xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Value.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Value, ValueHandle, and User classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Value.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/IR/Constant.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DerivedUser.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/TypedPointerType.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 
37 using namespace llvm;
38 
39 static cl::opt<unsigned> UseDerefAtPointSemantics(
40     "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false),
41     cl::desc("Deref attributes and metadata infer facts at definition only"));
42 
43 //===----------------------------------------------------------------------===//
44 //                                Value Class
45 //===----------------------------------------------------------------------===//
checkType(Type * Ty)46 static inline Type *checkType(Type *Ty) {
47   assert(Ty && "Value defined with a null type: Error!");
48   assert(!isa<TypedPointerType>(Ty->getScalarType()) &&
49          "Cannot have values with typed pointer types");
50   return Ty;
51 }
52 
Value(Type * ty,unsigned scid)53 Value::Value(Type *ty, unsigned scid)
54     : SubclassID(scid), HasValueHandle(0), SubclassOptionalData(0),
55       SubclassData(0), NumUserOperands(0), IsUsedByMD(false), HasName(false),
56       HasMetadata(false), VTy(checkType(ty)), UseList(nullptr) {
57   static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
58   // FIXME: Why isn't this in the subclass gunk??
59   // Note, we cannot call isa<CallInst> before the CallInst has been
60   // constructed.
61   unsigned OpCode = 0;
62   if (SubclassID >= InstructionVal)
63     OpCode = SubclassID - InstructionVal;
64   if (OpCode == Instruction::Call || OpCode == Instruction::Invoke ||
65       OpCode == Instruction::CallBr)
66     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
67            "invalid CallBase type!");
68   else if (SubclassID != BasicBlockVal &&
69            (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
70     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
71            "Cannot create non-first-class values except for constants!");
72   static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
73                 "Value too big");
74 }
75 
~Value()76 Value::~Value() {
77   // Notify all ValueHandles (if present) that this value is going away.
78   if (HasValueHandle)
79     ValueHandleBase::ValueIsDeleted(this);
80   if (isUsedByMetadata())
81     ValueAsMetadata::handleDeletion(this);
82 
83   // Remove associated metadata from context.
84   if (HasMetadata)
85     clearMetadata();
86 
87 #ifndef NDEBUG      // Only in -g mode...
88   // Check to make sure that there are no uses of this value that are still
89   // around when the value is destroyed.  If there are, then we have a dangling
90   // reference and something is wrong.  This code is here to print out where
91   // the value is still being referenced.
92   //
93   // Note that use_empty() cannot be called here, as it eventually downcasts
94   // 'this' to GlobalValue (derived class of Value), but GlobalValue has already
95   // been destructed, so accessing it is UB.
96   //
97   if (!materialized_use_empty()) {
98     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
99     for (auto *U : users())
100       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
101   }
102 #endif
103   assert(materialized_use_empty() && "Uses remain when a value is destroyed!");
104 
105   // If this value is named, destroy the name.  This should not be in a symtab
106   // at this point.
107   destroyValueName();
108 }
109 
deleteValue()110 void Value::deleteValue() {
111   switch (getValueID()) {
112 #define HANDLE_VALUE(Name)                                                     \
113   case Value::Name##Val:                                                       \
114     delete static_cast<Name *>(this);                                          \
115     break;
116 #define HANDLE_MEMORY_VALUE(Name)                                              \
117   case Value::Name##Val:                                                       \
118     static_cast<DerivedUser *>(this)->DeleteValue(                             \
119         static_cast<DerivedUser *>(this));                                     \
120     break;
121 #define HANDLE_CONSTANT(Name)                                                  \
122   case Value::Name##Val:                                                       \
123     llvm_unreachable("constants should be destroyed with destroyConstant");    \
124     break;
125 #define HANDLE_INSTRUCTION(Name)  /* nothing */
126 #include "llvm/IR/Value.def"
127 
128 #define HANDLE_INST(N, OPC, CLASS)                                             \
129   case Value::InstructionVal + Instruction::OPC:                               \
130     delete static_cast<CLASS *>(this);                                         \
131     break;
132 #define HANDLE_USER_INST(N, OPC, CLASS)
133 #include "llvm/IR/Instruction.def"
134 
135   default:
136     llvm_unreachable("attempting to delete unknown value kind");
137   }
138 }
139 
destroyValueName()140 void Value::destroyValueName() {
141   ValueName *Name = getValueName();
142   if (Name) {
143     MallocAllocator Allocator;
144     Name->Destroy(Allocator);
145   }
146   setValueName(nullptr);
147 }
148 
hasNUses(unsigned N) const149 bool Value::hasNUses(unsigned N) const {
150   return hasNItems(use_begin(), use_end(), N);
151 }
152 
hasNUsesOrMore(unsigned N) const153 bool Value::hasNUsesOrMore(unsigned N) const {
154   return hasNItemsOrMore(use_begin(), use_end(), N);
155 }
156 
hasOneUser() const157 bool Value::hasOneUser() const {
158   if (use_empty())
159     return false;
160   if (hasOneUse())
161     return true;
162   return std::equal(++user_begin(), user_end(), user_begin());
163 }
164 
isUnDroppableUser(const User * U)165 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); }
166 
getSingleUndroppableUse()167 Use *Value::getSingleUndroppableUse() {
168   Use *Result = nullptr;
169   for (Use &U : uses()) {
170     if (!U.getUser()->isDroppable()) {
171       if (Result)
172         return nullptr;
173       Result = &U;
174     }
175   }
176   return Result;
177 }
178 
getUniqueUndroppableUser()179 User *Value::getUniqueUndroppableUser() {
180   User *Result = nullptr;
181   for (auto *U : users()) {
182     if (!U->isDroppable()) {
183       if (Result && Result != U)
184         return nullptr;
185       Result = U;
186     }
187   }
188   return Result;
189 }
190 
hasNUndroppableUses(unsigned int N) const191 bool Value::hasNUndroppableUses(unsigned int N) const {
192   return hasNItems(user_begin(), user_end(), N, isUnDroppableUser);
193 }
194 
hasNUndroppableUsesOrMore(unsigned int N) const195 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const {
196   return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser);
197 }
198 
dropDroppableUses(llvm::function_ref<bool (const Use *)> ShouldDrop)199 void Value::dropDroppableUses(
200     llvm::function_ref<bool(const Use *)> ShouldDrop) {
201   SmallVector<Use *, 8> ToBeEdited;
202   for (Use &U : uses())
203     if (U.getUser()->isDroppable() && ShouldDrop(&U))
204       ToBeEdited.push_back(&U);
205   for (Use *U : ToBeEdited)
206     dropDroppableUse(*U);
207 }
208 
dropDroppableUsesIn(User & Usr)209 void Value::dropDroppableUsesIn(User &Usr) {
210   assert(Usr.isDroppable() && "Expected a droppable user!");
211   for (Use &UsrOp : Usr.operands()) {
212     if (UsrOp.get() == this)
213       dropDroppableUse(UsrOp);
214   }
215 }
216 
dropDroppableUse(Use & U)217 void Value::dropDroppableUse(Use &U) {
218   U.removeFromList();
219   if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) {
220     unsigned OpNo = U.getOperandNo();
221     if (OpNo == 0)
222       U.set(ConstantInt::getTrue(Assume->getContext()));
223     else {
224       U.set(UndefValue::get(U.get()->getType()));
225       CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo);
226       BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore");
227     }
228     return;
229   }
230 
231   llvm_unreachable("unkown droppable use");
232 }
233 
isUsedInBasicBlock(const BasicBlock * BB) const234 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
235   // This can be computed either by scanning the instructions in BB, or by
236   // scanning the use list of this Value. Both lists can be very long, but
237   // usually one is quite short.
238   //
239   // Scan both lists simultaneously until one is exhausted. This limits the
240   // search to the shorter list.
241   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
242   const_user_iterator UI = user_begin(), UE = user_end();
243   for (; BI != BE && UI != UE; ++BI, ++UI) {
244     // Scan basic block: Check if this Value is used by the instruction at BI.
245     if (is_contained(BI->operands(), this))
246       return true;
247     // Scan use list: Check if the use at UI is in BB.
248     const auto *User = dyn_cast<Instruction>(*UI);
249     if (User && User->getParent() == BB)
250       return true;
251   }
252   return false;
253 }
254 
getNumUses() const255 unsigned Value::getNumUses() const {
256   return (unsigned)std::distance(use_begin(), use_end());
257 }
258 
getSymTab(Value * V,ValueSymbolTable * & ST)259 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
260   ST = nullptr;
261   if (Instruction *I = dyn_cast<Instruction>(V)) {
262     if (BasicBlock *P = I->getParent())
263       if (Function *PP = P->getParent())
264         ST = PP->getValueSymbolTable();
265   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
266     if (Function *P = BB->getParent())
267       ST = P->getValueSymbolTable();
268   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
269     if (Module *P = GV->getParent())
270       ST = &P->getValueSymbolTable();
271   } else if (Argument *A = dyn_cast<Argument>(V)) {
272     if (Function *P = A->getParent())
273       ST = P->getValueSymbolTable();
274   } else {
275     assert(isa<Constant>(V) && "Unknown value type!");
276     return true;  // no name is setable for this.
277   }
278   return false;
279 }
280 
getValueName() const281 ValueName *Value::getValueName() const {
282   if (!HasName) return nullptr;
283 
284   LLVMContext &Ctx = getContext();
285   auto I = Ctx.pImpl->ValueNames.find(this);
286   assert(I != Ctx.pImpl->ValueNames.end() &&
287          "No name entry found!");
288 
289   return I->second;
290 }
291 
setValueName(ValueName * VN)292 void Value::setValueName(ValueName *VN) {
293   LLVMContext &Ctx = getContext();
294 
295   assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
296          "HasName bit out of sync!");
297 
298   if (!VN) {
299     if (HasName)
300       Ctx.pImpl->ValueNames.erase(this);
301     HasName = false;
302     return;
303   }
304 
305   HasName = true;
306   Ctx.pImpl->ValueNames[this] = VN;
307 }
308 
getName() const309 StringRef Value::getName() const {
310   // Make sure the empty string is still a C string. For historical reasons,
311   // some clients want to call .data() on the result and expect it to be null
312   // terminated.
313   if (!hasName())
314     return StringRef("", 0);
315   return getValueName()->getKey();
316 }
317 
setNameImpl(const Twine & NewName)318 void Value::setNameImpl(const Twine &NewName) {
319   bool NeedNewName =
320       !getContext().shouldDiscardValueNames() || isa<GlobalValue>(this);
321 
322   // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
323   // and there is no need to delete the old name.
324   if (!NeedNewName && !hasName())
325     return;
326 
327   // Fast path for common IRBuilder case of setName("") when there is no name.
328   if (NewName.isTriviallyEmpty() && !hasName())
329     return;
330 
331   SmallString<256> NameData;
332   StringRef NameRef = NeedNewName ? NewName.toStringRef(NameData) : "";
333   assert(!NameRef.contains(0) && "Null bytes are not allowed in names");
334 
335   // Name isn't changing?
336   if (getName() == NameRef)
337     return;
338 
339   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
340 
341   // Get the symbol table to update for this object.
342   ValueSymbolTable *ST;
343   if (getSymTab(this, ST))
344     return;  // Cannot set a name on this value (e.g. constant).
345 
346   if (!ST) { // No symbol table to update?  Just do the change.
347     // NOTE: Could optimize for the case the name is shrinking to not deallocate
348     // then reallocated.
349     destroyValueName();
350 
351     if (!NameRef.empty()) {
352       // Create the new name.
353       assert(NeedNewName);
354       MallocAllocator Allocator;
355       setValueName(ValueName::create(NameRef, Allocator));
356       getValueName()->setValue(this);
357     }
358     return;
359   }
360 
361   // NOTE: Could optimize for the case the name is shrinking to not deallocate
362   // then reallocated.
363   if (hasName()) {
364     // Remove old name.
365     ST->removeValueName(getValueName());
366     destroyValueName();
367 
368     if (NameRef.empty())
369       return;
370   }
371 
372   // Name is changing to something new.
373   assert(NeedNewName);
374   setValueName(ST->createValueName(NameRef, this));
375 }
376 
setName(const Twine & NewName)377 void Value::setName(const Twine &NewName) {
378   setNameImpl(NewName);
379   if (Function *F = dyn_cast<Function>(this))
380     F->updateAfterNameChange();
381 }
382 
takeName(Value * V)383 void Value::takeName(Value *V) {
384   assert(V != this && "Illegal call to this->takeName(this)!");
385   ValueSymbolTable *ST = nullptr;
386   // If this value has a name, drop it.
387   if (hasName()) {
388     // Get the symtab this is in.
389     if (getSymTab(this, ST)) {
390       // We can't set a name on this value, but we need to clear V's name if
391       // it has one.
392       if (V->hasName()) V->setName("");
393       return;  // Cannot set a name on this value (e.g. constant).
394     }
395 
396     // Remove old name.
397     if (ST)
398       ST->removeValueName(getValueName());
399     destroyValueName();
400   }
401 
402   // Now we know that this has no name.
403 
404   // If V has no name either, we're done.
405   if (!V->hasName()) return;
406 
407   // Get this's symtab if we didn't before.
408   if (!ST) {
409     if (getSymTab(this, ST)) {
410       // Clear V's name.
411       V->setName("");
412       return;  // Cannot set a name on this value (e.g. constant).
413     }
414   }
415 
416   // Get V's ST, this should always succeed, because V has a name.
417   ValueSymbolTable *VST;
418   bool Failure = getSymTab(V, VST);
419   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
420 
421   // If these values are both in the same symtab, we can do this very fast.
422   // This works even if both values have no symtab yet.
423   if (ST == VST) {
424     // Take the name!
425     setValueName(V->getValueName());
426     V->setValueName(nullptr);
427     getValueName()->setValue(this);
428     return;
429   }
430 
431   // Otherwise, things are slightly more complex.  Remove V's name from VST and
432   // then reinsert it into ST.
433 
434   if (VST)
435     VST->removeValueName(V->getValueName());
436   setValueName(V->getValueName());
437   V->setValueName(nullptr);
438   getValueName()->setValue(this);
439 
440   if (ST)
441     ST->reinsertValue(this);
442 }
443 
444 #ifndef NDEBUG
getNameOrAsOperand() const445 std::string Value::getNameOrAsOperand() const {
446   if (!getName().empty())
447     return std::string(getName());
448 
449   std::string BBName;
450   raw_string_ostream OS(BBName);
451   printAsOperand(OS, false);
452   return OS.str();
453 }
454 #endif
455 
assertModuleIsMaterializedImpl() const456 void Value::assertModuleIsMaterializedImpl() const {
457 #ifndef NDEBUG
458   const GlobalValue *GV = dyn_cast<GlobalValue>(this);
459   if (!GV)
460     return;
461   const Module *M = GV->getParent();
462   if (!M)
463     return;
464   assert(M->isMaterialized());
465 #endif
466 }
467 
468 #ifndef NDEBUG
contains(SmallPtrSetImpl<ConstantExpr * > & Cache,ConstantExpr * Expr,Constant * C)469 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
470                      Constant *C) {
471   if (!Cache.insert(Expr).second)
472     return false;
473 
474   for (auto &O : Expr->operands()) {
475     if (O == C)
476       return true;
477     auto *CE = dyn_cast<ConstantExpr>(O);
478     if (!CE)
479       continue;
480     if (contains(Cache, CE, C))
481       return true;
482   }
483   return false;
484 }
485 
contains(Value * Expr,Value * V)486 static bool contains(Value *Expr, Value *V) {
487   if (Expr == V)
488     return true;
489 
490   auto *C = dyn_cast<Constant>(V);
491   if (!C)
492     return false;
493 
494   auto *CE = dyn_cast<ConstantExpr>(Expr);
495   if (!CE)
496     return false;
497 
498   SmallPtrSet<ConstantExpr *, 4> Cache;
499   return contains(Cache, CE, C);
500 }
501 #endif // NDEBUG
502 
doRAUW(Value * New,ReplaceMetadataUses ReplaceMetaUses)503 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
504   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
505   assert(!contains(New, this) &&
506          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
507   assert(New->getType() == getType() &&
508          "replaceAllUses of value with new value of different type!");
509 
510   // Notify all ValueHandles (if present) that this value is going away.
511   if (HasValueHandle)
512     ValueHandleBase::ValueIsRAUWd(this, New);
513   if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
514     ValueAsMetadata::handleRAUW(this, New);
515 
516   while (!materialized_use_empty()) {
517     Use &U = *UseList;
518     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
519     // constant because they are uniqued.
520     if (auto *C = dyn_cast<Constant>(U.getUser())) {
521       if (!isa<GlobalValue>(C)) {
522         C->handleOperandChange(this, New);
523         continue;
524       }
525     }
526 
527     U.set(New);
528   }
529 
530   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
531     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
532 }
533 
replaceAllUsesWith(Value * New)534 void Value::replaceAllUsesWith(Value *New) {
535   doRAUW(New, ReplaceMetadataUses::Yes);
536 }
537 
replaceNonMetadataUsesWith(Value * New)538 void Value::replaceNonMetadataUsesWith(Value *New) {
539   doRAUW(New, ReplaceMetadataUses::No);
540 }
541 
replaceUsesWithIf(Value * New,llvm::function_ref<bool (Use & U)> ShouldReplace)542 void Value::replaceUsesWithIf(Value *New,
543                               llvm::function_ref<bool(Use &U)> ShouldReplace) {
544   assert(New && "Value::replaceUsesWithIf(<null>) is invalid!");
545   assert(New->getType() == getType() &&
546          "replaceUses of value with new value of different type!");
547 
548   SmallVector<TrackingVH<Constant>, 8> Consts;
549   SmallPtrSet<Constant *, 8> Visited;
550 
551   for (Use &U : llvm::make_early_inc_range(uses())) {
552     if (!ShouldReplace(U))
553       continue;
554     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
555     // constant because they are uniqued.
556     if (auto *C = dyn_cast<Constant>(U.getUser())) {
557       if (!isa<GlobalValue>(C)) {
558         if (Visited.insert(C).second)
559           Consts.push_back(TrackingVH<Constant>(C));
560         continue;
561       }
562     }
563     U.set(New);
564   }
565 
566   while (!Consts.empty()) {
567     // FIXME: handleOperandChange() updates all the uses in a given Constant,
568     //        not just the one passed to ShouldReplace
569     Consts.pop_back_val()->handleOperandChange(this, New);
570   }
571 }
572 
573 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB
574 /// with New.
replaceDbgUsesOutsideBlock(Value * V,Value * New,BasicBlock * BB)575 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) {
576   SmallVector<DbgVariableIntrinsic *> DbgUsers;
577   SmallVector<DbgVariableRecord *> DPUsers;
578   findDbgUsers(DbgUsers, V, &DPUsers);
579   for (auto *DVI : DbgUsers) {
580     if (DVI->getParent() != BB)
581       DVI->replaceVariableLocationOp(V, New);
582   }
583   for (auto *DVR : DPUsers) {
584     DbgMarker *Marker = DVR->getMarker();
585     if (Marker->getParent() != BB)
586       DVR->replaceVariableLocationOp(V, New);
587   }
588 }
589 
590 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
591 // This routine leaves uses within BB.
replaceUsesOutsideBlock(Value * New,BasicBlock * BB)592 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
593   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
594   assert(!contains(New, this) &&
595          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
596   assert(New->getType() == getType() &&
597          "replaceUses of value with new value of different type!");
598   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
599 
600   replaceDbgUsesOutsideBlock(this, New, BB);
601   replaceUsesWithIf(New, [BB](Use &U) {
602     auto *I = dyn_cast<Instruction>(U.getUser());
603     // Don't replace if it's an instruction in the BB basic block.
604     return !I || I->getParent() != BB;
605   });
606 }
607 
608 namespace {
609 // Various metrics for how much to strip off of pointers.
610 enum PointerStripKind {
611   PSK_ZeroIndices,
612   PSK_ZeroIndicesAndAliases,
613   PSK_ZeroIndicesSameRepresentation,
614   PSK_ForAliasAnalysis,
615   PSK_InBoundsConstantIndices,
616   PSK_InBounds
617 };
618 
NoopCallback(const Value *)619 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {}
620 
621 template <PointerStripKind StripKind>
stripPointerCastsAndOffsets(const Value * V,function_ref<void (const Value *)> Func=NoopCallback<StripKind>)622 static const Value *stripPointerCastsAndOffsets(
623     const Value *V,
624     function_ref<void(const Value *)> Func = NoopCallback<StripKind>) {
625   if (!V->getType()->isPointerTy())
626     return V;
627 
628   // Even though we don't look through PHI nodes, we could be called on an
629   // instruction in an unreachable block, which may be on a cycle.
630   SmallPtrSet<const Value *, 4> Visited;
631 
632   Visited.insert(V);
633   do {
634     Func(V);
635     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
636       switch (StripKind) {
637       case PSK_ZeroIndices:
638       case PSK_ZeroIndicesAndAliases:
639       case PSK_ZeroIndicesSameRepresentation:
640       case PSK_ForAliasAnalysis:
641         if (!GEP->hasAllZeroIndices())
642           return V;
643         break;
644       case PSK_InBoundsConstantIndices:
645         if (!GEP->hasAllConstantIndices())
646           return V;
647         [[fallthrough]];
648       case PSK_InBounds:
649         if (!GEP->isInBounds())
650           return V;
651         break;
652       }
653       V = GEP->getPointerOperand();
654     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
655       Value *NewV = cast<Operator>(V)->getOperand(0);
656       if (!NewV->getType()->isPointerTy())
657         return V;
658       V = NewV;
659     } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
660                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
661       // TODO: If we know an address space cast will not change the
662       //       representation we could look through it here as well.
663       V = cast<Operator>(V)->getOperand(0);
664     } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) {
665       V = cast<GlobalAlias>(V)->getAliasee();
666     } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) &&
667                cast<PHINode>(V)->getNumIncomingValues() == 1) {
668       V = cast<PHINode>(V)->getIncomingValue(0);
669     } else {
670       if (const auto *Call = dyn_cast<CallBase>(V)) {
671         if (const Value *RV = Call->getReturnedArgOperand()) {
672           V = RV;
673           continue;
674         }
675         // The result of launder.invariant.group must alias it's argument,
676         // but it can't be marked with returned attribute, that's why it needs
677         // special case.
678         if (StripKind == PSK_ForAliasAnalysis &&
679             (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
680              Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
681           V = Call->getArgOperand(0);
682           continue;
683         }
684       }
685       return V;
686     }
687     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
688   } while (Visited.insert(V).second);
689 
690   return V;
691 }
692 } // end anonymous namespace
693 
stripPointerCasts() const694 const Value *Value::stripPointerCasts() const {
695   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
696 }
697 
stripPointerCastsAndAliases() const698 const Value *Value::stripPointerCastsAndAliases() const {
699   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
700 }
701 
stripPointerCastsSameRepresentation() const702 const Value *Value::stripPointerCastsSameRepresentation() const {
703   return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
704 }
705 
stripInBoundsConstantOffsets() const706 const Value *Value::stripInBoundsConstantOffsets() const {
707   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
708 }
709 
stripPointerCastsForAliasAnalysis() const710 const Value *Value::stripPointerCastsForAliasAnalysis() const {
711   return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this);
712 }
713 
stripAndAccumulateConstantOffsets(const DataLayout & DL,APInt & Offset,bool AllowNonInbounds,bool AllowInvariantGroup,function_ref<bool (Value &,APInt &)> ExternalAnalysis) const714 const Value *Value::stripAndAccumulateConstantOffsets(
715     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
716     bool AllowInvariantGroup,
717     function_ref<bool(Value &, APInt &)> ExternalAnalysis) const {
718   if (!getType()->isPtrOrPtrVectorTy())
719     return this;
720 
721   unsigned BitWidth = Offset.getBitWidth();
722   assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
723          "The offset bit width does not match the DL specification.");
724 
725   // Even though we don't look through PHI nodes, we could be called on an
726   // instruction in an unreachable block, which may be on a cycle.
727   SmallPtrSet<const Value *, 4> Visited;
728   Visited.insert(this);
729   const Value *V = this;
730   do {
731     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
732       // If in-bounds was requested, we do not strip non-in-bounds GEPs.
733       if (!AllowNonInbounds && !GEP->isInBounds())
734         return V;
735 
736       // If one of the values we have visited is an addrspacecast, then
737       // the pointer type of this GEP may be different from the type
738       // of the Ptr parameter which was passed to this function.  This
739       // means when we construct GEPOffset, we need to use the size
740       // of GEP's pointer type rather than the size of the original
741       // pointer type.
742       APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
743       if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis))
744         return V;
745 
746       // Stop traversal if the pointer offset wouldn't fit in the bit-width
747       // provided by the Offset argument. This can happen due to AddrSpaceCast
748       // stripping.
749       if (GEPOffset.getSignificantBits() > BitWidth)
750         return V;
751 
752       // External Analysis can return a result higher/lower than the value
753       // represents. We need to detect overflow/underflow.
754       APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth);
755       if (!ExternalAnalysis) {
756         Offset += GEPOffsetST;
757       } else {
758         bool Overflow = false;
759         APInt OldOffset = Offset;
760         Offset = Offset.sadd_ov(GEPOffsetST, Overflow);
761         if (Overflow) {
762           Offset = OldOffset;
763           return V;
764         }
765       }
766       V = GEP->getPointerOperand();
767     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
768                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
769       V = cast<Operator>(V)->getOperand(0);
770     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
771       if (!GA->isInterposable())
772         V = GA->getAliasee();
773     } else if (const auto *Call = dyn_cast<CallBase>(V)) {
774         if (const Value *RV = Call->getReturnedArgOperand())
775           V = RV;
776         if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup())
777           V = Call->getArgOperand(0);
778     }
779     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
780   } while (Visited.insert(V).second);
781 
782   return V;
783 }
784 
785 const Value *
stripInBoundsOffsets(function_ref<void (const Value *)> Func) const786 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const {
787   return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func);
788 }
789 
canBeFreed() const790 bool Value::canBeFreed() const {
791   assert(getType()->isPointerTy());
792 
793   // Cases that can simply never be deallocated
794   // *) Constants aren't allocated per se, thus not deallocated either.
795   if (isa<Constant>(this))
796     return false;
797 
798   // Handle byval/byref/sret/inalloca/preallocated arguments.  The storage
799   // lifetime is guaranteed to be longer than the callee's lifetime.
800   if (auto *A = dyn_cast<Argument>(this)) {
801     if (A->hasPointeeInMemoryValueAttr())
802       return false;
803     // A pointer to an object in a function which neither frees, nor can arrange
804     // for another thread to free on its behalf, can not be freed in the scope
805     // of the function.  Note that this logic is restricted to memory
806     // allocations in existance before the call; a nofree function *is* allowed
807     // to free memory it allocated.
808     const Function *F = A->getParent();
809     if (F->doesNotFreeMemory() && F->hasNoSync())
810       return false;
811   }
812 
813   const Function *F = nullptr;
814   if (auto *I = dyn_cast<Instruction>(this))
815     F = I->getFunction();
816   if (auto *A = dyn_cast<Argument>(this))
817     F = A->getParent();
818 
819   if (!F)
820     return true;
821 
822   // With garbage collection, deallocation typically occurs solely at or after
823   // safepoints.  If we're compiling for a collector which uses the
824   // gc.statepoint infrastructure, safepoints aren't explicitly present
825   // in the IR until after lowering from abstract to physical machine model.
826   // The collector could chose to mix explicit deallocation and gc'd objects
827   // which is why we need the explicit opt in on a per collector basis.
828   if (!F->hasGC())
829     return true;
830 
831   const auto &GCName = F->getGC();
832   if (GCName == "statepoint-example") {
833     auto *PT = cast<PointerType>(this->getType());
834     if (PT->getAddressSpace() != 1)
835       // For the sake of this example GC, we arbitrarily pick addrspace(1) as
836       // our GC managed heap.  This must match the same check in
837       // RewriteStatepointsForGC (and probably needs better factored.)
838       return true;
839 
840     // It is cheaper to scan for a declaration than to scan for a use in this
841     // function.  Note that gc.statepoint is a type overloaded function so the
842     // usual trick of requesting declaration of the intrinsic from the module
843     // doesn't work.
844     for (auto &Fn : *F->getParent())
845       if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint)
846         return true;
847     return false;
848   }
849   return true;
850 }
851 
getPointerDereferenceableBytes(const DataLayout & DL,bool & CanBeNull,bool & CanBeFreed) const852 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
853                                                bool &CanBeNull,
854                                                bool &CanBeFreed) const {
855   assert(getType()->isPointerTy() && "must be pointer");
856 
857   uint64_t DerefBytes = 0;
858   CanBeNull = false;
859   CanBeFreed = UseDerefAtPointSemantics && canBeFreed();
860   if (const Argument *A = dyn_cast<Argument>(this)) {
861     DerefBytes = A->getDereferenceableBytes();
862     if (DerefBytes == 0) {
863       // Handle byval/byref/inalloca/preallocated arguments
864       if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) {
865         if (ArgMemTy->isSized()) {
866           // FIXME: Why isn't this the type alloc size?
867           DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinValue();
868         }
869       }
870     }
871 
872     if (DerefBytes == 0) {
873       DerefBytes = A->getDereferenceableOrNullBytes();
874       CanBeNull = true;
875     }
876   } else if (const auto *Call = dyn_cast<CallBase>(this)) {
877     DerefBytes = Call->getRetDereferenceableBytes();
878     if (DerefBytes == 0) {
879       DerefBytes = Call->getRetDereferenceableOrNullBytes();
880       CanBeNull = true;
881     }
882   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
883     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
884       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
885       DerefBytes = CI->getLimitedValue();
886     }
887     if (DerefBytes == 0) {
888       if (MDNode *MD =
889               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
890         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
891         DerefBytes = CI->getLimitedValue();
892       }
893       CanBeNull = true;
894     }
895   } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
896     if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
897       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
898       DerefBytes = CI->getLimitedValue();
899     }
900     if (DerefBytes == 0) {
901       if (MDNode *MD =
902               IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
903         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
904         DerefBytes = CI->getLimitedValue();
905       }
906       CanBeNull = true;
907     }
908   } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
909     if (!AI->isArrayAllocation()) {
910       DerefBytes =
911           DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinValue();
912       CanBeNull = false;
913       CanBeFreed = false;
914     }
915   } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
916     if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
917       // TODO: Don't outright reject hasExternalWeakLinkage but set the
918       // CanBeNull flag.
919       DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedValue();
920       CanBeNull = false;
921       CanBeFreed = false;
922     }
923   }
924   return DerefBytes;
925 }
926 
getPointerAlignment(const DataLayout & DL) const927 Align Value::getPointerAlignment(const DataLayout &DL) const {
928   assert(getType()->isPointerTy() && "must be pointer");
929   if (auto *GO = dyn_cast<GlobalObject>(this)) {
930     if (isa<Function>(GO)) {
931       Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne();
932       switch (DL.getFunctionPtrAlignType()) {
933       case DataLayout::FunctionPtrAlignType::Independent:
934         return FunctionPtrAlign;
935       case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
936         return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne());
937       }
938       llvm_unreachable("Unhandled FunctionPtrAlignType");
939     }
940     const MaybeAlign Alignment(GO->getAlign());
941     if (!Alignment) {
942       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
943         Type *ObjectType = GVar->getValueType();
944         if (ObjectType->isSized()) {
945           // If the object is defined in the current Module, we'll be giving
946           // it the preferred alignment. Otherwise, we have to assume that it
947           // may only have the minimum ABI alignment.
948           if (GVar->isStrongDefinitionForLinker())
949             return DL.getPreferredAlign(GVar);
950           else
951             return DL.getABITypeAlign(ObjectType);
952         }
953       }
954     }
955     return Alignment.valueOrOne();
956   } else if (const Argument *A = dyn_cast<Argument>(this)) {
957     const MaybeAlign Alignment = A->getParamAlign();
958     if (!Alignment && A->hasStructRetAttr()) {
959       // An sret parameter has at least the ABI alignment of the return type.
960       Type *EltTy = A->getParamStructRetType();
961       if (EltTy->isSized())
962         return DL.getABITypeAlign(EltTy);
963     }
964     return Alignment.valueOrOne();
965   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
966     return AI->getAlign();
967   } else if (const auto *Call = dyn_cast<CallBase>(this)) {
968     MaybeAlign Alignment = Call->getRetAlign();
969     if (!Alignment && Call->getCalledFunction())
970       Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment();
971     return Alignment.valueOrOne();
972   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
973     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
974       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
975       return Align(CI->getLimitedValue());
976     }
977   } else if (auto *CstPtr = dyn_cast<Constant>(this)) {
978     // Strip pointer casts to avoid creating unnecessary ptrtoint expression
979     // if the only "reduction" is combining a bitcast + ptrtoint.
980     CstPtr = CstPtr->stripPointerCasts();
981     if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt(
982             const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()),
983             /*OnlyIfReduced=*/true))) {
984       size_t TrailingZeros = CstInt->getValue().countr_zero();
985       // While the actual alignment may be large, elsewhere we have
986       // an arbitrary upper alignmet limit, so let's clamp to it.
987       return Align(TrailingZeros < Value::MaxAlignmentExponent
988                        ? uint64_t(1) << TrailingZeros
989                        : Value::MaximumAlignment);
990     }
991   }
992   return Align(1);
993 }
994 
995 static std::optional<int64_t>
getOffsetFromIndex(const GEPOperator * GEP,unsigned Idx,const DataLayout & DL)996 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
997   // Skip over the first indices.
998   gep_type_iterator GTI = gep_type_begin(GEP);
999   for (unsigned i = 1; i != Idx; ++i, ++GTI)
1000     /*skip along*/;
1001 
1002   // Compute the offset implied by the rest of the indices.
1003   int64_t Offset = 0;
1004   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
1005     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
1006     if (!OpC)
1007       return std::nullopt;
1008     if (OpC->isZero())
1009       continue; // No offset.
1010 
1011     // Handle struct indices, which add their field offset to the pointer.
1012     if (StructType *STy = GTI.getStructTypeOrNull()) {
1013       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1014       continue;
1015     }
1016 
1017     // Otherwise, we have a sequential type like an array or fixed-length
1018     // vector. Multiply the index by the ElementSize.
1019     TypeSize Size = GTI.getSequentialElementStride(DL);
1020     if (Size.isScalable())
1021       return std::nullopt;
1022     Offset += Size.getFixedValue() * OpC->getSExtValue();
1023   }
1024 
1025   return Offset;
1026 }
1027 
getPointerOffsetFrom(const Value * Other,const DataLayout & DL) const1028 std::optional<int64_t> Value::getPointerOffsetFrom(const Value *Other,
1029                                                    const DataLayout &DL) const {
1030   const Value *Ptr1 = Other;
1031   const Value *Ptr2 = this;
1032   APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0);
1033   APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0);
1034   Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true);
1035   Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true);
1036 
1037   // Handle the trivial case first.
1038   if (Ptr1 == Ptr2)
1039     return Offset2.getSExtValue() - Offset1.getSExtValue();
1040 
1041   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
1042   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
1043 
1044   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
1045   // base.  After that base, they may have some number of common (and
1046   // potentially variable) indices.  After that they handle some constant
1047   // offset, which determines their offset from each other.  At this point, we
1048   // handle no other case.
1049   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) ||
1050       GEP1->getSourceElementType() != GEP2->getSourceElementType())
1051     return std::nullopt;
1052 
1053   // Skip any common indices and track the GEP types.
1054   unsigned Idx = 1;
1055   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
1056     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
1057       break;
1058 
1059   auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL);
1060   auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL);
1061   if (!IOffset1 || !IOffset2)
1062     return std::nullopt;
1063   return *IOffset2 - *IOffset1 + Offset2.getSExtValue() -
1064          Offset1.getSExtValue();
1065 }
1066 
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB) const1067 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
1068                                      const BasicBlock *PredBB) const {
1069   auto *PN = dyn_cast<PHINode>(this);
1070   if (PN && PN->getParent() == CurBB)
1071     return PN->getIncomingValueForBlock(PredBB);
1072   return this;
1073 }
1074 
getContext() const1075 LLVMContext &Value::getContext() const { return VTy->getContext(); }
1076 
reverseUseList()1077 void Value::reverseUseList() {
1078   if (!UseList || !UseList->Next)
1079     // No need to reverse 0 or 1 uses.
1080     return;
1081 
1082   Use *Head = UseList;
1083   Use *Current = UseList->Next;
1084   Head->Next = nullptr;
1085   while (Current) {
1086     Use *Next = Current->Next;
1087     Current->Next = Head;
1088     Head->Prev = &Current->Next;
1089     Head = Current;
1090     Current = Next;
1091   }
1092   UseList = Head;
1093   Head->Prev = &UseList;
1094 }
1095 
isSwiftError() const1096 bool Value::isSwiftError() const {
1097   auto *Arg = dyn_cast<Argument>(this);
1098   if (Arg)
1099     return Arg->hasSwiftErrorAttr();
1100   auto *Alloca = dyn_cast<AllocaInst>(this);
1101   if (!Alloca)
1102     return false;
1103   return Alloca->isSwiftError();
1104 }
1105 
1106 //===----------------------------------------------------------------------===//
1107 //                             ValueHandleBase Class
1108 //===----------------------------------------------------------------------===//
1109 
AddToExistingUseList(ValueHandleBase ** List)1110 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
1111   assert(List && "Handle list is null?");
1112 
1113   // Splice ourselves into the list.
1114   Next = *List;
1115   *List = this;
1116   setPrevPtr(List);
1117   if (Next) {
1118     Next->setPrevPtr(&Next);
1119     assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
1120   }
1121 }
1122 
AddToExistingUseListAfter(ValueHandleBase * List)1123 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
1124   assert(List && "Must insert after existing node");
1125 
1126   Next = List->Next;
1127   setPrevPtr(&List->Next);
1128   List->Next = this;
1129   if (Next)
1130     Next->setPrevPtr(&Next);
1131 }
1132 
AddToUseList()1133 void ValueHandleBase::AddToUseList() {
1134   assert(getValPtr() && "Null pointer doesn't have a use list!");
1135 
1136   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
1137 
1138   if (getValPtr()->HasValueHandle) {
1139     // If this value already has a ValueHandle, then it must be in the
1140     // ValueHandles map already.
1141     ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
1142     assert(Entry && "Value doesn't have any handles?");
1143     AddToExistingUseList(&Entry);
1144     return;
1145   }
1146 
1147   // Ok, it doesn't have any handles yet, so we must insert it into the
1148   // DenseMap.  However, doing this insertion could cause the DenseMap to
1149   // reallocate itself, which would invalidate all of the PrevP pointers that
1150   // point into the old table.  Handle this by checking for reallocation and
1151   // updating the stale pointers only if needed.
1152   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
1153   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
1154 
1155   ValueHandleBase *&Entry = Handles[getValPtr()];
1156   assert(!Entry && "Value really did already have handles?");
1157   AddToExistingUseList(&Entry);
1158   getValPtr()->HasValueHandle = true;
1159 
1160   // If reallocation didn't happen or if this was the first insertion, don't
1161   // walk the table.
1162   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
1163       Handles.size() == 1) {
1164     return;
1165   }
1166 
1167   // Okay, reallocation did happen.  Fix the Prev Pointers.
1168   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
1169        E = Handles.end(); I != E; ++I) {
1170     assert(I->second && I->first == I->second->getValPtr() &&
1171            "List invariant broken!");
1172     I->second->setPrevPtr(&I->second);
1173   }
1174 }
1175 
RemoveFromUseList()1176 void ValueHandleBase::RemoveFromUseList() {
1177   assert(getValPtr() && getValPtr()->HasValueHandle &&
1178          "Pointer doesn't have a use list!");
1179 
1180   // Unlink this from its use list.
1181   ValueHandleBase **PrevPtr = getPrevPtr();
1182   assert(*PrevPtr == this && "List invariant broken");
1183 
1184   *PrevPtr = Next;
1185   if (Next) {
1186     assert(Next->getPrevPtr() == &Next && "List invariant broken");
1187     Next->setPrevPtr(PrevPtr);
1188     return;
1189   }
1190 
1191   // If the Next pointer was null, then it is possible that this was the last
1192   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
1193   // map.
1194   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
1195   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
1196   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
1197     Handles.erase(getValPtr());
1198     getValPtr()->HasValueHandle = false;
1199   }
1200 }
1201 
ValueIsDeleted(Value * V)1202 void ValueHandleBase::ValueIsDeleted(Value *V) {
1203   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
1204 
1205   // Get the linked list base, which is guaranteed to exist since the
1206   // HasValueHandle flag is set.
1207   LLVMContextImpl *pImpl = V->getContext().pImpl;
1208   ValueHandleBase *Entry = pImpl->ValueHandles[V];
1209   assert(Entry && "Value bit set but no entries exist");
1210 
1211   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
1212   // and remove themselves from the list without breaking our iteration.  This
1213   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
1214   // Note that we deliberately do not the support the case when dropping a value
1215   // handle results in a new value handle being permanently added to the list
1216   // (as might occur in theory for CallbackVH's): the new value handle will not
1217   // be processed and the checking code will mete out righteous punishment if
1218   // the handle is still present once we have finished processing all the other
1219   // value handles (it is fine to momentarily add then remove a value handle).
1220   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
1221     Iterator.RemoveFromUseList();
1222     Iterator.AddToExistingUseListAfter(Entry);
1223     assert(Entry->Next == &Iterator && "Loop invariant broken.");
1224 
1225     switch (Entry->getKind()) {
1226     case Assert:
1227       break;
1228     case Weak:
1229     case WeakTracking:
1230       // WeakTracking and Weak just go to null, which unlinks them
1231       // from the list.
1232       Entry->operator=(nullptr);
1233       break;
1234     case Callback:
1235       // Forward to the subclass's implementation.
1236       static_cast<CallbackVH*>(Entry)->deleted();
1237       break;
1238     }
1239   }
1240 
1241   // All callbacks, weak references, and assertingVHs should be dropped by now.
1242   if (V->HasValueHandle) {
1243 #ifndef NDEBUG      // Only in +Asserts mode...
1244     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
1245            << "\n";
1246     if (pImpl->ValueHandles[V]->getKind() == Assert)
1247       llvm_unreachable("An asserting value handle still pointed to this"
1248                        " value!");
1249 
1250 #endif
1251     llvm_unreachable("All references to V were not removed?");
1252   }
1253 }
1254 
ValueIsRAUWd(Value * Old,Value * New)1255 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
1256   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
1257   assert(Old != New && "Changing value into itself!");
1258   assert(Old->getType() == New->getType() &&
1259          "replaceAllUses of value with new value of different type!");
1260 
1261   // Get the linked list base, which is guaranteed to exist since the
1262   // HasValueHandle flag is set.
1263   LLVMContextImpl *pImpl = Old->getContext().pImpl;
1264   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
1265 
1266   assert(Entry && "Value bit set but no entries exist");
1267 
1268   // We use a local ValueHandleBase as an iterator so that
1269   // ValueHandles can add and remove themselves from the list without
1270   // breaking our iteration.  This is not really an AssertingVH; we
1271   // just have to give ValueHandleBase some kind.
1272   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
1273     Iterator.RemoveFromUseList();
1274     Iterator.AddToExistingUseListAfter(Entry);
1275     assert(Entry->Next == &Iterator && "Loop invariant broken.");
1276 
1277     switch (Entry->getKind()) {
1278     case Assert:
1279     case Weak:
1280       // Asserting and Weak handles do not follow RAUW implicitly.
1281       break;
1282     case WeakTracking:
1283       // Weak goes to the new value, which will unlink it from Old's list.
1284       Entry->operator=(New);
1285       break;
1286     case Callback:
1287       // Forward to the subclass's implementation.
1288       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
1289       break;
1290     }
1291   }
1292 
1293 #ifndef NDEBUG
1294   // If any new weak value handles were added while processing the
1295   // list, then complain about it now.
1296   if (Old->HasValueHandle)
1297     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
1298       switch (Entry->getKind()) {
1299       case WeakTracking:
1300         dbgs() << "After RAUW from " << *Old->getType() << " %"
1301                << Old->getName() << " to " << *New->getType() << " %"
1302                << New->getName() << "\n";
1303         llvm_unreachable(
1304             "A weak tracking value handle still pointed to the old value!\n");
1305       default:
1306         break;
1307       }
1308 #endif
1309 }
1310 
1311 // Pin the vtable to this file.
anchor()1312 void CallbackVH::anchor() {}
1313