xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Analysis/SparsePropagation.h (revision fcaf7f8644a9988098ac6be2165bce3ea4786e91)
1 //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an abstract sparse conditional propagation algorithm,
10 // modeled after SCCP, but with a customizable lattice function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
15 #define LLVM_ANALYSIS_SPARSEPROPAGATION_H
16 
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/Support/Debug.h"
21 #include <set>
22 
23 #define DEBUG_TYPE "sparseprop"
24 
25 namespace llvm {
26 
27 /// A template for translating between LLVM Values and LatticeKeys. Clients must
28 /// provide a specialization of LatticeKeyInfo for their LatticeKey type.
29 template <class LatticeKey> struct LatticeKeyInfo {
30   // static inline Value *getValueFromLatticeKey(LatticeKey Key);
31   // static inline LatticeKey getLatticeKeyFromValue(Value *V);
32 };
33 
34 template <class LatticeKey, class LatticeVal,
35           class KeyInfo = LatticeKeyInfo<LatticeKey>>
36 class SparseSolver;
37 
38 /// AbstractLatticeFunction - This class is implemented by the dataflow instance
39 /// to specify what the lattice values are and how they handle merges etc.  This
40 /// gives the client the power to compute lattice values from instructions,
41 /// constants, etc.  The current requirement is that lattice values must be
42 /// copyable.  At the moment, nothing tries to avoid copying.  Additionally,
43 /// lattice keys must be able to be used as keys of a mapping data structure.
44 /// Internally, the generic solver currently uses a DenseMap to map lattice keys
45 /// to lattice values.  If the lattice key is a non-standard type, a
46 /// specialization of DenseMapInfo must be provided.
47 template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
48 private:
49   LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
50 
51 public:
AbstractLatticeFunction(LatticeVal undefVal,LatticeVal overdefinedVal,LatticeVal untrackedVal)52   AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
53                           LatticeVal untrackedVal) {
54     UndefVal = undefVal;
55     OverdefinedVal = overdefinedVal;
56     UntrackedVal = untrackedVal;
57   }
58 
59   virtual ~AbstractLatticeFunction() = default;
60 
getUndefVal()61   LatticeVal getUndefVal()       const { return UndefVal; }
getOverdefinedVal()62   LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
getUntrackedVal()63   LatticeVal getUntrackedVal()   const { return UntrackedVal; }
64 
65   /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
66   /// to the analysis (i.e., it would always return UntrackedVal), this
67   /// function can return true to avoid pointless work.
IsUntrackedValue(LatticeKey Key)68   virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
69 
70   /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
71   /// given LatticeKey.
ComputeLatticeVal(LatticeKey Key)72   virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
73     return getOverdefinedVal();
74   }
75 
76   /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
77   /// one that the we want to handle through ComputeInstructionState.
IsSpecialCasedPHI(PHINode * PN)78   virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
79 
80   /// MergeValues - Compute and return the merge of the two specified lattice
81   /// values.  Merging should only move one direction down the lattice to
82   /// guarantee convergence (toward overdefined).
MergeValues(LatticeVal X,LatticeVal Y)83   virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
84     return getOverdefinedVal(); // always safe, never useful.
85   }
86 
87   /// ComputeInstructionState - Compute the LatticeKeys that change as a result
88   /// of executing instruction \p I. Their associated LatticeVals are store in
89   /// \p ChangedValues.
90   virtual void
91   ComputeInstructionState(Instruction &I,
92                           DenseMap<LatticeKey, LatticeVal> &ChangedValues,
93                           SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
94 
95   /// PrintLatticeVal - Render the given LatticeVal to the specified stream.
96   virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
97 
98   /// PrintLatticeKey - Render the given LatticeKey to the specified stream.
99   virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
100 
101   /// GetValueFromLatticeVal - If the given LatticeVal is representable as an
102   /// LLVM value, return it; otherwise, return nullptr. If a type is given, the
103   /// returned value must have the same type. This function is used by the
104   /// generic solver in attempting to resolve branch and switch conditions.
105   virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
106     return nullptr;
107   }
108 };
109 
110 /// SparseSolver - This class is a general purpose solver for Sparse Conditional
111 /// Propagation with a programmable lattice function.
112 template <class LatticeKey, class LatticeVal, class KeyInfo>
113 class SparseSolver {
114 
115   /// LatticeFunc - This is the object that knows the lattice and how to
116   /// compute transfer functions.
117   AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
118 
119   /// ValueState - Holds the LatticeVals associated with LatticeKeys.
120   DenseMap<LatticeKey, LatticeVal> ValueState;
121 
122   /// BBExecutable - Holds the basic blocks that are executable.
123   SmallPtrSet<BasicBlock *, 16> BBExecutable;
124 
125   /// ValueWorkList - Holds values that should be processed.
126   SmallVector<Value *, 64> ValueWorkList;
127 
128   /// BBWorkList - Holds basic blocks that should be processed.
129   SmallVector<BasicBlock *, 64> BBWorkList;
130 
131   using Edge = std::pair<BasicBlock *, BasicBlock *>;
132 
133   /// KnownFeasibleEdges - Entries in this set are edges which have already had
134   /// PHI nodes retriggered.
135   std::set<Edge> KnownFeasibleEdges;
136 
137 public:
SparseSolver(AbstractLatticeFunction<LatticeKey,LatticeVal> * Lattice)138   explicit SparseSolver(
139       AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
140       : LatticeFunc(Lattice) {}
141   SparseSolver(const SparseSolver &) = delete;
142   SparseSolver &operator=(const SparseSolver &) = delete;
143 
144   /// Solve - Solve for constants and executable blocks.
145   void Solve();
146 
147   void Print(raw_ostream &OS) const;
148 
149   /// getExistingValueState - Return the LatticeVal object corresponding to the
150   /// given value from the ValueState map. If the value is not in the map,
151   /// UntrackedVal is returned, unlike the getValueState method.
getExistingValueState(LatticeKey Key)152   LatticeVal getExistingValueState(LatticeKey Key) const {
153     auto I = ValueState.find(Key);
154     return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
155   }
156 
157   /// getValueState - Return the LatticeVal object corresponding to the given
158   /// value from the ValueState map. If the value is not in the map, its state
159   /// is initialized.
160   LatticeVal getValueState(LatticeKey Key);
161 
162   /// isEdgeFeasible - Return true if the control flow edge from the 'From'
163   /// basic block to the 'To' basic block is currently feasible.  If
164   /// AggressiveUndef is true, then this treats values with unknown lattice
165   /// values as undefined.  This is generally only useful when solving the
166   /// lattice, not when querying it.
167   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
168                       bool AggressiveUndef = false);
169 
170   /// isBlockExecutable - Return true if there are any known feasible
171   /// edges into the basic block.  This is generally only useful when
172   /// querying the lattice.
isBlockExecutable(BasicBlock * BB)173   bool isBlockExecutable(BasicBlock *BB) const {
174     return BBExecutable.count(BB);
175   }
176 
177   /// MarkBlockExecutable - This method can be used by clients to mark all of
178   /// the blocks that are known to be intrinsically live in the processed unit.
179   void MarkBlockExecutable(BasicBlock *BB);
180 
181 private:
182   /// UpdateState - When the state of some LatticeKey is potentially updated to
183   /// the given LatticeVal, this function notices and adds the LLVM value
184   /// corresponding the key to the work list, if needed.
185   void UpdateState(LatticeKey Key, LatticeVal LV);
186 
187   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
188   /// work list if it is not already executable.
189   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
190 
191   /// getFeasibleSuccessors - Return a vector of booleans to indicate which
192   /// successors are reachable from a given terminator instruction.
193   void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs,
194                              bool AggressiveUndef);
195 
196   void visitInst(Instruction &I);
197   void visitPHINode(PHINode &I);
198   void visitTerminator(Instruction &TI);
199 };
200 
201 //===----------------------------------------------------------------------===//
202 //                  AbstractLatticeFunction Implementation
203 //===----------------------------------------------------------------------===//
204 
205 template <class LatticeKey, class LatticeVal>
PrintLatticeVal(LatticeVal V,raw_ostream & OS)206 void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
207     LatticeVal V, raw_ostream &OS) {
208   if (V == UndefVal)
209     OS << "undefined";
210   else if (V == OverdefinedVal)
211     OS << "overdefined";
212   else if (V == UntrackedVal)
213     OS << "untracked";
214   else
215     OS << "unknown lattice value";
216 }
217 
218 template <class LatticeKey, class LatticeVal>
PrintLatticeKey(LatticeKey Key,raw_ostream & OS)219 void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
220     LatticeKey Key, raw_ostream &OS) {
221   OS << "unknown lattice key";
222 }
223 
224 //===----------------------------------------------------------------------===//
225 //                          SparseSolver Implementation
226 //===----------------------------------------------------------------------===//
227 
228 template <class LatticeKey, class LatticeVal, class KeyInfo>
229 LatticeVal
getValueState(LatticeKey Key)230 SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
231   auto I = ValueState.find(Key);
232   if (I != ValueState.end())
233     return I->second; // Common case, in the map
234 
235   if (LatticeFunc->IsUntrackedValue(Key))
236     return LatticeFunc->getUntrackedVal();
237   LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
238 
239   // If this value is untracked, don't add it to the map.
240   if (LV == LatticeFunc->getUntrackedVal())
241     return LV;
242   return ValueState[Key] = std::move(LV);
243 }
244 
245 template <class LatticeKey, class LatticeVal, class KeyInfo>
UpdateState(LatticeKey Key,LatticeVal LV)246 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
247                                                                 LatticeVal LV) {
248   auto I = ValueState.find(Key);
249   if (I != ValueState.end() && I->second == LV)
250     return; // No change.
251 
252   // Update the state of the given LatticeKey and add its corresponding LLVM
253   // value to the work list.
254   ValueState[Key] = std::move(LV);
255   if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
256     ValueWorkList.push_back(V);
257 }
258 
259 template <class LatticeKey, class LatticeVal, class KeyInfo>
MarkBlockExecutable(BasicBlock * BB)260 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
261     BasicBlock *BB) {
262   if (!BBExecutable.insert(BB).second)
263     return;
264   LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
265   BBWorkList.push_back(BB); // Add the block to the work list!
266 }
267 
268 template <class LatticeKey, class LatticeVal, class KeyInfo>
markEdgeExecutable(BasicBlock * Source,BasicBlock * Dest)269 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
270     BasicBlock *Source, BasicBlock *Dest) {
271   if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
272     return; // This edge is already known to be executable!
273 
274   LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
275                     << " -> " << Dest->getName() << "\n");
276 
277   if (BBExecutable.count(Dest)) {
278     // The destination is already executable, but we just made an edge
279     // feasible that wasn't before.  Revisit the PHI nodes in the block
280     // because they have potentially new operands.
281     for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
282       visitPHINode(*cast<PHINode>(I));
283   } else {
284     MarkBlockExecutable(Dest);
285   }
286 }
287 
288 template <class LatticeKey, class LatticeVal, class KeyInfo>
getFeasibleSuccessors(Instruction & TI,SmallVectorImpl<bool> & Succs,bool AggressiveUndef)289 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
290     Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
291   Succs.resize(TI.getNumSuccessors());
292   if (TI.getNumSuccessors() == 0)
293     return;
294 
295   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
296     if (BI->isUnconditional()) {
297       Succs[0] = true;
298       return;
299     }
300 
301     LatticeVal BCValue;
302     if (AggressiveUndef)
303       BCValue =
304           getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
305     else
306       BCValue = getExistingValueState(
307           KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
308 
309     if (BCValue == LatticeFunc->getOverdefinedVal() ||
310         BCValue == LatticeFunc->getUntrackedVal()) {
311       // Overdefined condition variables can branch either way.
312       Succs[0] = Succs[1] = true;
313       return;
314     }
315 
316     // If undefined, neither is feasible yet.
317     if (BCValue == LatticeFunc->getUndefVal())
318       return;
319 
320     Constant *C =
321         dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
322             std::move(BCValue), BI->getCondition()->getType()));
323     if (!C || !isa<ConstantInt>(C)) {
324       // Non-constant values can go either way.
325       Succs[0] = Succs[1] = true;
326       return;
327     }
328 
329     // Constant condition variables mean the branch can only go a single way
330     Succs[C->isNullValue()] = true;
331     return;
332   }
333 
334   if (!isa<SwitchInst>(TI)) {
335     // Unknown termintor, assume all successors are feasible.
336     Succs.assign(Succs.size(), true);
337     return;
338   }
339 
340   SwitchInst &SI = cast<SwitchInst>(TI);
341   LatticeVal SCValue;
342   if (AggressiveUndef)
343     SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
344   else
345     SCValue = getExistingValueState(
346         KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
347 
348   if (SCValue == LatticeFunc->getOverdefinedVal() ||
349       SCValue == LatticeFunc->getUntrackedVal()) {
350     // All destinations are executable!
351     Succs.assign(TI.getNumSuccessors(), true);
352     return;
353   }
354 
355   // If undefined, neither is feasible yet.
356   if (SCValue == LatticeFunc->getUndefVal())
357     return;
358 
359   Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
360       std::move(SCValue), SI.getCondition()->getType()));
361   if (!C || !isa<ConstantInt>(C)) {
362     // All destinations are executable!
363     Succs.assign(TI.getNumSuccessors(), true);
364     return;
365   }
366   SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
367   Succs[Case.getSuccessorIndex()] = true;
368 }
369 
370 template <class LatticeKey, class LatticeVal, class KeyInfo>
isEdgeFeasible(BasicBlock * From,BasicBlock * To,bool AggressiveUndef)371 bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
372     BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
373   SmallVector<bool, 16> SuccFeasible;
374   Instruction *TI = From->getTerminator();
375   getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
376 
377   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
378     if (TI->getSuccessor(i) == To && SuccFeasible[i])
379       return true;
380 
381   return false;
382 }
383 
384 template <class LatticeKey, class LatticeVal, class KeyInfo>
visitTerminator(Instruction & TI)385 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator(
386     Instruction &TI) {
387   SmallVector<bool, 16> SuccFeasible;
388   getFeasibleSuccessors(TI, SuccFeasible, true);
389 
390   BasicBlock *BB = TI.getParent();
391 
392   // Mark all feasible successors executable...
393   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
394     if (SuccFeasible[i])
395       markEdgeExecutable(BB, TI.getSuccessor(i));
396 }
397 
398 template <class LatticeKey, class LatticeVal, class KeyInfo>
visitPHINode(PHINode & PN)399 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
400   // The lattice function may store more information on a PHINode than could be
401   // computed from its incoming values.  For example, SSI form stores its sigma
402   // functions as PHINodes with a single incoming value.
403   if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
404     DenseMap<LatticeKey, LatticeVal> ChangedValues;
405     LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
406     for (auto &ChangedValue : ChangedValues)
407       if (ChangedValue.second != LatticeFunc->getUntrackedVal())
408         UpdateState(std::move(ChangedValue.first),
409                     std::move(ChangedValue.second));
410     return;
411   }
412 
413   LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
414   LatticeVal PNIV = getValueState(Key);
415   LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
416 
417   // If this value is already overdefined (common) just return.
418   if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
419     return; // Quick exit
420 
421   // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
422   // and slow us down a lot.  Just mark them overdefined.
423   if (PN.getNumIncomingValues() > 64) {
424     UpdateState(Key, Overdefined);
425     return;
426   }
427 
428   // Look at all of the executable operands of the PHI node.  If any of them
429   // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
430   // transfer function to give us the merge of the incoming values.
431   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
432     // If the edge is not yet known to be feasible, it doesn't impact the PHI.
433     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
434       continue;
435 
436     // Merge in this value.
437     LatticeVal OpVal =
438         getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
439     if (OpVal != PNIV)
440       PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
441 
442     if (PNIV == Overdefined)
443       break; // Rest of input values don't matter.
444   }
445 
446   // Update the PHI with the compute value, which is the merge of the inputs.
447   UpdateState(Key, PNIV);
448 }
449 
450 template <class LatticeKey, class LatticeVal, class KeyInfo>
visitInst(Instruction & I)451 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
452   // PHIs are handled by the propagation logic, they are never passed into the
453   // transfer functions.
454   if (PHINode *PN = dyn_cast<PHINode>(&I))
455     return visitPHINode(*PN);
456 
457   // Otherwise, ask the transfer function what the result is.  If this is
458   // something that we care about, remember it.
459   DenseMap<LatticeKey, LatticeVal> ChangedValues;
460   LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
461   for (auto &ChangedValue : ChangedValues)
462     if (ChangedValue.second != LatticeFunc->getUntrackedVal())
463       UpdateState(ChangedValue.first, ChangedValue.second);
464 
465   if (I.isTerminator())
466     visitTerminator(I);
467 }
468 
469 template <class LatticeKey, class LatticeVal, class KeyInfo>
Solve()470 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
471   // Process the work lists until they are empty!
472   while (!BBWorkList.empty() || !ValueWorkList.empty()) {
473     // Process the value work list.
474     while (!ValueWorkList.empty()) {
475       Value *V = ValueWorkList.pop_back_val();
476 
477       LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");
478 
479       // "V" got into the work list because it made a transition. See if any
480       // users are both live and in need of updating.
481       for (User *U : V->users())
482         if (Instruction *Inst = dyn_cast<Instruction>(U))
483           if (BBExecutable.count(Inst->getParent())) // Inst is executable?
484             visitInst(*Inst);
485     }
486 
487     // Process the basic block work list.
488     while (!BBWorkList.empty()) {
489       BasicBlock *BB = BBWorkList.pop_back_val();
490 
491       LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
492 
493       // Notify all instructions in this basic block that they are newly
494       // executable.
495       for (Instruction &I : *BB)
496         visitInst(I);
497     }
498   }
499 }
500 
501 template <class LatticeKey, class LatticeVal, class KeyInfo>
Print(raw_ostream & OS)502 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
503     raw_ostream &OS) const {
504   if (ValueState.empty())
505     return;
506 
507   LatticeKey Key;
508   LatticeVal LV;
509 
510   OS << "ValueState:\n";
511   for (auto &Entry : ValueState) {
512     std::tie(Key, LV) = Entry;
513     if (LV == LatticeFunc->getUntrackedVal())
514       continue;
515     OS << "\t";
516     LatticeFunc->PrintLatticeVal(LV, OS);
517     OS << ": ";
518     LatticeFunc->PrintLatticeKey(Key, OS);
519     OS << "\n";
520   }
521 }
522 } // end namespace llvm
523 
524 #undef DEBUG_TYPE
525 
526 #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H
527