid);
3183 if (UseCUID == CUID_Invalid) {
3184 C.getDriver().Diag(diag::err_drv_invalid_value)
3185 << A->getAsString(Args) << UseCUIDStr;
3186 C.setContainsError();
3187 return true;
3188 }
3189 }
3190
3191 // --offload and --offload-arch options are mutually exclusive.
3192 if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
3193 Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
3194 options::OPT_no_offload_arch_EQ)) {
3195 C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch"
3196 << "--offload";
3197 }
3198
3199 // Collect all offload arch parameters, removing duplicates.
3200 std::set<StringRef> GpuArchs;
3201 bool Error = false;
3202 for (Arg *A : Args) {
3203 if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
3204 A->getOption().matches(options::OPT_no_offload_arch_EQ)))
3205 continue;
3206 A->claim();
3207
3208 for (StringRef ArchStr : llvm::split(A->getValue(), ",")) {
3209 if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
3210 ArchStr == "all") {
3211 GpuArchs.clear();
3212 } else if (ArchStr == "native") {
3213 const ToolChain &TC = *ToolChains.front();
3214 auto GPUsOrErr = ToolChains.front()->getSystemGPUArchs(Args);
3215 if (!GPUsOrErr) {
3216 TC.getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
3217 << llvm::Triple::getArchTypeName(TC.getArch())
3218 << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
3219 continue;
3220 }
3221
3222 for (auto GPU : *GPUsOrErr) {
3223 GpuArchs.insert(Args.MakeArgString(GPU));
3224 }
3225 } else {
3226 ArchStr = getCanonicalOffloadArch(ArchStr);
3227 if (ArchStr.empty()) {
3228 Error = true;
3229 } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
3230 GpuArchs.insert(ArchStr);
3231 else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
3232 GpuArchs.erase(ArchStr);
3233 else
3234 llvm_unreachable("Unexpected option.");
3235 }
3236 }
3237 }
3238
3239 auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
3240 if (ConflictingArchs) {
3241 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
3242 << ConflictingArchs->first << ConflictingArchs->second;
3243 C.setContainsError();
3244 return true;
3245 }
3246
3247 // Collect list of GPUs remaining in the set.
3248 for (auto Arch : GpuArchs)
3249 GpuArchList.push_back(Arch.data());
3250
3251 // Default to sm_20 which is the lowest common denominator for
3252 // supported GPUs. sm_20 code should work correctly, if
3253 // suboptimally, on all newer GPUs.
3254 if (GpuArchList.empty()) {
3255 if (ToolChains.front()->getTriple().isSPIRV()) {
3256 if (ToolChains.front()->getTriple().getVendor() == llvm::Triple::AMD)
3257 GpuArchList.push_back(OffloadArch::AMDGCNSPIRV);
3258 else
3259 GpuArchList.push_back(OffloadArch::Generic);
3260 } else {
3261 GpuArchList.push_back(DefaultOffloadArch);
3262 }
3263 }
3264
3265 return Error;
3266 }
3267 };
3268
3269 /// \brief CUDA action builder. It injects device code in the host backend
3270 /// action.
3271 class CudaActionBuilder final : public CudaActionBuilderBase {
3272 public:
CudaActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)3273 CudaActionBuilder(Compilation &C, DerivedArgList &Args,
3274 const Driver::InputList &Inputs)
3275 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
3276 DefaultOffloadArch = OffloadArch::CudaDefault;
3277 }
3278
getCanonicalOffloadArch(StringRef ArchStr)3279 StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
3280 OffloadArch Arch = StringToOffloadArch(ArchStr);
3281 if (Arch == OffloadArch::UNKNOWN || !IsNVIDIAOffloadArch(Arch)) {
3282 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
3283 return StringRef();
3284 }
3285 return OffloadArchToString(Arch);
3286 }
3287
3288 std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(const std::set<StringRef> & GpuArchs)3289 getConflictOffloadArchCombination(
3290 const std::set<StringRef> &GpuArchs) override {
3291 return std::nullopt;
3292 }
3293
3294 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)3295 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3296 phases::ID CurPhase, phases::ID FinalPhase,
3297 PhasesTy &Phases) override {
3298 if (!IsActive)
3299 return ABRT_Inactive;
3300
3301 // If we don't have more CUDA actions, we don't have any dependences to
3302 // create for the host.
3303 if (CudaDeviceActions.empty())
3304 return ABRT_Success;
3305
3306 assert(CudaDeviceActions.size() == GpuArchList.size() &&
3307 "Expecting one action per GPU architecture.");
3308 assert(!CompileHostOnly &&
3309 "Not expecting CUDA actions in host-only compilation.");
3310
3311 // If we are generating code for the device or we are in a backend phase,
3312 // we attempt to generate the fat binary. We compile each arch to ptx and
3313 // assemble to cubin, then feed the cubin *and* the ptx into a device
3314 // "link" action, which uses fatbinary to combine these cubins into one
3315 // fatbin. The fatbin is then an input to the host action if not in
3316 // device-only mode.
3317 if (CompileDeviceOnly || CurPhase == phases::Backend) {
3318 ActionList DeviceActions;
3319 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3320 // Produce the device action from the current phase up to the assemble
3321 // phase.
3322 for (auto Ph : Phases) {
3323 // Skip the phases that were already dealt with.
3324 if (Ph < CurPhase)
3325 continue;
3326 // We have to be consistent with the host final phase.
3327 if (Ph > FinalPhase)
3328 break;
3329
3330 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
3331 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
3332
3333 if (Ph == phases::Assemble)
3334 break;
3335 }
3336
3337 // If we didn't reach the assemble phase, we can't generate the fat
3338 // binary. We don't need to generate the fat binary if we are not in
3339 // device-only mode.
3340 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
3341 CompileDeviceOnly)
3342 continue;
3343
3344 Action *AssembleAction = CudaDeviceActions[I];
3345 assert(AssembleAction->getType() == types::TY_Object);
3346 assert(AssembleAction->getInputs().size() == 1);
3347
3348 Action *BackendAction = AssembleAction->getInputs()[0];
3349 assert(BackendAction->getType() == types::TY_PP_Asm);
3350
3351 for (auto &A : {AssembleAction, BackendAction}) {
3352 OffloadAction::DeviceDependences DDep;
3353 DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
3354 DeviceActions.push_back(
3355 C.MakeAction<OffloadAction>(DDep, A->getType()));
3356 }
3357 }
3358
3359 // We generate the fat binary if we have device input actions.
3360 if (!DeviceActions.empty()) {
3361 CudaFatBinary =
3362 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
3363
3364 if (!CompileDeviceOnly) {
3365 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3366 Action::OFK_Cuda);
3367 // Clear the fat binary, it is already a dependence to an host
3368 // action.
3369 CudaFatBinary = nullptr;
3370 }
3371
3372 // Remove the CUDA actions as they are already connected to an host
3373 // action or fat binary.
3374 CudaDeviceActions.clear();
3375 }
3376
3377 // We avoid creating host action in device-only mode.
3378 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3379 } else if (CurPhase > phases::Backend) {
3380 // If we are past the backend phase and still have a device action, we
3381 // don't have to do anything as this action is already a device
3382 // top-level action.
3383 return ABRT_Success;
3384 }
3385
3386 assert(CurPhase < phases::Backend && "Generating single CUDA "
3387 "instructions should only occur "
3388 "before the backend phase!");
3389
3390 // By default, we produce an action for each device arch.
3391 for (Action *&A : CudaDeviceActions)
3392 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3393
3394 return ABRT_Success;
3395 }
3396 };
3397 /// \brief HIP action builder. It injects device code in the host backend
3398 /// action.
3399 class HIPActionBuilder final : public CudaActionBuilderBase {
3400 /// The linker inputs obtained for each device arch.
3401 SmallVector<ActionList, 8> DeviceLinkerInputs;
3402 // The default bundling behavior depends on the type of output, therefore
3403 // BundleOutput needs to be tri-value: None, true, or false.
3404 // Bundle code objects except --no-gpu-output is specified for device
3405 // only compilation. Bundle other type of output files only if
3406 // --gpu-bundle-output is specified for device only compilation.
3407 std::optional<bool> BundleOutput;
3408 std::optional<bool> EmitReloc;
3409
3410 public:
HIPActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)3411 HIPActionBuilder(Compilation &C, DerivedArgList &Args,
3412 const Driver::InputList &Inputs)
3413 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
3414
3415 DefaultOffloadArch = OffloadArch::HIPDefault;
3416
3417 if (Args.hasArg(options::OPT_fhip_emit_relocatable,
3418 options::OPT_fno_hip_emit_relocatable)) {
3419 EmitReloc = Args.hasFlag(options::OPT_fhip_emit_relocatable,
3420 options::OPT_fno_hip_emit_relocatable, false);
3421
3422 if (*EmitReloc) {
3423 if (Relocatable) {
3424 C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
3425 << "-fhip-emit-relocatable"
3426 << "-fgpu-rdc";
3427 }
3428
3429 if (!CompileDeviceOnly) {
3430 C.getDriver().Diag(diag::err_opt_not_valid_without_opt)
3431 << "-fhip-emit-relocatable"
3432 << "--cuda-device-only";
3433 }
3434 }
3435 }
3436
3437 if (Args.hasArg(options::OPT_gpu_bundle_output,
3438 options::OPT_no_gpu_bundle_output))
3439 BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
3440 options::OPT_no_gpu_bundle_output, true) &&
3441 (!EmitReloc || !*EmitReloc);
3442 }
3443
canUseBundlerUnbundler() const3444 bool canUseBundlerUnbundler() const override { return true; }
3445
getCanonicalOffloadArch(StringRef IdStr)3446 StringRef getCanonicalOffloadArch(StringRef IdStr) override {
3447 llvm::StringMap<bool> Features;
3448 // getHIPOffloadTargetTriple() is known to return valid value as it has
3449 // been called successfully in the CreateOffloadingDeviceToolChains().
3450 auto ArchStr = parseTargetID(
3451 *getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()), IdStr,
3452 &Features);
3453 if (!ArchStr) {
3454 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
3455 C.setContainsError();
3456 return StringRef();
3457 }
3458 auto CanId = getCanonicalTargetID(*ArchStr, Features);
3459 return Args.MakeArgStringRef(CanId);
3460 };
3461
3462 std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(const std::set<StringRef> & GpuArchs)3463 getConflictOffloadArchCombination(
3464 const std::set<StringRef> &GpuArchs) override {
3465 return getConflictTargetIDCombination(GpuArchs);
3466 }
3467
3468 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)3469 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3470 phases::ID CurPhase, phases::ID FinalPhase,
3471 PhasesTy &Phases) override {
3472 if (!IsActive)
3473 return ABRT_Inactive;
3474
3475 // amdgcn does not support linking of object files, therefore we skip
3476 // backend and assemble phases to output LLVM IR. Except for generating
3477 // non-relocatable device code, where we generate fat binary for device
3478 // code and pass to host in Backend phase.
3479 if (CudaDeviceActions.empty())
3480 return ABRT_Success;
3481
3482 assert(((CurPhase == phases::Link && Relocatable) ||
3483 CudaDeviceActions.size() == GpuArchList.size()) &&
3484 "Expecting one action per GPU architecture.");
3485 assert(!CompileHostOnly &&
3486 "Not expecting HIP actions in host-only compilation.");
3487
3488 bool ShouldLink = !EmitReloc || !*EmitReloc;
3489
3490 if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
3491 !EmitAsm && ShouldLink) {
3492 // If we are in backend phase, we attempt to generate the fat binary.
3493 // We compile each arch to IR and use a link action to generate code
3494 // object containing ISA. Then we use a special "link" action to create
3495 // a fat binary containing all the code objects for different GPU's.
3496 // The fat binary is then an input to the host action.
3497 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3498 if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
3499 // When LTO is enabled, skip the backend and assemble phases and
3500 // use lld to link the bitcode.
3501 ActionList AL;
3502 AL.push_back(CudaDeviceActions[I]);
3503 // Create a link action to link device IR with device library
3504 // and generate ISA.
3505 CudaDeviceActions[I] =
3506 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3507 } else {
3508 // When LTO is not enabled, we follow the conventional
3509 // compiler phases, including backend and assemble phases.
3510 ActionList AL;
3511 Action *BackendAction = nullptr;
3512 if (ToolChains.front()->getTriple().isSPIRV()) {
3513 // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
3514 // (HIPSPVToolChain) runs post-link LLVM IR passes.
3515 types::ID Output = Args.hasArg(options::OPT_S)
3516 ? types::TY_LLVM_IR
3517 : types::TY_LLVM_BC;
3518 BackendAction =
3519 C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output);
3520 } else
3521 BackendAction = C.getDriver().ConstructPhaseAction(
3522 C, Args, phases::Backend, CudaDeviceActions[I],
3523 AssociatedOffloadKind);
3524 auto AssembleAction = C.getDriver().ConstructPhaseAction(
3525 C, Args, phases::Assemble, BackendAction,
3526 AssociatedOffloadKind);
3527 AL.push_back(AssembleAction);
3528 // Create a link action to link device IR with device library
3529 // and generate ISA.
3530 CudaDeviceActions[I] =
3531 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3532 }
3533
3534 // OffloadingActionBuilder propagates device arch until an offload
3535 // action. Since the next action for creating fatbin does
3536 // not have device arch, whereas the above link action and its input
3537 // have device arch, an offload action is needed to stop the null
3538 // device arch of the next action being propagated to the above link
3539 // action.
3540 OffloadAction::DeviceDependences DDep;
3541 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3542 AssociatedOffloadKind);
3543 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3544 DDep, CudaDeviceActions[I]->getType());
3545 }
3546
3547 if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3548 // Create HIP fat binary with a special "link" action.
3549 CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
3550 types::TY_HIP_FATBIN);
3551
3552 if (!CompileDeviceOnly) {
3553 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3554 AssociatedOffloadKind);
3555 // Clear the fat binary, it is already a dependence to an host
3556 // action.
3557 CudaFatBinary = nullptr;
3558 }
3559
3560 // Remove the CUDA actions as they are already connected to an host
3561 // action or fat binary.
3562 CudaDeviceActions.clear();
3563 }
3564
3565 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3566 } else if (CurPhase == phases::Link) {
3567 if (!ShouldLink)
3568 return ABRT_Success;
3569 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3570 // This happens to each device action originated from each input file.
3571 // Later on, device actions in DeviceLinkerInputs are used to create
3572 // device link actions in appendLinkDependences and the created device
3573 // link actions are passed to the offload action as device dependence.
3574 DeviceLinkerInputs.resize(CudaDeviceActions.size());
3575 auto LI = DeviceLinkerInputs.begin();
3576 for (auto *A : CudaDeviceActions) {
3577 LI->push_back(A);
3578 ++LI;
3579 }
3580
3581 // We will pass the device action as a host dependence, so we don't
3582 // need to do anything else with them.
3583 CudaDeviceActions.clear();
3584 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3585 }
3586
3587 // By default, we produce an action for each device arch.
3588 for (Action *&A : CudaDeviceActions)
3589 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3590 AssociatedOffloadKind);
3591
3592 if (CompileDeviceOnly && CurPhase == FinalPhase && BundleOutput &&
3593 *BundleOutput) {
3594 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3595 OffloadAction::DeviceDependences DDep;
3596 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3597 AssociatedOffloadKind);
3598 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3599 DDep, CudaDeviceActions[I]->getType());
3600 }
3601 CudaFatBinary =
3602 C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
3603 CudaDeviceActions.clear();
3604 }
3605
3606 return (CompileDeviceOnly &&
3607 (CurPhase == FinalPhase ||
3608 (!ShouldLink && CurPhase == phases::Assemble)))
3609 ? ABRT_Ignore_Host
3610 : ABRT_Success;
3611 }
3612
appendLinkDeviceActions(ActionList & AL)3613 void appendLinkDeviceActions(ActionList &AL) override {
3614 if (DeviceLinkerInputs.size() == 0)
3615 return;
3616
3617 assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3618 "Linker inputs and GPU arch list sizes do not match.");
3619
3620 ActionList Actions;
3621 unsigned I = 0;
3622 // Append a new link action for each device.
3623 // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3624 for (auto &LI : DeviceLinkerInputs) {
3625
3626 types::ID Output = Args.hasArg(options::OPT_emit_llvm)
3627 ? types::TY_LLVM_BC
3628 : types::TY_Image;
3629
3630 auto *DeviceLinkAction = C.MakeAction<LinkJobAction>(LI, Output);
3631 // Linking all inputs for the current GPU arch.
3632 // LI contains all the inputs for the linker.
3633 OffloadAction::DeviceDependences DeviceLinkDeps;
3634 DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3635 GpuArchList[I], AssociatedOffloadKind);
3636 Actions.push_back(C.MakeAction<OffloadAction>(
3637 DeviceLinkDeps, DeviceLinkAction->getType()));
3638 ++I;
3639 }
3640 DeviceLinkerInputs.clear();
3641
3642 // If emitting LLVM, do not generate final host/device compilation action
3643 if (Args.hasArg(options::OPT_emit_llvm)) {
3644 AL.append(Actions);
3645 return;
3646 }
3647
3648 // Create a host object from all the device images by embedding them
3649 // in a fat binary for mixed host-device compilation. For device-only
3650 // compilation, creates a fat binary.
3651 OffloadAction::DeviceDependences DDeps;
3652 if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3653 auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>(
3654 Actions,
3655 CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object);
3656 DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr,
3657 AssociatedOffloadKind);
3658 // Offload the host object to the host linker.
3659 AL.push_back(
3660 C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3661 } else {
3662 AL.append(Actions);
3663 }
3664 }
3665
appendLinkHostActions(ActionList & AL)3666 Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3667
appendLinkDependences(OffloadAction::DeviceDependences & DA)3668 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3669 };
3670
3671 ///
3672 /// TODO: Add the implementation for other specialized builders here.
3673 ///
3674
3675 /// Specialized builders being used by this offloading action builder.
3676 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3677
3678 /// Flag set to true if all valid builders allow file bundling/unbundling.
3679 bool CanUseBundler;
3680
3681 public:
OffloadingActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)3682 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3683 const Driver::InputList &Inputs)
3684 : C(C) {
3685 // Create a specialized builder for each device toolchain.
3686
3687 IsValid = true;
3688
3689 // Create a specialized builder for CUDA.
3690 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3691
3692 // Create a specialized builder for HIP.
3693 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3694
3695 //
3696 // TODO: Build other specialized builders here.
3697 //
3698
3699 // Initialize all the builders, keeping track of errors. If all valid
3700 // builders agree that we can use bundling, set the flag to true.
3701 unsigned ValidBuilders = 0u;
3702 unsigned ValidBuildersSupportingBundling = 0u;
3703 for (auto *SB : SpecializedBuilders) {
3704 IsValid = IsValid && !SB->initialize();
3705
3706 // Update the counters if the builder is valid.
3707 if (SB->isValid()) {
3708 ++ValidBuilders;
3709 if (SB->canUseBundlerUnbundler())
3710 ++ValidBuildersSupportingBundling;
3711 }
3712 }
3713 CanUseBundler =
3714 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3715 }
3716
~OffloadingActionBuilder()3717 ~OffloadingActionBuilder() {
3718 for (auto *SB : SpecializedBuilders)
3719 delete SB;
3720 }
3721
3722 /// Record a host action and its originating input argument.
recordHostAction(Action * HostAction,const Arg * InputArg)3723 void recordHostAction(Action *HostAction, const Arg *InputArg) {
3724 assert(HostAction && "Invalid host action");
3725 assert(InputArg && "Invalid input argument");
3726 auto Loc = HostActionToInputArgMap.find(HostAction);
3727 if (Loc == HostActionToInputArgMap.end())
3728 HostActionToInputArgMap[HostAction] = InputArg;
3729 assert(HostActionToInputArgMap[HostAction] == InputArg &&
3730 "host action mapped to multiple input arguments");
3731 }
3732
3733 /// Generate an action that adds device dependences (if any) to a host action.
3734 /// If no device dependence actions exist, just return the host action \a
3735 /// HostAction. If an error is found or if no builder requires the host action
3736 /// to be generated, return nullptr.
3737 Action *
addDeviceDependencesToHostAction(Action * HostAction,const Arg * InputArg,phases::ID CurPhase,phases::ID FinalPhase,DeviceActionBuilder::PhasesTy & Phases)3738 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3739 phases::ID CurPhase, phases::ID FinalPhase,
3740 DeviceActionBuilder::PhasesTy &Phases) {
3741 if (!IsValid)
3742 return nullptr;
3743
3744 if (SpecializedBuilders.empty())
3745 return HostAction;
3746
3747 assert(HostAction && "Invalid host action!");
3748 recordHostAction(HostAction, InputArg);
3749
3750 OffloadAction::DeviceDependences DDeps;
3751 // Check if all the programming models agree we should not emit the host
3752 // action. Also, keep track of the offloading kinds employed.
3753 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3754 unsigned InactiveBuilders = 0u;
3755 unsigned IgnoringBuilders = 0u;
3756 for (auto *SB : SpecializedBuilders) {
3757 if (!SB->isValid()) {
3758 ++InactiveBuilders;
3759 continue;
3760 }
3761 auto RetCode =
3762 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3763
3764 // If the builder explicitly says the host action should be ignored,
3765 // we need to increment the variable that tracks the builders that request
3766 // the host object to be ignored.
3767 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3768 ++IgnoringBuilders;
3769
3770 // Unless the builder was inactive for this action, we have to record the
3771 // offload kind because the host will have to use it.
3772 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3773 OffloadKind |= SB->getAssociatedOffloadKind();
3774 }
3775
3776 // If all builders agree that the host object should be ignored, just return
3777 // nullptr.
3778 if (IgnoringBuilders &&
3779 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3780 return nullptr;
3781
3782 if (DDeps.getActions().empty())
3783 return HostAction;
3784
3785 // We have dependences we need to bundle together. We use an offload action
3786 // for that.
3787 OffloadAction::HostDependence HDep(
3788 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3789 /*BoundArch=*/nullptr, DDeps);
3790 return C.MakeAction<OffloadAction>(HDep, DDeps);
3791 }
3792
3793 /// Generate an action that adds a host dependence to a device action. The
3794 /// results will be kept in this action builder. Return true if an error was
3795 /// found.
addHostDependenceToDeviceActions(Action * & HostAction,const Arg * InputArg)3796 bool addHostDependenceToDeviceActions(Action *&HostAction,
3797 const Arg *InputArg) {
3798 if (!IsValid)
3799 return true;
3800
3801 recordHostAction(HostAction, InputArg);
3802
3803 // If we are supporting bundling/unbundling and the current action is an
3804 // input action of non-source file, we replace the host action by the
3805 // unbundling action. The bundler tool has the logic to detect if an input
3806 // is a bundle or not and if the input is not a bundle it assumes it is a
3807 // host file. Therefore it is safe to create an unbundling action even if
3808 // the input is not a bundle.
3809 if (CanUseBundler && isa<InputAction>(HostAction) &&
3810 InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3811 (!types::isSrcFile(HostAction->getType()) ||
3812 HostAction->getType() == types::TY_PP_HIP)) {
3813 auto UnbundlingHostAction =
3814 C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3815 UnbundlingHostAction->registerDependentActionInfo(
3816 C.getSingleOffloadToolChain<Action::OFK_Host>(),
3817 /*BoundArch=*/StringRef(), Action::OFK_Host);
3818 HostAction = UnbundlingHostAction;
3819 recordHostAction(HostAction, InputArg);
3820 }
3821
3822 assert(HostAction && "Invalid host action!");
3823
3824 // Register the offload kinds that are used.
3825 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3826 for (auto *SB : SpecializedBuilders) {
3827 if (!SB->isValid())
3828 continue;
3829
3830 auto RetCode = SB->addDeviceDependences(HostAction);
3831
3832 // Host dependences for device actions are not compatible with that same
3833 // action being ignored.
3834 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3835 "Host dependence not expected to be ignored.!");
3836
3837 // Unless the builder was inactive for this action, we have to record the
3838 // offload kind because the host will have to use it.
3839 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3840 OffloadKind |= SB->getAssociatedOffloadKind();
3841 }
3842
3843 // Do not use unbundler if the Host does not depend on device action.
3844 if (OffloadKind == Action::OFK_None && CanUseBundler)
3845 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3846 HostAction = UA->getInputs().back();
3847
3848 return false;
3849 }
3850
3851 /// Add the offloading top level actions to the provided action list. This
3852 /// function can replace the host action by a bundling action if the
3853 /// programming models allow it.
appendTopLevelActions(ActionList & AL,Action * HostAction,const Arg * InputArg)3854 bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3855 const Arg *InputArg) {
3856 if (HostAction)
3857 recordHostAction(HostAction, InputArg);
3858
3859 // Get the device actions to be appended.
3860 ActionList OffloadAL;
3861 for (auto *SB : SpecializedBuilders) {
3862 if (!SB->isValid())
3863 continue;
3864 SB->appendTopLevelActions(OffloadAL);
3865 }
3866
3867 // If we can use the bundler, replace the host action by the bundling one in
3868 // the resulting list. Otherwise, just append the device actions. For
3869 // device only compilation, HostAction is a null pointer, therefore only do
3870 // this when HostAction is not a null pointer.
3871 if (CanUseBundler && HostAction &&
3872 HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3873 // Add the host action to the list in order to create the bundling action.
3874 OffloadAL.push_back(HostAction);
3875
3876 // We expect that the host action was just appended to the action list
3877 // before this method was called.
3878 assert(HostAction == AL.back() && "Host action not in the list??");
3879 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3880 recordHostAction(HostAction, InputArg);
3881 AL.back() = HostAction;
3882 } else
3883 AL.append(OffloadAL.begin(), OffloadAL.end());
3884
3885 // Propagate to the current host action (if any) the offload information
3886 // associated with the current input.
3887 if (HostAction)
3888 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3889 /*BoundArch=*/nullptr);
3890 return false;
3891 }
3892
appendDeviceLinkActions(ActionList & AL)3893 void appendDeviceLinkActions(ActionList &AL) {
3894 for (DeviceActionBuilder *SB : SpecializedBuilders) {
3895 if (!SB->isValid())
3896 continue;
3897 SB->appendLinkDeviceActions(AL);
3898 }
3899 }
3900
makeHostLinkAction()3901 Action *makeHostLinkAction() {
3902 // Build a list of device linking actions.
3903 ActionList DeviceAL;
3904 appendDeviceLinkActions(DeviceAL);
3905 if (DeviceAL.empty())
3906 return nullptr;
3907
3908 // Let builders add host linking actions.
3909 Action* HA = nullptr;
3910 for (DeviceActionBuilder *SB : SpecializedBuilders) {
3911 if (!SB->isValid())
3912 continue;
3913 HA = SB->appendLinkHostActions(DeviceAL);
3914 // This created host action has no originating input argument, therefore
3915 // needs to set its offloading kind directly.
3916 if (HA)
3917 HA->propagateHostOffloadInfo(SB->getAssociatedOffloadKind(),
3918 /*BoundArch=*/nullptr);
3919 }
3920 return HA;
3921 }
3922
3923 /// Processes the host linker action. This currently consists of replacing it
3924 /// with an offload action if there are device link objects and propagate to
3925 /// the host action all the offload kinds used in the current compilation. The
3926 /// resulting action is returned.
processHostLinkAction(Action * HostAction)3927 Action *processHostLinkAction(Action *HostAction) {
3928 // Add all the dependences from the device linking actions.
3929 OffloadAction::DeviceDependences DDeps;
3930 for (auto *SB : SpecializedBuilders) {
3931 if (!SB->isValid())
3932 continue;
3933
3934 SB->appendLinkDependences(DDeps);
3935 }
3936
3937 // Calculate all the offload kinds used in the current compilation.
3938 unsigned ActiveOffloadKinds = 0u;
3939 for (auto &I : InputArgToOffloadKindMap)
3940 ActiveOffloadKinds |= I.second;
3941
3942 // If we don't have device dependencies, we don't have to create an offload
3943 // action.
3944 if (DDeps.getActions().empty()) {
3945 // Set all the active offloading kinds to the link action. Given that it
3946 // is a link action it is assumed to depend on all actions generated so
3947 // far.
3948 HostAction->setHostOffloadInfo(ActiveOffloadKinds,
3949 /*BoundArch=*/nullptr);
3950 // Propagate active offloading kinds for each input to the link action.
3951 // Each input may have different active offloading kind.
3952 for (auto *A : HostAction->inputs()) {
3953 auto ArgLoc = HostActionToInputArgMap.find(A);
3954 if (ArgLoc == HostActionToInputArgMap.end())
3955 continue;
3956 auto OFKLoc = InputArgToOffloadKindMap.find(ArgLoc->second);
3957 if (OFKLoc == InputArgToOffloadKindMap.end())
3958 continue;
3959 A->propagateHostOffloadInfo(OFKLoc->second, /*BoundArch=*/nullptr);
3960 }
3961 return HostAction;
3962 }
3963
3964 // Create the offload action with all dependences. When an offload action
3965 // is created the kinds are propagated to the host action, so we don't have
3966 // to do that explicitly here.
3967 OffloadAction::HostDependence HDep(
3968 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3969 /*BoundArch*/ nullptr, ActiveOffloadKinds);
3970 return C.MakeAction<OffloadAction>(HDep, DDeps);
3971 }
3972 };
3973 } // anonymous namespace.
3974
handleArguments(Compilation & C,DerivedArgList & Args,const InputList & Inputs,ActionList & Actions) const3975 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3976 const InputList &Inputs,
3977 ActionList &Actions) const {
3978
3979 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3980 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3981 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3982 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3983 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3984 Args.eraseArg(options::OPT__SLASH_Yc);
3985 Args.eraseArg(options::OPT__SLASH_Yu);
3986 YcArg = YuArg = nullptr;
3987 }
3988 if (YcArg && Inputs.size() > 1) {
3989 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3990 Args.eraseArg(options::OPT__SLASH_Yc);
3991 YcArg = nullptr;
3992 }
3993
3994 Arg *FinalPhaseArg;
3995 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3996
3997 if (FinalPhase == phases::Link) {
3998 if (Args.hasArgNoClaim(options::OPT_hipstdpar)) {
3999 Args.AddFlagArg(nullptr, getOpts().getOption(options::OPT_hip_link));
4000 Args.AddFlagArg(nullptr,
4001 getOpts().getOption(options::OPT_frtlib_add_rpath));
4002 }
4003 // Emitting LLVM while linking disabled except in HIPAMD Toolchain
4004 if (Args.hasArg(options::OPT_emit_llvm) && !Args.hasArg(options::OPT_hip_link))
4005 Diag(clang::diag::err_drv_emit_llvm_link);
4006 if (IsCLMode() && LTOMode != LTOK_None &&
4007 !Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4008 .equals_insensitive("lld"))
4009 Diag(clang::diag::err_drv_lto_without_lld);
4010
4011 // If -dumpdir is not specified, give a default prefix derived from the link
4012 // output filename. For example, `clang -g -gsplit-dwarf a.c -o x` passes
4013 // `-dumpdir x-` to cc1. If -o is unspecified, use
4014 // stem(getDefaultImageName()) (usually stem("a.out") = "a").
4015 if (!Args.hasArg(options::OPT_dumpdir)) {
4016 Arg *FinalOutput = Args.getLastArg(options::OPT_o, options::OPT__SLASH_o);
4017 Arg *Arg = Args.MakeSeparateArg(
4018 nullptr, getOpts().getOption(options::OPT_dumpdir),
4019 Args.MakeArgString(
4020 (FinalOutput ? FinalOutput->getValue()
4021 : llvm::sys::path::stem(getDefaultImageName())) +
4022 "-"));
4023 Arg->claim();
4024 Args.append(Arg);
4025 }
4026 }
4027
4028 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
4029 // If only preprocessing or /Y- is used, all pch handling is disabled.
4030 // Rather than check for it everywhere, just remove clang-cl pch-related
4031 // flags here.
4032 Args.eraseArg(options::OPT__SLASH_Fp);
4033 Args.eraseArg(options::OPT__SLASH_Yc);
4034 Args.eraseArg(options::OPT__SLASH_Yu);
4035 YcArg = YuArg = nullptr;
4036 }
4037
4038 unsigned LastPLSize = 0;
4039 for (auto &I : Inputs) {
4040 types::ID InputType = I.first;
4041 const Arg *InputArg = I.second;
4042
4043 auto PL = types::getCompilationPhases(InputType);
4044 LastPLSize = PL.size();
4045
4046 // If the first step comes after the final phase we are doing as part of
4047 // this compilation, warn the user about it.
4048 phases::ID InitialPhase = PL[0];
4049 if (InitialPhase > FinalPhase) {
4050 if (InputArg->isClaimed())
4051 continue;
4052
4053 // Claim here to avoid the more general unused warning.
4054 InputArg->claim();
4055
4056 // Suppress all unused style warnings with -Qunused-arguments
4057 if (Args.hasArg(options::OPT_Qunused_arguments))
4058 continue;
4059
4060 // Special case when final phase determined by binary name, rather than
4061 // by a command-line argument with a corresponding Arg.
4062 if (CCCIsCPP())
4063 Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
4064 << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
4065 // Special case '-E' warning on a previously preprocessed file to make
4066 // more sense.
4067 else if (InitialPhase == phases::Compile &&
4068 (Args.getLastArg(options::OPT__SLASH_EP,
4069 options::OPT__SLASH_P) ||
4070 Args.getLastArg(options::OPT_E) ||
4071 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
4072 getPreprocessedType(InputType) == types::TY_INVALID)
4073 Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
4074 << InputArg->getAsString(Args) << !!FinalPhaseArg
4075 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4076 else
4077 Diag(clang::diag::warn_drv_input_file_unused)
4078 << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
4079 << !!FinalPhaseArg
4080 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4081 continue;
4082 }
4083
4084 if (YcArg) {
4085 // Add a separate precompile phase for the compile phase.
4086 if (FinalPhase >= phases::Compile) {
4087 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
4088 // Build the pipeline for the pch file.
4089 Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
4090 for (phases::ID Phase : types::getCompilationPhases(HeaderType))
4091 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
4092 assert(ClangClPch);
4093 Actions.push_back(ClangClPch);
4094 // The driver currently exits after the first failed command. This
4095 // relies on that behavior, to make sure if the pch generation fails,
4096 // the main compilation won't run.
4097 // FIXME: If the main compilation fails, the PCH generation should
4098 // probably not be considered successful either.
4099 }
4100 }
4101 }
4102
4103 // If we are linking, claim any options which are obviously only used for
4104 // compilation.
4105 // FIXME: Understand why the last Phase List length is used here.
4106 if (FinalPhase == phases::Link && LastPLSize == 1) {
4107 Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
4108 Args.ClaimAllArgs(options::OPT_cl_compile_Group);
4109 }
4110 }
4111
BuildActions(Compilation & C,DerivedArgList & Args,const InputList & Inputs,ActionList & Actions) const4112 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
4113 const InputList &Inputs, ActionList &Actions) const {
4114 llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
4115
4116 if (!SuppressMissingInputWarning && Inputs.empty()) {
4117 Diag(clang::diag::err_drv_no_input_files);
4118 return;
4119 }
4120
4121 // Diagnose misuse of /Fo.
4122 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
4123 StringRef V = A->getValue();
4124 if (Inputs.size() > 1 && !V.empty() &&
4125 !llvm::sys::path::is_separator(V.back())) {
4126 // Check whether /Fo tries to name an output file for multiple inputs.
4127 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4128 << A->getSpelling() << V;
4129 Args.eraseArg(options::OPT__SLASH_Fo);
4130 }
4131 }
4132
4133 // Diagnose misuse of /Fa.
4134 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
4135 StringRef V = A->getValue();
4136 if (Inputs.size() > 1 && !V.empty() &&
4137 !llvm::sys::path::is_separator(V.back())) {
4138 // Check whether /Fa tries to name an asm file for multiple inputs.
4139 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4140 << A->getSpelling() << V;
4141 Args.eraseArg(options::OPT__SLASH_Fa);
4142 }
4143 }
4144
4145 // Diagnose misuse of /o.
4146 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
4147 if (A->getValue()[0] == '\0') {
4148 // It has to have a value.
4149 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
4150 Args.eraseArg(options::OPT__SLASH_o);
4151 }
4152 }
4153
4154 handleArguments(C, Args, Inputs, Actions);
4155
4156 bool UseNewOffloadingDriver =
4157 C.isOffloadingHostKind(Action::OFK_OpenMP) ||
4158 Args.hasFlag(options::OPT_offload_new_driver,
4159 options::OPT_no_offload_new_driver, false);
4160
4161 // Builder to be used to build offloading actions.
4162 std::unique_ptr<OffloadingActionBuilder> OffloadBuilder =
4163 !UseNewOffloadingDriver
4164 ? std::make_unique<OffloadingActionBuilder>(C, Args, Inputs)
4165 : nullptr;
4166
4167 // Construct the actions to perform.
4168 ExtractAPIJobAction *ExtractAPIAction = nullptr;
4169 ActionList LinkerInputs;
4170 ActionList MergerInputs;
4171
4172 for (auto &I : Inputs) {
4173 types::ID InputType = I.first;
4174 const Arg *InputArg = I.second;
4175
4176 auto PL = types::getCompilationPhases(*this, Args, InputType);
4177 if (PL.empty())
4178 continue;
4179
4180 auto FullPL = types::getCompilationPhases(InputType);
4181
4182 // Build the pipeline for this file.
4183 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4184
4185 // Use the current host action in any of the offloading actions, if
4186 // required.
4187 if (!UseNewOffloadingDriver)
4188 if (OffloadBuilder->addHostDependenceToDeviceActions(Current, InputArg))
4189 break;
4190
4191 for (phases::ID Phase : PL) {
4192
4193 // Add any offload action the host action depends on.
4194 if (!UseNewOffloadingDriver)
4195 Current = OffloadBuilder->addDeviceDependencesToHostAction(
4196 Current, InputArg, Phase, PL.back(), FullPL);
4197 if (!Current)
4198 break;
4199
4200 // Queue linker inputs.
4201 if (Phase == phases::Link) {
4202 assert(Phase == PL.back() && "linking must be final compilation step.");
4203 // We don't need to generate additional link commands if emitting AMD
4204 // bitcode or compiling only for the offload device
4205 if (!(C.getInputArgs().hasArg(options::OPT_hip_link) &&
4206 (C.getInputArgs().hasArg(options::OPT_emit_llvm))) &&
4207 !offloadDeviceOnly())
4208 LinkerInputs.push_back(Current);
4209 Current = nullptr;
4210 break;
4211 }
4212
4213 // TODO: Consider removing this because the merged may not end up being
4214 // the final Phase in the pipeline. Perhaps the merged could just merge
4215 // and then pass an artifact of some sort to the Link Phase.
4216 // Queue merger inputs.
4217 if (Phase == phases::IfsMerge) {
4218 assert(Phase == PL.back() && "merging must be final compilation step.");
4219 MergerInputs.push_back(Current);
4220 Current = nullptr;
4221 break;
4222 }
4223
4224 if (Phase == phases::Precompile && ExtractAPIAction) {
4225 ExtractAPIAction->addHeaderInput(Current);
4226 Current = nullptr;
4227 break;
4228 }
4229
4230 // FIXME: Should we include any prior module file outputs as inputs of
4231 // later actions in the same command line?
4232
4233 // Otherwise construct the appropriate action.
4234 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
4235
4236 // We didn't create a new action, so we will just move to the next phase.
4237 if (NewCurrent == Current)
4238 continue;
4239
4240 if (auto *EAA = dyn_cast<ExtractAPIJobAction>(NewCurrent))
4241 ExtractAPIAction = EAA;
4242
4243 Current = NewCurrent;
4244
4245 // Try to build the offloading actions and add the result as a dependency
4246 // to the host.
4247 if (UseNewOffloadingDriver)
4248 Current = BuildOffloadingActions(C, Args, I, Current);
4249 // Use the current host action in any of the offloading actions, if
4250 // required.
4251 else if (OffloadBuilder->addHostDependenceToDeviceActions(Current,
4252 InputArg))
4253 break;
4254
4255 if (Current->getType() == types::TY_Nothing)
4256 break;
4257 }
4258
4259 // If we ended with something, add to the output list.
4260 if (Current)
4261 Actions.push_back(Current);
4262
4263 // Add any top level actions generated for offloading.
4264 if (!UseNewOffloadingDriver)
4265 OffloadBuilder->appendTopLevelActions(Actions, Current, InputArg);
4266 else if (Current)
4267 Current->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4268 /*BoundArch=*/nullptr);
4269 }
4270
4271 // Add a link action if necessary.
4272
4273 if (LinkerInputs.empty()) {
4274 Arg *FinalPhaseArg;
4275 if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link)
4276 if (!UseNewOffloadingDriver)
4277 OffloadBuilder->appendDeviceLinkActions(Actions);
4278 }
4279
4280 if (!LinkerInputs.empty()) {
4281 if (!UseNewOffloadingDriver)
4282 if (Action *Wrapper = OffloadBuilder->makeHostLinkAction())
4283 LinkerInputs.push_back(Wrapper);
4284 Action *LA;
4285 // Check if this Linker Job should emit a static library.
4286 if (ShouldEmitStaticLibrary(Args)) {
4287 LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
4288 } else if (UseNewOffloadingDriver ||
4289 Args.hasArg(options::OPT_offload_link)) {
4290 LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image);
4291 LA->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4292 /*BoundArch=*/nullptr);
4293 } else {
4294 LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
4295 }
4296 if (!UseNewOffloadingDriver)
4297 LA = OffloadBuilder->processHostLinkAction(LA);
4298 Actions.push_back(LA);
4299 }
4300
4301 // Add an interface stubs merge action if necessary.
4302 if (!MergerInputs.empty())
4303 Actions.push_back(
4304 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4305
4306 if (Args.hasArg(options::OPT_emit_interface_stubs)) {
4307 auto PhaseList = types::getCompilationPhases(
4308 types::TY_IFS_CPP,
4309 Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge);
4310
4311 ActionList MergerInputs;
4312
4313 for (auto &I : Inputs) {
4314 types::ID InputType = I.first;
4315 const Arg *InputArg = I.second;
4316
4317 // Currently clang and the llvm assembler do not support generating symbol
4318 // stubs from assembly, so we skip the input on asm files. For ifs files
4319 // we rely on the normal pipeline setup in the pipeline setup code above.
4320 if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
4321 InputType == types::TY_Asm)
4322 continue;
4323
4324 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4325
4326 for (auto Phase : PhaseList) {
4327 switch (Phase) {
4328 default:
4329 llvm_unreachable(
4330 "IFS Pipeline can only consist of Compile followed by IfsMerge.");
4331 case phases::Compile: {
4332 // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
4333 // files where the .o file is located. The compile action can not
4334 // handle this.
4335 if (InputType == types::TY_Object)
4336 break;
4337
4338 Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
4339 break;
4340 }
4341 case phases::IfsMerge: {
4342 assert(Phase == PhaseList.back() &&
4343 "merging must be final compilation step.");
4344 MergerInputs.push_back(Current);
4345 Current = nullptr;
4346 break;
4347 }
4348 }
4349 }
4350
4351 // If we ended with something, add to the output list.
4352 if (Current)
4353 Actions.push_back(Current);
4354 }
4355
4356 // Add an interface stubs merge action if necessary.
4357 if (!MergerInputs.empty())
4358 Actions.push_back(
4359 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4360 }
4361
4362 for (auto Opt : {options::OPT_print_supported_cpus,
4363 options::OPT_print_supported_extensions,
4364 options::OPT_print_enabled_extensions}) {
4365 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a
4366 // custom Compile phase that prints out supported cpu models and quits.
4367 //
4368 // If either --print-supported-extensions or --print-enabled-extensions is
4369 // specified, call the corresponding helper function that prints out the
4370 // supported/enabled extensions and quits.
4371 if (Arg *A = Args.getLastArg(Opt)) {
4372 if (Opt == options::OPT_print_supported_extensions &&
4373 !C.getDefaultToolChain().getTriple().isRISCV() &&
4374 !C.getDefaultToolChain().getTriple().isAArch64() &&
4375 !C.getDefaultToolChain().getTriple().isARM()) {
4376 C.getDriver().Diag(diag::err_opt_not_valid_on_target)
4377 << "--print-supported-extensions";
4378 return;
4379 }
4380 if (Opt == options::OPT_print_enabled_extensions &&
4381 !C.getDefaultToolChain().getTriple().isRISCV() &&
4382 !C.getDefaultToolChain().getTriple().isAArch64()) {
4383 C.getDriver().Diag(diag::err_opt_not_valid_on_target)
4384 << "--print-enabled-extensions";
4385 return;
4386 }
4387
4388 // Use the -mcpu=? flag as the dummy input to cc1.
4389 Actions.clear();
4390 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
4391 Actions.push_back(
4392 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
4393 for (auto &I : Inputs)
4394 I.second->claim();
4395 }
4396 }
4397
4398 // Call validator for dxil when -Vd not in Args.
4399 if (C.getDefaultToolChain().getTriple().isDXIL()) {
4400 // Only add action when needValidation.
4401 const auto &TC =
4402 static_cast<const toolchains::HLSLToolChain &>(C.getDefaultToolChain());
4403 if (TC.requiresValidation(Args)) {
4404 Action *LastAction = Actions.back();
4405 Actions.push_back(C.MakeAction<BinaryAnalyzeJobAction>(
4406 LastAction, types::TY_DX_CONTAINER));
4407 }
4408 }
4409
4410 // Claim ignored clang-cl options.
4411 Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
4412 }
4413
4414 /// Returns the canonical name for the offloading architecture when using a HIP
4415 /// or CUDA architecture.
getCanonicalArchString(Compilation & C,const llvm::opt::DerivedArgList & Args,StringRef ArchStr,const llvm::Triple & Triple,bool SuppressError=false)4416 static StringRef getCanonicalArchString(Compilation &C,
4417 const llvm::opt::DerivedArgList &Args,
4418 StringRef ArchStr,
4419 const llvm::Triple &Triple,
4420 bool SuppressError = false) {
4421 // Lookup the CUDA / HIP architecture string. Only report an error if we were
4422 // expecting the triple to be only NVPTX / AMDGPU.
4423 OffloadArch Arch =
4424 StringToOffloadArch(getProcessorFromTargetID(Triple, ArchStr));
4425 if (!SuppressError && Triple.isNVPTX() &&
4426 (Arch == OffloadArch::UNKNOWN || !IsNVIDIAOffloadArch(Arch))) {
4427 C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4428 << "CUDA" << ArchStr;
4429 return StringRef();
4430 } else if (!SuppressError && Triple.isAMDGPU() &&
4431 (Arch == OffloadArch::UNKNOWN || !IsAMDOffloadArch(Arch))) {
4432 C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4433 << "HIP" << ArchStr;
4434 return StringRef();
4435 }
4436
4437 if (IsNVIDIAOffloadArch(Arch))
4438 return Args.MakeArgStringRef(OffloadArchToString(Arch));
4439
4440 if (IsAMDOffloadArch(Arch)) {
4441 llvm::StringMap<bool> Features;
4442 auto HIPTriple = getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs());
4443 if (!HIPTriple)
4444 return StringRef();
4445 auto Arch = parseTargetID(*HIPTriple, ArchStr, &Features);
4446 if (!Arch) {
4447 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << ArchStr;
4448 C.setContainsError();
4449 return StringRef();
4450 }
4451 return Args.MakeArgStringRef(getCanonicalTargetID(*Arch, Features));
4452 }
4453
4454 // If the input isn't CUDA or HIP just return the architecture.
4455 return ArchStr;
4456 }
4457
4458 /// Checks if the set offloading architectures does not conflict. Returns the
4459 /// incompatible pair if a conflict occurs.
4460 static std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> & Archs,llvm::Triple Triple)4461 getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> &Archs,
4462 llvm::Triple Triple) {
4463 if (!Triple.isAMDGPU())
4464 return std::nullopt;
4465
4466 std::set<StringRef> ArchSet;
4467 llvm::copy(Archs, std::inserter(ArchSet, ArchSet.begin()));
4468 return getConflictTargetIDCombination(ArchSet);
4469 }
4470
4471 llvm::DenseSet<StringRef>
getOffloadArchs(Compilation & C,const llvm::opt::DerivedArgList & Args,Action::OffloadKind Kind,const ToolChain * TC,bool SuppressError) const4472 Driver::getOffloadArchs(Compilation &C, const llvm::opt::DerivedArgList &Args,
4473 Action::OffloadKind Kind, const ToolChain *TC,
4474 bool SuppressError) const {
4475 if (!TC)
4476 TC = &C.getDefaultToolChain();
4477
4478 // --offload and --offload-arch options are mutually exclusive.
4479 if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
4480 Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
4481 options::OPT_no_offload_arch_EQ)) {
4482 C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
4483 << "--offload"
4484 << (Args.hasArgNoClaim(options::OPT_offload_arch_EQ)
4485 ? "--offload-arch"
4486 : "--no-offload-arch");
4487 }
4488
4489 if (KnownArchs.contains(TC))
4490 return KnownArchs.lookup(TC);
4491
4492 llvm::DenseSet<StringRef> Archs;
4493 for (auto *Arg : Args) {
4494 // Extract any '--[no-]offload-arch' arguments intended for this toolchain.
4495 std::unique_ptr<llvm::opt::Arg> ExtractedArg = nullptr;
4496 if (Arg->getOption().matches(options::OPT_Xopenmp_target_EQ) &&
4497 ToolChain::getOpenMPTriple(Arg->getValue(0)) == TC->getTriple()) {
4498 Arg->claim();
4499 unsigned Index = Args.getBaseArgs().MakeIndex(Arg->getValue(1));
4500 ExtractedArg = getOpts().ParseOneArg(Args, Index);
4501 Arg = ExtractedArg.get();
4502 }
4503
4504 // Add or remove the seen architectures in order of appearance. If an
4505 // invalid architecture is given we simply exit.
4506 if (Arg->getOption().matches(options::OPT_offload_arch_EQ)) {
4507 for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4508 if (Arch == "native" || Arch.empty()) {
4509 auto GPUsOrErr = TC->getSystemGPUArchs(Args);
4510 if (!GPUsOrErr) {
4511 if (SuppressError)
4512 llvm::consumeError(GPUsOrErr.takeError());
4513 else
4514 TC->getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
4515 << llvm::Triple::getArchTypeName(TC->getArch())
4516 << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
4517 continue;
4518 }
4519
4520 for (auto ArchStr : *GPUsOrErr) {
4521 Archs.insert(
4522 getCanonicalArchString(C, Args, Args.MakeArgString(ArchStr),
4523 TC->getTriple(), SuppressError));
4524 }
4525 } else {
4526 StringRef ArchStr = getCanonicalArchString(
4527 C, Args, Arch, TC->getTriple(), SuppressError);
4528 if (ArchStr.empty())
4529 return Archs;
4530 Archs.insert(ArchStr);
4531 }
4532 }
4533 } else if (Arg->getOption().matches(options::OPT_no_offload_arch_EQ)) {
4534 for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4535 if (Arch == "all") {
4536 Archs.clear();
4537 } else {
4538 StringRef ArchStr = getCanonicalArchString(
4539 C, Args, Arch, TC->getTriple(), SuppressError);
4540 if (ArchStr.empty())
4541 return Archs;
4542 Archs.erase(ArchStr);
4543 }
4544 }
4545 }
4546 }
4547
4548 if (auto ConflictingArchs =
4549 getConflictOffloadArchCombination(Archs, TC->getTriple())) {
4550 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
4551 << ConflictingArchs->first << ConflictingArchs->second;
4552 C.setContainsError();
4553 }
4554
4555 // Skip filling defaults if we're just querying what is availible.
4556 if (SuppressError)
4557 return Archs;
4558
4559 if (Archs.empty()) {
4560 if (Kind == Action::OFK_Cuda)
4561 Archs.insert(OffloadArchToString(OffloadArch::CudaDefault));
4562 else if (Kind == Action::OFK_HIP)
4563 Archs.insert(OffloadArchToString(OffloadArch::HIPDefault));
4564 else if (Kind == Action::OFK_OpenMP)
4565 Archs.insert(StringRef());
4566 } else {
4567 Args.ClaimAllArgs(options::OPT_offload_arch_EQ);
4568 Args.ClaimAllArgs(options::OPT_no_offload_arch_EQ);
4569 }
4570
4571 return Archs;
4572 }
4573
BuildOffloadingActions(Compilation & C,llvm::opt::DerivedArgList & Args,const InputTy & Input,Action * HostAction) const4574 Action *Driver::BuildOffloadingActions(Compilation &C,
4575 llvm::opt::DerivedArgList &Args,
4576 const InputTy &Input,
4577 Action *HostAction) const {
4578 // Don't build offloading actions if explicitly disabled or we do not have a
4579 // valid source input and compile action to embed it in. If preprocessing only
4580 // ignore embedding.
4581 if (offloadHostOnly() || !types::isSrcFile(Input.first) ||
4582 !(isa<CompileJobAction>(HostAction) ||
4583 getFinalPhase(Args) == phases::Preprocess))
4584 return HostAction;
4585
4586 ActionList OffloadActions;
4587 OffloadAction::DeviceDependences DDeps;
4588
4589 const Action::OffloadKind OffloadKinds[] = {
4590 Action::OFK_OpenMP, Action::OFK_Cuda, Action::OFK_HIP};
4591
4592 for (Action::OffloadKind Kind : OffloadKinds) {
4593 SmallVector<const ToolChain *, 2> ToolChains;
4594 ActionList DeviceActions;
4595
4596 auto TCRange = C.getOffloadToolChains(Kind);
4597 for (auto TI = TCRange.first, TE = TCRange.second; TI != TE; ++TI)
4598 ToolChains.push_back(TI->second);
4599
4600 if (ToolChains.empty())
4601 continue;
4602
4603 types::ID InputType = Input.first;
4604 const Arg *InputArg = Input.second;
4605
4606 // The toolchain can be active for unsupported file types.
4607 if ((Kind == Action::OFK_Cuda && !types::isCuda(InputType)) ||
4608 (Kind == Action::OFK_HIP && !types::isHIP(InputType)))
4609 continue;
4610
4611 // Get the product of all bound architectures and toolchains.
4612 SmallVector<std::pair<const ToolChain *, StringRef>> TCAndArchs;
4613 for (const ToolChain *TC : ToolChains) {
4614 llvm::DenseSet<StringRef> Arches = getOffloadArchs(C, Args, Kind, TC);
4615 SmallVector<StringRef, 0> Sorted(Arches.begin(), Arches.end());
4616 llvm::sort(Sorted);
4617 for (StringRef Arch : Sorted)
4618 TCAndArchs.push_back(std::make_pair(TC, Arch));
4619 }
4620
4621 for (unsigned I = 0, E = TCAndArchs.size(); I != E; ++I)
4622 DeviceActions.push_back(C.MakeAction<InputAction>(*InputArg, InputType));
4623
4624 if (DeviceActions.empty())
4625 return HostAction;
4626
4627 auto PL = types::getCompilationPhases(*this, Args, InputType);
4628
4629 for (phases::ID Phase : PL) {
4630 if (Phase == phases::Link) {
4631 assert(Phase == PL.back() && "linking must be final compilation step.");
4632 break;
4633 }
4634
4635 auto TCAndArch = TCAndArchs.begin();
4636 for (Action *&A : DeviceActions) {
4637 if (A->getType() == types::TY_Nothing)
4638 continue;
4639
4640 // Propagate the ToolChain so we can use it in ConstructPhaseAction.
4641 A->propagateDeviceOffloadInfo(Kind, TCAndArch->second.data(),
4642 TCAndArch->first);
4643 A = ConstructPhaseAction(C, Args, Phase, A, Kind);
4644
4645 if (isa<CompileJobAction>(A) && isa<CompileJobAction>(HostAction) &&
4646 Kind == Action::OFK_OpenMP &&
4647 HostAction->getType() != types::TY_Nothing) {
4648 // OpenMP offloading has a dependency on the host compile action to
4649 // identify which declarations need to be emitted. This shouldn't be
4650 // collapsed with any other actions so we can use it in the device.
4651 HostAction->setCannotBeCollapsedWithNextDependentAction();
4652 OffloadAction::HostDependence HDep(
4653 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4654 TCAndArch->second.data(), Kind);
4655 OffloadAction::DeviceDependences DDep;
4656 DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4657 A = C.MakeAction<OffloadAction>(HDep, DDep);
4658 }
4659
4660 ++TCAndArch;
4661 }
4662 }
4663
4664 // Compiling HIP in non-RDC mode requires linking each action individually.
4665 for (Action *&A : DeviceActions) {
4666 if ((A->getType() != types::TY_Object &&
4667 A->getType() != types::TY_LTO_BC) ||
4668 Kind != Action::OFK_HIP ||
4669 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false))
4670 continue;
4671 ActionList LinkerInput = {A};
4672 A = C.MakeAction<LinkJobAction>(LinkerInput, types::TY_Image);
4673 }
4674
4675 auto TCAndArch = TCAndArchs.begin();
4676 for (Action *A : DeviceActions) {
4677 DDeps.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4678 OffloadAction::DeviceDependences DDep;
4679 DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4680
4681 // Compiling CUDA in non-RDC mode uses the PTX output if available.
4682 for (Action *Input : A->getInputs())
4683 if (Kind == Action::OFK_Cuda && A->getType() == types::TY_Object &&
4684 !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4685 false))
4686 DDep.add(*Input, *TCAndArch->first, TCAndArch->second.data(), Kind);
4687 OffloadActions.push_back(C.MakeAction<OffloadAction>(DDep, A->getType()));
4688
4689 ++TCAndArch;
4690 }
4691 }
4692
4693 // HIP code in non-RDC mode will bundle the output if it invoked the linker.
4694 bool ShouldBundleHIP =
4695 C.isOffloadingHostKind(Action::OFK_HIP) &&
4696 Args.hasFlag(options::OPT_gpu_bundle_output,
4697 options::OPT_no_gpu_bundle_output, true) &&
4698 !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false) &&
4699 !llvm::any_of(OffloadActions,
4700 [](Action *A) { return A->getType() != types::TY_Image; });
4701
4702 // All kinds exit now in device-only mode except for non-RDC mode HIP.
4703 if (offloadDeviceOnly() && !ShouldBundleHIP)
4704 return C.MakeAction<OffloadAction>(DDeps, types::TY_Nothing);
4705
4706 if (OffloadActions.empty())
4707 return HostAction;
4708
4709 OffloadAction::DeviceDependences DDep;
4710 if (C.isOffloadingHostKind(Action::OFK_Cuda) &&
4711 !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) {
4712 // If we are not in RDC-mode we just emit the final CUDA fatbinary for
4713 // each translation unit without requiring any linking.
4714 Action *FatbinAction =
4715 C.MakeAction<LinkJobAction>(OffloadActions, types::TY_CUDA_FATBIN);
4716 DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_Cuda>(),
4717 nullptr, Action::OFK_Cuda);
4718 } else if (C.isOffloadingHostKind(Action::OFK_HIP) &&
4719 !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4720 false)) {
4721 // If we are not in RDC-mode we just emit the final HIP fatbinary for each
4722 // translation unit, linking each input individually.
4723 Action *FatbinAction =
4724 C.MakeAction<LinkJobAction>(OffloadActions, types::TY_HIP_FATBIN);
4725 DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_HIP>(),
4726 nullptr, Action::OFK_HIP);
4727 } else {
4728 // Package all the offloading actions into a single output that can be
4729 // embedded in the host and linked.
4730 Action *PackagerAction =
4731 C.MakeAction<OffloadPackagerJobAction>(OffloadActions, types::TY_Image);
4732 DDep.add(*PackagerAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4733 nullptr, C.getActiveOffloadKinds());
4734 }
4735
4736 // HIP wants '--offload-device-only' to create a fatbinary by default.
4737 if (offloadDeviceOnly())
4738 return C.MakeAction<OffloadAction>(DDep, types::TY_Nothing);
4739
4740 // If we are unable to embed a single device output into the host, we need to
4741 // add each device output as a host dependency to ensure they are still built.
4742 bool SingleDeviceOutput = !llvm::any_of(OffloadActions, [](Action *A) {
4743 return A->getType() == types::TY_Nothing;
4744 }) && isa<CompileJobAction>(HostAction);
4745 OffloadAction::HostDependence HDep(
4746 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4747 /*BoundArch=*/nullptr, SingleDeviceOutput ? DDep : DDeps);
4748 return C.MakeAction<OffloadAction>(HDep, SingleDeviceOutput ? DDep : DDeps);
4749 }
4750
ConstructPhaseAction(Compilation & C,const ArgList & Args,phases::ID Phase,Action * Input,Action::OffloadKind TargetDeviceOffloadKind) const4751 Action *Driver::ConstructPhaseAction(
4752 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
4753 Action::OffloadKind TargetDeviceOffloadKind) const {
4754 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
4755
4756 // Some types skip the assembler phase (e.g., llvm-bc), but we can't
4757 // encode this in the steps because the intermediate type depends on
4758 // arguments. Just special case here.
4759 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
4760 return Input;
4761
4762 // Build the appropriate action.
4763 switch (Phase) {
4764 case phases::Link:
4765 llvm_unreachable("link action invalid here.");
4766 case phases::IfsMerge:
4767 llvm_unreachable("ifsmerge action invalid here.");
4768 case phases::Preprocess: {
4769 types::ID OutputTy;
4770 // -M and -MM specify the dependency file name by altering the output type,
4771 // -if -MD and -MMD are not specified.
4772 if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
4773 !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
4774 OutputTy = types::TY_Dependencies;
4775 } else {
4776 OutputTy = Input->getType();
4777 // For these cases, the preprocessor is only translating forms, the Output
4778 // still needs preprocessing.
4779 if (!Args.hasFlag(options::OPT_frewrite_includes,
4780 options::OPT_fno_rewrite_includes, false) &&
4781 !Args.hasFlag(options::OPT_frewrite_imports,
4782 options::OPT_fno_rewrite_imports, false) &&
4783 !Args.hasFlag(options::OPT_fdirectives_only,
4784 options::OPT_fno_directives_only, false) &&
4785 !CCGenDiagnostics)
4786 OutputTy = types::getPreprocessedType(OutputTy);
4787 assert(OutputTy != types::TY_INVALID &&
4788 "Cannot preprocess this input type!");
4789 }
4790 return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
4791 }
4792 case phases::Precompile: {
4793 // API extraction should not generate an actual precompilation action.
4794 if (Args.hasArg(options::OPT_extract_api))
4795 return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4796
4797 // With 'fexperimental-modules-reduced-bmi', we don't want to run the
4798 // precompile phase unless the user specified '--precompile'. In the case
4799 // the '--precompile' flag is enabled, we will try to emit the reduced BMI
4800 // as a by product in GenerateModuleInterfaceAction.
4801 if (Args.hasArg(options::OPT_modules_reduced_bmi) &&
4802 !Args.getLastArg(options::OPT__precompile))
4803 return Input;
4804
4805 types::ID OutputTy = getPrecompiledType(Input->getType());
4806 assert(OutputTy != types::TY_INVALID &&
4807 "Cannot precompile this input type!");
4808
4809 // If we're given a module name, precompile header file inputs as a
4810 // module, not as a precompiled header.
4811 const char *ModName = nullptr;
4812 if (OutputTy == types::TY_PCH) {
4813 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
4814 ModName = A->getValue();
4815 if (ModName)
4816 OutputTy = types::TY_ModuleFile;
4817 }
4818
4819 if (Args.hasArg(options::OPT_fsyntax_only)) {
4820 // Syntax checks should not emit a PCH file
4821 OutputTy = types::TY_Nothing;
4822 }
4823
4824 return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
4825 }
4826 case phases::Compile: {
4827 if (Args.hasArg(options::OPT_fsyntax_only))
4828 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
4829 if (Args.hasArg(options::OPT_rewrite_objc))
4830 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
4831 if (Args.hasArg(options::OPT_rewrite_legacy_objc))
4832 return C.MakeAction<CompileJobAction>(Input,
4833 types::TY_RewrittenLegacyObjC);
4834 if (Args.hasArg(options::OPT__analyze))
4835 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
4836 if (Args.hasArg(options::OPT__migrate))
4837 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
4838 if (Args.hasArg(options::OPT_emit_ast))
4839 return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
4840 if (Args.hasArg(options::OPT_emit_cir))
4841 return C.MakeAction<CompileJobAction>(Input, types::TY_CIR);
4842 if (Args.hasArg(options::OPT_module_file_info))
4843 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
4844 if (Args.hasArg(options::OPT_verify_pch))
4845 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
4846 if (Args.hasArg(options::OPT_extract_api))
4847 return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4848 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
4849 }
4850 case phases::Backend: {
4851 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
4852 types::ID Output;
4853 if (Args.hasArg(options::OPT_ffat_lto_objects) &&
4854 !Args.hasArg(options::OPT_emit_llvm))
4855 Output = types::TY_PP_Asm;
4856 else if (Args.hasArg(options::OPT_S))
4857 Output = types::TY_LTO_IR;
4858 else
4859 Output = types::TY_LTO_BC;
4860 return C.MakeAction<BackendJobAction>(Input, Output);
4861 }
4862 if (isUsingLTO(/* IsOffload */ true) &&
4863 TargetDeviceOffloadKind != Action::OFK_None) {
4864 types::ID Output =
4865 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4866 return C.MakeAction<BackendJobAction>(Input, Output);
4867 }
4868 if (Args.hasArg(options::OPT_emit_llvm) ||
4869 (((Input->getOffloadingToolChain() &&
4870 Input->getOffloadingToolChain()->getTriple().isAMDGPU()) ||
4871 TargetDeviceOffloadKind == Action::OFK_HIP) &&
4872 (Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4873 false) ||
4874 TargetDeviceOffloadKind == Action::OFK_OpenMP))) {
4875 types::ID Output =
4876 Args.hasArg(options::OPT_S) &&
4877 (TargetDeviceOffloadKind == Action::OFK_None ||
4878 offloadDeviceOnly() ||
4879 (TargetDeviceOffloadKind == Action::OFK_HIP &&
4880 !Args.hasFlag(options::OPT_offload_new_driver,
4881 options::OPT_no_offload_new_driver, false)))
4882 ? types::TY_LLVM_IR
4883 : types::TY_LLVM_BC;
4884 return C.MakeAction<BackendJobAction>(Input, Output);
4885 }
4886 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
4887 }
4888 case phases::Assemble:
4889 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
4890 }
4891
4892 llvm_unreachable("invalid phase in ConstructPhaseAction");
4893 }
4894
BuildJobs(Compilation & C) const4895 void Driver::BuildJobs(Compilation &C) const {
4896 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4897
4898 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4899
4900 // It is an error to provide a -o option if we are making multiple output
4901 // files. There are exceptions:
4902 //
4903 // IfsMergeJob: when generating interface stubs enabled we want to be able to
4904 // generate the stub file at the same time that we generate the real
4905 // library/a.out. So when a .o, .so, etc are the output, with clang interface
4906 // stubs there will also be a .ifs and .ifso at the same location.
4907 //
4908 // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4909 // and -c is passed, we still want to be able to generate a .ifs file while
4910 // we are also generating .o files. So we allow more than one output file in
4911 // this case as well.
4912 //
4913 // OffloadClass of type TY_Nothing: device-only output will place many outputs
4914 // into a single offloading action. We should count all inputs to the action
4915 // as outputs. Also ignore device-only outputs if we're compiling with
4916 // -fsyntax-only.
4917 if (FinalOutput) {
4918 unsigned NumOutputs = 0;
4919 unsigned NumIfsOutputs = 0;
4920 for (const Action *A : C.getActions()) {
4921 if (A->getType() != types::TY_Nothing &&
4922 A->getType() != types::TY_DX_CONTAINER &&
4923 !(A->getKind() == Action::IfsMergeJobClass ||
4924 (A->getType() == clang::driver::types::TY_IFS_CPP &&
4925 A->getKind() == clang::driver::Action::CompileJobClass &&
4926 0 == NumIfsOutputs++) ||
4927 (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4928 A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4929 ++NumOutputs;
4930 else if (A->getKind() == Action::OffloadClass &&
4931 A->getType() == types::TY_Nothing &&
4932 !C.getArgs().hasArg(options::OPT_fsyntax_only))
4933 NumOutputs += A->size();
4934 }
4935
4936 if (NumOutputs > 1) {
4937 Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4938 FinalOutput = nullptr;
4939 }
4940 }
4941
4942 const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4943
4944 // Collect the list of architectures.
4945 llvm::StringSet<> ArchNames;
4946 if (RawTriple.isOSBinFormatMachO())
4947 for (const Arg *A : C.getArgs())
4948 if (A->getOption().matches(options::OPT_arch))
4949 ArchNames.insert(A->getValue());
4950
4951 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4952 std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults;
4953 for (Action *A : C.getActions()) {
4954 // If we are linking an image for multiple archs then the linker wants
4955 // -arch_multiple and -final_output <final image name>. Unfortunately, this
4956 // doesn't fit in cleanly because we have to pass this information down.
4957 //
4958 // FIXME: This is a hack; find a cleaner way to integrate this into the
4959 // process.
4960 const char *LinkingOutput = nullptr;
4961 if (isa<LipoJobAction>(A)) {
4962 if (FinalOutput)
4963 LinkingOutput = FinalOutput->getValue();
4964 else
4965 LinkingOutput = getDefaultImageName();
4966 }
4967
4968 BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4969 /*BoundArch*/ StringRef(),
4970 /*AtTopLevel*/ true,
4971 /*MultipleArchs*/ ArchNames.size() > 1,
4972 /*LinkingOutput*/ LinkingOutput, CachedResults,
4973 /*TargetDeviceOffloadKind*/ Action::OFK_None);
4974 }
4975
4976 // If we have more than one job, then disable integrated-cc1 for now. Do this
4977 // also when we need to report process execution statistics.
4978 if (C.getJobs().size() > 1 || CCPrintProcessStats)
4979 for (auto &J : C.getJobs())
4980 J.InProcess = false;
4981
4982 if (CCPrintProcessStats) {
4983 C.setPostCallback([=](const Command &Cmd, int Res) {
4984 std::optional<llvm::sys::ProcessStatistics> ProcStat =
4985 Cmd.getProcessStatistics();
4986 if (!ProcStat)
4987 return;
4988
4989 const char *LinkingOutput = nullptr;
4990 if (FinalOutput)
4991 LinkingOutput = FinalOutput->getValue();
4992 else if (!Cmd.getOutputFilenames().empty())
4993 LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4994 else
4995 LinkingOutput = getDefaultImageName();
4996
4997 if (CCPrintStatReportFilename.empty()) {
4998 using namespace llvm;
4999 // Human readable output.
5000 outs() << sys::path::filename(Cmd.getExecutable()) << ": "
5001 << "output=" << LinkingOutput;
5002 outs() << ", total="
5003 << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
5004 << ", user="
5005 << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
5006 << ", mem=" << ProcStat->PeakMemory << " Kb\n";
5007 } else {
5008 // CSV format.
5009 std::string Buffer;
5010 llvm::raw_string_ostream Out(Buffer);
5011 llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
5012 /*Quote*/ true);
5013 Out << ',';
5014 llvm::sys::printArg(Out, LinkingOutput, true);
5015 Out << ',' << ProcStat->TotalTime.count() << ','
5016 << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
5017 << '\n';
5018 Out.flush();
5019 std::error_code EC;
5020 llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
5021 llvm::sys::fs::OF_Append |
5022 llvm::sys::fs::OF_Text);
5023 if (EC)
5024 return;
5025 auto L = OS.lock();
5026 if (!L) {
5027 llvm::errs() << "ERROR: Cannot lock file "
5028 << CCPrintStatReportFilename << ": "
5029 << toString(L.takeError()) << "\n";
5030 return;
5031 }
5032 OS << Buffer;
5033 OS.flush();
5034 }
5035 });
5036 }
5037
5038 // If the user passed -Qunused-arguments or there were errors, don't warn
5039 // about any unused arguments.
5040 if (Diags.hasErrorOccurred() ||
5041 C.getArgs().hasArg(options::OPT_Qunused_arguments))
5042 return;
5043
5044 // Claim -fdriver-only here.
5045 (void)C.getArgs().hasArg(options::OPT_fdriver_only);
5046 // Claim -### here.
5047 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
5048
5049 // Claim --driver-mode, --rsp-quoting, it was handled earlier.
5050 (void)C.getArgs().hasArg(options::OPT_driver_mode);
5051 (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
5052
5053 bool HasAssembleJob = llvm::any_of(C.getJobs(), [](auto &J) {
5054 // Match ClangAs and other derived assemblers of Tool. ClangAs uses a
5055 // longer ShortName "clang integrated assembler" while other assemblers just
5056 // use "assembler".
5057 return strstr(J.getCreator().getShortName(), "assembler");
5058 });
5059 for (Arg *A : C.getArgs()) {
5060 // FIXME: It would be nice to be able to send the argument to the
5061 // DiagnosticsEngine, so that extra values, position, and so on could be
5062 // printed.
5063 if (!A->isClaimed()) {
5064 if (A->getOption().hasFlag(options::NoArgumentUnused))
5065 continue;
5066
5067 // Suppress the warning automatically if this is just a flag, and it is an
5068 // instance of an argument we already claimed.
5069 const Option &Opt = A->getOption();
5070 if (Opt.getKind() == Option::FlagClass) {
5071 bool DuplicateClaimed = false;
5072
5073 for (const Arg *AA : C.getArgs().filtered(&Opt)) {
5074 if (AA->isClaimed()) {
5075 DuplicateClaimed = true;
5076 break;
5077 }
5078 }
5079
5080 if (DuplicateClaimed)
5081 continue;
5082 }
5083
5084 // In clang-cl, don't mention unknown arguments here since they have
5085 // already been warned about.
5086 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) {
5087 if (A->getOption().hasFlag(options::TargetSpecific) &&
5088 !A->isIgnoredTargetSpecific() && !HasAssembleJob &&
5089 // When for example -### or -v is used
5090 // without a file, target specific options are not
5091 // consumed/validated.
5092 // Instead emitting an error emit a warning instead.
5093 !C.getActions().empty()) {
5094 Diag(diag::err_drv_unsupported_opt_for_target)
5095 << A->getSpelling() << getTargetTriple();
5096 } else {
5097 Diag(clang::diag::warn_drv_unused_argument)
5098 << A->getAsString(C.getArgs());
5099 }
5100 }
5101 }
5102 }
5103 }
5104
5105 namespace {
5106 /// Utility class to control the collapse of dependent actions and select the
5107 /// tools accordingly.
5108 class ToolSelector final {
5109 /// The tool chain this selector refers to.
5110 const ToolChain &TC;
5111
5112 /// The compilation this selector refers to.
5113 const Compilation &C;
5114
5115 /// The base action this selector refers to.
5116 const JobAction *BaseAction;
5117
5118 /// Set to true if the current toolchain refers to host actions.
5119 bool IsHostSelector;
5120
5121 /// Set to true if save-temps and embed-bitcode functionalities are active.
5122 bool SaveTemps;
5123 bool EmbedBitcode;
5124
5125 /// Get previous dependent action or null if that does not exist. If
5126 /// \a CanBeCollapsed is false, that action must be legal to collapse or
5127 /// null will be returned.
getPrevDependentAction(const ActionList & Inputs,ActionList & SavedOffloadAction,bool CanBeCollapsed=true)5128 const JobAction *getPrevDependentAction(const ActionList &Inputs,
5129 ActionList &SavedOffloadAction,
5130 bool CanBeCollapsed = true) {
5131 // An option can be collapsed only if it has a single input.
5132 if (Inputs.size() != 1)
5133 return nullptr;
5134
5135 Action *CurAction = *Inputs.begin();
5136 if (CanBeCollapsed &&
5137 !CurAction->isCollapsingWithNextDependentActionLegal())
5138 return nullptr;
5139
5140 // If the input action is an offload action. Look through it and save any
5141 // offload action that can be dropped in the event of a collapse.
5142 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
5143 // If the dependent action is a device action, we will attempt to collapse
5144 // only with other device actions. Otherwise, we would do the same but
5145 // with host actions only.
5146 if (!IsHostSelector) {
5147 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
5148 CurAction =
5149 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
5150 if (CanBeCollapsed &&
5151 !CurAction->isCollapsingWithNextDependentActionLegal())
5152 return nullptr;
5153 SavedOffloadAction.push_back(OA);
5154 return dyn_cast<JobAction>(CurAction);
5155 }
5156 } else if (OA->hasHostDependence()) {
5157 CurAction = OA->getHostDependence();
5158 if (CanBeCollapsed &&
5159 !CurAction->isCollapsingWithNextDependentActionLegal())
5160 return nullptr;
5161 SavedOffloadAction.push_back(OA);
5162 return dyn_cast<JobAction>(CurAction);
5163 }
5164 return nullptr;
5165 }
5166
5167 return dyn_cast<JobAction>(CurAction);
5168 }
5169
5170 /// Return true if an assemble action can be collapsed.
canCollapseAssembleAction() const5171 bool canCollapseAssembleAction() const {
5172 return TC.useIntegratedAs() && !SaveTemps &&
5173 !C.getArgs().hasArg(options::OPT_via_file_asm) &&
5174 !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
5175 !C.getArgs().hasArg(options::OPT__SLASH_Fa) &&
5176 !C.getArgs().hasArg(options::OPT_dxc_Fc);
5177 }
5178
5179 /// Return true if a preprocessor action can be collapsed.
canCollapsePreprocessorAction() const5180 bool canCollapsePreprocessorAction() const {
5181 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
5182 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
5183 !C.getArgs().hasArg(options::OPT_rewrite_objc);
5184 }
5185
5186 /// Struct that relates an action with the offload actions that would be
5187 /// collapsed with it.
5188 struct JobActionInfo final {
5189 /// The action this info refers to.
5190 const JobAction *JA = nullptr;
5191 /// The offload actions we need to take care off if this action is
5192 /// collapsed.
5193 ActionList SavedOffloadAction;
5194 };
5195
5196 /// Append collapsed offload actions from the give nnumber of elements in the
5197 /// action info array.
AppendCollapsedOffloadAction(ActionList & CollapsedOffloadAction,ArrayRef<JobActionInfo> & ActionInfo,unsigned ElementNum)5198 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
5199 ArrayRef<JobActionInfo> &ActionInfo,
5200 unsigned ElementNum) {
5201 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
5202 for (unsigned I = 0; I < ElementNum; ++I)
5203 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
5204 ActionInfo[I].SavedOffloadAction.end());
5205 }
5206
5207 /// Functions that attempt to perform the combining. They detect if that is
5208 /// legal, and if so they update the inputs \a Inputs and the offload action
5209 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
5210 /// the combined action is returned. If the combining is not legal or if the
5211 /// tool does not exist, null is returned.
5212 /// Currently three kinds of collapsing are supported:
5213 /// - Assemble + Backend + Compile;
5214 /// - Assemble + Backend ;
5215 /// - Backend + Compile.
5216 const Tool *
combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)5217 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5218 ActionList &Inputs,
5219 ActionList &CollapsedOffloadAction) {
5220 if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
5221 return nullptr;
5222 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5223 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5224 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
5225 if (!AJ || !BJ || !CJ)
5226 return nullptr;
5227
5228 // Get compiler tool.
5229 const Tool *T = TC.SelectTool(*CJ);
5230 if (!T)
5231 return nullptr;
5232
5233 // Can't collapse if we don't have codegen support unless we are
5234 // emitting LLVM IR.
5235 bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5236 if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5237 return nullptr;
5238
5239 // When using -fembed-bitcode, it is required to have the same tool (clang)
5240 // for both CompilerJA and BackendJA. Otherwise, combine two stages.
5241 if (EmbedBitcode) {
5242 const Tool *BT = TC.SelectTool(*BJ);
5243 if (BT == T)
5244 return nullptr;
5245 }
5246
5247 if (!T->hasIntegratedAssembler())
5248 return nullptr;
5249
5250 Inputs = CJ->getInputs();
5251 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5252 /*NumElements=*/3);
5253 return T;
5254 }
combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)5255 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
5256 ActionList &Inputs,
5257 ActionList &CollapsedOffloadAction) {
5258 if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
5259 return nullptr;
5260 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5261 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5262 if (!AJ || !BJ)
5263 return nullptr;
5264
5265 // Get backend tool.
5266 const Tool *T = TC.SelectTool(*BJ);
5267 if (!T)
5268 return nullptr;
5269
5270 if (!T->hasIntegratedAssembler())
5271 return nullptr;
5272
5273 Inputs = BJ->getInputs();
5274 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5275 /*NumElements=*/2);
5276 return T;
5277 }
combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)5278 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5279 ActionList &Inputs,
5280 ActionList &CollapsedOffloadAction) {
5281 if (ActionInfo.size() < 2)
5282 return nullptr;
5283 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
5284 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
5285 if (!BJ || !CJ)
5286 return nullptr;
5287
5288 // Check if the initial input (to the compile job or its predessor if one
5289 // exists) is LLVM bitcode. In that case, no preprocessor step is required
5290 // and we can still collapse the compile and backend jobs when we have
5291 // -save-temps. I.e. there is no need for a separate compile job just to
5292 // emit unoptimized bitcode.
5293 bool InputIsBitcode = true;
5294 for (size_t i = 1; i < ActionInfo.size(); i++)
5295 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
5296 ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
5297 InputIsBitcode = false;
5298 break;
5299 }
5300 if (!InputIsBitcode && !canCollapsePreprocessorAction())
5301 return nullptr;
5302
5303 // Get compiler tool.
5304 const Tool *T = TC.SelectTool(*CJ);
5305 if (!T)
5306 return nullptr;
5307
5308 // Can't collapse if we don't have codegen support unless we are
5309 // emitting LLVM IR.
5310 bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5311 if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5312 return nullptr;
5313
5314 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
5315 return nullptr;
5316
5317 Inputs = CJ->getInputs();
5318 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5319 /*NumElements=*/2);
5320 return T;
5321 }
5322
5323 /// Updates the inputs if the obtained tool supports combining with
5324 /// preprocessor action, and the current input is indeed a preprocessor
5325 /// action. If combining results in the collapse of offloading actions, those
5326 /// are appended to \a CollapsedOffloadAction.
combineWithPreprocessor(const Tool * T,ActionList & Inputs,ActionList & CollapsedOffloadAction)5327 void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
5328 ActionList &CollapsedOffloadAction) {
5329 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
5330 return;
5331
5332 // Attempt to get a preprocessor action dependence.
5333 ActionList PreprocessJobOffloadActions;
5334 ActionList NewInputs;
5335 for (Action *A : Inputs) {
5336 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
5337 if (!PJ || !isa<PreprocessJobAction>(PJ)) {
5338 NewInputs.push_back(A);
5339 continue;
5340 }
5341
5342 // This is legal to combine. Append any offload action we found and add the
5343 // current input to preprocessor inputs.
5344 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
5345 PreprocessJobOffloadActions.end());
5346 NewInputs.append(PJ->input_begin(), PJ->input_end());
5347 }
5348 Inputs = NewInputs;
5349 }
5350
5351 public:
ToolSelector(const JobAction * BaseAction,const ToolChain & TC,const Compilation & C,bool SaveTemps,bool EmbedBitcode)5352 ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
5353 const Compilation &C, bool SaveTemps, bool EmbedBitcode)
5354 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
5355 EmbedBitcode(EmbedBitcode) {
5356 assert(BaseAction && "Invalid base action.");
5357 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
5358 }
5359
5360 /// Check if a chain of actions can be combined and return the tool that can
5361 /// handle the combination of actions. The pointer to the current inputs \a
5362 /// Inputs and the list of offload actions \a CollapsedOffloadActions
5363 /// connected to collapsed actions are updated accordingly. The latter enables
5364 /// the caller of the selector to process them afterwards instead of just
5365 /// dropping them. If no suitable tool is found, null will be returned.
getTool(ActionList & Inputs,ActionList & CollapsedOffloadAction)5366 const Tool *getTool(ActionList &Inputs,
5367 ActionList &CollapsedOffloadAction) {
5368 //
5369 // Get the largest chain of actions that we could combine.
5370 //
5371
5372 SmallVector<JobActionInfo, 5> ActionChain(1);
5373 ActionChain.back().JA = BaseAction;
5374 while (ActionChain.back().JA) {
5375 const Action *CurAction = ActionChain.back().JA;
5376
5377 // Grow the chain by one element.
5378 ActionChain.resize(ActionChain.size() + 1);
5379 JobActionInfo &AI = ActionChain.back();
5380
5381 // Attempt to fill it with the
5382 AI.JA =
5383 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
5384 }
5385
5386 // Pop the last action info as it could not be filled.
5387 ActionChain.pop_back();
5388
5389 //
5390 // Attempt to combine actions. If all combining attempts failed, just return
5391 // the tool of the provided action. At the end we attempt to combine the
5392 // action with any preprocessor action it may depend on.
5393 //
5394
5395 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
5396 CollapsedOffloadAction);
5397 if (!T)
5398 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
5399 if (!T)
5400 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
5401 if (!T) {
5402 Inputs = BaseAction->getInputs();
5403 T = TC.SelectTool(*BaseAction);
5404 }
5405
5406 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
5407 return T;
5408 }
5409 };
5410 }
5411
5412 /// Return a string that uniquely identifies the result of a job. The bound arch
5413 /// is not necessarily represented in the toolchain's triple -- for example,
5414 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
5415 /// Also, we need to add the offloading device kind, as the same tool chain can
5416 /// be used for host and device for some programming models, e.g. OpenMP.
GetTriplePlusArchString(const ToolChain * TC,StringRef BoundArch,Action::OffloadKind OffloadKind)5417 static std::string GetTriplePlusArchString(const ToolChain *TC,
5418 StringRef BoundArch,
5419 Action::OffloadKind OffloadKind) {
5420 std::string TriplePlusArch = TC->getTriple().normalize();
5421 if (!BoundArch.empty()) {
5422 TriplePlusArch += "-";
5423 TriplePlusArch += BoundArch;
5424 }
5425 TriplePlusArch += "-";
5426 TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
5427 return TriplePlusArch;
5428 }
5429
BuildJobsForAction(Compilation & C,const Action * A,const ToolChain * TC,StringRef BoundArch,bool AtTopLevel,bool MultipleArchs,const char * LinkingOutput,std::map<std::pair<const Action *,std::string>,InputInfoList> & CachedResults,Action::OffloadKind TargetDeviceOffloadKind) const5430 InputInfoList Driver::BuildJobsForAction(
5431 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5432 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5433 std::map<std::pair<const Action *, std::string>, InputInfoList>
5434 &CachedResults,
5435 Action::OffloadKind TargetDeviceOffloadKind) const {
5436 std::pair<const Action *, std::string> ActionTC = {
5437 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5438 auto CachedResult = CachedResults.find(ActionTC);
5439 if (CachedResult != CachedResults.end()) {
5440 return CachedResult->second;
5441 }
5442 InputInfoList Result = BuildJobsForActionNoCache(
5443 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
5444 CachedResults, TargetDeviceOffloadKind);
5445 CachedResults[ActionTC] = Result;
5446 return Result;
5447 }
5448
handleTimeTrace(Compilation & C,const ArgList & Args,const JobAction * JA,const char * BaseInput,const InputInfo & Result)5449 static void handleTimeTrace(Compilation &C, const ArgList &Args,
5450 const JobAction *JA, const char *BaseInput,
5451 const InputInfo &Result) {
5452 Arg *A =
5453 Args.getLastArg(options::OPT_ftime_trace, options::OPT_ftime_trace_EQ);
5454 if (!A)
5455 return;
5456 SmallString<128> Path;
5457 if (A->getOption().matches(options::OPT_ftime_trace_EQ)) {
5458 Path = A->getValue();
5459 if (llvm::sys::fs::is_directory(Path)) {
5460 SmallString<128> Tmp(Result.getFilename());
5461 llvm::sys::path::replace_extension(Tmp, "json");
5462 llvm::sys::path::append(Path, llvm::sys::path::filename(Tmp));
5463 }
5464 } else {
5465 if (Arg *DumpDir = Args.getLastArgNoClaim(options::OPT_dumpdir)) {
5466 // The trace file is ${dumpdir}${basename}.json. Note that dumpdir may not
5467 // end with a path separator.
5468 Path = DumpDir->getValue();
5469 Path += llvm::sys::path::filename(BaseInput);
5470 } else {
5471 Path = Result.getFilename();
5472 }
5473 llvm::sys::path::replace_extension(Path, "json");
5474 }
5475 const char *ResultFile = C.getArgs().MakeArgString(Path);
5476 C.addTimeTraceFile(ResultFile, JA);
5477 C.addResultFile(ResultFile, JA);
5478 }
5479
BuildJobsForActionNoCache(Compilation & C,const Action * A,const ToolChain * TC,StringRef BoundArch,bool AtTopLevel,bool MultipleArchs,const char * LinkingOutput,std::map<std::pair<const Action *,std::string>,InputInfoList> & CachedResults,Action::OffloadKind TargetDeviceOffloadKind) const5480 InputInfoList Driver::BuildJobsForActionNoCache(
5481 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5482 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5483 std::map<std::pair<const Action *, std::string>, InputInfoList>
5484 &CachedResults,
5485 Action::OffloadKind TargetDeviceOffloadKind) const {
5486 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
5487
5488 InputInfoList OffloadDependencesInputInfo;
5489 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
5490 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
5491 // The 'Darwin' toolchain is initialized only when its arguments are
5492 // computed. Get the default arguments for OFK_None to ensure that
5493 // initialization is performed before processing the offload action.
5494 // FIXME: Remove when darwin's toolchain is initialized during construction.
5495 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
5496
5497 // The offload action is expected to be used in four different situations.
5498 //
5499 // a) Set a toolchain/architecture/kind for a host action:
5500 // Host Action 1 -> OffloadAction -> Host Action 2
5501 //
5502 // b) Set a toolchain/architecture/kind for a device action;
5503 // Device Action 1 -> OffloadAction -> Device Action 2
5504 //
5505 // c) Specify a device dependence to a host action;
5506 // Device Action 1 _
5507 // \
5508 // Host Action 1 ---> OffloadAction -> Host Action 2
5509 //
5510 // d) Specify a host dependence to a device action.
5511 // Host Action 1 _
5512 // \
5513 // Device Action 1 ---> OffloadAction -> Device Action 2
5514 //
5515 // For a) and b), we just return the job generated for the dependences. For
5516 // c) and d) we override the current action with the host/device dependence
5517 // if the current toolchain is host/device and set the offload dependences
5518 // info with the jobs obtained from the device/host dependence(s).
5519
5520 // If there is a single device option or has no host action, just generate
5521 // the job for it.
5522 if (OA->hasSingleDeviceDependence() || !OA->hasHostDependence()) {
5523 InputInfoList DevA;
5524 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
5525 const char *DepBoundArch) {
5526 DevA.append(BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
5527 /*MultipleArchs*/ !!DepBoundArch,
5528 LinkingOutput, CachedResults,
5529 DepA->getOffloadingDeviceKind()));
5530 });
5531 return DevA;
5532 }
5533
5534 // If 'Action 2' is host, we generate jobs for the device dependences and
5535 // override the current action with the host dependence. Otherwise, we
5536 // generate the host dependences and override the action with the device
5537 // dependence. The dependences can't therefore be a top-level action.
5538 OA->doOnEachDependence(
5539 /*IsHostDependence=*/BuildingForOffloadDevice,
5540 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5541 OffloadDependencesInputInfo.append(BuildJobsForAction(
5542 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
5543 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
5544 DepA->getOffloadingDeviceKind()));
5545 });
5546
5547 A = BuildingForOffloadDevice
5548 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
5549 : OA->getHostDependence();
5550
5551 // We may have already built this action as a part of the offloading
5552 // toolchain, return the cached input if so.
5553 std::pair<const Action *, std::string> ActionTC = {
5554 OA->getHostDependence(),
5555 GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5556 if (CachedResults.find(ActionTC) != CachedResults.end()) {
5557 InputInfoList Inputs = CachedResults[ActionTC];
5558 Inputs.append(OffloadDependencesInputInfo);
5559 return Inputs;
5560 }
5561 }
5562
5563 if (const InputAction *IA = dyn_cast<InputAction>(A)) {
5564 // FIXME: It would be nice to not claim this here; maybe the old scheme of
5565 // just using Args was better?
5566 const Arg &Input = IA->getInputArg();
5567 Input.claim();
5568 if (Input.getOption().matches(options::OPT_INPUT)) {
5569 const char *Name = Input.getValue();
5570 return {InputInfo(A, Name, /* _BaseInput = */ Name)};
5571 }
5572 return {InputInfo(A, &Input, /* _BaseInput = */ "")};
5573 }
5574
5575 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
5576 const ToolChain *TC;
5577 StringRef ArchName = BAA->getArchName();
5578
5579 if (!ArchName.empty())
5580 TC = &getToolChain(C.getArgs(),
5581 computeTargetTriple(*this, TargetTriple,
5582 C.getArgs(), ArchName));
5583 else
5584 TC = &C.getDefaultToolChain();
5585
5586 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
5587 MultipleArchs, LinkingOutput, CachedResults,
5588 TargetDeviceOffloadKind);
5589 }
5590
5591
5592 ActionList Inputs = A->getInputs();
5593
5594 const JobAction *JA = cast<JobAction>(A);
5595 ActionList CollapsedOffloadActions;
5596
5597 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
5598 embedBitcodeInObject() && !isUsingLTO());
5599 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
5600
5601 if (!T)
5602 return {InputInfo()};
5603
5604 // If we've collapsed action list that contained OffloadAction we
5605 // need to build jobs for host/device-side inputs it may have held.
5606 for (const auto *OA : CollapsedOffloadActions)
5607 cast<OffloadAction>(OA)->doOnEachDependence(
5608 /*IsHostDependence=*/BuildingForOffloadDevice,
5609 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5610 OffloadDependencesInputInfo.append(BuildJobsForAction(
5611 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
5612 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
5613 DepA->getOffloadingDeviceKind()));
5614 });
5615
5616 // Only use pipes when there is exactly one input.
5617 InputInfoList InputInfos;
5618 for (const Action *Input : Inputs) {
5619 // Treat dsymutil and verify sub-jobs as being at the top-level too, they
5620 // shouldn't get temporary output names.
5621 // FIXME: Clean this up.
5622 bool SubJobAtTopLevel =
5623 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
5624 InputInfos.append(BuildJobsForAction(
5625 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
5626 CachedResults, A->getOffloadingDeviceKind()));
5627 }
5628
5629 // Always use the first file input as the base input.
5630 const char *BaseInput = InputInfos[0].getBaseInput();
5631 for (auto &Info : InputInfos) {
5632 if (Info.isFilename()) {
5633 BaseInput = Info.getBaseInput();
5634 break;
5635 }
5636 }
5637
5638 // ... except dsymutil actions, which use their actual input as the base
5639 // input.
5640 if (JA->getType() == types::TY_dSYM)
5641 BaseInput = InputInfos[0].getFilename();
5642
5643 // Append outputs of offload device jobs to the input list
5644 if (!OffloadDependencesInputInfo.empty())
5645 InputInfos.append(OffloadDependencesInputInfo.begin(),
5646 OffloadDependencesInputInfo.end());
5647
5648 // Set the effective triple of the toolchain for the duration of this job.
5649 llvm::Triple EffectiveTriple;
5650 const ToolChain &ToolTC = T->getToolChain();
5651 const ArgList &Args =
5652 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
5653 if (InputInfos.size() != 1) {
5654 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
5655 } else {
5656 // Pass along the input type if it can be unambiguously determined.
5657 EffectiveTriple = llvm::Triple(
5658 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
5659 }
5660 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
5661
5662 // Determine the place to write output to, if any.
5663 InputInfo Result;
5664 InputInfoList UnbundlingResults;
5665 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
5666 // If we have an unbundling job, we need to create results for all the
5667 // outputs. We also update the results cache so that other actions using
5668 // this unbundling action can get the right results.
5669 for (auto &UI : UA->getDependentActionsInfo()) {
5670 assert(UI.DependentOffloadKind != Action::OFK_None &&
5671 "Unbundling with no offloading??");
5672
5673 // Unbundling actions are never at the top level. When we generate the
5674 // offloading prefix, we also do that for the host file because the
5675 // unbundling action does not change the type of the output which can
5676 // cause a overwrite.
5677 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5678 UI.DependentOffloadKind,
5679 UI.DependentToolChain->getTriple().normalize(),
5680 /*CreatePrefixForHost=*/true);
5681 auto CurI = InputInfo(
5682 UA,
5683 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
5684 /*AtTopLevel=*/false,
5685 MultipleArchs ||
5686 UI.DependentOffloadKind == Action::OFK_HIP,
5687 OffloadingPrefix),
5688 BaseInput);
5689 // Save the unbundling result.
5690 UnbundlingResults.push_back(CurI);
5691
5692 // Get the unique string identifier for this dependence and cache the
5693 // result.
5694 StringRef Arch;
5695 if (TargetDeviceOffloadKind == Action::OFK_HIP) {
5696 if (UI.DependentOffloadKind == Action::OFK_Host)
5697 Arch = StringRef();
5698 else
5699 Arch = UI.DependentBoundArch;
5700 } else
5701 Arch = BoundArch;
5702
5703 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
5704 UI.DependentOffloadKind)}] = {
5705 CurI};
5706 }
5707
5708 // Now that we have all the results generated, select the one that should be
5709 // returned for the current depending action.
5710 std::pair<const Action *, std::string> ActionTC = {
5711 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5712 assert(CachedResults.find(ActionTC) != CachedResults.end() &&
5713 "Result does not exist??");
5714 Result = CachedResults[ActionTC].front();
5715 } else if (JA->getType() == types::TY_Nothing)
5716 Result = {InputInfo(A, BaseInput)};
5717 else {
5718 // We only have to generate a prefix for the host if this is not a top-level
5719 // action.
5720 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5721 A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
5722 /*CreatePrefixForHost=*/isa<OffloadPackagerJobAction>(A) ||
5723 !(A->getOffloadingHostActiveKinds() == Action::OFK_None ||
5724 AtTopLevel));
5725 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
5726 AtTopLevel, MultipleArchs,
5727 OffloadingPrefix),
5728 BaseInput);
5729 if (T->canEmitIR() && OffloadingPrefix.empty())
5730 handleTimeTrace(C, Args, JA, BaseInput, Result);
5731 }
5732
5733 if (CCCPrintBindings && !CCGenDiagnostics) {
5734 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
5735 << " - \"" << T->getName() << "\", inputs: [";
5736 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
5737 llvm::errs() << InputInfos[i].getAsString();
5738 if (i + 1 != e)
5739 llvm::errs() << ", ";
5740 }
5741 if (UnbundlingResults.empty())
5742 llvm::errs() << "], output: " << Result.getAsString() << "\n";
5743 else {
5744 llvm::errs() << "], outputs: [";
5745 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
5746 llvm::errs() << UnbundlingResults[i].getAsString();
5747 if (i + 1 != e)
5748 llvm::errs() << ", ";
5749 }
5750 llvm::errs() << "] \n";
5751 }
5752 } else {
5753 if (UnbundlingResults.empty())
5754 T->ConstructJob(
5755 C, *JA, Result, InputInfos,
5756 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5757 LinkingOutput);
5758 else
5759 T->ConstructJobMultipleOutputs(
5760 C, *JA, UnbundlingResults, InputInfos,
5761 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5762 LinkingOutput);
5763 }
5764 return {Result};
5765 }
5766
getDefaultImageName() const5767 const char *Driver::getDefaultImageName() const {
5768 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
5769 return Target.isOSWindows() ? "a.exe" : "a.out";
5770 }
5771
5772 /// Create output filename based on ArgValue, which could either be a
5773 /// full filename, filename without extension, or a directory. If ArgValue
5774 /// does not provide a filename, then use BaseName, and use the extension
5775 /// suitable for FileType.
MakeCLOutputFilename(const ArgList & Args,StringRef ArgValue,StringRef BaseName,types::ID FileType)5776 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
5777 StringRef BaseName,
5778 types::ID FileType) {
5779 SmallString<128> Filename = ArgValue;
5780
5781 if (ArgValue.empty()) {
5782 // If the argument is empty, output to BaseName in the current dir.
5783 Filename = BaseName;
5784 } else if (llvm::sys::path::is_separator(Filename.back())) {
5785 // If the argument is a directory, output to BaseName in that dir.
5786 llvm::sys::path::append(Filename, BaseName);
5787 }
5788
5789 if (!llvm::sys::path::has_extension(ArgValue)) {
5790 // If the argument didn't provide an extension, then set it.
5791 const char *Extension = types::getTypeTempSuffix(FileType, true);
5792
5793 if (FileType == types::TY_Image &&
5794 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
5795 // The output file is a dll.
5796 Extension = "dll";
5797 }
5798
5799 llvm::sys::path::replace_extension(Filename, Extension);
5800 }
5801
5802 return Args.MakeArgString(Filename.c_str());
5803 }
5804
HasPreprocessOutput(const Action & JA)5805 static bool HasPreprocessOutput(const Action &JA) {
5806 if (isa<PreprocessJobAction>(JA))
5807 return true;
5808 if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
5809 return true;
5810 if (isa<OffloadBundlingJobAction>(JA) &&
5811 HasPreprocessOutput(*(JA.getInputs()[0])))
5812 return true;
5813 return false;
5814 }
5815
CreateTempFile(Compilation & C,StringRef Prefix,StringRef Suffix,bool MultipleArchs,StringRef BoundArch,bool NeedUniqueDirectory) const5816 const char *Driver::CreateTempFile(Compilation &C, StringRef Prefix,
5817 StringRef Suffix, bool MultipleArchs,
5818 StringRef BoundArch,
5819 bool NeedUniqueDirectory) const {
5820 SmallString<128> TmpName;
5821 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
5822 std::optional<std::string> CrashDirectory =
5823 CCGenDiagnostics && A
5824 ? std::string(A->getValue())
5825 : llvm::sys::Process::GetEnv("CLANG_CRASH_DIAGNOSTICS_DIR");
5826 if (CrashDirectory) {
5827 if (!getVFS().exists(*CrashDirectory))
5828 llvm::sys::fs::create_directories(*CrashDirectory);
5829 SmallString<128> Path(*CrashDirectory);
5830 llvm::sys::path::append(Path, Prefix);
5831 const char *Middle = !Suffix.empty() ? "-%%%%%%." : "-%%%%%%";
5832 if (std::error_code EC =
5833 llvm::sys::fs::createUniqueFile(Path + Middle + Suffix, TmpName)) {
5834 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5835 return "";
5836 }
5837 } else {
5838 if (MultipleArchs && !BoundArch.empty()) {
5839 if (NeedUniqueDirectory) {
5840 TmpName = GetTemporaryDirectory(Prefix);
5841 llvm::sys::path::append(TmpName,
5842 Twine(Prefix) + "-" + BoundArch + "." + Suffix);
5843 } else {
5844 TmpName =
5845 GetTemporaryPath((Twine(Prefix) + "-" + BoundArch).str(), Suffix);
5846 }
5847
5848 } else {
5849 TmpName = GetTemporaryPath(Prefix, Suffix);
5850 }
5851 }
5852 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5853 }
5854
5855 // Calculate the output path of the module file when compiling a module unit
5856 // with the `-fmodule-output` option or `-fmodule-output=` option specified.
5857 // The behavior is:
5858 // - If `-fmodule-output=` is specfied, then the module file is
5859 // writing to the value.
5860 // - Otherwise if the output object file of the module unit is specified, the
5861 // output path
5862 // of the module file should be the same with the output object file except
5863 // the corresponding suffix. This requires both `-o` and `-c` are specified.
5864 // - Otherwise, the output path of the module file will be the same with the
5865 // input with the corresponding suffix.
GetModuleOutputPath(Compilation & C,const JobAction & JA,const char * BaseInput)5866 static const char *GetModuleOutputPath(Compilation &C, const JobAction &JA,
5867 const char *BaseInput) {
5868 assert(isa<PrecompileJobAction>(JA) && JA.getType() == types::TY_ModuleFile &&
5869 (C.getArgs().hasArg(options::OPT_fmodule_output) ||
5870 C.getArgs().hasArg(options::OPT_fmodule_output_EQ)));
5871
5872 SmallString<256> OutputPath =
5873 tools::getCXX20NamedModuleOutputPath(C.getArgs(), BaseInput);
5874
5875 return C.addResultFile(C.getArgs().MakeArgString(OutputPath.c_str()), &JA);
5876 }
5877
GetNamedOutputPath(Compilation & C,const JobAction & JA,const char * BaseInput,StringRef OrigBoundArch,bool AtTopLevel,bool MultipleArchs,StringRef OffloadingPrefix) const5878 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
5879 const char *BaseInput,
5880 StringRef OrigBoundArch, bool AtTopLevel,
5881 bool MultipleArchs,
5882 StringRef OffloadingPrefix) const {
5883 std::string BoundArch = OrigBoundArch.str();
5884 if (is_style_windows(llvm::sys::path::Style::native)) {
5885 // BoundArch may contains ':', which is invalid in file names on Windows,
5886 // therefore replace it with '%'.
5887 std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
5888 }
5889
5890 llvm::PrettyStackTraceString CrashInfo("Computing output path");
5891 // Output to a user requested destination?
5892 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
5893 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5894 return C.addResultFile(FinalOutput->getValue(), &JA);
5895 }
5896
5897 // For /P, preprocess to file named after BaseInput.
5898 if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
5899 assert(AtTopLevel && isa<PreprocessJobAction>(JA));
5900 StringRef BaseName = llvm::sys::path::filename(BaseInput);
5901 StringRef NameArg;
5902 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
5903 NameArg = A->getValue();
5904 return C.addResultFile(
5905 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
5906 &JA);
5907 }
5908
5909 // Default to writing to stdout?
5910 if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
5911 return "-";
5912 }
5913
5914 if (JA.getType() == types::TY_ModuleFile &&
5915 C.getArgs().getLastArg(options::OPT_module_file_info)) {
5916 return "-";
5917 }
5918
5919 if (JA.getType() == types::TY_PP_Asm &&
5920 C.getArgs().hasArg(options::OPT_dxc_Fc)) {
5921 StringRef FcValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fc);
5922 // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
5923 // handle this as part of the SLASH_Fa handling below.
5924 return C.addResultFile(C.getArgs().MakeArgString(FcValue.str()), &JA);
5925 }
5926
5927 if (JA.getType() == types::TY_Object &&
5928 C.getArgs().hasArg(options::OPT_dxc_Fo)) {
5929 StringRef FoValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fo);
5930 // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
5931 // handle this as part of the SLASH_Fo handling below.
5932 return C.addResultFile(C.getArgs().MakeArgString(FoValue.str()), &JA);
5933 }
5934
5935 // Is this the assembly listing for /FA?
5936 if (JA.getType() == types::TY_PP_Asm &&
5937 (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
5938 C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
5939 // Use /Fa and the input filename to determine the asm file name.
5940 StringRef BaseName = llvm::sys::path::filename(BaseInput);
5941 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
5942 return C.addResultFile(
5943 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
5944 &JA);
5945 }
5946
5947 if (JA.getType() == types::TY_API_INFO &&
5948 C.getArgs().hasArg(options::OPT_emit_extension_symbol_graphs) &&
5949 C.getArgs().hasArg(options::OPT_o))
5950 Diag(clang::diag::err_drv_unexpected_symbol_graph_output)
5951 << C.getArgs().getLastArgValue(options::OPT_o);
5952
5953 // DXC defaults to standard out when generating assembly. We check this after
5954 // any DXC flags that might specify a file.
5955 if (AtTopLevel && JA.getType() == types::TY_PP_Asm && IsDXCMode())
5956 return "-";
5957
5958 bool SpecifiedModuleOutput =
5959 C.getArgs().hasArg(options::OPT_fmodule_output) ||
5960 C.getArgs().hasArg(options::OPT_fmodule_output_EQ);
5961 if (MultipleArchs && SpecifiedModuleOutput)
5962 Diag(clang::diag::err_drv_module_output_with_multiple_arch);
5963
5964 // If we're emitting a module output with the specified option
5965 // `-fmodule-output`.
5966 if (!AtTopLevel && isa<PrecompileJobAction>(JA) &&
5967 JA.getType() == types::TY_ModuleFile && SpecifiedModuleOutput) {
5968 assert(!C.getArgs().hasArg(options::OPT_modules_reduced_bmi));
5969 return GetModuleOutputPath(C, JA, BaseInput);
5970 }
5971
5972 // Output to a temporary file?
5973 if ((!AtTopLevel && !isSaveTempsEnabled() &&
5974 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
5975 CCGenDiagnostics) {
5976 StringRef Name = llvm::sys::path::filename(BaseInput);
5977 std::pair<StringRef, StringRef> Split = Name.split('.');
5978 const char *Suffix =
5979 types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode());
5980 // The non-offloading toolchain on Darwin requires deterministic input
5981 // file name for binaries to be deterministic, therefore it needs unique
5982 // directory.
5983 llvm::Triple Triple(C.getDriver().getTargetTriple());
5984 bool NeedUniqueDirectory =
5985 (JA.getOffloadingDeviceKind() == Action::OFK_None ||
5986 JA.getOffloadingDeviceKind() == Action::OFK_Host) &&
5987 Triple.isOSDarwin();
5988 return CreateTempFile(C, Split.first, Suffix, MultipleArchs, BoundArch,
5989 NeedUniqueDirectory);
5990 }
5991
5992 SmallString<128> BasePath(BaseInput);
5993 SmallString<128> ExternalPath("");
5994 StringRef BaseName;
5995
5996 // Dsymutil actions should use the full path.
5997 if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
5998 ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
5999 // We use posix style here because the tests (specifically
6000 // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
6001 // even on Windows and if we don't then the similar test covering this
6002 // fails.
6003 llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
6004 llvm::sys::path::filename(BasePath));
6005 BaseName = ExternalPath;
6006 } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
6007 BaseName = BasePath;
6008 else
6009 BaseName = llvm::sys::path::filename(BasePath);
6010
6011 // Determine what the derived output name should be.
6012 const char *NamedOutput;
6013
6014 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
6015 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
6016 // The /Fo or /o flag decides the object filename.
6017 StringRef Val =
6018 C.getArgs()
6019 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
6020 ->getValue();
6021 NamedOutput =
6022 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
6023 } else if (JA.getType() == types::TY_Image &&
6024 C.getArgs().hasArg(options::OPT__SLASH_Fe,
6025 options::OPT__SLASH_o)) {
6026 // The /Fe or /o flag names the linked file.
6027 StringRef Val =
6028 C.getArgs()
6029 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
6030 ->getValue();
6031 NamedOutput =
6032 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
6033 } else if (JA.getType() == types::TY_Image) {
6034 if (IsCLMode()) {
6035 // clang-cl uses BaseName for the executable name.
6036 NamedOutput =
6037 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
6038 } else {
6039 SmallString<128> Output(getDefaultImageName());
6040 // HIP image for device compilation with -fno-gpu-rdc is per compilation
6041 // unit.
6042 bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
6043 !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
6044 options::OPT_fno_gpu_rdc, false);
6045 bool UseOutExtension = IsHIPNoRDC || isa<OffloadPackagerJobAction>(JA);
6046 if (UseOutExtension) {
6047 Output = BaseName;
6048 llvm::sys::path::replace_extension(Output, "");
6049 }
6050 Output += OffloadingPrefix;
6051 if (MultipleArchs && !BoundArch.empty()) {
6052 Output += "-";
6053 Output.append(BoundArch);
6054 }
6055 if (UseOutExtension)
6056 Output += ".out";
6057 NamedOutput = C.getArgs().MakeArgString(Output.c_str());
6058 }
6059 } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
6060 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
6061 } else if ((JA.getType() == types::TY_Plist || JA.getType() == types::TY_AST) &&
6062 C.getArgs().hasArg(options::OPT__SLASH_o)) {
6063 StringRef Val =
6064 C.getArgs()
6065 .getLastArg(options::OPT__SLASH_o)
6066 ->getValue();
6067 NamedOutput =
6068 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
6069 } else {
6070 const char *Suffix =
6071 types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode());
6072 assert(Suffix && "All types used for output should have a suffix.");
6073
6074 std::string::size_type End = std::string::npos;
6075 if (!types::appendSuffixForType(JA.getType()))
6076 End = BaseName.rfind('.');
6077 SmallString<128> Suffixed(BaseName.substr(0, End));
6078 Suffixed += OffloadingPrefix;
6079 if (MultipleArchs && !BoundArch.empty()) {
6080 Suffixed += "-";
6081 Suffixed.append(BoundArch);
6082 }
6083 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
6084 // the unoptimized bitcode so that it does not get overwritten by the ".bc"
6085 // optimized bitcode output.
6086 auto IsAMDRDCInCompilePhase = [](const JobAction &JA,
6087 const llvm::opt::DerivedArgList &Args) {
6088 // The relocatable compilation in HIP and OpenMP implies -emit-llvm.
6089 // Similarly, use a ".tmp.bc" suffix for the unoptimized bitcode
6090 // (generated in the compile phase.)
6091 const ToolChain *TC = JA.getOffloadingToolChain();
6092 return isa<CompileJobAction>(JA) &&
6093 ((JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
6094 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
6095 false)) ||
6096 (JA.getOffloadingDeviceKind() == Action::OFK_OpenMP && TC &&
6097 TC->getTriple().isAMDGPU()));
6098 };
6099 if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
6100 (C.getArgs().hasArg(options::OPT_emit_llvm) ||
6101 IsAMDRDCInCompilePhase(JA, C.getArgs())))
6102 Suffixed += ".tmp";
6103 Suffixed += '.';
6104 Suffixed += Suffix;
6105 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
6106 }
6107
6108 // Prepend object file path if -save-temps=obj
6109 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
6110 JA.getType() != types::TY_PCH) {
6111 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
6112 SmallString<128> TempPath(FinalOutput->getValue());
6113 llvm::sys::path::remove_filename(TempPath);
6114 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
6115 llvm::sys::path::append(TempPath, OutputFileName);
6116 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
6117 }
6118
6119 // If we're saving temps and the temp file conflicts with the input file,
6120 // then avoid overwriting input file.
6121 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
6122 bool SameFile = false;
6123 SmallString<256> Result;
6124 llvm::sys::fs::current_path(Result);
6125 llvm::sys::path::append(Result, BaseName);
6126 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
6127 // Must share the same path to conflict.
6128 if (SameFile) {
6129 StringRef Name = llvm::sys::path::filename(BaseInput);
6130 std::pair<StringRef, StringRef> Split = Name.split('.');
6131 std::string TmpName = GetTemporaryPath(
6132 Split.first,
6133 types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode()));
6134 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
6135 }
6136 }
6137
6138 // As an annoying special case, PCH generation doesn't strip the pathname.
6139 if (JA.getType() == types::TY_PCH && !IsCLMode()) {
6140 llvm::sys::path::remove_filename(BasePath);
6141 if (BasePath.empty())
6142 BasePath = NamedOutput;
6143 else
6144 llvm::sys::path::append(BasePath, NamedOutput);
6145 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
6146 }
6147
6148 return C.addResultFile(NamedOutput, &JA);
6149 }
6150
GetFilePath(StringRef Name,const ToolChain & TC) const6151 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
6152 // Search for Name in a list of paths.
6153 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
6154 -> std::optional<std::string> {
6155 // Respect a limited subset of the '-Bprefix' functionality in GCC by
6156 // attempting to use this prefix when looking for file paths.
6157 for (const auto &Dir : P) {
6158 if (Dir.empty())
6159 continue;
6160 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
6161 llvm::sys::path::append(P, Name);
6162 if (llvm::sys::fs::exists(Twine(P)))
6163 return std::string(P);
6164 }
6165 return std::nullopt;
6166 };
6167
6168 if (auto P = SearchPaths(PrefixDirs))
6169 return *P;
6170
6171 SmallString<128> R(ResourceDir);
6172 llvm::sys::path::append(R, Name);
6173 if (llvm::sys::fs::exists(Twine(R)))
6174 return std::string(R);
6175
6176 SmallString<128> P(TC.getCompilerRTPath());
6177 llvm::sys::path::append(P, Name);
6178 if (llvm::sys::fs::exists(Twine(P)))
6179 return std::string(P);
6180
6181 SmallString<128> D(Dir);
6182 llvm::sys::path::append(D, "..", Name);
6183 if (llvm::sys::fs::exists(Twine(D)))
6184 return std::string(D);
6185
6186 if (auto P = SearchPaths(TC.getLibraryPaths()))
6187 return *P;
6188
6189 if (auto P = SearchPaths(TC.getFilePaths()))
6190 return *P;
6191
6192 return std::string(Name);
6193 }
6194
generatePrefixedToolNames(StringRef Tool,const ToolChain & TC,SmallVectorImpl<std::string> & Names) const6195 void Driver::generatePrefixedToolNames(
6196 StringRef Tool, const ToolChain &TC,
6197 SmallVectorImpl<std::string> &Names) const {
6198 // FIXME: Needs a better variable than TargetTriple
6199 Names.emplace_back((TargetTriple + "-" + Tool).str());
6200 Names.emplace_back(Tool);
6201 }
6202
ScanDirForExecutable(SmallString<128> & Dir,StringRef Name)6203 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
6204 llvm::sys::path::append(Dir, Name);
6205 if (llvm::sys::fs::can_execute(Twine(Dir)))
6206 return true;
6207 llvm::sys::path::remove_filename(Dir);
6208 return false;
6209 }
6210
GetProgramPath(StringRef Name,const ToolChain & TC) const6211 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
6212 SmallVector<std::string, 2> TargetSpecificExecutables;
6213 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
6214
6215 // Respect a limited subset of the '-Bprefix' functionality in GCC by
6216 // attempting to use this prefix when looking for program paths.
6217 for (const auto &PrefixDir : PrefixDirs) {
6218 if (llvm::sys::fs::is_directory(PrefixDir)) {
6219 SmallString<128> P(PrefixDir);
6220 if (ScanDirForExecutable(P, Name))
6221 return std::string(P);
6222 } else {
6223 SmallString<128> P((PrefixDir + Name).str());
6224 if (llvm::sys::fs::can_execute(Twine(P)))
6225 return std::string(P);
6226 }
6227 }
6228
6229 const ToolChain::path_list &List = TC.getProgramPaths();
6230 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
6231 // For each possible name of the tool look for it in
6232 // program paths first, then the path.
6233 // Higher priority names will be first, meaning that
6234 // a higher priority name in the path will be found
6235 // instead of a lower priority name in the program path.
6236 // E.g. <triple>-gcc on the path will be found instead
6237 // of gcc in the program path
6238 for (const auto &Path : List) {
6239 SmallString<128> P(Path);
6240 if (ScanDirForExecutable(P, TargetSpecificExecutable))
6241 return std::string(P);
6242 }
6243
6244 // Fall back to the path
6245 if (llvm::ErrorOr<std::string> P =
6246 llvm::sys::findProgramByName(TargetSpecificExecutable))
6247 return *P;
6248 }
6249
6250 return std::string(Name);
6251 }
6252
GetStdModuleManifestPath(const Compilation & C,const ToolChain & TC) const6253 std::string Driver::GetStdModuleManifestPath(const Compilation &C,
6254 const ToolChain &TC) const {
6255 std::string error = "<NOT PRESENT>";
6256
6257 switch (TC.GetCXXStdlibType(C.getArgs())) {
6258 case ToolChain::CST_Libcxx: {
6259 auto evaluate = [&](const char *library) -> std::optional<std::string> {
6260 std::string lib = GetFilePath(library, TC);
6261
6262 // Note when there are multiple flavours of libc++ the module json needs
6263 // to look at the command-line arguments for the proper json. These
6264 // flavours do not exist at the moment, but there are plans to provide a
6265 // variant that is built with sanitizer instrumentation enabled.
6266
6267 // For example
6268 // StringRef modules = [&] {
6269 // const SanitizerArgs &Sanitize = TC.getSanitizerArgs(C.getArgs());
6270 // if (Sanitize.needsAsanRt())
6271 // return "libc++.modules-asan.json";
6272 // return "libc++.modules.json";
6273 // }();
6274
6275 SmallString<128> path(lib.begin(), lib.end());
6276 llvm::sys::path::remove_filename(path);
6277 llvm::sys::path::append(path, "libc++.modules.json");
6278 if (TC.getVFS().exists(path))
6279 return static_cast<std::string>(path);
6280
6281 return {};
6282 };
6283
6284 if (std::optional<std::string> result = evaluate("libc++.so"); result)
6285 return *result;
6286
6287 return evaluate("libc++.a").value_or(error);
6288 }
6289
6290 case ToolChain::CST_Libstdcxx:
6291 // libstdc++ does not provide Standard library modules yet.
6292 return error;
6293 }
6294
6295 return error;
6296 }
6297
GetTemporaryPath(StringRef Prefix,StringRef Suffix) const6298 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
6299 SmallString<128> Path;
6300 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
6301 if (EC) {
6302 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
6303 return "";
6304 }
6305
6306 return std::string(Path);
6307 }
6308
GetTemporaryDirectory(StringRef Prefix) const6309 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
6310 SmallString<128> Path;
6311 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
6312 if (EC) {
6313 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
6314 return "";
6315 }
6316
6317 return std::string(Path);
6318 }
6319
GetClPchPath(Compilation & C,StringRef BaseName) const6320 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
6321 SmallString<128> Output;
6322 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
6323 // FIXME: If anybody needs it, implement this obscure rule:
6324 // "If you specify a directory without a file name, the default file name
6325 // is VCx0.pch., where x is the major version of Visual C++ in use."
6326 Output = FpArg->getValue();
6327
6328 // "If you do not specify an extension as part of the path name, an
6329 // extension of .pch is assumed. "
6330 if (!llvm::sys::path::has_extension(Output))
6331 Output += ".pch";
6332 } else {
6333 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
6334 Output = YcArg->getValue();
6335 if (Output.empty())
6336 Output = BaseName;
6337 llvm::sys::path::replace_extension(Output, ".pch");
6338 }
6339 return std::string(Output);
6340 }
6341
getToolChain(const ArgList & Args,const llvm::Triple & Target) const6342 const ToolChain &Driver::getToolChain(const ArgList &Args,
6343 const llvm::Triple &Target) const {
6344
6345 auto &TC = ToolChains[Target.str()];
6346 if (!TC) {
6347 switch (Target.getOS()) {
6348 case llvm::Triple::AIX:
6349 TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
6350 break;
6351 case llvm::Triple::Haiku:
6352 TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
6353 break;
6354 case llvm::Triple::Darwin:
6355 case llvm::Triple::MacOSX:
6356 case llvm::Triple::IOS:
6357 case llvm::Triple::TvOS:
6358 case llvm::Triple::WatchOS:
6359 case llvm::Triple::XROS:
6360 case llvm::Triple::DriverKit:
6361 TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
6362 break;
6363 case llvm::Triple::DragonFly:
6364 TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
6365 break;
6366 case llvm::Triple::OpenBSD:
6367 TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
6368 break;
6369 case llvm::Triple::NetBSD:
6370 TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
6371 break;
6372 case llvm::Triple::FreeBSD:
6373 if (Target.isPPC())
6374 TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target,
6375 Args);
6376 else
6377 TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
6378 break;
6379 case llvm::Triple::Linux:
6380 case llvm::Triple::ELFIAMCU:
6381 if (Target.getArch() == llvm::Triple::hexagon)
6382 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6383 Args);
6384 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
6385 !Target.hasEnvironment())
6386 TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
6387 Args);
6388 else if (Target.isPPC())
6389 TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
6390 Args);
6391 else if (Target.getArch() == llvm::Triple::ve)
6392 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6393 else if (Target.isOHOSFamily())
6394 TC = std::make_unique<toolchains::OHOS>(*this, Target, Args);
6395 else
6396 TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
6397 break;
6398 case llvm::Triple::NaCl:
6399 TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
6400 break;
6401 case llvm::Triple::Fuchsia:
6402 TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
6403 break;
6404 case llvm::Triple::Solaris:
6405 TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
6406 break;
6407 case llvm::Triple::CUDA:
6408 TC = std::make_unique<toolchains::NVPTXToolChain>(*this, Target, Args);
6409 break;
6410 case llvm::Triple::AMDHSA:
6411 TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
6412 break;
6413 case llvm::Triple::AMDPAL:
6414 case llvm::Triple::Mesa3D:
6415 TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
6416 break;
6417 case llvm::Triple::Win32:
6418 switch (Target.getEnvironment()) {
6419 default:
6420 if (Target.isOSBinFormatELF())
6421 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6422 else if (Target.isOSBinFormatMachO())
6423 TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6424 else
6425 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6426 break;
6427 case llvm::Triple::GNU:
6428 TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
6429 break;
6430 case llvm::Triple::Itanium:
6431 TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
6432 Args);
6433 break;
6434 case llvm::Triple::MSVC:
6435 case llvm::Triple::UnknownEnvironment:
6436 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
6437 .starts_with_insensitive("bfd"))
6438 TC = std::make_unique<toolchains::CrossWindowsToolChain>(
6439 *this, Target, Args);
6440 else
6441 TC =
6442 std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
6443 break;
6444 }
6445 break;
6446 case llvm::Triple::PS4:
6447 TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
6448 break;
6449 case llvm::Triple::PS5:
6450 TC = std::make_unique<toolchains::PS5CPU>(*this, Target, Args);
6451 break;
6452 case llvm::Triple::Hurd:
6453 TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
6454 break;
6455 case llvm::Triple::LiteOS:
6456 TC = std::make_unique<toolchains::OHOS>(*this, Target, Args);
6457 break;
6458 case llvm::Triple::ZOS:
6459 TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
6460 break;
6461 case llvm::Triple::ShaderModel:
6462 TC = std::make_unique<toolchains::HLSLToolChain>(*this, Target, Args);
6463 break;
6464 default:
6465 // Of these targets, Hexagon is the only one that might have
6466 // an OS of Linux, in which case it got handled above already.
6467 switch (Target.getArch()) {
6468 case llvm::Triple::tce:
6469 TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
6470 break;
6471 case llvm::Triple::tcele:
6472 TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
6473 break;
6474 case llvm::Triple::hexagon:
6475 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6476 Args);
6477 break;
6478 case llvm::Triple::lanai:
6479 TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
6480 break;
6481 case llvm::Triple::xcore:
6482 TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
6483 break;
6484 case llvm::Triple::wasm32:
6485 case llvm::Triple::wasm64:
6486 TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
6487 break;
6488 case llvm::Triple::avr:
6489 TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
6490 break;
6491 case llvm::Triple::msp430:
6492 TC =
6493 std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
6494 break;
6495 case llvm::Triple::riscv32:
6496 case llvm::Triple::riscv64:
6497 if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
6498 TC =
6499 std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
6500 else
6501 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6502 break;
6503 case llvm::Triple::ve:
6504 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6505 break;
6506 case llvm::Triple::spirv32:
6507 case llvm::Triple::spirv64:
6508 TC = std::make_unique<toolchains::SPIRVToolChain>(*this, Target, Args);
6509 break;
6510 case llvm::Triple::csky:
6511 TC = std::make_unique<toolchains::CSKYToolChain>(*this, Target, Args);
6512 break;
6513 default:
6514 if (toolchains::BareMetal::handlesTarget(Target))
6515 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6516 else if (Target.isOSBinFormatELF())
6517 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6518 else if (Target.isOSBinFormatMachO())
6519 TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6520 else
6521 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6522 }
6523 }
6524 }
6525
6526 return *TC;
6527 }
6528
getOffloadingDeviceToolChain(const ArgList & Args,const llvm::Triple & Target,const ToolChain & HostTC,const Action::OffloadKind & TargetDeviceOffloadKind) const6529 const ToolChain &Driver::getOffloadingDeviceToolChain(
6530 const ArgList &Args, const llvm::Triple &Target, const ToolChain &HostTC,
6531 const Action::OffloadKind &TargetDeviceOffloadKind) const {
6532 // Use device / host triples as the key into the ToolChains map because the
6533 // device ToolChain we create depends on both.
6534 auto &TC = ToolChains[Target.str() + "/" + HostTC.getTriple().str()];
6535 if (!TC) {
6536 // Categorized by offload kind > arch rather than OS > arch like
6537 // the normal getToolChain call, as it seems a reasonable way to categorize
6538 // things.
6539 switch (TargetDeviceOffloadKind) {
6540 case Action::OFK_HIP: {
6541 if (((Target.getArch() == llvm::Triple::amdgcn ||
6542 Target.getArch() == llvm::Triple::spirv64) &&
6543 Target.getVendor() == llvm::Triple::AMD &&
6544 Target.getOS() == llvm::Triple::AMDHSA) ||
6545 !Args.hasArgNoClaim(options::OPT_offload_EQ))
6546 TC = std::make_unique<toolchains::HIPAMDToolChain>(*this, Target,
6547 HostTC, Args);
6548 else if (Target.getArch() == llvm::Triple::spirv64 &&
6549 Target.getVendor() == llvm::Triple::UnknownVendor &&
6550 Target.getOS() == llvm::Triple::UnknownOS)
6551 TC = std::make_unique<toolchains::HIPSPVToolChain>(*this, Target,
6552 HostTC, Args);
6553 break;
6554 }
6555 default:
6556 break;
6557 }
6558 }
6559
6560 return *TC;
6561 }
6562
ShouldUseClangCompiler(const JobAction & JA) const6563 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
6564 // Say "no" if there is not exactly one input of a type clang understands.
6565 if (JA.size() != 1 ||
6566 !types::isAcceptedByClang((*JA.input_begin())->getType()))
6567 return false;
6568
6569 // And say "no" if this is not a kind of action clang understands.
6570 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
6571 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA) &&
6572 !isa<ExtractAPIJobAction>(JA))
6573 return false;
6574
6575 return true;
6576 }
6577
ShouldUseFlangCompiler(const JobAction & JA) const6578 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
6579 // Say "no" if there is not exactly one input of a type flang understands.
6580 if (JA.size() != 1 ||
6581 !types::isAcceptedByFlang((*JA.input_begin())->getType()))
6582 return false;
6583
6584 // And say "no" if this is not a kind of action flang understands.
6585 if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) &&
6586 !isa<BackendJobAction>(JA))
6587 return false;
6588
6589 return true;
6590 }
6591
ShouldEmitStaticLibrary(const ArgList & Args) const6592 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
6593 // Only emit static library if the flag is set explicitly.
6594 if (Args.hasArg(options::OPT_emit_static_lib))
6595 return true;
6596 return false;
6597 }
6598
6599 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
6600 /// grouped values as integers. Numbers which are not provided are set to 0.
6601 ///
6602 /// \return True if the entire string was parsed (9.2), or all groups were
6603 /// parsed (10.3.5extrastuff).
GetReleaseVersion(StringRef Str,unsigned & Major,unsigned & Minor,unsigned & Micro,bool & HadExtra)6604 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
6605 unsigned &Micro, bool &HadExtra) {
6606 HadExtra = false;
6607
6608 Major = Minor = Micro = 0;
6609 if (Str.empty())
6610 return false;
6611
6612 if (Str.consumeInteger(10, Major))
6613 return false;
6614 if (Str.empty())
6615 return true;
6616 if (!Str.consume_front("."))
6617 return false;
6618
6619 if (Str.consumeInteger(10, Minor))
6620 return false;
6621 if (Str.empty())
6622 return true;
6623 if (!Str.consume_front("."))
6624 return false;
6625
6626 if (Str.consumeInteger(10, Micro))
6627 return false;
6628 if (!Str.empty())
6629 HadExtra = true;
6630 return true;
6631 }
6632
6633 /// Parse digits from a string \p Str and fulfill \p Digits with
6634 /// the parsed numbers. This method assumes that the max number of
6635 /// digits to look for is equal to Digits.size().
6636 ///
6637 /// \return True if the entire string was parsed and there are
6638 /// no extra characters remaining at the end.
GetReleaseVersion(StringRef Str,MutableArrayRef<unsigned> Digits)6639 bool Driver::GetReleaseVersion(StringRef Str,
6640 MutableArrayRef<unsigned> Digits) {
6641 if (Str.empty())
6642 return false;
6643
6644 unsigned CurDigit = 0;
6645 while (CurDigit < Digits.size()) {
6646 unsigned Digit;
6647 if (Str.consumeInteger(10, Digit))
6648 return false;
6649 Digits[CurDigit] = Digit;
6650 if (Str.empty())
6651 return true;
6652 if (!Str.consume_front("."))
6653 return false;
6654 CurDigit++;
6655 }
6656
6657 // More digits than requested, bail out...
6658 return false;
6659 }
6660
6661 llvm::opt::Visibility
getOptionVisibilityMask(bool UseDriverMode) const6662 Driver::getOptionVisibilityMask(bool UseDriverMode) const {
6663 if (!UseDriverMode)
6664 return llvm::opt::Visibility(options::ClangOption);
6665 if (IsCLMode())
6666 return llvm::opt::Visibility(options::CLOption);
6667 if (IsDXCMode())
6668 return llvm::opt::Visibility(options::DXCOption);
6669 if (IsFlangMode()) {
6670 return llvm::opt::Visibility(options::FlangOption);
6671 }
6672 return llvm::opt::Visibility(options::ClangOption);
6673 }
6674
getExecutableForDriverMode(DriverMode Mode)6675 const char *Driver::getExecutableForDriverMode(DriverMode Mode) {
6676 switch (Mode) {
6677 case GCCMode:
6678 return "clang";
6679 case GXXMode:
6680 return "clang++";
6681 case CPPMode:
6682 return "clang-cpp";
6683 case CLMode:
6684 return "clang-cl";
6685 case FlangMode:
6686 return "flang";
6687 case DXCMode:
6688 return "clang-dxc";
6689 }
6690
6691 llvm_unreachable("Unhandled Mode");
6692 }
6693
isOptimizationLevelFast(const ArgList & Args)6694 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
6695 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
6696 }
6697
willEmitRemarks(const ArgList & Args)6698 bool clang::driver::willEmitRemarks(const ArgList &Args) {
6699 // -fsave-optimization-record enables it.
6700 if (Args.hasFlag(options::OPT_fsave_optimization_record,
6701 options::OPT_fno_save_optimization_record, false))
6702 return true;
6703
6704 // -fsave-optimization-record=<format> enables it as well.
6705 if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
6706 options::OPT_fno_save_optimization_record, false))
6707 return true;
6708
6709 // -foptimization-record-file alone enables it too.
6710 if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
6711 options::OPT_fno_save_optimization_record, false))
6712 return true;
6713
6714 // -foptimization-record-passes alone enables it too.
6715 if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
6716 options::OPT_fno_save_optimization_record, false))
6717 return true;
6718 return false;
6719 }
6720
getDriverMode(StringRef ProgName,ArrayRef<const char * > Args)6721 llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
6722 ArrayRef<const char *> Args) {
6723 static StringRef OptName =
6724 getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName();
6725 llvm::StringRef Opt;
6726 for (StringRef Arg : Args) {
6727 if (!Arg.starts_with(OptName))
6728 continue;
6729 Opt = Arg;
6730 }
6731 if (Opt.empty())
6732 Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
6733 return Opt.consume_front(OptName) ? Opt : "";
6734 }
6735
IsClangCL(StringRef DriverMode)6736 bool driver::IsClangCL(StringRef DriverMode) { return DriverMode == "cl"; }
6737
expandResponseFiles(SmallVectorImpl<const char * > & Args,bool ClangCLMode,llvm::BumpPtrAllocator & Alloc,llvm::vfs::FileSystem * FS)6738 llvm::Error driver::expandResponseFiles(SmallVectorImpl<const char *> &Args,
6739 bool ClangCLMode,
6740 llvm::BumpPtrAllocator &Alloc,
6741 llvm::vfs::FileSystem *FS) {
6742 // Parse response files using the GNU syntax, unless we're in CL mode. There
6743 // are two ways to put clang in CL compatibility mode: ProgName is either
6744 // clang-cl or cl, or --driver-mode=cl is on the command line. The normal
6745 // command line parsing can't happen until after response file parsing, so we
6746 // have to manually search for a --driver-mode=cl argument the hard way.
6747 // Finally, our -cc1 tools don't care which tokenization mode we use because
6748 // response files written by clang will tokenize the same way in either mode.
6749 enum { Default, POSIX, Windows } RSPQuoting = Default;
6750 for (const char *F : Args) {
6751 if (strcmp(F, "--rsp-quoting=posix") == 0)
6752 RSPQuoting = POSIX;
6753 else if (strcmp(F, "--rsp-quoting=windows") == 0)
6754 RSPQuoting = Windows;
6755 }
6756
6757 // Determines whether we want nullptr markers in Args to indicate response
6758 // files end-of-lines. We only use this for the /LINK driver argument with
6759 // clang-cl.exe on Windows.
6760 bool MarkEOLs = ClangCLMode;
6761
6762 llvm::cl::TokenizerCallback Tokenizer;
6763 if (RSPQuoting == Windows || (RSPQuoting == Default && ClangCLMode))
6764 Tokenizer = &llvm::cl::TokenizeWindowsCommandLine;
6765 else
6766 Tokenizer = &llvm::cl::TokenizeGNUCommandLine;
6767
6768 if (MarkEOLs && Args.size() > 1 && StringRef(Args[1]).starts_with("-cc1"))
6769 MarkEOLs = false;
6770
6771 llvm::cl::ExpansionContext ECtx(Alloc, Tokenizer);
6772 ECtx.setMarkEOLs(MarkEOLs);
6773 if (FS)
6774 ECtx.setVFS(FS);
6775
6776 if (llvm::Error Err = ECtx.expandResponseFiles(Args))
6777 return Err;
6778
6779 // If -cc1 came from a response file, remove the EOL sentinels.
6780 auto FirstArg = llvm::find_if(llvm::drop_begin(Args),
6781 [](const char *A) { return A != nullptr; });
6782 if (FirstArg != Args.end() && StringRef(*FirstArg).starts_with("-cc1")) {
6783 // If -cc1 came from a response file, remove the EOL sentinels.
6784 if (MarkEOLs) {
6785 auto newEnd = std::remove(Args.begin(), Args.end(), nullptr);
6786 Args.resize(newEnd - Args.begin());
6787 }
6788 }
6789
6790 return llvm::Error::success();
6791 }
6792
GetStableCStr(llvm::StringSet<> & SavedStrings,StringRef S)6793 static const char *GetStableCStr(llvm::StringSet<> &SavedStrings, StringRef S) {
6794 return SavedStrings.insert(S).first->getKeyData();
6795 }
6796
6797 /// Apply a list of edits to the input argument lists.
6798 ///
6799 /// The input string is a space separated list of edits to perform,
6800 /// they are applied in order to the input argument lists. Edits
6801 /// should be one of the following forms:
6802 ///
6803 /// '#': Silence information about the changes to the command line arguments.
6804 ///
6805 /// '^': Add FOO as a new argument at the beginning of the command line.
6806 ///
6807 /// '+': Add FOO as a new argument at the end of the command line.
6808 ///
6809 /// 's/XXX/YYY/': Substitute the regular expression XXX with YYY in the command
6810 /// line.
6811 ///
6812 /// 'xOPTION': Removes all instances of the literal argument OPTION.
6813 ///
6814 /// 'XOPTION': Removes all instances of the literal argument OPTION,
6815 /// and the following argument.
6816 ///
6817 /// 'Ox': Removes all flags matching 'O' or 'O[sz0-9]' and adds 'Ox'
6818 /// at the end of the command line.
6819 ///
6820 /// \param OS - The stream to write edit information to.
6821 /// \param Args - The vector of command line arguments.
6822 /// \param Edit - The override command to perform.
6823 /// \param SavedStrings - Set to use for storing string representations.
applyOneOverrideOption(raw_ostream & OS,SmallVectorImpl<const char * > & Args,StringRef Edit,llvm::StringSet<> & SavedStrings)6824 static void applyOneOverrideOption(raw_ostream &OS,
6825 SmallVectorImpl<const char *> &Args,
6826 StringRef Edit,
6827 llvm::StringSet<> &SavedStrings) {
6828 // This does not need to be efficient.
6829
6830 if (Edit[0] == '^') {
6831 const char *Str = GetStableCStr(SavedStrings, Edit.substr(1));
6832 OS << "### Adding argument " << Str << " at beginning\n";
6833 Args.insert(Args.begin() + 1, Str);
6834 } else if (Edit[0] == '+') {
6835 const char *Str = GetStableCStr(SavedStrings, Edit.substr(1));
6836 OS << "### Adding argument " << Str << " at end\n";
6837 Args.push_back(Str);
6838 } else if (Edit[0] == 's' && Edit[1] == '/' && Edit.ends_with("/") &&
6839 Edit.slice(2, Edit.size() - 1).contains('/')) {
6840 StringRef MatchPattern = Edit.substr(2).split('/').first;
6841 StringRef ReplPattern = Edit.substr(2).split('/').second;
6842 ReplPattern = ReplPattern.slice(0, ReplPattern.size() - 1);
6843
6844 for (unsigned i = 1, e = Args.size(); i != e; ++i) {
6845 // Ignore end-of-line response file markers
6846 if (Args[i] == nullptr)
6847 continue;
6848 std::string Repl = llvm::Regex(MatchPattern).sub(ReplPattern, Args[i]);
6849
6850 if (Repl != Args[i]) {
6851 OS << "### Replacing '" << Args[i] << "' with '" << Repl << "'\n";
6852 Args[i] = GetStableCStr(SavedStrings, Repl);
6853 }
6854 }
6855 } else if (Edit[0] == 'x' || Edit[0] == 'X') {
6856 auto Option = Edit.substr(1);
6857 for (unsigned i = 1; i < Args.size();) {
6858 if (Option == Args[i]) {
6859 OS << "### Deleting argument " << Args[i] << '\n';
6860 Args.erase(Args.begin() + i);
6861 if (Edit[0] == 'X') {
6862 if (i < Args.size()) {
6863 OS << "### Deleting argument " << Args[i] << '\n';
6864 Args.erase(Args.begin() + i);
6865 } else
6866 OS << "### Invalid X edit, end of command line!\n";
6867 }
6868 } else
6869 ++i;
6870 }
6871 } else if (Edit[0] == 'O') {
6872 for (unsigned i = 1; i < Args.size();) {
6873 const char *A = Args[i];
6874 // Ignore end-of-line response file markers
6875 if (A == nullptr)
6876 continue;
6877 if (A[0] == '-' && A[1] == 'O' &&
6878 (A[2] == '\0' || (A[3] == '\0' && (A[2] == 's' || A[2] == 'z' ||
6879 ('0' <= A[2] && A[2] <= '9'))))) {
6880 OS << "### Deleting argument " << Args[i] << '\n';
6881 Args.erase(Args.begin() + i);
6882 } else
6883 ++i;
6884 }
6885 OS << "### Adding argument " << Edit << " at end\n";
6886 Args.push_back(GetStableCStr(SavedStrings, '-' + Edit.str()));
6887 } else {
6888 OS << "### Unrecognized edit: " << Edit << "\n";
6889 }
6890 }
6891
applyOverrideOptions(SmallVectorImpl<const char * > & Args,const char * OverrideStr,llvm::StringSet<> & SavedStrings,raw_ostream * OS)6892 void driver::applyOverrideOptions(SmallVectorImpl<const char *> &Args,
6893 const char *OverrideStr,
6894 llvm::StringSet<> &SavedStrings,
6895 raw_ostream *OS) {
6896 if (!OS)
6897 OS = &llvm::nulls();
6898
6899 if (OverrideStr[0] == '#') {
6900 ++OverrideStr;
6901 OS = &llvm::nulls();
6902 }
6903
6904 *OS << "### CCC_OVERRIDE_OPTIONS: " << OverrideStr << "\n";
6905
6906 // This does not need to be efficient.
6907
6908 const char *S = OverrideStr;
6909 while (*S) {
6910 const char *End = ::strchr(S, ' ');
6911 if (!End)
6912 End = S + strlen(S);
6913 if (End != S)
6914 applyOneOverrideOption(*OS, Args, std::string(S, End), SavedStrings);
6915 S = End;
6916 if (*S != '\0')
6917 ++S;
6918 }
6919 }
6920