xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/TargetSubtargetInfo.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- llvm/CodeGen/TargetSubtargetInfo.h - Target Information --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes the subtarget options of a Target machine.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_TARGETSUBTARGETINFO_H
14 #define LLVM_CODEGEN_TARGETSUBTARGETINFO_H
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/CodeGen/MacroFusion.h"
20 #include "llvm/CodeGen/PBQPRAConstraint.h"
21 #include "llvm/CodeGen/SchedulerRegistry.h"
22 #include "llvm/IR/GlobalValue.h"
23 #include "llvm/MC/MCSubtargetInfo.h"
24 #include "llvm/Support/CodeGen.h"
25 #include <memory>
26 #include <vector>
27 
28 namespace llvm {
29 
30 class APInt;
31 class MachineFunction;
32 class ScheduleDAGMutation;
33 class CallLowering;
34 class GlobalValue;
35 class InlineAsmLowering;
36 class InstrItineraryData;
37 struct InstrStage;
38 class InstructionSelector;
39 class LegalizerInfo;
40 class MachineInstr;
41 struct MachineSchedPolicy;
42 struct MCReadAdvanceEntry;
43 struct MCWriteLatencyEntry;
44 struct MCWriteProcResEntry;
45 class RegisterBankInfo;
46 class SDep;
47 class SelectionDAGTargetInfo;
48 class SUnit;
49 class TargetFrameLowering;
50 class TargetInstrInfo;
51 class TargetLowering;
52 class TargetRegisterClass;
53 class TargetRegisterInfo;
54 class TargetSchedModel;
55 class Triple;
56 
57 //===----------------------------------------------------------------------===//
58 ///
59 /// TargetSubtargetInfo - Generic base class for all target subtargets.  All
60 /// Target-specific options that control code generation and printing should
61 /// be exposed through a TargetSubtargetInfo-derived class.
62 ///
63 class TargetSubtargetInfo : public MCSubtargetInfo {
64 protected: // Can only create subclasses...
65   TargetSubtargetInfo(const Triple &TT, StringRef CPU, StringRef TuneCPU,
66                       StringRef FS, ArrayRef<SubtargetFeatureKV> PF,
67                       ArrayRef<SubtargetSubTypeKV> PD,
68                       const MCWriteProcResEntry *WPR,
69                       const MCWriteLatencyEntry *WL,
70                       const MCReadAdvanceEntry *RA, const InstrStage *IS,
71                       const unsigned *OC, const unsigned *FP);
72 
73 public:
74   // AntiDepBreakMode - Type of anti-dependence breaking that should
75   // be performed before post-RA scheduling.
76   using AntiDepBreakMode = enum { ANTIDEP_NONE, ANTIDEP_CRITICAL, ANTIDEP_ALL };
77   using RegClassVector = SmallVectorImpl<const TargetRegisterClass *>;
78 
79   TargetSubtargetInfo() = delete;
80   TargetSubtargetInfo(const TargetSubtargetInfo &) = delete;
81   TargetSubtargetInfo &operator=(const TargetSubtargetInfo &) = delete;
82   ~TargetSubtargetInfo() override;
83 
isXRaySupported()84   virtual bool isXRaySupported() const { return false; }
85 
86   // Interfaces to the major aspects of target machine information:
87   //
88   // -- Instruction opcode and operand information
89   // -- Pipelines and scheduling information
90   // -- Stack frame information
91   // -- Selection DAG lowering information
92   // -- Call lowering information
93   //
94   // N.B. These objects may change during compilation. It's not safe to cache
95   // them between functions.
getInstrInfo()96   virtual const TargetInstrInfo *getInstrInfo() const { return nullptr; }
getFrameLowering()97   virtual const TargetFrameLowering *getFrameLowering() const {
98     return nullptr;
99   }
getTargetLowering()100   virtual const TargetLowering *getTargetLowering() const { return nullptr; }
getSelectionDAGInfo()101   virtual const SelectionDAGTargetInfo *getSelectionDAGInfo() const {
102     return nullptr;
103   }
getCallLowering()104   virtual const CallLowering *getCallLowering() const { return nullptr; }
105 
getInlineAsmLowering()106   virtual const InlineAsmLowering *getInlineAsmLowering() const {
107     return nullptr;
108   }
109 
110   // FIXME: This lets targets specialize the selector by subtarget (which lets
111   // us do things like a dedicated avx512 selector).  However, we might want
112   // to also specialize selectors by MachineFunction, which would let us be
113   // aware of optsize/optnone and such.
getInstructionSelector()114   virtual InstructionSelector *getInstructionSelector() const {
115     return nullptr;
116   }
117 
118   /// Target can subclass this hook to select a different DAG scheduler.
119   virtual RegisterScheduler::FunctionPassCtor
getDAGScheduler(CodeGenOptLevel)120   getDAGScheduler(CodeGenOptLevel) const {
121     return nullptr;
122   }
123 
getLegalizerInfo()124   virtual const LegalizerInfo *getLegalizerInfo() const { return nullptr; }
125 
126   /// getRegisterInfo - If register information is available, return it.  If
127   /// not, return null.
getRegisterInfo()128   virtual const TargetRegisterInfo *getRegisterInfo() const { return nullptr; }
129 
130   /// If the information for the register banks is available, return it.
131   /// Otherwise return nullptr.
getRegBankInfo()132   virtual const RegisterBankInfo *getRegBankInfo() const { return nullptr; }
133 
134   /// getInstrItineraryData - Returns instruction itinerary data for the target
135   /// or specific subtarget.
getInstrItineraryData()136   virtual const InstrItineraryData *getInstrItineraryData() const {
137     return nullptr;
138   }
139 
140   /// Resolve a SchedClass at runtime, where SchedClass identifies an
141   /// MCSchedClassDesc with the isVariant property. This may return the ID of
142   /// another variant SchedClass, but repeated invocation must quickly terminate
143   /// in a nonvariant SchedClass.
resolveSchedClass(unsigned SchedClass,const MachineInstr * MI,const TargetSchedModel * SchedModel)144   virtual unsigned resolveSchedClass(unsigned SchedClass,
145                                      const MachineInstr *MI,
146                                      const TargetSchedModel *SchedModel) const {
147     return 0;
148   }
149 
150   /// Returns true if MI is a dependency breaking zero-idiom instruction for the
151   /// subtarget.
152   ///
153   /// This function also sets bits in Mask related to input operands that
154   /// are not in a data dependency relationship.  There is one bit for each
155   /// machine operand; implicit operands follow explicit operands in the bit
156   /// representation used for Mask.  An empty (i.e. a mask with all bits
157   /// cleared) means: data dependencies are "broken" for all the explicit input
158   /// machine operands of MI.
isZeroIdiom(const MachineInstr * MI,APInt & Mask)159   virtual bool isZeroIdiom(const MachineInstr *MI, APInt &Mask) const {
160     return false;
161   }
162 
163   /// Returns true if MI is a dependency breaking instruction for the subtarget.
164   ///
165   /// Similar in behavior to `isZeroIdiom`. However, it knows how to identify
166   /// all dependency breaking instructions (i.e. not just zero-idioms).
167   ///
168   /// As for `isZeroIdiom`, this method returns a mask of "broken" dependencies.
169   /// (See method `isZeroIdiom` for a detailed description of Mask).
isDependencyBreaking(const MachineInstr * MI,APInt & Mask)170   virtual bool isDependencyBreaking(const MachineInstr *MI, APInt &Mask) const {
171     return isZeroIdiom(MI, Mask);
172   }
173 
174   /// Returns true if MI is a candidate for move elimination.
175   ///
176   /// A candidate for move elimination may be optimized out at register renaming
177   /// stage. Subtargets can specify the set of optimizable moves by
178   /// instantiating tablegen class `IsOptimizableRegisterMove` (see
179   /// llvm/Target/TargetInstrPredicate.td).
180   ///
181   /// SubtargetEmitter is responsible for processing all the definitions of class
182   /// IsOptimizableRegisterMove, and auto-generate an override for this method.
isOptimizableRegisterMove(const MachineInstr * MI)183   virtual bool isOptimizableRegisterMove(const MachineInstr *MI) const {
184     return false;
185   }
186 
187   /// True if the subtarget should run MachineScheduler after aggressive
188   /// coalescing.
189   ///
190   /// This currently replaces the SelectionDAG scheduler with the "source" order
191   /// scheduler (though see below for an option to turn this off and use the
192   /// TargetLowering preference). It does not yet disable the postRA scheduler.
193   virtual bool enableMachineScheduler() const;
194 
195   /// True if the machine scheduler should disable the TLI preference
196   /// for preRA scheduling with the source level scheduler.
enableMachineSchedDefaultSched()197   virtual bool enableMachineSchedDefaultSched() const { return true; }
198 
199   /// True if the subtarget should run MachinePipeliner
enableMachinePipeliner()200   virtual bool enableMachinePipeliner() const { return true; };
201 
202   /// True if the subtarget should run WindowScheduler.
enableWindowScheduler()203   virtual bool enableWindowScheduler() const { return true; }
204 
205   /// True if the subtarget should enable joining global copies.
206   ///
207   /// By default this is enabled if the machine scheduler is enabled, but
208   /// can be overridden.
209   virtual bool enableJoinGlobalCopies() const;
210 
211   /// True if the subtarget should run a scheduler after register allocation.
212   ///
213   /// By default this queries the PostRAScheduling bit in the scheduling model
214   /// which is the preferred way to influence this.
215   virtual bool enablePostRAScheduler() const;
216 
217   /// True if the subtarget should run a machine scheduler after register
218   /// allocation.
219   virtual bool enablePostRAMachineScheduler() const;
220 
221   /// True if the subtarget should run the atomic expansion pass.
222   virtual bool enableAtomicExpand() const;
223 
224   /// True if the subtarget should run the indirectbr expansion pass.
225   virtual bool enableIndirectBrExpand() const;
226 
227   /// Override generic scheduling policy within a region.
228   ///
229   /// This is a convenient way for targets that don't provide any custom
230   /// scheduling heuristics (no custom MachineSchedStrategy) to make
231   /// changes to the generic scheduling policy.
overrideSchedPolicy(MachineSchedPolicy & Policy,unsigned NumRegionInstrs)232   virtual void overrideSchedPolicy(MachineSchedPolicy &Policy,
233                                    unsigned NumRegionInstrs) const {}
234 
235   // Perform target-specific adjustments to the latency of a schedule
236   // dependency.
237   // If a pair of operands is associated with the schedule dependency, DefOpIdx
238   // and UseOpIdx are the indices of the operands in Def and Use, respectively.
239   // Otherwise, either may be -1.
adjustSchedDependency(SUnit * Def,int DefOpIdx,SUnit * Use,int UseOpIdx,SDep & Dep,const TargetSchedModel * SchedModel)240   virtual void adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use,
241                                      int UseOpIdx, SDep &Dep,
242                                      const TargetSchedModel *SchedModel) const {
243   }
244 
245   // For use with PostRAScheduling: get the anti-dependence breaking that should
246   // be performed before post-RA scheduling.
getAntiDepBreakMode()247   virtual AntiDepBreakMode getAntiDepBreakMode() const { return ANTIDEP_NONE; }
248 
249   // For use with PostRAScheduling: in CriticalPathRCs, return any register
250   // classes that should only be considered for anti-dependence breaking if they
251   // are on the critical path.
getCriticalPathRCs(RegClassVector & CriticalPathRCs)252   virtual void getCriticalPathRCs(RegClassVector &CriticalPathRCs) const {
253     return CriticalPathRCs.clear();
254   }
255 
256   // Provide an ordered list of schedule DAG mutations for the post-RA
257   // scheduler.
getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>> & Mutations)258   virtual void getPostRAMutations(
259       std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
260   }
261 
262   // Provide an ordered list of schedule DAG mutations for the machine
263   // pipeliner.
getSMSMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>> & Mutations)264   virtual void getSMSMutations(
265       std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
266   }
267 
268   /// Default to DFA for resource management, return false when target will use
269   /// ProcResource in InstrSchedModel instead.
useDFAforSMS()270   virtual bool useDFAforSMS() const { return true; }
271 
272   // For use with PostRAScheduling: get the minimum optimization level needed
273   // to enable post-RA scheduling.
getOptLevelToEnablePostRAScheduler()274   virtual CodeGenOptLevel getOptLevelToEnablePostRAScheduler() const {
275     return CodeGenOptLevel::Default;
276   }
277 
278   /// True if the subtarget should run the local reassignment
279   /// heuristic of the register allocator.
280   /// This heuristic may be compile time intensive, \p OptLevel provides
281   /// a finer grain to tune the register allocator.
282   virtual bool enableRALocalReassignment(CodeGenOptLevel OptLevel) const;
283 
284   /// Enable use of alias analysis during code generation (during MI
285   /// scheduling, DAGCombine, etc.).
286   virtual bool useAA() const;
287 
288   /// \brief Sink addresses into blocks using GEP instructions rather than
289   /// pointer casts and arithmetic.
addrSinkUsingGEPs()290   virtual bool addrSinkUsingGEPs() const {
291     return useAA();
292   }
293 
294   /// Enable the use of the early if conversion pass.
enableEarlyIfConversion()295   virtual bool enableEarlyIfConversion() const { return false; }
296 
297   /// Return PBQPConstraint(s) for the target.
298   ///
299   /// Override to provide custom PBQP constraints.
getCustomPBQPConstraints()300   virtual std::unique_ptr<PBQPRAConstraint> getCustomPBQPConstraints() const {
301     return nullptr;
302   }
303 
304   /// Enable tracking of subregister liveness in register allocator.
305   /// Please use MachineRegisterInfo::subRegLivenessEnabled() instead where
306   /// possible.
enableSubRegLiveness()307   virtual bool enableSubRegLiveness() const { return false; }
308 
309   /// This is called after a .mir file was loaded.
310   virtual void mirFileLoaded(MachineFunction &MF) const;
311 
312   /// True if the register allocator should use the allocation orders exactly as
313   /// written in the tablegen descriptions, false if it should allocate
314   /// the specified physical register later if is it callee-saved.
ignoreCSRForAllocationOrder(const MachineFunction & MF,unsigned PhysReg)315   virtual bool ignoreCSRForAllocationOrder(const MachineFunction &MF,
316                                            unsigned PhysReg) const {
317     return false;
318   }
319 
320   /// Classify a global function reference. This mainly used to fetch target
321   /// special flags for lowering a function address. For example mark a function
322   /// call should be plt or pc-related addressing.
323   virtual unsigned char
classifyGlobalFunctionReference(const GlobalValue * GV)324   classifyGlobalFunctionReference(const GlobalValue *GV) const {
325     return 0;
326   }
327 
328   /// Enable spillage copy elimination in MachineCopyPropagation pass. This
329   /// helps removing redundant copies generated by register allocator when
330   /// handling complex eviction chains.
enableSpillageCopyElimination()331   virtual bool enableSpillageCopyElimination() const { return false; }
332 
333   /// Get the list of MacroFusion predicates.
getMacroFusions()334   virtual std::vector<MacroFusionPredTy> getMacroFusions() const { return {}; };
335 
336   /// supportsInitUndef is used to determine if an architecture supports
337   /// the Init Undef Pass. By default, it is assumed that it will not support
338   /// the pass, with architecture specific overrides providing the information
339   /// where they are implemented.
supportsInitUndef()340   virtual bool supportsInitUndef() const { return false; }
341 };
342 
343 } // end namespace llvm
344 
345 #endif // LLVM_CODEGEN_TARGETSUBTARGETINFO_H
346