1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Xilinx AMS driver
4 *
5 * Copyright (C) 2021 Xilinx, Inc.
6 *
7 * Manish Narani <mnarani@xilinx.com>
8 * Rajnikant Bhojani <rajnikant.bhojani@xilinx.com>
9 */
10
11 #include <linux/bits.h>
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/devm-helpers.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/overflow.h>
23 #include <linux/platform_device.h>
24 #include <linux/property.h>
25 #include <linux/slab.h>
26
27 #include <linux/iio/events.h>
28 #include <linux/iio/iio.h>
29
30 /* AMS registers definitions */
31 #define AMS_ISR_0 0x010
32 #define AMS_ISR_1 0x014
33 #define AMS_IER_0 0x020
34 #define AMS_IER_1 0x024
35 #define AMS_IDR_0 0x028
36 #define AMS_IDR_1 0x02C
37 #define AMS_PS_CSTS 0x040
38 #define AMS_PL_CSTS 0x044
39
40 #define AMS_VCC_PSPLL0 0x060
41 #define AMS_VCC_PSPLL3 0x06C
42 #define AMS_VCCINT 0x078
43 #define AMS_VCCBRAM 0x07C
44 #define AMS_VCCAUX 0x080
45 #define AMS_PSDDRPLL 0x084
46 #define AMS_PSINTFPDDR 0x09C
47
48 #define AMS_VCC_PSPLL0_CH 48
49 #define AMS_VCC_PSPLL3_CH 51
50 #define AMS_VCCINT_CH 54
51 #define AMS_VCCBRAM_CH 55
52 #define AMS_VCCAUX_CH 56
53 #define AMS_PSDDRPLL_CH 57
54 #define AMS_PSINTFPDDR_CH 63
55
56 #define AMS_REG_CONFIG0 0x100
57 #define AMS_REG_CONFIG1 0x104
58 #define AMS_REG_CONFIG3 0x10C
59 #define AMS_REG_CONFIG4 0x110
60 #define AMS_REG_SEQ_CH0 0x120
61 #define AMS_REG_SEQ_CH1 0x124
62 #define AMS_REG_SEQ_CH2 0x118
63
64 #define AMS_VUSER0_MASK BIT(0)
65 #define AMS_VUSER1_MASK BIT(1)
66 #define AMS_VUSER2_MASK BIT(2)
67 #define AMS_VUSER3_MASK BIT(3)
68
69 #define AMS_TEMP 0x000
70 #define AMS_SUPPLY1 0x004
71 #define AMS_SUPPLY2 0x008
72 #define AMS_VP_VN 0x00C
73 #define AMS_VREFP 0x010
74 #define AMS_VREFN 0x014
75 #define AMS_SUPPLY3 0x018
76 #define AMS_SUPPLY4 0x034
77 #define AMS_SUPPLY5 0x038
78 #define AMS_SUPPLY6 0x03C
79 #define AMS_SUPPLY7 0x200
80 #define AMS_SUPPLY8 0x204
81 #define AMS_SUPPLY9 0x208
82 #define AMS_SUPPLY10 0x20C
83 #define AMS_VCCAMS 0x210
84 #define AMS_TEMP_REMOTE 0x214
85
86 #define AMS_REG_VAUX(x) (0x40 + 4 * (x))
87
88 #define AMS_PS_RESET_VALUE 0xFFFF
89 #define AMS_PL_RESET_VALUE 0xFFFF
90
91 #define AMS_CONF0_CHANNEL_NUM_MASK GENMASK(6, 0)
92
93 #define AMS_CONF1_SEQ_MASK GENMASK(15, 12)
94 #define AMS_CONF1_SEQ_DEFAULT FIELD_PREP(AMS_CONF1_SEQ_MASK, 0)
95 #define AMS_CONF1_SEQ_CONTINUOUS FIELD_PREP(AMS_CONF1_SEQ_MASK, 2)
96 #define AMS_CONF1_SEQ_SINGLE_CHANNEL FIELD_PREP(AMS_CONF1_SEQ_MASK, 3)
97
98 #define AMS_REG_SEQ0_MASK GENMASK(15, 0)
99 #define AMS_REG_SEQ2_MASK GENMASK(21, 16)
100 #define AMS_REG_SEQ1_MASK GENMASK_ULL(37, 22)
101
102 #define AMS_PS_SEQ_MASK GENMASK(21, 0)
103 #define AMS_PL_SEQ_MASK GENMASK_ULL(59, 22)
104
105 #define AMS_ALARM_TEMP 0x140
106 #define AMS_ALARM_SUPPLY1 0x144
107 #define AMS_ALARM_SUPPLY2 0x148
108 #define AMS_ALARM_SUPPLY3 0x160
109 #define AMS_ALARM_SUPPLY4 0x164
110 #define AMS_ALARM_SUPPLY5 0x168
111 #define AMS_ALARM_SUPPLY6 0x16C
112 #define AMS_ALARM_SUPPLY7 0x180
113 #define AMS_ALARM_SUPPLY8 0x184
114 #define AMS_ALARM_SUPPLY9 0x188
115 #define AMS_ALARM_SUPPLY10 0x18C
116 #define AMS_ALARM_VCCAMS 0x190
117 #define AMS_ALARM_TEMP_REMOTE 0x194
118 #define AMS_ALARM_THRESHOLD_OFF_10 0x10
119 #define AMS_ALARM_THRESHOLD_OFF_20 0x20
120
121 #define AMS_ALARM_THR_DIRECT_MASK BIT(1)
122 #define AMS_ALARM_THR_MIN 0x0000
123 #define AMS_ALARM_THR_MAX (BIT(16) - 1)
124
125 #define AMS_ALARM_MASK GENMASK_ULL(63, 0)
126 #define AMS_NO_OF_ALARMS 32
127 #define AMS_PL_ALARM_START 16
128 #define AMS_PL_ALARM_MASK GENMASK(31, 16)
129 #define AMS_ISR0_ALARM_MASK GENMASK(31, 0)
130 #define AMS_ISR1_ALARM_MASK (GENMASK(31, 29) | GENMASK(4, 0))
131 #define AMS_ISR1_EOC_MASK BIT(3)
132 #define AMS_ISR1_INTR_MASK GENMASK_ULL(63, 32)
133 #define AMS_ISR0_ALARM_2_TO_0_MASK GENMASK(2, 0)
134 #define AMS_ISR0_ALARM_6_TO_3_MASK GENMASK(6, 3)
135 #define AMS_ISR0_ALARM_12_TO_7_MASK GENMASK(13, 8)
136 #define AMS_CONF1_ALARM_2_TO_0_MASK GENMASK(3, 1)
137 #define AMS_CONF1_ALARM_6_TO_3_MASK GENMASK(11, 8)
138 #define AMS_CONF1_ALARM_12_TO_7_MASK GENMASK(5, 0)
139 #define AMS_REGCFG1_ALARM_MASK \
140 (AMS_CONF1_ALARM_2_TO_0_MASK | AMS_CONF1_ALARM_6_TO_3_MASK | BIT(0))
141 #define AMS_REGCFG3_ALARM_MASK AMS_CONF1_ALARM_12_TO_7_MASK
142
143 #define AMS_PS_CSTS_PS_READY (BIT(27) | BIT(16))
144 #define AMS_PL_CSTS_ACCESS_MASK BIT(1)
145
146 #define AMS_PL_MAX_FIXED_CHANNEL 10
147 #define AMS_PL_MAX_EXT_CHANNEL 20
148
149 #define AMS_INIT_POLL_TIME_US 200
150 #define AMS_INIT_TIMEOUT_US 10000
151 #define AMS_UNMASK_TIMEOUT_MS 500
152
153 /*
154 * Following scale and offset value is derived from
155 * UG580 (v1.7) December 20, 2016
156 */
157 #define AMS_SUPPLY_SCALE_1VOLT_mV 1000
158 #define AMS_SUPPLY_SCALE_3VOLT_mV 3000
159 #define AMS_SUPPLY_SCALE_6VOLT_mV 6000
160 #define AMS_SUPPLY_SCALE_DIV_BIT 16
161
162 #define AMS_TEMP_SCALE 509314
163 #define AMS_TEMP_SCALE_DIV_BIT 16
164 #define AMS_TEMP_OFFSET -((280230LL << 16) / 509314)
165
166 enum ams_alarm_bit {
167 AMS_ALARM_BIT_TEMP = 0,
168 AMS_ALARM_BIT_SUPPLY1 = 1,
169 AMS_ALARM_BIT_SUPPLY2 = 2,
170 AMS_ALARM_BIT_SUPPLY3 = 3,
171 AMS_ALARM_BIT_SUPPLY4 = 4,
172 AMS_ALARM_BIT_SUPPLY5 = 5,
173 AMS_ALARM_BIT_SUPPLY6 = 6,
174 AMS_ALARM_BIT_RESERVED = 7,
175 AMS_ALARM_BIT_SUPPLY7 = 8,
176 AMS_ALARM_BIT_SUPPLY8 = 9,
177 AMS_ALARM_BIT_SUPPLY9 = 10,
178 AMS_ALARM_BIT_SUPPLY10 = 11,
179 AMS_ALARM_BIT_VCCAMS = 12,
180 AMS_ALARM_BIT_TEMP_REMOTE = 13,
181 };
182
183 enum ams_seq {
184 AMS_SEQ_VCC_PSPLL = 0,
185 AMS_SEQ_VCC_PSBATT = 1,
186 AMS_SEQ_VCCINT = 2,
187 AMS_SEQ_VCCBRAM = 3,
188 AMS_SEQ_VCCAUX = 4,
189 AMS_SEQ_PSDDRPLL = 5,
190 AMS_SEQ_INTDDR = 6,
191 };
192
193 enum ams_ps_pl_seq {
194 AMS_SEQ_CALIB = 0,
195 AMS_SEQ_RSVD_1 = 1,
196 AMS_SEQ_RSVD_2 = 2,
197 AMS_SEQ_TEST = 3,
198 AMS_SEQ_RSVD_4 = 4,
199 AMS_SEQ_SUPPLY4 = 5,
200 AMS_SEQ_SUPPLY5 = 6,
201 AMS_SEQ_SUPPLY6 = 7,
202 AMS_SEQ_TEMP = 8,
203 AMS_SEQ_SUPPLY2 = 9,
204 AMS_SEQ_SUPPLY1 = 10,
205 AMS_SEQ_VP_VN = 11,
206 AMS_SEQ_VREFP = 12,
207 AMS_SEQ_VREFN = 13,
208 AMS_SEQ_SUPPLY3 = 14,
209 AMS_SEQ_CURRENT_MON = 15,
210 AMS_SEQ_SUPPLY7 = 16,
211 AMS_SEQ_SUPPLY8 = 17,
212 AMS_SEQ_SUPPLY9 = 18,
213 AMS_SEQ_SUPPLY10 = 19,
214 AMS_SEQ_VCCAMS = 20,
215 AMS_SEQ_TEMP_REMOTE = 21,
216 AMS_SEQ_MAX = 22
217 };
218
219 #define AMS_PS_SEQ_MAX AMS_SEQ_MAX
220 #define AMS_SEQ(x) (AMS_SEQ_MAX + (x))
221 #define PS_SEQ(x) (x)
222 #define PL_SEQ(x) (AMS_PS_SEQ_MAX + (x))
223 #define AMS_CTRL_SEQ_BASE (AMS_PS_SEQ_MAX * 3)
224
225 #define AMS_CHAN_TEMP(_scan_index, _addr, _name) { \
226 .type = IIO_TEMP, \
227 .indexed = 1, \
228 .address = (_addr), \
229 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
230 BIT(IIO_CHAN_INFO_SCALE) | \
231 BIT(IIO_CHAN_INFO_OFFSET), \
232 .event_spec = ams_temp_events, \
233 .scan_index = _scan_index, \
234 .num_event_specs = ARRAY_SIZE(ams_temp_events), \
235 .datasheet_name = _name, \
236 }
237
238 #define AMS_CHAN_VOLTAGE(_scan_index, _addr, _alarm, _name) { \
239 .type = IIO_VOLTAGE, \
240 .indexed = 1, \
241 .address = (_addr), \
242 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
243 BIT(IIO_CHAN_INFO_SCALE), \
244 .event_spec = (_alarm) ? ams_voltage_events : NULL, \
245 .scan_index = _scan_index, \
246 .num_event_specs = (_alarm) ? ARRAY_SIZE(ams_voltage_events) : 0, \
247 .datasheet_name = _name, \
248 }
249
250 #define AMS_PS_CHAN_TEMP(_scan_index, _addr, _name) \
251 AMS_CHAN_TEMP(PS_SEQ(_scan_index), _addr, _name)
252 #define AMS_PS_CHAN_VOLTAGE(_scan_index, _addr, _name) \
253 AMS_CHAN_VOLTAGE(PS_SEQ(_scan_index), _addr, true, _name)
254
255 #define AMS_PL_CHAN_TEMP(_scan_index, _addr, _name) \
256 AMS_CHAN_TEMP(PL_SEQ(_scan_index), _addr, _name)
257 #define AMS_PL_CHAN_VOLTAGE(_scan_index, _addr, _alarm, _name) \
258 AMS_CHAN_VOLTAGE(PL_SEQ(_scan_index), _addr, _alarm, _name)
259 #define AMS_PL_AUX_CHAN_VOLTAGE(_auxno) \
260 AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(_auxno)), AMS_REG_VAUX(_auxno), false, \
261 "VAUX" #_auxno)
262 #define AMS_CTRL_CHAN_VOLTAGE(_scan_index, _addr, _name) \
263 AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(AMS_SEQ(_scan_index))), _addr, false, \
264 _name)
265
266 /**
267 * struct ams - This structure contains necessary state for xilinx-ams to operate
268 * @base: physical base address of device
269 * @ps_base: physical base address of PS device
270 * @pl_base: physical base address of PL device
271 * @clk: clocks associated with the device
272 * @dev: pointer to device struct
273 * @lock: to handle multiple user interaction
274 * @intr_lock: to protect interrupt mask values
275 * @alarm_mask: alarm configuration
276 * @current_masked_alarm: currently masked due to alarm
277 * @intr_mask: interrupt configuration
278 * @ams_unmask_work: re-enables event once the event condition disappears
279 *
280 */
281 struct ams {
282 void __iomem *base;
283 void __iomem *ps_base;
284 void __iomem *pl_base;
285 struct clk *clk;
286 struct device *dev;
287 struct mutex lock;
288 spinlock_t intr_lock;
289 unsigned int alarm_mask;
290 unsigned int current_masked_alarm;
291 u64 intr_mask;
292 struct delayed_work ams_unmask_work;
293 };
294
ams_ps_update_reg(struct ams * ams,unsigned int offset,u32 mask,u32 data)295 static inline void ams_ps_update_reg(struct ams *ams, unsigned int offset,
296 u32 mask, u32 data)
297 {
298 u32 val, regval;
299
300 val = readl(ams->ps_base + offset);
301 regval = (val & ~mask) | (data & mask);
302 writel(regval, ams->ps_base + offset);
303 }
304
ams_pl_update_reg(struct ams * ams,unsigned int offset,u32 mask,u32 data)305 static inline void ams_pl_update_reg(struct ams *ams, unsigned int offset,
306 u32 mask, u32 data)
307 {
308 u32 val, regval;
309
310 val = readl(ams->pl_base + offset);
311 regval = (val & ~mask) | (data & mask);
312 writel(regval, ams->pl_base + offset);
313 }
314
ams_update_intrmask(struct ams * ams,u64 mask,u64 val)315 static void ams_update_intrmask(struct ams *ams, u64 mask, u64 val)
316 {
317 u32 regval;
318
319 ams->intr_mask = (ams->intr_mask & ~mask) | (val & mask);
320
321 regval = ~(ams->intr_mask | ams->current_masked_alarm);
322 writel(regval, ams->base + AMS_IER_0);
323
324 regval = ~(FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask));
325 writel(regval, ams->base + AMS_IER_1);
326
327 regval = ams->intr_mask | ams->current_masked_alarm;
328 writel(regval, ams->base + AMS_IDR_0);
329
330 regval = FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask);
331 writel(regval, ams->base + AMS_IDR_1);
332 }
333
ams_disable_all_alarms(struct ams * ams)334 static void ams_disable_all_alarms(struct ams *ams)
335 {
336 /* disable PS module alarm */
337 if (ams->ps_base) {
338 ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
339 AMS_REGCFG1_ALARM_MASK);
340 ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
341 AMS_REGCFG3_ALARM_MASK);
342 }
343
344 /* disable PL module alarm */
345 if (ams->pl_base) {
346 ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
347 AMS_REGCFG1_ALARM_MASK);
348 ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
349 AMS_REGCFG3_ALARM_MASK);
350 }
351 }
352
ams_update_ps_alarm(struct ams * ams,unsigned long alarm_mask)353 static void ams_update_ps_alarm(struct ams *ams, unsigned long alarm_mask)
354 {
355 u32 cfg;
356 u32 val;
357
358 val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, alarm_mask);
359 cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
360
361 val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, alarm_mask);
362 cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
363
364 ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
365
366 val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, alarm_mask);
367 cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
368 ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
369 }
370
ams_update_pl_alarm(struct ams * ams,unsigned long alarm_mask)371 static void ams_update_pl_alarm(struct ams *ams, unsigned long alarm_mask)
372 {
373 unsigned long pl_alarm_mask;
374 u32 cfg;
375 u32 val;
376
377 pl_alarm_mask = FIELD_GET(AMS_PL_ALARM_MASK, alarm_mask);
378
379 val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, pl_alarm_mask);
380 cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
381
382 val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, pl_alarm_mask);
383 cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
384
385 ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
386
387 val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, pl_alarm_mask);
388 cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
389 ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
390 }
391
ams_update_alarm(struct ams * ams,unsigned long alarm_mask)392 static void ams_update_alarm(struct ams *ams, unsigned long alarm_mask)
393 {
394 unsigned long flags;
395
396 if (ams->ps_base)
397 ams_update_ps_alarm(ams, alarm_mask);
398
399 if (ams->pl_base)
400 ams_update_pl_alarm(ams, alarm_mask);
401
402 spin_lock_irqsave(&ams->intr_lock, flags);
403 ams_update_intrmask(ams, AMS_ISR0_ALARM_MASK, ~alarm_mask);
404 spin_unlock_irqrestore(&ams->intr_lock, flags);
405 }
406
ams_enable_channel_sequence(struct iio_dev * indio_dev)407 static void ams_enable_channel_sequence(struct iio_dev *indio_dev)
408 {
409 struct ams *ams = iio_priv(indio_dev);
410 unsigned long long scan_mask;
411 int i;
412 u32 regval;
413
414 /*
415 * Enable channel sequence. First 22 bits of scan_mask represent
416 * PS channels, and next remaining bits represent PL channels.
417 */
418
419 /* Run calibration of PS & PL as part of the sequence */
420 scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX);
421 for (i = 0; i < indio_dev->num_channels; i++) {
422 const struct iio_chan_spec *chan = &indio_dev->channels[i];
423
424 if (chan->scan_index < AMS_CTRL_SEQ_BASE)
425 scan_mask |= BIT_ULL(chan->scan_index);
426 }
427
428 if (ams->ps_base) {
429 /* put sysmon in a soft reset to change the sequence */
430 ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
431 AMS_CONF1_SEQ_DEFAULT);
432
433 /* configure basic channels */
434 regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
435 writel(regval, ams->ps_base + AMS_REG_SEQ_CH0);
436
437 regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
438 writel(regval, ams->ps_base + AMS_REG_SEQ_CH2);
439
440 /* set continuous sequence mode */
441 ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
442 AMS_CONF1_SEQ_CONTINUOUS);
443 }
444
445 if (ams->pl_base) {
446 /* put sysmon in a soft reset to change the sequence */
447 ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
448 AMS_CONF1_SEQ_DEFAULT);
449
450 /* configure basic channels */
451 scan_mask = FIELD_GET(AMS_PL_SEQ_MASK, scan_mask);
452
453 regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
454 writel(regval, ams->pl_base + AMS_REG_SEQ_CH0);
455
456 regval = FIELD_GET(AMS_REG_SEQ1_MASK, scan_mask);
457 writel(regval, ams->pl_base + AMS_REG_SEQ_CH1);
458
459 regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
460 writel(regval, ams->pl_base + AMS_REG_SEQ_CH2);
461
462 /* set continuous sequence mode */
463 ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
464 AMS_CONF1_SEQ_CONTINUOUS);
465 }
466 }
467
ams_init_device(struct ams * ams)468 static int ams_init_device(struct ams *ams)
469 {
470 u32 expect = AMS_PS_CSTS_PS_READY;
471 u32 reg, value;
472 int ret;
473
474 /* reset AMS */
475 if (ams->ps_base) {
476 writel(AMS_PS_RESET_VALUE, ams->ps_base + AMS_VP_VN);
477
478 ret = readl_poll_timeout(ams->base + AMS_PS_CSTS, reg, (reg & expect),
479 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
480 if (ret)
481 return ret;
482
483 /* put sysmon in a default state */
484 ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
485 AMS_CONF1_SEQ_DEFAULT);
486 }
487
488 if (ams->pl_base) {
489 value = readl(ams->base + AMS_PL_CSTS);
490 if (value == 0)
491 return 0;
492
493 writel(AMS_PL_RESET_VALUE, ams->pl_base + AMS_VP_VN);
494
495 /* put sysmon in a default state */
496 ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
497 AMS_CONF1_SEQ_DEFAULT);
498 }
499
500 ams_disable_all_alarms(ams);
501
502 /* Disable interrupt */
503 ams_update_intrmask(ams, AMS_ALARM_MASK, AMS_ALARM_MASK);
504
505 /* Clear any pending interrupt */
506 writel(AMS_ISR0_ALARM_MASK, ams->base + AMS_ISR_0);
507 writel(AMS_ISR1_ALARM_MASK, ams->base + AMS_ISR_1);
508
509 return 0;
510 }
511
ams_read_label(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,char * label)512 static int ams_read_label(struct iio_dev *indio_dev,
513 struct iio_chan_spec const *chan, char *label)
514 {
515 return sysfs_emit(label, "%s\n", chan->datasheet_name);
516 }
517
ams_enable_single_channel(struct ams * ams,unsigned int offset)518 static int ams_enable_single_channel(struct ams *ams, unsigned int offset)
519 {
520 u8 channel_num;
521
522 switch (offset) {
523 case AMS_VCC_PSPLL0:
524 channel_num = AMS_VCC_PSPLL0_CH;
525 break;
526 case AMS_VCC_PSPLL3:
527 channel_num = AMS_VCC_PSPLL3_CH;
528 break;
529 case AMS_VCCINT:
530 channel_num = AMS_VCCINT_CH;
531 break;
532 case AMS_VCCBRAM:
533 channel_num = AMS_VCCBRAM_CH;
534 break;
535 case AMS_VCCAUX:
536 channel_num = AMS_VCCAUX_CH;
537 break;
538 case AMS_PSDDRPLL:
539 channel_num = AMS_PSDDRPLL_CH;
540 break;
541 case AMS_PSINTFPDDR:
542 channel_num = AMS_PSINTFPDDR_CH;
543 break;
544 default:
545 return -EINVAL;
546 }
547
548 /* put sysmon in a soft reset to change the sequence */
549 ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
550 AMS_CONF1_SEQ_DEFAULT);
551
552 /* write the channel number */
553 ams_ps_update_reg(ams, AMS_REG_CONFIG0, AMS_CONF0_CHANNEL_NUM_MASK,
554 channel_num);
555
556 /* set single channel, sequencer off mode */
557 ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
558 AMS_CONF1_SEQ_SINGLE_CHANNEL);
559
560 return 0;
561 }
562
ams_read_vcc_reg(struct ams * ams,unsigned int offset,u32 * data)563 static int ams_read_vcc_reg(struct ams *ams, unsigned int offset, u32 *data)
564 {
565 u32 expect = AMS_ISR1_EOC_MASK;
566 u32 reg;
567 int ret;
568
569 ret = ams_enable_single_channel(ams, offset);
570 if (ret)
571 return ret;
572
573 /* clear end-of-conversion flag, wait for next conversion to complete */
574 writel(expect, ams->base + AMS_ISR_1);
575 ret = readl_poll_timeout(ams->base + AMS_ISR_1, reg, (reg & expect),
576 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
577 if (ret)
578 return ret;
579
580 *data = readl(ams->base + offset);
581
582 return 0;
583 }
584
ams_get_ps_scale(int address)585 static int ams_get_ps_scale(int address)
586 {
587 int val;
588
589 switch (address) {
590 case AMS_SUPPLY1:
591 case AMS_SUPPLY2:
592 case AMS_SUPPLY3:
593 case AMS_SUPPLY4:
594 case AMS_SUPPLY9:
595 case AMS_SUPPLY10:
596 case AMS_VCCAMS:
597 val = AMS_SUPPLY_SCALE_3VOLT_mV;
598 break;
599 case AMS_SUPPLY5:
600 case AMS_SUPPLY6:
601 case AMS_SUPPLY7:
602 case AMS_SUPPLY8:
603 val = AMS_SUPPLY_SCALE_6VOLT_mV;
604 break;
605 default:
606 val = AMS_SUPPLY_SCALE_1VOLT_mV;
607 break;
608 }
609
610 return val;
611 }
612
ams_get_pl_scale(struct ams * ams,int address)613 static int ams_get_pl_scale(struct ams *ams, int address)
614 {
615 int val, regval;
616
617 switch (address) {
618 case AMS_SUPPLY1:
619 case AMS_SUPPLY2:
620 case AMS_SUPPLY3:
621 case AMS_SUPPLY4:
622 case AMS_SUPPLY5:
623 case AMS_SUPPLY6:
624 case AMS_VCCAMS:
625 case AMS_VREFP:
626 case AMS_VREFN:
627 val = AMS_SUPPLY_SCALE_3VOLT_mV;
628 break;
629 case AMS_SUPPLY7:
630 regval = readl(ams->pl_base + AMS_REG_CONFIG4);
631 if (FIELD_GET(AMS_VUSER0_MASK, regval))
632 val = AMS_SUPPLY_SCALE_6VOLT_mV;
633 else
634 val = AMS_SUPPLY_SCALE_3VOLT_mV;
635 break;
636 case AMS_SUPPLY8:
637 regval = readl(ams->pl_base + AMS_REG_CONFIG4);
638 if (FIELD_GET(AMS_VUSER1_MASK, regval))
639 val = AMS_SUPPLY_SCALE_6VOLT_mV;
640 else
641 val = AMS_SUPPLY_SCALE_3VOLT_mV;
642 break;
643 case AMS_SUPPLY9:
644 regval = readl(ams->pl_base + AMS_REG_CONFIG4);
645 if (FIELD_GET(AMS_VUSER2_MASK, regval))
646 val = AMS_SUPPLY_SCALE_6VOLT_mV;
647 else
648 val = AMS_SUPPLY_SCALE_3VOLT_mV;
649 break;
650 case AMS_SUPPLY10:
651 regval = readl(ams->pl_base + AMS_REG_CONFIG4);
652 if (FIELD_GET(AMS_VUSER3_MASK, regval))
653 val = AMS_SUPPLY_SCALE_6VOLT_mV;
654 else
655 val = AMS_SUPPLY_SCALE_3VOLT_mV;
656 break;
657 case AMS_VP_VN:
658 case AMS_REG_VAUX(0) ... AMS_REG_VAUX(15):
659 val = AMS_SUPPLY_SCALE_1VOLT_mV;
660 break;
661 default:
662 val = AMS_SUPPLY_SCALE_1VOLT_mV;
663 break;
664 }
665
666 return val;
667 }
668
ams_get_ctrl_scale(int address)669 static int ams_get_ctrl_scale(int address)
670 {
671 int val;
672
673 switch (address) {
674 case AMS_VCC_PSPLL0:
675 case AMS_VCC_PSPLL3:
676 case AMS_VCCINT:
677 case AMS_VCCBRAM:
678 case AMS_VCCAUX:
679 case AMS_PSDDRPLL:
680 case AMS_PSINTFPDDR:
681 val = AMS_SUPPLY_SCALE_3VOLT_mV;
682 break;
683 default:
684 val = AMS_SUPPLY_SCALE_1VOLT_mV;
685 break;
686 }
687
688 return val;
689 }
690
ams_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)691 static int ams_read_raw(struct iio_dev *indio_dev,
692 struct iio_chan_spec const *chan,
693 int *val, int *val2, long mask)
694 {
695 struct ams *ams = iio_priv(indio_dev);
696 int ret;
697
698 switch (mask) {
699 case IIO_CHAN_INFO_RAW:
700 mutex_lock(&ams->lock);
701 if (chan->scan_index >= AMS_CTRL_SEQ_BASE) {
702 ret = ams_read_vcc_reg(ams, chan->address, val);
703 if (ret)
704 goto unlock_mutex;
705 ams_enable_channel_sequence(indio_dev);
706 } else if (chan->scan_index >= AMS_PS_SEQ_MAX)
707 *val = readl(ams->pl_base + chan->address);
708 else
709 *val = readl(ams->ps_base + chan->address);
710
711 ret = IIO_VAL_INT;
712 unlock_mutex:
713 mutex_unlock(&ams->lock);
714 return ret;
715 case IIO_CHAN_INFO_SCALE:
716 switch (chan->type) {
717 case IIO_VOLTAGE:
718 if (chan->scan_index < AMS_PS_SEQ_MAX)
719 *val = ams_get_ps_scale(chan->address);
720 else if (chan->scan_index >= AMS_PS_SEQ_MAX &&
721 chan->scan_index < AMS_CTRL_SEQ_BASE)
722 *val = ams_get_pl_scale(ams, chan->address);
723 else
724 *val = ams_get_ctrl_scale(chan->address);
725
726 *val2 = AMS_SUPPLY_SCALE_DIV_BIT;
727 return IIO_VAL_FRACTIONAL_LOG2;
728 case IIO_TEMP:
729 *val = AMS_TEMP_SCALE;
730 *val2 = AMS_TEMP_SCALE_DIV_BIT;
731 return IIO_VAL_FRACTIONAL_LOG2;
732 default:
733 return -EINVAL;
734 }
735 case IIO_CHAN_INFO_OFFSET:
736 /* Only the temperature channel has an offset */
737 *val = AMS_TEMP_OFFSET;
738 return IIO_VAL_INT;
739 default:
740 return -EINVAL;
741 }
742 }
743
ams_get_alarm_offset(int scan_index,enum iio_event_direction dir)744 static int ams_get_alarm_offset(int scan_index, enum iio_event_direction dir)
745 {
746 int offset;
747
748 if (scan_index >= AMS_PS_SEQ_MAX)
749 scan_index -= AMS_PS_SEQ_MAX;
750
751 if (dir == IIO_EV_DIR_FALLING) {
752 if (scan_index < AMS_SEQ_SUPPLY7)
753 offset = AMS_ALARM_THRESHOLD_OFF_10;
754 else
755 offset = AMS_ALARM_THRESHOLD_OFF_20;
756 } else {
757 offset = 0;
758 }
759
760 switch (scan_index) {
761 case AMS_SEQ_TEMP:
762 return AMS_ALARM_TEMP + offset;
763 case AMS_SEQ_SUPPLY1:
764 return AMS_ALARM_SUPPLY1 + offset;
765 case AMS_SEQ_SUPPLY2:
766 return AMS_ALARM_SUPPLY2 + offset;
767 case AMS_SEQ_SUPPLY3:
768 return AMS_ALARM_SUPPLY3 + offset;
769 case AMS_SEQ_SUPPLY4:
770 return AMS_ALARM_SUPPLY4 + offset;
771 case AMS_SEQ_SUPPLY5:
772 return AMS_ALARM_SUPPLY5 + offset;
773 case AMS_SEQ_SUPPLY6:
774 return AMS_ALARM_SUPPLY6 + offset;
775 case AMS_SEQ_SUPPLY7:
776 return AMS_ALARM_SUPPLY7 + offset;
777 case AMS_SEQ_SUPPLY8:
778 return AMS_ALARM_SUPPLY8 + offset;
779 case AMS_SEQ_SUPPLY9:
780 return AMS_ALARM_SUPPLY9 + offset;
781 case AMS_SEQ_SUPPLY10:
782 return AMS_ALARM_SUPPLY10 + offset;
783 case AMS_SEQ_VCCAMS:
784 return AMS_ALARM_VCCAMS + offset;
785 case AMS_SEQ_TEMP_REMOTE:
786 return AMS_ALARM_TEMP_REMOTE + offset;
787 default:
788 return 0;
789 }
790 }
791
ams_event_to_channel(struct iio_dev * dev,u32 event)792 static const struct iio_chan_spec *ams_event_to_channel(struct iio_dev *dev,
793 u32 event)
794 {
795 int scan_index = 0, i;
796
797 if (event >= AMS_PL_ALARM_START) {
798 event -= AMS_PL_ALARM_START;
799 scan_index = AMS_PS_SEQ_MAX;
800 }
801
802 switch (event) {
803 case AMS_ALARM_BIT_TEMP:
804 scan_index += AMS_SEQ_TEMP;
805 break;
806 case AMS_ALARM_BIT_SUPPLY1:
807 scan_index += AMS_SEQ_SUPPLY1;
808 break;
809 case AMS_ALARM_BIT_SUPPLY2:
810 scan_index += AMS_SEQ_SUPPLY2;
811 break;
812 case AMS_ALARM_BIT_SUPPLY3:
813 scan_index += AMS_SEQ_SUPPLY3;
814 break;
815 case AMS_ALARM_BIT_SUPPLY4:
816 scan_index += AMS_SEQ_SUPPLY4;
817 break;
818 case AMS_ALARM_BIT_SUPPLY5:
819 scan_index += AMS_SEQ_SUPPLY5;
820 break;
821 case AMS_ALARM_BIT_SUPPLY6:
822 scan_index += AMS_SEQ_SUPPLY6;
823 break;
824 case AMS_ALARM_BIT_SUPPLY7:
825 scan_index += AMS_SEQ_SUPPLY7;
826 break;
827 case AMS_ALARM_BIT_SUPPLY8:
828 scan_index += AMS_SEQ_SUPPLY8;
829 break;
830 case AMS_ALARM_BIT_SUPPLY9:
831 scan_index += AMS_SEQ_SUPPLY9;
832 break;
833 case AMS_ALARM_BIT_SUPPLY10:
834 scan_index += AMS_SEQ_SUPPLY10;
835 break;
836 case AMS_ALARM_BIT_VCCAMS:
837 scan_index += AMS_SEQ_VCCAMS;
838 break;
839 case AMS_ALARM_BIT_TEMP_REMOTE:
840 scan_index += AMS_SEQ_TEMP_REMOTE;
841 break;
842 default:
843 break;
844 }
845
846 for (i = 0; i < dev->num_channels; i++)
847 if (dev->channels[i].scan_index == scan_index)
848 break;
849
850 return &dev->channels[i];
851 }
852
ams_get_alarm_mask(int scan_index)853 static int ams_get_alarm_mask(int scan_index)
854 {
855 int bit = 0;
856
857 if (scan_index >= AMS_PS_SEQ_MAX) {
858 bit = AMS_PL_ALARM_START;
859 scan_index -= AMS_PS_SEQ_MAX;
860 }
861
862 switch (scan_index) {
863 case AMS_SEQ_TEMP:
864 return BIT(AMS_ALARM_BIT_TEMP + bit);
865 case AMS_SEQ_SUPPLY1:
866 return BIT(AMS_ALARM_BIT_SUPPLY1 + bit);
867 case AMS_SEQ_SUPPLY2:
868 return BIT(AMS_ALARM_BIT_SUPPLY2 + bit);
869 case AMS_SEQ_SUPPLY3:
870 return BIT(AMS_ALARM_BIT_SUPPLY3 + bit);
871 case AMS_SEQ_SUPPLY4:
872 return BIT(AMS_ALARM_BIT_SUPPLY4 + bit);
873 case AMS_SEQ_SUPPLY5:
874 return BIT(AMS_ALARM_BIT_SUPPLY5 + bit);
875 case AMS_SEQ_SUPPLY6:
876 return BIT(AMS_ALARM_BIT_SUPPLY6 + bit);
877 case AMS_SEQ_SUPPLY7:
878 return BIT(AMS_ALARM_BIT_SUPPLY7 + bit);
879 case AMS_SEQ_SUPPLY8:
880 return BIT(AMS_ALARM_BIT_SUPPLY8 + bit);
881 case AMS_SEQ_SUPPLY9:
882 return BIT(AMS_ALARM_BIT_SUPPLY9 + bit);
883 case AMS_SEQ_SUPPLY10:
884 return BIT(AMS_ALARM_BIT_SUPPLY10 + bit);
885 case AMS_SEQ_VCCAMS:
886 return BIT(AMS_ALARM_BIT_VCCAMS + bit);
887 case AMS_SEQ_TEMP_REMOTE:
888 return BIT(AMS_ALARM_BIT_TEMP_REMOTE + bit);
889 default:
890 return 0;
891 }
892 }
893
ams_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)894 static int ams_read_event_config(struct iio_dev *indio_dev,
895 const struct iio_chan_spec *chan,
896 enum iio_event_type type,
897 enum iio_event_direction dir)
898 {
899 struct ams *ams = iio_priv(indio_dev);
900
901 return !!(ams->alarm_mask & ams_get_alarm_mask(chan->scan_index));
902 }
903
ams_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,int state)904 static int ams_write_event_config(struct iio_dev *indio_dev,
905 const struct iio_chan_spec *chan,
906 enum iio_event_type type,
907 enum iio_event_direction dir,
908 int state)
909 {
910 struct ams *ams = iio_priv(indio_dev);
911 unsigned int alarm;
912
913 alarm = ams_get_alarm_mask(chan->scan_index);
914
915 mutex_lock(&ams->lock);
916
917 if (state)
918 ams->alarm_mask |= alarm;
919 else
920 ams->alarm_mask &= ~alarm;
921
922 ams_update_alarm(ams, ams->alarm_mask);
923
924 mutex_unlock(&ams->lock);
925
926 return 0;
927 }
928
ams_read_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)929 static int ams_read_event_value(struct iio_dev *indio_dev,
930 const struct iio_chan_spec *chan,
931 enum iio_event_type type,
932 enum iio_event_direction dir,
933 enum iio_event_info info, int *val, int *val2)
934 {
935 struct ams *ams = iio_priv(indio_dev);
936 unsigned int offset = ams_get_alarm_offset(chan->scan_index, dir);
937
938 mutex_lock(&ams->lock);
939
940 if (chan->scan_index >= AMS_PS_SEQ_MAX)
941 *val = readl(ams->pl_base + offset);
942 else
943 *val = readl(ams->ps_base + offset);
944
945 mutex_unlock(&ams->lock);
946
947 return IIO_VAL_INT;
948 }
949
ams_write_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)950 static int ams_write_event_value(struct iio_dev *indio_dev,
951 const struct iio_chan_spec *chan,
952 enum iio_event_type type,
953 enum iio_event_direction dir,
954 enum iio_event_info info, int val, int val2)
955 {
956 struct ams *ams = iio_priv(indio_dev);
957 unsigned int offset;
958
959 mutex_lock(&ams->lock);
960
961 /* Set temperature channel threshold to direct threshold */
962 if (chan->type == IIO_TEMP) {
963 offset = ams_get_alarm_offset(chan->scan_index, IIO_EV_DIR_FALLING);
964
965 if (chan->scan_index >= AMS_PS_SEQ_MAX)
966 ams_pl_update_reg(ams, offset,
967 AMS_ALARM_THR_DIRECT_MASK,
968 AMS_ALARM_THR_DIRECT_MASK);
969 else
970 ams_ps_update_reg(ams, offset,
971 AMS_ALARM_THR_DIRECT_MASK,
972 AMS_ALARM_THR_DIRECT_MASK);
973 }
974
975 offset = ams_get_alarm_offset(chan->scan_index, dir);
976 if (chan->scan_index >= AMS_PS_SEQ_MAX)
977 writel(val, ams->pl_base + offset);
978 else
979 writel(val, ams->ps_base + offset);
980
981 mutex_unlock(&ams->lock);
982
983 return 0;
984 }
985
ams_handle_event(struct iio_dev * indio_dev,u32 event)986 static void ams_handle_event(struct iio_dev *indio_dev, u32 event)
987 {
988 const struct iio_chan_spec *chan;
989
990 chan = ams_event_to_channel(indio_dev, event);
991
992 if (chan->type == IIO_TEMP) {
993 /*
994 * The temperature channel only supports over-temperature
995 * events.
996 */
997 iio_push_event(indio_dev,
998 IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
999 IIO_EV_TYPE_THRESH,
1000 IIO_EV_DIR_RISING),
1001 iio_get_time_ns(indio_dev));
1002 } else {
1003 /*
1004 * For other channels we don't know whether it is a upper or
1005 * lower threshold event. Userspace will have to check the
1006 * channel value if it wants to know.
1007 */
1008 iio_push_event(indio_dev,
1009 IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
1010 IIO_EV_TYPE_THRESH,
1011 IIO_EV_DIR_EITHER),
1012 iio_get_time_ns(indio_dev));
1013 }
1014 }
1015
ams_handle_events(struct iio_dev * indio_dev,unsigned long events)1016 static void ams_handle_events(struct iio_dev *indio_dev, unsigned long events)
1017 {
1018 unsigned int bit;
1019
1020 for_each_set_bit(bit, &events, AMS_NO_OF_ALARMS)
1021 ams_handle_event(indio_dev, bit);
1022 }
1023
1024 /**
1025 * ams_unmask_worker - ams alarm interrupt unmask worker
1026 * @work: work to be done
1027 *
1028 * The ZynqMP threshold interrupts are level sensitive. Since we can't make the
1029 * threshold condition go way from within the interrupt handler, this means as
1030 * soon as a threshold condition is present we would enter the interrupt handler
1031 * again and again. To work around this we mask all active threshold interrupts
1032 * in the interrupt handler and start a timer. In this timer we poll the
1033 * interrupt status and only if the interrupt is inactive we unmask it again.
1034 */
ams_unmask_worker(struct work_struct * work)1035 static void ams_unmask_worker(struct work_struct *work)
1036 {
1037 struct ams *ams = container_of(work, struct ams, ams_unmask_work.work);
1038 unsigned int status, unmask;
1039
1040 spin_lock_irq(&ams->intr_lock);
1041
1042 status = readl(ams->base + AMS_ISR_0);
1043
1044 /* Clear those bits which are not active anymore */
1045 unmask = (ams->current_masked_alarm ^ status) & ams->current_masked_alarm;
1046
1047 /* Clear status of disabled alarm */
1048 unmask |= ams->intr_mask;
1049
1050 ams->current_masked_alarm &= status;
1051
1052 /* Also clear those which are masked out anyway */
1053 ams->current_masked_alarm &= ~ams->intr_mask;
1054
1055 /* Clear the interrupts before we unmask them */
1056 writel(unmask, ams->base + AMS_ISR_0);
1057
1058 ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1059
1060 spin_unlock_irq(&ams->intr_lock);
1061
1062 /* If still pending some alarm re-trigger the timer */
1063 if (ams->current_masked_alarm)
1064 schedule_delayed_work(&ams->ams_unmask_work,
1065 msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1066 }
1067
ams_irq(int irq,void * data)1068 static irqreturn_t ams_irq(int irq, void *data)
1069 {
1070 struct iio_dev *indio_dev = data;
1071 struct ams *ams = iio_priv(indio_dev);
1072 u32 isr0;
1073
1074 spin_lock(&ams->intr_lock);
1075
1076 isr0 = readl(ams->base + AMS_ISR_0);
1077
1078 /* Only process alarms that are not masked */
1079 isr0 &= ~((ams->intr_mask & AMS_ISR0_ALARM_MASK) | ams->current_masked_alarm);
1080 if (!isr0) {
1081 spin_unlock(&ams->intr_lock);
1082 return IRQ_NONE;
1083 }
1084
1085 /* Clear interrupt */
1086 writel(isr0, ams->base + AMS_ISR_0);
1087
1088 /* Mask the alarm interrupts until cleared */
1089 ams->current_masked_alarm |= isr0;
1090 ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1091
1092 ams_handle_events(indio_dev, isr0);
1093
1094 schedule_delayed_work(&ams->ams_unmask_work,
1095 msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1096
1097 spin_unlock(&ams->intr_lock);
1098
1099 return IRQ_HANDLED;
1100 }
1101
1102 static const struct iio_event_spec ams_temp_events[] = {
1103 {
1104 .type = IIO_EV_TYPE_THRESH,
1105 .dir = IIO_EV_DIR_RISING,
1106 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
1107 },
1108 };
1109
1110 static const struct iio_event_spec ams_voltage_events[] = {
1111 {
1112 .type = IIO_EV_TYPE_THRESH,
1113 .dir = IIO_EV_DIR_RISING,
1114 .mask_separate = BIT(IIO_EV_INFO_VALUE),
1115 },
1116 {
1117 .type = IIO_EV_TYPE_THRESH,
1118 .dir = IIO_EV_DIR_FALLING,
1119 .mask_separate = BIT(IIO_EV_INFO_VALUE),
1120 },
1121 {
1122 .type = IIO_EV_TYPE_THRESH,
1123 .dir = IIO_EV_DIR_EITHER,
1124 .mask_separate = BIT(IIO_EV_INFO_ENABLE),
1125 },
1126 };
1127
1128 static const struct iio_chan_spec ams_ps_channels[] = {
1129 AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP, "Temp_LPD"),
1130 AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP_REMOTE, AMS_TEMP_REMOTE, "Temp_FPD"),
1131 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, "VCC_PSINTLP"),
1132 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, "VCC_PSINTFP"),
1133 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, "VCC_PSAUX"),
1134 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, "VCC_PSDDR"),
1135 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, "VCC_PSIO3"),
1136 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, "VCC_PSIO0"),
1137 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, "VCC_PSIO1"),
1138 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, "VCC_PSIO2"),
1139 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, "PS_MGTRAVCC"),
1140 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, "PS_MGTRAVTT"),
1141 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, "VCC_PSADC"),
1142 };
1143
1144 static const struct iio_chan_spec ams_pl_channels[] = {
1145 AMS_PL_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP, "Temp_PL"),
1146 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, true, "VCCINT"),
1147 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, true, "VCCAUX"),
1148 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFP, AMS_VREFP, false, "VREFP"),
1149 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFN, AMS_VREFN, false, "VREFN"),
1150 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, true, "VCCBRAM"),
1151 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, true, "VCC_PSINTLP"),
1152 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, true, "VCC_PSINTFP"),
1153 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, true, "VCC_PSAUX"),
1154 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, true, "VCCAMS"),
1155 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VP_VN, AMS_VP_VN, false, "VP_VN"),
1156 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, true, "VUser0"),
1157 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, true, "VUser1"),
1158 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, true, "VUser2"),
1159 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, true, "VUser3"),
1160 AMS_PL_AUX_CHAN_VOLTAGE(0),
1161 AMS_PL_AUX_CHAN_VOLTAGE(1),
1162 AMS_PL_AUX_CHAN_VOLTAGE(2),
1163 AMS_PL_AUX_CHAN_VOLTAGE(3),
1164 AMS_PL_AUX_CHAN_VOLTAGE(4),
1165 AMS_PL_AUX_CHAN_VOLTAGE(5),
1166 AMS_PL_AUX_CHAN_VOLTAGE(6),
1167 AMS_PL_AUX_CHAN_VOLTAGE(7),
1168 AMS_PL_AUX_CHAN_VOLTAGE(8),
1169 AMS_PL_AUX_CHAN_VOLTAGE(9),
1170 AMS_PL_AUX_CHAN_VOLTAGE(10),
1171 AMS_PL_AUX_CHAN_VOLTAGE(11),
1172 AMS_PL_AUX_CHAN_VOLTAGE(12),
1173 AMS_PL_AUX_CHAN_VOLTAGE(13),
1174 AMS_PL_AUX_CHAN_VOLTAGE(14),
1175 AMS_PL_AUX_CHAN_VOLTAGE(15),
1176 };
1177
1178 static const struct iio_chan_spec ams_ctrl_channels[] = {
1179 AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSPLL, AMS_VCC_PSPLL0, "VCC_PSPLL"),
1180 AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSBATT, AMS_VCC_PSPLL3, "VCC_PSBATT"),
1181 AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCINT, AMS_VCCINT, "VCCINT"),
1182 AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCBRAM, AMS_VCCBRAM, "VCCBRAM"),
1183 AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCAUX, AMS_VCCAUX, "VCCAUX"),
1184 AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_PSDDRPLL, AMS_PSDDRPLL, "VCC_PSDDR_PLL"),
1185 AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_INTDDR, AMS_PSINTFPDDR, "VCC_PSINTFP_DDR"),
1186 };
1187
ams_get_ext_chan(struct fwnode_handle * chan_node,struct iio_chan_spec * channels,int num_channels)1188 static int ams_get_ext_chan(struct fwnode_handle *chan_node,
1189 struct iio_chan_spec *channels, int num_channels)
1190 {
1191 struct iio_chan_spec *chan;
1192 struct fwnode_handle *child;
1193 unsigned int reg, ext_chan;
1194 int ret;
1195
1196 fwnode_for_each_child_node(chan_node, child) {
1197 ret = fwnode_property_read_u32(child, "reg", ®);
1198 if (ret || reg > AMS_PL_MAX_EXT_CHANNEL + 30)
1199 continue;
1200
1201 chan = &channels[num_channels];
1202 ext_chan = reg + AMS_PL_MAX_FIXED_CHANNEL - 30;
1203 memcpy(chan, &ams_pl_channels[ext_chan], sizeof(*channels));
1204
1205 if (fwnode_property_read_bool(child, "xlnx,bipolar"))
1206 chan->scan_type.sign = 's';
1207
1208 num_channels++;
1209 }
1210
1211 return num_channels;
1212 }
1213
ams_iounmap_ps(void * data)1214 static void ams_iounmap_ps(void *data)
1215 {
1216 struct ams *ams = data;
1217
1218 iounmap(ams->ps_base);
1219 }
1220
ams_iounmap_pl(void * data)1221 static void ams_iounmap_pl(void *data)
1222 {
1223 struct ams *ams = data;
1224
1225 iounmap(ams->pl_base);
1226 }
1227
ams_init_module(struct iio_dev * indio_dev,struct fwnode_handle * fwnode,struct iio_chan_spec * channels)1228 static int ams_init_module(struct iio_dev *indio_dev,
1229 struct fwnode_handle *fwnode,
1230 struct iio_chan_spec *channels)
1231 {
1232 struct device *dev = indio_dev->dev.parent;
1233 struct ams *ams = iio_priv(indio_dev);
1234 int num_channels = 0;
1235 int ret;
1236
1237 if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-ps")) {
1238 ams->ps_base = fwnode_iomap(fwnode, 0);
1239 if (!ams->ps_base)
1240 return -ENXIO;
1241 ret = devm_add_action_or_reset(dev, ams_iounmap_ps, ams);
1242 if (ret < 0)
1243 return ret;
1244
1245 /* add PS channels to iio device channels */
1246 memcpy(channels, ams_ps_channels, sizeof(ams_ps_channels));
1247 num_channels = ARRAY_SIZE(ams_ps_channels);
1248 } else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-pl")) {
1249 ams->pl_base = fwnode_iomap(fwnode, 0);
1250 if (!ams->pl_base)
1251 return -ENXIO;
1252
1253 ret = devm_add_action_or_reset(dev, ams_iounmap_pl, ams);
1254 if (ret < 0)
1255 return ret;
1256
1257 /* Copy only first 10 fix channels */
1258 memcpy(channels, ams_pl_channels, AMS_PL_MAX_FIXED_CHANNEL * sizeof(*channels));
1259 num_channels += AMS_PL_MAX_FIXED_CHANNEL;
1260 num_channels = ams_get_ext_chan(fwnode, channels,
1261 num_channels);
1262 } else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams")) {
1263 /* add AMS channels to iio device channels */
1264 memcpy(channels, ams_ctrl_channels, sizeof(ams_ctrl_channels));
1265 num_channels += ARRAY_SIZE(ams_ctrl_channels);
1266 } else {
1267 return -EINVAL;
1268 }
1269
1270 return num_channels;
1271 }
1272
ams_parse_firmware(struct iio_dev * indio_dev)1273 static int ams_parse_firmware(struct iio_dev *indio_dev)
1274 {
1275 struct ams *ams = iio_priv(indio_dev);
1276 struct iio_chan_spec *ams_channels, *dev_channels;
1277 struct device *dev = indio_dev->dev.parent;
1278 struct fwnode_handle *fwnode = dev_fwnode(dev);
1279 size_t ams_size;
1280 int ret, ch_cnt = 0, i, rising_off, falling_off;
1281 unsigned int num_channels = 0;
1282
1283 ams_size = ARRAY_SIZE(ams_ps_channels) + ARRAY_SIZE(ams_pl_channels) +
1284 ARRAY_SIZE(ams_ctrl_channels);
1285
1286 /* Initialize buffer for channel specification */
1287 ams_channels = devm_kcalloc(dev, ams_size, sizeof(*ams_channels), GFP_KERNEL);
1288 if (!ams_channels)
1289 return -ENOMEM;
1290
1291 if (fwnode_device_is_available(fwnode)) {
1292 ret = ams_init_module(indio_dev, fwnode, ams_channels);
1293 if (ret < 0)
1294 return ret;
1295
1296 num_channels += ret;
1297 }
1298
1299 device_for_each_child_node_scoped(dev, child) {
1300 ret = ams_init_module(indio_dev, child, ams_channels + num_channels);
1301 if (ret < 0)
1302 return ret;
1303
1304 num_channels += ret;
1305 }
1306
1307 for (i = 0; i < num_channels; i++) {
1308 ams_channels[i].channel = ch_cnt++;
1309
1310 if (ams_channels[i].scan_index < AMS_CTRL_SEQ_BASE) {
1311 /* set threshold to max and min for each channel */
1312 falling_off =
1313 ams_get_alarm_offset(ams_channels[i].scan_index,
1314 IIO_EV_DIR_FALLING);
1315 rising_off =
1316 ams_get_alarm_offset(ams_channels[i].scan_index,
1317 IIO_EV_DIR_RISING);
1318 if (ams_channels[i].scan_index >= AMS_PS_SEQ_MAX) {
1319 writel(AMS_ALARM_THR_MIN,
1320 ams->pl_base + falling_off);
1321 writel(AMS_ALARM_THR_MAX,
1322 ams->pl_base + rising_off);
1323 } else {
1324 writel(AMS_ALARM_THR_MIN,
1325 ams->ps_base + falling_off);
1326 writel(AMS_ALARM_THR_MAX,
1327 ams->ps_base + rising_off);
1328 }
1329 }
1330 }
1331
1332 dev_channels = devm_krealloc_array(dev, ams_channels, num_channels,
1333 sizeof(*dev_channels), GFP_KERNEL);
1334 if (!dev_channels)
1335 return -ENOMEM;
1336
1337 indio_dev->channels = dev_channels;
1338 indio_dev->num_channels = num_channels;
1339
1340 return 0;
1341 }
1342
1343 static const struct iio_info iio_ams_info = {
1344 .read_label = ams_read_label,
1345 .read_raw = &ams_read_raw,
1346 .read_event_config = &ams_read_event_config,
1347 .write_event_config = &ams_write_event_config,
1348 .read_event_value = &ams_read_event_value,
1349 .write_event_value = &ams_write_event_value,
1350 };
1351
1352 static const struct of_device_id ams_of_match_table[] = {
1353 { .compatible = "xlnx,zynqmp-ams" },
1354 { }
1355 };
1356 MODULE_DEVICE_TABLE(of, ams_of_match_table);
1357
ams_probe(struct platform_device * pdev)1358 static int ams_probe(struct platform_device *pdev)
1359 {
1360 struct iio_dev *indio_dev;
1361 struct ams *ams;
1362 int ret;
1363 int irq;
1364
1365 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ams));
1366 if (!indio_dev)
1367 return -ENOMEM;
1368
1369 ams = iio_priv(indio_dev);
1370 mutex_init(&ams->lock);
1371 spin_lock_init(&ams->intr_lock);
1372
1373 indio_dev->name = "xilinx-ams";
1374
1375 indio_dev->info = &iio_ams_info;
1376 indio_dev->modes = INDIO_DIRECT_MODE;
1377
1378 ams->base = devm_platform_ioremap_resource(pdev, 0);
1379 if (IS_ERR(ams->base))
1380 return PTR_ERR(ams->base);
1381
1382 ams->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1383 if (IS_ERR(ams->clk))
1384 return PTR_ERR(ams->clk);
1385
1386 ret = devm_delayed_work_autocancel(&pdev->dev, &ams->ams_unmask_work,
1387 ams_unmask_worker);
1388 if (ret < 0)
1389 return ret;
1390
1391 ret = ams_parse_firmware(indio_dev);
1392 if (ret)
1393 return dev_err_probe(&pdev->dev, ret, "failure in parsing DT\n");
1394
1395 ret = ams_init_device(ams);
1396 if (ret)
1397 return dev_err_probe(&pdev->dev, ret, "failed to initialize AMS\n");
1398
1399 ams_enable_channel_sequence(indio_dev);
1400
1401 irq = platform_get_irq(pdev, 0);
1402 if (irq < 0)
1403 return irq;
1404
1405 ret = devm_request_irq(&pdev->dev, irq, &ams_irq, 0, "ams-irq",
1406 indio_dev);
1407 if (ret < 0)
1408 return dev_err_probe(&pdev->dev, ret, "failed to register interrupt\n");
1409
1410 platform_set_drvdata(pdev, indio_dev);
1411
1412 return devm_iio_device_register(&pdev->dev, indio_dev);
1413 }
1414
ams_suspend(struct device * dev)1415 static int ams_suspend(struct device *dev)
1416 {
1417 struct ams *ams = iio_priv(dev_get_drvdata(dev));
1418
1419 clk_disable_unprepare(ams->clk);
1420
1421 return 0;
1422 }
1423
ams_resume(struct device * dev)1424 static int ams_resume(struct device *dev)
1425 {
1426 struct ams *ams = iio_priv(dev_get_drvdata(dev));
1427
1428 return clk_prepare_enable(ams->clk);
1429 }
1430
1431 static DEFINE_SIMPLE_DEV_PM_OPS(ams_pm_ops, ams_suspend, ams_resume);
1432
1433 static struct platform_driver ams_driver = {
1434 .probe = ams_probe,
1435 .driver = {
1436 .name = "xilinx-ams",
1437 .pm = pm_sleep_ptr(&ams_pm_ops),
1438 .of_match_table = ams_of_match_table,
1439 },
1440 };
1441 module_platform_driver(ams_driver);
1442
1443 MODULE_DESCRIPTION("Xilinx AMS driver");
1444 MODULE_LICENSE("GPL v2");
1445 MODULE_AUTHOR("Xilinx, Inc.");
1446