xref: /freebsd/sys/amd64/vmm/amd/svm.c (revision c18c521c79b6160ce43bb2ca4c2eb42ccf7e6e57)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_bhyve_snapshot.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/reg.h>
40 #include <sys/smr.h>
41 #include <sys/sysctl.h>
42 
43 #include <vm/vm.h>
44 #include <vm/vm_extern.h>
45 #include <vm/pmap.h>
46 
47 #include <machine/cpufunc.h>
48 #include <machine/psl.h>
49 #include <machine/md_var.h>
50 #include <machine/specialreg.h>
51 #include <machine/smp.h>
52 #include <machine/vmm.h>
53 #include <machine/vmm_dev.h>
54 #include <machine/vmm_instruction_emul.h>
55 #include <machine/vmm_snapshot.h>
56 
57 #include <dev/vmm/vmm_ktr.h>
58 #include <dev/vmm/vmm_mem.h>
59 
60 #include "vmm_lapic.h"
61 #include "vmm_stat.h"
62 #include "vmm_ioport.h"
63 #include "vatpic.h"
64 #include "vlapic.h"
65 #include "vlapic_priv.h"
66 
67 #include "x86.h"
68 #include "vmcb.h"
69 #include "svm.h"
70 #include "svm_softc.h"
71 #include "svm_msr.h"
72 #include "npt.h"
73 #include "io/ppt.h"
74 
75 SYSCTL_DECL(_hw_vmm);
76 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
77     NULL);
78 
79 /*
80  * SVM CPUID function 0x8000_000A, edx bit decoding.
81  */
82 #define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
83 #define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
84 #define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
85 #define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
86 #define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
87 #define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
88 #define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
89 #define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
90 #define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
91 #define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
92 #define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
93 
94 #define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
95 				VMCB_CACHE_IOPM		|	\
96 				VMCB_CACHE_I		|	\
97 				VMCB_CACHE_TPR		|	\
98 				VMCB_CACHE_CR2		|	\
99 				VMCB_CACHE_CR		|	\
100 				VMCB_CACHE_DR		|	\
101 				VMCB_CACHE_DT		|	\
102 				VMCB_CACHE_SEG		|	\
103 				VMCB_CACHE_NP)
104 
105 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
106 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
107     0, NULL);
108 
109 static MALLOC_DEFINE(M_SVM, "svm", "svm");
110 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
111 
112 static uint32_t svm_feature = ~0U;	/* AMD SVM features. */
113 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
114     "SVM features advertised by CPUID.8000000AH:EDX");
115 
116 static int disable_npf_assist;
117 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
118     &disable_npf_assist, 0, NULL);
119 
120 /* Maximum ASIDs supported by the processor */
121 static uint32_t nasid;
122 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
123     "Number of ASIDs supported by this processor");
124 
125 /* Current ASID generation for each host cpu */
126 static struct asid asid[MAXCPU];
127 
128 /* SVM host state saved area of size 4KB for each physical core. */
129 static uint8_t *hsave;
130 
131 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
132 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
133 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
134 
135 static int svm_getdesc(void *vcpui, int reg, struct seg_desc *desc);
136 static int svm_setreg(void *vcpui, int ident, uint64_t val);
137 static int svm_getreg(void *vcpui, int ident, uint64_t *val);
138 static __inline int
flush_by_asid(void)139 flush_by_asid(void)
140 {
141 
142 	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
143 }
144 
145 static __inline int
decode_assist(void)146 decode_assist(void)
147 {
148 
149 	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
150 }
151 
152 static void
svm_disable(void * arg __unused)153 svm_disable(void *arg __unused)
154 {
155 	uint64_t efer;
156 
157 	efer = rdmsr(MSR_EFER);
158 	efer &= ~EFER_SVM;
159 	wrmsr(MSR_EFER, efer);
160 }
161 
162 /*
163  * Disable SVM on all CPUs.
164  */
165 static int
svm_modcleanup(void)166 svm_modcleanup(void)
167 {
168 
169 	smp_rendezvous(NULL, svm_disable, NULL, NULL);
170 
171 	if (hsave != NULL)
172 		kmem_free(hsave, (mp_maxid + 1) * PAGE_SIZE);
173 
174 	return (0);
175 }
176 
177 /*
178  * Verify that all the features required by bhyve are available.
179  */
180 static int
check_svm_features(void)181 check_svm_features(void)
182 {
183 	u_int regs[4];
184 
185 	/* CPUID Fn8000_000A is for SVM */
186 	do_cpuid(0x8000000A, regs);
187 	svm_feature &= regs[3];
188 
189 	/*
190 	 * The number of ASIDs can be configured to be less than what is
191 	 * supported by the hardware but not more.
192 	 */
193 	if (nasid == 0 || nasid > regs[1])
194 		nasid = regs[1];
195 	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
196 
197 	/* bhyve requires the Nested Paging feature */
198 	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
199 		printf("SVM: Nested Paging feature not available.\n");
200 		return (ENXIO);
201 	}
202 
203 	/* bhyve requires the NRIP Save feature */
204 	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
205 		printf("SVM: NRIP Save feature not available.\n");
206 		return (ENXIO);
207 	}
208 
209 	return (0);
210 }
211 
212 static void
svm_enable(void * arg __unused)213 svm_enable(void *arg __unused)
214 {
215 	uint64_t efer;
216 
217 	efer = rdmsr(MSR_EFER);
218 	efer |= EFER_SVM;
219 	wrmsr(MSR_EFER, efer);
220 
221 	wrmsr(MSR_VM_HSAVE_PA, vtophys(&hsave[curcpu * PAGE_SIZE]));
222 }
223 
224 /*
225  * Return 1 if SVM is enabled on this processor and 0 otherwise.
226  */
227 static int
svm_available(void)228 svm_available(void)
229 {
230 	uint64_t msr;
231 
232 	/* Section 15.4 Enabling SVM from APM2. */
233 	if ((amd_feature2 & AMDID2_SVM) == 0) {
234 		printf("SVM: not available.\n");
235 		return (0);
236 	}
237 
238 	msr = rdmsr(MSR_VM_CR);
239 	if ((msr & VM_CR_SVMDIS) != 0) {
240 		printf("SVM: disabled by BIOS.\n");
241 		return (0);
242 	}
243 
244 	return (1);
245 }
246 
247 static int
svm_modinit(int ipinum)248 svm_modinit(int ipinum)
249 {
250 	int error, cpu;
251 
252 	if (!svm_available())
253 		return (ENXIO);
254 
255 	error = check_svm_features();
256 	if (error)
257 		return (error);
258 
259 	vmcb_clean &= VMCB_CACHE_DEFAULT;
260 
261 	for (cpu = 0; cpu < MAXCPU; cpu++) {
262 		/*
263 		 * Initialize the host ASIDs to their "highest" valid values.
264 		 *
265 		 * The next ASID allocation will rollover both 'gen' and 'num'
266 		 * and start off the sequence at {1,1}.
267 		 */
268 		asid[cpu].gen = ~0UL;
269 		asid[cpu].num = nasid - 1;
270 	}
271 
272 	svm_msr_init();
273 	svm_npt_init(ipinum);
274 
275 	/* Enable SVM on all CPUs */
276 	hsave = kmem_malloc((mp_maxid + 1) * PAGE_SIZE, M_WAITOK | M_ZERO);
277 	smp_rendezvous(NULL, svm_enable, NULL, NULL);
278 
279 	return (0);
280 }
281 
282 static void
svm_modsuspend(void)283 svm_modsuspend(void)
284 {
285 }
286 
287 static void
svm_modresume(void)288 svm_modresume(void)
289 {
290 
291 	svm_enable(NULL);
292 }
293 
294 #ifdef BHYVE_SNAPSHOT
295 void
svm_set_tsc_offset(struct svm_vcpu * vcpu,uint64_t offset)296 svm_set_tsc_offset(struct svm_vcpu *vcpu, uint64_t offset)
297 {
298 	struct vmcb_ctrl *ctrl;
299 
300 	ctrl = svm_get_vmcb_ctrl(vcpu);
301 	ctrl->tsc_offset = offset;
302 
303 	svm_set_dirty(vcpu, VMCB_CACHE_I);
304 	SVM_CTR1(vcpu, "tsc offset changed to %#lx", offset);
305 
306 	vm_set_tsc_offset(vcpu->vcpu, offset);
307 }
308 #endif
309 
310 /* Pentium compatible MSRs */
311 #define MSR_PENTIUM_START 	0
312 #define MSR_PENTIUM_END 	0x1FFF
313 /* AMD 6th generation and Intel compatible MSRs */
314 #define MSR_AMD6TH_START 	0xC0000000UL
315 #define MSR_AMD6TH_END 		0xC0001FFFUL
316 /* AMD 7th and 8th generation compatible MSRs */
317 #define MSR_AMD7TH_START 	0xC0010000UL
318 #define MSR_AMD7TH_END 		0xC0011FFFUL
319 
320 static void
svm_get_cs_info(struct vmcb * vmcb,struct vm_guest_paging * paging,int * cs_d,uint64_t * base)321 svm_get_cs_info(struct vmcb *vmcb, struct vm_guest_paging *paging, int *cs_d,
322     uint64_t *base)
323 {
324 	struct vmcb_segment seg;
325 	int error __diagused;
326 
327 	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
328 	KASSERT(error == 0, ("%s: vmcb_seg error %d", __func__, error));
329 
330 	switch (paging->cpu_mode) {
331 	case CPU_MODE_REAL:
332 		*base = seg.base;
333 		*cs_d = 0;
334 		break;
335 	case CPU_MODE_PROTECTED:
336 	case CPU_MODE_COMPATIBILITY:
337 		*cs_d = !!(seg.attrib & VMCB_CS_ATTRIB_D);
338 		*base = seg.base;
339 		break;
340 	default:
341 		*base = 0;
342 		*cs_d = 0;
343 		break;
344 	}
345 }
346 
347 /*
348  * Get the index and bit position for a MSR in permission bitmap.
349  * Two bits are used for each MSR: lower bit for read and higher bit for write.
350  */
351 static int
svm_msr_index(uint64_t msr,int * index,int * bit)352 svm_msr_index(uint64_t msr, int *index, int *bit)
353 {
354 	uint32_t base, off;
355 
356 	*index = -1;
357 	*bit = (msr % 4) * 2;
358 	base = 0;
359 
360 	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
361 		*index = msr / 4;
362 		return (0);
363 	}
364 
365 	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
366 	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
367 		off = (msr - MSR_AMD6TH_START);
368 		*index = (off + base) / 4;
369 		return (0);
370 	}
371 
372 	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
373 	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
374 		off = (msr - MSR_AMD7TH_START);
375 		*index = (off + base) / 4;
376 		return (0);
377 	}
378 
379 	return (EINVAL);
380 }
381 
382 /*
383  * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
384  */
385 static void
svm_msr_perm(uint8_t * perm_bitmap,uint64_t msr,bool read,bool write)386 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
387 {
388 	int index, bit, error __diagused;
389 
390 	error = svm_msr_index(msr, &index, &bit);
391 	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
392 	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
393 	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
394 	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
395 	    "msr %#lx", __func__, bit, msr));
396 
397 	if (read)
398 		perm_bitmap[index] &= ~(1UL << bit);
399 
400 	if (write)
401 		perm_bitmap[index] &= ~(2UL << bit);
402 }
403 
404 static void
svm_msr_rw_ok(uint8_t * perm_bitmap,uint64_t msr)405 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
406 {
407 
408 	svm_msr_perm(perm_bitmap, msr, true, true);
409 }
410 
411 static void
svm_msr_rd_ok(uint8_t * perm_bitmap,uint64_t msr)412 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
413 {
414 
415 	svm_msr_perm(perm_bitmap, msr, true, false);
416 }
417 
418 static __inline int
svm_get_intercept(struct svm_vcpu * vcpu,int idx,uint32_t bitmask)419 svm_get_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask)
420 {
421 	struct vmcb_ctrl *ctrl;
422 
423 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
424 
425 	ctrl = svm_get_vmcb_ctrl(vcpu);
426 	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
427 }
428 
429 static __inline void
svm_set_intercept(struct svm_vcpu * vcpu,int idx,uint32_t bitmask,int enabled)430 svm_set_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask, int enabled)
431 {
432 	struct vmcb_ctrl *ctrl;
433 	uint32_t oldval;
434 
435 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
436 
437 	ctrl = svm_get_vmcb_ctrl(vcpu);
438 	oldval = ctrl->intercept[idx];
439 
440 	if (enabled)
441 		ctrl->intercept[idx] |= bitmask;
442 	else
443 		ctrl->intercept[idx] &= ~bitmask;
444 
445 	if (ctrl->intercept[idx] != oldval) {
446 		svm_set_dirty(vcpu, VMCB_CACHE_I);
447 		SVM_CTR3(vcpu, "intercept[%d] modified from %#x to %#x", idx,
448 		    oldval, ctrl->intercept[idx]);
449 	}
450 }
451 
452 static __inline void
svm_disable_intercept(struct svm_vcpu * vcpu,int off,uint32_t bitmask)453 svm_disable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
454 {
455 
456 	svm_set_intercept(vcpu, off, bitmask, 0);
457 }
458 
459 static __inline void
svm_enable_intercept(struct svm_vcpu * vcpu,int off,uint32_t bitmask)460 svm_enable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
461 {
462 
463 	svm_set_intercept(vcpu, off, bitmask, 1);
464 }
465 
466 static void
vmcb_init(struct svm_softc * sc,struct svm_vcpu * vcpu,uint64_t iopm_base_pa,uint64_t msrpm_base_pa,uint64_t np_pml4)467 vmcb_init(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t iopm_base_pa,
468     uint64_t msrpm_base_pa, uint64_t np_pml4)
469 {
470 	struct vmcb_ctrl *ctrl;
471 	struct vmcb_state *state;
472 	uint32_t mask;
473 	int n;
474 
475 	ctrl = svm_get_vmcb_ctrl(vcpu);
476 	state = svm_get_vmcb_state(vcpu);
477 
478 	ctrl->iopm_base_pa = iopm_base_pa;
479 	ctrl->msrpm_base_pa = msrpm_base_pa;
480 
481 	/* Enable nested paging */
482 	ctrl->np_enable = 1;
483 	ctrl->n_cr3 = np_pml4;
484 
485 	/*
486 	 * Intercept accesses to the control registers that are not shadowed
487 	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
488 	 */
489 	for (n = 0; n < 16; n++) {
490 		mask = (BIT(n) << 16) | BIT(n);
491 		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
492 			svm_disable_intercept(vcpu, VMCB_CR_INTCPT, mask);
493 		else
494 			svm_enable_intercept(vcpu, VMCB_CR_INTCPT, mask);
495 	}
496 
497 	/*
498 	 * Intercept everything when tracing guest exceptions otherwise
499 	 * just intercept machine check exception.
500 	 */
501 	if (vcpu_trace_exceptions(vcpu->vcpu)) {
502 		for (n = 0; n < 32; n++) {
503 			/*
504 			 * Skip unimplemented vectors in the exception bitmap.
505 			 */
506 			if (n == 2 || n == 9) {
507 				continue;
508 			}
509 			svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(n));
510 		}
511 	} else {
512 		svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
513 	}
514 
515 	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
516 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
517 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
518 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
519 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
520 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
521 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
522 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
523 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
524 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_FERR_FREEZE);
525 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVD);
526 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVLPGA);
527 
528 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
529 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
530 
531 	/*
532 	 * Intercept SVM instructions since AMD enables them in guests otherwise.
533 	 * Non-intercepted VMMCALL causes #UD, skip it.
534 	 */
535 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMLOAD);
536 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMSAVE);
537 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_STGI);
538 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_CLGI);
539 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_SKINIT);
540 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_ICEBP);
541 	if (vcpu_trap_wbinvd(vcpu->vcpu)) {
542 		svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT,
543 		    VMCB_INTCPT_WBINVD);
544 	}
545 
546 	/*
547 	 * From section "Canonicalization and Consistency Checks" in APMv2
548 	 * the VMRUN intercept bit must be set to pass the consistency check.
549 	 */
550 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
551 
552 	/*
553 	 * The ASID will be set to a non-zero value just before VMRUN.
554 	 */
555 	ctrl->asid = 0;
556 
557 	/*
558 	 * Section 15.21.1, Interrupt Masking in EFLAGS
559 	 * Section 15.21.2, Virtualizing APIC.TPR
560 	 *
561 	 * This must be set for %rflag and %cr8 isolation of guest and host.
562 	 */
563 	ctrl->v_intr_masking = 1;
564 
565 	/* Enable Last Branch Record aka LBR for debugging */
566 	ctrl->lbr_virt_en = 1;
567 	state->dbgctl = BIT(0);
568 
569 	/* EFER_SVM must always be set when the guest is executing */
570 	state->efer = EFER_SVM;
571 
572 	/* Set up the PAT to power-on state */
573 	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
574 	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
575 	    PAT_VALUE(2, PAT_UNCACHED)		|
576 	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
577 	    PAT_VALUE(4, PAT_WRITE_BACK)	|
578 	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
579 	    PAT_VALUE(6, PAT_UNCACHED)		|
580 	    PAT_VALUE(7, PAT_UNCACHEABLE);
581 
582 	/* Set up DR6/7 to power-on state */
583 	state->dr6 = DBREG_DR6_RESERVED1;
584 	state->dr7 = DBREG_DR7_RESERVED1;
585 }
586 
587 /*
588  * Initialize a virtual machine.
589  */
590 static void *
svm_init(struct vm * vm,pmap_t pmap)591 svm_init(struct vm *vm, pmap_t pmap)
592 {
593 	struct svm_softc *svm_sc;
594 
595 	svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO);
596 
597 	svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM,
598 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
599 	if (svm_sc->msr_bitmap == NULL)
600 		panic("contigmalloc of SVM MSR bitmap failed");
601 	svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM,
602 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
603 	if (svm_sc->iopm_bitmap == NULL)
604 		panic("contigmalloc of SVM IO bitmap failed");
605 
606 	svm_sc->vm = vm;
607 	svm_sc->nptp = vtophys(pmap->pm_pmltop);
608 
609 	/*
610 	 * Intercept read and write accesses to all MSRs.
611 	 */
612 	memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE);
613 
614 	/*
615 	 * Access to the following MSRs is redirected to the VMCB when the
616 	 * guest is executing. Therefore it is safe to allow the guest to
617 	 * read/write these MSRs directly without hypervisor involvement.
618 	 */
619 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
620 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
621 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
622 
623 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
624 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
625 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
626 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
627 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
628 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
629 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
630 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
631 
632 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
633 
634 	/*
635 	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
636 	 */
637 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
638 
639 	/* Intercept access to all I/O ports. */
640 	memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE);
641 
642 	return (svm_sc);
643 }
644 
645 static void *
svm_vcpu_init(void * vmi,struct vcpu * vcpu1,int vcpuid)646 svm_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
647 {
648 	struct svm_softc *sc = vmi;
649 	struct svm_vcpu *vcpu;
650 
651 	vcpu = malloc(sizeof(*vcpu), M_SVM, M_WAITOK | M_ZERO);
652 	vcpu->sc = sc;
653 	vcpu->vcpu = vcpu1;
654 	vcpu->vcpuid = vcpuid;
655 	vcpu->vmcb = malloc_aligned(sizeof(struct vmcb), PAGE_SIZE, M_SVM,
656 	    M_WAITOK | M_ZERO);
657 	vcpu->nextrip = ~0;
658 	vcpu->lastcpu = NOCPU;
659 	vcpu->vmcb_pa = vtophys(vcpu->vmcb);
660 	vmcb_init(sc, vcpu, vtophys(sc->iopm_bitmap), vtophys(sc->msr_bitmap),
661 	    sc->nptp);
662 	svm_msr_guest_init(sc, vcpu);
663 	return (vcpu);
664 }
665 
666 /*
667  * Collateral for a generic SVM VM-exit.
668  */
669 static void
vm_exit_svm(struct vm_exit * vme,uint64_t code,uint64_t info1,uint64_t info2)670 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
671 {
672 
673 	vme->exitcode = VM_EXITCODE_SVM;
674 	vme->u.svm.exitcode = code;
675 	vme->u.svm.exitinfo1 = info1;
676 	vme->u.svm.exitinfo2 = info2;
677 }
678 
679 static int
svm_cpl(struct vmcb_state * state)680 svm_cpl(struct vmcb_state *state)
681 {
682 
683 	/*
684 	 * From APMv2:
685 	 *   "Retrieve the CPL from the CPL field in the VMCB, not
686 	 *    from any segment DPL"
687 	 */
688 	return (state->cpl);
689 }
690 
691 static enum vm_cpu_mode
svm_vcpu_mode(struct vmcb * vmcb)692 svm_vcpu_mode(struct vmcb *vmcb)
693 {
694 	struct vmcb_segment seg;
695 	struct vmcb_state *state;
696 	int error __diagused;
697 
698 	state = &vmcb->state;
699 
700 	if (state->efer & EFER_LMA) {
701 		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
702 		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
703 		    error));
704 
705 		/*
706 		 * Section 4.8.1 for APM2, check if Code Segment has
707 		 * Long attribute set in descriptor.
708 		 */
709 		if (seg.attrib & VMCB_CS_ATTRIB_L)
710 			return (CPU_MODE_64BIT);
711 		else
712 			return (CPU_MODE_COMPATIBILITY);
713 	} else  if (state->cr0 & CR0_PE) {
714 		return (CPU_MODE_PROTECTED);
715 	} else {
716 		return (CPU_MODE_REAL);
717 	}
718 }
719 
720 static enum vm_paging_mode
svm_paging_mode(uint64_t cr0,uint64_t cr4,uint64_t efer)721 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
722 {
723 
724 	if ((cr0 & CR0_PG) == 0)
725 		return (PAGING_MODE_FLAT);
726 	if ((cr4 & CR4_PAE) == 0)
727 		return (PAGING_MODE_32);
728 	if (efer & EFER_LME)
729 		return (PAGING_MODE_64);
730 	else
731 		return (PAGING_MODE_PAE);
732 }
733 
734 /*
735  * ins/outs utility routines
736  */
737 static uint64_t
svm_inout_str_index(struct svm_regctx * regs,int in)738 svm_inout_str_index(struct svm_regctx *regs, int in)
739 {
740 	uint64_t val;
741 
742 	val = in ? regs->sctx_rdi : regs->sctx_rsi;
743 
744 	return (val);
745 }
746 
747 static uint64_t
svm_inout_str_count(struct svm_regctx * regs,int rep)748 svm_inout_str_count(struct svm_regctx *regs, int rep)
749 {
750 	uint64_t val;
751 
752 	val = rep ? regs->sctx_rcx : 1;
753 
754 	return (val);
755 }
756 
757 static void
svm_inout_str_seginfo(struct svm_vcpu * vcpu,int64_t info1,int in,struct vm_inout_str * vis)758 svm_inout_str_seginfo(struct svm_vcpu *vcpu, int64_t info1, int in,
759     struct vm_inout_str *vis)
760 {
761 	int error __diagused, s;
762 
763 	if (in) {
764 		vis->seg_name = VM_REG_GUEST_ES;
765 	} else if (decode_assist()) {
766 		/*
767 		 * The effective segment number in EXITINFO1[12:10] is populated
768 		 * only if the processor has the DecodeAssist capability.
769 		 *
770 		 * XXX this is not specified explicitly in APMv2 but can be
771 		 * verified empirically.
772 		 */
773 		s = (info1 >> 10) & 0x7;
774 
775 		/* The segment field has standard encoding */
776 		vis->seg_name = vm_segment_name(s);
777 	} else {
778 		/*
779 		 * The segment register need to be manually decoded by fetching
780 		 * the instructions near ip. However, we are unable to fetch it
781 		 * while the interrupts are disabled. Therefore, we leave the
782 		 * value unset until the generic ins/outs handler runs.
783 		 */
784 		vis->seg_name = VM_REG_LAST;
785 		svm_get_cs_info(vcpu->vmcb, &vis->paging, &vis->cs_d,
786 		    &vis->cs_base);
787 		return;
788 	}
789 
790 	error = svm_getdesc(vcpu, vis->seg_name, &vis->seg_desc);
791 	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
792 }
793 
794 static int
svm_inout_str_addrsize(uint64_t info1)795 svm_inout_str_addrsize(uint64_t info1)
796 {
797         uint32_t size;
798 
799         size = (info1 >> 7) & 0x7;
800         switch (size) {
801         case 1:
802                 return (2);     /* 16 bit */
803         case 2:
804                 return (4);     /* 32 bit */
805         case 4:
806                 return (8);     /* 64 bit */
807         default:
808                 panic("%s: invalid size encoding %d", __func__, size);
809         }
810 }
811 
812 static void
svm_paging_info(struct vmcb * vmcb,struct vm_guest_paging * paging)813 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
814 {
815 	struct vmcb_state *state;
816 
817 	state = &vmcb->state;
818 	paging->cr3 = state->cr3;
819 	paging->cpl = svm_cpl(state);
820 	paging->cpu_mode = svm_vcpu_mode(vmcb);
821 	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
822 	    state->efer);
823 }
824 
825 #define	UNHANDLED 0
826 
827 /*
828  * Handle guest I/O intercept.
829  */
830 static int
svm_handle_io(struct svm_vcpu * vcpu,struct vm_exit * vmexit)831 svm_handle_io(struct svm_vcpu *vcpu, struct vm_exit *vmexit)
832 {
833 	struct vmcb_ctrl *ctrl;
834 	struct vmcb_state *state;
835 	struct svm_regctx *regs;
836 	struct vm_inout_str *vis;
837 	uint64_t info1;
838 	int inout_string;
839 
840 	state = svm_get_vmcb_state(vcpu);
841 	ctrl  = svm_get_vmcb_ctrl(vcpu);
842 	regs  = svm_get_guest_regctx(vcpu);
843 
844 	info1 = ctrl->exitinfo1;
845 	inout_string = info1 & BIT(2) ? 1 : 0;
846 
847 	vmexit->exitcode 	= VM_EXITCODE_INOUT;
848 	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
849 	vmexit->u.inout.string 	= inout_string;
850 	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
851 	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
852 	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
853 	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
854 
855 	if (inout_string) {
856 		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
857 		vis = &vmexit->u.inout_str;
858 		svm_paging_info(svm_get_vmcb(vcpu), &vis->paging);
859 		vis->rflags = state->rflags;
860 		vis->cr0 = state->cr0;
861 		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
862 		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
863 		vis->addrsize = svm_inout_str_addrsize(info1);
864 		vis->cs_d = 0;
865 		vis->cs_base = 0;
866 		svm_inout_str_seginfo(vcpu, info1, vmexit->u.inout.in, vis);
867 	}
868 
869 	return (UNHANDLED);
870 }
871 
872 static int
npf_fault_type(uint64_t exitinfo1)873 npf_fault_type(uint64_t exitinfo1)
874 {
875 
876 	if (exitinfo1 & VMCB_NPF_INFO1_W)
877 		return (VM_PROT_WRITE);
878 	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
879 		return (VM_PROT_EXECUTE);
880 	else
881 		return (VM_PROT_READ);
882 }
883 
884 static bool
svm_npf_emul_fault(uint64_t exitinfo1)885 svm_npf_emul_fault(uint64_t exitinfo1)
886 {
887 
888 	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
889 		return (false);
890 	}
891 
892 	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
893 		return (false);
894 	}
895 
896 	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
897 		return (false);
898 	}
899 
900 	return (true);
901 }
902 
903 static void
svm_handle_inst_emul(struct vmcb * vmcb,uint64_t gpa,struct vm_exit * vmexit)904 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
905 {
906 	struct vm_guest_paging *paging;
907 	struct vmcb_ctrl *ctrl;
908 	char *inst_bytes;
909 	int inst_len;
910 
911 	ctrl = &vmcb->ctrl;
912 	paging = &vmexit->u.inst_emul.paging;
913 
914 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
915 	vmexit->u.inst_emul.gpa = gpa;
916 	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
917 	svm_paging_info(vmcb, paging);
918 
919 	svm_get_cs_info(vmcb, paging, &vmexit->u.inst_emul.cs_d,
920 	    &vmexit->u.inst_emul.cs_base);
921 
922 	/*
923 	 * Copy the instruction bytes into 'vie' if available.
924 	 */
925 	if (decode_assist() && !disable_npf_assist) {
926 		inst_len = ctrl->inst_len;
927 		inst_bytes = ctrl->inst_bytes;
928 	} else {
929 		inst_len = 0;
930 		inst_bytes = NULL;
931 	}
932 	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
933 }
934 
935 #ifdef KTR
936 static const char *
intrtype_to_str(int intr_type)937 intrtype_to_str(int intr_type)
938 {
939 	switch (intr_type) {
940 	case VMCB_EVENTINJ_TYPE_INTR:
941 		return ("hwintr");
942 	case VMCB_EVENTINJ_TYPE_NMI:
943 		return ("nmi");
944 	case VMCB_EVENTINJ_TYPE_INTn:
945 		return ("swintr");
946 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
947 		return ("exception");
948 	default:
949 		panic("%s: unknown intr_type %d", __func__, intr_type);
950 	}
951 }
952 #endif
953 
954 /*
955  * Inject an event to vcpu as described in section 15.20, "Event injection".
956  */
957 static void
svm_eventinject(struct svm_vcpu * vcpu,int intr_type,int vector,uint32_t error,bool ec_valid)958 svm_eventinject(struct svm_vcpu *vcpu, int intr_type, int vector,
959     uint32_t error, bool ec_valid)
960 {
961 	struct vmcb_ctrl *ctrl;
962 
963 	ctrl = svm_get_vmcb_ctrl(vcpu);
964 
965 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
966 	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
967 
968 	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
969 	    __func__, vector));
970 
971 	switch (intr_type) {
972 	case VMCB_EVENTINJ_TYPE_INTR:
973 	case VMCB_EVENTINJ_TYPE_NMI:
974 	case VMCB_EVENTINJ_TYPE_INTn:
975 		break;
976 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
977 		if (vector >= 0 && vector <= 31 && vector != 2)
978 			break;
979 		/* FALLTHROUGH */
980 	default:
981 		panic("%s: invalid intr_type/vector: %d/%d", __func__,
982 		    intr_type, vector);
983 	}
984 	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
985 	if (ec_valid) {
986 		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
987 		ctrl->eventinj |= (uint64_t)error << 32;
988 		SVM_CTR3(vcpu, "Injecting %s at vector %d errcode %#x",
989 		    intrtype_to_str(intr_type), vector, error);
990 	} else {
991 		SVM_CTR2(vcpu, "Injecting %s at vector %d",
992 		    intrtype_to_str(intr_type), vector);
993 	}
994 }
995 
996 static void
svm_update_virqinfo(struct svm_vcpu * vcpu)997 svm_update_virqinfo(struct svm_vcpu *vcpu)
998 {
999 	struct vlapic *vlapic;
1000 	struct vmcb_ctrl *ctrl;
1001 
1002 	vlapic = vm_lapic(vcpu->vcpu);
1003 	ctrl = svm_get_vmcb_ctrl(vcpu);
1004 
1005 	/* Update %cr8 in the emulated vlapic */
1006 	vlapic_set_cr8(vlapic, ctrl->v_tpr);
1007 
1008 	/* Virtual interrupt injection is not used. */
1009 	KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid "
1010 	    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
1011 }
1012 
1013 static void
svm_save_intinfo(struct svm_softc * svm_sc,struct svm_vcpu * vcpu)1014 svm_save_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
1015 {
1016 	struct vmcb_ctrl *ctrl;
1017 	uint64_t intinfo;
1018 
1019 	ctrl = svm_get_vmcb_ctrl(vcpu);
1020 	intinfo = ctrl->exitintinfo;
1021 	if (!VMCB_EXITINTINFO_VALID(intinfo))
1022 		return;
1023 
1024 	/*
1025 	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
1026 	 *
1027 	 * If a #VMEXIT happened during event delivery then record the event
1028 	 * that was being delivered.
1029 	 */
1030 	SVM_CTR2(vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", intinfo,
1031 	    VMCB_EXITINTINFO_VECTOR(intinfo));
1032 	vmm_stat_incr(vcpu->vcpu, VCPU_EXITINTINFO, 1);
1033 	vm_exit_intinfo(vcpu->vcpu, intinfo);
1034 }
1035 
1036 #ifdef INVARIANTS
1037 static __inline int
vintr_intercept_enabled(struct svm_vcpu * vcpu)1038 vintr_intercept_enabled(struct svm_vcpu *vcpu)
1039 {
1040 
1041 	return (svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR));
1042 }
1043 #endif
1044 
1045 static __inline void
enable_intr_window_exiting(struct svm_vcpu * vcpu)1046 enable_intr_window_exiting(struct svm_vcpu *vcpu)
1047 {
1048 	struct vmcb_ctrl *ctrl;
1049 
1050 	ctrl = svm_get_vmcb_ctrl(vcpu);
1051 
1052 	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
1053 		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
1054 		KASSERT(vintr_intercept_enabled(vcpu),
1055 		    ("%s: vintr intercept should be enabled", __func__));
1056 		return;
1057 	}
1058 
1059 	SVM_CTR0(vcpu, "Enable intr window exiting");
1060 	ctrl->v_irq = 1;
1061 	ctrl->v_ign_tpr = 1;
1062 	ctrl->v_intr_vector = 0;
1063 	svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1064 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1065 }
1066 
1067 static __inline void
disable_intr_window_exiting(struct svm_vcpu * vcpu)1068 disable_intr_window_exiting(struct svm_vcpu *vcpu)
1069 {
1070 	struct vmcb_ctrl *ctrl;
1071 
1072 	ctrl = svm_get_vmcb_ctrl(vcpu);
1073 
1074 	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1075 		KASSERT(!vintr_intercept_enabled(vcpu),
1076 		    ("%s: vintr intercept should be disabled", __func__));
1077 		return;
1078 	}
1079 
1080 	SVM_CTR0(vcpu, "Disable intr window exiting");
1081 	ctrl->v_irq = 0;
1082 	ctrl->v_intr_vector = 0;
1083 	svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1084 	svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1085 }
1086 
1087 static int
svm_modify_intr_shadow(struct svm_vcpu * vcpu,uint64_t val)1088 svm_modify_intr_shadow(struct svm_vcpu *vcpu, uint64_t val)
1089 {
1090 	struct vmcb_ctrl *ctrl;
1091 	int oldval, newval;
1092 
1093 	ctrl = svm_get_vmcb_ctrl(vcpu);
1094 	oldval = ctrl->intr_shadow;
1095 	newval = val ? 1 : 0;
1096 	if (newval != oldval) {
1097 		ctrl->intr_shadow = newval;
1098 		SVM_CTR1(vcpu, "Setting intr_shadow to %d", newval);
1099 	}
1100 	return (0);
1101 }
1102 
1103 static int
svm_get_intr_shadow(struct svm_vcpu * vcpu,uint64_t * val)1104 svm_get_intr_shadow(struct svm_vcpu *vcpu, uint64_t *val)
1105 {
1106 	struct vmcb_ctrl *ctrl;
1107 
1108 	ctrl = svm_get_vmcb_ctrl(vcpu);
1109 	*val = ctrl->intr_shadow;
1110 	return (0);
1111 }
1112 
1113 /*
1114  * Once an NMI is injected it blocks delivery of further NMIs until the handler
1115  * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1116  * to track when the vcpu is done handling the NMI.
1117  */
1118 static int
nmi_blocked(struct svm_vcpu * vcpu)1119 nmi_blocked(struct svm_vcpu *vcpu)
1120 {
1121 	int blocked;
1122 
1123 	blocked = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1124 	return (blocked);
1125 }
1126 
1127 static void
enable_nmi_blocking(struct svm_vcpu * vcpu)1128 enable_nmi_blocking(struct svm_vcpu *vcpu)
1129 {
1130 
1131 	KASSERT(!nmi_blocked(vcpu), ("vNMI already blocked"));
1132 	SVM_CTR0(vcpu, "vNMI blocking enabled");
1133 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1134 }
1135 
1136 static void
clear_nmi_blocking(struct svm_vcpu * vcpu)1137 clear_nmi_blocking(struct svm_vcpu *vcpu)
1138 {
1139 	int error __diagused;
1140 
1141 	KASSERT(nmi_blocked(vcpu), ("vNMI already unblocked"));
1142 	SVM_CTR0(vcpu, "vNMI blocking cleared");
1143 	/*
1144 	 * When the IRET intercept is cleared the vcpu will attempt to execute
1145 	 * the "iret" when it runs next. However, it is possible to inject
1146 	 * another NMI into the vcpu before the "iret" has actually executed.
1147 	 *
1148 	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1149 	 * it will trap back into the hypervisor. If an NMI is pending for
1150 	 * the vcpu it will be injected into the guest.
1151 	 *
1152 	 * XXX this needs to be fixed
1153 	 */
1154 	svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1155 
1156 	/*
1157 	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1158 	 * immediate VMRUN.
1159 	 */
1160 	error = svm_modify_intr_shadow(vcpu, 1);
1161 	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1162 }
1163 
1164 #define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1165 
1166 static int
svm_write_efer(struct svm_softc * sc,struct svm_vcpu * vcpu,uint64_t newval,bool * retu)1167 svm_write_efer(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t newval,
1168     bool *retu)
1169 {
1170 	struct vm_exit *vme;
1171 	struct vmcb_state *state;
1172 	uint64_t changed, lma, oldval;
1173 	int error __diagused;
1174 
1175 	state = svm_get_vmcb_state(vcpu);
1176 
1177 	oldval = state->efer;
1178 	SVM_CTR2(vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1179 
1180 	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1181 	changed = oldval ^ newval;
1182 
1183 	if (newval & EFER_MBZ_BITS)
1184 		goto gpf;
1185 
1186 	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1187 	if (changed & EFER_LME) {
1188 		if (state->cr0 & CR0_PG)
1189 			goto gpf;
1190 	}
1191 
1192 	/* EFER.LMA = EFER.LME & CR0.PG */
1193 	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1194 		lma = EFER_LMA;
1195 	else
1196 		lma = 0;
1197 
1198 	if ((newval & EFER_LMA) != lma)
1199 		goto gpf;
1200 
1201 	if (newval & EFER_NXE) {
1202 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_NO_EXECUTE))
1203 			goto gpf;
1204 	}
1205 
1206 	/*
1207 	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1208 	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1209 	 */
1210 	if (newval & EFER_LMSLE) {
1211 		vme = vm_exitinfo(vcpu->vcpu);
1212 		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1213 		*retu = true;
1214 		return (0);
1215 	}
1216 
1217 	if (newval & EFER_FFXSR) {
1218 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_FFXSR))
1219 			goto gpf;
1220 	}
1221 
1222 	if (newval & EFER_TCE) {
1223 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_TCE))
1224 			goto gpf;
1225 	}
1226 
1227 	error = svm_setreg(vcpu, VM_REG_GUEST_EFER, newval);
1228 	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1229 	return (0);
1230 gpf:
1231 	vm_inject_gp(vcpu->vcpu);
1232 	return (0);
1233 }
1234 
1235 static int
emulate_wrmsr(struct svm_softc * sc,struct svm_vcpu * vcpu,u_int num,uint64_t val,bool * retu)1236 emulate_wrmsr(struct svm_softc *sc, struct svm_vcpu *vcpu, u_int num,
1237     uint64_t val, bool *retu)
1238 {
1239 	int error;
1240 
1241 	if (lapic_msr(num))
1242 		error = lapic_wrmsr(vcpu->vcpu, num, val, retu);
1243 	else if (num == MSR_EFER)
1244 		error = svm_write_efer(sc, vcpu, val, retu);
1245 	else
1246 		error = svm_wrmsr(vcpu, num, val, retu);
1247 
1248 	return (error);
1249 }
1250 
1251 static int
emulate_rdmsr(struct svm_vcpu * vcpu,u_int num,bool * retu)1252 emulate_rdmsr(struct svm_vcpu *vcpu, u_int num, bool *retu)
1253 {
1254 	struct vmcb_state *state;
1255 	struct svm_regctx *ctx;
1256 	uint64_t result;
1257 	int error;
1258 
1259 	if (lapic_msr(num))
1260 		error = lapic_rdmsr(vcpu->vcpu, num, &result, retu);
1261 	else
1262 		error = svm_rdmsr(vcpu, num, &result, retu);
1263 
1264 	if (error == 0) {
1265 		state = svm_get_vmcb_state(vcpu);
1266 		ctx = svm_get_guest_regctx(vcpu);
1267 		state->rax = result & 0xffffffff;
1268 		ctx->sctx_rdx = result >> 32;
1269 	}
1270 
1271 	return (error);
1272 }
1273 
1274 #ifdef KTR
1275 static const char *
exit_reason_to_str(uint64_t reason)1276 exit_reason_to_str(uint64_t reason)
1277 {
1278 	int i;
1279 	static char reasonbuf[32];
1280 	static const struct {
1281 		int reason;
1282 		const char *str;
1283 	} reasons[] = {
1284 		{ .reason = VMCB_EXIT_INVALID,	.str = "invalvmcb" },
1285 		{ .reason = VMCB_EXIT_SHUTDOWN,	.str = "shutdown" },
1286 		{ .reason = VMCB_EXIT_NPF, 	.str = "nptfault" },
1287 		{ .reason = VMCB_EXIT_PAUSE,	.str = "pause" },
1288 		{ .reason = VMCB_EXIT_HLT,	.str = "hlt" },
1289 		{ .reason = VMCB_EXIT_CPUID,	.str = "cpuid" },
1290 		{ .reason = VMCB_EXIT_IO,	.str = "inout" },
1291 		{ .reason = VMCB_EXIT_MC,	.str = "mchk" },
1292 		{ .reason = VMCB_EXIT_INTR,	.str = "extintr" },
1293 		{ .reason = VMCB_EXIT_NMI,	.str = "nmi" },
1294 		{ .reason = VMCB_EXIT_VINTR,	.str = "vintr" },
1295 		{ .reason = VMCB_EXIT_MSR,	.str = "msr" },
1296 		{ .reason = VMCB_EXIT_IRET,	.str = "iret" },
1297 		{ .reason = VMCB_EXIT_MONITOR,	.str = "monitor" },
1298 		{ .reason = VMCB_EXIT_MWAIT,	.str = "mwait" },
1299 		{ .reason = VMCB_EXIT_VMRUN,	.str = "vmrun" },
1300 		{ .reason = VMCB_EXIT_VMMCALL,	.str = "vmmcall" },
1301 		{ .reason = VMCB_EXIT_VMLOAD,	.str = "vmload" },
1302 		{ .reason = VMCB_EXIT_VMSAVE,	.str = "vmsave" },
1303 		{ .reason = VMCB_EXIT_STGI,	.str = "stgi" },
1304 		{ .reason = VMCB_EXIT_CLGI,	.str = "clgi" },
1305 		{ .reason = VMCB_EXIT_SKINIT,	.str = "skinit" },
1306 		{ .reason = VMCB_EXIT_ICEBP,	.str = "icebp" },
1307 		{ .reason = VMCB_EXIT_INVD,	.str = "invd" },
1308 		{ .reason = VMCB_EXIT_INVLPGA,	.str = "invlpga" },
1309 		{ .reason = VMCB_EXIT_POPF,	.str = "popf" },
1310 		{ .reason = VMCB_EXIT_PUSHF,	.str = "pushf" },
1311 	};
1312 
1313 	for (i = 0; i < nitems(reasons); i++) {
1314 		if (reasons[i].reason == reason)
1315 			return (reasons[i].str);
1316 	}
1317 	snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1318 	return (reasonbuf);
1319 }
1320 #endif	/* KTR */
1321 
1322 /*
1323  * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1324  * that are due to instruction intercepts as well as MSR and IOIO intercepts
1325  * and exceptions caused by INT3, INTO and BOUND instructions.
1326  *
1327  * Return 1 if the nRIP is valid and 0 otherwise.
1328  */
1329 static int
nrip_valid(uint64_t exitcode)1330 nrip_valid(uint64_t exitcode)
1331 {
1332 	switch (exitcode) {
1333 	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1334 	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1335 	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1336 	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1337 	case 0x43:		/* INT3 */
1338 	case 0x44:		/* INTO */
1339 	case 0x45:		/* BOUND */
1340 	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1341 	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1342 		return (1);
1343 	default:
1344 		return (0);
1345 	}
1346 }
1347 
1348 static int
svm_vmexit(struct svm_softc * svm_sc,struct svm_vcpu * vcpu,struct vm_exit * vmexit)1349 svm_vmexit(struct svm_softc *svm_sc, struct svm_vcpu *vcpu,
1350     struct vm_exit *vmexit)
1351 {
1352 	struct vmcb *vmcb;
1353 	struct vmcb_state *state;
1354 	struct vmcb_ctrl *ctrl;
1355 	struct svm_regctx *ctx;
1356 	uint64_t code, info1, info2, val;
1357 	uint32_t eax, ecx, edx;
1358 	int error __diagused, errcode_valid, handled, idtvec, reflect;
1359 	bool retu;
1360 
1361 	ctx = svm_get_guest_regctx(vcpu);
1362 	vmcb = svm_get_vmcb(vcpu);
1363 	state = &vmcb->state;
1364 	ctrl = &vmcb->ctrl;
1365 
1366 	handled = 0;
1367 	code = ctrl->exitcode;
1368 	info1 = ctrl->exitinfo1;
1369 	info2 = ctrl->exitinfo2;
1370 
1371 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1372 	vmexit->rip = state->rip;
1373 	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1374 
1375 	vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1);
1376 
1377 	/*
1378 	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1379 	 * in an inconsistent state and can trigger assertions that would
1380 	 * never happen otherwise.
1381 	 */
1382 	if (code == VMCB_EXIT_INVALID) {
1383 		vm_exit_svm(vmexit, code, info1, info2);
1384 		return (0);
1385 	}
1386 
1387 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1388 	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1389 
1390 	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1391 	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1392 	    vmexit->inst_length, code, info1, info2));
1393 
1394 	svm_update_virqinfo(vcpu);
1395 	svm_save_intinfo(svm_sc, vcpu);
1396 
1397 	switch (code) {
1398 	case VMCB_EXIT_IRET:
1399 		/*
1400 		 * Restart execution at "iret" but with the intercept cleared.
1401 		 */
1402 		vmexit->inst_length = 0;
1403 		clear_nmi_blocking(vcpu);
1404 		handled = 1;
1405 		break;
1406 	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1407 		vmm_stat_incr(vcpu->vcpu, VMEXIT_VINTR, 1);
1408 		handled = 1;
1409 		break;
1410 	case VMCB_EXIT_INTR:	/* external interrupt */
1411 		vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1);
1412 		handled = 1;
1413 		break;
1414 	case VMCB_EXIT_NMI:	/* external NMI */
1415 		handled = 1;
1416 		break;
1417 	case 0x40 ... 0x5F:
1418 		vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1);
1419 		reflect = 1;
1420 		idtvec = code - 0x40;
1421 		switch (idtvec) {
1422 		case IDT_MC:
1423 			/*
1424 			 * Call the machine check handler by hand. Also don't
1425 			 * reflect the machine check back into the guest.
1426 			 */
1427 			reflect = 0;
1428 			SVM_CTR0(vcpu, "Vectoring to MCE handler");
1429 			__asm __volatile("int $18");
1430 			break;
1431 		case IDT_PF:
1432 			error = svm_setreg(vcpu, VM_REG_GUEST_CR2, info2);
1433 			KASSERT(error == 0, ("%s: error %d updating cr2",
1434 			    __func__, error));
1435 			/* fallthru */
1436 		case IDT_NP:
1437 		case IDT_SS:
1438 		case IDT_GP:
1439 		case IDT_AC:
1440 		case IDT_TS:
1441 			errcode_valid = 1;
1442 			break;
1443 
1444 		case IDT_DF:
1445 			errcode_valid = 1;
1446 			info1 = 0;
1447 			break;
1448 		case IDT_DB: {
1449 			/*
1450 			 * Check if we are being stepped (RFLAGS.TF)
1451 			 * and bounce vmexit to userland.
1452 			 */
1453 			bool stepped = 0;
1454 			uint64_t dr6 = 0;
1455 
1456 			svm_getreg(vcpu, VM_REG_GUEST_DR6, &dr6);
1457 			stepped = !!(dr6 & DBREG_DR6_BS);
1458 			if (stepped && (vcpu->caps & (1 << VM_CAP_RFLAGS_TF))) {
1459 				vmexit->exitcode = VM_EXITCODE_DB;
1460 				vmexit->u.dbg.trace_trap = 1;
1461 				vmexit->u.dbg.pushf_intercept = 0;
1462 
1463 				if (vcpu->dbg.popf_sstep) {
1464 					/*
1465 					 * DB# exit was caused by stepping over
1466 					 * popf.
1467 					 */
1468 					uint64_t rflags;
1469 
1470 					vcpu->dbg.popf_sstep = 0;
1471 
1472 					/*
1473 					 * Update shadowed TF bit so the next
1474 					 * setcap(..., RFLAGS_SSTEP, 0) restores
1475 					 * the correct value
1476 					 */
1477 					svm_getreg(vcpu, VM_REG_GUEST_RFLAGS,
1478 					    &rflags);
1479 					vcpu->dbg.rflags_tf = rflags & PSL_T;
1480 				} else if (vcpu->dbg.pushf_sstep) {
1481 					/*
1482 					 * DB# exit was caused by stepping over
1483 					 * pushf.
1484 					 */
1485 					vcpu->dbg.pushf_sstep = 0;
1486 
1487 					/*
1488 					 * Adjusting the pushed rflags after a
1489 					 * restarted pushf instruction must be
1490 					 * handled outside of svm.c due to the
1491 					 * critical_enter() lock being held.
1492 					 */
1493 					vmexit->u.dbg.pushf_intercept = 1;
1494 					vmexit->u.dbg.tf_shadow_val =
1495 					    vcpu->dbg.rflags_tf;
1496 					svm_paging_info(svm_get_vmcb(vcpu),
1497 					    &vmexit->u.dbg.paging);
1498 				}
1499 
1500 				/* Clear DR6 "single-step" bit. */
1501 				dr6 &= ~DBREG_DR6_BS;
1502 				error = svm_setreg(vcpu, VM_REG_GUEST_DR6, dr6);
1503 				KASSERT(error == 0,
1504 				    ("%s: error %d updating DR6\r\n", __func__,
1505 					error));
1506 
1507 				reflect = 0;
1508 			}
1509 			break;
1510 		}
1511 		case IDT_BP:
1512 			vmexit->exitcode = VM_EXITCODE_BPT;
1513 			vmexit->u.bpt.inst_length = vmexit->inst_length;
1514 			vmexit->inst_length = 0;
1515 
1516 			reflect = 0;
1517 			break;
1518 		case IDT_OF:
1519 		case IDT_BR:
1520 			/*
1521 			 * The 'nrip' field is populated for INT3, INTO and
1522 			 * BOUND exceptions and this also implies that
1523 			 * 'inst_length' is non-zero.
1524 			 *
1525 			 * Reset 'inst_length' to zero so the guest %rip at
1526 			 * event injection is identical to what it was when
1527 			 * the exception originally happened.
1528 			 */
1529 			SVM_CTR2(vcpu, "Reset inst_length from %d "
1530 			    "to zero before injecting exception %d",
1531 			    vmexit->inst_length, idtvec);
1532 			vmexit->inst_length = 0;
1533 			/* fallthru */
1534 		default:
1535 			errcode_valid = 0;
1536 			info1 = 0;
1537 			break;
1538 		}
1539 
1540 		if (reflect) {
1541 			KASSERT(vmexit->inst_length == 0,
1542 			    ("invalid inst_length (%d) "
1543 			     "when reflecting exception %d into guest",
1544 				vmexit->inst_length, idtvec));
1545 			/* Reflect the exception back into the guest */
1546 			SVM_CTR2(vcpu, "Reflecting exception "
1547 			    "%d/%#x into the guest", idtvec, (int)info1);
1548 			error = vm_inject_exception(vcpu->vcpu, idtvec,
1549 			    errcode_valid, info1, 0);
1550 			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1551 			    __func__, error));
1552 			handled = 1;
1553 		}
1554 		break;
1555 	case VMCB_EXIT_MSR:	/* MSR access. */
1556 		eax = state->rax;
1557 		ecx = ctx->sctx_rcx;
1558 		edx = ctx->sctx_rdx;
1559 		retu = false;
1560 
1561 		if (info1) {
1562 			vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1);
1563 			val = (uint64_t)edx << 32 | eax;
1564 			SVM_CTR2(vcpu, "wrmsr %#x val %#lx", ecx, val);
1565 			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1566 				vmexit->exitcode = VM_EXITCODE_WRMSR;
1567 				vmexit->u.msr.code = ecx;
1568 				vmexit->u.msr.wval = val;
1569 			} else if (!retu) {
1570 				handled = 1;
1571 			} else {
1572 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1573 				    ("emulate_wrmsr retu with bogus exitcode"));
1574 			}
1575 		} else {
1576 			SVM_CTR1(vcpu, "rdmsr %#x", ecx);
1577 			vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1);
1578 			if (emulate_rdmsr(vcpu, ecx, &retu)) {
1579 				vmexit->exitcode = VM_EXITCODE_RDMSR;
1580 				vmexit->u.msr.code = ecx;
1581 			} else if (!retu) {
1582 				handled = 1;
1583 			} else {
1584 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1585 				    ("emulate_rdmsr retu with bogus exitcode"));
1586 			}
1587 		}
1588 		break;
1589 	case VMCB_EXIT_IO:
1590 		handled = svm_handle_io(vcpu, vmexit);
1591 		vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1);
1592 		break;
1593 	case VMCB_EXIT_CPUID:
1594 		vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1);
1595 		handled = x86_emulate_cpuid(vcpu->vcpu,
1596 		    &state->rax, &ctx->sctx_rbx, &ctx->sctx_rcx,
1597 		    &ctx->sctx_rdx);
1598 		break;
1599 	case VMCB_EXIT_HLT:
1600 		vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1);
1601 		vmexit->exitcode = VM_EXITCODE_HLT;
1602 		vmexit->u.hlt.rflags = state->rflags;
1603 		break;
1604 	case VMCB_EXIT_PAUSE:
1605 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1606 		vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1);
1607 		break;
1608 	case VMCB_EXIT_NPF:
1609 		/* EXITINFO2 contains the faulting guest physical address */
1610 		if (info1 & VMCB_NPF_INFO1_RSV) {
1611 			SVM_CTR2(vcpu, "nested page fault with "
1612 			    "reserved bits set: info1(%#lx) info2(%#lx)",
1613 			    info1, info2);
1614 		} else if (vm_mem_allocated(vcpu->vcpu, info2) ||
1615 		    ppt_is_mmio(svm_sc->vm, info2)) {
1616 			vmexit->exitcode = VM_EXITCODE_PAGING;
1617 			vmexit->u.paging.gpa = info2;
1618 			vmexit->u.paging.fault_type = npf_fault_type(info1);
1619 			vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1);
1620 			SVM_CTR3(vcpu, "nested page fault "
1621 			    "on gpa %#lx/%#lx at rip %#lx",
1622 			    info2, info1, state->rip);
1623 		} else if (svm_npf_emul_fault(info1)) {
1624 			svm_handle_inst_emul(vmcb, info2, vmexit);
1625 			vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1);
1626 			SVM_CTR3(vcpu, "inst_emul fault "
1627 			    "for gpa %#lx/%#lx at rip %#lx",
1628 			    info2, info1, state->rip);
1629 		}
1630 		break;
1631 	case VMCB_EXIT_MONITOR:
1632 		vmexit->exitcode = VM_EXITCODE_MONITOR;
1633 		break;
1634 	case VMCB_EXIT_MWAIT:
1635 		vmexit->exitcode = VM_EXITCODE_MWAIT;
1636 		break;
1637 	case VMCB_EXIT_PUSHF: {
1638 		if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
1639 			uint64_t rflags;
1640 
1641 			svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
1642 			/* Restart this instruction. */
1643 			vmexit->inst_length = 0;
1644 			/* Disable PUSHF intercepts - avoid a loop. */
1645 			svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
1646 			    VMCB_INTCPT_PUSHF, 0);
1647 			/* Trace restarted instruction. */
1648 			svm_setreg(vcpu, VM_REG_GUEST_RFLAGS, (rflags | PSL_T));
1649 			/* Let the IDT_DB handler know that pushf was stepped.
1650 			 */
1651 			vcpu->dbg.pushf_sstep = 1;
1652 			handled = 1;
1653 		}
1654 		break;
1655 	}
1656 	case VMCB_EXIT_POPF: {
1657 		if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
1658 			uint64_t rflags;
1659 
1660 			svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
1661 			/* Restart this instruction */
1662 			vmexit->inst_length = 0;
1663 			/* Disable POPF intercepts - avoid a loop*/
1664 			svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
1665 			    VMCB_INTCPT_POPF, 0);
1666 			/* Trace restarted instruction */
1667 			svm_setreg(vcpu, VM_REG_GUEST_RFLAGS, (rflags | PSL_T));
1668 			vcpu->dbg.popf_sstep = 1;
1669 			handled = 1;
1670 		}
1671 		break;
1672 	}
1673 	case VMCB_EXIT_SHUTDOWN:
1674 	case VMCB_EXIT_VMRUN:
1675 	case VMCB_EXIT_VMMCALL:
1676 	case VMCB_EXIT_VMLOAD:
1677 	case VMCB_EXIT_VMSAVE:
1678 	case VMCB_EXIT_STGI:
1679 	case VMCB_EXIT_CLGI:
1680 	case VMCB_EXIT_SKINIT:
1681 	case VMCB_EXIT_ICEBP:
1682 	case VMCB_EXIT_INVLPGA:
1683 		vm_inject_ud(vcpu->vcpu);
1684 		handled = 1;
1685 		break;
1686 	case VMCB_EXIT_INVD:
1687 	case VMCB_EXIT_WBINVD:
1688 		/* ignore exit */
1689 		handled = 1;
1690 		break;
1691 	default:
1692 		vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1);
1693 		break;
1694 	}
1695 
1696 	SVM_CTR4(vcpu, "%s %s vmexit at %#lx/%d",
1697 	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1698 	    vmexit->rip, vmexit->inst_length);
1699 
1700 	if (handled) {
1701 		vmexit->rip += vmexit->inst_length;
1702 		vmexit->inst_length = 0;
1703 		state->rip = vmexit->rip;
1704 	} else {
1705 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1706 			/*
1707 			 * If this VM exit was not claimed by anybody then
1708 			 * treat it as a generic SVM exit.
1709 			 */
1710 			vm_exit_svm(vmexit, code, info1, info2);
1711 		} else {
1712 			/*
1713 			 * The exitcode and collateral have been populated.
1714 			 * The VM exit will be processed further in userland.
1715 			 */
1716 		}
1717 	}
1718 	return (handled);
1719 }
1720 
1721 static void
svm_inj_intinfo(struct svm_softc * svm_sc,struct svm_vcpu * vcpu)1722 svm_inj_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
1723 {
1724 	uint64_t intinfo;
1725 
1726 	if (!vm_entry_intinfo(vcpu->vcpu, &intinfo))
1727 		return;
1728 
1729 	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1730 	    "valid: %#lx", __func__, intinfo));
1731 
1732 	svm_eventinject(vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1733 		VMCB_EXITINTINFO_VECTOR(intinfo),
1734 		VMCB_EXITINTINFO_EC(intinfo),
1735 		VMCB_EXITINTINFO_EC_VALID(intinfo));
1736 	vmm_stat_incr(vcpu->vcpu, VCPU_INTINFO_INJECTED, 1);
1737 	SVM_CTR1(vcpu, "Injected entry intinfo: %#lx", intinfo);
1738 }
1739 
1740 /*
1741  * Inject event to virtual cpu.
1742  */
1743 static void
svm_inj_interrupts(struct svm_softc * sc,struct svm_vcpu * vcpu,struct vlapic * vlapic)1744 svm_inj_interrupts(struct svm_softc *sc, struct svm_vcpu *vcpu,
1745     struct vlapic *vlapic)
1746 {
1747 	struct vmcb_ctrl *ctrl;
1748 	struct vmcb_state *state;
1749 	uint8_t v_tpr;
1750 	int vector, need_intr_window;
1751 	int extint_pending;
1752 
1753 	if (vcpu->caps & (1 << VM_CAP_MASK_HWINTR)) {
1754 		return;
1755 	}
1756 
1757 	state = svm_get_vmcb_state(vcpu);
1758 	ctrl  = svm_get_vmcb_ctrl(vcpu);
1759 
1760 	need_intr_window = 0;
1761 
1762 	if (vcpu->nextrip != state->rip) {
1763 		ctrl->intr_shadow = 0;
1764 		SVM_CTR2(vcpu, "Guest interrupt blocking "
1765 		    "cleared due to rip change: %#lx/%#lx",
1766 		    vcpu->nextrip, state->rip);
1767 	}
1768 
1769 	/*
1770 	 * Inject pending events or exceptions for this vcpu.
1771 	 *
1772 	 * An event might be pending because the previous #VMEXIT happened
1773 	 * during event delivery (i.e. ctrl->exitintinfo).
1774 	 *
1775 	 * An event might also be pending because an exception was injected
1776 	 * by the hypervisor (e.g. #PF during instruction emulation).
1777 	 */
1778 	svm_inj_intinfo(sc, vcpu);
1779 
1780 	/* NMI event has priority over interrupts. */
1781 	if (vm_nmi_pending(vcpu->vcpu)) {
1782 		if (nmi_blocked(vcpu)) {
1783 			/*
1784 			 * Can't inject another NMI if the guest has not
1785 			 * yet executed an "iret" after the last NMI.
1786 			 */
1787 			SVM_CTR0(vcpu, "Cannot inject NMI due "
1788 			    "to NMI-blocking");
1789 		} else if (ctrl->intr_shadow) {
1790 			/*
1791 			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1792 			 */
1793 			SVM_CTR0(vcpu, "Cannot inject NMI due to "
1794 			    "interrupt shadow");
1795 			need_intr_window = 1;
1796 			goto done;
1797 		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1798 			/*
1799 			 * If there is already an exception/interrupt pending
1800 			 * then defer the NMI until after that.
1801 			 */
1802 			SVM_CTR1(vcpu, "Cannot inject NMI due to "
1803 			    "eventinj %#lx", ctrl->eventinj);
1804 
1805 			/*
1806 			 * Use self-IPI to trigger a VM-exit as soon as
1807 			 * possible after the event injection is completed.
1808 			 *
1809 			 * This works only if the external interrupt exiting
1810 			 * is at a lower priority than the event injection.
1811 			 *
1812 			 * Although not explicitly specified in APMv2 the
1813 			 * relative priorities were verified empirically.
1814 			 */
1815 			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1816 		} else {
1817 			vm_nmi_clear(vcpu->vcpu);
1818 
1819 			/* Inject NMI, vector number is not used */
1820 			svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_NMI,
1821 			    IDT_NMI, 0, false);
1822 
1823 			/* virtual NMI blocking is now in effect */
1824 			enable_nmi_blocking(vcpu);
1825 
1826 			SVM_CTR0(vcpu, "Injecting vNMI");
1827 		}
1828 	}
1829 
1830 	extint_pending = vm_extint_pending(vcpu->vcpu);
1831 	if (!extint_pending) {
1832 		if (!vlapic_pending_intr(vlapic, &vector))
1833 			goto done;
1834 		KASSERT(vector >= 16 && vector <= 255,
1835 		    ("invalid vector %d from local APIC", vector));
1836 	} else {
1837 		/* Ask the legacy pic for a vector to inject */
1838 		vatpic_pending_intr(sc->vm, &vector);
1839 		KASSERT(vector >= 0 && vector <= 255,
1840 		    ("invalid vector %d from INTR", vector));
1841 	}
1842 
1843 	/*
1844 	 * If the guest has disabled interrupts or is in an interrupt shadow
1845 	 * then we cannot inject the pending interrupt.
1846 	 */
1847 	if ((state->rflags & PSL_I) == 0) {
1848 		SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1849 		    "rflags %#lx", vector, state->rflags);
1850 		need_intr_window = 1;
1851 		goto done;
1852 	}
1853 
1854 	if (ctrl->intr_shadow) {
1855 		SVM_CTR1(vcpu, "Cannot inject vector %d due to "
1856 		    "interrupt shadow", vector);
1857 		need_intr_window = 1;
1858 		goto done;
1859 	}
1860 
1861 	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1862 		SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1863 		    "eventinj %#lx", vector, ctrl->eventinj);
1864 		need_intr_window = 1;
1865 		goto done;
1866 	}
1867 
1868 	svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1869 
1870 	if (!extint_pending) {
1871 		vlapic_intr_accepted(vlapic, vector);
1872 	} else {
1873 		vm_extint_clear(vcpu->vcpu);
1874 		vatpic_intr_accepted(sc->vm, vector);
1875 	}
1876 
1877 	/*
1878 	 * Force a VM-exit as soon as the vcpu is ready to accept another
1879 	 * interrupt. This is done because the PIC might have another vector
1880 	 * that it wants to inject. Also, if the APIC has a pending interrupt
1881 	 * that was preempted by the ExtInt then it allows us to inject the
1882 	 * APIC vector as soon as possible.
1883 	 */
1884 	need_intr_window = 1;
1885 done:
1886 	/*
1887 	 * The guest can modify the TPR by writing to %CR8. In guest mode
1888 	 * the processor reflects this write to V_TPR without hypervisor
1889 	 * intervention.
1890 	 *
1891 	 * The guest can also modify the TPR by writing to it via the memory
1892 	 * mapped APIC page. In this case, the write will be emulated by the
1893 	 * hypervisor. For this reason V_TPR must be updated before every
1894 	 * VMRUN.
1895 	 */
1896 	v_tpr = vlapic_get_cr8(vlapic);
1897 	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1898 	if (ctrl->v_tpr != v_tpr) {
1899 		SVM_CTR2(vcpu, "VMCB V_TPR changed from %#x to %#x",
1900 		    ctrl->v_tpr, v_tpr);
1901 		ctrl->v_tpr = v_tpr;
1902 		svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1903 	}
1904 
1905 	if (need_intr_window) {
1906 		/*
1907 		 * We use V_IRQ in conjunction with the VINTR intercept to
1908 		 * trap into the hypervisor as soon as a virtual interrupt
1909 		 * can be delivered.
1910 		 *
1911 		 * Since injected events are not subject to intercept checks
1912 		 * we need to ensure that the V_IRQ is not actually going to
1913 		 * be delivered on VM entry. The KASSERT below enforces this.
1914 		 */
1915 		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1916 		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1917 		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1918 		    "intr_shadow (%u), rflags (%#lx)",
1919 		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1920 		enable_intr_window_exiting(vcpu);
1921 	} else {
1922 		disable_intr_window_exiting(vcpu);
1923 	}
1924 }
1925 
1926 static __inline void
restore_host_tss(void)1927 restore_host_tss(void)
1928 {
1929 	struct system_segment_descriptor *tss_sd;
1930 
1931 	/*
1932 	 * The TSS descriptor was in use prior to launching the guest so it
1933 	 * has been marked busy.
1934 	 *
1935 	 * 'ltr' requires the descriptor to be marked available so change the
1936 	 * type to "64-bit available TSS".
1937 	 */
1938 	tss_sd = PCPU_GET(tss);
1939 	tss_sd->sd_type = SDT_SYSTSS;
1940 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1941 }
1942 
1943 static void
svm_pmap_activate(struct svm_vcpu * vcpu,pmap_t pmap)1944 svm_pmap_activate(struct svm_vcpu *vcpu, pmap_t pmap)
1945 {
1946 	struct vmcb_ctrl *ctrl;
1947 	long eptgen;
1948 	int cpu;
1949 	bool alloc_asid;
1950 
1951 	cpu = curcpu;
1952 	CPU_SET_ATOMIC(cpu, &pmap->pm_active);
1953 	smr_enter(pmap->pm_eptsmr);
1954 
1955 	ctrl = svm_get_vmcb_ctrl(vcpu);
1956 
1957 	/*
1958 	 * The TLB entries associated with the vcpu's ASID are not valid
1959 	 * if either of the following conditions is true:
1960 	 *
1961 	 * 1. The vcpu's ASID generation is different than the host cpu's
1962 	 *    ASID generation. This happens when the vcpu migrates to a new
1963 	 *    host cpu. It can also happen when the number of vcpus executing
1964 	 *    on a host cpu is greater than the number of ASIDs available.
1965 	 *
1966 	 * 2. The pmap generation number is different than the value cached in
1967 	 *    the 'vcpustate'. This happens when the host invalidates pages
1968 	 *    belonging to the guest.
1969 	 *
1970 	 *	asidgen		eptgen	      Action
1971 	 *	mismatch	mismatch
1972 	 *	   0		   0		(a)
1973 	 *	   0		   1		(b1) or (b2)
1974 	 *	   1		   0		(c)
1975 	 *	   1		   1		(d)
1976 	 *
1977 	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1978 	 *     no further action is needed.
1979 	 *
1980 	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1981 	 *      retained and the TLB entries associated with this ASID
1982 	 *      are flushed by VMRUN.
1983 	 *
1984 	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1985 	 *      allocated.
1986 	 *
1987 	 * (c) A new ASID is allocated.
1988 	 *
1989 	 * (d) A new ASID is allocated.
1990 	 */
1991 
1992 	alloc_asid = false;
1993 	eptgen = atomic_load_long(&pmap->pm_eptgen);
1994 	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1995 
1996 	if (vcpu->asid.gen != asid[cpu].gen) {
1997 		alloc_asid = true;	/* (c) and (d) */
1998 	} else if (vcpu->eptgen != eptgen) {
1999 		if (flush_by_asid())
2000 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
2001 		else
2002 			alloc_asid = true;			/* (b2) */
2003 	} else {
2004 		/*
2005 		 * This is the common case (a).
2006 		 */
2007 		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
2008 		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
2009 		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
2010 	}
2011 
2012 	if (alloc_asid) {
2013 		if (++asid[cpu].num >= nasid) {
2014 			asid[cpu].num = 1;
2015 			if (++asid[cpu].gen == 0)
2016 				asid[cpu].gen = 1;
2017 			/*
2018 			 * If this cpu does not support "flush-by-asid"
2019 			 * then flush the entire TLB on a generation
2020 			 * bump. Subsequent ASID allocation in this
2021 			 * generation can be done without a TLB flush.
2022 			 */
2023 			if (!flush_by_asid())
2024 				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
2025 		}
2026 		vcpu->asid.gen = asid[cpu].gen;
2027 		vcpu->asid.num = asid[cpu].num;
2028 
2029 		ctrl->asid = vcpu->asid.num;
2030 		svm_set_dirty(vcpu, VMCB_CACHE_ASID);
2031 		/*
2032 		 * If this cpu supports "flush-by-asid" then the TLB
2033 		 * was not flushed after the generation bump. The TLB
2034 		 * is flushed selectively after every new ASID allocation.
2035 		 */
2036 		if (flush_by_asid())
2037 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
2038 	}
2039 	vcpu->eptgen = eptgen;
2040 
2041 	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
2042 	KASSERT(ctrl->asid == vcpu->asid.num,
2043 	    ("ASID mismatch: %u/%u", ctrl->asid, vcpu->asid.num));
2044 }
2045 
2046 static void
svm_pmap_deactivate(pmap_t pmap)2047 svm_pmap_deactivate(pmap_t pmap)
2048 {
2049 	smr_exit(pmap->pm_eptsmr);
2050 	CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
2051 }
2052 
2053 static __inline void
disable_gintr(void)2054 disable_gintr(void)
2055 {
2056 
2057 	__asm __volatile("clgi");
2058 }
2059 
2060 static __inline void
enable_gintr(void)2061 enable_gintr(void)
2062 {
2063 
2064         __asm __volatile("stgi");
2065 }
2066 
2067 static __inline void
svm_dr_enter_guest(struct svm_regctx * gctx)2068 svm_dr_enter_guest(struct svm_regctx *gctx)
2069 {
2070 
2071 	/* Save host control debug registers. */
2072 	gctx->host_dr7 = rdr7();
2073 	gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2074 
2075 	/*
2076 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2077 	 * exceptions in the host based on the guest DRx values.  The
2078 	 * guest DR6, DR7, and DEBUGCTL are saved/restored in the
2079 	 * VMCB.
2080 	 */
2081 	load_dr7(0);
2082 	wrmsr(MSR_DEBUGCTLMSR, 0);
2083 
2084 	/* Save host debug registers. */
2085 	gctx->host_dr0 = rdr0();
2086 	gctx->host_dr1 = rdr1();
2087 	gctx->host_dr2 = rdr2();
2088 	gctx->host_dr3 = rdr3();
2089 	gctx->host_dr6 = rdr6();
2090 
2091 	/* Restore guest debug registers. */
2092 	load_dr0(gctx->sctx_dr0);
2093 	load_dr1(gctx->sctx_dr1);
2094 	load_dr2(gctx->sctx_dr2);
2095 	load_dr3(gctx->sctx_dr3);
2096 }
2097 
2098 static __inline void
svm_dr_leave_guest(struct svm_regctx * gctx)2099 svm_dr_leave_guest(struct svm_regctx *gctx)
2100 {
2101 
2102 	/* Save guest debug registers. */
2103 	gctx->sctx_dr0 = rdr0();
2104 	gctx->sctx_dr1 = rdr1();
2105 	gctx->sctx_dr2 = rdr2();
2106 	gctx->sctx_dr3 = rdr3();
2107 
2108 	/*
2109 	 * Restore host debug registers.  Restore DR7 and DEBUGCTL
2110 	 * last.
2111 	 */
2112 	load_dr0(gctx->host_dr0);
2113 	load_dr1(gctx->host_dr1);
2114 	load_dr2(gctx->host_dr2);
2115 	load_dr3(gctx->host_dr3);
2116 	load_dr6(gctx->host_dr6);
2117 	wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl);
2118 	load_dr7(gctx->host_dr7);
2119 }
2120 
2121 /*
2122  * Start vcpu with specified RIP.
2123  */
2124 static int
svm_run(void * vcpui,register_t rip,pmap_t pmap,struct vm_eventinfo * evinfo)2125 svm_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo)
2126 {
2127 	struct svm_regctx *gctx;
2128 	struct svm_softc *svm_sc;
2129 	struct svm_vcpu *vcpu;
2130 	struct vmcb_state *state;
2131 	struct vmcb_ctrl *ctrl;
2132 	struct vm_exit *vmexit;
2133 	struct vlapic *vlapic;
2134 	uint64_t vmcb_pa;
2135 	int handled;
2136 	uint16_t ldt_sel;
2137 
2138 	vcpu = vcpui;
2139 	svm_sc = vcpu->sc;
2140 	state = svm_get_vmcb_state(vcpu);
2141 	ctrl = svm_get_vmcb_ctrl(vcpu);
2142 	vmexit = vm_exitinfo(vcpu->vcpu);
2143 	vlapic = vm_lapic(vcpu->vcpu);
2144 
2145 	gctx = svm_get_guest_regctx(vcpu);
2146 	vmcb_pa = vcpu->vmcb_pa;
2147 
2148 	if (vcpu->lastcpu != curcpu) {
2149 		/*
2150 		 * Force new ASID allocation by invalidating the generation.
2151 		 */
2152 		vcpu->asid.gen = 0;
2153 
2154 		/*
2155 		 * Invalidate the VMCB state cache by marking all fields dirty.
2156 		 */
2157 		svm_set_dirty(vcpu, 0xffffffff);
2158 
2159 		/*
2160 		 * XXX
2161 		 * Setting 'vcpu->lastcpu' here is bit premature because
2162 		 * we may return from this function without actually executing
2163 		 * the VMRUN  instruction. This could happen if a rendezvous
2164 		 * or an AST is pending on the first time through the loop.
2165 		 *
2166 		 * This works for now but any new side-effects of vcpu
2167 		 * migration should take this case into account.
2168 		 */
2169 		vcpu->lastcpu = curcpu;
2170 		vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1);
2171 	}
2172 
2173 	svm_msr_guest_enter(vcpu);
2174 
2175 	/* Update Guest RIP */
2176 	state->rip = rip;
2177 
2178 	do {
2179 		/*
2180 		 * Disable global interrupts to guarantee atomicity during
2181 		 * loading of guest state. This includes not only the state
2182 		 * loaded by the "vmrun" instruction but also software state
2183 		 * maintained by the hypervisor: suspended and rendezvous
2184 		 * state, NPT generation number, vlapic interrupts etc.
2185 		 */
2186 		disable_gintr();
2187 
2188 		if (vcpu_suspended(evinfo)) {
2189 			enable_gintr();
2190 			vm_exit_suspended(vcpu->vcpu, state->rip);
2191 			break;
2192 		}
2193 
2194 		if (vcpu_rendezvous_pending(vcpu->vcpu, evinfo)) {
2195 			enable_gintr();
2196 			vm_exit_rendezvous(vcpu->vcpu, state->rip);
2197 			break;
2198 		}
2199 
2200 		if (vcpu_reqidle(evinfo)) {
2201 			enable_gintr();
2202 			vm_exit_reqidle(vcpu->vcpu, state->rip);
2203 			break;
2204 		}
2205 
2206 		/* We are asked to give the cpu by scheduler. */
2207 		if (vcpu_should_yield(vcpu->vcpu)) {
2208 			enable_gintr();
2209 			vm_exit_astpending(vcpu->vcpu, state->rip);
2210 			break;
2211 		}
2212 
2213 		if (vcpu_debugged(vcpu->vcpu)) {
2214 			enable_gintr();
2215 			vm_exit_debug(vcpu->vcpu, state->rip);
2216 			break;
2217 		}
2218 
2219 		/*
2220 		 * #VMEXIT resumes the host with the guest LDTR, so
2221 		 * save the current LDT selector so it can be restored
2222 		 * after an exit.  The userspace hypervisor probably
2223 		 * doesn't use a LDT, but save and restore it to be
2224 		 * safe.
2225 		 */
2226 		ldt_sel = sldt();
2227 
2228 		svm_inj_interrupts(svm_sc, vcpu, vlapic);
2229 
2230 		/*
2231 		 * Check the pmap generation and the ASID generation to
2232 		 * ensure that the vcpu does not use stale TLB mappings.
2233 		 */
2234 		svm_pmap_activate(vcpu, pmap);
2235 
2236 		ctrl->vmcb_clean = vmcb_clean & ~vcpu->dirty;
2237 		vcpu->dirty = 0;
2238 		SVM_CTR1(vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2239 
2240 		/* Launch Virtual Machine. */
2241 		SVM_CTR1(vcpu, "Resume execution at %#lx", state->rip);
2242 		svm_dr_enter_guest(gctx);
2243 		svm_launch(vmcb_pa, gctx, get_pcpu());
2244 		svm_dr_leave_guest(gctx);
2245 
2246 		svm_pmap_deactivate(pmap);
2247 
2248 		/*
2249 		 * The host GDTR and IDTR is saved by VMRUN and restored
2250 		 * automatically on #VMEXIT. However, the host TSS needs
2251 		 * to be restored explicitly.
2252 		 */
2253 		restore_host_tss();
2254 
2255 		/* Restore host LDTR. */
2256 		lldt(ldt_sel);
2257 
2258 		/* #VMEXIT disables interrupts so re-enable them here. */
2259 		enable_gintr();
2260 
2261 		/* Update 'nextrip' */
2262 		vcpu->nextrip = state->rip;
2263 
2264 		/* Handle #VMEXIT and if required return to user space. */
2265 		handled = svm_vmexit(svm_sc, vcpu, vmexit);
2266 	} while (handled);
2267 
2268 	svm_msr_guest_exit(vcpu);
2269 
2270 	return (0);
2271 }
2272 
2273 static void
svm_vcpu_cleanup(void * vcpui)2274 svm_vcpu_cleanup(void *vcpui)
2275 {
2276 	struct svm_vcpu *vcpu = vcpui;
2277 
2278 	free(vcpu->vmcb, M_SVM);
2279 	free(vcpu, M_SVM);
2280 }
2281 
2282 static void
svm_cleanup(void * vmi)2283 svm_cleanup(void *vmi)
2284 {
2285 	struct svm_softc *sc = vmi;
2286 
2287 	free(sc->iopm_bitmap, M_SVM);
2288 	free(sc->msr_bitmap, M_SVM);
2289 	free(sc, M_SVM);
2290 }
2291 
2292 static register_t *
swctx_regptr(struct svm_regctx * regctx,int reg)2293 swctx_regptr(struct svm_regctx *regctx, int reg)
2294 {
2295 
2296 	switch (reg) {
2297 	case VM_REG_GUEST_RBX:
2298 		return (&regctx->sctx_rbx);
2299 	case VM_REG_GUEST_RCX:
2300 		return (&regctx->sctx_rcx);
2301 	case VM_REG_GUEST_RDX:
2302 		return (&regctx->sctx_rdx);
2303 	case VM_REG_GUEST_RDI:
2304 		return (&regctx->sctx_rdi);
2305 	case VM_REG_GUEST_RSI:
2306 		return (&regctx->sctx_rsi);
2307 	case VM_REG_GUEST_RBP:
2308 		return (&regctx->sctx_rbp);
2309 	case VM_REG_GUEST_R8:
2310 		return (&regctx->sctx_r8);
2311 	case VM_REG_GUEST_R9:
2312 		return (&regctx->sctx_r9);
2313 	case VM_REG_GUEST_R10:
2314 		return (&regctx->sctx_r10);
2315 	case VM_REG_GUEST_R11:
2316 		return (&regctx->sctx_r11);
2317 	case VM_REG_GUEST_R12:
2318 		return (&regctx->sctx_r12);
2319 	case VM_REG_GUEST_R13:
2320 		return (&regctx->sctx_r13);
2321 	case VM_REG_GUEST_R14:
2322 		return (&regctx->sctx_r14);
2323 	case VM_REG_GUEST_R15:
2324 		return (&regctx->sctx_r15);
2325 	case VM_REG_GUEST_DR0:
2326 		return (&regctx->sctx_dr0);
2327 	case VM_REG_GUEST_DR1:
2328 		return (&regctx->sctx_dr1);
2329 	case VM_REG_GUEST_DR2:
2330 		return (&regctx->sctx_dr2);
2331 	case VM_REG_GUEST_DR3:
2332 		return (&regctx->sctx_dr3);
2333 	default:
2334 		return (NULL);
2335 	}
2336 }
2337 
2338 static int
svm_getreg(void * vcpui,int ident,uint64_t * val)2339 svm_getreg(void *vcpui, int ident, uint64_t *val)
2340 {
2341 	struct svm_vcpu *vcpu;
2342 	register_t *reg;
2343 
2344 	vcpu = vcpui;
2345 
2346 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2347 		return (svm_get_intr_shadow(vcpu, val));
2348 	}
2349 
2350 	if (vmcb_read(vcpu, ident, val) == 0) {
2351 		return (0);
2352 	}
2353 
2354 	reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2355 
2356 	if (reg != NULL) {
2357 		*val = *reg;
2358 		return (0);
2359 	}
2360 
2361 	SVM_CTR1(vcpu, "svm_getreg: unknown register %#x", ident);
2362 	return (EINVAL);
2363 }
2364 
2365 static int
svm_setreg(void * vcpui,int ident,uint64_t val)2366 svm_setreg(void *vcpui, int ident, uint64_t val)
2367 {
2368 	struct svm_vcpu *vcpu;
2369 	register_t *reg;
2370 
2371 	vcpu = vcpui;
2372 
2373 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2374 		return (svm_modify_intr_shadow(vcpu, val));
2375 	}
2376 
2377 	/* Do not permit user write access to VMCB fields by offset. */
2378 	if (!VMCB_ACCESS_OK(ident)) {
2379 		if (vmcb_write(vcpu, ident, val) == 0) {
2380 			return (0);
2381 		}
2382 	}
2383 
2384 	reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2385 
2386 	if (reg != NULL) {
2387 		*reg = val;
2388 		return (0);
2389 	}
2390 
2391 	if (ident == VM_REG_GUEST_ENTRY_INST_LENGTH) {
2392 		/* Ignore. */
2393 		return (0);
2394 	}
2395 
2396 	/*
2397 	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2398 	 * vcpu's ASID. This needs to be treated differently depending on
2399 	 * whether 'running' is true/false.
2400 	 */
2401 
2402 	SVM_CTR1(vcpu, "svm_setreg: unknown register %#x", ident);
2403 	return (EINVAL);
2404 }
2405 
2406 static int
svm_getdesc(void * vcpui,int reg,struct seg_desc * desc)2407 svm_getdesc(void *vcpui, int reg, struct seg_desc *desc)
2408 {
2409 	return (vmcb_getdesc(vcpui, reg, desc));
2410 }
2411 
2412 static int
svm_setdesc(void * vcpui,int reg,struct seg_desc * desc)2413 svm_setdesc(void *vcpui, int reg, struct seg_desc *desc)
2414 {
2415 	return (vmcb_setdesc(vcpui, reg, desc));
2416 }
2417 
2418 #ifdef BHYVE_SNAPSHOT
2419 static int
svm_snapshot_reg(void * vcpui,int ident,struct vm_snapshot_meta * meta)2420 svm_snapshot_reg(void *vcpui, int ident, struct vm_snapshot_meta *meta)
2421 {
2422 	int ret;
2423 	uint64_t val;
2424 
2425 	if (meta->op == VM_SNAPSHOT_SAVE) {
2426 		ret = svm_getreg(vcpui, ident, &val);
2427 		if (ret != 0)
2428 			goto done;
2429 
2430 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2431 	} else if (meta->op == VM_SNAPSHOT_RESTORE) {
2432 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2433 
2434 		ret = svm_setreg(vcpui, ident, val);
2435 		if (ret != 0)
2436 			goto done;
2437 	} else {
2438 		ret = EINVAL;
2439 		goto done;
2440 	}
2441 
2442 done:
2443 	return (ret);
2444 }
2445 #endif
2446 
2447 static int
svm_setcap(void * vcpui,int type,int val)2448 svm_setcap(void *vcpui, int type, int val)
2449 {
2450 	struct svm_vcpu *vcpu;
2451 	struct vlapic *vlapic;
2452 	int error;
2453 
2454 	vcpu = vcpui;
2455 	error = 0;
2456 
2457 	switch (type) {
2458 	case VM_CAP_HALT_EXIT:
2459 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2460 		    VMCB_INTCPT_HLT, val);
2461 		break;
2462 	case VM_CAP_PAUSE_EXIT:
2463 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2464 		    VMCB_INTCPT_PAUSE, val);
2465 		break;
2466 	case VM_CAP_UNRESTRICTED_GUEST:
2467 		/* Unrestricted guest execution cannot be disabled in SVM */
2468 		if (val == 0)
2469 			error = EINVAL;
2470 		break;
2471 	case VM_CAP_BPT_EXIT:
2472 		svm_set_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_BP), val);
2473 		break;
2474 	case VM_CAP_IPI_EXIT:
2475 		vlapic = vm_lapic(vcpu->vcpu);
2476 		vlapic->ipi_exit = val;
2477 		break;
2478 	case VM_CAP_MASK_HWINTR:
2479 		vcpu->caps &= ~(1 << VM_CAP_MASK_HWINTR);
2480 		vcpu->caps |= (val << VM_CAP_MASK_HWINTR);
2481 		break;
2482 	case VM_CAP_RFLAGS_TF: {
2483 		uint64_t rflags;
2484 
2485 		/* Fetch RFLAGS. */
2486 		if (svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags)) {
2487 			error = (EINVAL);
2488 			break;
2489 		}
2490 		if (val) {
2491 			/* Save current TF bit. */
2492 			vcpu->dbg.rflags_tf = rflags & PSL_T;
2493 			/* Trace next instruction. */
2494 			if (svm_setreg(vcpu, VM_REG_GUEST_RFLAGS,
2495 				(rflags | PSL_T))) {
2496 				error = (EINVAL);
2497 				break;
2498 			}
2499 			vcpu->caps |= (1 << VM_CAP_RFLAGS_TF);
2500 		} else {
2501 			/*
2502 			 * Restore shadowed RFLAGS.TF only if vCPU was
2503 			 * previously stepped
2504 			 */
2505 			if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
2506 				rflags &= ~PSL_T;
2507 				rflags |= vcpu->dbg.rflags_tf;
2508 				vcpu->dbg.rflags_tf = 0;
2509 
2510 				if (svm_setreg(vcpu, VM_REG_GUEST_RFLAGS,
2511 					rflags)) {
2512 					error = (EINVAL);
2513 					break;
2514 				}
2515 				vcpu->caps &= ~(1 << VM_CAP_RFLAGS_TF);
2516 			}
2517 		}
2518 
2519 		svm_set_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_DB), val);
2520 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_POPF,
2521 		    val);
2522 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_PUSHF,
2523 		    val);
2524 		break;
2525 	}
2526 	default:
2527 		error = ENOENT;
2528 		break;
2529 	}
2530 	return (error);
2531 }
2532 
2533 static int
svm_getcap(void * vcpui,int type,int * retval)2534 svm_getcap(void *vcpui, int type, int *retval)
2535 {
2536 	struct svm_vcpu *vcpu;
2537 	struct vlapic *vlapic;
2538 	int error;
2539 
2540 	vcpu = vcpui;
2541 	error = 0;
2542 
2543 	switch (type) {
2544 	case VM_CAP_HALT_EXIT:
2545 		*retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2546 		    VMCB_INTCPT_HLT);
2547 		break;
2548 	case VM_CAP_PAUSE_EXIT:
2549 		*retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2550 		    VMCB_INTCPT_PAUSE);
2551 		break;
2552 	case VM_CAP_UNRESTRICTED_GUEST:
2553 		*retval = 1;	/* unrestricted guest is always enabled */
2554 		break;
2555 	case VM_CAP_BPT_EXIT:
2556 		*retval = svm_get_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_BP));
2557 		break;
2558 	case VM_CAP_IPI_EXIT:
2559 		vlapic = vm_lapic(vcpu->vcpu);
2560 		*retval = vlapic->ipi_exit;
2561 		break;
2562 	case VM_CAP_RFLAGS_TF:
2563 		*retval = !!(vcpu->caps & (1 << VM_CAP_RFLAGS_TF));
2564 		break;
2565 	case VM_CAP_MASK_HWINTR:
2566 		*retval = !!(vcpu->caps & (1 << VM_CAP_MASK_HWINTR));
2567 		break;
2568 	default:
2569 		error = ENOENT;
2570 		break;
2571 	}
2572 	return (error);
2573 }
2574 
2575 static struct vmspace *
svm_vmspace_alloc(vm_offset_t min,vm_offset_t max)2576 svm_vmspace_alloc(vm_offset_t min, vm_offset_t max)
2577 {
2578 	return (svm_npt_alloc(min, max));
2579 }
2580 
2581 static void
svm_vmspace_free(struct vmspace * vmspace)2582 svm_vmspace_free(struct vmspace *vmspace)
2583 {
2584 	svm_npt_free(vmspace);
2585 }
2586 
2587 static struct vlapic *
svm_vlapic_init(void * vcpui)2588 svm_vlapic_init(void *vcpui)
2589 {
2590 	struct svm_vcpu *vcpu;
2591 	struct vlapic *vlapic;
2592 
2593 	vcpu = vcpui;
2594 	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2595 	vlapic->vm = vcpu->sc->vm;
2596 	vlapic->vcpu = vcpu->vcpu;
2597 	vlapic->vcpuid = vcpu->vcpuid;
2598 	vlapic->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_SVM_VLAPIC,
2599 	    M_WAITOK | M_ZERO);
2600 
2601 	vlapic_init(vlapic);
2602 
2603 	return (vlapic);
2604 }
2605 
2606 static void
svm_vlapic_cleanup(struct vlapic * vlapic)2607 svm_vlapic_cleanup(struct vlapic *vlapic)
2608 {
2609 
2610         vlapic_cleanup(vlapic);
2611 	free(vlapic->apic_page, M_SVM_VLAPIC);
2612         free(vlapic, M_SVM_VLAPIC);
2613 }
2614 
2615 #ifdef BHYVE_SNAPSHOT
2616 static int
svm_vcpu_snapshot(void * vcpui,struct vm_snapshot_meta * meta)2617 svm_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta)
2618 {
2619 	struct svm_vcpu *vcpu;
2620 	int err, running, hostcpu;
2621 
2622 	vcpu = vcpui;
2623 	err = 0;
2624 
2625 	running = vcpu_is_running(vcpu->vcpu, &hostcpu);
2626 	if (running && hostcpu != curcpu) {
2627 		printf("%s: %s%d is running", __func__, vm_name(vcpu->sc->vm),
2628 		    vcpu->vcpuid);
2629 		return (EINVAL);
2630 	}
2631 
2632 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR0, meta);
2633 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR2, meta);
2634 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR3, meta);
2635 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR4, meta);
2636 
2637 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR6, meta);
2638 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR7, meta);
2639 
2640 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RAX, meta);
2641 
2642 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RSP, meta);
2643 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RIP, meta);
2644 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RFLAGS, meta);
2645 
2646 	/* Guest segments */
2647 	/* ES */
2648 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_ES, meta);
2649 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_ES, meta);
2650 
2651 	/* CS */
2652 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CS, meta);
2653 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_CS, meta);
2654 
2655 	/* SS */
2656 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_SS, meta);
2657 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_SS, meta);
2658 
2659 	/* DS */
2660 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DS, meta);
2661 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_DS, meta);
2662 
2663 	/* FS */
2664 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_FS, meta);
2665 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_FS, meta);
2666 
2667 	/* GS */
2668 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_GS, meta);
2669 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GS, meta);
2670 
2671 	/* TR */
2672 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_TR, meta);
2673 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_TR, meta);
2674 
2675 	/* LDTR */
2676 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_LDTR, meta);
2677 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_LDTR, meta);
2678 
2679 	/* EFER */
2680 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_EFER, meta);
2681 
2682 	/* IDTR and GDTR */
2683 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_IDTR, meta);
2684 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GDTR, meta);
2685 
2686 	/* Specific AMD registers */
2687 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_INTR_SHADOW, meta);
2688 
2689 	err += vmcb_snapshot_any(vcpu,
2690 				VMCB_ACCESS(VMCB_OFF_CR_INTERCEPT, 4), meta);
2691 	err += vmcb_snapshot_any(vcpu,
2692 				VMCB_ACCESS(VMCB_OFF_DR_INTERCEPT, 4), meta);
2693 	err += vmcb_snapshot_any(vcpu,
2694 				VMCB_ACCESS(VMCB_OFF_EXC_INTERCEPT, 4), meta);
2695 	err += vmcb_snapshot_any(vcpu,
2696 				VMCB_ACCESS(VMCB_OFF_INST1_INTERCEPT, 4), meta);
2697 	err += vmcb_snapshot_any(vcpu,
2698 				VMCB_ACCESS(VMCB_OFF_INST2_INTERCEPT, 4), meta);
2699 
2700 	err += vmcb_snapshot_any(vcpu,
2701 				VMCB_ACCESS(VMCB_OFF_PAUSE_FILTHRESH, 2), meta);
2702 	err += vmcb_snapshot_any(vcpu,
2703 				VMCB_ACCESS(VMCB_OFF_PAUSE_FILCNT, 2), meta);
2704 
2705 	err += vmcb_snapshot_any(vcpu,
2706 				VMCB_ACCESS(VMCB_OFF_ASID, 4), meta);
2707 
2708 	err += vmcb_snapshot_any(vcpu,
2709 				VMCB_ACCESS(VMCB_OFF_TLB_CTRL, 4), meta);
2710 
2711 	err += vmcb_snapshot_any(vcpu,
2712 				VMCB_ACCESS(VMCB_OFF_VIRQ, 8), meta);
2713 
2714 	err += vmcb_snapshot_any(vcpu,
2715 				VMCB_ACCESS(VMCB_OFF_EXIT_REASON, 8), meta);
2716 	err += vmcb_snapshot_any(vcpu,
2717 				VMCB_ACCESS(VMCB_OFF_EXITINFO1, 8), meta);
2718 	err += vmcb_snapshot_any(vcpu,
2719 				VMCB_ACCESS(VMCB_OFF_EXITINFO2, 8), meta);
2720 	err += vmcb_snapshot_any(vcpu,
2721 				VMCB_ACCESS(VMCB_OFF_EXITINTINFO, 8), meta);
2722 
2723 	err += vmcb_snapshot_any(vcpu,
2724 				VMCB_ACCESS(VMCB_OFF_NP_ENABLE, 1), meta);
2725 
2726 	err += vmcb_snapshot_any(vcpu,
2727 				VMCB_ACCESS(VMCB_OFF_AVIC_BAR, 8), meta);
2728 	err += vmcb_snapshot_any(vcpu,
2729 				VMCB_ACCESS(VMCB_OFF_AVIC_PAGE, 8), meta);
2730 	err += vmcb_snapshot_any(vcpu,
2731 				VMCB_ACCESS(VMCB_OFF_AVIC_LT, 8), meta);
2732 	err += vmcb_snapshot_any(vcpu,
2733 				VMCB_ACCESS(VMCB_OFF_AVIC_PT, 8), meta);
2734 
2735 	err += vmcb_snapshot_any(vcpu,
2736 				VMCB_ACCESS(VMCB_OFF_CPL, 1), meta);
2737 
2738 	err += vmcb_snapshot_any(vcpu,
2739 				VMCB_ACCESS(VMCB_OFF_STAR, 8), meta);
2740 	err += vmcb_snapshot_any(vcpu,
2741 				VMCB_ACCESS(VMCB_OFF_LSTAR, 8), meta);
2742 	err += vmcb_snapshot_any(vcpu,
2743 				VMCB_ACCESS(VMCB_OFF_CSTAR, 8), meta);
2744 
2745 	err += vmcb_snapshot_any(vcpu,
2746 				VMCB_ACCESS(VMCB_OFF_SFMASK, 8), meta);
2747 
2748 	err += vmcb_snapshot_any(vcpu,
2749 				VMCB_ACCESS(VMCB_OFF_KERNELGBASE, 8), meta);
2750 
2751 	err += vmcb_snapshot_any(vcpu,
2752 				VMCB_ACCESS(VMCB_OFF_SYSENTER_CS, 8), meta);
2753 	err += vmcb_snapshot_any(vcpu,
2754 				VMCB_ACCESS(VMCB_OFF_SYSENTER_ESP, 8), meta);
2755 	err += vmcb_snapshot_any(vcpu,
2756 				VMCB_ACCESS(VMCB_OFF_SYSENTER_EIP, 8), meta);
2757 
2758 	err += vmcb_snapshot_any(vcpu,
2759 				VMCB_ACCESS(VMCB_OFF_GUEST_PAT, 8), meta);
2760 
2761 	err += vmcb_snapshot_any(vcpu,
2762 				VMCB_ACCESS(VMCB_OFF_DBGCTL, 8), meta);
2763 	err += vmcb_snapshot_any(vcpu,
2764 				VMCB_ACCESS(VMCB_OFF_BR_FROM, 8), meta);
2765 	err += vmcb_snapshot_any(vcpu,
2766 				VMCB_ACCESS(VMCB_OFF_BR_TO, 8), meta);
2767 	err += vmcb_snapshot_any(vcpu,
2768 				VMCB_ACCESS(VMCB_OFF_INT_FROM, 8), meta);
2769 	err += vmcb_snapshot_any(vcpu,
2770 				VMCB_ACCESS(VMCB_OFF_INT_TO, 8), meta);
2771 	if (err != 0)
2772 		goto done;
2773 
2774 	/* Snapshot swctx for virtual cpu */
2775 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbp, meta, err, done);
2776 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbx, meta, err, done);
2777 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rcx, meta, err, done);
2778 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdx, meta, err, done);
2779 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdi, meta, err, done);
2780 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rsi, meta, err, done);
2781 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r8, meta, err, done);
2782 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r9, meta, err, done);
2783 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r10, meta, err, done);
2784 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r11, meta, err, done);
2785 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r12, meta, err, done);
2786 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r13, meta, err, done);
2787 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r14, meta, err, done);
2788 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r15, meta, err, done);
2789 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr0, meta, err, done);
2790 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr1, meta, err, done);
2791 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr2, meta, err, done);
2792 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr3, meta, err, done);
2793 
2794 	/* Restore other svm_vcpu struct fields */
2795 
2796 	/* Restore NEXTRIP field */
2797 	SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, err, done);
2798 
2799 	/* Restore lastcpu field */
2800 	SNAPSHOT_VAR_OR_LEAVE(vcpu->lastcpu, meta, err, done);
2801 	SNAPSHOT_VAR_OR_LEAVE(vcpu->dirty, meta, err, done);
2802 
2803 	/* Restore EPTGEN field - EPT is Extended Page Table */
2804 	SNAPSHOT_VAR_OR_LEAVE(vcpu->eptgen, meta, err, done);
2805 
2806 	SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.gen, meta, err, done);
2807 	SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.num, meta, err, done);
2808 
2809 	SNAPSHOT_BUF_OR_LEAVE(&vcpu->mtrr, sizeof(vcpu->mtrr), meta, err, done);
2810 
2811 	/* Set all caches dirty */
2812 	if (meta->op == VM_SNAPSHOT_RESTORE)
2813 		svm_set_dirty(vcpu, 0xffffffff);
2814 
2815 done:
2816 	return (err);
2817 }
2818 
2819 static int
svm_restore_tsc(void * vcpui,uint64_t offset)2820 svm_restore_tsc(void *vcpui, uint64_t offset)
2821 {
2822 	struct svm_vcpu *vcpu = vcpui;
2823 
2824 	svm_set_tsc_offset(vcpu, offset);
2825 
2826 	return (0);
2827 }
2828 #endif
2829 
2830 const struct vmm_ops vmm_ops_amd = {
2831 	.modinit	= svm_modinit,
2832 	.modcleanup	= svm_modcleanup,
2833 	.modresume	= svm_modresume,
2834 	.modsuspend	= svm_modsuspend,
2835 	.init		= svm_init,
2836 	.run		= svm_run,
2837 	.cleanup	= svm_cleanup,
2838 	.vcpu_init	= svm_vcpu_init,
2839 	.vcpu_cleanup	= svm_vcpu_cleanup,
2840 	.getreg		= svm_getreg,
2841 	.setreg		= svm_setreg,
2842 	.getdesc	= svm_getdesc,
2843 	.setdesc	= svm_setdesc,
2844 	.getcap		= svm_getcap,
2845 	.setcap		= svm_setcap,
2846 	.vmspace_alloc	= svm_vmspace_alloc,
2847 	.vmspace_free	= svm_vmspace_free,
2848 	.vlapic_init	= svm_vlapic_init,
2849 	.vlapic_cleanup	= svm_vlapic_cleanup,
2850 #ifdef BHYVE_SNAPSHOT
2851 	.vcpu_snapshot	= svm_vcpu_snapshot,
2852 	.restore_tsc	= svm_restore_tsc,
2853 #endif
2854 };
2855