1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/device.h>
25 #include <linux/export.h>
26 #include <linux/err.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/compat.h>
33 #include <uapi/linux/kfd_ioctl.h>
34 #include <linux/time.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/ptrace.h>
38 #include <linux/dma-buf.h>
39 #include <linux/processor.h>
40 #include "kfd_priv.h"
41 #include "kfd_device_queue_manager.h"
42 #include "kfd_svm.h"
43 #include "amdgpu_amdkfd.h"
44 #include "kfd_smi_events.h"
45 #include "amdgpu_dma_buf.h"
46 #include "kfd_debug.h"
47
48 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
49 static int kfd_open(struct inode *, struct file *);
50 static int kfd_release(struct inode *, struct file *);
51 static int kfd_mmap(struct file *, struct vm_area_struct *);
52
53 static const char kfd_dev_name[] = "kfd";
54
55 static const struct file_operations kfd_fops = {
56 .owner = THIS_MODULE,
57 .unlocked_ioctl = kfd_ioctl,
58 .compat_ioctl = compat_ptr_ioctl,
59 .open = kfd_open,
60 .release = kfd_release,
61 .mmap = kfd_mmap,
62 };
63
64 static int kfd_char_dev_major = -1;
65 struct device *kfd_device;
66 static const struct class kfd_class = {
67 .name = kfd_dev_name,
68 };
69
kfd_lock_pdd_by_id(struct kfd_process * p,__u32 gpu_id)70 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
71 {
72 struct kfd_process_device *pdd;
73
74 mutex_lock(&p->mutex);
75 pdd = kfd_process_device_data_by_id(p, gpu_id);
76
77 if (pdd)
78 return pdd;
79
80 mutex_unlock(&p->mutex);
81 return NULL;
82 }
83
kfd_unlock_pdd(struct kfd_process_device * pdd)84 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
85 {
86 mutex_unlock(&pdd->process->mutex);
87 }
88
kfd_chardev_init(void)89 int kfd_chardev_init(void)
90 {
91 int err = 0;
92
93 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
94 err = kfd_char_dev_major;
95 if (err < 0)
96 goto err_register_chrdev;
97
98 err = class_register(&kfd_class);
99 if (err)
100 goto err_class_create;
101
102 kfd_device = device_create(&kfd_class, NULL,
103 MKDEV(kfd_char_dev_major, 0),
104 NULL, kfd_dev_name);
105 err = PTR_ERR(kfd_device);
106 if (IS_ERR(kfd_device))
107 goto err_device_create;
108
109 return 0;
110
111 err_device_create:
112 class_unregister(&kfd_class);
113 err_class_create:
114 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
115 err_register_chrdev:
116 return err;
117 }
118
kfd_chardev_exit(void)119 void kfd_chardev_exit(void)
120 {
121 device_destroy(&kfd_class, MKDEV(kfd_char_dev_major, 0));
122 class_unregister(&kfd_class);
123 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
124 kfd_device = NULL;
125 }
126
127
kfd_open(struct inode * inode,struct file * filep)128 static int kfd_open(struct inode *inode, struct file *filep)
129 {
130 struct kfd_process *process;
131 bool is_32bit_user_mode;
132
133 if (iminor(inode) != 0)
134 return -ENODEV;
135
136 is_32bit_user_mode = in_compat_syscall();
137
138 if (is_32bit_user_mode) {
139 dev_warn(kfd_device,
140 "Process %d (32-bit) failed to open /dev/kfd\n"
141 "32-bit processes are not supported by amdkfd\n",
142 current->pid);
143 return -EPERM;
144 }
145
146 process = kfd_create_process(current);
147 if (IS_ERR(process))
148 return PTR_ERR(process);
149
150 if (kfd_process_init_cwsr_apu(process, filep)) {
151 kfd_unref_process(process);
152 return -EFAULT;
153 }
154
155 /* filep now owns the reference returned by kfd_create_process */
156 filep->private_data = process;
157
158 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
159 process->pasid, process->is_32bit_user_mode);
160
161 return 0;
162 }
163
kfd_release(struct inode * inode,struct file * filep)164 static int kfd_release(struct inode *inode, struct file *filep)
165 {
166 struct kfd_process *process = filep->private_data;
167
168 if (process)
169 kfd_unref_process(process);
170
171 return 0;
172 }
173
kfd_ioctl_get_version(struct file * filep,struct kfd_process * p,void * data)174 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
175 void *data)
176 {
177 struct kfd_ioctl_get_version_args *args = data;
178
179 args->major_version = KFD_IOCTL_MAJOR_VERSION;
180 args->minor_version = KFD_IOCTL_MINOR_VERSION;
181
182 return 0;
183 }
184
set_queue_properties_from_user(struct queue_properties * q_properties,struct kfd_ioctl_create_queue_args * args)185 static int set_queue_properties_from_user(struct queue_properties *q_properties,
186 struct kfd_ioctl_create_queue_args *args)
187 {
188 /*
189 * Repurpose queue percentage to accommodate new features:
190 * bit 0-7: queue percentage
191 * bit 8-15: pm4_target_xcc
192 */
193 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
194 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
195 return -EINVAL;
196 }
197
198 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
199 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
200 return -EINVAL;
201 }
202
203 if ((args->ring_base_address) &&
204 (!access_ok((const void __user *) args->ring_base_address,
205 sizeof(uint64_t)))) {
206 pr_err("Can't access ring base address\n");
207 return -EFAULT;
208 }
209
210 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
211 pr_err("Ring size must be a power of 2 or 0\n");
212 return -EINVAL;
213 }
214
215 if (!access_ok((const void __user *) args->read_pointer_address,
216 sizeof(uint32_t))) {
217 pr_err("Can't access read pointer\n");
218 return -EFAULT;
219 }
220
221 if (!access_ok((const void __user *) args->write_pointer_address,
222 sizeof(uint32_t))) {
223 pr_err("Can't access write pointer\n");
224 return -EFAULT;
225 }
226
227 if (args->eop_buffer_address &&
228 !access_ok((const void __user *) args->eop_buffer_address,
229 sizeof(uint32_t))) {
230 pr_debug("Can't access eop buffer");
231 return -EFAULT;
232 }
233
234 if (args->ctx_save_restore_address &&
235 !access_ok((const void __user *) args->ctx_save_restore_address,
236 sizeof(uint32_t))) {
237 pr_debug("Can't access ctx save restore buffer");
238 return -EFAULT;
239 }
240
241 q_properties->is_interop = false;
242 q_properties->is_gws = false;
243 q_properties->queue_percent = args->queue_percentage & 0xFF;
244 /* bit 8-15 are repurposed to be PM4 target XCC */
245 q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
246 q_properties->priority = args->queue_priority;
247 q_properties->queue_address = args->ring_base_address;
248 q_properties->queue_size = args->ring_size;
249 q_properties->read_ptr = (void __user *)args->read_pointer_address;
250 q_properties->write_ptr = (void __user *)args->write_pointer_address;
251 q_properties->eop_ring_buffer_address = args->eop_buffer_address;
252 q_properties->eop_ring_buffer_size = args->eop_buffer_size;
253 q_properties->ctx_save_restore_area_address =
254 args->ctx_save_restore_address;
255 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
256 q_properties->ctl_stack_size = args->ctl_stack_size;
257 q_properties->sdma_engine_id = args->sdma_engine_id;
258 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
259 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
260 q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
261 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
262 q_properties->type = KFD_QUEUE_TYPE_SDMA;
263 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
264 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
265 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_BY_ENG_ID)
266 q_properties->type = KFD_QUEUE_TYPE_SDMA_BY_ENG_ID;
267 else
268 return -ENOTSUPP;
269
270 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
271 q_properties->format = KFD_QUEUE_FORMAT_AQL;
272 else
273 q_properties->format = KFD_QUEUE_FORMAT_PM4;
274
275 pr_debug("Queue Percentage: %d, %d\n",
276 q_properties->queue_percent, args->queue_percentage);
277
278 pr_debug("Queue Priority: %d, %d\n",
279 q_properties->priority, args->queue_priority);
280
281 pr_debug("Queue Address: 0x%llX, 0x%llX\n",
282 q_properties->queue_address, args->ring_base_address);
283
284 pr_debug("Queue Size: 0x%llX, %u\n",
285 q_properties->queue_size, args->ring_size);
286
287 pr_debug("Queue r/w Pointers: %px, %px\n",
288 q_properties->read_ptr,
289 q_properties->write_ptr);
290
291 pr_debug("Queue Format: %d\n", q_properties->format);
292
293 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
294
295 pr_debug("Queue CTX save area: 0x%llX\n",
296 q_properties->ctx_save_restore_area_address);
297
298 return 0;
299 }
300
kfd_ioctl_create_queue(struct file * filep,struct kfd_process * p,void * data)301 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
302 void *data)
303 {
304 struct kfd_ioctl_create_queue_args *args = data;
305 struct kfd_node *dev;
306 int err = 0;
307 unsigned int queue_id;
308 struct kfd_process_device *pdd;
309 struct queue_properties q_properties;
310 uint32_t doorbell_offset_in_process = 0;
311
312 memset(&q_properties, 0, sizeof(struct queue_properties));
313
314 pr_debug("Creating queue ioctl\n");
315
316 err = set_queue_properties_from_user(&q_properties, args);
317 if (err)
318 return err;
319
320 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
321
322 mutex_lock(&p->mutex);
323
324 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
325 if (!pdd) {
326 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
327 err = -EINVAL;
328 goto err_pdd;
329 }
330 dev = pdd->dev;
331
332 pdd = kfd_bind_process_to_device(dev, p);
333 if (IS_ERR(pdd)) {
334 err = -ESRCH;
335 goto err_bind_process;
336 }
337
338 if (q_properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
339 int max_sdma_eng_id = kfd_get_num_sdma_engines(dev) +
340 kfd_get_num_xgmi_sdma_engines(dev) - 1;
341
342 if (q_properties.sdma_engine_id > max_sdma_eng_id) {
343 err = -EINVAL;
344 pr_err("sdma_engine_id %i exceeds maximum id of %i\n",
345 q_properties.sdma_engine_id, max_sdma_eng_id);
346 goto err_sdma_engine_id;
347 }
348 }
349
350 if (!pdd->qpd.proc_doorbells) {
351 err = kfd_alloc_process_doorbells(dev->kfd, pdd);
352 if (err) {
353 pr_debug("failed to allocate process doorbells\n");
354 goto err_bind_process;
355 }
356 }
357
358 err = kfd_queue_acquire_buffers(pdd, &q_properties);
359 if (err) {
360 pr_debug("failed to acquire user queue buffers\n");
361 goto err_acquire_queue_buf;
362 }
363
364 pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
365 p->pasid,
366 dev->id);
367
368 err = pqm_create_queue(&p->pqm, dev, &q_properties, &queue_id,
369 NULL, NULL, NULL, &doorbell_offset_in_process);
370 if (err != 0)
371 goto err_create_queue;
372
373 args->queue_id = queue_id;
374
375
376 /* Return gpu_id as doorbell offset for mmap usage */
377 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
378 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
379 if (KFD_IS_SOC15(dev))
380 /* On SOC15 ASICs, include the doorbell offset within the
381 * process doorbell frame, which is 2 pages.
382 */
383 args->doorbell_offset |= doorbell_offset_in_process;
384
385 mutex_unlock(&p->mutex);
386
387 pr_debug("Queue id %d was created successfully\n", args->queue_id);
388
389 pr_debug("Ring buffer address == 0x%016llX\n",
390 args->ring_base_address);
391
392 pr_debug("Read ptr address == 0x%016llX\n",
393 args->read_pointer_address);
394
395 pr_debug("Write ptr address == 0x%016llX\n",
396 args->write_pointer_address);
397
398 kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
399 return 0;
400
401 err_create_queue:
402 kfd_queue_unref_bo_vas(pdd, &q_properties);
403 kfd_queue_release_buffers(pdd, &q_properties);
404 err_acquire_queue_buf:
405 err_sdma_engine_id:
406 err_bind_process:
407 err_pdd:
408 mutex_unlock(&p->mutex);
409 return err;
410 }
411
kfd_ioctl_destroy_queue(struct file * filp,struct kfd_process * p,void * data)412 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
413 void *data)
414 {
415 int retval;
416 struct kfd_ioctl_destroy_queue_args *args = data;
417
418 pr_debug("Destroying queue id %d for pasid 0x%x\n",
419 args->queue_id,
420 p->pasid);
421
422 mutex_lock(&p->mutex);
423
424 retval = pqm_destroy_queue(&p->pqm, args->queue_id);
425
426 mutex_unlock(&p->mutex);
427 return retval;
428 }
429
kfd_ioctl_update_queue(struct file * filp,struct kfd_process * p,void * data)430 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
431 void *data)
432 {
433 int retval;
434 struct kfd_ioctl_update_queue_args *args = data;
435 struct queue_properties properties;
436
437 /*
438 * Repurpose queue percentage to accommodate new features:
439 * bit 0-7: queue percentage
440 * bit 8-15: pm4_target_xcc
441 */
442 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
443 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
444 return -EINVAL;
445 }
446
447 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
448 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
449 return -EINVAL;
450 }
451
452 if ((args->ring_base_address) &&
453 (!access_ok((const void __user *) args->ring_base_address,
454 sizeof(uint64_t)))) {
455 pr_err("Can't access ring base address\n");
456 return -EFAULT;
457 }
458
459 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
460 pr_err("Ring size must be a power of 2 or 0\n");
461 return -EINVAL;
462 }
463
464 properties.queue_address = args->ring_base_address;
465 properties.queue_size = args->ring_size;
466 properties.queue_percent = args->queue_percentage & 0xFF;
467 /* bit 8-15 are repurposed to be PM4 target XCC */
468 properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
469 properties.priority = args->queue_priority;
470
471 pr_debug("Updating queue id %d for pasid 0x%x\n",
472 args->queue_id, p->pasid);
473
474 mutex_lock(&p->mutex);
475
476 retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
477
478 mutex_unlock(&p->mutex);
479
480 return retval;
481 }
482
kfd_ioctl_set_cu_mask(struct file * filp,struct kfd_process * p,void * data)483 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
484 void *data)
485 {
486 int retval;
487 const int max_num_cus = 1024;
488 struct kfd_ioctl_set_cu_mask_args *args = data;
489 struct mqd_update_info minfo = {0};
490 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
491 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
492
493 if ((args->num_cu_mask % 32) != 0) {
494 pr_debug("num_cu_mask 0x%x must be a multiple of 32",
495 args->num_cu_mask);
496 return -EINVAL;
497 }
498
499 minfo.cu_mask.count = args->num_cu_mask;
500 if (minfo.cu_mask.count == 0) {
501 pr_debug("CU mask cannot be 0");
502 return -EINVAL;
503 }
504
505 /* To prevent an unreasonably large CU mask size, set an arbitrary
506 * limit of max_num_cus bits. We can then just drop any CU mask bits
507 * past max_num_cus bits and just use the first max_num_cus bits.
508 */
509 if (minfo.cu_mask.count > max_num_cus) {
510 pr_debug("CU mask cannot be greater than 1024 bits");
511 minfo.cu_mask.count = max_num_cus;
512 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
513 }
514
515 minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
516 if (!minfo.cu_mask.ptr)
517 return -ENOMEM;
518
519 retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
520 if (retval) {
521 pr_debug("Could not copy CU mask from userspace");
522 retval = -EFAULT;
523 goto out;
524 }
525
526 mutex_lock(&p->mutex);
527
528 retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
529
530 mutex_unlock(&p->mutex);
531
532 out:
533 kfree(minfo.cu_mask.ptr);
534 return retval;
535 }
536
kfd_ioctl_get_queue_wave_state(struct file * filep,struct kfd_process * p,void * data)537 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
538 struct kfd_process *p, void *data)
539 {
540 struct kfd_ioctl_get_queue_wave_state_args *args = data;
541 int r;
542
543 mutex_lock(&p->mutex);
544
545 r = pqm_get_wave_state(&p->pqm, args->queue_id,
546 (void __user *)args->ctl_stack_address,
547 &args->ctl_stack_used_size,
548 &args->save_area_used_size);
549
550 mutex_unlock(&p->mutex);
551
552 return r;
553 }
554
kfd_ioctl_set_memory_policy(struct file * filep,struct kfd_process * p,void * data)555 static int kfd_ioctl_set_memory_policy(struct file *filep,
556 struct kfd_process *p, void *data)
557 {
558 struct kfd_ioctl_set_memory_policy_args *args = data;
559 int err = 0;
560 struct kfd_process_device *pdd;
561 enum cache_policy default_policy, alternate_policy;
562
563 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
564 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
565 return -EINVAL;
566 }
567
568 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
569 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
570 return -EINVAL;
571 }
572
573 mutex_lock(&p->mutex);
574 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
575 if (!pdd) {
576 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
577 err = -EINVAL;
578 goto err_pdd;
579 }
580
581 pdd = kfd_bind_process_to_device(pdd->dev, p);
582 if (IS_ERR(pdd)) {
583 err = -ESRCH;
584 goto out;
585 }
586
587 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
588 ? cache_policy_coherent : cache_policy_noncoherent;
589
590 alternate_policy =
591 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
592 ? cache_policy_coherent : cache_policy_noncoherent;
593
594 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
595 &pdd->qpd,
596 default_policy,
597 alternate_policy,
598 (void __user *)args->alternate_aperture_base,
599 args->alternate_aperture_size))
600 err = -EINVAL;
601
602 out:
603 err_pdd:
604 mutex_unlock(&p->mutex);
605
606 return err;
607 }
608
kfd_ioctl_set_trap_handler(struct file * filep,struct kfd_process * p,void * data)609 static int kfd_ioctl_set_trap_handler(struct file *filep,
610 struct kfd_process *p, void *data)
611 {
612 struct kfd_ioctl_set_trap_handler_args *args = data;
613 int err = 0;
614 struct kfd_process_device *pdd;
615
616 mutex_lock(&p->mutex);
617
618 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
619 if (!pdd) {
620 err = -EINVAL;
621 goto err_pdd;
622 }
623
624 pdd = kfd_bind_process_to_device(pdd->dev, p);
625 if (IS_ERR(pdd)) {
626 err = -ESRCH;
627 goto out;
628 }
629
630 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
631
632 out:
633 err_pdd:
634 mutex_unlock(&p->mutex);
635
636 return err;
637 }
638
kfd_ioctl_dbg_register(struct file * filep,struct kfd_process * p,void * data)639 static int kfd_ioctl_dbg_register(struct file *filep,
640 struct kfd_process *p, void *data)
641 {
642 return -EPERM;
643 }
644
kfd_ioctl_dbg_unregister(struct file * filep,struct kfd_process * p,void * data)645 static int kfd_ioctl_dbg_unregister(struct file *filep,
646 struct kfd_process *p, void *data)
647 {
648 return -EPERM;
649 }
650
kfd_ioctl_dbg_address_watch(struct file * filep,struct kfd_process * p,void * data)651 static int kfd_ioctl_dbg_address_watch(struct file *filep,
652 struct kfd_process *p, void *data)
653 {
654 return -EPERM;
655 }
656
657 /* Parse and generate fixed size data structure for wave control */
kfd_ioctl_dbg_wave_control(struct file * filep,struct kfd_process * p,void * data)658 static int kfd_ioctl_dbg_wave_control(struct file *filep,
659 struct kfd_process *p, void *data)
660 {
661 return -EPERM;
662 }
663
kfd_ioctl_get_clock_counters(struct file * filep,struct kfd_process * p,void * data)664 static int kfd_ioctl_get_clock_counters(struct file *filep,
665 struct kfd_process *p, void *data)
666 {
667 struct kfd_ioctl_get_clock_counters_args *args = data;
668 struct kfd_process_device *pdd;
669
670 mutex_lock(&p->mutex);
671 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
672 mutex_unlock(&p->mutex);
673 if (pdd)
674 /* Reading GPU clock counter from KGD */
675 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
676 else
677 /* Node without GPU resource */
678 args->gpu_clock_counter = 0;
679
680 /* No access to rdtsc. Using raw monotonic time */
681 args->cpu_clock_counter = ktime_get_raw_ns();
682 args->system_clock_counter = ktime_get_boottime_ns();
683
684 /* Since the counter is in nano-seconds we use 1GHz frequency */
685 args->system_clock_freq = 1000000000;
686
687 return 0;
688 }
689
690
kfd_ioctl_get_process_apertures(struct file * filp,struct kfd_process * p,void * data)691 static int kfd_ioctl_get_process_apertures(struct file *filp,
692 struct kfd_process *p, void *data)
693 {
694 struct kfd_ioctl_get_process_apertures_args *args = data;
695 struct kfd_process_device_apertures *pAperture;
696 int i;
697
698 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
699
700 args->num_of_nodes = 0;
701
702 mutex_lock(&p->mutex);
703 /* Run over all pdd of the process */
704 for (i = 0; i < p->n_pdds; i++) {
705 struct kfd_process_device *pdd = p->pdds[i];
706
707 pAperture =
708 &args->process_apertures[args->num_of_nodes];
709 pAperture->gpu_id = pdd->dev->id;
710 pAperture->lds_base = pdd->lds_base;
711 pAperture->lds_limit = pdd->lds_limit;
712 pAperture->gpuvm_base = pdd->gpuvm_base;
713 pAperture->gpuvm_limit = pdd->gpuvm_limit;
714 pAperture->scratch_base = pdd->scratch_base;
715 pAperture->scratch_limit = pdd->scratch_limit;
716
717 dev_dbg(kfd_device,
718 "node id %u\n", args->num_of_nodes);
719 dev_dbg(kfd_device,
720 "gpu id %u\n", pdd->dev->id);
721 dev_dbg(kfd_device,
722 "lds_base %llX\n", pdd->lds_base);
723 dev_dbg(kfd_device,
724 "lds_limit %llX\n", pdd->lds_limit);
725 dev_dbg(kfd_device,
726 "gpuvm_base %llX\n", pdd->gpuvm_base);
727 dev_dbg(kfd_device,
728 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
729 dev_dbg(kfd_device,
730 "scratch_base %llX\n", pdd->scratch_base);
731 dev_dbg(kfd_device,
732 "scratch_limit %llX\n", pdd->scratch_limit);
733
734 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
735 break;
736 }
737 mutex_unlock(&p->mutex);
738
739 return 0;
740 }
741
kfd_ioctl_get_process_apertures_new(struct file * filp,struct kfd_process * p,void * data)742 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
743 struct kfd_process *p, void *data)
744 {
745 struct kfd_ioctl_get_process_apertures_new_args *args = data;
746 struct kfd_process_device_apertures *pa;
747 int ret;
748 int i;
749
750 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
751
752 if (args->num_of_nodes == 0) {
753 /* Return number of nodes, so that user space can alloacate
754 * sufficient memory
755 */
756 mutex_lock(&p->mutex);
757 args->num_of_nodes = p->n_pdds;
758 goto out_unlock;
759 }
760
761 /* Fill in process-aperture information for all available
762 * nodes, but not more than args->num_of_nodes as that is
763 * the amount of memory allocated by user
764 */
765 pa = kcalloc(args->num_of_nodes, sizeof(struct kfd_process_device_apertures),
766 GFP_KERNEL);
767 if (!pa)
768 return -ENOMEM;
769
770 mutex_lock(&p->mutex);
771
772 if (!p->n_pdds) {
773 args->num_of_nodes = 0;
774 kfree(pa);
775 goto out_unlock;
776 }
777
778 /* Run over all pdd of the process */
779 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
780 struct kfd_process_device *pdd = p->pdds[i];
781
782 pa[i].gpu_id = pdd->dev->id;
783 pa[i].lds_base = pdd->lds_base;
784 pa[i].lds_limit = pdd->lds_limit;
785 pa[i].gpuvm_base = pdd->gpuvm_base;
786 pa[i].gpuvm_limit = pdd->gpuvm_limit;
787 pa[i].scratch_base = pdd->scratch_base;
788 pa[i].scratch_limit = pdd->scratch_limit;
789
790 dev_dbg(kfd_device,
791 "gpu id %u\n", pdd->dev->id);
792 dev_dbg(kfd_device,
793 "lds_base %llX\n", pdd->lds_base);
794 dev_dbg(kfd_device,
795 "lds_limit %llX\n", pdd->lds_limit);
796 dev_dbg(kfd_device,
797 "gpuvm_base %llX\n", pdd->gpuvm_base);
798 dev_dbg(kfd_device,
799 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
800 dev_dbg(kfd_device,
801 "scratch_base %llX\n", pdd->scratch_base);
802 dev_dbg(kfd_device,
803 "scratch_limit %llX\n", pdd->scratch_limit);
804 }
805 mutex_unlock(&p->mutex);
806
807 args->num_of_nodes = i;
808 ret = copy_to_user(
809 (void __user *)args->kfd_process_device_apertures_ptr,
810 pa,
811 (i * sizeof(struct kfd_process_device_apertures)));
812 kfree(pa);
813 return ret ? -EFAULT : 0;
814
815 out_unlock:
816 mutex_unlock(&p->mutex);
817 return 0;
818 }
819
kfd_ioctl_create_event(struct file * filp,struct kfd_process * p,void * data)820 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
821 void *data)
822 {
823 struct kfd_ioctl_create_event_args *args = data;
824 int err;
825
826 /* For dGPUs the event page is allocated in user mode. The
827 * handle is passed to KFD with the first call to this IOCTL
828 * through the event_page_offset field.
829 */
830 if (args->event_page_offset) {
831 mutex_lock(&p->mutex);
832 err = kfd_kmap_event_page(p, args->event_page_offset);
833 mutex_unlock(&p->mutex);
834 if (err)
835 return err;
836 }
837
838 err = kfd_event_create(filp, p, args->event_type,
839 args->auto_reset != 0, args->node_id,
840 &args->event_id, &args->event_trigger_data,
841 &args->event_page_offset,
842 &args->event_slot_index);
843
844 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
845 return err;
846 }
847
kfd_ioctl_destroy_event(struct file * filp,struct kfd_process * p,void * data)848 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
849 void *data)
850 {
851 struct kfd_ioctl_destroy_event_args *args = data;
852
853 return kfd_event_destroy(p, args->event_id);
854 }
855
kfd_ioctl_set_event(struct file * filp,struct kfd_process * p,void * data)856 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
857 void *data)
858 {
859 struct kfd_ioctl_set_event_args *args = data;
860
861 return kfd_set_event(p, args->event_id);
862 }
863
kfd_ioctl_reset_event(struct file * filp,struct kfd_process * p,void * data)864 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
865 void *data)
866 {
867 struct kfd_ioctl_reset_event_args *args = data;
868
869 return kfd_reset_event(p, args->event_id);
870 }
871
kfd_ioctl_wait_events(struct file * filp,struct kfd_process * p,void * data)872 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
873 void *data)
874 {
875 struct kfd_ioctl_wait_events_args *args = data;
876
877 return kfd_wait_on_events(p, args->num_events,
878 (void __user *)args->events_ptr,
879 (args->wait_for_all != 0),
880 &args->timeout, &args->wait_result);
881 }
kfd_ioctl_set_scratch_backing_va(struct file * filep,struct kfd_process * p,void * data)882 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
883 struct kfd_process *p, void *data)
884 {
885 struct kfd_ioctl_set_scratch_backing_va_args *args = data;
886 struct kfd_process_device *pdd;
887 struct kfd_node *dev;
888 long err;
889
890 mutex_lock(&p->mutex);
891 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
892 if (!pdd) {
893 err = -EINVAL;
894 goto err_pdd;
895 }
896 dev = pdd->dev;
897
898 pdd = kfd_bind_process_to_device(dev, p);
899 if (IS_ERR(pdd)) {
900 err = PTR_ERR(pdd);
901 goto bind_process_to_device_fail;
902 }
903
904 pdd->qpd.sh_hidden_private_base = args->va_addr;
905
906 mutex_unlock(&p->mutex);
907
908 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
909 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
910 dev->kfd2kgd->set_scratch_backing_va(
911 dev->adev, args->va_addr, pdd->qpd.vmid);
912
913 return 0;
914
915 bind_process_to_device_fail:
916 err_pdd:
917 mutex_unlock(&p->mutex);
918 return err;
919 }
920
kfd_ioctl_get_tile_config(struct file * filep,struct kfd_process * p,void * data)921 static int kfd_ioctl_get_tile_config(struct file *filep,
922 struct kfd_process *p, void *data)
923 {
924 struct kfd_ioctl_get_tile_config_args *args = data;
925 struct kfd_process_device *pdd;
926 struct tile_config config;
927 int err = 0;
928
929 mutex_lock(&p->mutex);
930 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
931 mutex_unlock(&p->mutex);
932 if (!pdd)
933 return -EINVAL;
934
935 amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
936
937 args->gb_addr_config = config.gb_addr_config;
938 args->num_banks = config.num_banks;
939 args->num_ranks = config.num_ranks;
940
941 if (args->num_tile_configs > config.num_tile_configs)
942 args->num_tile_configs = config.num_tile_configs;
943 err = copy_to_user((void __user *)args->tile_config_ptr,
944 config.tile_config_ptr,
945 args->num_tile_configs * sizeof(uint32_t));
946 if (err) {
947 args->num_tile_configs = 0;
948 return -EFAULT;
949 }
950
951 if (args->num_macro_tile_configs > config.num_macro_tile_configs)
952 args->num_macro_tile_configs =
953 config.num_macro_tile_configs;
954 err = copy_to_user((void __user *)args->macro_tile_config_ptr,
955 config.macro_tile_config_ptr,
956 args->num_macro_tile_configs * sizeof(uint32_t));
957 if (err) {
958 args->num_macro_tile_configs = 0;
959 return -EFAULT;
960 }
961
962 return 0;
963 }
964
kfd_ioctl_acquire_vm(struct file * filep,struct kfd_process * p,void * data)965 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
966 void *data)
967 {
968 struct kfd_ioctl_acquire_vm_args *args = data;
969 struct kfd_process_device *pdd;
970 struct file *drm_file;
971 int ret;
972
973 drm_file = fget(args->drm_fd);
974 if (!drm_file)
975 return -EINVAL;
976
977 mutex_lock(&p->mutex);
978 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
979 if (!pdd) {
980 ret = -EINVAL;
981 goto err_pdd;
982 }
983
984 if (pdd->drm_file) {
985 ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
986 goto err_drm_file;
987 }
988
989 ret = kfd_process_device_init_vm(pdd, drm_file);
990 if (ret)
991 goto err_unlock;
992
993 /* On success, the PDD keeps the drm_file reference */
994 mutex_unlock(&p->mutex);
995
996 return 0;
997
998 err_unlock:
999 err_pdd:
1000 err_drm_file:
1001 mutex_unlock(&p->mutex);
1002 fput(drm_file);
1003 return ret;
1004 }
1005
kfd_dev_is_large_bar(struct kfd_node * dev)1006 bool kfd_dev_is_large_bar(struct kfd_node *dev)
1007 {
1008 if (dev->kfd->adev->debug_largebar) {
1009 pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1010 return true;
1011 }
1012
1013 if (dev->local_mem_info.local_mem_size_private == 0 &&
1014 dev->local_mem_info.local_mem_size_public > 0)
1015 return true;
1016
1017 if (dev->local_mem_info.local_mem_size_public == 0 &&
1018 dev->kfd->adev->gmc.is_app_apu) {
1019 pr_debug("APP APU, Consider like a large bar system\n");
1020 return true;
1021 }
1022
1023 return false;
1024 }
1025
kfd_ioctl_get_available_memory(struct file * filep,struct kfd_process * p,void * data)1026 static int kfd_ioctl_get_available_memory(struct file *filep,
1027 struct kfd_process *p, void *data)
1028 {
1029 struct kfd_ioctl_get_available_memory_args *args = data;
1030 struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1031
1032 if (!pdd)
1033 return -EINVAL;
1034 args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1035 pdd->dev->node_id);
1036 kfd_unlock_pdd(pdd);
1037 return 0;
1038 }
1039
kfd_ioctl_alloc_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1040 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1041 struct kfd_process *p, void *data)
1042 {
1043 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1044 struct kfd_process_device *pdd;
1045 void *mem;
1046 struct kfd_node *dev;
1047 int idr_handle;
1048 long err;
1049 uint64_t offset = args->mmap_offset;
1050 uint32_t flags = args->flags;
1051
1052 if (args->size == 0)
1053 return -EINVAL;
1054
1055 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1056 /* Flush pending deferred work to avoid racing with deferred actions
1057 * from previous memory map changes (e.g. munmap).
1058 */
1059 svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1060 mutex_lock(&p->svms.lock);
1061 mmap_write_unlock(current->mm);
1062 if (interval_tree_iter_first(&p->svms.objects,
1063 args->va_addr >> PAGE_SHIFT,
1064 (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1065 pr_err("Address: 0x%llx already allocated by SVM\n",
1066 args->va_addr);
1067 mutex_unlock(&p->svms.lock);
1068 return -EADDRINUSE;
1069 }
1070
1071 /* When register user buffer check if it has been registered by svm by
1072 * buffer cpu virtual address.
1073 */
1074 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1075 interval_tree_iter_first(&p->svms.objects,
1076 args->mmap_offset >> PAGE_SHIFT,
1077 (args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) {
1078 pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1079 args->mmap_offset);
1080 mutex_unlock(&p->svms.lock);
1081 return -EADDRINUSE;
1082 }
1083
1084 mutex_unlock(&p->svms.lock);
1085 #endif
1086 mutex_lock(&p->mutex);
1087 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1088 if (!pdd) {
1089 err = -EINVAL;
1090 goto err_pdd;
1091 }
1092
1093 dev = pdd->dev;
1094
1095 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1096 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1097 !kfd_dev_is_large_bar(dev)) {
1098 pr_err("Alloc host visible vram on small bar is not allowed\n");
1099 err = -EINVAL;
1100 goto err_large_bar;
1101 }
1102
1103 pdd = kfd_bind_process_to_device(dev, p);
1104 if (IS_ERR(pdd)) {
1105 err = PTR_ERR(pdd);
1106 goto err_unlock;
1107 }
1108
1109 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1110 if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1111 err = -EINVAL;
1112 goto err_unlock;
1113 }
1114 offset = kfd_get_process_doorbells(pdd);
1115 if (!offset) {
1116 err = -ENOMEM;
1117 goto err_unlock;
1118 }
1119 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1120 if (args->size != PAGE_SIZE) {
1121 err = -EINVAL;
1122 goto err_unlock;
1123 }
1124 offset = dev->adev->rmmio_remap.bus_addr;
1125 if (!offset || (PAGE_SIZE > 4096)) {
1126 err = -ENOMEM;
1127 goto err_unlock;
1128 }
1129 }
1130
1131 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1132 dev->adev, args->va_addr, args->size,
1133 pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1134 flags, false);
1135
1136 if (err)
1137 goto err_unlock;
1138
1139 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1140 if (idr_handle < 0) {
1141 err = -EFAULT;
1142 goto err_free;
1143 }
1144
1145 /* Update the VRAM usage count */
1146 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1147 uint64_t size = args->size;
1148
1149 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1150 size >>= 1;
1151 atomic64_add(PAGE_ALIGN(size), &pdd->vram_usage);
1152 }
1153
1154 mutex_unlock(&p->mutex);
1155
1156 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1157 args->mmap_offset = offset;
1158
1159 /* MMIO is mapped through kfd device
1160 * Generate a kfd mmap offset
1161 */
1162 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1163 args->mmap_offset = KFD_MMAP_TYPE_MMIO
1164 | KFD_MMAP_GPU_ID(args->gpu_id);
1165
1166 return 0;
1167
1168 err_free:
1169 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1170 pdd->drm_priv, NULL);
1171 err_unlock:
1172 err_pdd:
1173 err_large_bar:
1174 mutex_unlock(&p->mutex);
1175 return err;
1176 }
1177
kfd_ioctl_free_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1178 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1179 struct kfd_process *p, void *data)
1180 {
1181 struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1182 struct kfd_process_device *pdd;
1183 void *mem;
1184 int ret;
1185 uint64_t size = 0;
1186
1187 mutex_lock(&p->mutex);
1188 /*
1189 * Safeguard to prevent user space from freeing signal BO.
1190 * It will be freed at process termination.
1191 */
1192 if (p->signal_handle && (p->signal_handle == args->handle)) {
1193 pr_err("Free signal BO is not allowed\n");
1194 ret = -EPERM;
1195 goto err_unlock;
1196 }
1197
1198 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1199 if (!pdd) {
1200 pr_err("Process device data doesn't exist\n");
1201 ret = -EINVAL;
1202 goto err_pdd;
1203 }
1204
1205 mem = kfd_process_device_translate_handle(
1206 pdd, GET_IDR_HANDLE(args->handle));
1207 if (!mem) {
1208 ret = -EINVAL;
1209 goto err_unlock;
1210 }
1211
1212 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1213 (struct kgd_mem *)mem, pdd->drm_priv, &size);
1214
1215 /* If freeing the buffer failed, leave the handle in place for
1216 * clean-up during process tear-down.
1217 */
1218 if (!ret)
1219 kfd_process_device_remove_obj_handle(
1220 pdd, GET_IDR_HANDLE(args->handle));
1221
1222 atomic64_sub(size, &pdd->vram_usage);
1223
1224 err_unlock:
1225 err_pdd:
1226 mutex_unlock(&p->mutex);
1227 return ret;
1228 }
1229
kfd_ioctl_map_memory_to_gpu(struct file * filep,struct kfd_process * p,void * data)1230 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1231 struct kfd_process *p, void *data)
1232 {
1233 struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1234 struct kfd_process_device *pdd, *peer_pdd;
1235 void *mem;
1236 struct kfd_node *dev;
1237 long err = 0;
1238 int i;
1239 uint32_t *devices_arr = NULL;
1240
1241 if (!args->n_devices) {
1242 pr_debug("Device IDs array empty\n");
1243 return -EINVAL;
1244 }
1245 if (args->n_success > args->n_devices) {
1246 pr_debug("n_success exceeds n_devices\n");
1247 return -EINVAL;
1248 }
1249
1250 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1251 GFP_KERNEL);
1252 if (!devices_arr)
1253 return -ENOMEM;
1254
1255 err = copy_from_user(devices_arr,
1256 (void __user *)args->device_ids_array_ptr,
1257 args->n_devices * sizeof(*devices_arr));
1258 if (err != 0) {
1259 err = -EFAULT;
1260 goto copy_from_user_failed;
1261 }
1262
1263 mutex_lock(&p->mutex);
1264 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1265 if (!pdd) {
1266 err = -EINVAL;
1267 goto get_process_device_data_failed;
1268 }
1269 dev = pdd->dev;
1270
1271 pdd = kfd_bind_process_to_device(dev, p);
1272 if (IS_ERR(pdd)) {
1273 err = PTR_ERR(pdd);
1274 goto bind_process_to_device_failed;
1275 }
1276
1277 mem = kfd_process_device_translate_handle(pdd,
1278 GET_IDR_HANDLE(args->handle));
1279 if (!mem) {
1280 err = -ENOMEM;
1281 goto get_mem_obj_from_handle_failed;
1282 }
1283
1284 for (i = args->n_success; i < args->n_devices; i++) {
1285 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1286 if (!peer_pdd) {
1287 pr_debug("Getting device by id failed for 0x%x\n",
1288 devices_arr[i]);
1289 err = -EINVAL;
1290 goto get_mem_obj_from_handle_failed;
1291 }
1292
1293 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1294 if (IS_ERR(peer_pdd)) {
1295 err = PTR_ERR(peer_pdd);
1296 goto get_mem_obj_from_handle_failed;
1297 }
1298
1299 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1300 peer_pdd->dev->adev, (struct kgd_mem *)mem,
1301 peer_pdd->drm_priv);
1302 if (err) {
1303 struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1304
1305 dev_err(dev->adev->dev,
1306 "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1307 pci_domain_nr(pdev->bus),
1308 pdev->bus->number,
1309 PCI_SLOT(pdev->devfn),
1310 PCI_FUNC(pdev->devfn),
1311 ((struct kgd_mem *)mem)->domain);
1312 goto map_memory_to_gpu_failed;
1313 }
1314 args->n_success = i+1;
1315 }
1316
1317 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1318 if (err) {
1319 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1320 goto sync_memory_failed;
1321 }
1322
1323 mutex_unlock(&p->mutex);
1324
1325 /* Flush TLBs after waiting for the page table updates to complete */
1326 for (i = 0; i < args->n_devices; i++) {
1327 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1328 if (WARN_ON_ONCE(!peer_pdd))
1329 continue;
1330 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1331 }
1332 kfree(devices_arr);
1333
1334 return err;
1335
1336 get_process_device_data_failed:
1337 bind_process_to_device_failed:
1338 get_mem_obj_from_handle_failed:
1339 map_memory_to_gpu_failed:
1340 sync_memory_failed:
1341 mutex_unlock(&p->mutex);
1342 copy_from_user_failed:
1343 kfree(devices_arr);
1344
1345 return err;
1346 }
1347
kfd_ioctl_unmap_memory_from_gpu(struct file * filep,struct kfd_process * p,void * data)1348 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1349 struct kfd_process *p, void *data)
1350 {
1351 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1352 struct kfd_process_device *pdd, *peer_pdd;
1353 void *mem;
1354 long err = 0;
1355 uint32_t *devices_arr = NULL, i;
1356 bool flush_tlb;
1357
1358 if (!args->n_devices) {
1359 pr_debug("Device IDs array empty\n");
1360 return -EINVAL;
1361 }
1362 if (args->n_success > args->n_devices) {
1363 pr_debug("n_success exceeds n_devices\n");
1364 return -EINVAL;
1365 }
1366
1367 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1368 GFP_KERNEL);
1369 if (!devices_arr)
1370 return -ENOMEM;
1371
1372 err = copy_from_user(devices_arr,
1373 (void __user *)args->device_ids_array_ptr,
1374 args->n_devices * sizeof(*devices_arr));
1375 if (err != 0) {
1376 err = -EFAULT;
1377 goto copy_from_user_failed;
1378 }
1379
1380 mutex_lock(&p->mutex);
1381 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1382 if (!pdd) {
1383 err = -EINVAL;
1384 goto bind_process_to_device_failed;
1385 }
1386
1387 mem = kfd_process_device_translate_handle(pdd,
1388 GET_IDR_HANDLE(args->handle));
1389 if (!mem) {
1390 err = -ENOMEM;
1391 goto get_mem_obj_from_handle_failed;
1392 }
1393
1394 for (i = args->n_success; i < args->n_devices; i++) {
1395 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1396 if (!peer_pdd) {
1397 err = -EINVAL;
1398 goto get_mem_obj_from_handle_failed;
1399 }
1400 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1401 peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1402 if (err) {
1403 pr_debug("Failed to unmap from gpu %d/%d\n", i, args->n_devices);
1404 goto unmap_memory_from_gpu_failed;
1405 }
1406 args->n_success = i+1;
1407 }
1408
1409 flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1410 if (flush_tlb) {
1411 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1412 (struct kgd_mem *) mem, true);
1413 if (err) {
1414 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1415 goto sync_memory_failed;
1416 }
1417 }
1418
1419 /* Flush TLBs after waiting for the page table updates to complete */
1420 for (i = 0; i < args->n_devices; i++) {
1421 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1422 if (WARN_ON_ONCE(!peer_pdd))
1423 continue;
1424 if (flush_tlb)
1425 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1426
1427 /* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1428 err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1429 if (err)
1430 goto sync_memory_failed;
1431 }
1432
1433 mutex_unlock(&p->mutex);
1434
1435 kfree(devices_arr);
1436
1437 return 0;
1438
1439 bind_process_to_device_failed:
1440 get_mem_obj_from_handle_failed:
1441 unmap_memory_from_gpu_failed:
1442 sync_memory_failed:
1443 mutex_unlock(&p->mutex);
1444 copy_from_user_failed:
1445 kfree(devices_arr);
1446 return err;
1447 }
1448
kfd_ioctl_alloc_queue_gws(struct file * filep,struct kfd_process * p,void * data)1449 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1450 struct kfd_process *p, void *data)
1451 {
1452 int retval;
1453 struct kfd_ioctl_alloc_queue_gws_args *args = data;
1454 struct queue *q;
1455 struct kfd_node *dev;
1456
1457 mutex_lock(&p->mutex);
1458 q = pqm_get_user_queue(&p->pqm, args->queue_id);
1459
1460 if (q) {
1461 dev = q->device;
1462 } else {
1463 retval = -EINVAL;
1464 goto out_unlock;
1465 }
1466
1467 if (!dev->gws) {
1468 retval = -ENODEV;
1469 goto out_unlock;
1470 }
1471
1472 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1473 retval = -ENODEV;
1474 goto out_unlock;
1475 }
1476
1477 if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1478 kfd_dbg_has_cwsr_workaround(dev))) {
1479 retval = -EBUSY;
1480 goto out_unlock;
1481 }
1482
1483 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1484 mutex_unlock(&p->mutex);
1485
1486 args->first_gws = 0;
1487 return retval;
1488
1489 out_unlock:
1490 mutex_unlock(&p->mutex);
1491 return retval;
1492 }
1493
kfd_ioctl_get_dmabuf_info(struct file * filep,struct kfd_process * p,void * data)1494 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1495 struct kfd_process *p, void *data)
1496 {
1497 struct kfd_ioctl_get_dmabuf_info_args *args = data;
1498 struct kfd_node *dev = NULL;
1499 struct amdgpu_device *dmabuf_adev;
1500 void *metadata_buffer = NULL;
1501 uint32_t flags;
1502 int8_t xcp_id;
1503 unsigned int i;
1504 int r;
1505
1506 /* Find a KFD GPU device that supports the get_dmabuf_info query */
1507 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1508 if (dev && !kfd_devcgroup_check_permission(dev))
1509 break;
1510 if (!dev)
1511 return -EINVAL;
1512
1513 if (args->metadata_ptr) {
1514 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1515 if (!metadata_buffer)
1516 return -ENOMEM;
1517 }
1518
1519 /* Get dmabuf info from KGD */
1520 r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1521 &dmabuf_adev, &args->size,
1522 metadata_buffer, args->metadata_size,
1523 &args->metadata_size, &flags, &xcp_id);
1524 if (r)
1525 goto exit;
1526
1527 if (xcp_id >= 0)
1528 args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1529 else
1530 args->gpu_id = dev->id;
1531 args->flags = flags;
1532
1533 /* Copy metadata buffer to user mode */
1534 if (metadata_buffer) {
1535 r = copy_to_user((void __user *)args->metadata_ptr,
1536 metadata_buffer, args->metadata_size);
1537 if (r != 0)
1538 r = -EFAULT;
1539 }
1540
1541 exit:
1542 kfree(metadata_buffer);
1543
1544 return r;
1545 }
1546
kfd_ioctl_import_dmabuf(struct file * filep,struct kfd_process * p,void * data)1547 static int kfd_ioctl_import_dmabuf(struct file *filep,
1548 struct kfd_process *p, void *data)
1549 {
1550 struct kfd_ioctl_import_dmabuf_args *args = data;
1551 struct kfd_process_device *pdd;
1552 int idr_handle;
1553 uint64_t size;
1554 void *mem;
1555 int r;
1556
1557 mutex_lock(&p->mutex);
1558 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1559 if (!pdd) {
1560 r = -EINVAL;
1561 goto err_unlock;
1562 }
1563
1564 pdd = kfd_bind_process_to_device(pdd->dev, p);
1565 if (IS_ERR(pdd)) {
1566 r = PTR_ERR(pdd);
1567 goto err_unlock;
1568 }
1569
1570 r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1571 args->va_addr, pdd->drm_priv,
1572 (struct kgd_mem **)&mem, &size,
1573 NULL);
1574 if (r)
1575 goto err_unlock;
1576
1577 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1578 if (idr_handle < 0) {
1579 r = -EFAULT;
1580 goto err_free;
1581 }
1582
1583 mutex_unlock(&p->mutex);
1584
1585 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1586
1587 return 0;
1588
1589 err_free:
1590 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1591 pdd->drm_priv, NULL);
1592 err_unlock:
1593 mutex_unlock(&p->mutex);
1594 return r;
1595 }
1596
kfd_ioctl_export_dmabuf(struct file * filep,struct kfd_process * p,void * data)1597 static int kfd_ioctl_export_dmabuf(struct file *filep,
1598 struct kfd_process *p, void *data)
1599 {
1600 struct kfd_ioctl_export_dmabuf_args *args = data;
1601 struct kfd_process_device *pdd;
1602 struct dma_buf *dmabuf;
1603 struct kfd_node *dev;
1604 void *mem;
1605 int ret = 0;
1606
1607 dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1608 if (!dev)
1609 return -EINVAL;
1610
1611 mutex_lock(&p->mutex);
1612
1613 pdd = kfd_get_process_device_data(dev, p);
1614 if (!pdd) {
1615 ret = -EINVAL;
1616 goto err_unlock;
1617 }
1618
1619 mem = kfd_process_device_translate_handle(pdd,
1620 GET_IDR_HANDLE(args->handle));
1621 if (!mem) {
1622 ret = -EINVAL;
1623 goto err_unlock;
1624 }
1625
1626 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1627 mutex_unlock(&p->mutex);
1628 if (ret)
1629 goto err_out;
1630
1631 ret = dma_buf_fd(dmabuf, args->flags);
1632 if (ret < 0) {
1633 dma_buf_put(dmabuf);
1634 goto err_out;
1635 }
1636 /* dma_buf_fd assigns the reference count to the fd, no need to
1637 * put the reference here.
1638 */
1639 args->dmabuf_fd = ret;
1640
1641 return 0;
1642
1643 err_unlock:
1644 mutex_unlock(&p->mutex);
1645 err_out:
1646 return ret;
1647 }
1648
1649 /* Handle requests for watching SMI events */
kfd_ioctl_smi_events(struct file * filep,struct kfd_process * p,void * data)1650 static int kfd_ioctl_smi_events(struct file *filep,
1651 struct kfd_process *p, void *data)
1652 {
1653 struct kfd_ioctl_smi_events_args *args = data;
1654 struct kfd_process_device *pdd;
1655
1656 mutex_lock(&p->mutex);
1657
1658 pdd = kfd_process_device_data_by_id(p, args->gpuid);
1659 mutex_unlock(&p->mutex);
1660 if (!pdd)
1661 return -EINVAL;
1662
1663 return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1664 }
1665
1666 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1667
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1668 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1669 struct kfd_process *p, void *data)
1670 {
1671 struct kfd_ioctl_set_xnack_mode_args *args = data;
1672 int r = 0;
1673
1674 mutex_lock(&p->mutex);
1675 if (args->xnack_enabled >= 0) {
1676 if (!list_empty(&p->pqm.queues)) {
1677 pr_debug("Process has user queues running\n");
1678 r = -EBUSY;
1679 goto out_unlock;
1680 }
1681
1682 if (p->xnack_enabled == args->xnack_enabled)
1683 goto out_unlock;
1684
1685 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1686 r = -EPERM;
1687 goto out_unlock;
1688 }
1689
1690 r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1691 } else {
1692 args->xnack_enabled = p->xnack_enabled;
1693 }
1694
1695 out_unlock:
1696 mutex_unlock(&p->mutex);
1697
1698 return r;
1699 }
1700
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1701 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1702 {
1703 struct kfd_ioctl_svm_args *args = data;
1704 int r = 0;
1705
1706 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1707 args->start_addr, args->size, args->op, args->nattr);
1708
1709 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1710 return -EINVAL;
1711 if (!args->start_addr || !args->size)
1712 return -EINVAL;
1713
1714 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1715 args->attrs);
1716
1717 return r;
1718 }
1719 #else
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1720 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1721 struct kfd_process *p, void *data)
1722 {
1723 return -EPERM;
1724 }
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1725 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1726 {
1727 return -EPERM;
1728 }
1729 #endif
1730
criu_checkpoint_process(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_offset)1731 static int criu_checkpoint_process(struct kfd_process *p,
1732 uint8_t __user *user_priv_data,
1733 uint64_t *priv_offset)
1734 {
1735 struct kfd_criu_process_priv_data process_priv;
1736 int ret;
1737
1738 memset(&process_priv, 0, sizeof(process_priv));
1739
1740 process_priv.version = KFD_CRIU_PRIV_VERSION;
1741 /* For CR, we don't consider negative xnack mode which is used for
1742 * querying without changing it, here 0 simply means disabled and 1
1743 * means enabled so retry for finding a valid PTE.
1744 */
1745 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1746
1747 ret = copy_to_user(user_priv_data + *priv_offset,
1748 &process_priv, sizeof(process_priv));
1749
1750 if (ret) {
1751 pr_err("Failed to copy process information to user\n");
1752 ret = -EFAULT;
1753 }
1754
1755 *priv_offset += sizeof(process_priv);
1756 return ret;
1757 }
1758
criu_checkpoint_devices(struct kfd_process * p,uint32_t num_devices,uint8_t __user * user_addr,uint8_t __user * user_priv_data,uint64_t * priv_offset)1759 static int criu_checkpoint_devices(struct kfd_process *p,
1760 uint32_t num_devices,
1761 uint8_t __user *user_addr,
1762 uint8_t __user *user_priv_data,
1763 uint64_t *priv_offset)
1764 {
1765 struct kfd_criu_device_priv_data *device_priv = NULL;
1766 struct kfd_criu_device_bucket *device_buckets = NULL;
1767 int ret = 0, i;
1768
1769 device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1770 if (!device_buckets) {
1771 ret = -ENOMEM;
1772 goto exit;
1773 }
1774
1775 device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1776 if (!device_priv) {
1777 ret = -ENOMEM;
1778 goto exit;
1779 }
1780
1781 for (i = 0; i < num_devices; i++) {
1782 struct kfd_process_device *pdd = p->pdds[i];
1783
1784 device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1785 device_buckets[i].actual_gpu_id = pdd->dev->id;
1786
1787 /*
1788 * priv_data does not contain useful information for now and is reserved for
1789 * future use, so we do not set its contents.
1790 */
1791 }
1792
1793 ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1794 if (ret) {
1795 pr_err("Failed to copy device information to user\n");
1796 ret = -EFAULT;
1797 goto exit;
1798 }
1799
1800 ret = copy_to_user(user_priv_data + *priv_offset,
1801 device_priv,
1802 num_devices * sizeof(*device_priv));
1803 if (ret) {
1804 pr_err("Failed to copy device information to user\n");
1805 ret = -EFAULT;
1806 }
1807 *priv_offset += num_devices * sizeof(*device_priv);
1808
1809 exit:
1810 kvfree(device_buckets);
1811 kvfree(device_priv);
1812 return ret;
1813 }
1814
get_process_num_bos(struct kfd_process * p)1815 static uint32_t get_process_num_bos(struct kfd_process *p)
1816 {
1817 uint32_t num_of_bos = 0;
1818 int i;
1819
1820 /* Run over all PDDs of the process */
1821 for (i = 0; i < p->n_pdds; i++) {
1822 struct kfd_process_device *pdd = p->pdds[i];
1823 void *mem;
1824 int id;
1825
1826 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1827 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1828
1829 if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1830 num_of_bos++;
1831 }
1832 }
1833 return num_of_bos;
1834 }
1835
criu_get_prime_handle(struct kgd_mem * mem,int flags,u32 * shared_fd,struct file ** file)1836 static int criu_get_prime_handle(struct kgd_mem *mem,
1837 int flags, u32 *shared_fd,
1838 struct file **file)
1839 {
1840 struct dma_buf *dmabuf;
1841 int ret;
1842
1843 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1844 if (ret) {
1845 pr_err("dmabuf export failed for the BO\n");
1846 return ret;
1847 }
1848
1849 ret = get_unused_fd_flags(flags);
1850 if (ret < 0) {
1851 pr_err("dmabuf create fd failed, ret:%d\n", ret);
1852 goto out_free_dmabuf;
1853 }
1854
1855 *shared_fd = ret;
1856 *file = dmabuf->file;
1857 return 0;
1858
1859 out_free_dmabuf:
1860 dma_buf_put(dmabuf);
1861 return ret;
1862 }
1863
commit_files(struct file ** files,struct kfd_criu_bo_bucket * bo_buckets,unsigned int count,int err)1864 static void commit_files(struct file **files,
1865 struct kfd_criu_bo_bucket *bo_buckets,
1866 unsigned int count,
1867 int err)
1868 {
1869 while (count--) {
1870 struct file *file = files[count];
1871
1872 if (!file)
1873 continue;
1874 if (err) {
1875 fput(file);
1876 put_unused_fd(bo_buckets[count].dmabuf_fd);
1877 } else {
1878 fd_install(bo_buckets[count].dmabuf_fd, file);
1879 }
1880 }
1881 }
1882
criu_checkpoint_bos(struct kfd_process * p,uint32_t num_bos,uint8_t __user * user_bos,uint8_t __user * user_priv_data,uint64_t * priv_offset)1883 static int criu_checkpoint_bos(struct kfd_process *p,
1884 uint32_t num_bos,
1885 uint8_t __user *user_bos,
1886 uint8_t __user *user_priv_data,
1887 uint64_t *priv_offset)
1888 {
1889 struct kfd_criu_bo_bucket *bo_buckets;
1890 struct kfd_criu_bo_priv_data *bo_privs;
1891 struct file **files = NULL;
1892 int ret = 0, pdd_index, bo_index = 0, id;
1893 void *mem;
1894
1895 bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1896 if (!bo_buckets)
1897 return -ENOMEM;
1898
1899 bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1900 if (!bo_privs) {
1901 ret = -ENOMEM;
1902 goto exit;
1903 }
1904
1905 files = kvzalloc(num_bos * sizeof(struct file *), GFP_KERNEL);
1906 if (!files) {
1907 ret = -ENOMEM;
1908 goto exit;
1909 }
1910
1911 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1912 struct kfd_process_device *pdd = p->pdds[pdd_index];
1913 struct amdgpu_bo *dumper_bo;
1914 struct kgd_mem *kgd_mem;
1915
1916 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1917 struct kfd_criu_bo_bucket *bo_bucket;
1918 struct kfd_criu_bo_priv_data *bo_priv;
1919 int i, dev_idx = 0;
1920
1921 kgd_mem = (struct kgd_mem *)mem;
1922 dumper_bo = kgd_mem->bo;
1923
1924 /* Skip checkpointing BOs that are used for Trap handler
1925 * code and state. Currently, these BOs have a VA that
1926 * is less GPUVM Base
1927 */
1928 if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1929 continue;
1930
1931 bo_bucket = &bo_buckets[bo_index];
1932 bo_priv = &bo_privs[bo_index];
1933
1934 bo_bucket->gpu_id = pdd->user_gpu_id;
1935 bo_bucket->addr = (uint64_t)kgd_mem->va;
1936 bo_bucket->size = amdgpu_bo_size(dumper_bo);
1937 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1938 bo_priv->idr_handle = id;
1939
1940 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1941 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1942 &bo_priv->user_addr);
1943 if (ret) {
1944 pr_err("Failed to obtain user address for user-pointer bo\n");
1945 goto exit;
1946 }
1947 }
1948 if (bo_bucket->alloc_flags
1949 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1950 ret = criu_get_prime_handle(kgd_mem,
1951 bo_bucket->alloc_flags &
1952 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1953 &bo_bucket->dmabuf_fd, &files[bo_index]);
1954 if (ret)
1955 goto exit;
1956 } else {
1957 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1958 }
1959
1960 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1961 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1962 KFD_MMAP_GPU_ID(pdd->dev->id);
1963 else if (bo_bucket->alloc_flags &
1964 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1965 bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1966 KFD_MMAP_GPU_ID(pdd->dev->id);
1967 else
1968 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1969
1970 for (i = 0; i < p->n_pdds; i++) {
1971 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->drm_priv, kgd_mem))
1972 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1973 }
1974
1975 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1976 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1977 bo_bucket->size,
1978 bo_bucket->addr,
1979 bo_bucket->offset,
1980 bo_bucket->gpu_id,
1981 bo_bucket->alloc_flags,
1982 bo_priv->idr_handle);
1983 bo_index++;
1984 }
1985 }
1986
1987 ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1988 if (ret) {
1989 pr_err("Failed to copy BO information to user\n");
1990 ret = -EFAULT;
1991 goto exit;
1992 }
1993
1994 ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1995 if (ret) {
1996 pr_err("Failed to copy BO priv information to user\n");
1997 ret = -EFAULT;
1998 goto exit;
1999 }
2000
2001 *priv_offset += num_bos * sizeof(*bo_privs);
2002
2003 exit:
2004 commit_files(files, bo_buckets, bo_index, ret);
2005 kvfree(files);
2006 kvfree(bo_buckets);
2007 kvfree(bo_privs);
2008 return ret;
2009 }
2010
criu_get_process_object_info(struct kfd_process * p,uint32_t * num_devices,uint32_t * num_bos,uint32_t * num_objects,uint64_t * objs_priv_size)2011 static int criu_get_process_object_info(struct kfd_process *p,
2012 uint32_t *num_devices,
2013 uint32_t *num_bos,
2014 uint32_t *num_objects,
2015 uint64_t *objs_priv_size)
2016 {
2017 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2018 uint32_t num_queues, num_events, num_svm_ranges;
2019 int ret;
2020
2021 *num_devices = p->n_pdds;
2022 *num_bos = get_process_num_bos(p);
2023
2024 ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2025 if (ret)
2026 return ret;
2027
2028 num_events = kfd_get_num_events(p);
2029
2030 ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2031 if (ret)
2032 return ret;
2033
2034 *num_objects = num_queues + num_events + num_svm_ranges;
2035
2036 if (objs_priv_size) {
2037 priv_size = sizeof(struct kfd_criu_process_priv_data);
2038 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2039 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2040 priv_size += queues_priv_data_size;
2041 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2042 priv_size += svm_priv_data_size;
2043 *objs_priv_size = priv_size;
2044 }
2045 return 0;
2046 }
2047
criu_checkpoint(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2048 static int criu_checkpoint(struct file *filep,
2049 struct kfd_process *p,
2050 struct kfd_ioctl_criu_args *args)
2051 {
2052 int ret;
2053 uint32_t num_devices, num_bos, num_objects;
2054 uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2055
2056 if (!args->devices || !args->bos || !args->priv_data)
2057 return -EINVAL;
2058
2059 mutex_lock(&p->mutex);
2060
2061 if (!p->n_pdds) {
2062 pr_err("No pdd for given process\n");
2063 ret = -ENODEV;
2064 goto exit_unlock;
2065 }
2066
2067 /* Confirm all process queues are evicted */
2068 if (!p->queues_paused) {
2069 pr_err("Cannot dump process when queues are not in evicted state\n");
2070 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2071 ret = -EINVAL;
2072 goto exit_unlock;
2073 }
2074
2075 ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2076 if (ret)
2077 goto exit_unlock;
2078
2079 if (num_devices != args->num_devices ||
2080 num_bos != args->num_bos ||
2081 num_objects != args->num_objects ||
2082 priv_size != args->priv_data_size) {
2083
2084 ret = -EINVAL;
2085 goto exit_unlock;
2086 }
2087
2088 /* each function will store private data inside priv_data and adjust priv_offset */
2089 ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2090 if (ret)
2091 goto exit_unlock;
2092
2093 ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2094 (uint8_t __user *)args->priv_data, &priv_offset);
2095 if (ret)
2096 goto exit_unlock;
2097
2098 /* Leave room for BOs in the private data. They need to be restored
2099 * before events, but we checkpoint them last to simplify the error
2100 * handling.
2101 */
2102 bo_priv_offset = priv_offset;
2103 priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2104
2105 if (num_objects) {
2106 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2107 &priv_offset);
2108 if (ret)
2109 goto exit_unlock;
2110
2111 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2112 &priv_offset);
2113 if (ret)
2114 goto exit_unlock;
2115
2116 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2117 if (ret)
2118 goto exit_unlock;
2119 }
2120
2121 /* This must be the last thing in this function that can fail.
2122 * Otherwise we leak dmabuf file descriptors.
2123 */
2124 ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2125 (uint8_t __user *)args->priv_data, &bo_priv_offset);
2126
2127 exit_unlock:
2128 mutex_unlock(&p->mutex);
2129 if (ret)
2130 pr_err("Failed to dump CRIU ret:%d\n", ret);
2131 else
2132 pr_debug("CRIU dump ret:%d\n", ret);
2133
2134 return ret;
2135 }
2136
criu_restore_process(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2137 static int criu_restore_process(struct kfd_process *p,
2138 struct kfd_ioctl_criu_args *args,
2139 uint64_t *priv_offset,
2140 uint64_t max_priv_data_size)
2141 {
2142 int ret = 0;
2143 struct kfd_criu_process_priv_data process_priv;
2144
2145 if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2146 return -EINVAL;
2147
2148 ret = copy_from_user(&process_priv,
2149 (void __user *)(args->priv_data + *priv_offset),
2150 sizeof(process_priv));
2151 if (ret) {
2152 pr_err("Failed to copy process private information from user\n");
2153 ret = -EFAULT;
2154 goto exit;
2155 }
2156 *priv_offset += sizeof(process_priv);
2157
2158 if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2159 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2160 process_priv.version, KFD_CRIU_PRIV_VERSION);
2161 return -EINVAL;
2162 }
2163
2164 pr_debug("Setting XNACK mode\n");
2165 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2166 pr_err("xnack mode cannot be set\n");
2167 ret = -EPERM;
2168 goto exit;
2169 } else {
2170 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2171 p->xnack_enabled = process_priv.xnack_mode;
2172 }
2173
2174 exit:
2175 return ret;
2176 }
2177
criu_restore_devices(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2178 static int criu_restore_devices(struct kfd_process *p,
2179 struct kfd_ioctl_criu_args *args,
2180 uint64_t *priv_offset,
2181 uint64_t max_priv_data_size)
2182 {
2183 struct kfd_criu_device_bucket *device_buckets;
2184 struct kfd_criu_device_priv_data *device_privs;
2185 int ret = 0;
2186 uint32_t i;
2187
2188 if (args->num_devices != p->n_pdds)
2189 return -EINVAL;
2190
2191 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2192 return -EINVAL;
2193
2194 device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2195 if (!device_buckets)
2196 return -ENOMEM;
2197
2198 ret = copy_from_user(device_buckets, (void __user *)args->devices,
2199 args->num_devices * sizeof(*device_buckets));
2200 if (ret) {
2201 pr_err("Failed to copy devices buckets from user\n");
2202 ret = -EFAULT;
2203 goto exit;
2204 }
2205
2206 for (i = 0; i < args->num_devices; i++) {
2207 struct kfd_node *dev;
2208 struct kfd_process_device *pdd;
2209 struct file *drm_file;
2210
2211 /* device private data is not currently used */
2212
2213 if (!device_buckets[i].user_gpu_id) {
2214 pr_err("Invalid user gpu_id\n");
2215 ret = -EINVAL;
2216 goto exit;
2217 }
2218
2219 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2220 if (!dev) {
2221 pr_err("Failed to find device with gpu_id = %x\n",
2222 device_buckets[i].actual_gpu_id);
2223 ret = -EINVAL;
2224 goto exit;
2225 }
2226
2227 pdd = kfd_get_process_device_data(dev, p);
2228 if (!pdd) {
2229 pr_err("Failed to get pdd for gpu_id = %x\n",
2230 device_buckets[i].actual_gpu_id);
2231 ret = -EINVAL;
2232 goto exit;
2233 }
2234 pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2235
2236 drm_file = fget(device_buckets[i].drm_fd);
2237 if (!drm_file) {
2238 pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2239 device_buckets[i].drm_fd);
2240 ret = -EINVAL;
2241 goto exit;
2242 }
2243
2244 if (pdd->drm_file) {
2245 ret = -EINVAL;
2246 goto exit;
2247 }
2248
2249 /* create the vm using render nodes for kfd pdd */
2250 if (kfd_process_device_init_vm(pdd, drm_file)) {
2251 pr_err("could not init vm for given pdd\n");
2252 /* On success, the PDD keeps the drm_file reference */
2253 fput(drm_file);
2254 ret = -EINVAL;
2255 goto exit;
2256 }
2257 /*
2258 * pdd now already has the vm bound to render node so below api won't create a new
2259 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2260 * for iommu v2 binding and runtime pm.
2261 */
2262 pdd = kfd_bind_process_to_device(dev, p);
2263 if (IS_ERR(pdd)) {
2264 ret = PTR_ERR(pdd);
2265 goto exit;
2266 }
2267
2268 if (!pdd->qpd.proc_doorbells) {
2269 ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2270 if (ret)
2271 goto exit;
2272 }
2273 }
2274
2275 /*
2276 * We are not copying device private data from user as we are not using the data for now,
2277 * but we still adjust for its private data.
2278 */
2279 *priv_offset += args->num_devices * sizeof(*device_privs);
2280
2281 exit:
2282 kfree(device_buckets);
2283 return ret;
2284 }
2285
criu_restore_memory_of_gpu(struct kfd_process_device * pdd,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv,struct kgd_mem ** kgd_mem)2286 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2287 struct kfd_criu_bo_bucket *bo_bucket,
2288 struct kfd_criu_bo_priv_data *bo_priv,
2289 struct kgd_mem **kgd_mem)
2290 {
2291 int idr_handle;
2292 int ret;
2293 const bool criu_resume = true;
2294 u64 offset;
2295
2296 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2297 if (bo_bucket->size !=
2298 kfd_doorbell_process_slice(pdd->dev->kfd))
2299 return -EINVAL;
2300
2301 offset = kfd_get_process_doorbells(pdd);
2302 if (!offset)
2303 return -ENOMEM;
2304 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2305 /* MMIO BOs need remapped bus address */
2306 if (bo_bucket->size != PAGE_SIZE) {
2307 pr_err("Invalid page size\n");
2308 return -EINVAL;
2309 }
2310 offset = pdd->dev->adev->rmmio_remap.bus_addr;
2311 if (!offset || (PAGE_SIZE > 4096)) {
2312 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2313 return -ENOMEM;
2314 }
2315 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2316 offset = bo_priv->user_addr;
2317 }
2318 /* Create the BO */
2319 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2320 bo_bucket->size, pdd->drm_priv, kgd_mem,
2321 &offset, bo_bucket->alloc_flags, criu_resume);
2322 if (ret) {
2323 pr_err("Could not create the BO\n");
2324 return ret;
2325 }
2326 pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2327 bo_bucket->size, bo_bucket->addr, offset);
2328
2329 /* Restore previous IDR handle */
2330 pr_debug("Restoring old IDR handle for the BO");
2331 idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2332 bo_priv->idr_handle + 1, GFP_KERNEL);
2333
2334 if (idr_handle < 0) {
2335 pr_err("Could not allocate idr\n");
2336 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2337 NULL);
2338 return -ENOMEM;
2339 }
2340
2341 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2342 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2343 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2344 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2345 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2346 bo_bucket->restored_offset = offset;
2347 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2348 bo_bucket->restored_offset = offset;
2349 /* Update the VRAM usage count */
2350 atomic64_add(bo_bucket->size, &pdd->vram_usage);
2351 }
2352 return 0;
2353 }
2354
criu_restore_bo(struct kfd_process * p,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv,struct file ** file)2355 static int criu_restore_bo(struct kfd_process *p,
2356 struct kfd_criu_bo_bucket *bo_bucket,
2357 struct kfd_criu_bo_priv_data *bo_priv,
2358 struct file **file)
2359 {
2360 struct kfd_process_device *pdd;
2361 struct kgd_mem *kgd_mem;
2362 int ret;
2363 int j;
2364
2365 pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2366 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2367 bo_priv->idr_handle);
2368
2369 pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2370 if (!pdd) {
2371 pr_err("Failed to get pdd\n");
2372 return -ENODEV;
2373 }
2374
2375 ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2376 if (ret)
2377 return ret;
2378
2379 /* now map these BOs to GPU/s */
2380 for (j = 0; j < p->n_pdds; j++) {
2381 struct kfd_node *peer;
2382 struct kfd_process_device *peer_pdd;
2383
2384 if (!bo_priv->mapped_gpuids[j])
2385 break;
2386
2387 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2388 if (!peer_pdd)
2389 return -EINVAL;
2390
2391 peer = peer_pdd->dev;
2392
2393 peer_pdd = kfd_bind_process_to_device(peer, p);
2394 if (IS_ERR(peer_pdd))
2395 return PTR_ERR(peer_pdd);
2396
2397 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2398 peer_pdd->drm_priv);
2399 if (ret) {
2400 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2401 return ret;
2402 }
2403 }
2404
2405 pr_debug("map memory was successful for the BO\n");
2406 /* create the dmabuf object and export the bo */
2407 if (bo_bucket->alloc_flags
2408 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2409 ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2410 &bo_bucket->dmabuf_fd, file);
2411 if (ret)
2412 return ret;
2413 } else {
2414 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2415 }
2416
2417 return 0;
2418 }
2419
criu_restore_bos(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2420 static int criu_restore_bos(struct kfd_process *p,
2421 struct kfd_ioctl_criu_args *args,
2422 uint64_t *priv_offset,
2423 uint64_t max_priv_data_size)
2424 {
2425 struct kfd_criu_bo_bucket *bo_buckets = NULL;
2426 struct kfd_criu_bo_priv_data *bo_privs = NULL;
2427 struct file **files = NULL;
2428 int ret = 0;
2429 uint32_t i = 0;
2430
2431 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2432 return -EINVAL;
2433
2434 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2435 amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2436
2437 bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2438 if (!bo_buckets)
2439 return -ENOMEM;
2440
2441 files = kvzalloc(args->num_bos * sizeof(struct file *), GFP_KERNEL);
2442 if (!files) {
2443 ret = -ENOMEM;
2444 goto exit;
2445 }
2446
2447 ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2448 args->num_bos * sizeof(*bo_buckets));
2449 if (ret) {
2450 pr_err("Failed to copy BOs information from user\n");
2451 ret = -EFAULT;
2452 goto exit;
2453 }
2454
2455 bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2456 if (!bo_privs) {
2457 ret = -ENOMEM;
2458 goto exit;
2459 }
2460
2461 ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2462 args->num_bos * sizeof(*bo_privs));
2463 if (ret) {
2464 pr_err("Failed to copy BOs information from user\n");
2465 ret = -EFAULT;
2466 goto exit;
2467 }
2468 *priv_offset += args->num_bos * sizeof(*bo_privs);
2469
2470 /* Create and map new BOs */
2471 for (; i < args->num_bos; i++) {
2472 ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i], &files[i]);
2473 if (ret) {
2474 pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2475 goto exit;
2476 }
2477 } /* done */
2478
2479 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2480 ret = copy_to_user((void __user *)args->bos,
2481 bo_buckets,
2482 (args->num_bos * sizeof(*bo_buckets)));
2483 if (ret)
2484 ret = -EFAULT;
2485
2486 exit:
2487 commit_files(files, bo_buckets, i, ret);
2488 kvfree(files);
2489 kvfree(bo_buckets);
2490 kvfree(bo_privs);
2491 return ret;
2492 }
2493
criu_restore_objects(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2494 static int criu_restore_objects(struct file *filep,
2495 struct kfd_process *p,
2496 struct kfd_ioctl_criu_args *args,
2497 uint64_t *priv_offset,
2498 uint64_t max_priv_data_size)
2499 {
2500 int ret = 0;
2501 uint32_t i;
2502
2503 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2504 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2505 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2506
2507 for (i = 0; i < args->num_objects; i++) {
2508 uint32_t object_type;
2509
2510 if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2511 pr_err("Invalid private data size\n");
2512 return -EINVAL;
2513 }
2514
2515 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2516 if (ret) {
2517 pr_err("Failed to copy private information from user\n");
2518 goto exit;
2519 }
2520
2521 switch (object_type) {
2522 case KFD_CRIU_OBJECT_TYPE_QUEUE:
2523 ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2524 priv_offset, max_priv_data_size);
2525 if (ret)
2526 goto exit;
2527 break;
2528 case KFD_CRIU_OBJECT_TYPE_EVENT:
2529 ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2530 priv_offset, max_priv_data_size);
2531 if (ret)
2532 goto exit;
2533 break;
2534 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2535 ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2536 priv_offset, max_priv_data_size);
2537 if (ret)
2538 goto exit;
2539 break;
2540 default:
2541 pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2542 ret = -EINVAL;
2543 goto exit;
2544 }
2545 }
2546 exit:
2547 return ret;
2548 }
2549
criu_restore(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2550 static int criu_restore(struct file *filep,
2551 struct kfd_process *p,
2552 struct kfd_ioctl_criu_args *args)
2553 {
2554 uint64_t priv_offset = 0;
2555 int ret = 0;
2556
2557 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2558 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2559
2560 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2561 !args->num_devices || !args->num_bos)
2562 return -EINVAL;
2563
2564 mutex_lock(&p->mutex);
2565
2566 /*
2567 * Set the process to evicted state to avoid running any new queues before all the memory
2568 * mappings are ready.
2569 */
2570 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2571 if (ret)
2572 goto exit_unlock;
2573
2574 /* Each function will adjust priv_offset based on how many bytes they consumed */
2575 ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2576 if (ret)
2577 goto exit_unlock;
2578
2579 ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2580 if (ret)
2581 goto exit_unlock;
2582
2583 ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2584 if (ret)
2585 goto exit_unlock;
2586
2587 ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2588 if (ret)
2589 goto exit_unlock;
2590
2591 if (priv_offset != args->priv_data_size) {
2592 pr_err("Invalid private data size\n");
2593 ret = -EINVAL;
2594 }
2595
2596 exit_unlock:
2597 mutex_unlock(&p->mutex);
2598 if (ret)
2599 pr_err("Failed to restore CRIU ret:%d\n", ret);
2600 else
2601 pr_debug("CRIU restore successful\n");
2602
2603 return ret;
2604 }
2605
criu_unpause(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2606 static int criu_unpause(struct file *filep,
2607 struct kfd_process *p,
2608 struct kfd_ioctl_criu_args *args)
2609 {
2610 int ret;
2611
2612 mutex_lock(&p->mutex);
2613
2614 if (!p->queues_paused) {
2615 mutex_unlock(&p->mutex);
2616 return -EINVAL;
2617 }
2618
2619 ret = kfd_process_restore_queues(p);
2620 if (ret)
2621 pr_err("Failed to unpause queues ret:%d\n", ret);
2622 else
2623 p->queues_paused = false;
2624
2625 mutex_unlock(&p->mutex);
2626
2627 return ret;
2628 }
2629
criu_resume(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2630 static int criu_resume(struct file *filep,
2631 struct kfd_process *p,
2632 struct kfd_ioctl_criu_args *args)
2633 {
2634 struct kfd_process *target = NULL;
2635 struct pid *pid = NULL;
2636 int ret = 0;
2637
2638 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2639 args->pid);
2640
2641 pid = find_get_pid(args->pid);
2642 if (!pid) {
2643 pr_err("Cannot find pid info for %i\n", args->pid);
2644 return -ESRCH;
2645 }
2646
2647 pr_debug("calling kfd_lookup_process_by_pid\n");
2648 target = kfd_lookup_process_by_pid(pid);
2649
2650 put_pid(pid);
2651
2652 if (!target) {
2653 pr_debug("Cannot find process info for %i\n", args->pid);
2654 return -ESRCH;
2655 }
2656
2657 mutex_lock(&target->mutex);
2658 ret = kfd_criu_resume_svm(target);
2659 if (ret) {
2660 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2661 goto exit;
2662 }
2663
2664 ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2665 if (ret)
2666 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2667
2668 exit:
2669 mutex_unlock(&target->mutex);
2670
2671 kfd_unref_process(target);
2672 return ret;
2673 }
2674
criu_process_info(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2675 static int criu_process_info(struct file *filep,
2676 struct kfd_process *p,
2677 struct kfd_ioctl_criu_args *args)
2678 {
2679 int ret = 0;
2680
2681 mutex_lock(&p->mutex);
2682
2683 if (!p->n_pdds) {
2684 pr_err("No pdd for given process\n");
2685 ret = -ENODEV;
2686 goto err_unlock;
2687 }
2688
2689 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2690 if (ret)
2691 goto err_unlock;
2692
2693 p->queues_paused = true;
2694
2695 args->pid = task_pid_nr_ns(p->lead_thread,
2696 task_active_pid_ns(p->lead_thread));
2697
2698 ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2699 &args->num_objects, &args->priv_data_size);
2700 if (ret)
2701 goto err_unlock;
2702
2703 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2704 args->num_devices, args->num_bos, args->num_objects,
2705 args->priv_data_size);
2706
2707 err_unlock:
2708 if (ret) {
2709 kfd_process_restore_queues(p);
2710 p->queues_paused = false;
2711 }
2712 mutex_unlock(&p->mutex);
2713 return ret;
2714 }
2715
kfd_ioctl_criu(struct file * filep,struct kfd_process * p,void * data)2716 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2717 {
2718 struct kfd_ioctl_criu_args *args = data;
2719 int ret;
2720
2721 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2722 switch (args->op) {
2723 case KFD_CRIU_OP_PROCESS_INFO:
2724 ret = criu_process_info(filep, p, args);
2725 break;
2726 case KFD_CRIU_OP_CHECKPOINT:
2727 ret = criu_checkpoint(filep, p, args);
2728 break;
2729 case KFD_CRIU_OP_UNPAUSE:
2730 ret = criu_unpause(filep, p, args);
2731 break;
2732 case KFD_CRIU_OP_RESTORE:
2733 ret = criu_restore(filep, p, args);
2734 break;
2735 case KFD_CRIU_OP_RESUME:
2736 ret = criu_resume(filep, p, args);
2737 break;
2738 default:
2739 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2740 ret = -EINVAL;
2741 break;
2742 }
2743
2744 if (ret)
2745 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2746
2747 return ret;
2748 }
2749
runtime_enable(struct kfd_process * p,uint64_t r_debug,bool enable_ttmp_setup)2750 static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2751 bool enable_ttmp_setup)
2752 {
2753 int i = 0, ret = 0;
2754
2755 if (p->is_runtime_retry)
2756 goto retry;
2757
2758 if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2759 return -EBUSY;
2760
2761 for (i = 0; i < p->n_pdds; i++) {
2762 struct kfd_process_device *pdd = p->pdds[i];
2763
2764 if (pdd->qpd.queue_count)
2765 return -EEXIST;
2766
2767 /*
2768 * Setup TTMPs by default.
2769 * Note that this call must remain here for MES ADD QUEUE to
2770 * skip_process_ctx_clear unconditionally as the first call to
2771 * SET_SHADER_DEBUGGER clears any stale process context data
2772 * saved in MES.
2773 */
2774 if (pdd->dev->kfd->shared_resources.enable_mes)
2775 kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2776 }
2777
2778 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2779 p->runtime_info.r_debug = r_debug;
2780 p->runtime_info.ttmp_setup = enable_ttmp_setup;
2781
2782 if (p->runtime_info.ttmp_setup) {
2783 for (i = 0; i < p->n_pdds; i++) {
2784 struct kfd_process_device *pdd = p->pdds[i];
2785
2786 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2787 amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2788 pdd->dev->kfd2kgd->enable_debug_trap(
2789 pdd->dev->adev,
2790 true,
2791 pdd->dev->vm_info.last_vmid_kfd);
2792 } else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2793 pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2794 pdd->dev->adev,
2795 false,
2796 0);
2797 }
2798 }
2799 }
2800
2801 retry:
2802 if (p->debug_trap_enabled) {
2803 if (!p->is_runtime_retry) {
2804 kfd_dbg_trap_activate(p);
2805 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2806 p, NULL, 0, false, NULL, 0);
2807 }
2808
2809 mutex_unlock(&p->mutex);
2810 ret = down_interruptible(&p->runtime_enable_sema);
2811 mutex_lock(&p->mutex);
2812
2813 p->is_runtime_retry = !!ret;
2814 }
2815
2816 return ret;
2817 }
2818
runtime_disable(struct kfd_process * p)2819 static int runtime_disable(struct kfd_process *p)
2820 {
2821 int i = 0, ret;
2822 bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2823
2824 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2825 p->runtime_info.r_debug = 0;
2826
2827 if (p->debug_trap_enabled) {
2828 if (was_enabled)
2829 kfd_dbg_trap_deactivate(p, false, 0);
2830
2831 if (!p->is_runtime_retry)
2832 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2833 p, NULL, 0, false, NULL, 0);
2834
2835 mutex_unlock(&p->mutex);
2836 ret = down_interruptible(&p->runtime_enable_sema);
2837 mutex_lock(&p->mutex);
2838
2839 p->is_runtime_retry = !!ret;
2840 if (ret)
2841 return ret;
2842 }
2843
2844 if (was_enabled && p->runtime_info.ttmp_setup) {
2845 for (i = 0; i < p->n_pdds; i++) {
2846 struct kfd_process_device *pdd = p->pdds[i];
2847
2848 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2849 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2850 }
2851 }
2852
2853 p->runtime_info.ttmp_setup = false;
2854
2855 /* disable ttmp setup */
2856 for (i = 0; i < p->n_pdds; i++) {
2857 struct kfd_process_device *pdd = p->pdds[i];
2858
2859 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2860 pdd->spi_dbg_override =
2861 pdd->dev->kfd2kgd->disable_debug_trap(
2862 pdd->dev->adev,
2863 false,
2864 pdd->dev->vm_info.last_vmid_kfd);
2865
2866 if (!pdd->dev->kfd->shared_resources.enable_mes)
2867 debug_refresh_runlist(pdd->dev->dqm);
2868 else
2869 kfd_dbg_set_mes_debug_mode(pdd,
2870 !kfd_dbg_has_cwsr_workaround(pdd->dev));
2871 }
2872 }
2873
2874 return 0;
2875 }
2876
kfd_ioctl_runtime_enable(struct file * filep,struct kfd_process * p,void * data)2877 static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2878 {
2879 struct kfd_ioctl_runtime_enable_args *args = data;
2880 int r;
2881
2882 mutex_lock(&p->mutex);
2883
2884 if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2885 r = runtime_enable(p, args->r_debug,
2886 !!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2887 else
2888 r = runtime_disable(p);
2889
2890 mutex_unlock(&p->mutex);
2891
2892 return r;
2893 }
2894
kfd_ioctl_set_debug_trap(struct file * filep,struct kfd_process * p,void * data)2895 static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2896 {
2897 struct kfd_ioctl_dbg_trap_args *args = data;
2898 struct task_struct *thread = NULL;
2899 struct mm_struct *mm = NULL;
2900 struct pid *pid = NULL;
2901 struct kfd_process *target = NULL;
2902 struct kfd_process_device *pdd = NULL;
2903 int r = 0;
2904
2905 if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2906 pr_err("Debugging does not support sched_policy %i", sched_policy);
2907 return -EINVAL;
2908 }
2909
2910 pid = find_get_pid(args->pid);
2911 if (!pid) {
2912 pr_debug("Cannot find pid info for %i\n", args->pid);
2913 r = -ESRCH;
2914 goto out;
2915 }
2916
2917 thread = get_pid_task(pid, PIDTYPE_PID);
2918 if (!thread) {
2919 r = -ESRCH;
2920 goto out;
2921 }
2922
2923 mm = get_task_mm(thread);
2924 if (!mm) {
2925 r = -ESRCH;
2926 goto out;
2927 }
2928
2929 if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2930 bool create_process;
2931
2932 rcu_read_lock();
2933 create_process = thread && thread != current && ptrace_parent(thread) == current;
2934 rcu_read_unlock();
2935
2936 target = create_process ? kfd_create_process(thread) :
2937 kfd_lookup_process_by_pid(pid);
2938 } else {
2939 target = kfd_lookup_process_by_pid(pid);
2940 }
2941
2942 if (IS_ERR_OR_NULL(target)) {
2943 pr_debug("Cannot find process PID %i to debug\n", args->pid);
2944 r = target ? PTR_ERR(target) : -ESRCH;
2945 target = NULL;
2946 goto out;
2947 }
2948
2949 /* Check if target is still PTRACED. */
2950 rcu_read_lock();
2951 if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2952 && ptrace_parent(target->lead_thread) != current) {
2953 pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2954 r = -EPERM;
2955 }
2956 rcu_read_unlock();
2957
2958 if (r)
2959 goto out;
2960
2961 mutex_lock(&target->mutex);
2962
2963 if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2964 pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2965 r = -EINVAL;
2966 goto unlock_out;
2967 }
2968
2969 if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2970 (args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2971 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2972 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2973 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2974 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2975 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2976 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2977 r = -EPERM;
2978 goto unlock_out;
2979 }
2980
2981 if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2982 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2983 int user_gpu_id = kfd_process_get_user_gpu_id(target,
2984 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2985 args->set_node_address_watch.gpu_id :
2986 args->clear_node_address_watch.gpu_id);
2987
2988 pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2989 if (user_gpu_id == -EINVAL || !pdd) {
2990 r = -ENODEV;
2991 goto unlock_out;
2992 }
2993 }
2994
2995 switch (args->op) {
2996 case KFD_IOC_DBG_TRAP_ENABLE:
2997 if (target != p)
2998 target->debugger_process = p;
2999
3000 r = kfd_dbg_trap_enable(target,
3001 args->enable.dbg_fd,
3002 (void __user *)args->enable.rinfo_ptr,
3003 &args->enable.rinfo_size);
3004 if (!r)
3005 target->exception_enable_mask = args->enable.exception_mask;
3006
3007 break;
3008 case KFD_IOC_DBG_TRAP_DISABLE:
3009 r = kfd_dbg_trap_disable(target);
3010 break;
3011 case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3012 r = kfd_dbg_send_exception_to_runtime(target,
3013 args->send_runtime_event.gpu_id,
3014 args->send_runtime_event.queue_id,
3015 args->send_runtime_event.exception_mask);
3016 break;
3017 case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3018 kfd_dbg_set_enabled_debug_exception_mask(target,
3019 args->set_exceptions_enabled.exception_mask);
3020 break;
3021 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3022 r = kfd_dbg_trap_set_wave_launch_override(target,
3023 args->launch_override.override_mode,
3024 args->launch_override.enable_mask,
3025 args->launch_override.support_request_mask,
3026 &args->launch_override.enable_mask,
3027 &args->launch_override.support_request_mask);
3028 break;
3029 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3030 r = kfd_dbg_trap_set_wave_launch_mode(target,
3031 args->launch_mode.launch_mode);
3032 break;
3033 case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3034 r = suspend_queues(target,
3035 args->suspend_queues.num_queues,
3036 args->suspend_queues.grace_period,
3037 args->suspend_queues.exception_mask,
3038 (uint32_t *)args->suspend_queues.queue_array_ptr);
3039
3040 break;
3041 case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3042 r = resume_queues(target, args->resume_queues.num_queues,
3043 (uint32_t *)args->resume_queues.queue_array_ptr);
3044 break;
3045 case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3046 r = kfd_dbg_trap_set_dev_address_watch(pdd,
3047 args->set_node_address_watch.address,
3048 args->set_node_address_watch.mask,
3049 &args->set_node_address_watch.id,
3050 args->set_node_address_watch.mode);
3051 break;
3052 case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3053 r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3054 args->clear_node_address_watch.id);
3055 break;
3056 case KFD_IOC_DBG_TRAP_SET_FLAGS:
3057 r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3058 break;
3059 case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3060 r = kfd_dbg_ev_query_debug_event(target,
3061 &args->query_debug_event.queue_id,
3062 &args->query_debug_event.gpu_id,
3063 args->query_debug_event.exception_mask,
3064 &args->query_debug_event.exception_mask);
3065 break;
3066 case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3067 r = kfd_dbg_trap_query_exception_info(target,
3068 args->query_exception_info.source_id,
3069 args->query_exception_info.exception_code,
3070 args->query_exception_info.clear_exception,
3071 (void __user *)args->query_exception_info.info_ptr,
3072 &args->query_exception_info.info_size);
3073 break;
3074 case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3075 r = pqm_get_queue_snapshot(&target->pqm,
3076 args->queue_snapshot.exception_mask,
3077 (void __user *)args->queue_snapshot.snapshot_buf_ptr,
3078 &args->queue_snapshot.num_queues,
3079 &args->queue_snapshot.entry_size);
3080 break;
3081 case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3082 r = kfd_dbg_trap_device_snapshot(target,
3083 args->device_snapshot.exception_mask,
3084 (void __user *)args->device_snapshot.snapshot_buf_ptr,
3085 &args->device_snapshot.num_devices,
3086 &args->device_snapshot.entry_size);
3087 break;
3088 default:
3089 pr_err("Invalid option: %i\n", args->op);
3090 r = -EINVAL;
3091 }
3092
3093 unlock_out:
3094 mutex_unlock(&target->mutex);
3095
3096 out:
3097 if (thread)
3098 put_task_struct(thread);
3099
3100 if (mm)
3101 mmput(mm);
3102
3103 if (pid)
3104 put_pid(pid);
3105
3106 if (target)
3107 kfd_unref_process(target);
3108
3109 return r;
3110 }
3111
3112 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3113 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3114 .cmd_drv = 0, .name = #ioctl}
3115
3116 /** Ioctl table */
3117 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3118 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3119 kfd_ioctl_get_version, 0),
3120
3121 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3122 kfd_ioctl_create_queue, 0),
3123
3124 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3125 kfd_ioctl_destroy_queue, 0),
3126
3127 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3128 kfd_ioctl_set_memory_policy, 0),
3129
3130 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3131 kfd_ioctl_get_clock_counters, 0),
3132
3133 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3134 kfd_ioctl_get_process_apertures, 0),
3135
3136 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3137 kfd_ioctl_update_queue, 0),
3138
3139 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3140 kfd_ioctl_create_event, 0),
3141
3142 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3143 kfd_ioctl_destroy_event, 0),
3144
3145 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3146 kfd_ioctl_set_event, 0),
3147
3148 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3149 kfd_ioctl_reset_event, 0),
3150
3151 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3152 kfd_ioctl_wait_events, 0),
3153
3154 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3155 kfd_ioctl_dbg_register, 0),
3156
3157 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3158 kfd_ioctl_dbg_unregister, 0),
3159
3160 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3161 kfd_ioctl_dbg_address_watch, 0),
3162
3163 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3164 kfd_ioctl_dbg_wave_control, 0),
3165
3166 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3167 kfd_ioctl_set_scratch_backing_va, 0),
3168
3169 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3170 kfd_ioctl_get_tile_config, 0),
3171
3172 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3173 kfd_ioctl_set_trap_handler, 0),
3174
3175 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3176 kfd_ioctl_get_process_apertures_new, 0),
3177
3178 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3179 kfd_ioctl_acquire_vm, 0),
3180
3181 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3182 kfd_ioctl_alloc_memory_of_gpu, 0),
3183
3184 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3185 kfd_ioctl_free_memory_of_gpu, 0),
3186
3187 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3188 kfd_ioctl_map_memory_to_gpu, 0),
3189
3190 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3191 kfd_ioctl_unmap_memory_from_gpu, 0),
3192
3193 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3194 kfd_ioctl_set_cu_mask, 0),
3195
3196 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3197 kfd_ioctl_get_queue_wave_state, 0),
3198
3199 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3200 kfd_ioctl_get_dmabuf_info, 0),
3201
3202 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3203 kfd_ioctl_import_dmabuf, 0),
3204
3205 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3206 kfd_ioctl_alloc_queue_gws, 0),
3207
3208 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3209 kfd_ioctl_smi_events, 0),
3210
3211 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3212
3213 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3214 kfd_ioctl_set_xnack_mode, 0),
3215
3216 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3217 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3218
3219 AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3220 kfd_ioctl_get_available_memory, 0),
3221
3222 AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3223 kfd_ioctl_export_dmabuf, 0),
3224
3225 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3226 kfd_ioctl_runtime_enable, 0),
3227
3228 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3229 kfd_ioctl_set_debug_trap, 0),
3230 };
3231
3232 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
3233
kfd_ioctl(struct file * filep,unsigned int cmd,unsigned long arg)3234 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3235 {
3236 struct kfd_process *process;
3237 amdkfd_ioctl_t *func;
3238 const struct amdkfd_ioctl_desc *ioctl = NULL;
3239 unsigned int nr = _IOC_NR(cmd);
3240 char stack_kdata[128];
3241 char *kdata = NULL;
3242 unsigned int usize, asize;
3243 int retcode = -EINVAL;
3244 bool ptrace_attached = false;
3245
3246 if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3247 goto err_i1;
3248
3249 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3250 u32 amdkfd_size;
3251
3252 ioctl = &amdkfd_ioctls[nr];
3253
3254 amdkfd_size = _IOC_SIZE(ioctl->cmd);
3255 usize = asize = _IOC_SIZE(cmd);
3256 if (amdkfd_size > asize)
3257 asize = amdkfd_size;
3258
3259 cmd = ioctl->cmd;
3260 } else
3261 goto err_i1;
3262
3263 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3264
3265 /* Get the process struct from the filep. Only the process
3266 * that opened /dev/kfd can use the file descriptor. Child
3267 * processes need to create their own KFD device context.
3268 */
3269 process = filep->private_data;
3270
3271 rcu_read_lock();
3272 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3273 ptrace_parent(process->lead_thread) == current)
3274 ptrace_attached = true;
3275 rcu_read_unlock();
3276
3277 if (process->lead_thread != current->group_leader
3278 && !ptrace_attached) {
3279 dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3280 retcode = -EBADF;
3281 goto err_i1;
3282 }
3283
3284 /* Do not trust userspace, use our own definition */
3285 func = ioctl->func;
3286
3287 if (unlikely(!func)) {
3288 dev_dbg(kfd_device, "no function\n");
3289 retcode = -EINVAL;
3290 goto err_i1;
3291 }
3292
3293 /*
3294 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3295 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3296 * more priviledged access.
3297 */
3298 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3299 if (!capable(CAP_CHECKPOINT_RESTORE) &&
3300 !capable(CAP_SYS_ADMIN)) {
3301 retcode = -EACCES;
3302 goto err_i1;
3303 }
3304 }
3305
3306 if (cmd & (IOC_IN | IOC_OUT)) {
3307 if (asize <= sizeof(stack_kdata)) {
3308 kdata = stack_kdata;
3309 } else {
3310 kdata = kmalloc(asize, GFP_KERNEL);
3311 if (!kdata) {
3312 retcode = -ENOMEM;
3313 goto err_i1;
3314 }
3315 }
3316 if (asize > usize)
3317 memset(kdata + usize, 0, asize - usize);
3318 }
3319
3320 if (cmd & IOC_IN) {
3321 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3322 retcode = -EFAULT;
3323 goto err_i1;
3324 }
3325 } else if (cmd & IOC_OUT) {
3326 memset(kdata, 0, usize);
3327 }
3328
3329 retcode = func(filep, process, kdata);
3330
3331 if (cmd & IOC_OUT)
3332 if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3333 retcode = -EFAULT;
3334
3335 err_i1:
3336 if (!ioctl)
3337 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3338 task_pid_nr(current), cmd, nr);
3339
3340 if (kdata != stack_kdata)
3341 kfree(kdata);
3342
3343 if (retcode)
3344 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3345 nr, arg, retcode);
3346
3347 return retcode;
3348 }
3349
kfd_mmio_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)3350 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3351 struct vm_area_struct *vma)
3352 {
3353 phys_addr_t address;
3354
3355 if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3356 return -EINVAL;
3357
3358 if (PAGE_SIZE > 4096)
3359 return -EINVAL;
3360
3361 address = dev->adev->rmmio_remap.bus_addr;
3362
3363 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3364 VM_DONTDUMP | VM_PFNMAP);
3365
3366 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3367
3368 pr_debug("pasid 0x%x mapping mmio page\n"
3369 " target user address == 0x%08llX\n"
3370 " physical address == 0x%08llX\n"
3371 " vm_flags == 0x%04lX\n"
3372 " size == 0x%04lX\n",
3373 process->pasid, (unsigned long long) vma->vm_start,
3374 address, vma->vm_flags, PAGE_SIZE);
3375
3376 return io_remap_pfn_range(vma,
3377 vma->vm_start,
3378 address >> PAGE_SHIFT,
3379 PAGE_SIZE,
3380 vma->vm_page_prot);
3381 }
3382
3383
kfd_mmap(struct file * filp,struct vm_area_struct * vma)3384 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3385 {
3386 struct kfd_process *process;
3387 struct kfd_node *dev = NULL;
3388 unsigned long mmap_offset;
3389 unsigned int gpu_id;
3390
3391 process = kfd_get_process(current);
3392 if (IS_ERR(process))
3393 return PTR_ERR(process);
3394
3395 mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3396 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3397 if (gpu_id)
3398 dev = kfd_device_by_id(gpu_id);
3399
3400 switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3401 case KFD_MMAP_TYPE_DOORBELL:
3402 if (!dev)
3403 return -ENODEV;
3404 return kfd_doorbell_mmap(dev, process, vma);
3405
3406 case KFD_MMAP_TYPE_EVENTS:
3407 return kfd_event_mmap(process, vma);
3408
3409 case KFD_MMAP_TYPE_RESERVED_MEM:
3410 if (!dev)
3411 return -ENODEV;
3412 return kfd_reserved_mem_mmap(dev, process, vma);
3413 case KFD_MMAP_TYPE_MMIO:
3414 if (!dev)
3415 return -ENODEV;
3416 return kfd_mmio_mmap(dev, process, vma);
3417 }
3418
3419 return -EFAULT;
3420 }
3421