xref: /linux/drivers/perf/arm_spe_pmu.c (revision 6fb44438a5e1897a72dd11139274735256be8069)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Perf support for the Statistical Profiling Extension, introduced as
4  * part of ARMv8.2.
5  *
6  * Copyright (C) 2016 ARM Limited
7  *
8  * Author: Will Deacon <will.deacon@arm.com>
9  */
10 
11 #define PMUNAME					"arm_spe"
12 #define DRVNAME					PMUNAME "_pmu"
13 #define pr_fmt(fmt)				DRVNAME ": " fmt
14 
15 #include <linux/bitfield.h>
16 #include <linux/bitops.h>
17 #include <linux/bug.h>
18 #include <linux/capability.h>
19 #include <linux/cpuhotplug.h>
20 #include <linux/cpumask.h>
21 #include <linux/device.h>
22 #include <linux/errno.h>
23 #include <linux/interrupt.h>
24 #include <linux/irq.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36 
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41 
42 /*
43  * Cache if the event is allowed to trace Context information.
44  * This allows us to perform the check, i.e, perf_allow_kernel(),
45  * in the context of the event owner, once, during the event_init().
46  */
47 #define SPE_PMU_HW_FLAGS_CX			0x00001
48 
49 static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX);
50 
set_spe_event_has_cx(struct perf_event * event)51 static void set_spe_event_has_cx(struct perf_event *event)
52 {
53 	if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && !perf_allow_kernel())
54 		event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
55 }
56 
get_spe_event_has_cx(struct perf_event * event)57 static bool get_spe_event_has_cx(struct perf_event *event)
58 {
59 	return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
60 }
61 
62 #define ARM_SPE_BUF_PAD_BYTE			0
63 
64 struct arm_spe_pmu_buf {
65 	int					nr_pages;
66 	bool					snapshot;
67 	void					*base;
68 };
69 
70 struct arm_spe_pmu {
71 	struct pmu				pmu;
72 	struct platform_device			*pdev;
73 	cpumask_t				supported_cpus;
74 	struct hlist_node			hotplug_node;
75 
76 	int					irq; /* PPI */
77 	u16					pmsver;
78 	u16					min_period;
79 	u16					counter_sz;
80 
81 #define SPE_PMU_FEAT_FILT_EVT			(1UL << 0)
82 #define SPE_PMU_FEAT_FILT_TYP			(1UL << 1)
83 #define SPE_PMU_FEAT_FILT_LAT			(1UL << 2)
84 #define SPE_PMU_FEAT_ARCH_INST			(1UL << 3)
85 #define SPE_PMU_FEAT_LDS			(1UL << 4)
86 #define SPE_PMU_FEAT_ERND			(1UL << 5)
87 #define SPE_PMU_FEAT_INV_FILT_EVT		(1UL << 6)
88 #define SPE_PMU_FEAT_DISCARD			(1UL << 7)
89 #define SPE_PMU_FEAT_DEV_PROBED			(1UL << 63)
90 	u64					features;
91 
92 	u16					max_record_sz;
93 	u16					align;
94 	struct perf_output_handle __percpu	*handle;
95 };
96 
97 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
98 
99 /* Convert a free-running index from perf into an SPE buffer offset */
100 #define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))
101 
102 /* Keep track of our dynamic hotplug state */
103 static enum cpuhp_state arm_spe_pmu_online;
104 
105 enum arm_spe_pmu_buf_fault_action {
106 	SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
107 	SPE_PMU_BUF_FAULT_ACT_FATAL,
108 	SPE_PMU_BUF_FAULT_ACT_OK,
109 };
110 
111 /* This sysfs gunk was really good fun to write. */
112 enum arm_spe_pmu_capabilities {
113 	SPE_PMU_CAP_ARCH_INST = 0,
114 	SPE_PMU_CAP_ERND,
115 	SPE_PMU_CAP_FEAT_MAX,
116 	SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
117 	SPE_PMU_CAP_MIN_IVAL,
118 };
119 
120 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
121 	[SPE_PMU_CAP_ARCH_INST]	= SPE_PMU_FEAT_ARCH_INST,
122 	[SPE_PMU_CAP_ERND]	= SPE_PMU_FEAT_ERND,
123 };
124 
arm_spe_pmu_cap_get(struct arm_spe_pmu * spe_pmu,int cap)125 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
126 {
127 	if (cap < SPE_PMU_CAP_FEAT_MAX)
128 		return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
129 
130 	switch (cap) {
131 	case SPE_PMU_CAP_CNT_SZ:
132 		return spe_pmu->counter_sz;
133 	case SPE_PMU_CAP_MIN_IVAL:
134 		return spe_pmu->min_period;
135 	default:
136 		WARN(1, "unknown cap %d\n", cap);
137 	}
138 
139 	return 0;
140 }
141 
arm_spe_pmu_cap_show(struct device * dev,struct device_attribute * attr,char * buf)142 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
143 				    struct device_attribute *attr,
144 				    char *buf)
145 {
146 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
147 	struct dev_ext_attribute *ea =
148 		container_of(attr, struct dev_ext_attribute, attr);
149 	int cap = (long)ea->var;
150 
151 	return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
152 }
153 
154 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)				\
155 	&((struct dev_ext_attribute[]) {				\
156 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }	\
157 	})[0].attr.attr
158 
159 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)				\
160 	SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
161 
162 static struct attribute *arm_spe_pmu_cap_attr[] = {
163 	SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
164 	SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
165 	SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
166 	SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
167 	NULL,
168 };
169 
170 static const struct attribute_group arm_spe_pmu_cap_group = {
171 	.name	= "caps",
172 	.attrs	= arm_spe_pmu_cap_attr,
173 };
174 
175 /* User ABI */
176 #define ATTR_CFG_FLD_ts_enable_CFG		config	/* PMSCR_EL1.TS */
177 #define ATTR_CFG_FLD_ts_enable_LO		0
178 #define ATTR_CFG_FLD_ts_enable_HI		0
179 #define ATTR_CFG_FLD_pa_enable_CFG		config	/* PMSCR_EL1.PA */
180 #define ATTR_CFG_FLD_pa_enable_LO		1
181 #define ATTR_CFG_FLD_pa_enable_HI		1
182 #define ATTR_CFG_FLD_pct_enable_CFG		config	/* PMSCR_EL1.PCT */
183 #define ATTR_CFG_FLD_pct_enable_LO		2
184 #define ATTR_CFG_FLD_pct_enable_HI		2
185 #define ATTR_CFG_FLD_jitter_CFG			config	/* PMSIRR_EL1.RND */
186 #define ATTR_CFG_FLD_jitter_LO			16
187 #define ATTR_CFG_FLD_jitter_HI			16
188 #define ATTR_CFG_FLD_branch_filter_CFG		config	/* PMSFCR_EL1.B */
189 #define ATTR_CFG_FLD_branch_filter_LO		32
190 #define ATTR_CFG_FLD_branch_filter_HI		32
191 #define ATTR_CFG_FLD_load_filter_CFG		config	/* PMSFCR_EL1.LD */
192 #define ATTR_CFG_FLD_load_filter_LO		33
193 #define ATTR_CFG_FLD_load_filter_HI		33
194 #define ATTR_CFG_FLD_store_filter_CFG		config	/* PMSFCR_EL1.ST */
195 #define ATTR_CFG_FLD_store_filter_LO		34
196 #define ATTR_CFG_FLD_store_filter_HI		34
197 #define ATTR_CFG_FLD_discard_CFG		config	/* PMBLIMITR_EL1.FM = DISCARD */
198 #define ATTR_CFG_FLD_discard_LO			35
199 #define ATTR_CFG_FLD_discard_HI			35
200 
201 #define ATTR_CFG_FLD_event_filter_CFG		config1	/* PMSEVFR_EL1 */
202 #define ATTR_CFG_FLD_event_filter_LO		0
203 #define ATTR_CFG_FLD_event_filter_HI		63
204 
205 #define ATTR_CFG_FLD_min_latency_CFG		config2	/* PMSLATFR_EL1.MINLAT */
206 #define ATTR_CFG_FLD_min_latency_LO		0
207 #define ATTR_CFG_FLD_min_latency_HI		11
208 
209 #define ATTR_CFG_FLD_inv_event_filter_CFG	config3	/* PMSNEVFR_EL1 */
210 #define ATTR_CFG_FLD_inv_event_filter_LO	0
211 #define ATTR_CFG_FLD_inv_event_filter_HI	63
212 
213 GEN_PMU_FORMAT_ATTR(ts_enable);
214 GEN_PMU_FORMAT_ATTR(pa_enable);
215 GEN_PMU_FORMAT_ATTR(pct_enable);
216 GEN_PMU_FORMAT_ATTR(jitter);
217 GEN_PMU_FORMAT_ATTR(branch_filter);
218 GEN_PMU_FORMAT_ATTR(load_filter);
219 GEN_PMU_FORMAT_ATTR(store_filter);
220 GEN_PMU_FORMAT_ATTR(event_filter);
221 GEN_PMU_FORMAT_ATTR(inv_event_filter);
222 GEN_PMU_FORMAT_ATTR(min_latency);
223 GEN_PMU_FORMAT_ATTR(discard);
224 
225 static struct attribute *arm_spe_pmu_formats_attr[] = {
226 	&format_attr_ts_enable.attr,
227 	&format_attr_pa_enable.attr,
228 	&format_attr_pct_enable.attr,
229 	&format_attr_jitter.attr,
230 	&format_attr_branch_filter.attr,
231 	&format_attr_load_filter.attr,
232 	&format_attr_store_filter.attr,
233 	&format_attr_event_filter.attr,
234 	&format_attr_inv_event_filter.attr,
235 	&format_attr_min_latency.attr,
236 	&format_attr_discard.attr,
237 	NULL,
238 };
239 
arm_spe_pmu_format_attr_is_visible(struct kobject * kobj,struct attribute * attr,int unused)240 static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj,
241 						  struct attribute *attr,
242 						  int unused)
243 	{
244 	struct device *dev = kobj_to_dev(kobj);
245 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
246 
247 	if (attr == &format_attr_discard.attr && !(spe_pmu->features & SPE_PMU_FEAT_DISCARD))
248 		return 0;
249 
250 	if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
251 		return 0;
252 
253 	return attr->mode;
254 }
255 
256 static const struct attribute_group arm_spe_pmu_format_group = {
257 	.name	= "format",
258 	.is_visible = arm_spe_pmu_format_attr_is_visible,
259 	.attrs	= arm_spe_pmu_formats_attr,
260 };
261 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)262 static ssize_t cpumask_show(struct device *dev,
263 			    struct device_attribute *attr, char *buf)
264 {
265 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
266 
267 	return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
268 }
269 static DEVICE_ATTR_RO(cpumask);
270 
271 static struct attribute *arm_spe_pmu_attrs[] = {
272 	&dev_attr_cpumask.attr,
273 	NULL,
274 };
275 
276 static const struct attribute_group arm_spe_pmu_group = {
277 	.attrs	= arm_spe_pmu_attrs,
278 };
279 
280 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
281 	&arm_spe_pmu_group,
282 	&arm_spe_pmu_cap_group,
283 	&arm_spe_pmu_format_group,
284 	NULL,
285 };
286 
287 /* Convert between user ABI and register values */
arm_spe_event_to_pmscr(struct perf_event * event)288 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
289 {
290 	struct perf_event_attr *attr = &event->attr;
291 	u64 reg = 0;
292 
293 	reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable));
294 	reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable));
295 	reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable));
296 
297 	if (!attr->exclude_user)
298 		reg |= PMSCR_EL1_E0SPE;
299 
300 	if (!attr->exclude_kernel)
301 		reg |= PMSCR_EL1_E1SPE;
302 
303 	if (get_spe_event_has_cx(event))
304 		reg |= PMSCR_EL1_CX;
305 
306 	return reg;
307 }
308 
arm_spe_event_sanitise_period(struct perf_event * event)309 static void arm_spe_event_sanitise_period(struct perf_event *event)
310 {
311 	u64 period = event->hw.sample_period;
312 	u64 max_period = PMSIRR_EL1_INTERVAL_MASK;
313 
314 	/*
315 	 * The PMSIDR_EL1.Interval field (stored in spe_pmu->min_period) is a
316 	 * recommendation for the minimum interval, not a hardware limitation.
317 	 *
318 	 * According to the Arm ARM (DDI 0487 L.a), section D24.7.12 PMSIRR_EL1,
319 	 * Sampling Interval Reload Register, the INTERVAL field (bits [31:8])
320 	 * states: "Software must set this to a nonzero value". Use 1 as the
321 	 * minimum value.
322 	 */
323 	u64 min_period = FIELD_PREP(PMSIRR_EL1_INTERVAL_MASK, 1);
324 
325 	period = clamp_t(u64, period, min_period, max_period) & max_period;
326 	event->hw.sample_period = period;
327 }
328 
arm_spe_event_to_pmsirr(struct perf_event * event)329 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
330 {
331 	struct perf_event_attr *attr = &event->attr;
332 	u64 reg = 0;
333 
334 	arm_spe_event_sanitise_period(event);
335 
336 	reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter));
337 	reg |= event->hw.sample_period;
338 
339 	return reg;
340 }
341 
arm_spe_event_to_pmsfcr(struct perf_event * event)342 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
343 {
344 	struct perf_event_attr *attr = &event->attr;
345 	u64 reg = 0;
346 
347 	reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter));
348 	reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter));
349 	reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter));
350 
351 	if (reg)
352 		reg |= PMSFCR_EL1_FT;
353 
354 	if (ATTR_CFG_GET_FLD(attr, event_filter))
355 		reg |= PMSFCR_EL1_FE;
356 
357 	if (ATTR_CFG_GET_FLD(attr, inv_event_filter))
358 		reg |= PMSFCR_EL1_FnE;
359 
360 	if (ATTR_CFG_GET_FLD(attr, min_latency))
361 		reg |= PMSFCR_EL1_FL;
362 
363 	return reg;
364 }
365 
arm_spe_event_to_pmsevfr(struct perf_event * event)366 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
367 {
368 	struct perf_event_attr *attr = &event->attr;
369 	return ATTR_CFG_GET_FLD(attr, event_filter);
370 }
371 
arm_spe_event_to_pmsnevfr(struct perf_event * event)372 static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event)
373 {
374 	struct perf_event_attr *attr = &event->attr;
375 	return ATTR_CFG_GET_FLD(attr, inv_event_filter);
376 }
377 
arm_spe_event_to_pmslatfr(struct perf_event * event)378 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
379 {
380 	struct perf_event_attr *attr = &event->attr;
381 	return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency));
382 }
383 
arm_spe_pmu_pad_buf(struct perf_output_handle * handle,int len)384 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
385 {
386 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
387 	u64 head = PERF_IDX2OFF(handle->head, buf);
388 
389 	memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
390 	if (!buf->snapshot)
391 		perf_aux_output_skip(handle, len);
392 }
393 
arm_spe_pmu_next_snapshot_off(struct perf_output_handle * handle)394 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
395 {
396 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
397 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
398 	u64 head = PERF_IDX2OFF(handle->head, buf);
399 	u64 limit = buf->nr_pages * PAGE_SIZE;
400 
401 	/*
402 	 * The trace format isn't parseable in reverse, so clamp
403 	 * the limit to half of the buffer size in snapshot mode
404 	 * so that the worst case is half a buffer of records, as
405 	 * opposed to a single record.
406 	 */
407 	if (head < limit >> 1)
408 		limit >>= 1;
409 
410 	/*
411 	 * If we're within max_record_sz of the limit, we must
412 	 * pad, move the head index and recompute the limit.
413 	 */
414 	if (limit - head < spe_pmu->max_record_sz) {
415 		arm_spe_pmu_pad_buf(handle, limit - head);
416 		handle->head = PERF_IDX2OFF(limit, buf);
417 		limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
418 	}
419 
420 	return limit;
421 }
422 
__arm_spe_pmu_next_off(struct perf_output_handle * handle)423 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
424 {
425 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
426 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
427 	const u64 bufsize = buf->nr_pages * PAGE_SIZE;
428 	u64 limit = bufsize;
429 	u64 head, tail, wakeup;
430 
431 	/*
432 	 * The head can be misaligned for two reasons:
433 	 *
434 	 * 1. The hardware left PMBPTR pointing to the first byte after
435 	 *    a record when generating a buffer management event.
436 	 *
437 	 * 2. We used perf_aux_output_skip to consume handle->size bytes
438 	 *    and CIRC_SPACE was used to compute the size, which always
439 	 *    leaves one entry free.
440 	 *
441 	 * Deal with this by padding to the next alignment boundary and
442 	 * moving the head index. If we run out of buffer space, we'll
443 	 * reduce handle->size to zero and end up reporting truncation.
444 	 */
445 	head = PERF_IDX2OFF(handle->head, buf);
446 	if (!IS_ALIGNED(head, spe_pmu->align)) {
447 		unsigned long delta = roundup(head, spe_pmu->align) - head;
448 
449 		delta = min(delta, handle->size);
450 		arm_spe_pmu_pad_buf(handle, delta);
451 		head = PERF_IDX2OFF(handle->head, buf);
452 	}
453 
454 	/* If we've run out of free space, then nothing more to do */
455 	if (!handle->size)
456 		goto no_space;
457 
458 	/* Compute the tail and wakeup indices now that we've aligned head */
459 	tail = PERF_IDX2OFF(handle->head + handle->size, buf);
460 	wakeup = PERF_IDX2OFF(handle->wakeup, buf);
461 
462 	/*
463 	 * Avoid clobbering unconsumed data. We know we have space, so
464 	 * if we see head == tail we know that the buffer is empty. If
465 	 * head > tail, then there's nothing to clobber prior to
466 	 * wrapping.
467 	 */
468 	if (head < tail)
469 		limit = round_down(tail, PAGE_SIZE);
470 
471 	/*
472 	 * Wakeup may be arbitrarily far into the future. If it's not in
473 	 * the current generation, either we'll wrap before hitting it,
474 	 * or it's in the past and has been handled already.
475 	 *
476 	 * If there's a wakeup before we wrap, arrange to be woken up by
477 	 * the page boundary following it. Keep the tail boundary if
478 	 * that's lower.
479 	 */
480 	if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
481 		limit = min(limit, round_up(wakeup, PAGE_SIZE));
482 
483 	if (limit > head)
484 		return limit;
485 
486 	arm_spe_pmu_pad_buf(handle, handle->size);
487 no_space:
488 	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
489 	perf_aux_output_end(handle, 0);
490 	return 0;
491 }
492 
arm_spe_pmu_next_off(struct perf_output_handle * handle)493 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
494 {
495 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
496 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
497 	u64 limit = __arm_spe_pmu_next_off(handle);
498 	u64 head = PERF_IDX2OFF(handle->head, buf);
499 
500 	/*
501 	 * If the head has come too close to the end of the buffer,
502 	 * then pad to the end and recompute the limit.
503 	 */
504 	if (limit && (limit - head < spe_pmu->max_record_sz)) {
505 		arm_spe_pmu_pad_buf(handle, limit - head);
506 		limit = __arm_spe_pmu_next_off(handle);
507 	}
508 
509 	return limit;
510 }
511 
arm_spe_perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)512 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
513 					  struct perf_event *event)
514 {
515 	u64 base, limit;
516 	struct arm_spe_pmu_buf *buf;
517 
518 	if (ATTR_CFG_GET_FLD(&event->attr, discard)) {
519 		limit = FIELD_PREP(PMBLIMITR_EL1_FM, PMBLIMITR_EL1_FM_DISCARD);
520 		limit |= PMBLIMITR_EL1_E;
521 		goto out_write_limit;
522 	}
523 
524 	/* Start a new aux session */
525 	buf = perf_aux_output_begin(handle, event);
526 	if (!buf) {
527 		event->hw.state |= PERF_HES_STOPPED;
528 		/*
529 		 * We still need to clear the limit pointer, since the
530 		 * profiler might only be disabled by virtue of a fault.
531 		 */
532 		limit = 0;
533 		goto out_write_limit;
534 	}
535 
536 	limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
537 			      : arm_spe_pmu_next_off(handle);
538 	if (limit)
539 		limit |= PMBLIMITR_EL1_E;
540 
541 	limit += (u64)buf->base;
542 	base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
543 	write_sysreg_s(base, SYS_PMBPTR_EL1);
544 
545 out_write_limit:
546 	write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
547 }
548 
arm_spe_perf_aux_output_end(struct perf_output_handle * handle)549 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
550 {
551 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
552 	u64 offset, size;
553 
554 	offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
555 	size = offset - PERF_IDX2OFF(handle->head, buf);
556 
557 	if (buf->snapshot)
558 		handle->head = offset;
559 
560 	perf_aux_output_end(handle, size);
561 }
562 
arm_spe_pmu_disable_and_drain_local(void)563 static void arm_spe_pmu_disable_and_drain_local(void)
564 {
565 	/* Disable profiling at EL0 and EL1 */
566 	write_sysreg_s(0, SYS_PMSCR_EL1);
567 	isb();
568 
569 	/* Drain any buffered data */
570 	psb_csync();
571 	dsb(nsh);
572 
573 	/* Disable the profiling buffer */
574 	write_sysreg_s(0, SYS_PMBLIMITR_EL1);
575 	isb();
576 }
577 
578 /* IRQ handling */
579 static enum arm_spe_pmu_buf_fault_action
arm_spe_pmu_buf_get_fault_act(struct perf_output_handle * handle)580 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
581 {
582 	const char *err_str;
583 	u64 pmbsr;
584 	enum arm_spe_pmu_buf_fault_action ret;
585 
586 	/*
587 	 * Ensure new profiling data is visible to the CPU and any external
588 	 * aborts have been resolved.
589 	 */
590 	psb_csync();
591 	dsb(nsh);
592 
593 	/* Ensure hardware updates to PMBPTR_EL1 are visible */
594 	isb();
595 
596 	/* Service required? */
597 	pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
598 	if (!FIELD_GET(PMBSR_EL1_S, pmbsr))
599 		return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
600 
601 	/*
602 	 * If we've lost data, disable profiling and also set the PARTIAL
603 	 * flag to indicate that the last record is corrupted.
604 	 */
605 	if (FIELD_GET(PMBSR_EL1_DL, pmbsr))
606 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
607 					     PERF_AUX_FLAG_PARTIAL);
608 
609 	/* Report collisions to userspace so that it can up the period */
610 	if (FIELD_GET(PMBSR_EL1_COLL, pmbsr))
611 		perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
612 
613 	/* We only expect buffer management events */
614 	switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) {
615 	case PMBSR_EL1_EC_BUF:
616 		/* Handled below */
617 		break;
618 	case PMBSR_EL1_EC_FAULT_S1:
619 	case PMBSR_EL1_EC_FAULT_S2:
620 		err_str = "Unexpected buffer fault";
621 		goto out_err;
622 	default:
623 		err_str = "Unknown error code";
624 		goto out_err;
625 	}
626 
627 	/* Buffer management event */
628 	switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) {
629 	case PMBSR_EL1_BUF_BSC_FULL:
630 		ret = SPE_PMU_BUF_FAULT_ACT_OK;
631 		goto out_stop;
632 	default:
633 		err_str = "Unknown buffer status code";
634 	}
635 
636 out_err:
637 	pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
638 			   err_str, smp_processor_id(), pmbsr,
639 			   read_sysreg_s(SYS_PMBPTR_EL1),
640 			   read_sysreg_s(SYS_PMBLIMITR_EL1));
641 	ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
642 
643 out_stop:
644 	arm_spe_perf_aux_output_end(handle);
645 	return ret;
646 }
647 
arm_spe_pmu_irq_handler(int irq,void * dev)648 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
649 {
650 	struct perf_output_handle *handle = dev;
651 	struct perf_event *event = handle->event;
652 	enum arm_spe_pmu_buf_fault_action act;
653 
654 	if (!perf_get_aux(handle))
655 		return IRQ_NONE;
656 
657 	act = arm_spe_pmu_buf_get_fault_act(handle);
658 	if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
659 		return IRQ_NONE;
660 
661 	/*
662 	 * Ensure perf callbacks have completed, which may disable the
663 	 * profiling buffer in response to a TRUNCATION flag.
664 	 */
665 	irq_work_run();
666 
667 	switch (act) {
668 	case SPE_PMU_BUF_FAULT_ACT_FATAL:
669 		/*
670 		 * If a fatal exception occurred then leaving the profiling
671 		 * buffer enabled is a recipe waiting to happen. Since
672 		 * fatal faults don't always imply truncation, make sure
673 		 * that the profiling buffer is disabled explicitly before
674 		 * clearing the syndrome register.
675 		 */
676 		arm_spe_pmu_disable_and_drain_local();
677 		break;
678 	case SPE_PMU_BUF_FAULT_ACT_OK:
679 		/*
680 		 * We handled the fault (the buffer was full), so resume
681 		 * profiling as long as we didn't detect truncation.
682 		 * PMBPTR might be misaligned, but we'll burn that bridge
683 		 * when we get to it.
684 		 */
685 		if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
686 			arm_spe_perf_aux_output_begin(handle, event);
687 			isb();
688 		}
689 		break;
690 	case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
691 		/* We've seen you before, but GCC has the memory of a sieve. */
692 		break;
693 	}
694 
695 	/* The buffer pointers are now sane, so resume profiling. */
696 	write_sysreg_s(0, SYS_PMBSR_EL1);
697 	return IRQ_HANDLED;
698 }
699 
arm_spe_pmsevfr_res0(u16 pmsver)700 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
701 {
702 	switch (pmsver) {
703 	case ID_AA64DFR0_EL1_PMSVer_IMP:
704 		return PMSEVFR_EL1_RES0_IMP;
705 	case ID_AA64DFR0_EL1_PMSVer_V1P1:
706 		return PMSEVFR_EL1_RES0_V1P1;
707 	case ID_AA64DFR0_EL1_PMSVer_V1P2:
708 	/* Return the highest version we support in default */
709 	default:
710 		return PMSEVFR_EL1_RES0_V1P2;
711 	}
712 }
713 
714 /* Perf callbacks */
arm_spe_pmu_event_init(struct perf_event * event)715 static int arm_spe_pmu_event_init(struct perf_event *event)
716 {
717 	u64 reg;
718 	struct perf_event_attr *attr = &event->attr;
719 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
720 
721 	/* This is, of course, deeply driver-specific */
722 	if (attr->type != event->pmu->type)
723 		return -ENOENT;
724 
725 	if (event->cpu >= 0 &&
726 	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
727 		return -ENOENT;
728 
729 	if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
730 		return -EOPNOTSUPP;
731 
732 	if (arm_spe_event_to_pmsnevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
733 		return -EOPNOTSUPP;
734 
735 	if (attr->exclude_idle)
736 		return -EOPNOTSUPP;
737 
738 	/*
739 	 * Feedback-directed frequency throttling doesn't work when we
740 	 * have a buffer of samples. We'd need to manually count the
741 	 * samples in the buffer when it fills up and adjust the event
742 	 * count to reflect that. Instead, just force the user to specify
743 	 * a sample period.
744 	 */
745 	if (attr->freq)
746 		return -EINVAL;
747 
748 	reg = arm_spe_event_to_pmsfcr(event);
749 	if ((FIELD_GET(PMSFCR_EL1_FE, reg)) &&
750 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
751 		return -EOPNOTSUPP;
752 
753 	if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) &&
754 	    !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
755 		return -EOPNOTSUPP;
756 
757 	if ((FIELD_GET(PMSFCR_EL1_FT, reg)) &&
758 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
759 		return -EOPNOTSUPP;
760 
761 	if ((FIELD_GET(PMSFCR_EL1_FL, reg)) &&
762 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
763 		return -EOPNOTSUPP;
764 
765 	if (ATTR_CFG_GET_FLD(&event->attr, discard) &&
766 	    !(spe_pmu->features & SPE_PMU_FEAT_DISCARD))
767 		return -EOPNOTSUPP;
768 
769 	set_spe_event_has_cx(event);
770 	reg = arm_spe_event_to_pmscr(event);
771 	if (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT))
772 		return perf_allow_kernel();
773 
774 	return 0;
775 }
776 
arm_spe_pmu_start(struct perf_event * event,int flags)777 static void arm_spe_pmu_start(struct perf_event *event, int flags)
778 {
779 	u64 reg;
780 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
781 	struct hw_perf_event *hwc = &event->hw;
782 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
783 
784 	hwc->state = 0;
785 	arm_spe_perf_aux_output_begin(handle, event);
786 	if (hwc->state)
787 		return;
788 
789 	reg = arm_spe_event_to_pmsfcr(event);
790 	write_sysreg_s(reg, SYS_PMSFCR_EL1);
791 
792 	reg = arm_spe_event_to_pmsevfr(event);
793 	write_sysreg_s(reg, SYS_PMSEVFR_EL1);
794 
795 	if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) {
796 		reg = arm_spe_event_to_pmsnevfr(event);
797 		write_sysreg_s(reg, SYS_PMSNEVFR_EL1);
798 	}
799 
800 	reg = arm_spe_event_to_pmslatfr(event);
801 	write_sysreg_s(reg, SYS_PMSLATFR_EL1);
802 
803 	if (flags & PERF_EF_RELOAD) {
804 		reg = arm_spe_event_to_pmsirr(event);
805 		write_sysreg_s(reg, SYS_PMSIRR_EL1);
806 		isb();
807 		reg = local64_read(&hwc->period_left);
808 		write_sysreg_s(reg, SYS_PMSICR_EL1);
809 	}
810 
811 	reg = arm_spe_event_to_pmscr(event);
812 	isb();
813 	write_sysreg_s(reg, SYS_PMSCR_EL1);
814 }
815 
arm_spe_pmu_stop(struct perf_event * event,int flags)816 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
817 {
818 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
819 	struct hw_perf_event *hwc = &event->hw;
820 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
821 
822 	/* If we're already stopped, then nothing to do */
823 	if (hwc->state & PERF_HES_STOPPED)
824 		return;
825 
826 	/* Stop all trace generation */
827 	arm_spe_pmu_disable_and_drain_local();
828 
829 	if (flags & PERF_EF_UPDATE) {
830 		/*
831 		 * If there's a fault pending then ensure we contain it
832 		 * to this buffer, since we might be on the context-switch
833 		 * path.
834 		 */
835 		if (perf_get_aux(handle)) {
836 			enum arm_spe_pmu_buf_fault_action act;
837 
838 			act = arm_spe_pmu_buf_get_fault_act(handle);
839 			if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
840 				arm_spe_perf_aux_output_end(handle);
841 			else
842 				write_sysreg_s(0, SYS_PMBSR_EL1);
843 		}
844 
845 		/*
846 		 * This may also contain ECOUNT, but nobody else should
847 		 * be looking at period_left, since we forbid frequency
848 		 * based sampling.
849 		 */
850 		local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
851 		hwc->state |= PERF_HES_UPTODATE;
852 	}
853 
854 	hwc->state |= PERF_HES_STOPPED;
855 }
856 
arm_spe_pmu_add(struct perf_event * event,int flags)857 static int arm_spe_pmu_add(struct perf_event *event, int flags)
858 {
859 	int ret = 0;
860 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
861 	struct hw_perf_event *hwc = &event->hw;
862 	int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
863 
864 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
865 		return -ENOENT;
866 
867 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
868 
869 	if (flags & PERF_EF_START) {
870 		arm_spe_pmu_start(event, PERF_EF_RELOAD);
871 		if (hwc->state & PERF_HES_STOPPED)
872 			ret = -EINVAL;
873 	}
874 
875 	return ret;
876 }
877 
arm_spe_pmu_del(struct perf_event * event,int flags)878 static void arm_spe_pmu_del(struct perf_event *event, int flags)
879 {
880 	arm_spe_pmu_stop(event, PERF_EF_UPDATE);
881 }
882 
arm_spe_pmu_read(struct perf_event * event)883 static void arm_spe_pmu_read(struct perf_event *event)
884 {
885 }
886 
arm_spe_pmu_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)887 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
888 				   int nr_pages, bool snapshot)
889 {
890 	int i, cpu = event->cpu;
891 	struct page **pglist;
892 	struct arm_spe_pmu_buf *buf;
893 
894 	/* We need at least two pages for this to work. */
895 	if (nr_pages < 2)
896 		return NULL;
897 
898 	/*
899 	 * We require an even number of pages for snapshot mode, so that
900 	 * we can effectively treat the buffer as consisting of two equal
901 	 * parts and give userspace a fighting chance of getting some
902 	 * useful data out of it.
903 	 */
904 	if (snapshot && (nr_pages & 1))
905 		return NULL;
906 
907 	if (cpu == -1)
908 		cpu = raw_smp_processor_id();
909 
910 	buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
911 	if (!buf)
912 		return NULL;
913 
914 	pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
915 	if (!pglist)
916 		goto out_free_buf;
917 
918 	for (i = 0; i < nr_pages; ++i)
919 		pglist[i] = virt_to_page(pages[i]);
920 
921 	buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
922 	if (!buf->base)
923 		goto out_free_pglist;
924 
925 	buf->nr_pages	= nr_pages;
926 	buf->snapshot	= snapshot;
927 
928 	kfree(pglist);
929 	return buf;
930 
931 out_free_pglist:
932 	kfree(pglist);
933 out_free_buf:
934 	kfree(buf);
935 	return NULL;
936 }
937 
arm_spe_pmu_free_aux(void * aux)938 static void arm_spe_pmu_free_aux(void *aux)
939 {
940 	struct arm_spe_pmu_buf *buf = aux;
941 
942 	vunmap(buf->base);
943 	kfree(buf);
944 }
945 
946 /* Initialisation and teardown functions */
arm_spe_pmu_perf_init(struct arm_spe_pmu * spe_pmu)947 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
948 {
949 	static atomic_t pmu_idx = ATOMIC_INIT(-1);
950 
951 	int idx;
952 	char *name;
953 	struct device *dev = &spe_pmu->pdev->dev;
954 
955 	spe_pmu->pmu = (struct pmu) {
956 		.module = THIS_MODULE,
957 		.parent		= &spe_pmu->pdev->dev,
958 		.capabilities	= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
959 		.attr_groups	= arm_spe_pmu_attr_groups,
960 		/*
961 		 * We hitch a ride on the software context here, so that
962 		 * we can support per-task profiling (which is not possible
963 		 * with the invalid context as it doesn't get sched callbacks).
964 		 * This requires that userspace either uses a dummy event for
965 		 * perf_event_open, since the aux buffer is not setup until
966 		 * a subsequent mmap, or creates the profiling event in a
967 		 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
968 		 * once the buffer has been created.
969 		 */
970 		.task_ctx_nr	= perf_sw_context,
971 		.event_init	= arm_spe_pmu_event_init,
972 		.add		= arm_spe_pmu_add,
973 		.del		= arm_spe_pmu_del,
974 		.start		= arm_spe_pmu_start,
975 		.stop		= arm_spe_pmu_stop,
976 		.read		= arm_spe_pmu_read,
977 		.setup_aux	= arm_spe_pmu_setup_aux,
978 		.free_aux	= arm_spe_pmu_free_aux,
979 	};
980 
981 	idx = atomic_inc_return(&pmu_idx);
982 	name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
983 	if (!name) {
984 		dev_err(dev, "failed to allocate name for pmu %d\n", idx);
985 		return -ENOMEM;
986 	}
987 
988 	return perf_pmu_register(&spe_pmu->pmu, name, -1);
989 }
990 
arm_spe_pmu_perf_destroy(struct arm_spe_pmu * spe_pmu)991 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
992 {
993 	perf_pmu_unregister(&spe_pmu->pmu);
994 }
995 
__arm_spe_pmu_dev_probe(void * info)996 static void __arm_spe_pmu_dev_probe(void *info)
997 {
998 	int fld;
999 	u64 reg;
1000 	struct arm_spe_pmu *spe_pmu = info;
1001 	struct device *dev = &spe_pmu->pdev->dev;
1002 
1003 	fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
1004 						   ID_AA64DFR0_EL1_PMSVer_SHIFT);
1005 	if (!fld) {
1006 		dev_err(dev,
1007 			"unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
1008 			fld, smp_processor_id());
1009 		return;
1010 	}
1011 	spe_pmu->pmsver = (u16)fld;
1012 
1013 	/* Read PMBIDR first to determine whether or not we have access */
1014 	reg = read_sysreg_s(SYS_PMBIDR_EL1);
1015 	if (FIELD_GET(PMBIDR_EL1_P, reg)) {
1016 		dev_err(dev,
1017 			"profiling buffer owned by higher exception level\n");
1018 		return;
1019 	}
1020 
1021 	/* Minimum alignment. If it's out-of-range, then fail the probe */
1022 	fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg);
1023 	spe_pmu->align = 1 << fld;
1024 	if (spe_pmu->align > SZ_2K) {
1025 		dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
1026 			fld, smp_processor_id());
1027 		return;
1028 	}
1029 
1030 	/* It's now safe to read PMSIDR and figure out what we've got */
1031 	reg = read_sysreg_s(SYS_PMSIDR_EL1);
1032 	if (FIELD_GET(PMSIDR_EL1_FE, reg))
1033 		spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
1034 
1035 	if (FIELD_GET(PMSIDR_EL1_FnE, reg))
1036 		spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT;
1037 
1038 	if (FIELD_GET(PMSIDR_EL1_FT, reg))
1039 		spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
1040 
1041 	if (FIELD_GET(PMSIDR_EL1_FL, reg))
1042 		spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
1043 
1044 	if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg))
1045 		spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1046 
1047 	if (FIELD_GET(PMSIDR_EL1_LDS, reg))
1048 		spe_pmu->features |= SPE_PMU_FEAT_LDS;
1049 
1050 	if (FIELD_GET(PMSIDR_EL1_ERND, reg))
1051 		spe_pmu->features |= SPE_PMU_FEAT_ERND;
1052 
1053 	if (spe_pmu->pmsver >= ID_AA64DFR0_EL1_PMSVer_V1P2)
1054 		spe_pmu->features |= SPE_PMU_FEAT_DISCARD;
1055 
1056 	/* This field has a spaced out encoding, so just use a look-up */
1057 	fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg);
1058 	switch (fld) {
1059 	case PMSIDR_EL1_INTERVAL_256:
1060 		spe_pmu->min_period = 256;
1061 		break;
1062 	case PMSIDR_EL1_INTERVAL_512:
1063 		spe_pmu->min_period = 512;
1064 		break;
1065 	case PMSIDR_EL1_INTERVAL_768:
1066 		spe_pmu->min_period = 768;
1067 		break;
1068 	case PMSIDR_EL1_INTERVAL_1024:
1069 		spe_pmu->min_period = 1024;
1070 		break;
1071 	case PMSIDR_EL1_INTERVAL_1536:
1072 		spe_pmu->min_period = 1536;
1073 		break;
1074 	case PMSIDR_EL1_INTERVAL_2048:
1075 		spe_pmu->min_period = 2048;
1076 		break;
1077 	case PMSIDR_EL1_INTERVAL_3072:
1078 		spe_pmu->min_period = 3072;
1079 		break;
1080 	default:
1081 		dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1082 			 fld);
1083 		fallthrough;
1084 	case PMSIDR_EL1_INTERVAL_4096:
1085 		spe_pmu->min_period = 4096;
1086 	}
1087 
1088 	/* Maximum record size. If it's out-of-range, then fail the probe */
1089 	fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg);
1090 	spe_pmu->max_record_sz = 1 << fld;
1091 	if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1092 		dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1093 			fld, smp_processor_id());
1094 		return;
1095 	}
1096 
1097 	fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg);
1098 	switch (fld) {
1099 	default:
1100 		dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1101 			 fld);
1102 		fallthrough;
1103 	case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT:
1104 		spe_pmu->counter_sz = 12;
1105 		break;
1106 	case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT:
1107 		spe_pmu->counter_sz = 16;
1108 	}
1109 
1110 	dev_info(dev,
1111 		 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1112 		 spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus),
1113 		 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1114 
1115 	spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1116 }
1117 
__arm_spe_pmu_reset_local(void)1118 static void __arm_spe_pmu_reset_local(void)
1119 {
1120 	/*
1121 	 * This is probably overkill, as we have no idea where we're
1122 	 * draining any buffered data to...
1123 	 */
1124 	arm_spe_pmu_disable_and_drain_local();
1125 
1126 	/* Reset the buffer base pointer */
1127 	write_sysreg_s(0, SYS_PMBPTR_EL1);
1128 	isb();
1129 
1130 	/* Clear any pending management interrupts */
1131 	write_sysreg_s(0, SYS_PMBSR_EL1);
1132 	isb();
1133 }
1134 
__arm_spe_pmu_setup_one(void * info)1135 static void __arm_spe_pmu_setup_one(void *info)
1136 {
1137 	struct arm_spe_pmu *spe_pmu = info;
1138 
1139 	__arm_spe_pmu_reset_local();
1140 	enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1141 }
1142 
__arm_spe_pmu_stop_one(void * info)1143 static void __arm_spe_pmu_stop_one(void *info)
1144 {
1145 	struct arm_spe_pmu *spe_pmu = info;
1146 
1147 	disable_percpu_irq(spe_pmu->irq);
1148 	__arm_spe_pmu_reset_local();
1149 }
1150 
arm_spe_pmu_cpu_startup(unsigned int cpu,struct hlist_node * node)1151 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1152 {
1153 	struct arm_spe_pmu *spe_pmu;
1154 
1155 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1156 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1157 		return 0;
1158 
1159 	__arm_spe_pmu_setup_one(spe_pmu);
1160 	return 0;
1161 }
1162 
arm_spe_pmu_cpu_teardown(unsigned int cpu,struct hlist_node * node)1163 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1164 {
1165 	struct arm_spe_pmu *spe_pmu;
1166 
1167 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1168 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1169 		return 0;
1170 
1171 	__arm_spe_pmu_stop_one(spe_pmu);
1172 	return 0;
1173 }
1174 
arm_spe_pmu_dev_init(struct arm_spe_pmu * spe_pmu)1175 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1176 {
1177 	int ret;
1178 	cpumask_t *mask = &spe_pmu->supported_cpus;
1179 
1180 	/* Make sure we probe the hardware on a relevant CPU */
1181 	ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1182 	if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1183 		return -ENXIO;
1184 
1185 	/* Request our PPIs (note that the IRQ is still disabled) */
1186 	ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1187 				 spe_pmu->handle);
1188 	if (ret)
1189 		return ret;
1190 
1191 	/*
1192 	 * Register our hotplug notifier now so we don't miss any events.
1193 	 * This will enable the IRQ for any supported CPUs that are already
1194 	 * up.
1195 	 */
1196 	ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1197 				       &spe_pmu->hotplug_node);
1198 	if (ret)
1199 		free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1200 
1201 	return ret;
1202 }
1203 
arm_spe_pmu_dev_teardown(struct arm_spe_pmu * spe_pmu)1204 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1205 {
1206 	cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1207 	free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1208 }
1209 
1210 /* Driver and device probing */
arm_spe_pmu_irq_probe(struct arm_spe_pmu * spe_pmu)1211 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1212 {
1213 	struct platform_device *pdev = spe_pmu->pdev;
1214 	int irq = platform_get_irq(pdev, 0);
1215 
1216 	if (irq < 0)
1217 		return -ENXIO;
1218 
1219 	if (!irq_is_percpu(irq)) {
1220 		dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1221 		return -EINVAL;
1222 	}
1223 
1224 	if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1225 		dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1226 		return -EINVAL;
1227 	}
1228 
1229 	spe_pmu->irq = irq;
1230 	return 0;
1231 }
1232 
1233 static const struct of_device_id arm_spe_pmu_of_match[] = {
1234 	{ .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1235 	{ /* Sentinel */ },
1236 };
1237 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1238 
1239 static const struct platform_device_id arm_spe_match[] = {
1240 	{ ARMV8_SPE_PDEV_NAME, 0},
1241 	{ }
1242 };
1243 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1244 
arm_spe_pmu_device_probe(struct platform_device * pdev)1245 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1246 {
1247 	int ret;
1248 	struct arm_spe_pmu *spe_pmu;
1249 	struct device *dev = &pdev->dev;
1250 
1251 	/*
1252 	 * If kernelspace is unmapped when running at EL0, then the SPE
1253 	 * buffer will fault and prematurely terminate the AUX session.
1254 	 */
1255 	if (arm64_kernel_unmapped_at_el0()) {
1256 		dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1257 		return -EPERM;
1258 	}
1259 
1260 	spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1261 	if (!spe_pmu)
1262 		return -ENOMEM;
1263 
1264 	spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1265 	if (!spe_pmu->handle)
1266 		return -ENOMEM;
1267 
1268 	spe_pmu->pdev = pdev;
1269 	platform_set_drvdata(pdev, spe_pmu);
1270 
1271 	ret = arm_spe_pmu_irq_probe(spe_pmu);
1272 	if (ret)
1273 		goto out_free_handle;
1274 
1275 	ret = arm_spe_pmu_dev_init(spe_pmu);
1276 	if (ret)
1277 		goto out_free_handle;
1278 
1279 	ret = arm_spe_pmu_perf_init(spe_pmu);
1280 	if (ret)
1281 		goto out_teardown_dev;
1282 
1283 	return 0;
1284 
1285 out_teardown_dev:
1286 	arm_spe_pmu_dev_teardown(spe_pmu);
1287 out_free_handle:
1288 	free_percpu(spe_pmu->handle);
1289 	return ret;
1290 }
1291 
arm_spe_pmu_device_remove(struct platform_device * pdev)1292 static void arm_spe_pmu_device_remove(struct platform_device *pdev)
1293 {
1294 	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1295 
1296 	arm_spe_pmu_perf_destroy(spe_pmu);
1297 	arm_spe_pmu_dev_teardown(spe_pmu);
1298 	free_percpu(spe_pmu->handle);
1299 }
1300 
1301 static struct platform_driver arm_spe_pmu_driver = {
1302 	.id_table = arm_spe_match,
1303 	.driver	= {
1304 		.name		= DRVNAME,
1305 		.of_match_table	= of_match_ptr(arm_spe_pmu_of_match),
1306 		.suppress_bind_attrs = true,
1307 	},
1308 	.probe	= arm_spe_pmu_device_probe,
1309 	.remove = arm_spe_pmu_device_remove,
1310 };
1311 
arm_spe_pmu_init(void)1312 static int __init arm_spe_pmu_init(void)
1313 {
1314 	int ret;
1315 
1316 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1317 				      arm_spe_pmu_cpu_startup,
1318 				      arm_spe_pmu_cpu_teardown);
1319 	if (ret < 0)
1320 		return ret;
1321 	arm_spe_pmu_online = ret;
1322 
1323 	ret = platform_driver_register(&arm_spe_pmu_driver);
1324 	if (ret)
1325 		cpuhp_remove_multi_state(arm_spe_pmu_online);
1326 
1327 	return ret;
1328 }
1329 
arm_spe_pmu_exit(void)1330 static void __exit arm_spe_pmu_exit(void)
1331 {
1332 	platform_driver_unregister(&arm_spe_pmu_driver);
1333 	cpuhp_remove_multi_state(arm_spe_pmu_online);
1334 }
1335 
1336 module_init(arm_spe_pmu_init);
1337 module_exit(arm_spe_pmu_exit);
1338 
1339 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1340 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1341 MODULE_LICENSE("GPL v2");
1342