1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 * Copyright (c) 2003 Peter Wemm
11 * All rights reserved.
12 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13 * All rights reserved.
14 *
15 * This code is derived from software contributed to Berkeley by
16 * the Systems Programming Group of the University of Utah Computer
17 * Science Department and William Jolitz of UUNET Technologies Inc.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 * 3. All advertising materials mentioning features or use of this software
28 * must display the following acknowledgement:
29 * This product includes software developed by the University of
30 * California, Berkeley and its contributors.
31 * 4. Neither the name of the University nor the names of its contributors
32 * may be used to endorse or promote products derived from this software
33 * without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * SUCH DAMAGE.
46 */
47 /*-
48 * Copyright (c) 2003 Networks Associates Technology, Inc.
49 * Copyright (c) 2014-2020 The FreeBSD Foundation
50 * All rights reserved.
51 *
52 * This software was developed for the FreeBSD Project by Jake Burkholder,
53 * Safeport Network Services, and Network Associates Laboratories, the
54 * Security Research Division of Network Associates, Inc. under
55 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
56 * CHATS research program.
57 *
58 * Portions of this software were developed by
59 * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
60 * the FreeBSD Foundation.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81 * SUCH DAMAGE.
82 */
83
84 #define AMD64_NPT_AWARE
85
86 #include <sys/cdefs.h>
87 /*
88 * Manages physical address maps.
89 *
90 * Since the information managed by this module is
91 * also stored by the logical address mapping module,
92 * this module may throw away valid virtual-to-physical
93 * mappings at almost any time. However, invalidations
94 * of virtual-to-physical mappings must be done as
95 * requested.
96 *
97 * In order to cope with hardware architectures which
98 * make virtual-to-physical map invalidates expensive,
99 * this module may delay invalidate or reduced protection
100 * operations until such time as they are actually
101 * necessary. This module is given full information as
102 * to which processors are currently using which maps,
103 * and to when physical maps must be made correct.
104 */
105
106 #include "opt_ddb.h"
107 #include "opt_kstack_pages.h"
108 #include "opt_pmap.h"
109 #include "opt_vm.h"
110
111 #include <sys/param.h>
112 #include <sys/asan.h>
113 #include <sys/bitstring.h>
114 #include <sys/bus.h>
115 #include <sys/systm.h>
116 #include <sys/counter.h>
117 #include <sys/kernel.h>
118 #include <sys/ktr.h>
119 #include <sys/lock.h>
120 #include <sys/malloc.h>
121 #include <sys/mman.h>
122 #include <sys/msan.h>
123 #include <sys/mutex.h>
124 #include <sys/proc.h>
125 #include <sys/rangeset.h>
126 #include <sys/rwlock.h>
127 #include <sys/sbuf.h>
128 #include <sys/smr.h>
129 #include <sys/sx.h>
130 #include <sys/turnstile.h>
131 #include <sys/vmem.h>
132 #include <sys/vmmeter.h>
133 #include <sys/sched.h>
134 #include <sys/sysctl.h>
135 #include <sys/smp.h>
136 #ifdef DDB
137 #include <sys/kdb.h>
138 #include <ddb/ddb.h>
139 #endif
140
141 #include <vm/vm.h>
142 #include <vm/vm_param.h>
143 #include <vm/vm_kern.h>
144 #include <vm/vm_page.h>
145 #include <vm/vm_map.h>
146 #include <vm/vm_object.h>
147 #include <vm/vm_extern.h>
148 #include <vm/vm_pageout.h>
149 #include <vm/vm_pager.h>
150 #include <vm/vm_phys.h>
151 #include <vm/vm_radix.h>
152 #include <vm/vm_reserv.h>
153 #include <vm/vm_dumpset.h>
154 #include <vm/uma.h>
155
156 #include <machine/asan.h>
157 #include <machine/intr_machdep.h>
158 #include <x86/apicvar.h>
159 #include <x86/ifunc.h>
160 #include <machine/cpu.h>
161 #include <machine/cputypes.h>
162 #include <machine/md_var.h>
163 #include <machine/msan.h>
164 #include <machine/pcb.h>
165 #include <machine/specialreg.h>
166 #include <machine/smp.h>
167 #include <machine/sysarch.h>
168 #include <machine/tss.h>
169
170 #ifdef NUMA
171 #define PMAP_MEMDOM MAXMEMDOM
172 #else
173 #define PMAP_MEMDOM 1
174 #endif
175
176 static __inline bool
pmap_type_guest(pmap_t pmap)177 pmap_type_guest(pmap_t pmap)
178 {
179
180 return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
181 }
182
183 static __inline bool
pmap_emulate_ad_bits(pmap_t pmap)184 pmap_emulate_ad_bits(pmap_t pmap)
185 {
186
187 return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
188 }
189
190 static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)191 pmap_valid_bit(pmap_t pmap)
192 {
193 pt_entry_t mask;
194
195 switch (pmap->pm_type) {
196 case PT_X86:
197 case PT_RVI:
198 mask = X86_PG_V;
199 break;
200 case PT_EPT:
201 if (pmap_emulate_ad_bits(pmap))
202 mask = EPT_PG_EMUL_V;
203 else
204 mask = EPT_PG_READ;
205 break;
206 default:
207 panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
208 }
209
210 return (mask);
211 }
212
213 static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)214 pmap_rw_bit(pmap_t pmap)
215 {
216 pt_entry_t mask;
217
218 switch (pmap->pm_type) {
219 case PT_X86:
220 case PT_RVI:
221 mask = X86_PG_RW;
222 break;
223 case PT_EPT:
224 if (pmap_emulate_ad_bits(pmap))
225 mask = EPT_PG_EMUL_RW;
226 else
227 mask = EPT_PG_WRITE;
228 break;
229 default:
230 panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
231 }
232
233 return (mask);
234 }
235
236 static pt_entry_t pg_g;
237
238 static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)239 pmap_global_bit(pmap_t pmap)
240 {
241 pt_entry_t mask;
242
243 switch (pmap->pm_type) {
244 case PT_X86:
245 mask = pg_g;
246 break;
247 case PT_RVI:
248 case PT_EPT:
249 mask = 0;
250 break;
251 default:
252 panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
253 }
254
255 return (mask);
256 }
257
258 static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)259 pmap_accessed_bit(pmap_t pmap)
260 {
261 pt_entry_t mask;
262
263 switch (pmap->pm_type) {
264 case PT_X86:
265 case PT_RVI:
266 mask = X86_PG_A;
267 break;
268 case PT_EPT:
269 if (pmap_emulate_ad_bits(pmap))
270 mask = EPT_PG_READ;
271 else
272 mask = EPT_PG_A;
273 break;
274 default:
275 panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
276 }
277
278 return (mask);
279 }
280
281 static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)282 pmap_modified_bit(pmap_t pmap)
283 {
284 pt_entry_t mask;
285
286 switch (pmap->pm_type) {
287 case PT_X86:
288 case PT_RVI:
289 mask = X86_PG_M;
290 break;
291 case PT_EPT:
292 if (pmap_emulate_ad_bits(pmap))
293 mask = EPT_PG_WRITE;
294 else
295 mask = EPT_PG_M;
296 break;
297 default:
298 panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
299 }
300
301 return (mask);
302 }
303
304 static __inline pt_entry_t
pmap_pku_mask_bit(pmap_t pmap)305 pmap_pku_mask_bit(pmap_t pmap)
306 {
307
308 return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
309 }
310
311 static __inline bool
safe_to_clear_referenced(pmap_t pmap,pt_entry_t pte)312 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
313 {
314
315 if (!pmap_emulate_ad_bits(pmap))
316 return (true);
317
318 KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
319
320 /*
321 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
322 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
323 * if the EPT_PG_WRITE bit is set.
324 */
325 if ((pte & EPT_PG_WRITE) != 0)
326 return (false);
327
328 /*
329 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
330 */
331 if ((pte & EPT_PG_EXECUTE) == 0 ||
332 ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
333 return (true);
334 else
335 return (false);
336 }
337
338 #ifdef PV_STATS
339 #define PV_STAT(x) do { x ; } while (0)
340 #else
341 #define PV_STAT(x) do { } while (0)
342 #endif
343
344 #ifdef NUMA
345 #define pa_index(pa) ({ \
346 KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end, \
347 ("address %lx beyond the last segment", (pa))); \
348 (pa) >> PDRSHIFT; \
349 })
350 #define pa_to_pmdp(pa) (&pv_table[pa_index(pa)])
351 #define pa_to_pvh(pa) (&(pa_to_pmdp(pa)->pv_page))
352 #define PHYS_TO_PV_LIST_LOCK(pa) ({ \
353 struct rwlock *_lock; \
354 if (__predict_false((pa) > pmap_last_pa)) \
355 _lock = &pv_dummy_large.pv_lock; \
356 else \
357 _lock = &(pa_to_pmdp(pa)->pv_lock); \
358 _lock; \
359 })
360 #else
361 #define pa_index(pa) ((pa) >> PDRSHIFT)
362 #define pa_to_pvh(pa) (&pv_table[pa_index(pa)])
363
364 #define NPV_LIST_LOCKS MAXCPU
365
366 #define PHYS_TO_PV_LIST_LOCK(pa) \
367 (&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
368 #endif
369
370 #define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \
371 struct rwlock **_lockp = (lockp); \
372 struct rwlock *_new_lock; \
373 \
374 _new_lock = PHYS_TO_PV_LIST_LOCK(pa); \
375 if (_new_lock != *_lockp) { \
376 if (*_lockp != NULL) \
377 rw_wunlock(*_lockp); \
378 *_lockp = _new_lock; \
379 rw_wlock(*_lockp); \
380 } \
381 } while (0)
382
383 #define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \
384 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
385
386 #define RELEASE_PV_LIST_LOCK(lockp) do { \
387 struct rwlock **_lockp = (lockp); \
388 \
389 if (*_lockp != NULL) { \
390 rw_wunlock(*_lockp); \
391 *_lockp = NULL; \
392 } \
393 } while (0)
394
395 #define VM_PAGE_TO_PV_LIST_LOCK(m) \
396 PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
397
398 /*
399 * Statically allocate kernel pmap memory. However, memory for
400 * pm_pcids is obtained after the dynamic allocator is operational.
401 * Initialize it with a non-canonical pointer to catch early accesses
402 * regardless of the active mapping.
403 */
404 struct pmap kernel_pmap_store = {
405 .pm_pcidp = (void *)0xdeadbeefdeadbeef,
406 };
407
408 vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
409 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
410
411 int nkpt;
412 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
413 "Number of kernel page table pages allocated on bootup");
414
415 static int ndmpdp;
416 vm_paddr_t dmaplimit;
417 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS_LA48;
418 pt_entry_t pg_nx;
419
420 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
421 "VM/pmap parameters");
422
423 static int __read_frequently pg_ps_enabled = 1;
424 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
425 &pg_ps_enabled, 0, "Are large page mappings enabled?");
426
427 int __read_frequently la57 = 0;
428 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
429 &la57, 0,
430 "5-level paging for host is enabled");
431
432 /*
433 * The default value is needed in order to preserve compatibility with
434 * some userspace programs that put tags into sign-extended bits.
435 */
436 int prefer_uva_la48 = 1;
437 SYSCTL_INT(_vm_pmap, OID_AUTO, prefer_uva_la48, CTLFLAG_RDTUN,
438 &prefer_uva_la48, 0,
439 "Userspace maps are limited to LA48 unless otherwise configured");
440
441 static bool
pmap_is_la57(pmap_t pmap)442 pmap_is_la57(pmap_t pmap)
443 {
444 if (pmap->pm_type == PT_X86)
445 return (la57);
446 return (false); /* XXXKIB handle EPT */
447 }
448
449 #define PAT_INDEX_SIZE 8
450 static int pat_index[PAT_INDEX_SIZE]; /* cache mode to PAT index conversion */
451
452 static u_int64_t KPTphys; /* phys addr of kernel level 1 */
453 static u_int64_t KPDphys; /* phys addr of kernel level 2 */
454 static u_int64_t KPDPphys; /* phys addr of kernel level 3 */
455 u_int64_t KPML4phys; /* phys addr of kernel level 4 */
456 u_int64_t KPML5phys; /* phys addr of kernel level 5,
457 if supported */
458
459 #ifdef KASAN
460 static uint64_t KASANPDPphys;
461 #endif
462 #ifdef KMSAN
463 static uint64_t KMSANSHADPDPphys;
464 static uint64_t KMSANORIGPDPphys;
465
466 /*
467 * To support systems with large amounts of memory, it is necessary to extend
468 * the maximum size of the direct map. This could eat into the space reserved
469 * for the shadow map.
470 */
471 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
472 #endif
473
474 static pml4_entry_t *kernel_pml4;
475 static u_int64_t DMPDphys; /* phys addr of direct mapped level 2 */
476 static u_int64_t DMPDPphys; /* phys addr of direct mapped level 3 */
477 static u_int64_t DMPML4phys; /* ... level 4, for la57 */
478 static int ndmpdpphys; /* number of DMPDPphys pages */
479
480 vm_paddr_t kernphys; /* phys addr of start of bootstrap data */
481 vm_paddr_t KERNend; /* and the end */
482
483 struct kva_layout_s kva_layout = {
484 .kva_min = KV4ADDR(PML4PML4I, 0, 0, 0),
485 .kva_max = KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
486 NPDEPG - 1, NPTEPG - 1),
487 .dmap_low = KV4ADDR(DMPML4I, 0, 0, 0),
488 .dmap_high = KV4ADDR(DMPML4I + NDMPML4E, 0, 0, 0),
489 .lm_low = KV4ADDR(LMSPML4I, 0, 0, 0),
490 .lm_high = KV4ADDR(LMEPML4I + 1, 0, 0, 0),
491 .km_low = KV4ADDR(KPML4BASE, 0, 0, 0),
492 .km_high = KV4ADDR(KPML4BASE + NKPML4E - 1, NPDPEPG - 1,
493 NPDEPG - 1, NPTEPG - 1),
494 .rec_pt = KV4ADDR(PML4PML4I, 0, 0, 0),
495 .kasan_shadow_low = KV4ADDR(KASANPML4I, 0, 0, 0),
496 .kasan_shadow_high = KV4ADDR(KASANPML4I + NKASANPML4E, 0, 0, 0),
497 .kmsan_shadow_low = KV4ADDR(KMSANSHADPML4I, 0, 0, 0),
498 .kmsan_shadow_high = KV4ADDR(KMSANSHADPML4I + NKMSANSHADPML4E,
499 0, 0, 0),
500 .kmsan_origin_low = KV4ADDR(KMSANORIGPML4I, 0, 0, 0),
501 .kmsan_origin_high = KV4ADDR(KMSANORIGPML4I + NKMSANORIGPML4E,
502 0, 0, 0),
503 };
504
505 struct kva_layout_s kva_layout_la57 = {
506 .kva_min = KV5ADDR(NPML5EPG / 2, 0, 0, 0, 0), /* == rec_pt */
507 .kva_max = KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
508 NPDEPG - 1, NPTEPG - 1),
509 .dmap_low = KV5ADDR(DMPML5I, 0, 0, 0, 0),
510 .dmap_high = KV5ADDR(DMPML5I + NDMPML5E, 0, 0, 0, 0),
511 .lm_low = KV5ADDR(LMSPML5I, 0, 0, 0, 0),
512 .lm_high = KV5ADDR(LMEPML5I + 1, 0, 0, 0, 0),
513 .km_low = KV4ADDR(KPML4BASE, 0, 0, 0),
514 .km_high = KV4ADDR(KPML4BASE + NKPML4E - 1, NPDPEPG - 1,
515 NPDEPG - 1, NPTEPG - 1),
516 .rec_pt = KV5ADDR(PML5PML5I, 0, 0, 0, 0),
517 .kasan_shadow_low = KV4ADDR(KASANPML4I, 0, 0, 0),
518 .kasan_shadow_high = KV4ADDR(KASANPML4I + NKASANPML4E, 0, 0, 0),
519 .kmsan_shadow_low = KV4ADDR(KMSANSHADPML4I, 0, 0, 0),
520 .kmsan_shadow_high = KV4ADDR(KMSANSHADPML4I + NKMSANSHADPML4E,
521 0, 0, 0),
522 .kmsan_origin_low = KV4ADDR(KMSANORIGPML4I, 0, 0, 0),
523 .kmsan_origin_high = KV4ADDR(KMSANORIGPML4I + NKMSANORIGPML4E,
524 0, 0, 0),
525 };
526
527 /*
528 * pmap_mapdev support pre initialization (i.e. console)
529 */
530 #define PMAP_PREINIT_MAPPING_COUNT 8
531 static struct pmap_preinit_mapping {
532 vm_paddr_t pa;
533 vm_offset_t va;
534 vm_size_t sz;
535 int mode;
536 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
537 static int pmap_initialized;
538
539 /*
540 * Data for the pv entry allocation mechanism.
541 * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
542 */
543 #ifdef NUMA
544 static __inline int
pc_to_domain(struct pv_chunk * pc)545 pc_to_domain(struct pv_chunk *pc)
546 {
547
548 return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
549 }
550 #else
551 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)552 pc_to_domain(struct pv_chunk *pc __unused)
553 {
554
555 return (0);
556 }
557 #endif
558
559 struct pv_chunks_list {
560 struct mtx pvc_lock;
561 TAILQ_HEAD(pch, pv_chunk) pvc_list;
562 int active_reclaims;
563 } __aligned(CACHE_LINE_SIZE);
564
565 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
566
567 #ifdef NUMA
568 struct pmap_large_md_page {
569 struct rwlock pv_lock;
570 struct md_page pv_page;
571 u_long pv_invl_gen;
572 };
573 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
574 #define pv_dummy pv_dummy_large.pv_page
575 __read_mostly static struct pmap_large_md_page *pv_table;
576 __read_mostly vm_paddr_t pmap_last_pa;
577 #else
578 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
579 static u_long pv_invl_gen[NPV_LIST_LOCKS];
580 static struct md_page *pv_table;
581 static struct md_page pv_dummy;
582 #endif
583
584 /*
585 * All those kernel PT submaps that BSD is so fond of
586 */
587 pt_entry_t *CMAP1 = NULL;
588 caddr_t CADDR1 = 0;
589 static vm_offset_t qframe = 0;
590 static struct mtx qframe_mtx;
591
592 static int pmap_flags = PMAP_PDE_SUPERPAGE; /* flags for x86 pmaps */
593
594 static vmem_t *large_vmem;
595 static u_int lm_ents;
596 #define PMAP_ADDRESS_IN_LARGEMAP(va) ((va) >= kva_layout.lm_low && \
597 (va) < kva_layout.lm_high)
598
599 int pmap_pcid_enabled = 1;
600 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
601 &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
602 int invpcid_works = 0;
603 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
604 "Is the invpcid instruction available ?");
605 int invlpgb_works;
606 SYSCTL_INT(_vm_pmap, OID_AUTO, invlpgb_works, CTLFLAG_RD, &invlpgb_works, 0,
607 "Is the invlpgb instruction available?");
608 int invlpgb_maxcnt;
609 int pmap_pcid_invlpg_workaround = 0;
610 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
611 CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
612 &pmap_pcid_invlpg_workaround, 0,
613 "Enable small core PCID/INVLPG workaround");
614 int pmap_pcid_invlpg_workaround_uena = 1;
615
616 int __read_frequently pti = 0;
617 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
618 &pti, 0,
619 "Page Table Isolation enabled");
620 static vm_object_t pti_obj;
621 static pml4_entry_t *pti_pml4;
622 static vm_pindex_t pti_pg_idx;
623 static bool pti_finalized;
624
625 static int pmap_growkernel_panic = 0;
626 SYSCTL_INT(_vm_pmap, OID_AUTO, growkernel_panic, CTLFLAG_RDTUN,
627 &pmap_growkernel_panic, 0,
628 "panic on failure to allocate kernel page table page");
629
630 struct pmap_pkru_range {
631 struct rs_el pkru_rs_el;
632 u_int pkru_keyidx;
633 int pkru_flags;
634 };
635
636 static uma_zone_t pmap_pkru_ranges_zone;
637 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
638 pt_entry_t *pte);
639 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
640 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
641 static void *pkru_dup_range(void *ctx, void *data);
642 static void pkru_free_range(void *ctx, void *node);
643 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
644 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
645 static void pmap_pkru_deassign_all(pmap_t pmap);
646
647 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
648 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
649 &pcid_save_cnt, "Count of saved TLB context on switch");
650
651 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
652 LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
653 static struct mtx invl_gen_mtx;
654 /* Fake lock object to satisfy turnstiles interface. */
655 static struct lock_object invl_gen_ts = {
656 .lo_name = "invlts",
657 };
658 static struct pmap_invl_gen pmap_invl_gen_head = {
659 .gen = 1,
660 .next = NULL,
661 };
662 static u_long pmap_invl_gen = 1;
663 static int pmap_invl_waiters;
664 static struct callout pmap_invl_callout;
665 static bool pmap_invl_callout_inited;
666
667 #define PMAP_ASSERT_NOT_IN_DI() \
668 KASSERT(pmap_not_in_di(), ("DI already started"))
669
670 static bool
pmap_di_locked(void)671 pmap_di_locked(void)
672 {
673 int tun;
674
675 if ((cpu_feature2 & CPUID2_CX16) == 0)
676 return (true);
677 tun = 0;
678 TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
679 return (tun != 0);
680 }
681
682 static int
sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)683 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
684 {
685 int locked;
686
687 locked = pmap_di_locked();
688 return (sysctl_handle_int(oidp, &locked, 0, req));
689 }
690 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
691 CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
692 "Locked delayed invalidation");
693
694 static bool pmap_not_in_di_l(void);
695 static bool pmap_not_in_di_u(void);
696 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
697 {
698
699 return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
700 }
701
702 static bool
pmap_not_in_di_l(void)703 pmap_not_in_di_l(void)
704 {
705 struct pmap_invl_gen *invl_gen;
706
707 invl_gen = &curthread->td_md.md_invl_gen;
708 return (invl_gen->gen == 0);
709 }
710
711 static void
pmap_thread_init_invl_gen_l(struct thread * td)712 pmap_thread_init_invl_gen_l(struct thread *td)
713 {
714 struct pmap_invl_gen *invl_gen;
715
716 invl_gen = &td->td_md.md_invl_gen;
717 invl_gen->gen = 0;
718 }
719
720 static void
pmap_delayed_invl_wait_block(u_long * m_gen,u_long * invl_gen)721 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
722 {
723 struct turnstile *ts;
724
725 ts = turnstile_trywait(&invl_gen_ts);
726 if (*m_gen > atomic_load_long(invl_gen))
727 turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
728 else
729 turnstile_cancel(ts);
730 }
731
732 static void
pmap_delayed_invl_finish_unblock(u_long new_gen)733 pmap_delayed_invl_finish_unblock(u_long new_gen)
734 {
735 struct turnstile *ts;
736
737 turnstile_chain_lock(&invl_gen_ts);
738 ts = turnstile_lookup(&invl_gen_ts);
739 if (new_gen != 0)
740 pmap_invl_gen = new_gen;
741 if (ts != NULL) {
742 turnstile_broadcast(ts, TS_SHARED_QUEUE);
743 turnstile_unpend(ts);
744 }
745 turnstile_chain_unlock(&invl_gen_ts);
746 }
747
748 /*
749 * Start a new Delayed Invalidation (DI) block of code, executed by
750 * the current thread. Within a DI block, the current thread may
751 * destroy both the page table and PV list entries for a mapping and
752 * then release the corresponding PV list lock before ensuring that
753 * the mapping is flushed from the TLBs of any processors with the
754 * pmap active.
755 */
756 static void
pmap_delayed_invl_start_l(void)757 pmap_delayed_invl_start_l(void)
758 {
759 struct pmap_invl_gen *invl_gen;
760 u_long currgen;
761
762 invl_gen = &curthread->td_md.md_invl_gen;
763 PMAP_ASSERT_NOT_IN_DI();
764 mtx_lock(&invl_gen_mtx);
765 if (LIST_EMPTY(&pmap_invl_gen_tracker))
766 currgen = pmap_invl_gen;
767 else
768 currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
769 invl_gen->gen = currgen + 1;
770 LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
771 mtx_unlock(&invl_gen_mtx);
772 }
773
774 /*
775 * Finish the DI block, previously started by the current thread. All
776 * required TLB flushes for the pages marked by
777 * pmap_delayed_invl_page() must be finished before this function is
778 * called.
779 *
780 * This function works by bumping the global DI generation number to
781 * the generation number of the current thread's DI, unless there is a
782 * pending DI that started earlier. In the latter case, bumping the
783 * global DI generation number would incorrectly signal that the
784 * earlier DI had finished. Instead, this function bumps the earlier
785 * DI's generation number to match the generation number of the
786 * current thread's DI.
787 */
788 static void
pmap_delayed_invl_finish_l(void)789 pmap_delayed_invl_finish_l(void)
790 {
791 struct pmap_invl_gen *invl_gen, *next;
792
793 invl_gen = &curthread->td_md.md_invl_gen;
794 KASSERT(invl_gen->gen != 0, ("missed invl_start"));
795 mtx_lock(&invl_gen_mtx);
796 next = LIST_NEXT(invl_gen, link);
797 if (next == NULL)
798 pmap_delayed_invl_finish_unblock(invl_gen->gen);
799 else
800 next->gen = invl_gen->gen;
801 LIST_REMOVE(invl_gen, link);
802 mtx_unlock(&invl_gen_mtx);
803 invl_gen->gen = 0;
804 }
805
806 static bool
pmap_not_in_di_u(void)807 pmap_not_in_di_u(void)
808 {
809 struct pmap_invl_gen *invl_gen;
810
811 invl_gen = &curthread->td_md.md_invl_gen;
812 return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
813 }
814
815 static void
pmap_thread_init_invl_gen_u(struct thread * td)816 pmap_thread_init_invl_gen_u(struct thread *td)
817 {
818 struct pmap_invl_gen *invl_gen;
819
820 invl_gen = &td->td_md.md_invl_gen;
821 invl_gen->gen = 0;
822 invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
823 }
824
825 static bool
pmap_di_load_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * out)826 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
827 {
828 uint64_t new_high, new_low, old_high, old_low;
829 char res;
830
831 old_low = new_low = 0;
832 old_high = new_high = (uintptr_t)0;
833
834 __asm volatile("lock;cmpxchg16b\t%1"
835 : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
836 : "b"(new_low), "c" (new_high)
837 : "memory", "cc");
838 if (res == 0) {
839 if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
840 return (false);
841 out->gen = old_low;
842 out->next = (void *)old_high;
843 } else {
844 out->gen = new_low;
845 out->next = (void *)new_high;
846 }
847 return (true);
848 }
849
850 static bool
pmap_di_store_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * old_val,struct pmap_invl_gen * new_val)851 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
852 struct pmap_invl_gen *new_val)
853 {
854 uint64_t new_high, new_low, old_high, old_low;
855 char res;
856
857 new_low = new_val->gen;
858 new_high = (uintptr_t)new_val->next;
859 old_low = old_val->gen;
860 old_high = (uintptr_t)old_val->next;
861
862 __asm volatile("lock;cmpxchg16b\t%1"
863 : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
864 : "b"(new_low), "c" (new_high)
865 : "memory", "cc");
866 return (res);
867 }
868
869 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
870 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
871 &pv_page_count, "Current number of allocated pv pages");
872
873 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
874 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
875 &user_pt_page_count,
876 "Current number of allocated page table pages for userspace");
877
878 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
879 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
880 &kernel_pt_page_count,
881 "Current number of allocated page table pages for the kernel");
882
883 #ifdef PV_STATS
884
885 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
886 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
887 CTLFLAG_RD, &invl_start_restart,
888 "Number of delayed TLB invalidation request restarts");
889
890 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
891 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
892 &invl_finish_restart,
893 "Number of delayed TLB invalidation completion restarts");
894
895 static int invl_max_qlen;
896 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
897 &invl_max_qlen, 0,
898 "Maximum delayed TLB invalidation request queue length");
899 #endif
900
901 #define di_delay locks_delay
902
903 static void
pmap_delayed_invl_start_u(void)904 pmap_delayed_invl_start_u(void)
905 {
906 struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
907 struct thread *td;
908 struct lock_delay_arg lda;
909 uintptr_t prevl;
910 u_char pri;
911 #ifdef PV_STATS
912 int i, ii;
913 #endif
914
915 td = curthread;
916 invl_gen = &td->td_md.md_invl_gen;
917 PMAP_ASSERT_NOT_IN_DI();
918 lock_delay_arg_init(&lda, &di_delay);
919 invl_gen->saved_pri = 0;
920 pri = td->td_base_pri;
921 if (pri > PVM) {
922 thread_lock(td);
923 pri = td->td_base_pri;
924 if (pri > PVM) {
925 invl_gen->saved_pri = pri;
926 sched_prio(td, PVM);
927 }
928 thread_unlock(td);
929 }
930 again:
931 PV_STAT(i = 0);
932 for (p = &pmap_invl_gen_head;; p = prev.next) {
933 PV_STAT(i++);
934 prevl = (uintptr_t)atomic_load_ptr(&p->next);
935 if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
936 PV_STAT(counter_u64_add(invl_start_restart, 1));
937 lock_delay(&lda);
938 goto again;
939 }
940 if (prevl == 0)
941 break;
942 prev.next = (void *)prevl;
943 }
944 #ifdef PV_STATS
945 if ((ii = invl_max_qlen) < i)
946 atomic_cmpset_int(&invl_max_qlen, ii, i);
947 #endif
948
949 if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
950 PV_STAT(counter_u64_add(invl_start_restart, 1));
951 lock_delay(&lda);
952 goto again;
953 }
954
955 new_prev.gen = prev.gen;
956 new_prev.next = invl_gen;
957 invl_gen->gen = prev.gen + 1;
958
959 /* Formal fence between store to invl->gen and updating *p. */
960 atomic_thread_fence_rel();
961
962 /*
963 * After inserting an invl_gen element with invalid bit set,
964 * this thread blocks any other thread trying to enter the
965 * delayed invalidation block. Do not allow to remove us from
966 * the CPU, because it causes starvation for other threads.
967 */
968 critical_enter();
969
970 /*
971 * ABA for *p is not possible there, since p->gen can only
972 * increase. So if the *p thread finished its di, then
973 * started a new one and got inserted into the list at the
974 * same place, its gen will appear greater than the previously
975 * read gen.
976 */
977 if (!pmap_di_store_invl(p, &prev, &new_prev)) {
978 critical_exit();
979 PV_STAT(counter_u64_add(invl_start_restart, 1));
980 lock_delay(&lda);
981 goto again;
982 }
983
984 /*
985 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
986 * invl_gen->next, allowing other threads to iterate past us.
987 * pmap_di_store_invl() provides fence between the generation
988 * write and the update of next.
989 */
990 invl_gen->next = NULL;
991 critical_exit();
992 }
993
994 static bool
pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen * invl_gen,struct pmap_invl_gen * p)995 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
996 struct pmap_invl_gen *p)
997 {
998 struct pmap_invl_gen prev, new_prev;
999 u_long mygen;
1000
1001 /*
1002 * Load invl_gen->gen after setting invl_gen->next
1003 * PMAP_INVL_GEN_NEXT_INVALID. This prevents larger
1004 * generations to propagate to our invl_gen->gen. Lock prefix
1005 * in atomic_set_ptr() worked as seq_cst fence.
1006 */
1007 mygen = atomic_load_long(&invl_gen->gen);
1008
1009 if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
1010 return (false);
1011
1012 KASSERT(prev.gen < mygen,
1013 ("invalid di gen sequence %lu %lu", prev.gen, mygen));
1014 new_prev.gen = mygen;
1015 new_prev.next = (void *)((uintptr_t)invl_gen->next &
1016 ~PMAP_INVL_GEN_NEXT_INVALID);
1017
1018 /* Formal fence between load of prev and storing update to it. */
1019 atomic_thread_fence_rel();
1020
1021 return (pmap_di_store_invl(p, &prev, &new_prev));
1022 }
1023
1024 static void
pmap_delayed_invl_finish_u(void)1025 pmap_delayed_invl_finish_u(void)
1026 {
1027 struct pmap_invl_gen *invl_gen, *p;
1028 struct thread *td;
1029 struct lock_delay_arg lda;
1030 uintptr_t prevl;
1031
1032 td = curthread;
1033 invl_gen = &td->td_md.md_invl_gen;
1034 KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
1035 KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
1036 ("missed invl_start: INVALID"));
1037 lock_delay_arg_init(&lda, &di_delay);
1038
1039 again:
1040 for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
1041 prevl = (uintptr_t)atomic_load_ptr(&p->next);
1042 if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
1043 PV_STAT(counter_u64_add(invl_finish_restart, 1));
1044 lock_delay(&lda);
1045 goto again;
1046 }
1047 if ((void *)prevl == invl_gen)
1048 break;
1049 }
1050
1051 /*
1052 * It is legitimate to not find ourself on the list if a
1053 * thread before us finished its DI and started it again.
1054 */
1055 if (__predict_false(p == NULL)) {
1056 PV_STAT(counter_u64_add(invl_finish_restart, 1));
1057 lock_delay(&lda);
1058 goto again;
1059 }
1060
1061 critical_enter();
1062 atomic_set_ptr((uintptr_t *)&invl_gen->next,
1063 PMAP_INVL_GEN_NEXT_INVALID);
1064 if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
1065 atomic_clear_ptr((uintptr_t *)&invl_gen->next,
1066 PMAP_INVL_GEN_NEXT_INVALID);
1067 critical_exit();
1068 PV_STAT(counter_u64_add(invl_finish_restart, 1));
1069 lock_delay(&lda);
1070 goto again;
1071 }
1072 critical_exit();
1073 if (atomic_load_int(&pmap_invl_waiters) > 0)
1074 pmap_delayed_invl_finish_unblock(0);
1075 if (invl_gen->saved_pri != 0) {
1076 thread_lock(td);
1077 sched_prio(td, invl_gen->saved_pri);
1078 thread_unlock(td);
1079 }
1080 }
1081
1082 #ifdef DDB
DB_SHOW_COMMAND(di_queue,pmap_di_queue)1083 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1084 {
1085 struct pmap_invl_gen *p, *pn;
1086 struct thread *td;
1087 uintptr_t nextl;
1088 bool first;
1089
1090 for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1091 first = false) {
1092 nextl = (uintptr_t)atomic_load_ptr(&p->next);
1093 pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1094 td = first ? NULL : __containerof(p, struct thread,
1095 td_md.md_invl_gen);
1096 db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1097 (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1098 td != NULL ? td->td_tid : -1);
1099 }
1100 }
1101 #endif
1102
1103 #ifdef PV_STATS
1104 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1105 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1106 CTLFLAG_RD, &invl_wait,
1107 "Number of times DI invalidation blocked pmap_remove_all/write");
1108
1109 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1110 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1111 &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1112
1113 #endif
1114
1115 #ifdef NUMA
1116 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1117 pmap_delayed_invl_genp(vm_page_t m)
1118 {
1119 vm_paddr_t pa;
1120 u_long *gen;
1121
1122 pa = VM_PAGE_TO_PHYS(m);
1123 if (__predict_false((pa) > pmap_last_pa))
1124 gen = &pv_dummy_large.pv_invl_gen;
1125 else
1126 gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1127
1128 return (gen);
1129 }
1130 #else
1131 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1132 pmap_delayed_invl_genp(vm_page_t m)
1133 {
1134
1135 return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1136 }
1137 #endif
1138
1139 static void
pmap_delayed_invl_callout_func(void * arg __unused)1140 pmap_delayed_invl_callout_func(void *arg __unused)
1141 {
1142
1143 if (atomic_load_int(&pmap_invl_waiters) == 0)
1144 return;
1145 pmap_delayed_invl_finish_unblock(0);
1146 }
1147
1148 static void
pmap_delayed_invl_callout_init(void * arg __unused)1149 pmap_delayed_invl_callout_init(void *arg __unused)
1150 {
1151
1152 if (pmap_di_locked())
1153 return;
1154 callout_init(&pmap_invl_callout, 1);
1155 pmap_invl_callout_inited = true;
1156 }
1157 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1158 pmap_delayed_invl_callout_init, NULL);
1159
1160 /*
1161 * Ensure that all currently executing DI blocks, that need to flush
1162 * TLB for the given page m, actually flushed the TLB at the time the
1163 * function returned. If the page m has an empty PV list and we call
1164 * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1165 * valid mapping for the page m in either its page table or TLB.
1166 *
1167 * This function works by blocking until the global DI generation
1168 * number catches up with the generation number associated with the
1169 * given page m and its PV list. Since this function's callers
1170 * typically own an object lock and sometimes own a page lock, it
1171 * cannot sleep. Instead, it blocks on a turnstile to relinquish the
1172 * processor.
1173 */
1174 static void
pmap_delayed_invl_wait_l(vm_page_t m)1175 pmap_delayed_invl_wait_l(vm_page_t m)
1176 {
1177 u_long *m_gen;
1178 #ifdef PV_STATS
1179 bool accounted = false;
1180 #endif
1181
1182 m_gen = pmap_delayed_invl_genp(m);
1183 while (*m_gen > pmap_invl_gen) {
1184 #ifdef PV_STATS
1185 if (!accounted) {
1186 counter_u64_add(invl_wait, 1);
1187 accounted = true;
1188 }
1189 #endif
1190 pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1191 }
1192 }
1193
1194 static void
pmap_delayed_invl_wait_u(vm_page_t m)1195 pmap_delayed_invl_wait_u(vm_page_t m)
1196 {
1197 u_long *m_gen;
1198 struct lock_delay_arg lda;
1199 bool fast;
1200
1201 fast = true;
1202 m_gen = pmap_delayed_invl_genp(m);
1203 lock_delay_arg_init(&lda, &di_delay);
1204 while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1205 if (fast || !pmap_invl_callout_inited) {
1206 PV_STAT(counter_u64_add(invl_wait, 1));
1207 lock_delay(&lda);
1208 fast = false;
1209 } else {
1210 /*
1211 * The page's invalidation generation number
1212 * is still below the current thread's number.
1213 * Prepare to block so that we do not waste
1214 * CPU cycles or worse, suffer livelock.
1215 *
1216 * Since it is impossible to block without
1217 * racing with pmap_delayed_invl_finish_u(),
1218 * prepare for the race by incrementing
1219 * pmap_invl_waiters and arming a 1-tick
1220 * callout which will unblock us if we lose
1221 * the race.
1222 */
1223 atomic_add_int(&pmap_invl_waiters, 1);
1224
1225 /*
1226 * Re-check the current thread's invalidation
1227 * generation after incrementing
1228 * pmap_invl_waiters, so that there is no race
1229 * with pmap_delayed_invl_finish_u() setting
1230 * the page generation and checking
1231 * pmap_invl_waiters. The only race allowed
1232 * is for a missed unblock, which is handled
1233 * by the callout.
1234 */
1235 if (*m_gen >
1236 atomic_load_long(&pmap_invl_gen_head.gen)) {
1237 callout_reset(&pmap_invl_callout, 1,
1238 pmap_delayed_invl_callout_func, NULL);
1239 PV_STAT(counter_u64_add(invl_wait_slow, 1));
1240 pmap_delayed_invl_wait_block(m_gen,
1241 &pmap_invl_gen_head.gen);
1242 }
1243 atomic_add_int(&pmap_invl_waiters, -1);
1244 }
1245 }
1246 }
1247
1248 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1249 {
1250
1251 return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1252 pmap_thread_init_invl_gen_u);
1253 }
1254
1255 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1256 {
1257
1258 return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1259 pmap_delayed_invl_start_u);
1260 }
1261
1262 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1263 {
1264
1265 return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1266 pmap_delayed_invl_finish_u);
1267 }
1268
1269 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1270 {
1271
1272 return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1273 pmap_delayed_invl_wait_u);
1274 }
1275
1276 /*
1277 * Mark the page m's PV list as participating in the current thread's
1278 * DI block. Any threads concurrently using m's PV list to remove or
1279 * restrict all mappings to m will wait for the current thread's DI
1280 * block to complete before proceeding.
1281 *
1282 * The function works by setting the DI generation number for m's PV
1283 * list to at least the DI generation number of the current thread.
1284 * This forces a caller of pmap_delayed_invl_wait() to block until
1285 * current thread calls pmap_delayed_invl_finish().
1286 */
1287 static void
pmap_delayed_invl_page(vm_page_t m)1288 pmap_delayed_invl_page(vm_page_t m)
1289 {
1290 u_long gen, *m_gen;
1291
1292 rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1293 gen = curthread->td_md.md_invl_gen.gen;
1294 if (gen == 0)
1295 return;
1296 m_gen = pmap_delayed_invl_genp(m);
1297 if (*m_gen < gen)
1298 *m_gen = gen;
1299 }
1300
1301 /*
1302 * Crashdump maps.
1303 */
1304 static caddr_t crashdumpmap;
1305
1306 /*
1307 * Internal flags for pmap_enter()'s helper functions.
1308 */
1309 #define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
1310 #define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
1311
1312 /*
1313 * Internal flags for pmap_mapdev_internal() and
1314 * pmap_change_props_locked().
1315 */
1316 #define MAPDEV_FLUSHCACHE 0x00000001 /* Flush cache after mapping. */
1317 #define MAPDEV_SETATTR 0x00000002 /* Modify existing attrs. */
1318 #define MAPDEV_ASSERTVALID 0x00000004 /* Assert mapping validity. */
1319
1320 TAILQ_HEAD(pv_chunklist, pv_chunk);
1321
1322 static void free_pv_chunk(struct pv_chunk *pc);
1323 static void free_pv_chunk_batch(struct pv_chunklist *batch);
1324 static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
1325 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1326 static int popcnt_pc_map_pq(uint64_t *map);
1327 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1328 static void reserve_pv_entries(pmap_t pmap, int needed,
1329 struct rwlock **lockp);
1330 static void pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1331 struct rwlock **lockp);
1332 static bool pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1333 u_int flags, struct rwlock **lockp);
1334 #if VM_NRESERVLEVEL > 0
1335 static void pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1336 struct rwlock **lockp);
1337 #endif
1338 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1339 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1340 vm_offset_t va);
1341
1342 static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1343 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1344 vm_prot_t prot, int mode, int flags);
1345 static bool pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1346 static bool pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1347 vm_offset_t va, struct rwlock **lockp);
1348 static bool pmap_demote_pde_mpte(pmap_t pmap, pd_entry_t *pde,
1349 vm_offset_t va, struct rwlock **lockp, vm_page_t mpte);
1350 static bool pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1351 vm_offset_t va, vm_page_t m);
1352 static int pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1353 vm_prot_t prot, struct rwlock **lockp);
1354 static int pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1355 u_int flags, vm_page_t m, struct rwlock **lockp);
1356 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1357 vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1358 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1359 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1360 bool allpte_PG_A_set);
1361 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1362 vm_offset_t eva);
1363 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1364 vm_offset_t eva);
1365 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1366 pd_entry_t pde);
1367 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1368 static vm_page_t pmap_large_map_getptp_unlocked(void);
1369 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1370 #if VM_NRESERVLEVEL > 0
1371 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1372 vm_page_t mpte, struct rwlock **lockp);
1373 #endif
1374 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1375 vm_prot_t prot);
1376 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1377 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1378 bool exec);
1379 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1380 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1381 static void pmap_pti_wire_pte(void *pte);
1382 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1383 bool demote_kpde, struct spglist *free, struct rwlock **lockp);
1384 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1385 pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1386 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1387 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1388 struct spglist *free);
1389 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1390 pd_entry_t *pde, struct spglist *free,
1391 struct rwlock **lockp);
1392 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1393 vm_page_t m, struct rwlock **lockp);
1394 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1395 pd_entry_t newpde);
1396 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1397
1398 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1399 struct rwlock **lockp);
1400 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1401 struct rwlock **lockp, vm_offset_t va);
1402 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1403 struct rwlock **lockp, vm_offset_t va);
1404 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1405 struct rwlock **lockp);
1406
1407 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1408 struct spglist *free);
1409 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1410
1411 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1412 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1413
1414 /********************/
1415 /* Inline functions */
1416 /********************/
1417
1418 /*
1419 * Return a non-clipped indexes for a given VA, which are page table
1420 * pages indexes at the corresponding level.
1421 */
1422 static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)1423 pmap_pde_pindex(vm_offset_t va)
1424 {
1425 return (va >> PDRSHIFT);
1426 }
1427
1428 static __inline vm_pindex_t
pmap_pdpe_pindex(vm_offset_t va)1429 pmap_pdpe_pindex(vm_offset_t va)
1430 {
1431 return (NUPDE + (va >> PDPSHIFT));
1432 }
1433
1434 static __inline vm_pindex_t
pmap_pml4e_pindex(vm_offset_t va)1435 pmap_pml4e_pindex(vm_offset_t va)
1436 {
1437 return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1438 }
1439
1440 static __inline vm_pindex_t
pmap_pml5e_pindex(vm_offset_t va)1441 pmap_pml5e_pindex(vm_offset_t va)
1442 {
1443 return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1444 }
1445
1446 static __inline pml4_entry_t *
pmap_pml5e(pmap_t pmap,vm_offset_t va)1447 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1448 {
1449
1450 MPASS(pmap_is_la57(pmap));
1451 return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1452 }
1453
1454 static __inline pml4_entry_t *
pmap_pml5e_u(pmap_t pmap,vm_offset_t va)1455 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1456 {
1457
1458 MPASS(pmap_is_la57(pmap));
1459 return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1460 }
1461
1462 static __inline pml4_entry_t *
pmap_pml5e_to_pml4e(pml5_entry_t * pml5e,vm_offset_t va)1463 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1464 {
1465 pml4_entry_t *pml4e;
1466
1467 /* XXX MPASS(pmap_is_la57(pmap); */
1468 pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1469 return (&pml4e[pmap_pml4e_index(va)]);
1470 }
1471
1472 /* Return a pointer to the PML4 slot that corresponds to a VA */
1473 static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap,vm_offset_t va)1474 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1475 {
1476 pml5_entry_t *pml5e;
1477 pml4_entry_t *pml4e;
1478 pt_entry_t PG_V;
1479
1480 if (pmap_is_la57(pmap)) {
1481 pml5e = pmap_pml5e(pmap, va);
1482 PG_V = pmap_valid_bit(pmap);
1483 if ((*pml5e & PG_V) == 0)
1484 return (NULL);
1485 pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1486 } else {
1487 pml4e = pmap->pm_pmltop;
1488 }
1489 return (&pml4e[pmap_pml4e_index(va)]);
1490 }
1491
1492 static __inline pml4_entry_t *
pmap_pml4e_u(pmap_t pmap,vm_offset_t va)1493 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1494 {
1495 MPASS(!pmap_is_la57(pmap));
1496 return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1497 }
1498
1499 /* Return a pointer to the PDP slot that corresponds to a VA */
1500 static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t * pml4e,vm_offset_t va)1501 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1502 {
1503 pdp_entry_t *pdpe;
1504
1505 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1506 return (&pdpe[pmap_pdpe_index(va)]);
1507 }
1508
1509 /* Return a pointer to the PDP slot that corresponds to a VA */
1510 static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap,vm_offset_t va)1511 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1512 {
1513 pml4_entry_t *pml4e;
1514 pt_entry_t PG_V;
1515
1516 PG_V = pmap_valid_bit(pmap);
1517 pml4e = pmap_pml4e(pmap, va);
1518 if (pml4e == NULL || (*pml4e & PG_V) == 0)
1519 return (NULL);
1520 return (pmap_pml4e_to_pdpe(pml4e, va));
1521 }
1522
1523 /* Return a pointer to the PD slot that corresponds to a VA */
1524 static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t * pdpe,vm_offset_t va)1525 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1526 {
1527 pd_entry_t *pde;
1528
1529 KASSERT((*pdpe & PG_PS) == 0,
1530 ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1531 pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1532 return (&pde[pmap_pde_index(va)]);
1533 }
1534
1535 /* Return a pointer to the PD slot that corresponds to a VA */
1536 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va)1537 pmap_pde(pmap_t pmap, vm_offset_t va)
1538 {
1539 pdp_entry_t *pdpe;
1540 pt_entry_t PG_V;
1541
1542 PG_V = pmap_valid_bit(pmap);
1543 pdpe = pmap_pdpe(pmap, va);
1544 if (pdpe == NULL || (*pdpe & PG_V) == 0)
1545 return (NULL);
1546 KASSERT((*pdpe & PG_PS) == 0,
1547 ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1548 return (pmap_pdpe_to_pde(pdpe, va));
1549 }
1550
1551 /* Return a pointer to the PT slot that corresponds to a VA */
1552 static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t * pde,vm_offset_t va)1553 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1554 {
1555 pt_entry_t *pte;
1556
1557 KASSERT((*pde & PG_PS) == 0,
1558 ("%s: pde %#lx is a leaf", __func__, *pde));
1559 pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1560 return (&pte[pmap_pte_index(va)]);
1561 }
1562
1563 /* Return a pointer to the PT slot that corresponds to a VA */
1564 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va)1565 pmap_pte(pmap_t pmap, vm_offset_t va)
1566 {
1567 pd_entry_t *pde;
1568 pt_entry_t PG_V;
1569
1570 PG_V = pmap_valid_bit(pmap);
1571 pde = pmap_pde(pmap, va);
1572 if (pde == NULL || (*pde & PG_V) == 0)
1573 return (NULL);
1574 if ((*pde & PG_PS) != 0) /* compat with i386 pmap_pte() */
1575 return ((pt_entry_t *)pde);
1576 return (pmap_pde_to_pte(pde, va));
1577 }
1578
1579 static __inline void
pmap_resident_count_adj(pmap_t pmap,int count)1580 pmap_resident_count_adj(pmap_t pmap, int count)
1581 {
1582
1583 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1584 KASSERT(pmap->pm_stats.resident_count + count >= 0,
1585 ("pmap %p resident count underflow %ld %d", pmap,
1586 pmap->pm_stats.resident_count, count));
1587 pmap->pm_stats.resident_count += count;
1588 }
1589
1590 static __inline void
pmap_pt_page_count_pinit(pmap_t pmap,int count)1591 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1592 {
1593 KASSERT(pmap->pm_stats.resident_count + count >= 0,
1594 ("pmap %p resident count underflow %ld %d", pmap,
1595 pmap->pm_stats.resident_count, count));
1596 pmap->pm_stats.resident_count += count;
1597 }
1598
1599 static __inline void
pmap_pt_page_count_adj(pmap_t pmap,int count)1600 pmap_pt_page_count_adj(pmap_t pmap, int count)
1601 {
1602 if (pmap == kernel_pmap)
1603 counter_u64_add(kernel_pt_page_count, count);
1604 else {
1605 if (pmap != NULL)
1606 pmap_resident_count_adj(pmap, count);
1607 counter_u64_add(user_pt_page_count, count);
1608 }
1609 }
1610
1611 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1612 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1613 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1614
1615 pt_entry_t *
vtopte(vm_offset_t va)1616 vtopte(vm_offset_t va)
1617 {
1618 KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1619
1620 return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1621 }
1622
1623 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1624 NPML4EPGSHIFT)) - 1) << 3;
1625 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1626
1627 static __inline pd_entry_t *
vtopde(vm_offset_t va)1628 vtopde(vm_offset_t va)
1629 {
1630 KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1631
1632 return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1633 }
1634
1635 static u_int64_t
allocpages(vm_paddr_t * firstaddr,int n)1636 allocpages(vm_paddr_t *firstaddr, int n)
1637 {
1638 u_int64_t ret;
1639
1640 ret = *firstaddr;
1641 bzero((void *)ret, n * PAGE_SIZE);
1642 *firstaddr += n * PAGE_SIZE;
1643 return (ret);
1644 }
1645
1646 CTASSERT(powerof2(NDMPML4E));
1647
1648 /* number of kernel PDP slots */
1649 #define NKPDPE(ptpgs) howmany(ptpgs, NPDEPG)
1650
1651 static void
nkpt_init(vm_paddr_t addr)1652 nkpt_init(vm_paddr_t addr)
1653 {
1654 int pt_pages;
1655
1656 #ifdef NKPT
1657 pt_pages = NKPT;
1658 #else
1659 pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1660 pt_pages += NKPDPE(pt_pages);
1661
1662 /*
1663 * Add some slop beyond the bare minimum required for bootstrapping
1664 * the kernel.
1665 *
1666 * This is quite important when allocating KVA for kernel modules.
1667 * The modules are required to be linked in the negative 2GB of
1668 * the address space. If we run out of KVA in this region then
1669 * pmap_growkernel() will need to allocate page table pages to map
1670 * the entire 512GB of KVA space which is an unnecessary tax on
1671 * physical memory.
1672 *
1673 * Secondly, device memory mapped as part of setting up the low-
1674 * level console(s) is taken from KVA, starting at virtual_avail.
1675 * This is because cninit() is called after pmap_bootstrap() but
1676 * before vm_mem_init() and pmap_init(). 20MB for a frame buffer
1677 * is not uncommon.
1678 */
1679 pt_pages += 32; /* 64MB additional slop. */
1680 #endif
1681 nkpt = pt_pages;
1682 }
1683
1684 /*
1685 * Returns the proper write/execute permission for a physical page that is
1686 * part of the initial boot allocations.
1687 *
1688 * If the page has kernel text, it is marked as read-only. If the page has
1689 * kernel read-only data, it is marked as read-only/not-executable. If the
1690 * page has only read-write data, it is marked as read-write/not-executable.
1691 * If the page is below/above the kernel range, it is marked as read-write.
1692 *
1693 * This function operates on 2M pages, since we map the kernel space that
1694 * way.
1695 */
1696 static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)1697 bootaddr_rwx(vm_paddr_t pa)
1698 {
1699 /*
1700 * The kernel is loaded at a 2MB-aligned address, and memory below that
1701 * need not be executable. The .bss section is padded to a 2MB
1702 * boundary, so memory following the kernel need not be executable
1703 * either. Preloaded kernel modules have their mapping permissions
1704 * fixed up by the linker.
1705 */
1706 if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1707 pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1708 return (X86_PG_RW | pg_nx);
1709
1710 /*
1711 * The linker should ensure that the read-only and read-write
1712 * portions don't share the same 2M page, so this shouldn't
1713 * impact read-only data. However, in any case, any page with
1714 * read-write data needs to be read-write.
1715 */
1716 if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1717 return (X86_PG_RW | pg_nx);
1718
1719 /*
1720 * Mark any 2M page containing kernel text as read-only. Mark
1721 * other pages with read-only data as read-only and not executable.
1722 * (It is likely a small portion of the read-only data section will
1723 * be marked as read-only, but executable. This should be acceptable
1724 * since the read-only protection will keep the data from changing.)
1725 * Note that fixups to the .text section will still work until we
1726 * set CR0.WP.
1727 */
1728 if (pa < round_2mpage(kernphys + etext - KERNSTART))
1729 return (0);
1730 return (pg_nx);
1731 }
1732
1733 extern const char la57_trampoline[];
1734
1735 static void
pmap_bootstrap_la57(vm_paddr_t * firstaddr)1736 pmap_bootstrap_la57(vm_paddr_t *firstaddr)
1737 {
1738 void (*la57_tramp)(uint64_t pml5);
1739 pml5_entry_t *pt;
1740
1741 if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
1742 return;
1743 la57 = 1;
1744 TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
1745 if (!la57)
1746 return;
1747
1748 KPML5phys = allocpages(firstaddr, 1);
1749 KPML4phys = rcr3() & 0xfffff000; /* pml4 from loader must be < 4G */
1750
1751 pt = (pml5_entry_t *)KPML5phys;
1752 pt[0] = KPML4phys | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
1753 pt[NPML4EPG - 1] = KPML4phys | X86_PG_V | X86_PG_RW | X86_PG_A |
1754 X86_PG_M;
1755
1756 la57_tramp = (void (*)(uint64_t))((uintptr_t)la57_trampoline -
1757 KERNSTART + amd64_loadaddr());
1758 printf("Calling la57 trampoline at %p, KPML5phys %#lx ...",
1759 la57_tramp, KPML5phys);
1760 la57_tramp(KPML5phys);
1761 printf(" alive in la57 mode\n");
1762 }
1763
1764 static void
create_pagetables(vm_paddr_t * firstaddr)1765 create_pagetables(vm_paddr_t *firstaddr)
1766 {
1767 pd_entry_t *pd_p;
1768 pdp_entry_t *pdp_p;
1769 pml4_entry_t *p4_p, *p4d_p;
1770 pml5_entry_t *p5_p;
1771 uint64_t DMPDkernphys;
1772 vm_paddr_t pax;
1773 #ifdef KASAN
1774 pt_entry_t *pt_p;
1775 uint64_t KASANPDphys, KASANPTphys, KASANphys;
1776 vm_offset_t kasankernbase;
1777 int kasankpdpi, kasankpdi, nkasanpte;
1778 #endif
1779 int i, j, ndm1g, nkpdpe, nkdmpde, ndmpml4phys;
1780
1781 TSENTER();
1782 /* Allocate page table pages for the direct map */
1783 ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1784 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
1785 ndmpdp = 4;
1786 ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1787 if (la57) {
1788 ndmpml4phys = howmany(ndmpdpphys, NPML4EPG);
1789 if (ndmpml4phys > NDMPML5E) {
1790 printf("NDMPML5E limits system to %ld GB\n",
1791 (u_long)NDMPML5E * NBPML5 / 1024 / 1024 / 1024);
1792 Maxmem = atop(NDMPML5E * NBPML5);
1793 ndmpml4phys = NDMPML5E;
1794 ndmpdpphys = ndmpml4phys * NPML4EPG;
1795 ndmpdp = ndmpdpphys * NPDEPG;
1796 }
1797 DMPML4phys = allocpages(firstaddr, ndmpml4phys);
1798 } else {
1799 if (ndmpdpphys > NDMPML4E) {
1800 /*
1801 * Each NDMPML4E allows 512 GB, so limit to
1802 * that, and then readjust ndmpdp and
1803 * ndmpdpphys.
1804 */
1805 printf("NDMPML4E limits system to %d GB\n",
1806 NDMPML4E * 512);
1807 Maxmem = atop(NDMPML4E * NBPML4);
1808 ndmpdpphys = NDMPML4E;
1809 ndmpdp = NDMPML4E * NPDEPG;
1810 }
1811 }
1812 DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1813 ndm1g = 0;
1814 if ((amd_feature & AMDID_PAGE1GB) != 0) {
1815 /*
1816 * Calculate the number of 1G pages that will fully fit in
1817 * Maxmem.
1818 */
1819 ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1820
1821 /*
1822 * Allocate 2M pages for the kernel. These will be used in
1823 * place of the one or more 1G pages from ndm1g that maps
1824 * kernel memory into DMAP.
1825 */
1826 nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1827 kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1828 DMPDkernphys = allocpages(firstaddr, nkdmpde);
1829 }
1830 if (ndm1g < ndmpdp)
1831 DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1832 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1833
1834 /* Allocate pages. */
1835 if (la57) {
1836 KPML5phys = allocpages(firstaddr, 1);
1837 p5_p = (pml5_entry_t *)KPML5phys;
1838 }
1839 KPML4phys = allocpages(firstaddr, 1);
1840 p4_p = (pml4_entry_t *)KPML4phys;
1841
1842 KPDPphys = allocpages(firstaddr, NKPML4E);
1843 #ifdef KASAN
1844 KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1845 KASANPDphys = allocpages(firstaddr, 1);
1846 #endif
1847 #ifdef KMSAN
1848 /*
1849 * The KMSAN shadow maps are initially left unpopulated, since there is
1850 * no need to shadow memory above KERNBASE.
1851 */
1852 KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1853 KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1854 #endif
1855
1856 /*
1857 * Allocate the initial number of kernel page table pages required to
1858 * bootstrap. We defer this until after all memory-size dependent
1859 * allocations are done (e.g. direct map), so that we don't have to
1860 * build in too much slop in our estimate.
1861 *
1862 * Note that when NKPML4E > 1, we have an empty page underneath
1863 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1864 * pages. (pmap_enter requires a PD page to exist for each KPML4E.)
1865 */
1866 nkpt_init(*firstaddr);
1867 nkpdpe = NKPDPE(nkpt);
1868
1869 KPTphys = allocpages(firstaddr, nkpt);
1870 KPDphys = allocpages(firstaddr, nkpdpe);
1871
1872 #ifdef KASAN
1873 nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1874 KASANPTphys = allocpages(firstaddr, nkasanpte);
1875 KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1876 #endif
1877
1878 /*
1879 * Connect the zero-filled PT pages to their PD entries. This
1880 * implicitly maps the PT pages at their correct locations within
1881 * the PTmap.
1882 */
1883 pd_p = (pd_entry_t *)KPDphys;
1884 for (i = 0; i < nkpt; i++)
1885 pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1886
1887 /*
1888 * Map from start of the kernel in physical memory (staging
1889 * area) to the end of loader preallocated memory using 2MB
1890 * pages. This replaces some of the PD entries created above.
1891 * For compatibility, identity map 2M at the start.
1892 */
1893 pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1894 X86_PG_RW | pg_nx;
1895 for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1896 /* Preset PG_M and PG_A because demotion expects it. */
1897 pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1898 X86_PG_A | bootaddr_rwx(pax);
1899 }
1900
1901 /*
1902 * Because we map the physical blocks in 2M pages, adjust firstaddr
1903 * to record the physical blocks we've actually mapped into kernel
1904 * virtual address space.
1905 */
1906 if (*firstaddr < round_2mpage(KERNend))
1907 *firstaddr = round_2mpage(KERNend);
1908
1909 /* And connect up the PD to the PDP (leaving room for L4 pages) */
1910 pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1911 for (i = 0; i < nkpdpe; i++)
1912 pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1913
1914 #ifdef KASAN
1915 kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1916 kasankpdpi = pmap_pdpe_index(kasankernbase);
1917 kasankpdi = pmap_pde_index(kasankernbase);
1918
1919 pdp_p = (pdp_entry_t *)KASANPDPphys;
1920 pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1921
1922 pd_p = (pd_entry_t *)KASANPDphys;
1923 for (i = 0; i < nkasanpte; i++)
1924 pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1925 X86_PG_V | pg_nx;
1926
1927 pt_p = (pt_entry_t *)KASANPTphys;
1928 for (i = 0; i < nkasanpte * NPTEPG; i++)
1929 pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1930 X86_PG_M | X86_PG_A | pg_nx;
1931 #endif
1932
1933 /*
1934 * Now, set up the direct map region using 2MB and/or 1GB pages. If
1935 * the end of physical memory is not aligned to a 1GB page boundary,
1936 * then the residual physical memory is mapped with 2MB pages. Later,
1937 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1938 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1939 * that are partially used.
1940 */
1941 pd_p = (pd_entry_t *)DMPDphys;
1942 for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1943 pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1944 /* Preset PG_M and PG_A because demotion expects it. */
1945 pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1946 X86_PG_M | X86_PG_A | pg_nx;
1947 }
1948 pdp_p = (pdp_entry_t *)DMPDPphys;
1949 for (i = 0; i < ndm1g; i++) {
1950 pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1951 /* Preset PG_M and PG_A because demotion expects it. */
1952 pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1953 X86_PG_M | X86_PG_A | pg_nx;
1954 }
1955 for (j = 0; i < ndmpdp; i++, j++) {
1956 pdp_p[i] = DMPDphys + ptoa(j);
1957 pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1958 }
1959
1960 /*
1961 * Connect the Direct Map slots up to the PML4.
1962 * pml5 entries for DMAP are handled below in global pml5 loop.
1963 */
1964 p4d_p = la57 ? (pml4_entry_t *)DMPML4phys : &p4_p[DMPML4I];
1965 for (i = 0; i < ndmpdpphys; i++) {
1966 p4d_p[i] = (DMPDPphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1967 pg_nx;
1968 }
1969
1970 /*
1971 * Instead of using a 1G page for the memory containing the kernel,
1972 * use 2M pages with read-only and no-execute permissions. (If using 1G
1973 * pages, this will partially overwrite the PDPEs above.)
1974 */
1975 if (ndm1g > 0) {
1976 pd_p = (pd_entry_t *)DMPDkernphys;
1977 for (i = 0, pax = rounddown2(kernphys, NBPDP);
1978 i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1979 pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1980 X86_PG_A | pg_nx | bootaddr_rwx(pax);
1981 }
1982 j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1983 for (i = 0; i < nkdmpde; i++) {
1984 pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1985 X86_PG_RW | X86_PG_V | pg_nx;
1986 }
1987 }
1988
1989 #ifdef KASAN
1990 /* Connect the KASAN shadow map slots up to the PML4. */
1991 for (i = 0; i < NKASANPML4E; i++) {
1992 p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1993 p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1994 }
1995 #endif
1996
1997 #ifdef KMSAN
1998 /* Connect the KMSAN shadow map slots up to the PML4. */
1999 for (i = 0; i < NKMSANSHADPML4E; i++) {
2000 p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
2001 p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
2002 }
2003
2004 /* Connect the KMSAN origin map slots up to the PML4. */
2005 for (i = 0; i < NKMSANORIGPML4E; i++) {
2006 p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
2007 p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
2008 }
2009 #endif
2010
2011 /* Connect the KVA slots up to the PML4 */
2012 for (i = 0; i < NKPML4E; i++) {
2013 p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
2014 p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
2015 }
2016
2017 if (la57) {
2018 /* XXXKIB bootstrap KPML5phys page is lost */
2019 for (i = 0; i < NPML5EPG; i++) {
2020 if (i == PML5PML5I) {
2021 /*
2022 * Recursively map PML5 to itself in
2023 * order to get PTmap and PDmap.
2024 */
2025 p5_p[i] = KPML5phys | X86_PG_RW | X86_PG_A |
2026 X86_PG_M | X86_PG_V | pg_nx;
2027 } else if (i >= DMPML5I && i < DMPML5I + ndmpml4phys) {
2028 /* Connect DMAP pml4 pages to PML5. */
2029 p5_p[i] = (DMPML4phys + ptoa(i - DMPML5I)) |
2030 X86_PG_RW | X86_PG_V | pg_nx;
2031 } else if (i == pmap_pml5e_index(UPT_MAX_ADDRESS)) {
2032 p5_p[i] = KPML4phys | X86_PG_RW | X86_PG_A |
2033 X86_PG_M | X86_PG_V;
2034 } else {
2035 p5_p[i] = 0;
2036 }
2037 }
2038 } else {
2039 /* Recursively map PML4 to itself in order to get PTmap */
2040 p4_p[PML4PML4I] = KPML4phys;
2041 p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
2042 }
2043 TSEXIT();
2044 }
2045
2046 /*
2047 * Bootstrap the system enough to run with virtual memory.
2048 *
2049 * On amd64 this is called after mapping has already been enabled
2050 * and just syncs the pmap module with what has already been done.
2051 * [We can't call it easily with mapping off since the kernel is not
2052 * mapped with PA == VA, hence we would have to relocate every address
2053 * from the linked base (virtual) address "KERNBASE" to the actual
2054 * (physical) address starting relative to 0]
2055 */
2056 void
pmap_bootstrap(vm_paddr_t * firstaddr)2057 pmap_bootstrap(vm_paddr_t *firstaddr)
2058 {
2059 vm_offset_t va;
2060 pt_entry_t *pte, *pcpu_pte;
2061 struct region_descriptor r_gdt;
2062 uint64_t cr4, pcpu0_phys;
2063 u_long res;
2064 int i;
2065
2066 TSENTER();
2067 KERNend = *firstaddr;
2068 res = atop(KERNend - (vm_paddr_t)kernphys);
2069
2070 if (!pti)
2071 pg_g = X86_PG_G;
2072
2073 /*
2074 * Create an initial set of page tables to run the kernel in.
2075 */
2076 pmap_bootstrap_la57(firstaddr);
2077 create_pagetables(firstaddr);
2078
2079 pcpu0_phys = allocpages(firstaddr, 1);
2080
2081 /*
2082 * Add a physical memory segment (vm_phys_seg) corresponding to the
2083 * preallocated kernel page table pages so that vm_page structures
2084 * representing these pages will be created. The vm_page structures
2085 * are required for promotion of the corresponding kernel virtual
2086 * addresses to superpage mappings.
2087 */
2088 vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
2089
2090 /*
2091 * Account for the virtual addresses mapped by create_pagetables().
2092 */
2093 virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
2094 (vm_paddr_t)kernphys);
2095 virtual_end = kva_layout.km_high;
2096
2097 /*
2098 * Enable PG_G global pages, then switch to the kernel page
2099 * table from the bootstrap page table. After the switch, it
2100 * is possible to enable SMEP and SMAP since PG_U bits are
2101 * correct now.
2102 */
2103 cr4 = rcr4();
2104 cr4 |= CR4_PGE;
2105 load_cr4(cr4);
2106 load_cr3(la57 ? KPML5phys : KPML4phys);
2107 if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
2108 cr4 |= CR4_SMEP;
2109 if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
2110 cr4 |= CR4_SMAP;
2111 load_cr4(cr4);
2112
2113 /*
2114 * Initialize the kernel pmap (which is statically allocated).
2115 * Count bootstrap data as being resident in case any of this data is
2116 * later unmapped (using pmap_remove()) and freed.
2117 *
2118 * DMAP_TO_PHYS()/PHYS_TO_DMAP() are functional only after
2119 * kva_layout is fixed.
2120 */
2121 PMAP_LOCK_INIT(kernel_pmap);
2122 if (la57) {
2123 kva_layout = kva_layout_la57;
2124 vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2125 NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2126 PTmap = (vm_offset_t)P5Tmap;
2127 vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2128 NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2129 PDmap = (vm_offset_t)P5Dmap;
2130 kernel_pmap->pm_pmltop = (void *)PHYS_TO_DMAP(KPML5phys);
2131 kernel_pmap->pm_cr3 = KPML5phys;
2132 pmap_pt_page_count_adj(kernel_pmap, 1); /* top-level page */
2133 } else {
2134 kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
2135 kernel_pmap->pm_pmltop = kernel_pml4;
2136 kernel_pmap->pm_cr3 = KPML4phys;
2137 }
2138 kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
2139 TAILQ_INIT(&kernel_pmap->pm_pvchunk);
2140 kernel_pmap->pm_stats.resident_count = res;
2141 vm_radix_init(&kernel_pmap->pm_root);
2142 kernel_pmap->pm_flags = pmap_flags;
2143 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
2144 rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
2145 pkru_free_range, kernel_pmap, M_NOWAIT);
2146 }
2147
2148 /*
2149 * The kernel pmap is always active on all CPUs. Once CPUs are
2150 * enumerated, the mask will be set equal to all_cpus.
2151 */
2152 CPU_FILL(&kernel_pmap->pm_active);
2153
2154 /*
2155 * Initialize the TLB invalidations generation number lock.
2156 */
2157 mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
2158
2159 /*
2160 * Reserve some special page table entries/VA space for temporary
2161 * mapping of pages.
2162 */
2163 #define SYSMAP(c, p, v, n) \
2164 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2165
2166 va = virtual_avail;
2167 pte = vtopte(va);
2168
2169 /*
2170 * Crashdump maps. The first page is reused as CMAP1 for the
2171 * memory test.
2172 */
2173 SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
2174 CADDR1 = crashdumpmap;
2175
2176 SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
2177 virtual_avail = va;
2178
2179 /*
2180 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
2181 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
2182 * number of CPUs and NUMA affinity.
2183 */
2184 pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
2185 X86_PG_M | X86_PG_A;
2186 for (i = 1; i < MAXCPU; i++)
2187 pcpu_pte[i] = 0;
2188
2189 /*
2190 * Re-initialize PCPU area for BSP after switching.
2191 * Make hardware use gdt and common_tss from the new PCPU.
2192 * Also clears the usage of temporary gdt during switch to
2193 * LA57 paging.
2194 */
2195 STAILQ_INIT(&cpuhead);
2196 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2197 pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2198 amd64_bsp_pcpu_init1(&__pcpu[0]);
2199 amd64_bsp_ist_init(&__pcpu[0]);
2200 __pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2201 IOPERM_BITMAP_SIZE;
2202 memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2203 sizeof(struct user_segment_descriptor));
2204 gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2205 ssdtosyssd(&gdt_segs[GPROC0_SEL],
2206 (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2207 r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2208 r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2209 lgdt(&r_gdt);
2210 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2211 ltr(GSEL(GPROC0_SEL, SEL_KPL));
2212 __pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2213 __pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2214
2215 /*
2216 * Initialize the PAT MSR.
2217 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2218 * side-effect, invalidates stale PG_G TLB entries that might
2219 * have been created in our pre-boot environment.
2220 */
2221 pmap_init_pat();
2222
2223 /* Initialize TLB Context Id. */
2224 if (pmap_pcid_enabled) {
2225 kernel_pmap->pm_pcidp = (void *)(uintptr_t)
2226 offsetof(struct pcpu, pc_kpmap_store);
2227
2228 PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
2229 PCPU_SET(kpmap_store.pm_gen, 1);
2230
2231 /*
2232 * PMAP_PCID_KERN + 1 is used for initialization of
2233 * proc0 pmap. The pmap' pcid state might be used by
2234 * EFIRT entry before first context switch, so it
2235 * needs to be valid.
2236 */
2237 PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2238 PCPU_SET(pcid_gen, 1);
2239
2240 /*
2241 * pcpu area for APs is zeroed during AP startup.
2242 * pc_pcid_next and pc_pcid_gen are initialized by AP
2243 * during pcpu setup.
2244 */
2245 load_cr4(rcr4() | CR4_PCIDE);
2246 }
2247 TSEXIT();
2248 }
2249
2250 /*
2251 * Setup the PAT MSR.
2252 */
2253 void
pmap_init_pat(void)2254 pmap_init_pat(void)
2255 {
2256 uint64_t pat_msr;
2257 u_long cr0, cr4;
2258 int i;
2259
2260 /* Bail if this CPU doesn't implement PAT. */
2261 if ((cpu_feature & CPUID_PAT) == 0)
2262 panic("no PAT??");
2263
2264 /* Set default PAT index table. */
2265 for (i = 0; i < PAT_INDEX_SIZE; i++)
2266 pat_index[i] = -1;
2267 pat_index[PAT_WRITE_BACK] = 0;
2268 pat_index[PAT_WRITE_THROUGH] = 1;
2269 pat_index[PAT_UNCACHEABLE] = 3;
2270 pat_index[PAT_WRITE_COMBINING] = 6;
2271 pat_index[PAT_WRITE_PROTECTED] = 5;
2272 pat_index[PAT_UNCACHED] = 2;
2273
2274 /*
2275 * Initialize default PAT entries.
2276 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2277 * Program 5 and 6 as WP and WC.
2278 *
2279 * Leave 4 and 7 as WB and UC. Note that a recursive page table
2280 * mapping for a 2M page uses a PAT value with the bit 3 set due
2281 * to its overload with PG_PS.
2282 */
2283 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2284 PAT_VALUE(1, PAT_WRITE_THROUGH) |
2285 PAT_VALUE(2, PAT_UNCACHED) |
2286 PAT_VALUE(3, PAT_UNCACHEABLE) |
2287 PAT_VALUE(4, PAT_WRITE_BACK) |
2288 PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2289 PAT_VALUE(6, PAT_WRITE_COMBINING) |
2290 PAT_VALUE(7, PAT_UNCACHEABLE);
2291
2292 /* Disable PGE. */
2293 cr4 = rcr4();
2294 load_cr4(cr4 & ~CR4_PGE);
2295
2296 /* Disable caches (CD = 1, NW = 0). */
2297 cr0 = rcr0();
2298 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2299
2300 /* Flushes caches and TLBs. */
2301 wbinvd();
2302 invltlb();
2303
2304 /* Update PAT and index table. */
2305 wrmsr(MSR_PAT, pat_msr);
2306
2307 /* Flush caches and TLBs again. */
2308 wbinvd();
2309 invltlb();
2310
2311 /* Restore caches and PGE. */
2312 load_cr0(cr0);
2313 load_cr4(cr4);
2314 }
2315
2316 vm_page_t
pmap_page_alloc_below_4g(bool zeroed)2317 pmap_page_alloc_below_4g(bool zeroed)
2318 {
2319 return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2320 1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2321 }
2322
2323 /*
2324 * Initialize a vm_page's machine-dependent fields.
2325 */
2326 void
pmap_page_init(vm_page_t m)2327 pmap_page_init(vm_page_t m)
2328 {
2329
2330 TAILQ_INIT(&m->md.pv_list);
2331 m->md.pat_mode = PAT_WRITE_BACK;
2332 }
2333
2334 static int pmap_allow_2m_x_ept;
2335 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2336 &pmap_allow_2m_x_ept, 0,
2337 "Allow executable superpage mappings in EPT");
2338
2339 void
pmap_allow_2m_x_ept_recalculate(void)2340 pmap_allow_2m_x_ept_recalculate(void)
2341 {
2342 /*
2343 * SKL002, SKL012S. Since the EPT format is only used by
2344 * Intel CPUs, the vendor check is merely a formality.
2345 */
2346 if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2347 (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2348 (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2349 (CPUID_TO_MODEL(cpu_id) == 0x26 || /* Atoms */
2350 CPUID_TO_MODEL(cpu_id) == 0x27 ||
2351 CPUID_TO_MODEL(cpu_id) == 0x35 ||
2352 CPUID_TO_MODEL(cpu_id) == 0x36 ||
2353 CPUID_TO_MODEL(cpu_id) == 0x37 ||
2354 CPUID_TO_MODEL(cpu_id) == 0x86 ||
2355 CPUID_TO_MODEL(cpu_id) == 0x1c ||
2356 CPUID_TO_MODEL(cpu_id) == 0x4a ||
2357 CPUID_TO_MODEL(cpu_id) == 0x4c ||
2358 CPUID_TO_MODEL(cpu_id) == 0x4d ||
2359 CPUID_TO_MODEL(cpu_id) == 0x5a ||
2360 CPUID_TO_MODEL(cpu_id) == 0x5c ||
2361 CPUID_TO_MODEL(cpu_id) == 0x5d ||
2362 CPUID_TO_MODEL(cpu_id) == 0x5f ||
2363 CPUID_TO_MODEL(cpu_id) == 0x6e ||
2364 CPUID_TO_MODEL(cpu_id) == 0x7a ||
2365 CPUID_TO_MODEL(cpu_id) == 0x57 || /* Knights */
2366 CPUID_TO_MODEL(cpu_id) == 0x85))))
2367 pmap_allow_2m_x_ept = 1;
2368 #ifndef BURN_BRIDGES
2369 TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2370 #endif
2371 TUNABLE_INT_FETCH("vm.pmap.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2372 }
2373
2374 static bool
pmap_allow_2m_x_page(pmap_t pmap,bool executable)2375 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2376 {
2377
2378 return (pmap->pm_type != PT_EPT || !executable ||
2379 !pmap_allow_2m_x_ept);
2380 }
2381
2382 #ifdef NUMA
2383 static void
pmap_init_pv_table(void)2384 pmap_init_pv_table(void)
2385 {
2386 struct pmap_large_md_page *pvd;
2387 vm_size_t s;
2388 long start, end, highest, pv_npg;
2389 int domain, i, j, pages;
2390
2391 /*
2392 * For correctness we depend on the size being evenly divisible into a
2393 * page. As a tradeoff between performance and total memory use, the
2394 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2395 * avoids false-sharing, but not being 128 bytes potentially allows for
2396 * avoidable traffic due to adjacent cacheline prefetcher.
2397 *
2398 * Assert the size so that accidental changes fail to compile.
2399 */
2400 CTASSERT((sizeof(*pvd) == 64));
2401
2402 /*
2403 * Calculate the size of the array.
2404 */
2405 pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2406 pv_npg = howmany(pmap_last_pa, NBPDR);
2407 s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2408 s = round_page(s);
2409 pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2410 if (pv_table == NULL)
2411 panic("%s: kva_alloc failed\n", __func__);
2412
2413 /*
2414 * Iterate physical segments to allocate space for respective pages.
2415 */
2416 highest = -1;
2417 s = 0;
2418 for (i = 0; i < vm_phys_nsegs; i++) {
2419 end = vm_phys_segs[i].end / NBPDR;
2420 domain = vm_phys_segs[i].domain;
2421
2422 if (highest >= end)
2423 continue;
2424
2425 start = highest + 1;
2426 pvd = &pv_table[start];
2427
2428 pages = end - start + 1;
2429 s = round_page(pages * sizeof(*pvd));
2430 highest = start + (s / sizeof(*pvd)) - 1;
2431
2432 for (j = 0; j < s; j += PAGE_SIZE) {
2433 vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2434 if (m == NULL)
2435 panic("failed to allocate PV table page");
2436 pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2437 }
2438
2439 for (j = 0; j < s / sizeof(*pvd); j++) {
2440 rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2441 TAILQ_INIT(&pvd->pv_page.pv_list);
2442 pvd->pv_page.pv_gen = 0;
2443 pvd->pv_page.pat_mode = 0;
2444 pvd->pv_invl_gen = 0;
2445 pvd++;
2446 }
2447 }
2448 pvd = &pv_dummy_large;
2449 rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2450 TAILQ_INIT(&pvd->pv_page.pv_list);
2451 pvd->pv_page.pv_gen = 0;
2452 pvd->pv_page.pat_mode = 0;
2453 pvd->pv_invl_gen = 0;
2454 }
2455 #else
2456 static void
pmap_init_pv_table(void)2457 pmap_init_pv_table(void)
2458 {
2459 vm_size_t s;
2460 long i, pv_npg;
2461
2462 /*
2463 * Initialize the pool of pv list locks.
2464 */
2465 for (i = 0; i < NPV_LIST_LOCKS; i++)
2466 rw_init(&pv_list_locks[i], "pmap pv list");
2467
2468 /*
2469 * Calculate the size of the pv head table for superpages.
2470 */
2471 pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2472
2473 /*
2474 * Allocate memory for the pv head table for superpages.
2475 */
2476 s = (vm_size_t)pv_npg * sizeof(struct md_page);
2477 s = round_page(s);
2478 pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2479 for (i = 0; i < pv_npg; i++)
2480 TAILQ_INIT(&pv_table[i].pv_list);
2481 TAILQ_INIT(&pv_dummy.pv_list);
2482 }
2483 #endif
2484
2485 /*
2486 * Initialize the pmap module.
2487 *
2488 * Called by vm_mem_init(), to initialize any structures that the pmap
2489 * system needs to map virtual memory.
2490 */
2491 void
pmap_init(void)2492 pmap_init(void)
2493 {
2494 struct pmap_preinit_mapping *ppim;
2495 vm_page_t m, mpte;
2496 pml4_entry_t *pml4e;
2497 unsigned long lm_max;
2498 int error, i, ret, skz63;
2499
2500 /* L1TF, reserve page @0 unconditionally */
2501 vm_page_blacklist_add(0, bootverbose);
2502
2503 /* Detect bare-metal Skylake Server and Skylake-X. */
2504 if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2505 CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2506 /*
2507 * Skylake-X errata SKZ63. Processor May Hang When
2508 * Executing Code In an HLE Transaction Region between
2509 * 40000000H and 403FFFFFH.
2510 *
2511 * Mark the pages in the range as preallocated. It
2512 * seems to be impossible to distinguish between
2513 * Skylake Server and Skylake X.
2514 */
2515 skz63 = 1;
2516 TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2517 if (skz63 != 0) {
2518 if (bootverbose)
2519 printf("SKZ63: skipping 4M RAM starting "
2520 "at physical 1G\n");
2521 for (i = 0; i < atop(0x400000); i++) {
2522 ret = vm_page_blacklist_add(0x40000000 +
2523 ptoa(i), false);
2524 if (!ret && bootverbose)
2525 printf("page at %#x already used\n",
2526 0x40000000 + ptoa(i));
2527 }
2528 }
2529 }
2530
2531 /* IFU */
2532 pmap_allow_2m_x_ept_recalculate();
2533
2534 /*
2535 * Initialize the vm page array entries for the kernel pmap's
2536 * page table pages.
2537 */
2538 PMAP_LOCK(kernel_pmap);
2539 for (i = 0; i < nkpt; i++) {
2540 mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2541 KASSERT(mpte >= vm_page_array &&
2542 mpte < &vm_page_array[vm_page_array_size],
2543 ("pmap_init: page table page is out of range"));
2544 mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2545 mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2546 mpte->ref_count = 1;
2547
2548 /*
2549 * Collect the page table pages that were replaced by a 2MB
2550 * page in create_pagetables(). They are zero filled.
2551 */
2552 if ((i == 0 ||
2553 kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2554 pmap_insert_pt_page(kernel_pmap, mpte, false, false))
2555 panic("pmap_init: pmap_insert_pt_page failed");
2556 }
2557 PMAP_UNLOCK(kernel_pmap);
2558 vm_wire_add(nkpt);
2559
2560 /*
2561 * If the kernel is running on a virtual machine, then it must assume
2562 * that MCA is enabled by the hypervisor. Moreover, the kernel must
2563 * be prepared for the hypervisor changing the vendor and family that
2564 * are reported by CPUID. Consequently, the workaround for AMD Family
2565 * 10h Erratum 383 is enabled if the processor's feature set does not
2566 * include at least one feature that is only supported by older Intel
2567 * or newer AMD processors.
2568 */
2569 if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2570 (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2571 CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2572 AMDID2_FMA4)) == 0)
2573 workaround_erratum383 = 1;
2574
2575 /*
2576 * Are large page mappings enabled?
2577 */
2578 TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2579 if (pg_ps_enabled) {
2580 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2581 ("pmap_init: can't assign to pagesizes[1]"));
2582 pagesizes[1] = NBPDR;
2583 if ((amd_feature & AMDID_PAGE1GB) != 0) {
2584 KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2585 ("pmap_init: can't assign to pagesizes[2]"));
2586 pagesizes[2] = NBPDP;
2587 }
2588 }
2589
2590 /*
2591 * Initialize pv chunk lists.
2592 */
2593 for (i = 0; i < PMAP_MEMDOM; i++) {
2594 mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2595 TAILQ_INIT(&pv_chunks[i].pvc_list);
2596 }
2597 pmap_init_pv_table();
2598
2599 pmap_initialized = 1;
2600 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2601 ppim = pmap_preinit_mapping + i;
2602 if (ppim->va == 0)
2603 continue;
2604 /* Make the direct map consistent */
2605 if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2606 (void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2607 ppim->sz, ppim->mode);
2608 }
2609 if (!bootverbose)
2610 continue;
2611 printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2612 ppim->pa, ppim->va, ppim->sz, ppim->mode);
2613 }
2614
2615 mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2616 error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2617 (vmem_addr_t *)&qframe);
2618 if (error != 0)
2619 panic("qframe allocation failed");
2620
2621 lm_ents = 8;
2622 TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2623 lm_max = (kva_layout.lm_high - kva_layout.lm_low) / NBPML4;
2624 if (lm_ents > lm_max) {
2625 printf(
2626 "pmap: shrinking large map from requested %d slots to %ld slots\n",
2627 lm_ents, lm_max);
2628 lm_ents = lm_max;
2629 }
2630 #ifdef KMSAN
2631 if (!la57 && lm_ents > KMSANORIGPML4I - LMSPML4I) {
2632 printf(
2633 "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2634 lm_ents, KMSANORIGPML4I - LMSPML4I);
2635 lm_ents = KMSANORIGPML4I - LMSPML4I;
2636 }
2637 #endif
2638 if (bootverbose)
2639 printf("pmap: large map %u PML4 slots (%lu GB)\n",
2640 lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2641 if (lm_ents != 0) {
2642 large_vmem = vmem_create("large", kva_layout.lm_low,
2643 (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2644 if (large_vmem == NULL) {
2645 printf("pmap: cannot create large map\n");
2646 lm_ents = 0;
2647 }
2648 if (la57) {
2649 for (i = 0; i < howmany((vm_offset_t)NBPML4 *
2650 lm_ents, NBPML5); i++) {
2651 m = pmap_large_map_getptp_unlocked();
2652 kernel_pmap->pm_pmltop[LMSPML5I + i] = X86_PG_V |
2653 X86_PG_RW | X86_PG_A | X86_PG_M |
2654 pg_nx | VM_PAGE_TO_PHYS(m);
2655 }
2656 }
2657 for (i = 0; i < lm_ents; i++) {
2658 m = pmap_large_map_getptp_unlocked();
2659 pml4e = pmap_pml4e(kernel_pmap, kva_layout.lm_low +
2660 (u_long)i * NBPML4);
2661 *pml4e = X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M |
2662 pg_nx | VM_PAGE_TO_PHYS(m);
2663 }
2664 }
2665 }
2666
2667 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2668 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2669 "Maximum number of PML4 entries for use by large map (tunable). "
2670 "Each entry corresponds to 512GB of address space.");
2671
2672 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2673 "2MB page mapping counters");
2674
2675 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2676 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2677 CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2678
2679 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2680 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2681 &pmap_pde_mappings, "2MB page mappings");
2682
2683 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2684 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2685 &pmap_pde_p_failures, "2MB page promotion failures");
2686
2687 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2688 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2689 &pmap_pde_promotions, "2MB page promotions");
2690
2691 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2692 "1GB page mapping counters");
2693
2694 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2695 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2696 &pmap_pdpe_demotions, "1GB page demotions");
2697
2698 /***************************************************
2699 * Low level helper routines.....
2700 ***************************************************/
2701
2702 static pt_entry_t
pmap_swap_pat(pmap_t pmap,pt_entry_t entry)2703 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2704 {
2705 int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2706
2707 switch (pmap->pm_type) {
2708 case PT_X86:
2709 case PT_RVI:
2710 /* Verify that both PAT bits are not set at the same time */
2711 KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2712 ("Invalid PAT bits in entry %#lx", entry));
2713
2714 /* Swap the PAT bits if one of them is set */
2715 if ((entry & x86_pat_bits) != 0)
2716 entry ^= x86_pat_bits;
2717 break;
2718 case PT_EPT:
2719 /*
2720 * Nothing to do - the memory attributes are represented
2721 * the same way for regular pages and superpages.
2722 */
2723 break;
2724 default:
2725 panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2726 }
2727
2728 return (entry);
2729 }
2730
2731 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)2732 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2733 {
2734
2735 return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2736 pat_index[(int)mode] >= 0);
2737 }
2738
2739 /*
2740 * Determine the appropriate bits to set in a PTE or PDE for a specified
2741 * caching mode.
2742 */
2743 int
pmap_cache_bits(pmap_t pmap,int mode,bool is_pde)2744 pmap_cache_bits(pmap_t pmap, int mode, bool is_pde)
2745 {
2746 int cache_bits, pat_flag, pat_idx;
2747
2748 if (!pmap_is_valid_memattr(pmap, mode))
2749 panic("Unknown caching mode %d\n", mode);
2750
2751 switch (pmap->pm_type) {
2752 case PT_X86:
2753 case PT_RVI:
2754 /* The PAT bit is different for PTE's and PDE's. */
2755 pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2756
2757 /* Map the caching mode to a PAT index. */
2758 pat_idx = pat_index[mode];
2759
2760 /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2761 cache_bits = 0;
2762 if (pat_idx & 0x4)
2763 cache_bits |= pat_flag;
2764 if (pat_idx & 0x2)
2765 cache_bits |= PG_NC_PCD;
2766 if (pat_idx & 0x1)
2767 cache_bits |= PG_NC_PWT;
2768 break;
2769
2770 case PT_EPT:
2771 cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2772 break;
2773
2774 default:
2775 panic("unsupported pmap type %d", pmap->pm_type);
2776 }
2777
2778 return (cache_bits);
2779 }
2780
2781 static int
pmap_cache_mask(pmap_t pmap,bool is_pde)2782 pmap_cache_mask(pmap_t pmap, bool is_pde)
2783 {
2784 int mask;
2785
2786 switch (pmap->pm_type) {
2787 case PT_X86:
2788 case PT_RVI:
2789 mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2790 break;
2791 case PT_EPT:
2792 mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2793 break;
2794 default:
2795 panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2796 }
2797
2798 return (mask);
2799 }
2800
2801 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)2802 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2803 {
2804 int pat_flag, pat_idx;
2805
2806 pat_idx = 0;
2807 switch (pmap->pm_type) {
2808 case PT_X86:
2809 case PT_RVI:
2810 /* The PAT bit is different for PTE's and PDE's. */
2811 pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2812
2813 if ((pte & pat_flag) != 0)
2814 pat_idx |= 0x4;
2815 if ((pte & PG_NC_PCD) != 0)
2816 pat_idx |= 0x2;
2817 if ((pte & PG_NC_PWT) != 0)
2818 pat_idx |= 0x1;
2819 break;
2820 case PT_EPT:
2821 if ((pte & EPT_PG_IGNORE_PAT) != 0)
2822 panic("EPT PTE %#lx has no PAT memory type", pte);
2823 pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2824 break;
2825 }
2826
2827 /* See pmap_init_pat(). */
2828 if (pat_idx == 4)
2829 pat_idx = 0;
2830 if (pat_idx == 7)
2831 pat_idx = 3;
2832
2833 return (pat_idx);
2834 }
2835
2836 bool
pmap_ps_enabled(pmap_t pmap)2837 pmap_ps_enabled(pmap_t pmap)
2838 {
2839
2840 return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2841 }
2842
2843 static void
pmap_update_pde_store(pmap_t pmap,pd_entry_t * pde,pd_entry_t newpde)2844 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2845 {
2846
2847 switch (pmap->pm_type) {
2848 case PT_X86:
2849 break;
2850 case PT_RVI:
2851 case PT_EPT:
2852 /*
2853 * XXX
2854 * This is a little bogus since the generation number is
2855 * supposed to be bumped up when a region of the address
2856 * space is invalidated in the page tables.
2857 *
2858 * In this case the old PDE entry is valid but yet we want
2859 * to make sure that any mappings using the old entry are
2860 * invalidated in the TLB.
2861 *
2862 * The reason this works as expected is because we rendezvous
2863 * "all" host cpus and force any vcpu context to exit as a
2864 * side-effect.
2865 */
2866 atomic_add_long(&pmap->pm_eptgen, 1);
2867 break;
2868 default:
2869 panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2870 }
2871 pde_store(pde, newpde);
2872 }
2873
2874 /*
2875 * After changing the page size for the specified virtual address in the page
2876 * table, flush the corresponding entries from the processor's TLB. Only the
2877 * calling processor's TLB is affected.
2878 *
2879 * The calling thread must be pinned to a processor.
2880 */
2881 static void
pmap_update_pde_invalidate(pmap_t pmap,vm_offset_t va,pd_entry_t newpde)2882 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2883 {
2884 pt_entry_t PG_G;
2885
2886 if (pmap_type_guest(pmap))
2887 return;
2888
2889 KASSERT(pmap->pm_type == PT_X86,
2890 ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2891
2892 PG_G = pmap_global_bit(pmap);
2893
2894 if ((newpde & PG_PS) == 0)
2895 /* Demotion: flush a specific 2MB page mapping. */
2896 pmap_invlpg(pmap, va);
2897 else if ((newpde & PG_G) == 0)
2898 /*
2899 * Promotion: flush every 4KB page mapping from the TLB
2900 * because there are too many to flush individually.
2901 */
2902 invltlb();
2903 else {
2904 /*
2905 * Promotion: flush every 4KB page mapping from the TLB,
2906 * including any global (PG_G) mappings.
2907 *
2908 * This function is only used on older processors that
2909 * do not support the invpcid instruction.
2910 */
2911 invltlb_glob();
2912 }
2913 }
2914
2915 /*
2916 * The amd64 pmap uses different approaches to TLB invalidation
2917 * depending on the kernel configuration, available hardware features,
2918 * and known hardware errata. The kernel configuration option that
2919 * has the greatest operational impact on TLB invalidation is PTI,
2920 * which is enabled automatically on affected Intel CPUs. The most
2921 * impactful hardware features are first PCID, and then INVPCID
2922 * instruction presence. PCID usage is quite different for PTI
2923 * vs. non-PTI.
2924 *
2925 * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2926 * the Meltdown bug in some Intel CPUs. Under PTI, each user address
2927 * space is served by two page tables, user and kernel. The user
2928 * page table only maps user space and a kernel trampoline. The
2929 * kernel trampoline includes the entirety of the kernel text but
2930 * only the kernel data that is needed to switch from user to kernel
2931 * mode. The kernel page table maps the user and kernel address
2932 * spaces in their entirety. It is identical to the per-process
2933 * page table used in non-PTI mode.
2934 *
2935 * User page tables are only used when the CPU is in user mode.
2936 * Consequently, some TLB invalidations can be postponed until the
2937 * switch from kernel to user mode. In contrast, the user
2938 * space part of the kernel page table is used for copyout(9), so
2939 * TLB invalidations on this page table cannot be similarly postponed.
2940 *
2941 * The existence of a user mode page table for the given pmap is
2942 * indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2943 * which case pm_ucr3 contains the %cr3 register value for the user
2944 * mode page table's root.
2945 *
2946 * * The pm_active bitmask indicates which CPUs currently have the
2947 * pmap active. A CPU's bit is set on context switch to the pmap, and
2948 * cleared on switching off this CPU. For the kernel page table,
2949 * the pm_active field is immutable and contains all CPUs. The
2950 * kernel page table is always logically active on every processor,
2951 * but not necessarily in use by the hardware, e.g., in PTI mode.
2952 *
2953 * When requesting invalidation of virtual addresses with
2954 * pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2955 * all CPUs recorded as active in pm_active. Updates to and reads
2956 * from pm_active are not synchronized, and so they may race with
2957 * each other. Shootdown handlers are prepared to handle the race.
2958 *
2959 * * PCID is an optional feature of the long mode x86 MMU where TLB
2960 * entries are tagged with the 'Process ID' of the address space
2961 * they belong to. This feature provides a limited namespace for
2962 * process identifiers, 12 bits, supporting 4095 simultaneous IDs
2963 * total.
2964 *
2965 * Allocation of a PCID to a pmap is done by an algorithm described
2966 * in section 15.12, "Other TLB Consistency Algorithms", of
2967 * Vahalia's book "Unix Internals". A PCID cannot be allocated for
2968 * the whole lifetime of a pmap in pmap_pinit() due to the limited
2969 * namespace. Instead, a per-CPU, per-pmap PCID is assigned when
2970 * the CPU is about to start caching TLB entries from a pmap,
2971 * i.e., on the context switch that activates the pmap on the CPU.
2972 *
2973 * The PCID allocator maintains a per-CPU, per-pmap generation
2974 * count, pm_gen, which is incremented each time a new PCID is
2975 * allocated. On TLB invalidation, the generation counters for the
2976 * pmap are zeroed, which signals the context switch code that the
2977 * previously allocated PCID is no longer valid. Effectively,
2978 * zeroing any of these counters triggers a TLB shootdown for the
2979 * given CPU/address space, due to the allocation of a new PCID.
2980 *
2981 * Zeroing can be performed remotely. Consequently, if a pmap is
2982 * inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2983 * be initiated by an ordinary memory access to reset the target
2984 * CPU's generation count within the pmap. The CPU initiating the
2985 * TLB shootdown does not need to send an IPI to the target CPU.
2986 *
2987 * * PTI + PCID. The available PCIDs are divided into two sets: PCIDs
2988 * for complete (kernel) page tables, and PCIDs for user mode page
2989 * tables. A user PCID value is obtained from the kernel PCID value
2990 * by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2991 *
2992 * User space page tables are activated on return to user mode, by
2993 * loading pm_ucr3 into %cr3. If the PCPU(ucr3_load_mask) requests
2994 * clearing bit 63 of the loaded ucr3, this effectively causes
2995 * complete invalidation of the user mode TLB entries for the
2996 * current pmap. In which case, local invalidations of individual
2997 * pages in the user page table are skipped.
2998 *
2999 * * Local invalidation, all modes. If the requested invalidation is
3000 * for a specific address or the total invalidation of a currently
3001 * active pmap, then the TLB is flushed using INVLPG for a kernel
3002 * page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
3003 * user space page table(s).
3004 *
3005 * If the INVPCID instruction is available, it is used to flush user
3006 * entries from the kernel page table.
3007 *
3008 * When PCID is enabled, the INVLPG instruction invalidates all TLB
3009 * entries for the given page that either match the current PCID or
3010 * are global. Since TLB entries for the same page under different
3011 * PCIDs are unaffected, kernel pages which reside in all address
3012 * spaces could be problematic. We avoid the problem by creating
3013 * all kernel PTEs with the global flag (PG_G) set, when PTI is
3014 * disabled.
3015 *
3016 * * mode: PTI disabled, PCID present. The kernel reserves PCID 0 for its
3017 * address space, all other 4095 PCIDs are used for user mode spaces
3018 * as described above. A context switch allocates a new PCID if
3019 * the recorded PCID is zero or the recorded generation does not match
3020 * the CPU's generation, effectively flushing the TLB for this address space.
3021 * Total remote invalidation is performed by zeroing pm_gen for all CPUs.
3022 * local user page: INVLPG
3023 * local kernel page: INVLPG
3024 * local user total: INVPCID(CTX)
3025 * local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
3026 * remote user page, inactive pmap: zero pm_gen
3027 * remote user page, active pmap: zero pm_gen + IPI:INVLPG
3028 * (Both actions are required to handle the aforementioned pm_active races.)
3029 * remote kernel page: IPI:INVLPG
3030 * remote user total, inactive pmap: zero pm_gen
3031 * remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
3032 * reload %cr3)
3033 * (See note above about pm_active races.)
3034 * remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
3035 *
3036 * PTI enabled, PCID present.
3037 * local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
3038 * for upt
3039 * local kernel page: INVLPG
3040 * local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
3041 * on loading UCR3 into %cr3 for upt
3042 * local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
3043 * remote user page, inactive pmap: zero pm_gen
3044 * remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
3045 * INVPCID(ADDR) for upt)
3046 * remote kernel page: IPI:INVLPG
3047 * remote user total, inactive pmap: zero pm_gen
3048 * remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
3049 * clear PCID_SAVE on loading UCR3 into $cr3 for upt)
3050 * remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
3051 *
3052 * No PCID.
3053 * local user page: INVLPG
3054 * local kernel page: INVLPG
3055 * local user total: reload %cr3
3056 * local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
3057 * remote user page, inactive pmap: -
3058 * remote user page, active pmap: IPI:INVLPG
3059 * remote kernel page: IPI:INVLPG
3060 * remote user total, inactive pmap: -
3061 * remote user total, active pmap: IPI:(reload %cr3)
3062 * remote kernel total: IPI:INVPCID(CTXGLOB) or invltlb_glob()
3063 * Since on return to user mode, the reload of %cr3 with ucr3 causes
3064 * TLB invalidation, no specific action is required for user page table.
3065 *
3066 * EPT. EPT pmaps do not map KVA, all mappings are userspace.
3067 * XXX TODO
3068 */
3069
3070 /*
3071 * Interrupt the cpus that are executing in the guest context.
3072 * This will force the vcpu to exit and the cached EPT mappings
3073 * will be invalidated by the host before the next vmresume.
3074 */
3075 static __inline void
pmap_invalidate_ept(pmap_t pmap)3076 pmap_invalidate_ept(pmap_t pmap)
3077 {
3078 smr_seq_t goal;
3079 int ipinum;
3080
3081 sched_pin();
3082 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
3083 ("pmap_invalidate_ept: absurd pm_active"));
3084
3085 /*
3086 * The TLB mappings associated with a vcpu context are not
3087 * flushed each time a different vcpu is chosen to execute.
3088 *
3089 * This is in contrast with a process's vtop mappings that
3090 * are flushed from the TLB on each context switch.
3091 *
3092 * Therefore we need to do more than just a TLB shootdown on
3093 * the active cpus in 'pmap->pm_active'. To do this we keep
3094 * track of the number of invalidations performed on this pmap.
3095 *
3096 * Each vcpu keeps a cache of this counter and compares it
3097 * just before a vmresume. If the counter is out-of-date an
3098 * invept will be done to flush stale mappings from the TLB.
3099 *
3100 * To ensure that all vCPU threads have observed the new counter
3101 * value before returning, we use SMR. Ordering is important here:
3102 * the VMM enters an SMR read section before loading the counter
3103 * and after updating the pm_active bit set. Thus, pm_active is
3104 * a superset of active readers, and any reader that has observed
3105 * the goal has observed the new counter value.
3106 */
3107 atomic_add_long(&pmap->pm_eptgen, 1);
3108
3109 goal = smr_advance(pmap->pm_eptsmr);
3110
3111 /*
3112 * Force the vcpu to exit and trap back into the hypervisor.
3113 */
3114 ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3115 ipi_selected(pmap->pm_active, ipinum);
3116 sched_unpin();
3117
3118 /*
3119 * Ensure that all active vCPUs will observe the new generation counter
3120 * value before executing any more guest instructions.
3121 */
3122 smr_wait(pmap->pm_eptsmr, goal);
3123 }
3124
3125 static inline void
pmap_invalidate_preipi_pcid(pmap_t pmap)3126 pmap_invalidate_preipi_pcid(pmap_t pmap)
3127 {
3128 struct pmap_pcid *pcidp;
3129 u_int cpuid, i;
3130
3131 sched_pin();
3132
3133 cpuid = PCPU_GET(cpuid);
3134 if (pmap != PCPU_GET(curpmap))
3135 cpuid = 0xffffffff; /* An impossible value */
3136
3137 CPU_FOREACH(i) {
3138 if (cpuid != i) {
3139 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
3140 pcidp->pm_gen = 0;
3141 }
3142 }
3143
3144 /*
3145 * The fence is between stores to pm_gen and the read of the
3146 * pm_active mask. We need to ensure that it is impossible
3147 * for us to miss the bit update in pm_active and
3148 * simultaneously observe a non-zero pm_gen in
3149 * pmap_activate_sw(), otherwise TLB update is missed.
3150 * Without the fence, IA32 allows such an outcome. Note that
3151 * pm_active is updated by a locked operation, which provides
3152 * the reciprocal fence.
3153 */
3154 atomic_thread_fence_seq_cst();
3155 }
3156
3157 static void
pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)3158 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3159 {
3160 sched_pin();
3161 }
3162
3163 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3164 {
3165 return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3166 pmap_invalidate_preipi_nopcid);
3167 }
3168
3169 static inline void
pmap_invalidate_page_pcid_cb(pmap_t pmap,vm_offset_t va,const bool invpcid_works1)3170 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3171 const bool invpcid_works1)
3172 {
3173 struct invpcid_descr d;
3174 uint64_t kcr3, ucr3;
3175 uint32_t pcid;
3176
3177 /*
3178 * Because pm_pcid is recalculated on a context switch, we
3179 * must ensure there is no preemption, not just pinning.
3180 * Otherwise, we might use a stale value below.
3181 */
3182 CRITICAL_ASSERT(curthread);
3183
3184 /*
3185 * No need to do anything with user page tables invalidation
3186 * if there is no user page table, or invalidation is deferred
3187 * until the return to userspace. ucr3_load_mask is stable
3188 * because we have preemption disabled.
3189 */
3190 if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3191 PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3192 return;
3193
3194 pcid = pmap_get_pcid(pmap);
3195 if (invpcid_works1) {
3196 d.pcid = pcid | PMAP_PCID_USER_PT;
3197 d.pad = 0;
3198 d.addr = va;
3199 invpcid(&d, INVPCID_ADDR);
3200 } else {
3201 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3202 ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3203 pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3204 }
3205 }
3206
3207 static void
pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap,vm_offset_t va)3208 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3209 {
3210 pmap_invalidate_page_pcid_cb(pmap, va, true);
3211 }
3212
3213 static void
pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t va)3214 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3215 {
3216 pmap_invalidate_page_pcid_cb(pmap, va, false);
3217 }
3218
3219 static void
pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused,vm_offset_t va __unused)3220 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3221 {
3222 }
3223
3224 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3225 {
3226 if (pmap_pcid_enabled)
3227 return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3228 pmap_invalidate_page_pcid_noinvpcid_cb);
3229 return (pmap_invalidate_page_nopcid_cb);
3230 }
3231
3232 static void
pmap_invalidate_page_curcpu_cb(pmap_t pmap,vm_offset_t va,vm_offset_t addr2 __unused)3233 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3234 vm_offset_t addr2 __unused)
3235 {
3236 if (pmap == kernel_pmap) {
3237 pmap_invlpg(kernel_pmap, va);
3238 } else if (pmap == PCPU_GET(curpmap)) {
3239 invlpg(va);
3240 pmap_invalidate_page_cb(pmap, va);
3241 }
3242 }
3243
3244 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3245 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3246 {
3247 if (pmap_type_guest(pmap)) {
3248 pmap_invalidate_ept(pmap);
3249 return;
3250 }
3251
3252 KASSERT(pmap->pm_type == PT_X86,
3253 ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3254
3255 pmap_invalidate_preipi(pmap);
3256 smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3257 }
3258
3259 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3260 #define PMAP_INVLPG_THRESHOLD (4 * 1024 * PAGE_SIZE)
3261
3262 static void
pmap_invalidate_range_pcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,const bool invpcid_works1)3263 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3264 const bool invpcid_works1)
3265 {
3266 struct invpcid_descr d;
3267 uint64_t kcr3, ucr3;
3268 uint32_t pcid;
3269
3270 CRITICAL_ASSERT(curthread);
3271
3272 if (pmap != PCPU_GET(curpmap) ||
3273 pmap->pm_ucr3 == PMAP_NO_CR3 ||
3274 PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3275 return;
3276
3277 pcid = pmap_get_pcid(pmap);
3278 if (invpcid_works1) {
3279 d.pcid = pcid | PMAP_PCID_USER_PT;
3280 d.pad = 0;
3281 for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3282 invpcid(&d, INVPCID_ADDR);
3283 } else {
3284 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3285 ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3286 pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3287 }
3288 }
3289
3290 static void
pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3291 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3292 vm_offset_t eva)
3293 {
3294 pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3295 }
3296
3297 static void
pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3298 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3299 vm_offset_t eva)
3300 {
3301 pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3302 }
3303
3304 static void
pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused,vm_offset_t sva __unused,vm_offset_t eva __unused)3305 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3306 vm_offset_t eva __unused)
3307 {
3308 }
3309
3310 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3311 vm_offset_t))
3312 {
3313 if (pmap_pcid_enabled)
3314 return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3315 pmap_invalidate_range_pcid_noinvpcid_cb);
3316 return (pmap_invalidate_range_nopcid_cb);
3317 }
3318
3319 static void
pmap_invalidate_range_curcpu_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3320 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3321 {
3322 vm_offset_t addr;
3323
3324 if (pmap == kernel_pmap) {
3325 if (PCPU_GET(pcid_invlpg_workaround)) {
3326 struct invpcid_descr d = { 0 };
3327
3328 invpcid(&d, INVPCID_CTXGLOB);
3329 } else {
3330 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3331 invlpg(addr);
3332 }
3333 } else if (pmap == PCPU_GET(curpmap)) {
3334 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3335 invlpg(addr);
3336 pmap_invalidate_range_cb(pmap, sva, eva);
3337 }
3338 }
3339
3340 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3341 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3342 {
3343 if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3344 pmap_invalidate_all(pmap);
3345 return;
3346 }
3347
3348 if (pmap_type_guest(pmap)) {
3349 pmap_invalidate_ept(pmap);
3350 return;
3351 }
3352
3353 KASSERT(pmap->pm_type == PT_X86,
3354 ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3355
3356 pmap_invalidate_preipi(pmap);
3357 smp_masked_invlpg_range(sva, eva, pmap,
3358 pmap_invalidate_range_curcpu_cb);
3359 }
3360
3361 static inline void
pmap_invalidate_all_cb_template(pmap_t pmap,bool pmap_pcid_enabled1,bool invpcid_works1)3362 pmap_invalidate_all_cb_template(pmap_t pmap, bool pmap_pcid_enabled1,
3363 bool invpcid_works1)
3364 {
3365 struct invpcid_descr d;
3366 uint64_t kcr3;
3367 uint32_t pcid;
3368
3369 if (pmap == kernel_pmap) {
3370 if (invpcid_works1) {
3371 bzero(&d, sizeof(d));
3372 invpcid(&d, INVPCID_CTXGLOB);
3373 } else {
3374 invltlb_glob();
3375 }
3376 } else if (pmap == PCPU_GET(curpmap)) {
3377 if (pmap_pcid_enabled1) {
3378 CRITICAL_ASSERT(curthread);
3379
3380 pcid = pmap_get_pcid(pmap);
3381 if (invpcid_works1) {
3382 d.pcid = pcid;
3383 d.pad = 0;
3384 d.addr = 0;
3385 invpcid(&d, INVPCID_CTX);
3386 } else {
3387 kcr3 = pmap->pm_cr3 | pcid;
3388 load_cr3(kcr3);
3389 }
3390 if (pmap->pm_ucr3 != PMAP_NO_CR3)
3391 PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3392 } else {
3393 invltlb();
3394 }
3395 }
3396 }
3397
3398 static void
pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3399 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3400 vm_offset_t addr2 __unused)
3401 {
3402 pmap_invalidate_all_cb_template(pmap, true, true);
3403 }
3404
3405 static void
pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3406 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3407 vm_offset_t addr2 __unused)
3408 {
3409 pmap_invalidate_all_cb_template(pmap, true, false);
3410 }
3411
3412 static void
pmap_invalidate_all_nopcid_invpcid_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3413 pmap_invalidate_all_nopcid_invpcid_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3414 vm_offset_t addr2 __unused)
3415 {
3416 pmap_invalidate_all_cb_template(pmap, false, true);
3417 }
3418
3419 static void
pmap_invalidate_all_nopcid_noinvpcid_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3420 pmap_invalidate_all_nopcid_noinvpcid_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3421 vm_offset_t addr2 __unused)
3422 {
3423 pmap_invalidate_all_cb_template(pmap, false, false);
3424 }
3425
3426 DEFINE_IFUNC(static, void, pmap_invalidate_all_curcpu_cb, (pmap_t, vm_offset_t,
3427 vm_offset_t))
3428 {
3429 if (pmap_pcid_enabled)
3430 return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3431 pmap_invalidate_all_pcid_noinvpcid_cb);
3432 return (invpcid_works ? pmap_invalidate_all_nopcid_invpcid_cb :
3433 pmap_invalidate_all_nopcid_noinvpcid_cb);
3434 }
3435
3436 void
pmap_invalidate_all(pmap_t pmap)3437 pmap_invalidate_all(pmap_t pmap)
3438 {
3439 if (pmap_type_guest(pmap)) {
3440 pmap_invalidate_ept(pmap);
3441 return;
3442 }
3443
3444 KASSERT(pmap->pm_type == PT_X86,
3445 ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3446
3447 pmap_invalidate_preipi(pmap);
3448 smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3449 }
3450
3451 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t va __unused,vm_offset_t addr2 __unused)3452 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3453 vm_offset_t addr2 __unused)
3454 {
3455 wbinvd();
3456 }
3457
3458 void
pmap_invalidate_cache(void)3459 pmap_invalidate_cache(void)
3460 {
3461 sched_pin();
3462 smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3463 }
3464
3465 struct pde_action {
3466 cpuset_t invalidate; /* processors that invalidate their TLB */
3467 pmap_t pmap;
3468 vm_offset_t va;
3469 pd_entry_t *pde;
3470 pd_entry_t newpde;
3471 u_int store; /* processor that updates the PDE */
3472 };
3473
3474 static void
pmap_update_pde_action(void * arg)3475 pmap_update_pde_action(void *arg)
3476 {
3477 struct pde_action *act = arg;
3478
3479 if (act->store == PCPU_GET(cpuid))
3480 pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3481 }
3482
3483 static void
pmap_update_pde_teardown(void * arg)3484 pmap_update_pde_teardown(void *arg)
3485 {
3486 struct pde_action *act = arg;
3487
3488 if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3489 pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3490 }
3491
3492 /*
3493 * Change the page size for the specified virtual address in a way that
3494 * prevents any possibility of the TLB ever having two entries that map the
3495 * same virtual address using different page sizes. This is the recommended
3496 * workaround for Erratum 383 on AMD Family 10h processors. It prevents a
3497 * machine check exception for a TLB state that is improperly diagnosed as a
3498 * hardware error.
3499 */
3500 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3501 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3502 {
3503 struct pde_action act;
3504 cpuset_t active, other_cpus;
3505 u_int cpuid;
3506
3507 sched_pin();
3508 cpuid = PCPU_GET(cpuid);
3509 other_cpus = all_cpus;
3510 CPU_CLR(cpuid, &other_cpus);
3511 if (pmap == kernel_pmap || pmap_type_guest(pmap))
3512 active = all_cpus;
3513 else {
3514 active = pmap->pm_active;
3515 }
3516 if (CPU_OVERLAP(&active, &other_cpus)) {
3517 act.store = cpuid;
3518 act.invalidate = active;
3519 act.va = va;
3520 act.pmap = pmap;
3521 act.pde = pde;
3522 act.newpde = newpde;
3523 CPU_SET(cpuid, &active);
3524 smp_rendezvous_cpus(active,
3525 smp_no_rendezvous_barrier, pmap_update_pde_action,
3526 pmap_update_pde_teardown, &act);
3527 } else {
3528 pmap_update_pde_store(pmap, pde, newpde);
3529 if (CPU_ISSET(cpuid, &active))
3530 pmap_update_pde_invalidate(pmap, va, newpde);
3531 }
3532 sched_unpin();
3533 }
3534
3535 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)3536 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3537 {
3538
3539 /*
3540 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3541 * by a promotion that did not invalidate the 512 4KB page mappings
3542 * that might exist in the TLB. Consequently, at this point, the TLB
3543 * may hold both 4KB and 2MB page mappings for the address range [va,
3544 * va + NBPDR). Therefore, the entire range must be invalidated here.
3545 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3546 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3547 * single INVLPG suffices to invalidate the 2MB page mapping from the
3548 * TLB.
3549 */
3550 if ((pde & PG_PROMOTED) != 0)
3551 pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3552 else
3553 pmap_invalidate_page(pmap, va);
3554 }
3555
3556 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3557 (vm_offset_t sva, vm_offset_t eva))
3558 {
3559
3560 if ((cpu_feature & CPUID_SS) != 0)
3561 return (pmap_invalidate_cache_range_selfsnoop);
3562 if ((cpu_feature & CPUID_CLFSH) != 0)
3563 return (pmap_force_invalidate_cache_range);
3564 return (pmap_invalidate_cache_range_all);
3565 }
3566
3567 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
3568
3569 static void
pmap_invalidate_cache_range_check_align(vm_offset_t sva,vm_offset_t eva)3570 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3571 {
3572
3573 KASSERT((sva & PAGE_MASK) == 0,
3574 ("pmap_invalidate_cache_range: sva not page-aligned"));
3575 KASSERT((eva & PAGE_MASK) == 0,
3576 ("pmap_invalidate_cache_range: eva not page-aligned"));
3577 }
3578
3579 static void
pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,vm_offset_t eva)3580 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3581 {
3582
3583 pmap_invalidate_cache_range_check_align(sva, eva);
3584 }
3585
3586 void
pmap_force_invalidate_cache_range(vm_offset_t sva,vm_offset_t eva)3587 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3588 {
3589
3590 sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3591
3592 /*
3593 * XXX: Some CPUs fault, hang, or trash the local APIC
3594 * registers if we use CLFLUSH on the local APIC range. The
3595 * local APIC is always uncached, so we don't need to flush
3596 * for that range anyway.
3597 */
3598 if (pmap_kextract(sva) == lapic_paddr)
3599 return;
3600
3601 if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3602 /*
3603 * Do per-cache line flush. Use a locked
3604 * instruction to insure that previous stores are
3605 * included in the write-back. The processor
3606 * propagates flush to other processors in the cache
3607 * coherence domain.
3608 */
3609 atomic_thread_fence_seq_cst();
3610 for (; sva < eva; sva += cpu_clflush_line_size)
3611 clflushopt(sva);
3612 atomic_thread_fence_seq_cst();
3613 } else {
3614 /*
3615 * Writes are ordered by CLFLUSH on Intel CPUs.
3616 */
3617 if (cpu_vendor_id != CPU_VENDOR_INTEL)
3618 mfence();
3619 for (; sva < eva; sva += cpu_clflush_line_size)
3620 clflush(sva);
3621 if (cpu_vendor_id != CPU_VENDOR_INTEL)
3622 mfence();
3623 }
3624 }
3625
3626 static void
pmap_invalidate_cache_range_all(vm_offset_t sva,vm_offset_t eva)3627 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3628 {
3629
3630 pmap_invalidate_cache_range_check_align(sva, eva);
3631 pmap_invalidate_cache();
3632 }
3633
3634 /*
3635 * Remove the specified set of pages from the data and instruction caches.
3636 *
3637 * In contrast to pmap_invalidate_cache_range(), this function does not
3638 * rely on the CPU's self-snoop feature, because it is intended for use
3639 * when moving pages into a different cache domain.
3640 */
3641 void
pmap_invalidate_cache_pages(vm_page_t * pages,int count)3642 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3643 {
3644 vm_offset_t daddr, eva;
3645 int i;
3646 bool useclflushopt;
3647
3648 useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3649 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3650 ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3651 pmap_invalidate_cache();
3652 else {
3653 if (useclflushopt)
3654 atomic_thread_fence_seq_cst();
3655 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3656 mfence();
3657 for (i = 0; i < count; i++) {
3658 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3659 eva = daddr + PAGE_SIZE;
3660 for (; daddr < eva; daddr += cpu_clflush_line_size) {
3661 if (useclflushopt)
3662 clflushopt(daddr);
3663 else
3664 clflush(daddr);
3665 }
3666 }
3667 if (useclflushopt)
3668 atomic_thread_fence_seq_cst();
3669 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3670 mfence();
3671 }
3672 }
3673
3674 void
pmap_flush_cache_range(vm_offset_t sva,vm_offset_t eva)3675 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3676 {
3677
3678 pmap_invalidate_cache_range_check_align(sva, eva);
3679
3680 if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3681 pmap_force_invalidate_cache_range(sva, eva);
3682 return;
3683 }
3684
3685 /* See comment in pmap_force_invalidate_cache_range(). */
3686 if (pmap_kextract(sva) == lapic_paddr)
3687 return;
3688
3689 atomic_thread_fence_seq_cst();
3690 for (; sva < eva; sva += cpu_clflush_line_size)
3691 clwb(sva);
3692 atomic_thread_fence_seq_cst();
3693 }
3694
3695 void
pmap_flush_cache_phys_range(vm_paddr_t spa,vm_paddr_t epa,vm_memattr_t mattr)3696 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3697 {
3698 pt_entry_t *pte;
3699 vm_offset_t vaddr;
3700 int error __diagused;
3701 int pte_bits;
3702
3703 KASSERT((spa & PAGE_MASK) == 0,
3704 ("pmap_flush_cache_phys_range: spa not page-aligned"));
3705 KASSERT((epa & PAGE_MASK) == 0,
3706 ("pmap_flush_cache_phys_range: epa not page-aligned"));
3707
3708 if (spa < dmaplimit) {
3709 pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3710 dmaplimit, epa)));
3711 if (dmaplimit >= epa)
3712 return;
3713 spa = dmaplimit;
3714 }
3715
3716 pte_bits = pmap_cache_bits(kernel_pmap, mattr, false) | X86_PG_RW |
3717 X86_PG_V;
3718 error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3719 &vaddr);
3720 KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3721 pte = vtopte(vaddr);
3722 for (; spa < epa; spa += PAGE_SIZE) {
3723 sched_pin();
3724 pte_store(pte, spa | pte_bits);
3725 pmap_invlpg(kernel_pmap, vaddr);
3726 /* XXXKIB atomic inside flush_cache_range are excessive */
3727 pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3728 sched_unpin();
3729 }
3730 vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3731 }
3732
3733 /*
3734 * Routine: pmap_extract
3735 * Function:
3736 * Extract the physical page address associated
3737 * with the given map/virtual_address pair.
3738 */
3739 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)3740 pmap_extract(pmap_t pmap, vm_offset_t va)
3741 {
3742 pdp_entry_t *pdpe;
3743 pd_entry_t *pde;
3744 pt_entry_t *pte, PG_V;
3745 vm_paddr_t pa;
3746
3747 pa = 0;
3748 PG_V = pmap_valid_bit(pmap);
3749 PMAP_LOCK(pmap);
3750 pdpe = pmap_pdpe(pmap, va);
3751 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3752 if ((*pdpe & PG_PS) != 0)
3753 pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3754 else {
3755 pde = pmap_pdpe_to_pde(pdpe, va);
3756 if ((*pde & PG_V) != 0) {
3757 if ((*pde & PG_PS) != 0) {
3758 pa = (*pde & PG_PS_FRAME) |
3759 (va & PDRMASK);
3760 } else {
3761 pte = pmap_pde_to_pte(pde, va);
3762 pa = (*pte & PG_FRAME) |
3763 (va & PAGE_MASK);
3764 }
3765 }
3766 }
3767 }
3768 PMAP_UNLOCK(pmap);
3769 return (pa);
3770 }
3771
3772 /*
3773 * Routine: pmap_extract_and_hold
3774 * Function:
3775 * Atomically extract and hold the physical page
3776 * with the given pmap and virtual address pair
3777 * if that mapping permits the given protection.
3778 */
3779 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)3780 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3781 {
3782 pdp_entry_t pdpe, *pdpep;
3783 pd_entry_t pde, *pdep;
3784 pt_entry_t pte, PG_RW, PG_V;
3785 vm_page_t m;
3786
3787 m = NULL;
3788 PG_RW = pmap_rw_bit(pmap);
3789 PG_V = pmap_valid_bit(pmap);
3790 PMAP_LOCK(pmap);
3791
3792 pdpep = pmap_pdpe(pmap, va);
3793 if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3794 goto out;
3795 if ((pdpe & PG_PS) != 0) {
3796 if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3797 goto out;
3798 m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3799 goto check_page;
3800 }
3801
3802 pdep = pmap_pdpe_to_pde(pdpep, va);
3803 if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3804 goto out;
3805 if ((pde & PG_PS) != 0) {
3806 if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3807 goto out;
3808 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3809 goto check_page;
3810 }
3811
3812 pte = *pmap_pde_to_pte(pdep, va);
3813 if ((pte & PG_V) == 0 ||
3814 ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3815 goto out;
3816 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3817
3818 check_page:
3819 if (m != NULL && !vm_page_wire_mapped(m))
3820 m = NULL;
3821 out:
3822 PMAP_UNLOCK(pmap);
3823 return (m);
3824 }
3825
3826 /*
3827 * Routine: pmap_kextract
3828 * Function:
3829 * Extract the physical page address associated with the given kernel
3830 * virtual address.
3831 */
3832 vm_paddr_t
pmap_kextract(vm_offset_t va)3833 pmap_kextract(vm_offset_t va)
3834 {
3835 pd_entry_t pde;
3836 vm_paddr_t pa;
3837
3838 if (va >= kva_layout.dmap_low && va < kva_layout.dmap_high) {
3839 pa = DMAP_TO_PHYS(va);
3840 } else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3841 pa = pmap_large_map_kextract(va);
3842 } else {
3843 pde = *vtopde(va);
3844 if (pde & PG_PS) {
3845 pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3846 } else {
3847 /*
3848 * Beware of a concurrent promotion that changes the
3849 * PDE at this point! For example, vtopte() must not
3850 * be used to access the PTE because it would use the
3851 * new PDE. It is, however, safe to use the old PDE
3852 * because the page table page is preserved by the
3853 * promotion.
3854 */
3855 pa = *pmap_pde_to_pte(&pde, va);
3856 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3857 }
3858 }
3859 return (pa);
3860 }
3861
3862 /***************************************************
3863 * Low level mapping routines.....
3864 ***************************************************/
3865
3866 /*
3867 * Add a wired page to the kva.
3868 * Note: not SMP coherent.
3869 */
3870 void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)3871 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3872 {
3873 pt_entry_t *pte;
3874
3875 pte = vtopte(va);
3876 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3877 X86_PG_RW | X86_PG_V);
3878 }
3879
3880 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)3881 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3882 {
3883 pt_entry_t *pte;
3884 int cache_bits;
3885
3886 pte = vtopte(va);
3887 cache_bits = pmap_cache_bits(kernel_pmap, mode, false);
3888 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3889 X86_PG_RW | X86_PG_V | cache_bits);
3890 }
3891
3892 /*
3893 * Remove a page from the kernel pagetables.
3894 * Note: not SMP coherent.
3895 */
3896 void
pmap_kremove(vm_offset_t va)3897 pmap_kremove(vm_offset_t va)
3898 {
3899 pt_entry_t *pte;
3900
3901 pte = vtopte(va);
3902 pte_clear(pte);
3903 }
3904
3905 /*
3906 * Used to map a range of physical addresses into kernel
3907 * virtual address space.
3908 *
3909 * The value passed in '*virt' is a suggested virtual address for
3910 * the mapping. Architectures which can support a direct-mapped
3911 * physical to virtual region can return the appropriate address
3912 * within that region, leaving '*virt' unchanged. Other
3913 * architectures should map the pages starting at '*virt' and
3914 * update '*virt' with the first usable address after the mapped
3915 * region.
3916 */
3917 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)3918 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
3919 {
3920 return PHYS_TO_DMAP(start);
3921 }
3922
3923 /*
3924 * Add a list of wired pages to the kva
3925 * this routine is only used for temporary
3926 * kernel mappings that do not need to have
3927 * page modification or references recorded.
3928 * Note that old mappings are simply written
3929 * over. The page *must* be wired.
3930 * Note: SMP coherent. Uses a ranged shootdown IPI.
3931 */
3932 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)3933 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
3934 {
3935 pt_entry_t *endpte, oldpte, pa, *pte;
3936 vm_page_t m;
3937 int cache_bits;
3938
3939 oldpte = 0;
3940 pte = vtopte(sva);
3941 endpte = pte + count;
3942 while (pte < endpte) {
3943 m = *ma++;
3944 cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
3945 pa = VM_PAGE_TO_PHYS(m) | cache_bits;
3946 if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
3947 oldpte |= *pte;
3948 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
3949 X86_PG_M | X86_PG_RW | X86_PG_V);
3950 }
3951 pte++;
3952 }
3953 if (__predict_false((oldpte & X86_PG_V) != 0))
3954 pmap_invalidate_range(kernel_pmap, sva, sva + count *
3955 PAGE_SIZE);
3956 }
3957
3958 /*
3959 * This routine tears out page mappings from the
3960 * kernel -- it is meant only for temporary mappings.
3961 * Note: SMP coherent. Uses a ranged shootdown IPI.
3962 */
3963 void
pmap_qremove(vm_offset_t sva,int count)3964 pmap_qremove(vm_offset_t sva, int count)
3965 {
3966 vm_offset_t va;
3967
3968 va = sva;
3969 while (count-- > 0) {
3970 /*
3971 * pmap_enter() calls within the kernel virtual
3972 * address space happen on virtual addresses from
3973 * subarenas that import superpage-sized and -aligned
3974 * address ranges. So, the virtual address that we
3975 * allocate to use with pmap_qenter() can't be close
3976 * enough to one of those pmap_enter() calls for it to
3977 * be caught up in a promotion.
3978 */
3979 KASSERT(va >= kva_layout.km_low, ("usermode va %lx", va));
3980 KASSERT((*vtopde(va) & X86_PG_PS) == 0,
3981 ("pmap_qremove on promoted va %#lx", va));
3982
3983 pmap_kremove(va);
3984 va += PAGE_SIZE;
3985 }
3986 pmap_invalidate_range(kernel_pmap, sva, va);
3987 }
3988
3989 /***************************************************
3990 * Page table page management routines.....
3991 ***************************************************/
3992 /*
3993 * Schedule the specified unused page table page to be freed. Specifically,
3994 * add the page to the specified list of pages that will be released to the
3995 * physical memory manager after the TLB has been updated.
3996 */
3997 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)3998 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
3999 {
4000
4001 if (set_PG_ZERO)
4002 m->flags |= PG_ZERO;
4003 else
4004 m->flags &= ~PG_ZERO;
4005 SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4006 }
4007
4008 /*
4009 * Inserts the specified page table page into the specified pmap's collection
4010 * of idle page table pages. Each of a pmap's page table pages is responsible
4011 * for mapping a distinct range of virtual addresses. The pmap's collection is
4012 * ordered by this virtual address range.
4013 *
4014 * If "promoted" is false, then the page table page "mpte" must be zero filled;
4015 * "mpte"'s valid field will be set to 0.
4016 *
4017 * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
4018 * contain valid mappings with identical attributes except for PG_A; "mpte"'s
4019 * valid field will be set to 1.
4020 *
4021 * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
4022 * valid mappings with identical attributes including PG_A; "mpte"'s valid
4023 * field will be set to VM_PAGE_BITS_ALL.
4024 */
4025 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)4026 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4027 bool allpte_PG_A_set)
4028 {
4029
4030 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4031 KASSERT(promoted || !allpte_PG_A_set,
4032 ("a zero-filled PTP can't have PG_A set in every PTE"));
4033 mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
4034 return (vm_radix_insert(&pmap->pm_root, mpte));
4035 }
4036
4037 /*
4038 * Removes the page table page mapping the specified virtual address from the
4039 * specified pmap's collection of idle page table pages, and returns it.
4040 * Otherwise, returns NULL if there is no page table page corresponding to the
4041 * specified virtual address.
4042 */
4043 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)4044 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4045 {
4046
4047 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4048 return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4049 }
4050
4051 /*
4052 * Decrements a page table page's reference count, which is used to record the
4053 * number of valid page table entries within the page. If the reference count
4054 * drops to zero, then the page table page is unmapped. Returns true if the
4055 * page table page was unmapped and false otherwise.
4056 */
4057 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4058 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4059 {
4060
4061 --m->ref_count;
4062 if (m->ref_count == 0) {
4063 _pmap_unwire_ptp(pmap, va, m, free);
4064 return (true);
4065 } else
4066 return (false);
4067 }
4068
4069 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4070 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4071 {
4072 pml5_entry_t *pml5;
4073 pml4_entry_t *pml4;
4074 pdp_entry_t *pdp;
4075 pd_entry_t *pd;
4076 vm_page_t pdpg, pdppg, pml4pg;
4077
4078 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4079
4080 /*
4081 * unmap the page table page
4082 */
4083 if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4084 /* PML4 page */
4085 MPASS(pmap_is_la57(pmap));
4086 pml5 = pmap_pml5e(pmap, va);
4087 *pml5 = 0;
4088 if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4089 pml5 = pmap_pml5e_u(pmap, va);
4090 *pml5 = 0;
4091 }
4092 } else if (m->pindex >= NUPDE + NUPDPE) {
4093 /* PDP page */
4094 pml4 = pmap_pml4e(pmap, va);
4095 *pml4 = 0;
4096 if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4097 va <= VM_MAXUSER_ADDRESS) {
4098 pml4 = pmap_pml4e_u(pmap, va);
4099 *pml4 = 0;
4100 }
4101 } else if (m->pindex >= NUPDE) {
4102 /* PD page */
4103 pdp = pmap_pdpe(pmap, va);
4104 *pdp = 0;
4105 } else {
4106 /* PTE page */
4107 pd = pmap_pde(pmap, va);
4108 *pd = 0;
4109 }
4110 if (m->pindex < NUPDE) {
4111 /* We just released a PT, unhold the matching PD */
4112 pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4113 pmap_unwire_ptp(pmap, va, pdpg, free);
4114 } else if (m->pindex < NUPDE + NUPDPE) {
4115 /* We just released a PD, unhold the matching PDP */
4116 pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4117 pmap_unwire_ptp(pmap, va, pdppg, free);
4118 } else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4119 /* We just released a PDP, unhold the matching PML4 */
4120 pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4121 pmap_unwire_ptp(pmap, va, pml4pg, free);
4122 }
4123
4124 pmap_pt_page_count_adj(pmap, -1);
4125
4126 /*
4127 * Put page on a list so that it is released after
4128 * *ALL* TLB shootdown is done
4129 */
4130 pmap_add_delayed_free_list(m, free, true);
4131 }
4132
4133 /*
4134 * After removing a page table entry, this routine is used to
4135 * conditionally free the page, and manage the reference count.
4136 */
4137 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)4138 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4139 struct spglist *free)
4140 {
4141 vm_page_t mpte;
4142
4143 if (va >= VM_MAXUSER_ADDRESS)
4144 return (0);
4145 KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4146 mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4147 return (pmap_unwire_ptp(pmap, va, mpte, free));
4148 }
4149
4150 /*
4151 * Release a page table page reference after a failed attempt to create a
4152 * mapping.
4153 */
4154 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)4155 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4156 {
4157 struct spglist free;
4158
4159 SLIST_INIT(&free);
4160 if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4161 /*
4162 * Although "va" was never mapped, paging-structure caches
4163 * could nonetheless have entries that refer to the freed
4164 * page table pages. Invalidate those entries.
4165 */
4166 pmap_invalidate_page(pmap, va);
4167 vm_page_free_pages_toq(&free, true);
4168 }
4169 }
4170
4171 static void
pmap_pinit_pcids(pmap_t pmap,uint32_t pcid,int gen)4172 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
4173 {
4174 struct pmap_pcid *pcidp;
4175 int i;
4176
4177 CPU_FOREACH(i) {
4178 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
4179 pcidp->pm_pcid = pcid;
4180 pcidp->pm_gen = gen;
4181 }
4182 }
4183
4184 void
pmap_pinit0(pmap_t pmap)4185 pmap_pinit0(pmap_t pmap)
4186 {
4187 struct proc *p;
4188 struct thread *td;
4189
4190 PMAP_LOCK_INIT(pmap);
4191 pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4192 pmap->pm_pmltopu = NULL;
4193 pmap->pm_cr3 = kernel_pmap->pm_cr3;
4194 /* hack to keep pmap_pti_pcid_invalidate() alive */
4195 pmap->pm_ucr3 = PMAP_NO_CR3;
4196 vm_radix_init(&pmap->pm_root);
4197 CPU_ZERO(&pmap->pm_active);
4198 TAILQ_INIT(&pmap->pm_pvchunk);
4199 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4200 pmap->pm_flags = pmap_flags;
4201 pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
4202 pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
4203 pmap_activate_boot(pmap);
4204 td = curthread;
4205 if (pti) {
4206 p = td->td_proc;
4207 PROC_LOCK(p);
4208 p->p_md.md_flags |= P_MD_KPTI;
4209 PROC_UNLOCK(p);
4210 }
4211 pmap_thread_init_invl_gen(td);
4212
4213 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4214 pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4215 sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4216 UMA_ALIGN_PTR, 0);
4217 }
4218 }
4219
4220 void
pmap_pinit_pml4(vm_page_t pml4pg)4221 pmap_pinit_pml4(vm_page_t pml4pg)
4222 {
4223 pml4_entry_t *pm_pml4;
4224 int i;
4225
4226 pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4227
4228 /* Wire in kernel global address entries. */
4229 for (i = 0; i < NKPML4E; i++) {
4230 pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4231 X86_PG_V;
4232 }
4233 #ifdef KASAN
4234 for (i = 0; i < NKASANPML4E; i++) {
4235 pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4236 X86_PG_V | pg_nx;
4237 }
4238 #endif
4239 #ifdef KMSAN
4240 for (i = 0; i < NKMSANSHADPML4E; i++) {
4241 pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4242 X86_PG_RW | X86_PG_V | pg_nx;
4243 }
4244 for (i = 0; i < NKMSANORIGPML4E; i++) {
4245 pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4246 X86_PG_RW | X86_PG_V | pg_nx;
4247 }
4248 #endif
4249 for (i = 0; i < ndmpdpphys; i++) {
4250 pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4251 X86_PG_V;
4252 }
4253
4254 /* install self-referential address mapping entry(s) */
4255 pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4256 X86_PG_A | X86_PG_M;
4257
4258 /* install large map entries if configured */
4259 for (i = 0; i < lm_ents; i++)
4260 pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4261 }
4262
4263 void
pmap_pinit_pml5(vm_page_t pml5pg)4264 pmap_pinit_pml5(vm_page_t pml5pg)
4265 {
4266 pml5_entry_t *pm_pml5;
4267 int i;
4268
4269 pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4270 for (i = 0; i < NPML5EPG / 2; i++)
4271 pm_pml5[i] = 0;
4272 for (; i < NPML5EPG; i++)
4273 pm_pml5[i] = kernel_pmap->pm_pmltop[i];
4274 }
4275
4276 static void
pmap_pinit_pml4_pti(vm_page_t pml4pgu)4277 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4278 {
4279 pml4_entry_t *pm_pml4u;
4280 int i;
4281
4282 pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4283 for (i = 0; i < NPML4EPG; i++)
4284 pm_pml4u[i] = pti_pml4[i];
4285 }
4286
4287 static void
pmap_pinit_pml5_pti(vm_page_t pml5pgu)4288 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4289 {
4290 pml5_entry_t *pm_pml5u;
4291
4292 pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4293 pagezero(pm_pml5u);
4294
4295 /*
4296 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4297 * table, entering all kernel mappings needed for usermode
4298 * into level 5 table.
4299 */
4300 pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4301 pmap_kextract((vm_offset_t)pti_pml4) |
4302 X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
4303 }
4304
4305 /* Allocate a page table page and do related bookkeeping */
4306 static vm_page_t
pmap_alloc_pt_page(pmap_t pmap,vm_pindex_t pindex,int flags)4307 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4308 {
4309 vm_page_t m;
4310
4311 m = vm_page_alloc_noobj(flags);
4312 if (__predict_false(m == NULL))
4313 return (NULL);
4314 m->pindex = pindex;
4315 pmap_pt_page_count_adj(pmap, 1);
4316 return (m);
4317 }
4318
4319 static void
pmap_free_pt_page(pmap_t pmap,vm_page_t m,bool zerofilled)4320 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4321 {
4322 /*
4323 * This function assumes the page will need to be unwired,
4324 * even though the counterpart allocation in pmap_alloc_pt_page()
4325 * doesn't enforce VM_ALLOC_WIRED. However, all current uses
4326 * of pmap_free_pt_page() require unwiring. The case in which
4327 * a PT page doesn't require unwiring because its ref_count has
4328 * naturally reached 0 is handled through _pmap_unwire_ptp().
4329 */
4330 vm_page_unwire_noq(m);
4331 if (zerofilled)
4332 vm_page_free_zero(m);
4333 else
4334 vm_page_free(m);
4335
4336 pmap_pt_page_count_adj(pmap, -1);
4337 }
4338
4339 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
4340
4341 /*
4342 * Initialize a preallocated and zeroed pmap structure,
4343 * such as one in a vmspace structure.
4344 */
4345 int
pmap_pinit_type(pmap_t pmap,enum pmap_type pm_type,int flags)4346 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4347 {
4348 vm_page_t pmltop_pg, pmltop_pgu;
4349 vm_paddr_t pmltop_phys;
4350
4351 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4352
4353 /*
4354 * Allocate the page directory page. Pass NULL instead of a
4355 * pointer to the pmap here to avoid calling
4356 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4357 * since that requires pmap lock. Instead do the accounting
4358 * manually.
4359 *
4360 * Note that final call to pmap_remove() optimization that
4361 * checks for zero resident_count is basically disabled by
4362 * accounting for top-level page. But the optimization was
4363 * not effective since we started using non-managed mapping of
4364 * the shared page.
4365 */
4366 pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4367 VM_ALLOC_WAITOK);
4368 pmap_pt_page_count_pinit(pmap, 1);
4369
4370 pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4371 pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4372
4373 if (pmap_pcid_enabled) {
4374 if (pmap->pm_pcidp == NULL)
4375 pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
4376 M_WAITOK);
4377 pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
4378 }
4379 pmap->pm_cr3 = PMAP_NO_CR3; /* initialize to an invalid value */
4380 pmap->pm_ucr3 = PMAP_NO_CR3;
4381 pmap->pm_pmltopu = NULL;
4382
4383 pmap->pm_type = pm_type;
4384
4385 /*
4386 * Do not install the host kernel mappings in the nested page
4387 * tables. These mappings are meaningless in the guest physical
4388 * address space.
4389 * Install minimal kernel mappings in PTI case.
4390 */
4391 switch (pm_type) {
4392 case PT_X86:
4393 pmap->pm_cr3 = pmltop_phys;
4394 if (pmap_is_la57(pmap))
4395 pmap_pinit_pml5(pmltop_pg);
4396 else
4397 pmap_pinit_pml4(pmltop_pg);
4398 if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4399 /*
4400 * As with pmltop_pg, pass NULL instead of a
4401 * pointer to the pmap to ensure that the PTI
4402 * page counted explicitly.
4403 */
4404 pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4405 VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4406 pmap_pt_page_count_pinit(pmap, 1);
4407 pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4408 VM_PAGE_TO_PHYS(pmltop_pgu));
4409 if (pmap_is_la57(pmap))
4410 pmap_pinit_pml5_pti(pmltop_pgu);
4411 else
4412 pmap_pinit_pml4_pti(pmltop_pgu);
4413 pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4414 }
4415 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4416 rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4417 pkru_free_range, pmap, M_NOWAIT);
4418 }
4419 break;
4420 case PT_EPT:
4421 case PT_RVI:
4422 pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4423 break;
4424 }
4425
4426 vm_radix_init(&pmap->pm_root);
4427 CPU_ZERO(&pmap->pm_active);
4428 TAILQ_INIT(&pmap->pm_pvchunk);
4429 pmap->pm_flags = flags;
4430 pmap->pm_eptgen = 0;
4431
4432 return (1);
4433 }
4434
4435 int
pmap_pinit(pmap_t pmap)4436 pmap_pinit(pmap_t pmap)
4437 {
4438
4439 return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4440 }
4441
4442 static void
pmap_allocpte_free_unref(pmap_t pmap,vm_offset_t va,pt_entry_t * pte)4443 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4444 {
4445 vm_page_t mpg;
4446 struct spglist free;
4447
4448 mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4449 if (mpg->ref_count != 0)
4450 return;
4451 SLIST_INIT(&free);
4452 _pmap_unwire_ptp(pmap, va, mpg, &free);
4453 pmap_invalidate_page(pmap, va);
4454 vm_page_free_pages_toq(&free, true);
4455 }
4456
4457 static pml4_entry_t *
pmap_allocpte_getpml4(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4458 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4459 bool addref)
4460 {
4461 vm_pindex_t pml5index;
4462 pml5_entry_t *pml5;
4463 pml4_entry_t *pml4;
4464 vm_page_t pml4pg;
4465 pt_entry_t PG_V;
4466 bool allocated;
4467
4468 if (!pmap_is_la57(pmap))
4469 return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4470
4471 PG_V = pmap_valid_bit(pmap);
4472 pml5index = pmap_pml5e_index(va);
4473 pml5 = &pmap->pm_pmltop[pml5index];
4474 if ((*pml5 & PG_V) == 0) {
4475 if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4476 va) == NULL)
4477 return (NULL);
4478 allocated = true;
4479 } else {
4480 allocated = false;
4481 }
4482 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4483 pml4 = &pml4[pmap_pml4e_index(va)];
4484 if ((*pml4 & PG_V) == 0) {
4485 pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4486 if (allocated && !addref)
4487 pml4pg->ref_count--;
4488 else if (!allocated && addref)
4489 pml4pg->ref_count++;
4490 }
4491 return (pml4);
4492 }
4493
4494 static pdp_entry_t *
pmap_allocpte_getpdp(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4495 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4496 bool addref)
4497 {
4498 vm_page_t pdppg;
4499 pml4_entry_t *pml4;
4500 pdp_entry_t *pdp;
4501 pt_entry_t PG_V;
4502 bool allocated;
4503
4504 PG_V = pmap_valid_bit(pmap);
4505
4506 pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4507 if (pml4 == NULL)
4508 return (NULL);
4509
4510 if ((*pml4 & PG_V) == 0) {
4511 /* Have to allocate a new pdp, recurse */
4512 if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4513 va) == NULL) {
4514 if (pmap_is_la57(pmap))
4515 pmap_allocpte_free_unref(pmap, va,
4516 pmap_pml5e(pmap, va));
4517 return (NULL);
4518 }
4519 allocated = true;
4520 } else {
4521 allocated = false;
4522 }
4523 pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4524 pdp = &pdp[pmap_pdpe_index(va)];
4525 if ((*pdp & PG_V) == 0) {
4526 pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4527 if (allocated && !addref)
4528 pdppg->ref_count--;
4529 else if (!allocated && addref)
4530 pdppg->ref_count++;
4531 }
4532 return (pdp);
4533 }
4534
4535 /*
4536 * The ptepindexes, i.e. page indices, of the page table pages encountered
4537 * while translating virtual address va are defined as follows:
4538 * - for the page table page (last level),
4539 * ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4540 * in other words, it is just the index of the PDE that maps the page
4541 * table page.
4542 * - for the page directory page,
4543 * ptepindex = NUPDE (number of userland PD entries) +
4544 * (pmap_pde_index(va) >> NPDEPGSHIFT)
4545 * i.e. index of PDPE is put after the last index of PDE,
4546 * - for the page directory pointer page,
4547 * ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4548 * NPML4EPGSHIFT),
4549 * i.e. index of pml4e is put after the last index of PDPE,
4550 * - for the PML4 page (if LA57 mode is enabled),
4551 * ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4552 * (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4553 * i.e. index of pml5e is put after the last index of PML4E.
4554 *
4555 * Define an order on the paging entries, where all entries of the
4556 * same height are put together, then heights are put from deepest to
4557 * root. Then ptexpindex is the sequential number of the
4558 * corresponding paging entry in this order.
4559 *
4560 * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4561 * LA57 paging structures even in LA48 paging mode. Moreover, the
4562 * ptepindexes are calculated as if the paging structures were 5-level
4563 * regardless of the actual mode of operation.
4564 *
4565 * The root page at PML4/PML5 does not participate in this indexing scheme,
4566 * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4567 */
4568 static vm_page_t
pmap_allocpte_nosleep(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4569 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4570 vm_offset_t va)
4571 {
4572 vm_pindex_t pml5index, pml4index;
4573 pml5_entry_t *pml5, *pml5u;
4574 pml4_entry_t *pml4, *pml4u;
4575 pdp_entry_t *pdp;
4576 pd_entry_t *pd;
4577 vm_page_t m, pdpg;
4578 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4579
4580 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4581
4582 PG_A = pmap_accessed_bit(pmap);
4583 PG_M = pmap_modified_bit(pmap);
4584 PG_V = pmap_valid_bit(pmap);
4585 PG_RW = pmap_rw_bit(pmap);
4586
4587 /*
4588 * Allocate a page table page.
4589 */
4590 m = pmap_alloc_pt_page(pmap, ptepindex,
4591 VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4592 if (m == NULL)
4593 return (NULL);
4594
4595 /*
4596 * Map the pagetable page into the process address space, if
4597 * it isn't already there.
4598 */
4599 if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4600 MPASS(pmap_is_la57(pmap));
4601
4602 pml5index = pmap_pml5e_index(va);
4603 pml5 = &pmap->pm_pmltop[pml5index];
4604 KASSERT((*pml5 & PG_V) == 0,
4605 ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4606 *pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4607
4608 if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4609 MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4610 *pml5 |= pg_nx;
4611
4612 pml5u = &pmap->pm_pmltopu[pml5index];
4613 *pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4614 PG_A | PG_M;
4615 }
4616 } else if (ptepindex >= NUPDE + NUPDPE) {
4617 pml4index = pmap_pml4e_index(va);
4618 /* Wire up a new PDPE page */
4619 pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4620 if (pml4 == NULL) {
4621 pmap_free_pt_page(pmap, m, true);
4622 return (NULL);
4623 }
4624 KASSERT((*pml4 & PG_V) == 0,
4625 ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4626 *pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4627
4628 if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4629 pml4index < NUPML4E) {
4630 MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4631
4632 /*
4633 * PTI: Make all user-space mappings in the
4634 * kernel-mode page table no-execute so that
4635 * we detect any programming errors that leave
4636 * the kernel-mode page table active on return
4637 * to user space.
4638 */
4639 *pml4 |= pg_nx;
4640
4641 pml4u = &pmap->pm_pmltopu[pml4index];
4642 *pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4643 PG_A | PG_M;
4644 }
4645 } else if (ptepindex >= NUPDE) {
4646 /* Wire up a new PDE page */
4647 pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4648 if (pdp == NULL) {
4649 pmap_free_pt_page(pmap, m, true);
4650 return (NULL);
4651 }
4652 KASSERT((*pdp & PG_V) == 0,
4653 ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4654 *pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4655 } else {
4656 /* Wire up a new PTE page */
4657 pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4658 if (pdp == NULL) {
4659 pmap_free_pt_page(pmap, m, true);
4660 return (NULL);
4661 }
4662 if ((*pdp & PG_V) == 0) {
4663 /* Have to allocate a new pd, recurse */
4664 if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4665 lockp, va) == NULL) {
4666 pmap_allocpte_free_unref(pmap, va,
4667 pmap_pml4e(pmap, va));
4668 pmap_free_pt_page(pmap, m, true);
4669 return (NULL);
4670 }
4671 } else {
4672 /* Add reference to the pd page */
4673 pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4674 pdpg->ref_count++;
4675 }
4676 pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4677
4678 /* Now we know where the page directory page is */
4679 pd = &pd[pmap_pde_index(va)];
4680 KASSERT((*pd & PG_V) == 0,
4681 ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4682 *pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4683 }
4684
4685 return (m);
4686 }
4687
4688 /*
4689 * This routine is called if the desired page table page does not exist.
4690 *
4691 * If page table page allocation fails, this routine may sleep before
4692 * returning NULL. It sleeps only if a lock pointer was given. Sleep
4693 * occurs right before returning to the caller. This way, we never
4694 * drop pmap lock to sleep while a page table page has ref_count == 0,
4695 * which prevents the page from being freed under us.
4696 */
4697 static vm_page_t
pmap_allocpte_alloc(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4698 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4699 vm_offset_t va)
4700 {
4701 vm_page_t m;
4702
4703 m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4704 if (m == NULL && lockp != NULL) {
4705 RELEASE_PV_LIST_LOCK(lockp);
4706 PMAP_UNLOCK(pmap);
4707 PMAP_ASSERT_NOT_IN_DI();
4708 vm_wait(NULL);
4709 PMAP_LOCK(pmap);
4710 }
4711 return (m);
4712 }
4713
4714 static pd_entry_t *
pmap_alloc_pde(pmap_t pmap,vm_offset_t va,vm_page_t * pdpgp,struct rwlock ** lockp)4715 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4716 struct rwlock **lockp)
4717 {
4718 pdp_entry_t *pdpe, PG_V;
4719 pd_entry_t *pde;
4720 vm_page_t pdpg;
4721 vm_pindex_t pdpindex;
4722
4723 PG_V = pmap_valid_bit(pmap);
4724
4725 retry:
4726 pdpe = pmap_pdpe(pmap, va);
4727 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4728 pde = pmap_pdpe_to_pde(pdpe, va);
4729 if (va < VM_MAXUSER_ADDRESS) {
4730 /* Add a reference to the pd page. */
4731 pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4732 pdpg->ref_count++;
4733 } else
4734 pdpg = NULL;
4735 } else if (va < VM_MAXUSER_ADDRESS) {
4736 /* Allocate a pd page. */
4737 pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4738 pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4739 if (pdpg == NULL) {
4740 if (lockp != NULL)
4741 goto retry;
4742 else
4743 return (NULL);
4744 }
4745 pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4746 pde = &pde[pmap_pde_index(va)];
4747 } else
4748 panic("pmap_alloc_pde: missing page table page for va %#lx",
4749 va);
4750 *pdpgp = pdpg;
4751 return (pde);
4752 }
4753
4754 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)4755 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4756 {
4757 vm_pindex_t ptepindex;
4758 pd_entry_t *pd, PG_V;
4759 vm_page_t m;
4760
4761 PG_V = pmap_valid_bit(pmap);
4762
4763 /*
4764 * Calculate pagetable page index
4765 */
4766 ptepindex = pmap_pde_pindex(va);
4767 retry:
4768 /*
4769 * Get the page directory entry
4770 */
4771 pd = pmap_pde(pmap, va);
4772
4773 /*
4774 * This supports switching from a 2MB page to a
4775 * normal 4K page.
4776 */
4777 if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4778 if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4779 /*
4780 * Invalidation of the 2MB page mapping may have caused
4781 * the deallocation of the underlying PD page.
4782 */
4783 pd = NULL;
4784 }
4785 }
4786
4787 /*
4788 * If the page table page is mapped, we just increment the
4789 * hold count, and activate it.
4790 */
4791 if (pd != NULL && (*pd & PG_V) != 0) {
4792 m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4793 m->ref_count++;
4794 } else {
4795 /*
4796 * Here if the pte page isn't mapped, or if it has been
4797 * deallocated.
4798 */
4799 m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4800 if (m == NULL && lockp != NULL)
4801 goto retry;
4802 }
4803 return (m);
4804 }
4805
4806 /***************************************************
4807 * Pmap allocation/deallocation routines.
4808 ***************************************************/
4809
4810 /*
4811 * Release any resources held by the given physical map.
4812 * Called when a pmap initialized by pmap_pinit is being released.
4813 * Should only be called if the map contains no valid mappings.
4814 */
4815 void
pmap_release(pmap_t pmap)4816 pmap_release(pmap_t pmap)
4817 {
4818 vm_page_t m;
4819 int i;
4820
4821 KASSERT(vm_radix_is_empty(&pmap->pm_root),
4822 ("pmap_release: pmap %p has reserved page table page(s)",
4823 pmap));
4824 KASSERT(CPU_EMPTY(&pmap->pm_active),
4825 ("releasing active pmap %p", pmap));
4826
4827 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4828
4829 if (pmap_is_la57(pmap)) {
4830 for (i = NPML5EPG / 2; i < NPML5EPG; i++)
4831 pmap->pm_pmltop[i] = 0;
4832 } else {
4833 for (i = 0; i < NKPML4E; i++) /* KVA */
4834 pmap->pm_pmltop[KPML4BASE + i] = 0;
4835 #ifdef KASAN
4836 for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4837 pmap->pm_pmltop[KASANPML4I + i] = 0;
4838 #endif
4839 #ifdef KMSAN
4840 for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4841 pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4842 for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4843 pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4844 #endif
4845 for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4846 pmap->pm_pmltop[DMPML4I + i] = 0;
4847 pmap->pm_pmltop[PML4PML4I] = 0; /* Recursive Mapping */
4848 for (i = 0; i < lm_ents; i++) /* Large Map */
4849 pmap->pm_pmltop[LMSPML4I + i] = 0;
4850 }
4851
4852 pmap_free_pt_page(NULL, m, true);
4853 pmap_pt_page_count_pinit(pmap, -1);
4854
4855 if (pmap->pm_pmltopu != NULL) {
4856 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4857 pm_pmltopu));
4858 pmap_free_pt_page(NULL, m, false);
4859 pmap_pt_page_count_pinit(pmap, -1);
4860 }
4861 if (pmap->pm_type == PT_X86 &&
4862 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4863 rangeset_fini(&pmap->pm_pkru);
4864
4865 KASSERT(pmap->pm_stats.resident_count == 0,
4866 ("pmap_release: pmap %p resident count %ld != 0",
4867 pmap, pmap->pm_stats.resident_count));
4868 }
4869
4870 static int
kvm_size(SYSCTL_HANDLER_ARGS)4871 kvm_size(SYSCTL_HANDLER_ARGS)
4872 {
4873 unsigned long ksize = kva_layout.km_high - kva_layout.km_low;
4874
4875 return sysctl_handle_long(oidp, &ksize, 0, req);
4876 }
4877 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4878 0, 0, kvm_size, "LU",
4879 "Size of KVM");
4880
4881 static int
kvm_free(SYSCTL_HANDLER_ARGS)4882 kvm_free(SYSCTL_HANDLER_ARGS)
4883 {
4884 unsigned long kfree = kva_layout.km_high - kernel_vm_end;
4885
4886 return sysctl_handle_long(oidp, &kfree, 0, req);
4887 }
4888 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4889 0, 0, kvm_free, "LU",
4890 "Amount of KVM free");
4891
4892 #ifdef KMSAN
4893 static void
pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa,vm_size_t size)4894 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
4895 {
4896 pdp_entry_t *pdpe;
4897 pd_entry_t *pde;
4898 pt_entry_t *pte;
4899 vm_paddr_t dummypa, dummypd, dummypt;
4900 int i, npde, npdpg;
4901
4902 npdpg = howmany(size, NBPDP);
4903 npde = size / NBPDR;
4904
4905 dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
4906 pagezero((void *)PHYS_TO_DMAP(dummypa));
4907
4908 dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
4909 pagezero((void *)PHYS_TO_DMAP(dummypt));
4910 dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
4911 for (i = 0; i < npdpg; i++)
4912 pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
4913
4914 pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
4915 for (i = 0; i < NPTEPG; i++)
4916 pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
4917 X86_PG_A | X86_PG_M | pg_nx);
4918
4919 pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
4920 for (i = 0; i < npde; i++)
4921 pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
4922
4923 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
4924 for (i = 0; i < npdpg; i++)
4925 pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
4926 X86_PG_RW | pg_nx);
4927 }
4928
4929 static void
pmap_kmsan_page_array_startup(vm_offset_t start,vm_offset_t end)4930 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
4931 {
4932 vm_size_t size;
4933
4934 KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
4935
4936 /*
4937 * The end of the page array's KVA region is 2MB aligned, see
4938 * kmem_init().
4939 */
4940 size = round_2mpage(end) - start;
4941 pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
4942 pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
4943 }
4944 #endif
4945
4946 /*
4947 * Allocate physical memory for the vm_page array and map it into KVA,
4948 * attempting to back the vm_pages with domain-local memory.
4949 */
4950 void
pmap_page_array_startup(long pages)4951 pmap_page_array_startup(long pages)
4952 {
4953 pdp_entry_t *pdpe;
4954 pd_entry_t *pde, newpdir;
4955 vm_offset_t va, start, end;
4956 vm_paddr_t pa;
4957 long pfn;
4958 int domain, i;
4959
4960 vm_page_array_size = pages;
4961
4962 start = kva_layout.km_low;
4963 end = start + pages * sizeof(struct vm_page);
4964 for (va = start; va < end; va += NBPDR) {
4965 pfn = first_page + (va - start) / sizeof(struct vm_page);
4966 domain = vm_phys_domain(ptoa(pfn));
4967 pdpe = pmap_pdpe(kernel_pmap, va);
4968 if ((*pdpe & X86_PG_V) == 0) {
4969 pa = vm_phys_early_alloc(domain, PAGE_SIZE);
4970 dump_add_page(pa);
4971 pagezero((void *)PHYS_TO_DMAP(pa));
4972 *pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
4973 X86_PG_A | X86_PG_M);
4974 }
4975 pde = pmap_pdpe_to_pde(pdpe, va);
4976 if ((*pde & X86_PG_V) != 0)
4977 panic("Unexpected pde");
4978 pa = vm_phys_early_alloc(domain, NBPDR);
4979 for (i = 0; i < NPDEPG; i++)
4980 dump_add_page(pa + i * PAGE_SIZE);
4981 newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
4982 X86_PG_M | PG_PS | pg_g | pg_nx);
4983 pde_store(pde, newpdir);
4984 }
4985 vm_page_array = (vm_page_t)start;
4986
4987 #ifdef KMSAN
4988 pmap_kmsan_page_array_startup(start, end);
4989 #endif
4990 }
4991
4992 /*
4993 * grow the number of kernel page table entries, if needed
4994 */
4995 static int
pmap_growkernel_nopanic(vm_offset_t addr)4996 pmap_growkernel_nopanic(vm_offset_t addr)
4997 {
4998 vm_paddr_t paddr;
4999 vm_page_t nkpg;
5000 pd_entry_t *pde, newpdir;
5001 pdp_entry_t *pdpe;
5002 vm_offset_t end;
5003 int rv;
5004
5005 TSENTER();
5006 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5007 rv = KERN_SUCCESS;
5008
5009 /*
5010 * The kernel map covers two distinct regions of KVA: that used
5011 * for dynamic kernel memory allocations, and the uppermost 2GB
5012 * of the virtual address space. The latter is used to map the
5013 * kernel and loadable kernel modules. This scheme enables the
5014 * use of a special code generation model for kernel code which
5015 * takes advantage of compact addressing modes in machine code.
5016 *
5017 * Both regions grow upwards; to avoid wasting memory, the gap
5018 * in between is unmapped. If "addr" is above "KERNBASE", the
5019 * kernel's region is grown, otherwise the kmem region is grown.
5020 *
5021 * The correctness of this action is based on the following
5022 * argument: vm_map_insert() allocates contiguous ranges of the
5023 * kernel virtual address space. It calls this function if a range
5024 * ends after "kernel_vm_end". If the kernel is mapped between
5025 * "kernel_vm_end" and "addr", then the range cannot begin at
5026 * "kernel_vm_end". In fact, its beginning address cannot be less
5027 * than the kernel. Thus, there is no immediate need to allocate
5028 * any new kernel page table pages between "kernel_vm_end" and
5029 * "KERNBASE".
5030 */
5031 if (KERNBASE < addr) {
5032 end = KERNBASE + nkpt * NBPDR;
5033 if (end == 0) {
5034 TSEXIT();
5035 return (rv);
5036 }
5037 } else {
5038 end = kernel_vm_end;
5039 }
5040
5041 addr = roundup2(addr, NBPDR);
5042 if (addr - 1 >= vm_map_max(kernel_map))
5043 addr = vm_map_max(kernel_map);
5044 if (addr <= end) {
5045 /*
5046 * The grown region is already mapped, so there is
5047 * nothing to do.
5048 */
5049 TSEXIT();
5050 return (rv);
5051 }
5052
5053 kasan_shadow_map(end, addr - end);
5054 kmsan_shadow_map(end, addr - end);
5055 while (end < addr) {
5056 pdpe = pmap_pdpe(kernel_pmap, end);
5057 if ((*pdpe & X86_PG_V) == 0) {
5058 nkpg = pmap_alloc_pt_page(kernel_pmap,
5059 pmap_pdpe_pindex(end), VM_ALLOC_INTERRUPT |
5060 VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
5061 if (nkpg == NULL) {
5062 rv = KERN_RESOURCE_SHORTAGE;
5063 break;
5064 }
5065 paddr = VM_PAGE_TO_PHYS(nkpg);
5066 *pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5067 X86_PG_A | X86_PG_M);
5068 continue; /* try again */
5069 }
5070 pde = pmap_pdpe_to_pde(pdpe, end);
5071 if ((*pde & X86_PG_V) != 0) {
5072 end = (end + NBPDR) & ~PDRMASK;
5073 if (end - 1 >= vm_map_max(kernel_map)) {
5074 end = vm_map_max(kernel_map);
5075 break;
5076 }
5077 continue;
5078 }
5079
5080 nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5081 VM_ALLOC_INTERRUPT | VM_ALLOC_NOFREE | VM_ALLOC_WIRED |
5082 VM_ALLOC_ZERO);
5083 if (nkpg == NULL) {
5084 rv = KERN_RESOURCE_SHORTAGE;
5085 break;
5086 }
5087
5088 paddr = VM_PAGE_TO_PHYS(nkpg);
5089 newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5090 pde_store(pde, newpdir);
5091
5092 end = (end + NBPDR) & ~PDRMASK;
5093 if (end - 1 >= vm_map_max(kernel_map)) {
5094 end = vm_map_max(kernel_map);
5095 break;
5096 }
5097 }
5098
5099 if (end <= KERNBASE)
5100 kernel_vm_end = end;
5101 else
5102 nkpt = howmany(end - KERNBASE, NBPDR);
5103 TSEXIT();
5104 return (rv);
5105 }
5106
5107 int
pmap_growkernel(vm_offset_t addr)5108 pmap_growkernel(vm_offset_t addr)
5109 {
5110 int rv;
5111
5112 rv = pmap_growkernel_nopanic(addr);
5113 if (rv != KERN_SUCCESS && pmap_growkernel_panic)
5114 panic("pmap_growkernel: no memory to grow kernel");
5115 return (rv);
5116 }
5117
5118 /***************************************************
5119 * page management routines.
5120 ***************************************************/
5121
5122 static const uint64_t pc_freemask[_NPCM] = {
5123 [0 ... _NPCM - 2] = PC_FREEN,
5124 [_NPCM - 1] = PC_FREEL
5125 };
5126
5127 #ifdef PV_STATS
5128
5129 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5130 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5131 &pc_chunk_count, "Current number of pv entry cnunks");
5132
5133 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5134 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5135 &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5136
5137 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5138 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5139 &pc_chunk_frees, "Total number of pv entry chunks freed");
5140
5141 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5142 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5143 &pc_chunk_tryfail,
5144 "Number of failed attempts to get a pv entry chunk page");
5145
5146 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5147 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5148 &pv_entry_frees, "Total number of pv entries freed");
5149
5150 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5151 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5152 &pv_entry_allocs, "Total number of pv entries allocated");
5153
5154 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5155 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5156 &pv_entry_count, "Current number of pv entries");
5157
5158 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5159 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5160 &pv_entry_spare, "Current number of spare pv entries");
5161 #endif
5162
5163 static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap,pmap_t locked_pmap,bool start_di)5164 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5165 {
5166
5167 if (pmap == NULL)
5168 return;
5169 pmap_invalidate_all(pmap);
5170 if (pmap != locked_pmap)
5171 PMAP_UNLOCK(pmap);
5172 if (start_di)
5173 pmap_delayed_invl_finish();
5174 }
5175
5176 /*
5177 * We are in a serious low memory condition. Resort to
5178 * drastic measures to free some pages so we can allocate
5179 * another pv entry chunk.
5180 *
5181 * Returns NULL if PV entries were reclaimed from the specified pmap.
5182 *
5183 * We do not, however, unmap 2mpages because subsequent accesses will
5184 * allocate per-page pv entries until repromotion occurs, thereby
5185 * exacerbating the shortage of free pv entries.
5186 */
5187 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)5188 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5189 {
5190 struct pv_chunks_list *pvc;
5191 struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5192 struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5193 struct md_page *pvh;
5194 pd_entry_t *pde;
5195 pmap_t next_pmap, pmap;
5196 pt_entry_t *pte, tpte;
5197 pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5198 pv_entry_t pv;
5199 vm_offset_t va;
5200 vm_page_t m, m_pc;
5201 struct spglist free;
5202 uint64_t inuse;
5203 int bit, field, freed;
5204 bool start_di, restart;
5205
5206 PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5207 KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5208 pmap = NULL;
5209 m_pc = NULL;
5210 PG_G = PG_A = PG_M = PG_RW = 0;
5211 SLIST_INIT(&free);
5212 bzero(&pc_marker_b, sizeof(pc_marker_b));
5213 bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5214 pc_marker = (struct pv_chunk *)&pc_marker_b;
5215 pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5216
5217 /*
5218 * A delayed invalidation block should already be active if
5219 * pmap_advise() or pmap_remove() called this function by way
5220 * of pmap_demote_pde_locked().
5221 */
5222 start_di = pmap_not_in_di();
5223
5224 pvc = &pv_chunks[domain];
5225 mtx_lock(&pvc->pvc_lock);
5226 pvc->active_reclaims++;
5227 TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5228 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5229 while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5230 SLIST_EMPTY(&free)) {
5231 next_pmap = pc->pc_pmap;
5232 if (next_pmap == NULL) {
5233 /*
5234 * The next chunk is a marker. However, it is
5235 * not our marker, so active_reclaims must be
5236 * > 1. Consequently, the next_chunk code
5237 * will not rotate the pv_chunks list.
5238 */
5239 goto next_chunk;
5240 }
5241 mtx_unlock(&pvc->pvc_lock);
5242
5243 /*
5244 * A pv_chunk can only be removed from the pc_lru list
5245 * when both pc_chunks_mutex is owned and the
5246 * corresponding pmap is locked.
5247 */
5248 if (pmap != next_pmap) {
5249 restart = false;
5250 reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5251 start_di);
5252 pmap = next_pmap;
5253 /* Avoid deadlock and lock recursion. */
5254 if (pmap > locked_pmap) {
5255 RELEASE_PV_LIST_LOCK(lockp);
5256 PMAP_LOCK(pmap);
5257 if (start_di)
5258 pmap_delayed_invl_start();
5259 mtx_lock(&pvc->pvc_lock);
5260 restart = true;
5261 } else if (pmap != locked_pmap) {
5262 if (PMAP_TRYLOCK(pmap)) {
5263 if (start_di)
5264 pmap_delayed_invl_start();
5265 mtx_lock(&pvc->pvc_lock);
5266 restart = true;
5267 } else {
5268 pmap = NULL; /* pmap is not locked */
5269 mtx_lock(&pvc->pvc_lock);
5270 pc = TAILQ_NEXT(pc_marker, pc_lru);
5271 if (pc == NULL ||
5272 pc->pc_pmap != next_pmap)
5273 continue;
5274 goto next_chunk;
5275 }
5276 } else if (start_di)
5277 pmap_delayed_invl_start();
5278 PG_G = pmap_global_bit(pmap);
5279 PG_A = pmap_accessed_bit(pmap);
5280 PG_M = pmap_modified_bit(pmap);
5281 PG_RW = pmap_rw_bit(pmap);
5282 if (restart)
5283 continue;
5284 }
5285
5286 /*
5287 * Destroy every non-wired, 4 KB page mapping in the chunk.
5288 */
5289 freed = 0;
5290 for (field = 0; field < _NPCM; field++) {
5291 for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5292 inuse != 0; inuse &= ~(1UL << bit)) {
5293 bit = bsfq(inuse);
5294 pv = &pc->pc_pventry[field * 64 + bit];
5295 va = pv->pv_va;
5296 pde = pmap_pde(pmap, va);
5297 if ((*pde & PG_PS) != 0)
5298 continue;
5299 pte = pmap_pde_to_pte(pde, va);
5300 if ((*pte & PG_W) != 0)
5301 continue;
5302 tpte = pte_load_clear(pte);
5303 if ((tpte & PG_G) != 0)
5304 pmap_invalidate_page(pmap, va);
5305 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5306 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5307 vm_page_dirty(m);
5308 if ((tpte & PG_A) != 0)
5309 vm_page_aflag_set(m, PGA_REFERENCED);
5310 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5311 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5312 m->md.pv_gen++;
5313 if (TAILQ_EMPTY(&m->md.pv_list) &&
5314 (m->flags & PG_FICTITIOUS) == 0) {
5315 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5316 if (TAILQ_EMPTY(&pvh->pv_list)) {
5317 vm_page_aflag_clear(m,
5318 PGA_WRITEABLE);
5319 }
5320 }
5321 pmap_delayed_invl_page(m);
5322 pc->pc_map[field] |= 1UL << bit;
5323 pmap_unuse_pt(pmap, va, *pde, &free);
5324 freed++;
5325 }
5326 }
5327 if (freed == 0) {
5328 mtx_lock(&pvc->pvc_lock);
5329 goto next_chunk;
5330 }
5331 /* Every freed mapping is for a 4 KB page. */
5332 pmap_resident_count_adj(pmap, -freed);
5333 PV_STAT(counter_u64_add(pv_entry_frees, freed));
5334 PV_STAT(counter_u64_add(pv_entry_spare, freed));
5335 PV_STAT(counter_u64_add(pv_entry_count, -freed));
5336 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5337 if (pc_is_free(pc)) {
5338 PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5339 PV_STAT(counter_u64_add(pc_chunk_count, -1));
5340 PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5341 /* Entire chunk is free; return it. */
5342 m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5343 dump_drop_page(m_pc->phys_addr);
5344 mtx_lock(&pvc->pvc_lock);
5345 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5346 break;
5347 }
5348 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5349 mtx_lock(&pvc->pvc_lock);
5350 /* One freed pv entry in locked_pmap is sufficient. */
5351 if (pmap == locked_pmap)
5352 break;
5353 next_chunk:
5354 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5355 TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5356 if (pvc->active_reclaims == 1 && pmap != NULL) {
5357 /*
5358 * Rotate the pv chunks list so that we do not
5359 * scan the same pv chunks that could not be
5360 * freed (because they contained a wired
5361 * and/or superpage mapping) on every
5362 * invocation of reclaim_pv_chunk().
5363 */
5364 while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5365 MPASS(pc->pc_pmap != NULL);
5366 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5367 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5368 }
5369 }
5370 }
5371 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5372 TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5373 pvc->active_reclaims--;
5374 mtx_unlock(&pvc->pvc_lock);
5375 reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5376 if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5377 m_pc = SLIST_FIRST(&free);
5378 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5379 /* Recycle a freed page table page. */
5380 m_pc->ref_count = 1;
5381 }
5382 vm_page_free_pages_toq(&free, true);
5383 return (m_pc);
5384 }
5385
5386 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)5387 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5388 {
5389 vm_page_t m;
5390 int i, domain;
5391
5392 domain = PCPU_GET(domain);
5393 for (i = 0; i < vm_ndomains; i++) {
5394 m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5395 if (m != NULL)
5396 break;
5397 domain = (domain + 1) % vm_ndomains;
5398 }
5399
5400 return (m);
5401 }
5402
5403 /*
5404 * free the pv_entry back to the free list
5405 */
5406 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)5407 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5408 {
5409 struct pv_chunk *pc;
5410 int idx, field, bit;
5411
5412 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5413 PV_STAT(counter_u64_add(pv_entry_frees, 1));
5414 PV_STAT(counter_u64_add(pv_entry_spare, 1));
5415 PV_STAT(counter_u64_add(pv_entry_count, -1));
5416 pc = pv_to_chunk(pv);
5417 idx = pv - &pc->pc_pventry[0];
5418 field = idx / 64;
5419 bit = idx % 64;
5420 pc->pc_map[field] |= 1ul << bit;
5421 if (!pc_is_free(pc)) {
5422 /* 98% of the time, pc is already at the head of the list. */
5423 if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5424 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5425 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5426 }
5427 return;
5428 }
5429 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5430 free_pv_chunk(pc);
5431 }
5432
5433 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)5434 free_pv_chunk_dequeued(struct pv_chunk *pc)
5435 {
5436 vm_page_t m;
5437
5438 PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5439 PV_STAT(counter_u64_add(pc_chunk_count, -1));
5440 PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5441 counter_u64_add(pv_page_count, -1);
5442 /* entire chunk is free, return it */
5443 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5444 dump_drop_page(m->phys_addr);
5445 vm_page_unwire_noq(m);
5446 vm_page_free(m);
5447 }
5448
5449 static void
free_pv_chunk(struct pv_chunk * pc)5450 free_pv_chunk(struct pv_chunk *pc)
5451 {
5452 struct pv_chunks_list *pvc;
5453
5454 pvc = &pv_chunks[pc_to_domain(pc)];
5455 mtx_lock(&pvc->pvc_lock);
5456 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5457 mtx_unlock(&pvc->pvc_lock);
5458 free_pv_chunk_dequeued(pc);
5459 }
5460
5461 static void
free_pv_chunk_batch(struct pv_chunklist * batch)5462 free_pv_chunk_batch(struct pv_chunklist *batch)
5463 {
5464 struct pv_chunks_list *pvc;
5465 struct pv_chunk *pc, *npc;
5466 int i;
5467
5468 for (i = 0; i < vm_ndomains; i++) {
5469 if (TAILQ_EMPTY(&batch[i]))
5470 continue;
5471 pvc = &pv_chunks[i];
5472 mtx_lock(&pvc->pvc_lock);
5473 TAILQ_FOREACH(pc, &batch[i], pc_list) {
5474 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5475 }
5476 mtx_unlock(&pvc->pvc_lock);
5477 }
5478
5479 for (i = 0; i < vm_ndomains; i++) {
5480 TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5481 free_pv_chunk_dequeued(pc);
5482 }
5483 }
5484 }
5485
5486 /*
5487 * Returns a new PV entry, allocating a new PV chunk from the system when
5488 * needed. If this PV chunk allocation fails and a PV list lock pointer was
5489 * given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is
5490 * returned.
5491 *
5492 * The given PV list lock may be released.
5493 */
5494 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)5495 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5496 {
5497 struct pv_chunks_list *pvc;
5498 int bit, field;
5499 pv_entry_t pv;
5500 struct pv_chunk *pc;
5501 vm_page_t m;
5502
5503 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5504 PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5505 retry:
5506 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5507 if (pc != NULL) {
5508 for (field = 0; field < _NPCM; field++) {
5509 if (pc->pc_map[field]) {
5510 bit = bsfq(pc->pc_map[field]);
5511 break;
5512 }
5513 }
5514 if (field < _NPCM) {
5515 pv = &pc->pc_pventry[field * 64 + bit];
5516 pc->pc_map[field] &= ~(1ul << bit);
5517 /* If this was the last item, move it to tail */
5518 if (pc_is_full(pc)) {
5519 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5520 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5521 pc_list);
5522 }
5523 PV_STAT(counter_u64_add(pv_entry_count, 1));
5524 PV_STAT(counter_u64_add(pv_entry_spare, -1));
5525 return (pv);
5526 }
5527 }
5528 /* No free items, allocate another chunk */
5529 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5530 if (m == NULL) {
5531 if (lockp == NULL) {
5532 PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5533 return (NULL);
5534 }
5535 m = reclaim_pv_chunk(pmap, lockp);
5536 if (m == NULL)
5537 goto retry;
5538 } else
5539 counter_u64_add(pv_page_count, 1);
5540 PV_STAT(counter_u64_add(pc_chunk_count, 1));
5541 PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5542 dump_add_page(m->phys_addr);
5543 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5544 pc->pc_pmap = pmap;
5545 pc->pc_map[0] = PC_FREEN & ~1ul; /* preallocated bit 0 */
5546 pc->pc_map[1] = PC_FREEN;
5547 pc->pc_map[2] = PC_FREEL;
5548 pvc = &pv_chunks[vm_page_domain(m)];
5549 mtx_lock(&pvc->pvc_lock);
5550 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5551 mtx_unlock(&pvc->pvc_lock);
5552 pv = &pc->pc_pventry[0];
5553 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5554 PV_STAT(counter_u64_add(pv_entry_count, 1));
5555 PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5556 return (pv);
5557 }
5558
5559 /*
5560 * Returns the number of one bits within the given PV chunk map.
5561 *
5562 * The erratas for Intel processors state that "POPCNT Instruction May
5563 * Take Longer to Execute Than Expected". It is believed that the
5564 * issue is the spurious dependency on the destination register.
5565 * Provide a hint to the register rename logic that the destination
5566 * value is overwritten, by clearing it, as suggested in the
5567 * optimization manual. It should be cheap for unaffected processors
5568 * as well.
5569 *
5570 * Reference numbers for erratas are
5571 * 4th Gen Core: HSD146
5572 * 5th Gen Core: BDM85
5573 * 6th Gen Core: SKL029
5574 */
5575 static int
popcnt_pc_map_pq(uint64_t * map)5576 popcnt_pc_map_pq(uint64_t *map)
5577 {
5578 u_long result, tmp;
5579
5580 __asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5581 "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5582 "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5583 : "=&r" (result), "=&r" (tmp)
5584 : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5585 return (result);
5586 }
5587
5588 /*
5589 * Ensure that the number of spare PV entries in the specified pmap meets or
5590 * exceeds the given count, "needed".
5591 *
5592 * The given PV list lock may be released.
5593 */
5594 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)5595 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5596 {
5597 struct pv_chunks_list *pvc;
5598 struct pch new_tail[PMAP_MEMDOM];
5599 struct pv_chunk *pc;
5600 vm_page_t m;
5601 int avail, free, i;
5602 bool reclaimed;
5603
5604 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5605 KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5606
5607 /*
5608 * Newly allocated PV chunks must be stored in a private list until
5609 * the required number of PV chunks have been allocated. Otherwise,
5610 * reclaim_pv_chunk() could recycle one of these chunks. In
5611 * contrast, these chunks must be added to the pmap upon allocation.
5612 */
5613 for (i = 0; i < PMAP_MEMDOM; i++)
5614 TAILQ_INIT(&new_tail[i]);
5615 retry:
5616 avail = 0;
5617 TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5618 #ifndef __POPCNT__
5619 if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5620 bit_count((bitstr_t *)pc->pc_map, 0,
5621 sizeof(pc->pc_map) * NBBY, &free);
5622 else
5623 #endif
5624 free = popcnt_pc_map_pq(pc->pc_map);
5625 if (free == 0)
5626 break;
5627 avail += free;
5628 if (avail >= needed)
5629 break;
5630 }
5631 for (reclaimed = false; avail < needed; avail += _NPCPV) {
5632 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5633 if (m == NULL) {
5634 m = reclaim_pv_chunk(pmap, lockp);
5635 if (m == NULL)
5636 goto retry;
5637 reclaimed = true;
5638 } else
5639 counter_u64_add(pv_page_count, 1);
5640 PV_STAT(counter_u64_add(pc_chunk_count, 1));
5641 PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5642 dump_add_page(m->phys_addr);
5643 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5644 pc->pc_pmap = pmap;
5645 pc->pc_map[0] = PC_FREEN;
5646 pc->pc_map[1] = PC_FREEN;
5647 pc->pc_map[2] = PC_FREEL;
5648 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5649 TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5650 PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5651
5652 /*
5653 * The reclaim might have freed a chunk from the current pmap.
5654 * If that chunk contained available entries, we need to
5655 * re-count the number of available entries.
5656 */
5657 if (reclaimed)
5658 goto retry;
5659 }
5660 for (i = 0; i < vm_ndomains; i++) {
5661 if (TAILQ_EMPTY(&new_tail[i]))
5662 continue;
5663 pvc = &pv_chunks[i];
5664 mtx_lock(&pvc->pvc_lock);
5665 TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5666 mtx_unlock(&pvc->pvc_lock);
5667 }
5668 }
5669
5670 /*
5671 * First find and then remove the pv entry for the specified pmap and virtual
5672 * address from the specified pv list. Returns the pv entry if found and NULL
5673 * otherwise. This operation can be performed on pv lists for either 4KB or
5674 * 2MB page mappings.
5675 */
5676 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5677 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5678 {
5679 pv_entry_t pv;
5680
5681 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5682 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5683 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5684 pvh->pv_gen++;
5685 break;
5686 }
5687 }
5688 return (pv);
5689 }
5690
5691 /*
5692 * After demotion from a 2MB page mapping to 512 4KB page mappings,
5693 * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5694 * entries for each of the 4KB page mappings.
5695 */
5696 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5697 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5698 struct rwlock **lockp)
5699 {
5700 struct md_page *pvh;
5701 struct pv_chunk *pc;
5702 pv_entry_t pv;
5703 vm_offset_t va_last;
5704 vm_page_t m;
5705 int bit, field;
5706
5707 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5708 KASSERT((pa & PDRMASK) == 0,
5709 ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5710 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5711
5712 /*
5713 * Transfer the 2mpage's pv entry for this mapping to the first
5714 * page's pv list. Once this transfer begins, the pv list lock
5715 * must not be released until the last pv entry is reinstantiated.
5716 */
5717 pvh = pa_to_pvh(pa);
5718 va = trunc_2mpage(va);
5719 pv = pmap_pvh_remove(pvh, pmap, va);
5720 KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5721 m = PHYS_TO_VM_PAGE(pa);
5722 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5723 m->md.pv_gen++;
5724 /* Instantiate the remaining NPTEPG - 1 pv entries. */
5725 PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5726 va_last = va + NBPDR - PAGE_SIZE;
5727 for (;;) {
5728 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5729 KASSERT(!pc_is_full(pc), ("pmap_pv_demote_pde: missing spare"));
5730 for (field = 0; field < _NPCM; field++) {
5731 while (pc->pc_map[field]) {
5732 bit = bsfq(pc->pc_map[field]);
5733 pc->pc_map[field] &= ~(1ul << bit);
5734 pv = &pc->pc_pventry[field * 64 + bit];
5735 va += PAGE_SIZE;
5736 pv->pv_va = va;
5737 m++;
5738 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5739 ("pmap_pv_demote_pde: page %p is not managed", m));
5740 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5741 m->md.pv_gen++;
5742 if (va == va_last)
5743 goto out;
5744 }
5745 }
5746 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5747 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5748 }
5749 out:
5750 if (pc_is_full(pc)) {
5751 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5752 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5753 }
5754 PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5755 PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5756 }
5757
5758 #if VM_NRESERVLEVEL > 0
5759 /*
5760 * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5761 * replace the many pv entries for the 4KB page mappings by a single pv entry
5762 * for the 2MB page mapping.
5763 */
5764 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5765 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5766 struct rwlock **lockp)
5767 {
5768 struct md_page *pvh;
5769 pv_entry_t pv;
5770 vm_offset_t va_last;
5771 vm_page_t m;
5772
5773 KASSERT((pa & PDRMASK) == 0,
5774 ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5775 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5776
5777 /*
5778 * Transfer the first page's pv entry for this mapping to the 2mpage's
5779 * pv list. Aside from avoiding the cost of a call to get_pv_entry(),
5780 * a transfer avoids the possibility that get_pv_entry() calls
5781 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5782 * mappings that is being promoted.
5783 */
5784 m = PHYS_TO_VM_PAGE(pa);
5785 va = trunc_2mpage(va);
5786 pv = pmap_pvh_remove(&m->md, pmap, va);
5787 KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5788 pvh = pa_to_pvh(pa);
5789 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5790 pvh->pv_gen++;
5791 /* Free the remaining NPTEPG - 1 pv entries. */
5792 va_last = va + NBPDR - PAGE_SIZE;
5793 do {
5794 m++;
5795 va += PAGE_SIZE;
5796 pmap_pvh_free(&m->md, pmap, va);
5797 } while (va < va_last);
5798 }
5799 #endif /* VM_NRESERVLEVEL > 0 */
5800
5801 /*
5802 * First find and then destroy the pv entry for the specified pmap and virtual
5803 * address. This operation can be performed on pv lists for either 4KB or 2MB
5804 * page mappings.
5805 */
5806 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5807 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5808 {
5809 pv_entry_t pv;
5810
5811 pv = pmap_pvh_remove(pvh, pmap, va);
5812 KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5813 free_pv_entry(pmap, pv);
5814 }
5815
5816 /*
5817 * Conditionally create the PV entry for a 4KB page mapping if the required
5818 * memory can be allocated without resorting to reclamation.
5819 */
5820 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)5821 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5822 struct rwlock **lockp)
5823 {
5824 pv_entry_t pv;
5825
5826 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5827 /* Pass NULL instead of the lock pointer to disable reclamation. */
5828 if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5829 pv->pv_va = va;
5830 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5831 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5832 m->md.pv_gen++;
5833 return (true);
5834 } else
5835 return (false);
5836 }
5837
5838 /*
5839 * Create the PV entry for a 2MB page mapping. Always returns true unless the
5840 * flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns
5841 * false if the PV entry cannot be allocated without resorting to reclamation.
5842 */
5843 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags,struct rwlock ** lockp)5844 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5845 struct rwlock **lockp)
5846 {
5847 struct md_page *pvh;
5848 pv_entry_t pv;
5849 vm_paddr_t pa;
5850
5851 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5852 /* Pass NULL instead of the lock pointer to disable reclamation. */
5853 if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5854 NULL : lockp)) == NULL)
5855 return (false);
5856 pv->pv_va = va;
5857 pa = pde & PG_PS_FRAME;
5858 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5859 pvh = pa_to_pvh(pa);
5860 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5861 pvh->pv_gen++;
5862 return (true);
5863 }
5864
5865 /*
5866 * Fills a page table page with mappings to consecutive physical pages.
5867 */
5868 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)5869 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5870 {
5871 pt_entry_t *pte;
5872
5873 for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5874 *pte = newpte;
5875 newpte += PAGE_SIZE;
5876 }
5877 }
5878
5879 /*
5880 * Tries to demote a 2MB page mapping. If demotion fails, the 2MB page
5881 * mapping is invalidated.
5882 */
5883 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5884 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5885 {
5886 struct rwlock *lock;
5887 bool rv;
5888
5889 lock = NULL;
5890 rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5891 if (lock != NULL)
5892 rw_wunlock(lock);
5893 return (rv);
5894 }
5895
5896 static void
pmap_demote_pde_check(pt_entry_t * firstpte __unused,pt_entry_t newpte __unused)5897 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5898 {
5899 #ifdef INVARIANTS
5900 #ifdef DIAGNOSTIC
5901 pt_entry_t *xpte, *ypte;
5902
5903 for (xpte = firstpte; xpte < firstpte + NPTEPG;
5904 xpte++, newpte += PAGE_SIZE) {
5905 if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5906 printf("pmap_demote_pde: xpte %zd and newpte map "
5907 "different pages: found %#lx, expected %#lx\n",
5908 xpte - firstpte, *xpte, newpte);
5909 printf("page table dump\n");
5910 for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5911 printf("%zd %#lx\n", ypte - firstpte, *ypte);
5912 panic("firstpte");
5913 }
5914 }
5915 #else
5916 KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
5917 ("pmap_demote_pde: firstpte and newpte map different physical"
5918 " addresses"));
5919 #endif
5920 #endif
5921 }
5922
5923 static void
pmap_demote_pde_abort(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t oldpde,struct rwlock ** lockp)5924 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
5925 pd_entry_t oldpde, struct rwlock **lockp)
5926 {
5927 struct spglist free;
5928 vm_offset_t sva;
5929
5930 SLIST_INIT(&free);
5931 sva = trunc_2mpage(va);
5932 pmap_remove_pde(pmap, pde, sva, true, &free, lockp);
5933 if ((oldpde & pmap_global_bit(pmap)) == 0)
5934 pmap_invalidate_pde_page(pmap, sva, oldpde);
5935 vm_page_free_pages_toq(&free, true);
5936 CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
5937 va, pmap);
5938 }
5939
5940 static bool
pmap_demote_pde_locked(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)5941 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
5942 struct rwlock **lockp)
5943 {
5944 return (pmap_demote_pde_mpte(pmap, pde, va, lockp, NULL));
5945 }
5946
5947 static bool
pmap_demote_pde_mpte(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp,vm_page_t mpte)5948 pmap_demote_pde_mpte(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
5949 struct rwlock **lockp, vm_page_t mpte)
5950 {
5951 pd_entry_t newpde, oldpde;
5952 pt_entry_t *firstpte, newpte;
5953 pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
5954 vm_paddr_t mptepa;
5955 int PG_PTE_CACHE;
5956 bool in_kernel;
5957
5958 PG_A = pmap_accessed_bit(pmap);
5959 PG_G = pmap_global_bit(pmap);
5960 PG_M = pmap_modified_bit(pmap);
5961 PG_RW = pmap_rw_bit(pmap);
5962 PG_V = pmap_valid_bit(pmap);
5963 PG_PTE_CACHE = pmap_cache_mask(pmap, false);
5964 PG_PKU_MASK = pmap_pku_mask_bit(pmap);
5965
5966 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5967 oldpde = *pde;
5968 KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
5969 ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
5970 KASSERT((oldpde & PG_MANAGED) == 0 || lockp != NULL,
5971 ("pmap_demote_pde: lockp for a managed mapping is NULL"));
5972 in_kernel = va >= VM_MAXUSER_ADDRESS;
5973 if (mpte == NULL) {
5974 /*
5975 * Invalidate the 2MB page mapping and return "failure" if the
5976 * mapping was never accessed and not wired.
5977 */
5978 if ((oldpde & PG_A) == 0) {
5979 if ((oldpde & PG_W) == 0) {
5980 pmap_demote_pde_abort(pmap, va, pde, oldpde,
5981 lockp);
5982 return (false);
5983 }
5984 mpte = pmap_remove_pt_page(pmap, va);
5985 /* Fill the PTP with PTEs that have PG_A cleared. */
5986 mpte->valid = 0;
5987 } else if ((mpte = pmap_remove_pt_page(pmap, va)) == NULL) {
5988 KASSERT((oldpde & PG_W) == 0,
5989 ("pmap_demote_pde: page table page for a wired mapping is missing"));
5990
5991 /*
5992 * If the page table page is missing and the mapping
5993 * is for a kernel address, the mapping must belong to
5994 * the direct map. Page table pages are preallocated
5995 * for every other part of the kernel address space,
5996 * so the direct map region is the only part of the
5997 * kernel address space that must be handled here.
5998 */
5999 KASSERT(!in_kernel || (va >= kva_layout.dmap_low &&
6000 va < kva_layout.dmap_high),
6001 ("pmap_demote_pde: No saved mpte for va %#lx", va));
6002
6003 /*
6004 * If the 2MB page mapping belongs to the direct map
6005 * region of the kernel's address space, then the page
6006 * allocation request specifies the highest possible
6007 * priority (VM_ALLOC_INTERRUPT). Otherwise, the
6008 * priority is normal.
6009 */
6010 mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6011 (in_kernel ? VM_ALLOC_INTERRUPT : 0) |
6012 VM_ALLOC_WIRED);
6013
6014 /*
6015 * If the allocation of the new page table page fails,
6016 * invalidate the 2MB page mapping and return "failure".
6017 */
6018 if (mpte == NULL) {
6019 pmap_demote_pde_abort(pmap, va, pde, oldpde,
6020 lockp);
6021 return (false);
6022 }
6023
6024 if (!in_kernel)
6025 mpte->ref_count = NPTEPG;
6026 }
6027 }
6028 mptepa = VM_PAGE_TO_PHYS(mpte);
6029 firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6030 newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6031 KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6032 ("pmap_demote_pde: oldpde is missing PG_M"));
6033 newpte = oldpde & ~PG_PS;
6034 newpte = pmap_swap_pat(pmap, newpte);
6035
6036 /*
6037 * If the PTP is not leftover from an earlier promotion or it does not
6038 * have PG_A set in every PTE, then fill it. The new PTEs will all
6039 * have PG_A set, unless this is a wired mapping with PG_A clear.
6040 */
6041 if (!vm_page_all_valid(mpte))
6042 pmap_fill_ptp(firstpte, newpte);
6043
6044 pmap_demote_pde_check(firstpte, newpte);
6045
6046 /*
6047 * If the mapping has changed attributes, update the PTEs.
6048 */
6049 if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6050 pmap_fill_ptp(firstpte, newpte);
6051
6052 /*
6053 * The spare PV entries must be reserved prior to demoting the
6054 * mapping, that is, prior to changing the PDE. Otherwise, the state
6055 * of the PDE and the PV lists will be inconsistent, which can result
6056 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6057 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6058 * PV entry for the 2MB page mapping that is being demoted.
6059 */
6060 if ((oldpde & PG_MANAGED) != 0)
6061 reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6062
6063 /*
6064 * Demote the mapping. This pmap is locked. The old PDE has
6065 * PG_A set. If the old PDE has PG_RW set, it also has PG_M
6066 * set. Thus, there is no danger of a race with another
6067 * processor changing the setting of PG_A and/or PG_M between
6068 * the read above and the store below.
6069 */
6070 if (workaround_erratum383)
6071 pmap_update_pde(pmap, va, pde, newpde);
6072 else
6073 pde_store(pde, newpde);
6074
6075 /*
6076 * Invalidate a stale recursive mapping of the page table page.
6077 */
6078 if (in_kernel)
6079 pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6080
6081 /*
6082 * Demote the PV entry.
6083 */
6084 if ((oldpde & PG_MANAGED) != 0)
6085 pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6086
6087 counter_u64_add(pmap_pde_demotions, 1);
6088 CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6089 va, pmap);
6090 return (true);
6091 }
6092
6093 /*
6094 * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6095 */
6096 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)6097 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
6098 {
6099 pd_entry_t newpde;
6100 vm_paddr_t mptepa;
6101 vm_page_t mpte;
6102
6103 KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6104 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6105 mpte = pmap_remove_pt_page(pmap, va);
6106 KASSERT(mpte != NULL, ("pmap_remove_kernel_pde: missing pt page"));
6107
6108 mptepa = VM_PAGE_TO_PHYS(mpte);
6109 newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6110
6111 /*
6112 * If this page table page was unmapped by a promotion, then it
6113 * contains valid mappings. Zero it to invalidate those mappings.
6114 */
6115 if (vm_page_any_valid(mpte))
6116 pagezero((void *)PHYS_TO_DMAP(mptepa));
6117
6118 /*
6119 * Demote the mapping.
6120 */
6121 if (workaround_erratum383)
6122 pmap_update_pde(pmap, va, pde, newpde);
6123 else
6124 pde_store(pde, newpde);
6125
6126 /*
6127 * Invalidate a stale recursive mapping of the page table page.
6128 */
6129 pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6130 }
6131
6132 /*
6133 * pmap_remove_pde: do the things to unmap a superpage in a process
6134 */
6135 static int
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,bool demote_kpde,struct spglist * free,struct rwlock ** lockp)6136 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva, bool demote_kpde,
6137 struct spglist *free, struct rwlock **lockp)
6138 {
6139 struct md_page *pvh;
6140 pd_entry_t oldpde;
6141 vm_offset_t eva, va;
6142 vm_page_t m, mpte;
6143 pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6144
6145 PG_G = pmap_global_bit(pmap);
6146 PG_A = pmap_accessed_bit(pmap);
6147 PG_M = pmap_modified_bit(pmap);
6148 PG_RW = pmap_rw_bit(pmap);
6149
6150 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6151 KASSERT((sva & PDRMASK) == 0,
6152 ("pmap_remove_pde: sva is not 2mpage aligned"));
6153 oldpde = pte_load_clear(pdq);
6154 if (oldpde & PG_W)
6155 pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6156 if ((oldpde & PG_G) != 0)
6157 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6158 pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6159 if (oldpde & PG_MANAGED) {
6160 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6161 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6162 pmap_pvh_free(pvh, pmap, sva);
6163 eva = sva + NBPDR;
6164 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6165 va < eva; va += PAGE_SIZE, m++) {
6166 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6167 vm_page_dirty(m);
6168 if (oldpde & PG_A)
6169 vm_page_aflag_set(m, PGA_REFERENCED);
6170 if (TAILQ_EMPTY(&m->md.pv_list) &&
6171 TAILQ_EMPTY(&pvh->pv_list))
6172 vm_page_aflag_clear(m, PGA_WRITEABLE);
6173 pmap_delayed_invl_page(m);
6174 }
6175 }
6176 if (pmap != kernel_pmap) {
6177 mpte = pmap_remove_pt_page(pmap, sva);
6178 if (mpte != NULL) {
6179 KASSERT(vm_page_any_valid(mpte),
6180 ("pmap_remove_pde: pte page not promoted"));
6181 pmap_pt_page_count_adj(pmap, -1);
6182 KASSERT(mpte->ref_count == NPTEPG,
6183 ("pmap_remove_pde: pte page ref count error"));
6184 mpte->ref_count = 0;
6185 pmap_add_delayed_free_list(mpte, free, false);
6186 }
6187 } else if (demote_kpde) {
6188 pmap_remove_kernel_pde(pmap, pdq, sva);
6189 } else {
6190 mpte = vm_radix_lookup(&pmap->pm_root, pmap_pde_pindex(sva));
6191 if (vm_page_any_valid(mpte)) {
6192 mpte->valid = 0;
6193 pmap_zero_page(mpte);
6194 }
6195 }
6196 return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6197 }
6198
6199 /*
6200 * pmap_remove_pte: do the things to unmap a page in a process
6201 */
6202 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,pd_entry_t ptepde,struct spglist * free,struct rwlock ** lockp)6203 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6204 pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6205 {
6206 struct md_page *pvh;
6207 pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6208 vm_page_t m;
6209
6210 PG_A = pmap_accessed_bit(pmap);
6211 PG_M = pmap_modified_bit(pmap);
6212 PG_RW = pmap_rw_bit(pmap);
6213
6214 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6215 oldpte = pte_load_clear(ptq);
6216 if (oldpte & PG_W)
6217 pmap->pm_stats.wired_count -= 1;
6218 pmap_resident_count_adj(pmap, -1);
6219 if (oldpte & PG_MANAGED) {
6220 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6221 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6222 vm_page_dirty(m);
6223 if (oldpte & PG_A)
6224 vm_page_aflag_set(m, PGA_REFERENCED);
6225 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6226 pmap_pvh_free(&m->md, pmap, va);
6227 if (TAILQ_EMPTY(&m->md.pv_list) &&
6228 (m->flags & PG_FICTITIOUS) == 0) {
6229 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6230 if (TAILQ_EMPTY(&pvh->pv_list))
6231 vm_page_aflag_clear(m, PGA_WRITEABLE);
6232 }
6233 pmap_delayed_invl_page(m);
6234 }
6235 return (pmap_unuse_pt(pmap, va, ptepde, free));
6236 }
6237
6238 /*
6239 * Remove a single page from a process address space
6240 */
6241 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,struct spglist * free)6242 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6243 struct spglist *free)
6244 {
6245 struct rwlock *lock;
6246 pt_entry_t *pte, PG_V;
6247
6248 PG_V = pmap_valid_bit(pmap);
6249 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6250 if ((*pde & PG_V) == 0)
6251 return;
6252 pte = pmap_pde_to_pte(pde, va);
6253 if ((*pte & PG_V) == 0)
6254 return;
6255 lock = NULL;
6256 pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6257 if (lock != NULL)
6258 rw_wunlock(lock);
6259 pmap_invalidate_page(pmap, va);
6260 }
6261
6262 /*
6263 * Removes the specified range of addresses from the page table page.
6264 */
6265 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pd_entry_t * pde,struct spglist * free,struct rwlock ** lockp)6266 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6267 pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6268 {
6269 pt_entry_t PG_G, *pte;
6270 vm_offset_t va;
6271 bool anyvalid;
6272
6273 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6274 PG_G = pmap_global_bit(pmap);
6275 anyvalid = false;
6276 va = eva;
6277 for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6278 sva += PAGE_SIZE) {
6279 if (*pte == 0) {
6280 if (va != eva) {
6281 pmap_invalidate_range(pmap, va, sva);
6282 va = eva;
6283 }
6284 continue;
6285 }
6286 if ((*pte & PG_G) == 0)
6287 anyvalid = true;
6288 else if (va == eva)
6289 va = sva;
6290 if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6291 sva += PAGE_SIZE;
6292 break;
6293 }
6294 }
6295 if (va != eva)
6296 pmap_invalidate_range(pmap, va, sva);
6297 return (anyvalid);
6298 }
6299
6300 static void
pmap_remove1(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool map_delete)6301 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6302 {
6303 struct rwlock *lock;
6304 vm_page_t mt;
6305 vm_offset_t va_next;
6306 pml5_entry_t *pml5e;
6307 pml4_entry_t *pml4e;
6308 pdp_entry_t *pdpe;
6309 pd_entry_t ptpaddr, *pde;
6310 pt_entry_t PG_G, PG_V;
6311 struct spglist free;
6312 int anyvalid;
6313
6314 PG_G = pmap_global_bit(pmap);
6315 PG_V = pmap_valid_bit(pmap);
6316
6317 /*
6318 * If there are no resident pages besides the top level page
6319 * table page(s), there is nothing to do. Kernel pmap always
6320 * accounts whole preloaded area as resident, which makes its
6321 * resident count > 2.
6322 * Perform an unsynchronized read. This is, however, safe.
6323 */
6324 if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6325 1 : 0))
6326 return;
6327
6328 anyvalid = 0;
6329 SLIST_INIT(&free);
6330
6331 pmap_delayed_invl_start();
6332 PMAP_LOCK(pmap);
6333 if (map_delete)
6334 pmap_pkru_on_remove(pmap, sva, eva);
6335
6336 /*
6337 * special handling of removing one page. a very
6338 * common operation and easy to short circuit some
6339 * code.
6340 */
6341 if (sva + PAGE_SIZE == eva) {
6342 pde = pmap_pde(pmap, sva);
6343 if (pde && (*pde & PG_PS) == 0) {
6344 pmap_remove_page(pmap, sva, pde, &free);
6345 goto out;
6346 }
6347 }
6348
6349 lock = NULL;
6350 for (; sva < eva; sva = va_next) {
6351 if (pmap->pm_stats.resident_count == 0)
6352 break;
6353
6354 if (pmap_is_la57(pmap)) {
6355 pml5e = pmap_pml5e(pmap, sva);
6356 if ((*pml5e & PG_V) == 0) {
6357 va_next = (sva + NBPML5) & ~PML5MASK;
6358 if (va_next < sva)
6359 va_next = eva;
6360 continue;
6361 }
6362 pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6363 } else {
6364 pml4e = pmap_pml4e(pmap, sva);
6365 }
6366 if ((*pml4e & PG_V) == 0) {
6367 va_next = (sva + NBPML4) & ~PML4MASK;
6368 if (va_next < sva)
6369 va_next = eva;
6370 continue;
6371 }
6372
6373 va_next = (sva + NBPDP) & ~PDPMASK;
6374 if (va_next < sva)
6375 va_next = eva;
6376 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6377 if ((*pdpe & PG_V) == 0)
6378 continue;
6379 if ((*pdpe & PG_PS) != 0) {
6380 KASSERT(va_next <= eva,
6381 ("partial update of non-transparent 1G mapping "
6382 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6383 *pdpe, sva, eva, va_next));
6384 MPASS(pmap != kernel_pmap); /* XXXKIB */
6385 MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6386 anyvalid = 1;
6387 *pdpe = 0;
6388 pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6389 mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6390 pmap_unwire_ptp(pmap, sva, mt, &free);
6391 continue;
6392 }
6393
6394 /*
6395 * Calculate index for next page table.
6396 */
6397 va_next = (sva + NBPDR) & ~PDRMASK;
6398 if (va_next < sva)
6399 va_next = eva;
6400
6401 pde = pmap_pdpe_to_pde(pdpe, sva);
6402 ptpaddr = *pde;
6403
6404 /*
6405 * Weed out invalid mappings.
6406 */
6407 if (ptpaddr == 0)
6408 continue;
6409
6410 /*
6411 * Check for large page.
6412 */
6413 if ((ptpaddr & PG_PS) != 0) {
6414 /*
6415 * Are we removing the entire large page? If not,
6416 * demote the mapping and fall through.
6417 */
6418 if (sva + NBPDR == va_next && eva >= va_next) {
6419 /*
6420 * The TLB entry for a PG_G mapping is
6421 * invalidated by pmap_remove_pde().
6422 */
6423 if ((ptpaddr & PG_G) == 0)
6424 anyvalid = 1;
6425 pmap_remove_pde(pmap, pde, sva, true, &free,
6426 &lock);
6427 continue;
6428 } else if (!pmap_demote_pde_locked(pmap, pde, sva,
6429 &lock)) {
6430 /* The large page mapping was destroyed. */
6431 continue;
6432 } else
6433 ptpaddr = *pde;
6434 }
6435
6436 /*
6437 * Limit our scan to either the end of the va represented
6438 * by the current page table page, or to the end of the
6439 * range being removed.
6440 */
6441 if (va_next > eva)
6442 va_next = eva;
6443
6444 if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6445 anyvalid = 1;
6446 }
6447 if (lock != NULL)
6448 rw_wunlock(lock);
6449 out:
6450 if (anyvalid)
6451 pmap_invalidate_all(pmap);
6452 PMAP_UNLOCK(pmap);
6453 pmap_delayed_invl_finish();
6454 vm_page_free_pages_toq(&free, true);
6455 }
6456
6457 /*
6458 * Remove the given range of addresses from the specified map.
6459 *
6460 * It is assumed that the start and end are properly
6461 * rounded to the page size.
6462 */
6463 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6464 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6465 {
6466 pmap_remove1(pmap, sva, eva, false);
6467 }
6468
6469 /*
6470 * Remove the given range of addresses as part of a logical unmap
6471 * operation. This has the effect of calling pmap_remove(), but
6472 * also clears any metadata that should persist for the lifetime
6473 * of a logical mapping.
6474 */
6475 void
pmap_map_delete(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6476 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6477 {
6478 pmap_remove1(pmap, sva, eva, true);
6479 }
6480
6481 /*
6482 * Routine: pmap_remove_all
6483 * Function:
6484 * Removes this physical page from
6485 * all physical maps in which it resides.
6486 * Reflects back modify bits to the pager.
6487 *
6488 * Notes:
6489 * Original versions of this routine were very
6490 * inefficient because they iteratively called
6491 * pmap_remove (slow...)
6492 */
6493
6494 void
pmap_remove_all(vm_page_t m)6495 pmap_remove_all(vm_page_t m)
6496 {
6497 struct md_page *pvh;
6498 pv_entry_t pv;
6499 pmap_t pmap;
6500 struct rwlock *lock;
6501 pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6502 pd_entry_t *pde;
6503 vm_offset_t va;
6504 struct spglist free;
6505 int pvh_gen, md_gen;
6506
6507 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6508 ("pmap_remove_all: page %p is not managed", m));
6509 SLIST_INIT(&free);
6510 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6511 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6512 pa_to_pvh(VM_PAGE_TO_PHYS(m));
6513 rw_wlock(lock);
6514 retry:
6515 while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6516 pmap = PV_PMAP(pv);
6517 if (!PMAP_TRYLOCK(pmap)) {
6518 pvh_gen = pvh->pv_gen;
6519 rw_wunlock(lock);
6520 PMAP_LOCK(pmap);
6521 rw_wlock(lock);
6522 if (pvh_gen != pvh->pv_gen) {
6523 PMAP_UNLOCK(pmap);
6524 goto retry;
6525 }
6526 }
6527 va = pv->pv_va;
6528 pde = pmap_pde(pmap, va);
6529 (void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6530 PMAP_UNLOCK(pmap);
6531 }
6532 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6533 pmap = PV_PMAP(pv);
6534 if (!PMAP_TRYLOCK(pmap)) {
6535 pvh_gen = pvh->pv_gen;
6536 md_gen = m->md.pv_gen;
6537 rw_wunlock(lock);
6538 PMAP_LOCK(pmap);
6539 rw_wlock(lock);
6540 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6541 PMAP_UNLOCK(pmap);
6542 goto retry;
6543 }
6544 }
6545 PG_A = pmap_accessed_bit(pmap);
6546 PG_M = pmap_modified_bit(pmap);
6547 PG_RW = pmap_rw_bit(pmap);
6548 pmap_resident_count_adj(pmap, -1);
6549 pde = pmap_pde(pmap, pv->pv_va);
6550 KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6551 " a 2mpage in page %p's pv list", m));
6552 pte = pmap_pde_to_pte(pde, pv->pv_va);
6553 tpte = pte_load_clear(pte);
6554 if (tpte & PG_W)
6555 pmap->pm_stats.wired_count--;
6556 if (tpte & PG_A)
6557 vm_page_aflag_set(m, PGA_REFERENCED);
6558
6559 /*
6560 * Update the vm_page_t clean and reference bits.
6561 */
6562 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6563 vm_page_dirty(m);
6564 pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6565 pmap_invalidate_page(pmap, pv->pv_va);
6566 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6567 m->md.pv_gen++;
6568 free_pv_entry(pmap, pv);
6569 PMAP_UNLOCK(pmap);
6570 }
6571 vm_page_aflag_clear(m, PGA_WRITEABLE);
6572 rw_wunlock(lock);
6573 pmap_delayed_invl_wait(m);
6574 vm_page_free_pages_toq(&free, true);
6575 }
6576
6577 /*
6578 * pmap_protect_pde: do the things to protect a 2mpage in a process
6579 */
6580 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)6581 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6582 {
6583 pd_entry_t newpde, oldpde;
6584 vm_page_t m, mt;
6585 bool anychanged;
6586 pt_entry_t PG_G, PG_M, PG_RW;
6587
6588 PG_G = pmap_global_bit(pmap);
6589 PG_M = pmap_modified_bit(pmap);
6590 PG_RW = pmap_rw_bit(pmap);
6591
6592 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6593 KASSERT((sva & PDRMASK) == 0,
6594 ("pmap_protect_pde: sva is not 2mpage aligned"));
6595 anychanged = false;
6596 retry:
6597 oldpde = newpde = *pde;
6598 if ((prot & VM_PROT_WRITE) == 0) {
6599 if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6600 (PG_MANAGED | PG_M | PG_RW)) {
6601 m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6602 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6603 vm_page_dirty(mt);
6604 }
6605 newpde &= ~(PG_RW | PG_M);
6606 }
6607 if ((prot & VM_PROT_EXECUTE) == 0)
6608 newpde |= pg_nx;
6609 if (newpde != oldpde) {
6610 /*
6611 * As an optimization to future operations on this PDE, clear
6612 * PG_PROMOTED. The impending invalidation will remove any
6613 * lingering 4KB page mappings from the TLB.
6614 */
6615 if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6616 goto retry;
6617 if ((oldpde & PG_G) != 0)
6618 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6619 else
6620 anychanged = true;
6621 }
6622 return (anychanged);
6623 }
6624
6625 /*
6626 * Set the physical protection on the
6627 * specified range of this map as requested.
6628 */
6629 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)6630 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6631 {
6632 vm_page_t m;
6633 vm_offset_t va_next;
6634 pml4_entry_t *pml4e;
6635 pdp_entry_t *pdpe;
6636 pd_entry_t ptpaddr, *pde;
6637 pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6638 pt_entry_t obits, pbits;
6639 bool anychanged;
6640
6641 KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6642 if (prot == VM_PROT_NONE) {
6643 pmap_remove(pmap, sva, eva);
6644 return;
6645 }
6646
6647 if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6648 (VM_PROT_WRITE|VM_PROT_EXECUTE))
6649 return;
6650
6651 PG_G = pmap_global_bit(pmap);
6652 PG_M = pmap_modified_bit(pmap);
6653 PG_V = pmap_valid_bit(pmap);
6654 PG_RW = pmap_rw_bit(pmap);
6655 anychanged = false;
6656
6657 /*
6658 * Although this function delays and batches the invalidation
6659 * of stale TLB entries, it does not need to call
6660 * pmap_delayed_invl_start() and
6661 * pmap_delayed_invl_finish(), because it does not
6662 * ordinarily destroy mappings. Stale TLB entries from
6663 * protection-only changes need only be invalidated before the
6664 * pmap lock is released, because protection-only changes do
6665 * not destroy PV entries. Even operations that iterate over
6666 * a physical page's PV list of mappings, like
6667 * pmap_remove_write(), acquire the pmap lock for each
6668 * mapping. Consequently, for protection-only changes, the
6669 * pmap lock suffices to synchronize both page table and TLB
6670 * updates.
6671 *
6672 * This function only destroys a mapping if pmap_demote_pde()
6673 * fails. In that case, stale TLB entries are immediately
6674 * invalidated.
6675 */
6676
6677 PMAP_LOCK(pmap);
6678 for (; sva < eva; sva = va_next) {
6679 pml4e = pmap_pml4e(pmap, sva);
6680 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6681 va_next = (sva + NBPML4) & ~PML4MASK;
6682 if (va_next < sva)
6683 va_next = eva;
6684 continue;
6685 }
6686
6687 va_next = (sva + NBPDP) & ~PDPMASK;
6688 if (va_next < sva)
6689 va_next = eva;
6690 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6691 if ((*pdpe & PG_V) == 0)
6692 continue;
6693 if ((*pdpe & PG_PS) != 0) {
6694 KASSERT(va_next <= eva,
6695 ("partial update of non-transparent 1G mapping "
6696 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6697 *pdpe, sva, eva, va_next));
6698 retry_pdpe:
6699 obits = pbits = *pdpe;
6700 MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6701 MPASS(pmap != kernel_pmap); /* XXXKIB */
6702 if ((prot & VM_PROT_WRITE) == 0)
6703 pbits &= ~(PG_RW | PG_M);
6704 if ((prot & VM_PROT_EXECUTE) == 0)
6705 pbits |= pg_nx;
6706
6707 if (pbits != obits) {
6708 if (!atomic_cmpset_long(pdpe, obits, pbits))
6709 /* PG_PS cannot be cleared under us, */
6710 goto retry_pdpe;
6711 anychanged = true;
6712 }
6713 continue;
6714 }
6715
6716 va_next = (sva + NBPDR) & ~PDRMASK;
6717 if (va_next < sva)
6718 va_next = eva;
6719
6720 pde = pmap_pdpe_to_pde(pdpe, sva);
6721 ptpaddr = *pde;
6722
6723 /*
6724 * Weed out invalid mappings.
6725 */
6726 if (ptpaddr == 0)
6727 continue;
6728
6729 /*
6730 * Check for large page.
6731 */
6732 if ((ptpaddr & PG_PS) != 0) {
6733 /*
6734 * Are we protecting the entire large page?
6735 */
6736 if (sva + NBPDR == va_next && eva >= va_next) {
6737 /*
6738 * The TLB entry for a PG_G mapping is
6739 * invalidated by pmap_protect_pde().
6740 */
6741 if (pmap_protect_pde(pmap, pde, sva, prot))
6742 anychanged = true;
6743 continue;
6744 }
6745
6746 /*
6747 * Does the large page mapping need to change? If so,
6748 * demote it and fall through.
6749 */
6750 pbits = ptpaddr;
6751 if ((prot & VM_PROT_WRITE) == 0)
6752 pbits &= ~(PG_RW | PG_M);
6753 if ((prot & VM_PROT_EXECUTE) == 0)
6754 pbits |= pg_nx;
6755 if (ptpaddr == pbits || !pmap_demote_pde(pmap, pde,
6756 sva)) {
6757 /*
6758 * Either the large page mapping doesn't need
6759 * to change, or it was destroyed during
6760 * demotion.
6761 */
6762 continue;
6763 }
6764 }
6765
6766 if (va_next > eva)
6767 va_next = eva;
6768
6769 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6770 sva += PAGE_SIZE) {
6771 retry:
6772 obits = pbits = *pte;
6773 if ((pbits & PG_V) == 0)
6774 continue;
6775
6776 if ((prot & VM_PROT_WRITE) == 0) {
6777 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6778 (PG_MANAGED | PG_M | PG_RW)) {
6779 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6780 vm_page_dirty(m);
6781 }
6782 pbits &= ~(PG_RW | PG_M);
6783 }
6784 if ((prot & VM_PROT_EXECUTE) == 0)
6785 pbits |= pg_nx;
6786
6787 if (pbits != obits) {
6788 if (!atomic_cmpset_long(pte, obits, pbits))
6789 goto retry;
6790 if (obits & PG_G)
6791 pmap_invalidate_page(pmap, sva);
6792 else
6793 anychanged = true;
6794 }
6795 }
6796 }
6797 if (anychanged)
6798 pmap_invalidate_all(pmap);
6799 PMAP_UNLOCK(pmap);
6800 }
6801
6802 static bool
pmap_pde_ept_executable(pmap_t pmap,pd_entry_t pde)6803 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6804 {
6805
6806 if (pmap->pm_type != PT_EPT)
6807 return (false);
6808 return ((pde & EPT_PG_EXECUTE) != 0);
6809 }
6810
6811 #if VM_NRESERVLEVEL > 0
6812 /*
6813 * Tries to promote the 512, contiguous 4KB page mappings that are within a
6814 * single page table page (PTP) to a single 2MB page mapping. For promotion
6815 * to occur, two conditions must be met: (1) the 4KB page mappings must map
6816 * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6817 * identical characteristics.
6818 */
6819 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte,struct rwlock ** lockp)6820 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6821 struct rwlock **lockp)
6822 {
6823 pd_entry_t newpde;
6824 pt_entry_t *firstpte, oldpte, pa, *pte;
6825 pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6826 int PG_PTE_CACHE;
6827
6828 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6829 if (!pmap_ps_enabled(pmap))
6830 return (false);
6831
6832 PG_A = pmap_accessed_bit(pmap);
6833 PG_G = pmap_global_bit(pmap);
6834 PG_M = pmap_modified_bit(pmap);
6835 PG_V = pmap_valid_bit(pmap);
6836 PG_RW = pmap_rw_bit(pmap);
6837 PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6838 PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6839
6840 /*
6841 * Examine the first PTE in the specified PTP. Abort if this PTE is
6842 * ineligible for promotion due to hardware errata, invalid, or does
6843 * not map the first 4KB physical page within a 2MB page.
6844 */
6845 firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6846 newpde = *firstpte;
6847 if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6848 return (false);
6849 if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6850 counter_u64_add(pmap_pde_p_failures, 1);
6851 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6852 " in pmap %p", va, pmap);
6853 return (false);
6854 }
6855
6856 /*
6857 * Both here and in the below "for" loop, to allow for repromotion
6858 * after MADV_FREE, conditionally write protect a clean PTE before
6859 * possibly aborting the promotion due to other PTE attributes. Why?
6860 * Suppose that MADV_FREE is applied to a part of a superpage, the
6861 * address range [S, E). pmap_advise() will demote the superpage
6862 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6863 * clear PG_M and PG_A in the PTEs for the rest of [S, E). Later,
6864 * imagine that the memory in [S, E) is recycled, but the last 4KB
6865 * page in [S, E) is not the last to be rewritten, or simply accessed.
6866 * In other words, there is still a 4KB page in [S, E), call it P,
6867 * that is writeable but PG_M and PG_A are clear in P's PTE. Unless
6868 * we write protect P before aborting the promotion, if and when P is
6869 * finally rewritten, there won't be a page fault to trigger
6870 * repromotion.
6871 */
6872 setpde:
6873 if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6874 /*
6875 * When PG_M is already clear, PG_RW can be cleared without
6876 * a TLB invalidation.
6877 */
6878 if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6879 goto setpde;
6880 newpde &= ~PG_RW;
6881 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6882 " in pmap %p", va & ~PDRMASK, pmap);
6883 }
6884
6885 /*
6886 * Examine each of the other PTEs in the specified PTP. Abort if this
6887 * PTE maps an unexpected 4KB physical page or does not have identical
6888 * characteristics to the first PTE.
6889 */
6890 allpte_PG_A = newpde & PG_A;
6891 pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6892 for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6893 oldpte = *pte;
6894 if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6895 counter_u64_add(pmap_pde_p_failures, 1);
6896 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6897 " in pmap %p", va, pmap);
6898 return (false);
6899 }
6900 setpte:
6901 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6902 /*
6903 * When PG_M is already clear, PG_RW can be cleared
6904 * without a TLB invalidation.
6905 */
6906 if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6907 goto setpte;
6908 oldpte &= ~PG_RW;
6909 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6910 " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6911 (va & ~PDRMASK), pmap);
6912 }
6913 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6914 counter_u64_add(pmap_pde_p_failures, 1);
6915 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6916 " in pmap %p", va, pmap);
6917 return (false);
6918 }
6919 allpte_PG_A &= oldpte;
6920 pa -= PAGE_SIZE;
6921 }
6922
6923 /*
6924 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
6925 * so that promotions triggered by speculative mappings, such as
6926 * pmap_enter_quick(), don't automatically mark the underlying pages
6927 * as referenced.
6928 */
6929 newpde &= ~PG_A | allpte_PG_A;
6930
6931 /*
6932 * EPT PTEs with PG_M set and PG_A clear are not supported by early
6933 * MMUs supporting EPT.
6934 */
6935 KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
6936 ("unsupported EPT PTE"));
6937
6938 /*
6939 * Save the PTP in its current state until the PDE mapping the
6940 * superpage is demoted by pmap_demote_pde() or destroyed by
6941 * pmap_remove_pde(). If PG_A is not set in every PTE, then request
6942 * that the PTP be refilled on demotion.
6943 */
6944 if (mpte == NULL)
6945 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6946 KASSERT(mpte >= vm_page_array &&
6947 mpte < &vm_page_array[vm_page_array_size],
6948 ("pmap_promote_pde: page table page is out of range"));
6949 KASSERT(mpte->pindex == pmap_pde_pindex(va),
6950 ("pmap_promote_pde: page table page's pindex is wrong "
6951 "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
6952 mpte, mpte->pindex, va, pmap_pde_pindex(va)));
6953 if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
6954 counter_u64_add(pmap_pde_p_failures, 1);
6955 CTR2(KTR_PMAP,
6956 "pmap_promote_pde: failure for va %#lx in pmap %p", va,
6957 pmap);
6958 return (false);
6959 }
6960
6961 /*
6962 * Promote the pv entries.
6963 */
6964 if ((newpde & PG_MANAGED) != 0)
6965 pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
6966
6967 /*
6968 * Propagate the PAT index to its proper position.
6969 */
6970 newpde = pmap_swap_pat(pmap, newpde);
6971
6972 /*
6973 * Map the superpage.
6974 */
6975 if (workaround_erratum383)
6976 pmap_update_pde(pmap, va, pde, PG_PS | newpde);
6977 else
6978 pde_store(pde, PG_PROMOTED | PG_PS | newpde);
6979
6980 counter_u64_add(pmap_pde_promotions, 1);
6981 CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
6982 " in pmap %p", va, pmap);
6983 return (true);
6984 }
6985 #endif /* VM_NRESERVLEVEL > 0 */
6986
6987 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)6988 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
6989 int psind)
6990 {
6991 vm_page_t mp;
6992 pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
6993
6994 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6995 KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
6996 ("psind %d unexpected", psind));
6997 KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
6998 ("unaligned phys address %#lx newpte %#lx psind %d",
6999 newpte & PG_FRAME, newpte, psind));
7000 KASSERT((va & (pagesizes[psind] - 1)) == 0,
7001 ("unaligned va %#lx psind %d", va, psind));
7002 KASSERT(va < VM_MAXUSER_ADDRESS,
7003 ("kernel mode non-transparent superpage")); /* XXXKIB */
7004 KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
7005 ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
7006
7007 PG_V = pmap_valid_bit(pmap);
7008
7009 restart:
7010 pten = newpte;
7011 if (!pmap_pkru_same(pmap, va, va + pagesizes[psind], &pten))
7012 return (KERN_PROTECTION_FAILURE);
7013
7014 if (psind == 2) { /* 1G */
7015 pml4e = pmap_pml4e(pmap, va);
7016 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7017 mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
7018 NULL, va);
7019 if (mp == NULL)
7020 goto allocf;
7021 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7022 pdpe = &pdpe[pmap_pdpe_index(va)];
7023 origpte = *pdpe;
7024 MPASS(origpte == 0);
7025 } else {
7026 pdpe = pmap_pml4e_to_pdpe(pml4e, va);
7027 KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
7028 origpte = *pdpe;
7029 if ((origpte & PG_V) == 0) {
7030 mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7031 mp->ref_count++;
7032 }
7033 }
7034 *pdpe = pten;
7035 } else /* (psind == 1) */ { /* 2M */
7036 pde = pmap_pde(pmap, va);
7037 if (pde == NULL) {
7038 mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
7039 NULL, va);
7040 if (mp == NULL)
7041 goto allocf;
7042 pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7043 pde = &pde[pmap_pde_index(va)];
7044 origpte = *pde;
7045 MPASS(origpte == 0);
7046 } else {
7047 origpte = *pde;
7048 if ((origpte & PG_V) == 0) {
7049 pdpe = pmap_pdpe(pmap, va);
7050 MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7051 mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7052 mp->ref_count++;
7053 }
7054 }
7055 *pde = pten;
7056 }
7057 KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7058 (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7059 ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7060 va, psind == 2 ? "1G" : "2M", origpte, pten));
7061 if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7062 pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7063 else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7064 pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7065 if ((origpte & PG_V) == 0)
7066 pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7067
7068 return (KERN_SUCCESS);
7069
7070 allocf:
7071 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7072 return (KERN_RESOURCE_SHORTAGE);
7073 PMAP_UNLOCK(pmap);
7074 vm_wait(NULL);
7075 PMAP_LOCK(pmap);
7076 goto restart;
7077 }
7078
7079 /*
7080 * Insert the given physical page (p) at
7081 * the specified virtual address (v) in the
7082 * target physical map with the protection requested.
7083 *
7084 * If specified, the page will be wired down, meaning
7085 * that the related pte can not be reclaimed.
7086 *
7087 * NB: This is the only routine which MAY NOT lazy-evaluate
7088 * or lose information. That is, this routine must actually
7089 * insert this page into the given map NOW.
7090 *
7091 * When destroying both a page table and PV entry, this function
7092 * performs the TLB invalidation before releasing the PV list
7093 * lock, so we do not need pmap_delayed_invl_page() calls here.
7094 */
7095 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)7096 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7097 u_int flags, int8_t psind)
7098 {
7099 struct rwlock *lock;
7100 pd_entry_t *pde;
7101 pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7102 pt_entry_t newpte, origpte;
7103 pv_entry_t pv;
7104 vm_paddr_t opa, pa;
7105 vm_page_t mpte, om;
7106 int rv;
7107 bool nosleep;
7108
7109 PG_A = pmap_accessed_bit(pmap);
7110 PG_G = pmap_global_bit(pmap);
7111 PG_M = pmap_modified_bit(pmap);
7112 PG_V = pmap_valid_bit(pmap);
7113 PG_RW = pmap_rw_bit(pmap);
7114
7115 va = trunc_page(va);
7116 KASSERT(va <= kva_layout.km_high, ("pmap_enter: toobig"));
7117 KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7118 ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7119 va));
7120 KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7121 ("pmap_enter: managed mapping within the clean submap"));
7122 if ((m->oflags & VPO_UNMANAGED) == 0)
7123 VM_PAGE_OBJECT_BUSY_ASSERT(m);
7124 KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7125 ("pmap_enter: flags %u has reserved bits set", flags));
7126 pa = VM_PAGE_TO_PHYS(m);
7127 newpte = (pt_entry_t)(pa | PG_A | PG_V);
7128 if ((flags & VM_PROT_WRITE) != 0)
7129 newpte |= PG_M;
7130 if ((prot & VM_PROT_WRITE) != 0)
7131 newpte |= PG_RW;
7132 KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7133 ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7134 if ((prot & VM_PROT_EXECUTE) == 0)
7135 newpte |= pg_nx;
7136 if ((flags & PMAP_ENTER_WIRED) != 0)
7137 newpte |= PG_W;
7138 if (va < VM_MAXUSER_ADDRESS)
7139 newpte |= PG_U;
7140 if (pmap == kernel_pmap)
7141 newpte |= PG_G;
7142 newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7143
7144 /*
7145 * Set modified bit gratuitously for writeable mappings if
7146 * the page is unmanaged. We do not want to take a fault
7147 * to do the dirty bit accounting for these mappings.
7148 */
7149 if ((m->oflags & VPO_UNMANAGED) != 0) {
7150 if ((newpte & PG_RW) != 0)
7151 newpte |= PG_M;
7152 } else
7153 newpte |= PG_MANAGED;
7154
7155 lock = NULL;
7156 PMAP_LOCK(pmap);
7157 if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7158 KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7159 ("managed largepage va %#lx flags %#x", va, flags));
7160 rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7161 psind);
7162 goto out;
7163 }
7164 if (psind == 1) {
7165 /* Assert the required virtual and physical alignment. */
7166 KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7167 KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7168 rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7169 goto out;
7170 }
7171 mpte = NULL;
7172
7173 /*
7174 * In the case that a page table page is not
7175 * resident, we are creating it here.
7176 */
7177 retry:
7178 pde = pmap_pde(pmap, va);
7179 if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7180 pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7181 pte = pmap_pde_to_pte(pde, va);
7182 if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7183 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7184 mpte->ref_count++;
7185 }
7186 } else if (va < VM_MAXUSER_ADDRESS) {
7187 /*
7188 * Here if the pte page isn't mapped, or if it has been
7189 * deallocated.
7190 */
7191 nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7192 mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7193 nosleep ? NULL : &lock, va);
7194 if (mpte == NULL && nosleep) {
7195 rv = KERN_RESOURCE_SHORTAGE;
7196 goto out;
7197 }
7198 goto retry;
7199 } else
7200 panic("pmap_enter: invalid page directory va=%#lx", va);
7201
7202 origpte = *pte;
7203 pv = NULL;
7204 if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7205 newpte |= pmap_pkru_get(pmap, va);
7206
7207 /*
7208 * Is the specified virtual address already mapped?
7209 */
7210 if ((origpte & PG_V) != 0) {
7211 /*
7212 * Wiring change, just update stats. We don't worry about
7213 * wiring PT pages as they remain resident as long as there
7214 * are valid mappings in them. Hence, if a user page is wired,
7215 * the PT page will be also.
7216 */
7217 if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7218 pmap->pm_stats.wired_count++;
7219 else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7220 pmap->pm_stats.wired_count--;
7221
7222 /*
7223 * Remove the extra PT page reference.
7224 */
7225 if (mpte != NULL) {
7226 mpte->ref_count--;
7227 KASSERT(mpte->ref_count > 0,
7228 ("pmap_enter: missing reference to page table page,"
7229 " va: 0x%lx", va));
7230 }
7231
7232 /*
7233 * Has the physical page changed?
7234 */
7235 opa = origpte & PG_FRAME;
7236 if (opa == pa) {
7237 /*
7238 * No, might be a protection or wiring change.
7239 */
7240 if ((origpte & PG_MANAGED) != 0 &&
7241 (newpte & PG_RW) != 0)
7242 vm_page_aflag_set(m, PGA_WRITEABLE);
7243 if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7244 goto unchanged;
7245 goto validate;
7246 }
7247
7248 /*
7249 * The physical page has changed. Temporarily invalidate
7250 * the mapping. This ensures that all threads sharing the
7251 * pmap keep a consistent view of the mapping, which is
7252 * necessary for the correct handling of COW faults. It
7253 * also permits reuse of the old mapping's PV entry,
7254 * avoiding an allocation.
7255 *
7256 * For consistency, handle unmanaged mappings the same way.
7257 */
7258 origpte = pte_load_clear(pte);
7259 KASSERT((origpte & PG_FRAME) == opa,
7260 ("pmap_enter: unexpected pa update for %#lx", va));
7261 if ((origpte & PG_MANAGED) != 0) {
7262 om = PHYS_TO_VM_PAGE(opa);
7263
7264 /*
7265 * The pmap lock is sufficient to synchronize with
7266 * concurrent calls to pmap_page_test_mappings() and
7267 * pmap_ts_referenced().
7268 */
7269 if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7270 vm_page_dirty(om);
7271 if ((origpte & PG_A) != 0) {
7272 pmap_invalidate_page(pmap, va);
7273 vm_page_aflag_set(om, PGA_REFERENCED);
7274 }
7275 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7276 pv = pmap_pvh_remove(&om->md, pmap, va);
7277 KASSERT(pv != NULL,
7278 ("pmap_enter: no PV entry for %#lx", va));
7279 if ((newpte & PG_MANAGED) == 0)
7280 free_pv_entry(pmap, pv);
7281 if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7282 TAILQ_EMPTY(&om->md.pv_list) &&
7283 ((om->flags & PG_FICTITIOUS) != 0 ||
7284 TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7285 vm_page_aflag_clear(om, PGA_WRITEABLE);
7286 } else {
7287 /*
7288 * Since this mapping is unmanaged, assume that PG_A
7289 * is set.
7290 */
7291 pmap_invalidate_page(pmap, va);
7292 }
7293 origpte = 0;
7294 } else {
7295 /*
7296 * Increment the counters.
7297 */
7298 if ((newpte & PG_W) != 0)
7299 pmap->pm_stats.wired_count++;
7300 pmap_resident_count_adj(pmap, 1);
7301 }
7302
7303 /*
7304 * Enter on the PV list if part of our managed memory.
7305 */
7306 if ((newpte & PG_MANAGED) != 0) {
7307 if (pv == NULL) {
7308 pv = get_pv_entry(pmap, &lock);
7309 pv->pv_va = va;
7310 }
7311 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7312 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7313 m->md.pv_gen++;
7314 if ((newpte & PG_RW) != 0)
7315 vm_page_aflag_set(m, PGA_WRITEABLE);
7316 }
7317
7318 /*
7319 * Update the PTE.
7320 */
7321 if ((origpte & PG_V) != 0) {
7322 validate:
7323 origpte = pte_load_store(pte, newpte);
7324 KASSERT((origpte & PG_FRAME) == pa,
7325 ("pmap_enter: unexpected pa update for %#lx", va));
7326 if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7327 (PG_M | PG_RW)) {
7328 if ((origpte & PG_MANAGED) != 0)
7329 vm_page_dirty(m);
7330
7331 /*
7332 * Although the PTE may still have PG_RW set, TLB
7333 * invalidation may nonetheless be required because
7334 * the PTE no longer has PG_M set.
7335 */
7336 } else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7337 /*
7338 * This PTE change does not require TLB invalidation.
7339 */
7340 goto unchanged;
7341 }
7342 if ((origpte & PG_A) != 0)
7343 pmap_invalidate_page(pmap, va);
7344 } else
7345 pte_store(pte, newpte);
7346
7347 unchanged:
7348
7349 #if VM_NRESERVLEVEL > 0
7350 /*
7351 * If both the page table page and the reservation are fully
7352 * populated, then attempt promotion.
7353 */
7354 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7355 (m->flags & PG_FICTITIOUS) == 0 &&
7356 vm_reserv_level_iffullpop(m) == 0)
7357 (void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
7358 #endif
7359
7360 rv = KERN_SUCCESS;
7361 out:
7362 if (lock != NULL)
7363 rw_wunlock(lock);
7364 PMAP_UNLOCK(pmap);
7365 return (rv);
7366 }
7367
7368 /*
7369 * Tries to create a read- and/or execute-only 2MB page mapping. Returns
7370 * KERN_SUCCESS if the mapping was created. Otherwise, returns an error
7371 * value. See pmap_enter_pde() for the possible error values when "no sleep",
7372 * "no replace", and "no reclaim" are specified.
7373 */
7374 static int
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)7375 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7376 struct rwlock **lockp)
7377 {
7378 pd_entry_t newpde;
7379 pt_entry_t PG_V;
7380
7381 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7382 PG_V = pmap_valid_bit(pmap);
7383 newpde = VM_PAGE_TO_PHYS(m) |
7384 pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
7385 if ((m->oflags & VPO_UNMANAGED) == 0)
7386 newpde |= PG_MANAGED;
7387 if ((prot & VM_PROT_EXECUTE) == 0)
7388 newpde |= pg_nx;
7389 if (va < VM_MAXUSER_ADDRESS)
7390 newpde |= PG_U;
7391 return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7392 PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7393 }
7394
7395 /*
7396 * Returns true if every page table entry in the specified page table page is
7397 * zero.
7398 */
7399 static bool
pmap_every_pte_zero(vm_paddr_t pa)7400 pmap_every_pte_zero(vm_paddr_t pa)
7401 {
7402 pt_entry_t *pt_end, *pte;
7403
7404 KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7405 pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7406 for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7407 if (*pte != 0)
7408 return (false);
7409 }
7410 return (true);
7411 }
7412
7413 /*
7414 * Tries to create the specified 2MB page mapping. Returns KERN_SUCCESS if
7415 * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7416 * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise. Returns
7417 * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7418 * page mapping already exists within the 2MB virtual address range starting
7419 * at the specified virtual address or (2) the requested 2MB page mapping is
7420 * not supported due to hardware errata. Returns KERN_NO_SPACE if
7421 * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7422 * the specified virtual address. Returns KERN_PROTECTION_FAILURE if the PKRU
7423 * settings are not the same across the 2MB virtual address range starting at
7424 * the specified virtual address. Returns KERN_RESOURCE_SHORTAGE if either
7425 * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7426 * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7427 * failed.
7428 *
7429 * The parameter "m" is only used when creating a managed, writeable mapping.
7430 */
7431 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m,struct rwlock ** lockp)7432 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7433 vm_page_t m, struct rwlock **lockp)
7434 {
7435 struct spglist free;
7436 pd_entry_t oldpde, *pde;
7437 pt_entry_t PG_G, PG_RW, PG_V;
7438 vm_page_t mt, pdpg;
7439 vm_page_t uwptpg;
7440
7441 PG_G = pmap_global_bit(pmap);
7442 PG_RW = pmap_rw_bit(pmap);
7443 KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7444 ("pmap_enter_pde: newpde is missing PG_M"));
7445 KASSERT((flags & (PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM)) !=
7446 PMAP_ENTER_NORECLAIM,
7447 ("pmap_enter_pde: flags is missing PMAP_ENTER_NOREPLACE"));
7448 PG_V = pmap_valid_bit(pmap);
7449 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7450
7451 if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7452 newpde))) {
7453 CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7454 " in pmap %p", va, pmap);
7455 return (KERN_FAILURE);
7456 }
7457 if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7458 PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7459 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7460 " in pmap %p", va, pmap);
7461 return (KERN_RESOURCE_SHORTAGE);
7462 }
7463
7464 /*
7465 * If pkru is not same for the whole pde range, return failure
7466 * and let vm_fault() cope. Check after pde allocation, since
7467 * it could sleep.
7468 */
7469 if (!pmap_pkru_same(pmap, va, va + NBPDR, &newpde)) {
7470 pmap_abort_ptp(pmap, va, pdpg);
7471 return (KERN_PROTECTION_FAILURE);
7472 }
7473
7474 /*
7475 * If there are existing mappings, either abort or remove them.
7476 */
7477 oldpde = *pde;
7478 if ((oldpde & PG_V) != 0) {
7479 KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7480 ("pmap_enter_pde: pdpg's reference count is too low"));
7481 if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7482 if ((oldpde & PG_PS) != 0) {
7483 if (pdpg != NULL)
7484 pdpg->ref_count--;
7485 CTR2(KTR_PMAP,
7486 "pmap_enter_pde: no space for va %#lx"
7487 " in pmap %p", va, pmap);
7488 return (KERN_NO_SPACE);
7489 } else if (va < VM_MAXUSER_ADDRESS ||
7490 !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7491 if (pdpg != NULL)
7492 pdpg->ref_count--;
7493 CTR2(KTR_PMAP,
7494 "pmap_enter_pde: failure for va %#lx"
7495 " in pmap %p", va, pmap);
7496 return (KERN_FAILURE);
7497 }
7498 }
7499 /* Break the existing mapping(s). */
7500 SLIST_INIT(&free);
7501 if ((oldpde & PG_PS) != 0) {
7502 /*
7503 * The reference to the PD page that was acquired by
7504 * pmap_alloc_pde() ensures that it won't be freed.
7505 * However, if the PDE resulted from a promotion, and
7506 * the mapping is not from kernel_pmap, then
7507 * a reserved PT page could be freed.
7508 */
7509 (void)pmap_remove_pde(pmap, pde, va, false, &free,
7510 lockp);
7511 if ((oldpde & PG_G) == 0)
7512 pmap_invalidate_pde_page(pmap, va, oldpde);
7513 } else {
7514 if (va >= VM_MAXUSER_ADDRESS) {
7515 /*
7516 * Try to save the ptp in the trie
7517 * before any changes to mappings are
7518 * made. Abort on failure.
7519 */
7520 mt = PHYS_TO_VM_PAGE(oldpde & PG_FRAME);
7521 if (pmap_insert_pt_page(pmap, mt, false,
7522 false)) {
7523 CTR1(KTR_PMAP,
7524 "pmap_enter_pde: cannot ins kern ptp va %#lx",
7525 va);
7526 return (KERN_RESOURCE_SHORTAGE);
7527 }
7528 /*
7529 * Both pmap_remove_pde() and
7530 * pmap_remove_ptes() will zero-fill
7531 * the kernel page table page.
7532 */
7533 }
7534 pmap_delayed_invl_start();
7535 if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7536 lockp))
7537 pmap_invalidate_all(pmap);
7538 pmap_delayed_invl_finish();
7539 }
7540 if (va < VM_MAXUSER_ADDRESS) {
7541 vm_page_free_pages_toq(&free, true);
7542 KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7543 pde));
7544 } else {
7545 KASSERT(SLIST_EMPTY(&free),
7546 ("pmap_enter_pde: freed kernel page table page"));
7547 }
7548 }
7549
7550 /*
7551 * Allocate leaf ptpage for wired userspace pages.
7552 */
7553 uwptpg = NULL;
7554 if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
7555 uwptpg = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
7556 VM_ALLOC_WIRED);
7557 if (uwptpg == NULL) {
7558 pmap_abort_ptp(pmap, va, pdpg);
7559 return (KERN_RESOURCE_SHORTAGE);
7560 }
7561 if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
7562 pmap_free_pt_page(pmap, uwptpg, false);
7563 pmap_abort_ptp(pmap, va, pdpg);
7564 return (KERN_RESOURCE_SHORTAGE);
7565 }
7566
7567 uwptpg->ref_count = NPTEPG;
7568 }
7569 if ((newpde & PG_MANAGED) != 0) {
7570 /*
7571 * Abort this mapping if its PV entry could not be created.
7572 */
7573 if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7574 if (pdpg != NULL)
7575 pmap_abort_ptp(pmap, va, pdpg);
7576 else {
7577 KASSERT(va >= VM_MAXUSER_ADDRESS &&
7578 (*pde & (PG_PS | PG_V)) == PG_V,
7579 ("pmap_enter_pde: invalid kernel PDE"));
7580 mt = pmap_remove_pt_page(pmap, va);
7581 KASSERT(mt != NULL,
7582 ("pmap_enter_pde: missing kernel PTP"));
7583 }
7584 if (uwptpg != NULL) {
7585 mt = pmap_remove_pt_page(pmap, va);
7586 KASSERT(mt == uwptpg,
7587 ("removed pt page %p, expected %p", mt,
7588 uwptpg));
7589 uwptpg->ref_count = 1;
7590 pmap_free_pt_page(pmap, uwptpg, false);
7591 }
7592 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7593 " in pmap %p", va, pmap);
7594 return (KERN_RESOURCE_SHORTAGE);
7595 }
7596 if ((newpde & PG_RW) != 0) {
7597 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7598 vm_page_aflag_set(mt, PGA_WRITEABLE);
7599 }
7600 }
7601
7602 /*
7603 * Increment counters.
7604 */
7605 if ((newpde & PG_W) != 0)
7606 pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7607 pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7608
7609 /*
7610 * Map the superpage. (This is not a promoted mapping; there will not
7611 * be any lingering 4KB page mappings in the TLB.)
7612 */
7613 pde_store(pde, newpde);
7614
7615 counter_u64_add(pmap_pde_mappings, 1);
7616 CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7617 va, pmap);
7618 return (KERN_SUCCESS);
7619 }
7620
7621 /*
7622 * Maps a sequence of resident pages belonging to the same object.
7623 * The sequence begins with the given page m_start. This page is
7624 * mapped at the given virtual address start. Each subsequent page is
7625 * mapped at a virtual address that is offset from start by the same
7626 * amount as the page is offset from m_start within the object. The
7627 * last page in the sequence is the page with the largest offset from
7628 * m_start that can be mapped at a virtual address less than the given
7629 * virtual address end. Not every virtual page between start and end
7630 * is mapped; only those for which a resident page exists with the
7631 * corresponding offset from m_start are mapped.
7632 */
7633 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)7634 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7635 vm_page_t m_start, vm_prot_t prot)
7636 {
7637 struct pctrie_iter pages;
7638 struct rwlock *lock;
7639 vm_offset_t va;
7640 vm_page_t m, mpte;
7641 int rv;
7642
7643 VM_OBJECT_ASSERT_LOCKED(m_start->object);
7644
7645 mpte = NULL;
7646 vm_page_iter_limit_init(&pages, m_start->object,
7647 m_start->pindex + atop(end - start));
7648 m = vm_radix_iter_lookup(&pages, m_start->pindex);
7649 lock = NULL;
7650 PMAP_LOCK(pmap);
7651 while (m != NULL) {
7652 va = start + ptoa(m->pindex - m_start->pindex);
7653 if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7654 m->psind == 1 && pmap_ps_enabled(pmap) &&
7655 ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7656 KERN_SUCCESS || rv == KERN_NO_SPACE))
7657 m = vm_radix_iter_jump(&pages, NBPDR / PAGE_SIZE);
7658 else {
7659 mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7660 mpte, &lock);
7661 m = vm_radix_iter_step(&pages);
7662 }
7663 }
7664 if (lock != NULL)
7665 rw_wunlock(lock);
7666 PMAP_UNLOCK(pmap);
7667 }
7668
7669 /*
7670 * this code makes some *MAJOR* assumptions:
7671 * 1. Current pmap & pmap exists.
7672 * 2. Not wired.
7673 * 3. Read access.
7674 * 4. No page table pages.
7675 * but is *MUCH* faster than pmap_enter...
7676 */
7677
7678 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)7679 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7680 {
7681 struct rwlock *lock;
7682
7683 lock = NULL;
7684 PMAP_LOCK(pmap);
7685 (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7686 if (lock != NULL)
7687 rw_wunlock(lock);
7688 PMAP_UNLOCK(pmap);
7689 }
7690
7691 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)7692 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7693 vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7694 {
7695 pd_entry_t *pde;
7696 pt_entry_t newpte, *pte, PG_V;
7697
7698 KASSERT(!VA_IS_CLEANMAP(va) ||
7699 (m->oflags & VPO_UNMANAGED) != 0,
7700 ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7701 PG_V = pmap_valid_bit(pmap);
7702 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7703 pde = NULL;
7704
7705 /*
7706 * In the case that a page table page is not
7707 * resident, we are creating it here.
7708 */
7709 if (va < VM_MAXUSER_ADDRESS) {
7710 pdp_entry_t *pdpe;
7711 vm_pindex_t ptepindex;
7712
7713 /*
7714 * Calculate pagetable page index
7715 */
7716 ptepindex = pmap_pde_pindex(va);
7717 if (mpte && (mpte->pindex == ptepindex)) {
7718 mpte->ref_count++;
7719 } else {
7720 /*
7721 * If the page table page is mapped, we just increment
7722 * the hold count, and activate it. Otherwise, we
7723 * attempt to allocate a page table page, passing NULL
7724 * instead of the PV list lock pointer because we don't
7725 * intend to sleep. If this attempt fails, we don't
7726 * retry. Instead, we give up.
7727 */
7728 pdpe = pmap_pdpe(pmap, va);
7729 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7730 if ((*pdpe & PG_PS) != 0)
7731 return (NULL);
7732 pde = pmap_pdpe_to_pde(pdpe, va);
7733 if ((*pde & PG_V) != 0) {
7734 if ((*pde & PG_PS) != 0)
7735 return (NULL);
7736 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7737 mpte->ref_count++;
7738 } else {
7739 mpte = pmap_allocpte_alloc(pmap,
7740 ptepindex, NULL, va);
7741 if (mpte == NULL)
7742 return (NULL);
7743 }
7744 } else {
7745 mpte = pmap_allocpte_alloc(pmap, ptepindex,
7746 NULL, va);
7747 if (mpte == NULL)
7748 return (NULL);
7749 }
7750 }
7751 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7752 pte = &pte[pmap_pte_index(va)];
7753 } else {
7754 mpte = NULL;
7755 pte = vtopte(va);
7756 }
7757 if (*pte) {
7758 if (mpte != NULL)
7759 mpte->ref_count--;
7760 return (NULL);
7761 }
7762
7763 /*
7764 * Enter on the PV list if part of our managed memory.
7765 */
7766 if ((m->oflags & VPO_UNMANAGED) == 0 &&
7767 !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7768 if (mpte != NULL)
7769 pmap_abort_ptp(pmap, va, mpte);
7770 return (NULL);
7771 }
7772
7773 /*
7774 * Increment counters
7775 */
7776 pmap_resident_count_adj(pmap, 1);
7777
7778 newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7779 pmap_cache_bits(pmap, m->md.pat_mode, false);
7780 if ((m->oflags & VPO_UNMANAGED) == 0)
7781 newpte |= PG_MANAGED;
7782 if ((prot & VM_PROT_EXECUTE) == 0)
7783 newpte |= pg_nx;
7784 if (va < VM_MAXUSER_ADDRESS)
7785 newpte |= PG_U | pmap_pkru_get(pmap, va);
7786 pte_store(pte, newpte);
7787
7788 #if VM_NRESERVLEVEL > 0
7789 /*
7790 * If both the PTP and the reservation are fully populated, then
7791 * attempt promotion.
7792 */
7793 if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
7794 (mpte == NULL || mpte->ref_count == NPTEPG) &&
7795 (m->flags & PG_FICTITIOUS) == 0 &&
7796 vm_reserv_level_iffullpop(m) == 0) {
7797 if (pde == NULL)
7798 pde = pmap_pde(pmap, va);
7799
7800 /*
7801 * If promotion succeeds, then the next call to this function
7802 * should not be given the unmapped PTP as a hint.
7803 */
7804 if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
7805 mpte = NULL;
7806 }
7807 #endif
7808
7809 return (mpte);
7810 }
7811
7812 /*
7813 * Make a temporary mapping for a physical address. This is only intended
7814 * to be used for panic dumps.
7815 */
7816 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)7817 pmap_kenter_temporary(vm_paddr_t pa, int i)
7818 {
7819 vm_offset_t va;
7820
7821 va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7822 pmap_kenter(va, pa);
7823 pmap_invlpg(kernel_pmap, va);
7824 return ((void *)crashdumpmap);
7825 }
7826
7827 /*
7828 * This code maps large physical mmap regions into the
7829 * processor address space. Note that some shortcuts
7830 * are taken, but the code works.
7831 */
7832 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)7833 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7834 vm_pindex_t pindex, vm_size_t size)
7835 {
7836 struct pctrie_iter pages;
7837 pd_entry_t *pde;
7838 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7839 vm_paddr_t pa, ptepa;
7840 vm_page_t p, pdpg;
7841 int pat_mode;
7842
7843 PG_A = pmap_accessed_bit(pmap);
7844 PG_M = pmap_modified_bit(pmap);
7845 PG_V = pmap_valid_bit(pmap);
7846 PG_RW = pmap_rw_bit(pmap);
7847
7848 VM_OBJECT_ASSERT_WLOCKED(object);
7849 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7850 ("pmap_object_init_pt: non-device object"));
7851 if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7852 if (!pmap_ps_enabled(pmap))
7853 return;
7854 if (!vm_object_populate(object, pindex, pindex + atop(size)))
7855 return;
7856 vm_page_iter_init(&pages, object);
7857 p = vm_radix_iter_lookup(&pages, pindex);
7858 KASSERT(vm_page_all_valid(p),
7859 ("pmap_object_init_pt: invalid page %p", p));
7860 pat_mode = p->md.pat_mode;
7861
7862 /*
7863 * Abort the mapping if the first page is not physically
7864 * aligned to a 2MB page boundary.
7865 */
7866 ptepa = VM_PAGE_TO_PHYS(p);
7867 if (ptepa & (NBPDR - 1))
7868 return;
7869
7870 /*
7871 * Skip the first page. Abort the mapping if the rest of
7872 * the pages are not physically contiguous or have differing
7873 * memory attributes.
7874 */
7875 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7876 pa += PAGE_SIZE) {
7877 p = vm_radix_iter_next(&pages);
7878 KASSERT(vm_page_all_valid(p),
7879 ("pmap_object_init_pt: invalid page %p", p));
7880 if (pa != VM_PAGE_TO_PHYS(p) ||
7881 pat_mode != p->md.pat_mode)
7882 return;
7883 }
7884
7885 /*
7886 * Map using 2MB pages. Since "ptepa" is 2M aligned and
7887 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7888 * will not affect the termination of this loop.
7889 */
7890 PMAP_LOCK(pmap);
7891 for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
7892 pa < ptepa + size; pa += NBPDR) {
7893 pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7894 if (pde == NULL) {
7895 /*
7896 * The creation of mappings below is only an
7897 * optimization. If a page directory page
7898 * cannot be allocated without blocking,
7899 * continue on to the next mapping rather than
7900 * blocking.
7901 */
7902 addr += NBPDR;
7903 continue;
7904 }
7905 if ((*pde & PG_V) == 0) {
7906 pde_store(pde, pa | PG_PS | PG_M | PG_A |
7907 PG_U | PG_RW | PG_V);
7908 pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7909 counter_u64_add(pmap_pde_mappings, 1);
7910 } else {
7911 /* Continue on if the PDE is already valid. */
7912 pdpg->ref_count--;
7913 KASSERT(pdpg->ref_count > 0,
7914 ("pmap_object_init_pt: missing reference "
7915 "to page directory page, va: 0x%lx", addr));
7916 }
7917 addr += NBPDR;
7918 }
7919 PMAP_UNLOCK(pmap);
7920 }
7921 }
7922
7923 /*
7924 * Clear the wired attribute from the mappings for the specified range of
7925 * addresses in the given pmap. Every valid mapping within that range
7926 * must have the wired attribute set. In contrast, invalid mappings
7927 * cannot have the wired attribute set, so they are ignored.
7928 *
7929 * The wired attribute of the page table entry is not a hardware
7930 * feature, so there is no need to invalidate any TLB entries.
7931 * Since pmap_demote_pde() for the wired entry must never fail,
7932 * pmap_delayed_invl_start()/finish() calls around the
7933 * function are not needed.
7934 */
7935 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)7936 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7937 {
7938 vm_offset_t va_next;
7939 pml4_entry_t *pml4e;
7940 pdp_entry_t *pdpe;
7941 pd_entry_t *pde;
7942 pt_entry_t *pte, PG_V, PG_G __diagused;
7943
7944 PG_V = pmap_valid_bit(pmap);
7945 PG_G = pmap_global_bit(pmap);
7946 PMAP_LOCK(pmap);
7947 for (; sva < eva; sva = va_next) {
7948 pml4e = pmap_pml4e(pmap, sva);
7949 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7950 va_next = (sva + NBPML4) & ~PML4MASK;
7951 if (va_next < sva)
7952 va_next = eva;
7953 continue;
7954 }
7955
7956 va_next = (sva + NBPDP) & ~PDPMASK;
7957 if (va_next < sva)
7958 va_next = eva;
7959 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
7960 if ((*pdpe & PG_V) == 0)
7961 continue;
7962 if ((*pdpe & PG_PS) != 0) {
7963 KASSERT(va_next <= eva,
7964 ("partial update of non-transparent 1G mapping "
7965 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7966 *pdpe, sva, eva, va_next));
7967 MPASS(pmap != kernel_pmap); /* XXXKIB */
7968 MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
7969 atomic_clear_long(pdpe, PG_W);
7970 pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
7971 continue;
7972 }
7973
7974 va_next = (sva + NBPDR) & ~PDRMASK;
7975 if (va_next < sva)
7976 va_next = eva;
7977 pde = pmap_pdpe_to_pde(pdpe, sva);
7978 if ((*pde & PG_V) == 0)
7979 continue;
7980 if ((*pde & PG_PS) != 0) {
7981 if ((*pde & PG_W) == 0)
7982 panic("pmap_unwire: pde %#jx is missing PG_W",
7983 (uintmax_t)*pde);
7984
7985 /*
7986 * Are we unwiring the entire large page? If not,
7987 * demote the mapping and fall through.
7988 */
7989 if (sva + NBPDR == va_next && eva >= va_next) {
7990 atomic_clear_long(pde, PG_W);
7991 pmap->pm_stats.wired_count -= NBPDR /
7992 PAGE_SIZE;
7993 continue;
7994 } else if (!pmap_demote_pde(pmap, pde, sva))
7995 panic("pmap_unwire: demotion failed");
7996 }
7997 if (va_next > eva)
7998 va_next = eva;
7999 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8000 sva += PAGE_SIZE) {
8001 if ((*pte & PG_V) == 0)
8002 continue;
8003 if ((*pte & PG_W) == 0)
8004 panic("pmap_unwire: pte %#jx is missing PG_W",
8005 (uintmax_t)*pte);
8006
8007 /*
8008 * PG_W must be cleared atomically. Although the pmap
8009 * lock synchronizes access to PG_W, another processor
8010 * could be setting PG_M and/or PG_A concurrently.
8011 */
8012 atomic_clear_long(pte, PG_W);
8013 pmap->pm_stats.wired_count--;
8014 }
8015 }
8016 PMAP_UNLOCK(pmap);
8017 }
8018
8019 /*
8020 * Copy the range specified by src_addr/len
8021 * from the source map to the range dst_addr/len
8022 * in the destination map.
8023 *
8024 * This routine is only advisory and need not do anything.
8025 */
8026 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)8027 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
8028 vm_offset_t src_addr)
8029 {
8030 struct rwlock *lock;
8031 pml4_entry_t *pml4e;
8032 pdp_entry_t *pdpe;
8033 pd_entry_t *pde, srcptepaddr;
8034 pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
8035 vm_offset_t addr, end_addr, va_next;
8036 vm_page_t dst_pdpg, dstmpte, srcmpte;
8037
8038 if (dst_addr != src_addr)
8039 return;
8040
8041 if (dst_pmap->pm_type != src_pmap->pm_type)
8042 return;
8043
8044 /*
8045 * EPT page table entries that require emulation of A/D bits are
8046 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
8047 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
8048 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
8049 * implementations flag an EPT misconfiguration for exec-only
8050 * mappings we skip this function entirely for emulated pmaps.
8051 */
8052 if (pmap_emulate_ad_bits(dst_pmap))
8053 return;
8054
8055 end_addr = src_addr + len;
8056 lock = NULL;
8057 if (dst_pmap < src_pmap) {
8058 PMAP_LOCK(dst_pmap);
8059 PMAP_LOCK(src_pmap);
8060 } else {
8061 PMAP_LOCK(src_pmap);
8062 PMAP_LOCK(dst_pmap);
8063 }
8064
8065 PG_A = pmap_accessed_bit(dst_pmap);
8066 PG_M = pmap_modified_bit(dst_pmap);
8067 PG_V = pmap_valid_bit(dst_pmap);
8068
8069 for (addr = src_addr; addr < end_addr; addr = va_next) {
8070 KASSERT(addr < UPT_MIN_ADDRESS,
8071 ("pmap_copy: invalid to pmap_copy page tables"));
8072
8073 pml4e = pmap_pml4e(src_pmap, addr);
8074 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8075 va_next = (addr + NBPML4) & ~PML4MASK;
8076 if (va_next < addr)
8077 va_next = end_addr;
8078 continue;
8079 }
8080
8081 va_next = (addr + NBPDP) & ~PDPMASK;
8082 if (va_next < addr)
8083 va_next = end_addr;
8084 pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
8085 if ((*pdpe & PG_V) == 0)
8086 continue;
8087 if ((*pdpe & PG_PS) != 0) {
8088 KASSERT(va_next <= end_addr,
8089 ("partial update of non-transparent 1G mapping "
8090 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8091 *pdpe, addr, end_addr, va_next));
8092 MPASS((addr & PDPMASK) == 0);
8093 MPASS((*pdpe & PG_MANAGED) == 0);
8094 srcptepaddr = *pdpe;
8095 pdpe = pmap_pdpe(dst_pmap, addr);
8096 if (pdpe == NULL) {
8097 if (pmap_allocpte_alloc(dst_pmap,
8098 pmap_pml4e_pindex(addr), NULL, addr) ==
8099 NULL)
8100 break;
8101 pdpe = pmap_pdpe(dst_pmap, addr);
8102 } else {
8103 pml4e = pmap_pml4e(dst_pmap, addr);
8104 dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
8105 dst_pdpg->ref_count++;
8106 }
8107 KASSERT(*pdpe == 0,
8108 ("1G mapping present in dst pmap "
8109 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8110 *pdpe, addr, end_addr, va_next));
8111 *pdpe = srcptepaddr & ~PG_W;
8112 pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
8113 continue;
8114 }
8115
8116 va_next = (addr + NBPDR) & ~PDRMASK;
8117 if (va_next < addr)
8118 va_next = end_addr;
8119
8120 pde = pmap_pdpe_to_pde(pdpe, addr);
8121 srcptepaddr = *pde;
8122 if (srcptepaddr == 0)
8123 continue;
8124
8125 if (srcptepaddr & PG_PS) {
8126 /*
8127 * We can only virtual copy whole superpages.
8128 */
8129 if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8130 continue;
8131 pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8132 if (pde == NULL)
8133 break;
8134 if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8135 pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8136 PMAP_ENTER_NORECLAIM, &lock))) {
8137 /*
8138 * We leave the dirty bit unchanged because
8139 * managed read/write superpage mappings are
8140 * required to be dirty. However, managed
8141 * superpage mappings are not required to
8142 * have their accessed bit set, so we clear
8143 * it because we don't know if this mapping
8144 * will be used.
8145 */
8146 srcptepaddr &= ~PG_W;
8147 if ((srcptepaddr & PG_MANAGED) != 0)
8148 srcptepaddr &= ~PG_A;
8149 *pde = srcptepaddr;
8150 pmap_resident_count_adj(dst_pmap, NBPDR /
8151 PAGE_SIZE);
8152 counter_u64_add(pmap_pde_mappings, 1);
8153 } else
8154 pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8155 continue;
8156 }
8157
8158 srcptepaddr &= PG_FRAME;
8159 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8160 KASSERT(srcmpte->ref_count > 0,
8161 ("pmap_copy: source page table page is unused"));
8162
8163 if (va_next > end_addr)
8164 va_next = end_addr;
8165
8166 src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8167 src_pte = &src_pte[pmap_pte_index(addr)];
8168 dstmpte = NULL;
8169 for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8170 ptetemp = *src_pte;
8171
8172 /*
8173 * We only virtual copy managed pages.
8174 */
8175 if ((ptetemp & PG_MANAGED) == 0)
8176 continue;
8177
8178 if (dstmpte != NULL) {
8179 KASSERT(dstmpte->pindex ==
8180 pmap_pde_pindex(addr),
8181 ("dstmpte pindex/addr mismatch"));
8182 dstmpte->ref_count++;
8183 } else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8184 NULL)) == NULL)
8185 goto out;
8186 dst_pte = (pt_entry_t *)
8187 PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8188 dst_pte = &dst_pte[pmap_pte_index(addr)];
8189 if (*dst_pte == 0 &&
8190 pmap_try_insert_pv_entry(dst_pmap, addr,
8191 PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8192 /*
8193 * Clear the wired, modified, and accessed
8194 * (referenced) bits during the copy.
8195 */
8196 *dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8197 pmap_resident_count_adj(dst_pmap, 1);
8198 } else {
8199 pmap_abort_ptp(dst_pmap, addr, dstmpte);
8200 goto out;
8201 }
8202 /* Have we copied all of the valid mappings? */
8203 if (dstmpte->ref_count >= srcmpte->ref_count)
8204 break;
8205 }
8206 }
8207 out:
8208 if (lock != NULL)
8209 rw_wunlock(lock);
8210 PMAP_UNLOCK(src_pmap);
8211 PMAP_UNLOCK(dst_pmap);
8212 }
8213
8214 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)8215 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8216 {
8217 int error;
8218
8219 if (dst_pmap->pm_type != src_pmap->pm_type ||
8220 dst_pmap->pm_type != PT_X86 ||
8221 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8222 return (0);
8223 for (;;) {
8224 if (dst_pmap < src_pmap) {
8225 PMAP_LOCK(dst_pmap);
8226 PMAP_LOCK(src_pmap);
8227 } else {
8228 PMAP_LOCK(src_pmap);
8229 PMAP_LOCK(dst_pmap);
8230 }
8231 error = pmap_pkru_copy(dst_pmap, src_pmap);
8232 /* Clean up partial copy on failure due to no memory. */
8233 if (error == ENOMEM)
8234 pmap_pkru_deassign_all(dst_pmap);
8235 PMAP_UNLOCK(src_pmap);
8236 PMAP_UNLOCK(dst_pmap);
8237 if (error != ENOMEM)
8238 break;
8239 vm_wait(NULL);
8240 }
8241 return (error);
8242 }
8243
8244 /*
8245 * Zero the specified hardware page.
8246 */
8247 void
pmap_zero_page(vm_page_t m)8248 pmap_zero_page(vm_page_t m)
8249 {
8250 vm_offset_t va;
8251
8252 #ifdef TSLOG_PAGEZERO
8253 TSENTER();
8254 #endif
8255 va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8256 pagezero((void *)va);
8257 #ifdef TSLOG_PAGEZERO
8258 TSEXIT();
8259 #endif
8260 }
8261
8262 /*
8263 * Zero an area within a single hardware page. off and size must not
8264 * cover an area beyond a single hardware page.
8265 */
8266 void
pmap_zero_page_area(vm_page_t m,int off,int size)8267 pmap_zero_page_area(vm_page_t m, int off, int size)
8268 {
8269 vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8270
8271 if (off == 0 && size == PAGE_SIZE)
8272 pagezero((void *)va);
8273 else
8274 bzero((char *)va + off, size);
8275 }
8276
8277 /*
8278 * Copy 1 specified hardware page to another.
8279 */
8280 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)8281 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8282 {
8283 vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8284 vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8285
8286 pagecopy((void *)src, (void *)dst);
8287 }
8288
8289 int unmapped_buf_allowed = 1;
8290
8291 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)8292 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8293 vm_offset_t b_offset, int xfersize)
8294 {
8295 void *a_cp, *b_cp;
8296 vm_page_t pages[2];
8297 vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8298 int cnt;
8299 bool mapped;
8300
8301 while (xfersize > 0) {
8302 a_pg_offset = a_offset & PAGE_MASK;
8303 pages[0] = ma[a_offset >> PAGE_SHIFT];
8304 b_pg_offset = b_offset & PAGE_MASK;
8305 pages[1] = mb[b_offset >> PAGE_SHIFT];
8306 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8307 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8308 mapped = pmap_map_io_transient(pages, vaddr, 2, false);
8309 a_cp = (char *)vaddr[0] + a_pg_offset;
8310 b_cp = (char *)vaddr[1] + b_pg_offset;
8311 bcopy(a_cp, b_cp, cnt);
8312 if (__predict_false(mapped))
8313 pmap_unmap_io_transient(pages, vaddr, 2, false);
8314 a_offset += cnt;
8315 b_offset += cnt;
8316 xfersize -= cnt;
8317 }
8318 }
8319
8320 /*
8321 * Returns true if the pmap's pv is one of the first
8322 * 16 pvs linked to from this page. This count may
8323 * be changed upwards or downwards in the future; it
8324 * is only necessary that true be returned for a small
8325 * subset of pmaps for proper page aging.
8326 */
8327 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)8328 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8329 {
8330 struct md_page *pvh;
8331 struct rwlock *lock;
8332 pv_entry_t pv;
8333 int loops = 0;
8334 bool rv;
8335
8336 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8337 ("pmap_page_exists_quick: page %p is not managed", m));
8338 rv = false;
8339 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8340 rw_rlock(lock);
8341 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8342 if (PV_PMAP(pv) == pmap) {
8343 rv = true;
8344 break;
8345 }
8346 loops++;
8347 if (loops >= 16)
8348 break;
8349 }
8350 if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8351 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8352 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8353 if (PV_PMAP(pv) == pmap) {
8354 rv = true;
8355 break;
8356 }
8357 loops++;
8358 if (loops >= 16)
8359 break;
8360 }
8361 }
8362 rw_runlock(lock);
8363 return (rv);
8364 }
8365
8366 /*
8367 * pmap_page_wired_mappings:
8368 *
8369 * Return the number of managed mappings to the given physical page
8370 * that are wired.
8371 */
8372 int
pmap_page_wired_mappings(vm_page_t m)8373 pmap_page_wired_mappings(vm_page_t m)
8374 {
8375 struct rwlock *lock;
8376 struct md_page *pvh;
8377 pmap_t pmap;
8378 pt_entry_t *pte;
8379 pv_entry_t pv;
8380 int count, md_gen, pvh_gen;
8381
8382 if ((m->oflags & VPO_UNMANAGED) != 0)
8383 return (0);
8384 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8385 rw_rlock(lock);
8386 restart:
8387 count = 0;
8388 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8389 pmap = PV_PMAP(pv);
8390 if (!PMAP_TRYLOCK(pmap)) {
8391 md_gen = m->md.pv_gen;
8392 rw_runlock(lock);
8393 PMAP_LOCK(pmap);
8394 rw_rlock(lock);
8395 if (md_gen != m->md.pv_gen) {
8396 PMAP_UNLOCK(pmap);
8397 goto restart;
8398 }
8399 }
8400 pte = pmap_pte(pmap, pv->pv_va);
8401 if ((*pte & PG_W) != 0)
8402 count++;
8403 PMAP_UNLOCK(pmap);
8404 }
8405 if ((m->flags & PG_FICTITIOUS) == 0) {
8406 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8407 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8408 pmap = PV_PMAP(pv);
8409 if (!PMAP_TRYLOCK(pmap)) {
8410 md_gen = m->md.pv_gen;
8411 pvh_gen = pvh->pv_gen;
8412 rw_runlock(lock);
8413 PMAP_LOCK(pmap);
8414 rw_rlock(lock);
8415 if (md_gen != m->md.pv_gen ||
8416 pvh_gen != pvh->pv_gen) {
8417 PMAP_UNLOCK(pmap);
8418 goto restart;
8419 }
8420 }
8421 pte = pmap_pde(pmap, pv->pv_va);
8422 if ((*pte & PG_W) != 0)
8423 count++;
8424 PMAP_UNLOCK(pmap);
8425 }
8426 }
8427 rw_runlock(lock);
8428 return (count);
8429 }
8430
8431 /*
8432 * Returns true if the given page is mapped individually or as part of
8433 * a 2mpage. Otherwise, returns false.
8434 */
8435 bool
pmap_page_is_mapped(vm_page_t m)8436 pmap_page_is_mapped(vm_page_t m)
8437 {
8438 struct rwlock *lock;
8439 bool rv;
8440
8441 if ((m->oflags & VPO_UNMANAGED) != 0)
8442 return (false);
8443 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8444 rw_rlock(lock);
8445 rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8446 ((m->flags & PG_FICTITIOUS) == 0 &&
8447 !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8448 rw_runlock(lock);
8449 return (rv);
8450 }
8451
8452 /*
8453 * Destroy all managed, non-wired mappings in the given user-space
8454 * pmap. This pmap cannot be active on any processor besides the
8455 * caller.
8456 *
8457 * This function cannot be applied to the kernel pmap. Moreover, it
8458 * is not intended for general use. It is only to be used during
8459 * process termination. Consequently, it can be implemented in ways
8460 * that make it faster than pmap_remove(). First, it can more quickly
8461 * destroy mappings by iterating over the pmap's collection of PV
8462 * entries, rather than searching the page table. Second, it doesn't
8463 * have to test and clear the page table entries atomically, because
8464 * no processor is currently accessing the user address space. In
8465 * particular, a page table entry's dirty bit won't change state once
8466 * this function starts.
8467 *
8468 * Although this function destroys all of the pmap's managed,
8469 * non-wired mappings, it can delay and batch the invalidation of TLB
8470 * entries without calling pmap_delayed_invl_start() and
8471 * pmap_delayed_invl_finish(). Because the pmap is not active on
8472 * any other processor, none of these TLB entries will ever be used
8473 * before their eventual invalidation. Consequently, there is no need
8474 * for either pmap_remove_all() or pmap_remove_write() to wait for
8475 * that eventual TLB invalidation.
8476 */
8477 void
pmap_remove_pages(pmap_t pmap)8478 pmap_remove_pages(pmap_t pmap)
8479 {
8480 pd_entry_t ptepde;
8481 pt_entry_t *pte, tpte;
8482 pt_entry_t PG_M, PG_RW, PG_V;
8483 struct spglist free;
8484 struct pv_chunklist free_chunks[PMAP_MEMDOM];
8485 vm_page_t m, mpte, mt;
8486 pv_entry_t pv;
8487 struct md_page *pvh;
8488 struct pv_chunk *pc, *npc;
8489 struct rwlock *lock;
8490 int64_t bit;
8491 uint64_t inuse, bitmask;
8492 int allfree, field, i, idx;
8493 #ifdef PV_STATS
8494 int freed;
8495 #endif
8496 bool superpage;
8497 vm_paddr_t pa;
8498
8499 /*
8500 * Assert that the given pmap is only active on the current
8501 * CPU. Unfortunately, we cannot block another CPU from
8502 * activating the pmap while this function is executing.
8503 */
8504 KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8505 #ifdef INVARIANTS
8506 {
8507 cpuset_t other_cpus;
8508
8509 other_cpus = all_cpus;
8510 critical_enter();
8511 CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8512 CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8513 critical_exit();
8514 KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8515 }
8516 #endif
8517
8518 lock = NULL;
8519 PG_M = pmap_modified_bit(pmap);
8520 PG_V = pmap_valid_bit(pmap);
8521 PG_RW = pmap_rw_bit(pmap);
8522
8523 for (i = 0; i < PMAP_MEMDOM; i++)
8524 TAILQ_INIT(&free_chunks[i]);
8525 SLIST_INIT(&free);
8526 PMAP_LOCK(pmap);
8527 TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8528 allfree = 1;
8529 #ifdef PV_STATS
8530 freed = 0;
8531 #endif
8532 for (field = 0; field < _NPCM; field++) {
8533 inuse = ~pc->pc_map[field] & pc_freemask[field];
8534 while (inuse != 0) {
8535 bit = bsfq(inuse);
8536 bitmask = 1UL << bit;
8537 idx = field * 64 + bit;
8538 pv = &pc->pc_pventry[idx];
8539 inuse &= ~bitmask;
8540
8541 pte = pmap_pdpe(pmap, pv->pv_va);
8542 ptepde = *pte;
8543 pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8544 tpte = *pte;
8545 if ((tpte & (PG_PS | PG_V)) == PG_V) {
8546 superpage = false;
8547 ptepde = tpte;
8548 pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8549 PG_FRAME);
8550 pte = &pte[pmap_pte_index(pv->pv_va)];
8551 tpte = *pte;
8552 } else {
8553 /*
8554 * Keep track whether 'tpte' is a
8555 * superpage explicitly instead of
8556 * relying on PG_PS being set.
8557 *
8558 * This is because PG_PS is numerically
8559 * identical to PG_PTE_PAT and thus a
8560 * regular page could be mistaken for
8561 * a superpage.
8562 */
8563 superpage = true;
8564 }
8565
8566 if ((tpte & PG_V) == 0) {
8567 panic("bad pte va %lx pte %lx",
8568 pv->pv_va, tpte);
8569 }
8570
8571 /*
8572 * We cannot remove wired pages from a process' mapping at this time
8573 */
8574 if (tpte & PG_W) {
8575 allfree = 0;
8576 continue;
8577 }
8578
8579 /* Mark free */
8580 pc->pc_map[field] |= bitmask;
8581
8582 /*
8583 * Because this pmap is not active on other
8584 * processors, the dirty bit cannot have
8585 * changed state since we last loaded pte.
8586 */
8587 pte_clear(pte);
8588
8589 if (superpage)
8590 pa = tpte & PG_PS_FRAME;
8591 else
8592 pa = tpte & PG_FRAME;
8593
8594 m = PHYS_TO_VM_PAGE(pa);
8595 KASSERT(m->phys_addr == pa,
8596 ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8597 m, (uintmax_t)m->phys_addr,
8598 (uintmax_t)tpte));
8599
8600 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8601 m < &vm_page_array[vm_page_array_size],
8602 ("pmap_remove_pages: bad tpte %#jx",
8603 (uintmax_t)tpte));
8604
8605 /*
8606 * Update the vm_page_t clean/reference bits.
8607 */
8608 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8609 if (superpage) {
8610 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8611 vm_page_dirty(mt);
8612 } else
8613 vm_page_dirty(m);
8614 }
8615
8616 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8617
8618 if (superpage) {
8619 pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8620 pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8621 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8622 pvh->pv_gen++;
8623 if (TAILQ_EMPTY(&pvh->pv_list)) {
8624 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8625 if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8626 TAILQ_EMPTY(&mt->md.pv_list))
8627 vm_page_aflag_clear(mt, PGA_WRITEABLE);
8628 }
8629 mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8630 if (mpte != NULL) {
8631 KASSERT(vm_page_any_valid(mpte),
8632 ("pmap_remove_pages: pte page not promoted"));
8633 pmap_pt_page_count_adj(pmap, -1);
8634 KASSERT(mpte->ref_count == NPTEPG,
8635 ("pmap_remove_pages: pte page reference count error"));
8636 mpte->ref_count = 0;
8637 pmap_add_delayed_free_list(mpte, &free, false);
8638 }
8639 } else {
8640 pmap_resident_count_adj(pmap, -1);
8641 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8642 m->md.pv_gen++;
8643 if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8644 TAILQ_EMPTY(&m->md.pv_list) &&
8645 (m->flags & PG_FICTITIOUS) == 0) {
8646 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8647 if (TAILQ_EMPTY(&pvh->pv_list))
8648 vm_page_aflag_clear(m, PGA_WRITEABLE);
8649 }
8650 }
8651 pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8652 #ifdef PV_STATS
8653 freed++;
8654 #endif
8655 }
8656 }
8657 PV_STAT(counter_u64_add(pv_entry_frees, freed));
8658 PV_STAT(counter_u64_add(pv_entry_spare, freed));
8659 PV_STAT(counter_u64_add(pv_entry_count, -freed));
8660 if (allfree) {
8661 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8662 TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8663 }
8664 }
8665 if (lock != NULL)
8666 rw_wunlock(lock);
8667 pmap_invalidate_all(pmap);
8668 pmap_pkru_deassign_all(pmap);
8669 free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8670 PMAP_UNLOCK(pmap);
8671 vm_page_free_pages_toq(&free, true);
8672 }
8673
8674 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)8675 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
8676 {
8677 struct rwlock *lock;
8678 pv_entry_t pv;
8679 struct md_page *pvh;
8680 pt_entry_t *pte, mask;
8681 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8682 pmap_t pmap;
8683 int md_gen, pvh_gen;
8684 bool rv;
8685
8686 rv = false;
8687 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8688 rw_rlock(lock);
8689 restart:
8690 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8691 pmap = PV_PMAP(pv);
8692 if (!PMAP_TRYLOCK(pmap)) {
8693 md_gen = m->md.pv_gen;
8694 rw_runlock(lock);
8695 PMAP_LOCK(pmap);
8696 rw_rlock(lock);
8697 if (md_gen != m->md.pv_gen) {
8698 PMAP_UNLOCK(pmap);
8699 goto restart;
8700 }
8701 }
8702 pte = pmap_pte(pmap, pv->pv_va);
8703 mask = 0;
8704 if (modified) {
8705 PG_M = pmap_modified_bit(pmap);
8706 PG_RW = pmap_rw_bit(pmap);
8707 mask |= PG_RW | PG_M;
8708 }
8709 if (accessed) {
8710 PG_A = pmap_accessed_bit(pmap);
8711 PG_V = pmap_valid_bit(pmap);
8712 mask |= PG_V | PG_A;
8713 }
8714 rv = (*pte & mask) == mask;
8715 PMAP_UNLOCK(pmap);
8716 if (rv)
8717 goto out;
8718 }
8719 if ((m->flags & PG_FICTITIOUS) == 0) {
8720 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8721 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8722 pmap = PV_PMAP(pv);
8723 if (!PMAP_TRYLOCK(pmap)) {
8724 md_gen = m->md.pv_gen;
8725 pvh_gen = pvh->pv_gen;
8726 rw_runlock(lock);
8727 PMAP_LOCK(pmap);
8728 rw_rlock(lock);
8729 if (md_gen != m->md.pv_gen ||
8730 pvh_gen != pvh->pv_gen) {
8731 PMAP_UNLOCK(pmap);
8732 goto restart;
8733 }
8734 }
8735 pte = pmap_pde(pmap, pv->pv_va);
8736 mask = 0;
8737 if (modified) {
8738 PG_M = pmap_modified_bit(pmap);
8739 PG_RW = pmap_rw_bit(pmap);
8740 mask |= PG_RW | PG_M;
8741 }
8742 if (accessed) {
8743 PG_A = pmap_accessed_bit(pmap);
8744 PG_V = pmap_valid_bit(pmap);
8745 mask |= PG_V | PG_A;
8746 }
8747 rv = (*pte & mask) == mask;
8748 PMAP_UNLOCK(pmap);
8749 if (rv)
8750 goto out;
8751 }
8752 }
8753 out:
8754 rw_runlock(lock);
8755 return (rv);
8756 }
8757
8758 /*
8759 * pmap_is_modified:
8760 *
8761 * Return whether or not the specified physical page was modified
8762 * in any physical maps.
8763 */
8764 bool
pmap_is_modified(vm_page_t m)8765 pmap_is_modified(vm_page_t m)
8766 {
8767
8768 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8769 ("pmap_is_modified: page %p is not managed", m));
8770
8771 /*
8772 * If the page is not busied then this check is racy.
8773 */
8774 if (!pmap_page_is_write_mapped(m))
8775 return (false);
8776 return (pmap_page_test_mappings(m, false, true));
8777 }
8778
8779 /*
8780 * pmap_is_prefaultable:
8781 *
8782 * Return whether or not the specified virtual address is eligible
8783 * for prefault.
8784 */
8785 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)8786 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8787 {
8788 pd_entry_t *pde;
8789 pt_entry_t *pte, PG_V;
8790 bool rv;
8791
8792 PG_V = pmap_valid_bit(pmap);
8793
8794 /*
8795 * Return true if and only if the PTE for the specified virtual
8796 * address is allocated but invalid.
8797 */
8798 rv = false;
8799 PMAP_LOCK(pmap);
8800 pde = pmap_pde(pmap, addr);
8801 if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8802 pte = pmap_pde_to_pte(pde, addr);
8803 rv = (*pte & PG_V) == 0;
8804 }
8805 PMAP_UNLOCK(pmap);
8806 return (rv);
8807 }
8808
8809 /*
8810 * pmap_is_referenced:
8811 *
8812 * Return whether or not the specified physical page was referenced
8813 * in any physical maps.
8814 */
8815 bool
pmap_is_referenced(vm_page_t m)8816 pmap_is_referenced(vm_page_t m)
8817 {
8818
8819 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8820 ("pmap_is_referenced: page %p is not managed", m));
8821 return (pmap_page_test_mappings(m, true, false));
8822 }
8823
8824 /*
8825 * Clear the write and modified bits in each of the given page's mappings.
8826 */
8827 void
pmap_remove_write(vm_page_t m)8828 pmap_remove_write(vm_page_t m)
8829 {
8830 struct md_page *pvh;
8831 pmap_t pmap;
8832 struct rwlock *lock;
8833 pv_entry_t next_pv, pv;
8834 pd_entry_t *pde;
8835 pt_entry_t oldpte, *pte, PG_M, PG_RW;
8836 vm_offset_t va;
8837 int pvh_gen, md_gen;
8838
8839 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8840 ("pmap_remove_write: page %p is not managed", m));
8841
8842 vm_page_assert_busied(m);
8843 if (!pmap_page_is_write_mapped(m))
8844 return;
8845
8846 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8847 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8848 pa_to_pvh(VM_PAGE_TO_PHYS(m));
8849 rw_wlock(lock);
8850 retry:
8851 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8852 pmap = PV_PMAP(pv);
8853 if (!PMAP_TRYLOCK(pmap)) {
8854 pvh_gen = pvh->pv_gen;
8855 rw_wunlock(lock);
8856 PMAP_LOCK(pmap);
8857 rw_wlock(lock);
8858 if (pvh_gen != pvh->pv_gen) {
8859 PMAP_UNLOCK(pmap);
8860 goto retry;
8861 }
8862 }
8863 PG_RW = pmap_rw_bit(pmap);
8864 va = pv->pv_va;
8865 pde = pmap_pde(pmap, va);
8866 if ((*pde & PG_RW) != 0)
8867 (void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8868 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8869 ("inconsistent pv lock %p %p for page %p",
8870 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8871 PMAP_UNLOCK(pmap);
8872 }
8873 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8874 pmap = PV_PMAP(pv);
8875 if (!PMAP_TRYLOCK(pmap)) {
8876 pvh_gen = pvh->pv_gen;
8877 md_gen = m->md.pv_gen;
8878 rw_wunlock(lock);
8879 PMAP_LOCK(pmap);
8880 rw_wlock(lock);
8881 if (pvh_gen != pvh->pv_gen ||
8882 md_gen != m->md.pv_gen) {
8883 PMAP_UNLOCK(pmap);
8884 goto retry;
8885 }
8886 }
8887 PG_M = pmap_modified_bit(pmap);
8888 PG_RW = pmap_rw_bit(pmap);
8889 pde = pmap_pde(pmap, pv->pv_va);
8890 KASSERT((*pde & PG_PS) == 0,
8891 ("pmap_remove_write: found a 2mpage in page %p's pv list",
8892 m));
8893 pte = pmap_pde_to_pte(pde, pv->pv_va);
8894 oldpte = *pte;
8895 if (oldpte & PG_RW) {
8896 while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8897 ~(PG_RW | PG_M)))
8898 cpu_spinwait();
8899 if ((oldpte & PG_M) != 0)
8900 vm_page_dirty(m);
8901 pmap_invalidate_page(pmap, pv->pv_va);
8902 }
8903 PMAP_UNLOCK(pmap);
8904 }
8905 rw_wunlock(lock);
8906 vm_page_aflag_clear(m, PGA_WRITEABLE);
8907 pmap_delayed_invl_wait(m);
8908 }
8909
8910 /*
8911 * pmap_ts_referenced:
8912 *
8913 * Return a count of reference bits for a page, clearing those bits.
8914 * It is not necessary for every reference bit to be cleared, but it
8915 * is necessary that 0 only be returned when there are truly no
8916 * reference bits set.
8917 *
8918 * As an optimization, update the page's dirty field if a modified bit is
8919 * found while counting reference bits. This opportunistic update can be
8920 * performed at low cost and can eliminate the need for some future calls
8921 * to pmap_is_modified(). However, since this function stops after
8922 * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8923 * dirty pages. Those dirty pages will only be detected by a future call
8924 * to pmap_is_modified().
8925 *
8926 * A DI block is not needed within this function, because
8927 * invalidations are performed before the PV list lock is
8928 * released.
8929 */
8930 int
pmap_ts_referenced(vm_page_t m)8931 pmap_ts_referenced(vm_page_t m)
8932 {
8933 struct md_page *pvh;
8934 pv_entry_t pv, pvf;
8935 pmap_t pmap;
8936 struct rwlock *lock;
8937 pd_entry_t oldpde, *pde;
8938 pt_entry_t *pte, PG_A, PG_M, PG_RW;
8939 vm_offset_t va;
8940 vm_paddr_t pa;
8941 int cleared, md_gen, not_cleared, pvh_gen;
8942 struct spglist free;
8943 bool demoted;
8944
8945 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8946 ("pmap_ts_referenced: page %p is not managed", m));
8947 SLIST_INIT(&free);
8948 cleared = 0;
8949 pa = VM_PAGE_TO_PHYS(m);
8950 lock = PHYS_TO_PV_LIST_LOCK(pa);
8951 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
8952 rw_wlock(lock);
8953 retry:
8954 not_cleared = 0;
8955 if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
8956 goto small_mappings;
8957 pv = pvf;
8958 do {
8959 if (pvf == NULL)
8960 pvf = pv;
8961 pmap = PV_PMAP(pv);
8962 if (!PMAP_TRYLOCK(pmap)) {
8963 pvh_gen = pvh->pv_gen;
8964 rw_wunlock(lock);
8965 PMAP_LOCK(pmap);
8966 rw_wlock(lock);
8967 if (pvh_gen != pvh->pv_gen) {
8968 PMAP_UNLOCK(pmap);
8969 goto retry;
8970 }
8971 }
8972 PG_A = pmap_accessed_bit(pmap);
8973 PG_M = pmap_modified_bit(pmap);
8974 PG_RW = pmap_rw_bit(pmap);
8975 va = pv->pv_va;
8976 pde = pmap_pde(pmap, pv->pv_va);
8977 oldpde = *pde;
8978 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8979 /*
8980 * Although "oldpde" is mapping a 2MB page, because
8981 * this function is called at a 4KB page granularity,
8982 * we only update the 4KB page under test.
8983 */
8984 vm_page_dirty(m);
8985 }
8986 if ((oldpde & PG_A) != 0) {
8987 /*
8988 * Since this reference bit is shared by 512 4KB
8989 * pages, it should not be cleared every time it is
8990 * tested. Apply a simple "hash" function on the
8991 * physical page number, the virtual superpage number,
8992 * and the pmap address to select one 4KB page out of
8993 * the 512 on which testing the reference bit will
8994 * result in clearing that reference bit. This
8995 * function is designed to avoid the selection of the
8996 * same 4KB page for every 2MB page mapping.
8997 *
8998 * On demotion, a mapping that hasn't been referenced
8999 * is simply destroyed. To avoid the possibility of a
9000 * subsequent page fault on a demoted wired mapping,
9001 * always leave its reference bit set. Moreover,
9002 * since the superpage is wired, the current state of
9003 * its reference bit won't affect page replacement.
9004 */
9005 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
9006 (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
9007 (oldpde & PG_W) == 0) {
9008 if (safe_to_clear_referenced(pmap, oldpde)) {
9009 atomic_clear_long(pde, PG_A);
9010 pmap_invalidate_page(pmap, pv->pv_va);
9011 demoted = false;
9012 } else if (pmap_demote_pde_locked(pmap, pde,
9013 pv->pv_va, &lock)) {
9014 /*
9015 * Remove the mapping to a single page
9016 * so that a subsequent access may
9017 * repromote. Since the underlying
9018 * page table page is fully populated,
9019 * this removal never frees a page
9020 * table page.
9021 */
9022 demoted = true;
9023 va += VM_PAGE_TO_PHYS(m) - (oldpde &
9024 PG_PS_FRAME);
9025 pte = pmap_pde_to_pte(pde, va);
9026 pmap_remove_pte(pmap, pte, va, *pde,
9027 NULL, &lock);
9028 pmap_invalidate_page(pmap, va);
9029 } else
9030 demoted = true;
9031
9032 if (demoted) {
9033 /*
9034 * The superpage mapping was removed
9035 * entirely and therefore 'pv' is no
9036 * longer valid.
9037 */
9038 if (pvf == pv)
9039 pvf = NULL;
9040 pv = NULL;
9041 }
9042 cleared++;
9043 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9044 ("inconsistent pv lock %p %p for page %p",
9045 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9046 } else
9047 not_cleared++;
9048 }
9049 PMAP_UNLOCK(pmap);
9050 /* Rotate the PV list if it has more than one entry. */
9051 if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9052 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
9053 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
9054 pvh->pv_gen++;
9055 }
9056 if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
9057 goto out;
9058 } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
9059 small_mappings:
9060 if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
9061 goto out;
9062 pv = pvf;
9063 do {
9064 if (pvf == NULL)
9065 pvf = pv;
9066 pmap = PV_PMAP(pv);
9067 if (!PMAP_TRYLOCK(pmap)) {
9068 pvh_gen = pvh->pv_gen;
9069 md_gen = m->md.pv_gen;
9070 rw_wunlock(lock);
9071 PMAP_LOCK(pmap);
9072 rw_wlock(lock);
9073 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9074 PMAP_UNLOCK(pmap);
9075 goto retry;
9076 }
9077 }
9078 PG_A = pmap_accessed_bit(pmap);
9079 PG_M = pmap_modified_bit(pmap);
9080 PG_RW = pmap_rw_bit(pmap);
9081 pde = pmap_pde(pmap, pv->pv_va);
9082 KASSERT((*pde & PG_PS) == 0,
9083 ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
9084 m));
9085 pte = pmap_pde_to_pte(pde, pv->pv_va);
9086 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9087 vm_page_dirty(m);
9088 if ((*pte & PG_A) != 0) {
9089 if (safe_to_clear_referenced(pmap, *pte)) {
9090 atomic_clear_long(pte, PG_A);
9091 pmap_invalidate_page(pmap, pv->pv_va);
9092 cleared++;
9093 } else if ((*pte & PG_W) == 0) {
9094 /*
9095 * Wired pages cannot be paged out so
9096 * doing accessed bit emulation for
9097 * them is wasted effort. We do the
9098 * hard work for unwired pages only.
9099 */
9100 pmap_remove_pte(pmap, pte, pv->pv_va,
9101 *pde, &free, &lock);
9102 pmap_invalidate_page(pmap, pv->pv_va);
9103 cleared++;
9104 if (pvf == pv)
9105 pvf = NULL;
9106 pv = NULL;
9107 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9108 ("inconsistent pv lock %p %p for page %p",
9109 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9110 } else
9111 not_cleared++;
9112 }
9113 PMAP_UNLOCK(pmap);
9114 /* Rotate the PV list if it has more than one entry. */
9115 if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9116 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9117 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9118 m->md.pv_gen++;
9119 }
9120 } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9121 not_cleared < PMAP_TS_REFERENCED_MAX);
9122 out:
9123 rw_wunlock(lock);
9124 vm_page_free_pages_toq(&free, true);
9125 return (cleared + not_cleared);
9126 }
9127
9128 /*
9129 * Apply the given advice to the specified range of addresses within the
9130 * given pmap. Depending on the advice, clear the referenced and/or
9131 * modified flags in each mapping and set the mapped page's dirty field.
9132 */
9133 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)9134 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9135 {
9136 struct rwlock *lock;
9137 pml4_entry_t *pml4e;
9138 pdp_entry_t *pdpe;
9139 pd_entry_t oldpde, *pde;
9140 pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9141 vm_offset_t va, va_next;
9142 vm_page_t m;
9143 bool anychanged;
9144
9145 if (advice != MADV_DONTNEED && advice != MADV_FREE)
9146 return;
9147
9148 /*
9149 * A/D bit emulation requires an alternate code path when clearing
9150 * the modified and accessed bits below. Since this function is
9151 * advisory in nature we skip it entirely for pmaps that require
9152 * A/D bit emulation.
9153 */
9154 if (pmap_emulate_ad_bits(pmap))
9155 return;
9156
9157 PG_A = pmap_accessed_bit(pmap);
9158 PG_G = pmap_global_bit(pmap);
9159 PG_M = pmap_modified_bit(pmap);
9160 PG_V = pmap_valid_bit(pmap);
9161 PG_RW = pmap_rw_bit(pmap);
9162 anychanged = false;
9163 pmap_delayed_invl_start();
9164 PMAP_LOCK(pmap);
9165 for (; sva < eva; sva = va_next) {
9166 pml4e = pmap_pml4e(pmap, sva);
9167 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9168 va_next = (sva + NBPML4) & ~PML4MASK;
9169 if (va_next < sva)
9170 va_next = eva;
9171 continue;
9172 }
9173
9174 va_next = (sva + NBPDP) & ~PDPMASK;
9175 if (va_next < sva)
9176 va_next = eva;
9177 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9178 if ((*pdpe & PG_V) == 0)
9179 continue;
9180 if ((*pdpe & PG_PS) != 0)
9181 continue;
9182
9183 va_next = (sva + NBPDR) & ~PDRMASK;
9184 if (va_next < sva)
9185 va_next = eva;
9186 pde = pmap_pdpe_to_pde(pdpe, sva);
9187 oldpde = *pde;
9188 if ((oldpde & PG_V) == 0)
9189 continue;
9190 else if ((oldpde & PG_PS) != 0) {
9191 if ((oldpde & PG_MANAGED) == 0)
9192 continue;
9193 lock = NULL;
9194 if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9195 if (lock != NULL)
9196 rw_wunlock(lock);
9197
9198 /*
9199 * The large page mapping was destroyed.
9200 */
9201 continue;
9202 }
9203
9204 /*
9205 * Unless the page mappings are wired, remove the
9206 * mapping to a single page so that a subsequent
9207 * access may repromote. Choosing the last page
9208 * within the address range [sva, min(va_next, eva))
9209 * generally results in more repromotions. Since the
9210 * underlying page table page is fully populated, this
9211 * removal never frees a page table page.
9212 */
9213 if ((oldpde & PG_W) == 0) {
9214 va = eva;
9215 if (va > va_next)
9216 va = va_next;
9217 va -= PAGE_SIZE;
9218 KASSERT(va >= sva,
9219 ("pmap_advise: no address gap"));
9220 pte = pmap_pde_to_pte(pde, va);
9221 KASSERT((*pte & PG_V) != 0,
9222 ("pmap_advise: invalid PTE"));
9223 pmap_remove_pte(pmap, pte, va, *pde, NULL,
9224 &lock);
9225 anychanged = true;
9226 }
9227 if (lock != NULL)
9228 rw_wunlock(lock);
9229 }
9230 if (va_next > eva)
9231 va_next = eva;
9232 va = va_next;
9233 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9234 sva += PAGE_SIZE) {
9235 if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9236 goto maybe_invlrng;
9237 else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9238 if (advice == MADV_DONTNEED) {
9239 /*
9240 * Future calls to pmap_is_modified()
9241 * can be avoided by making the page
9242 * dirty now.
9243 */
9244 m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9245 vm_page_dirty(m);
9246 }
9247 atomic_clear_long(pte, PG_M | PG_A);
9248 } else if ((*pte & PG_A) != 0)
9249 atomic_clear_long(pte, PG_A);
9250 else
9251 goto maybe_invlrng;
9252
9253 if ((*pte & PG_G) != 0) {
9254 if (va == va_next)
9255 va = sva;
9256 } else
9257 anychanged = true;
9258 continue;
9259 maybe_invlrng:
9260 if (va != va_next) {
9261 pmap_invalidate_range(pmap, va, sva);
9262 va = va_next;
9263 }
9264 }
9265 if (va != va_next)
9266 pmap_invalidate_range(pmap, va, sva);
9267 }
9268 if (anychanged)
9269 pmap_invalidate_all(pmap);
9270 PMAP_UNLOCK(pmap);
9271 pmap_delayed_invl_finish();
9272 }
9273
9274 /*
9275 * Clear the modify bits on the specified physical page.
9276 */
9277 void
pmap_clear_modify(vm_page_t m)9278 pmap_clear_modify(vm_page_t m)
9279 {
9280 struct md_page *pvh;
9281 pmap_t pmap;
9282 pv_entry_t next_pv, pv;
9283 pd_entry_t oldpde, *pde;
9284 pt_entry_t *pte, PG_M, PG_RW;
9285 struct rwlock *lock;
9286 vm_offset_t va;
9287 int md_gen, pvh_gen;
9288
9289 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9290 ("pmap_clear_modify: page %p is not managed", m));
9291 vm_page_assert_busied(m);
9292
9293 if (!pmap_page_is_write_mapped(m))
9294 return;
9295 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9296 pa_to_pvh(VM_PAGE_TO_PHYS(m));
9297 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9298 rw_wlock(lock);
9299 restart:
9300 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9301 pmap = PV_PMAP(pv);
9302 if (!PMAP_TRYLOCK(pmap)) {
9303 pvh_gen = pvh->pv_gen;
9304 rw_wunlock(lock);
9305 PMAP_LOCK(pmap);
9306 rw_wlock(lock);
9307 if (pvh_gen != pvh->pv_gen) {
9308 PMAP_UNLOCK(pmap);
9309 goto restart;
9310 }
9311 }
9312 PG_M = pmap_modified_bit(pmap);
9313 PG_RW = pmap_rw_bit(pmap);
9314 va = pv->pv_va;
9315 pde = pmap_pde(pmap, va);
9316 oldpde = *pde;
9317 /* If oldpde has PG_RW set, then it also has PG_M set. */
9318 if ((oldpde & PG_RW) != 0 &&
9319 pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9320 (oldpde & PG_W) == 0) {
9321 /*
9322 * Write protect the mapping to a single page so that
9323 * a subsequent write access may repromote.
9324 */
9325 va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9326 pte = pmap_pde_to_pte(pde, va);
9327 atomic_clear_long(pte, PG_M | PG_RW);
9328 vm_page_dirty(m);
9329 pmap_invalidate_page(pmap, va);
9330 }
9331 PMAP_UNLOCK(pmap);
9332 }
9333 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9334 pmap = PV_PMAP(pv);
9335 if (!PMAP_TRYLOCK(pmap)) {
9336 md_gen = m->md.pv_gen;
9337 pvh_gen = pvh->pv_gen;
9338 rw_wunlock(lock);
9339 PMAP_LOCK(pmap);
9340 rw_wlock(lock);
9341 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9342 PMAP_UNLOCK(pmap);
9343 goto restart;
9344 }
9345 }
9346 PG_M = pmap_modified_bit(pmap);
9347 PG_RW = pmap_rw_bit(pmap);
9348 pde = pmap_pde(pmap, pv->pv_va);
9349 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9350 " a 2mpage in page %p's pv list", m));
9351 pte = pmap_pde_to_pte(pde, pv->pv_va);
9352 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9353 atomic_clear_long(pte, PG_M);
9354 pmap_invalidate_page(pmap, pv->pv_va);
9355 }
9356 PMAP_UNLOCK(pmap);
9357 }
9358 rw_wunlock(lock);
9359 }
9360
9361 /*
9362 * Miscellaneous support routines follow
9363 */
9364
9365 /* Adjust the properties for a leaf page table entry. */
9366 static __inline void
pmap_pte_props(pt_entry_t * pte,u_long bits,u_long mask)9367 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9368 {
9369 u_long opte, npte;
9370
9371 opte = *(u_long *)pte;
9372 do {
9373 npte = opte & ~mask;
9374 npte |= bits;
9375 } while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9376 npte));
9377 }
9378
9379 /*
9380 * Map a set of physical memory pages into the kernel virtual
9381 * address space. Return a pointer to where it is mapped. This
9382 * routine is intended to be used for mapping device memory,
9383 * NOT real memory.
9384 */
9385 static void *
pmap_mapdev_internal(vm_paddr_t pa,vm_size_t size,int mode,int flags)9386 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9387 {
9388 struct pmap_preinit_mapping *ppim;
9389 vm_offset_t va, offset;
9390 vm_size_t tmpsize;
9391 int i;
9392
9393 offset = pa & PAGE_MASK;
9394 size = round_page(offset + size);
9395 pa = trunc_page(pa);
9396
9397 if (!pmap_initialized) {
9398 va = 0;
9399 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9400 ppim = pmap_preinit_mapping + i;
9401 if (ppim->va == 0) {
9402 ppim->pa = pa;
9403 ppim->sz = size;
9404 ppim->mode = mode;
9405 ppim->va = virtual_avail;
9406 virtual_avail += size;
9407 va = ppim->va;
9408 break;
9409 }
9410 }
9411 if (va == 0)
9412 panic("%s: too many preinit mappings", __func__);
9413 } else {
9414 /*
9415 * If we have a preinit mapping, reuse it.
9416 */
9417 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9418 ppim = pmap_preinit_mapping + i;
9419 if (ppim->pa == pa && ppim->sz == size &&
9420 (ppim->mode == mode ||
9421 (flags & MAPDEV_SETATTR) == 0))
9422 return ((void *)(ppim->va + offset));
9423 }
9424 /*
9425 * If the specified range of physical addresses fits within
9426 * the direct map window, use the direct map.
9427 */
9428 if (pa < dmaplimit && pa + size <= dmaplimit) {
9429 va = PHYS_TO_DMAP(pa);
9430 if ((flags & MAPDEV_SETATTR) != 0) {
9431 PMAP_LOCK(kernel_pmap);
9432 i = pmap_change_props_locked(va, size,
9433 PROT_NONE, mode, flags);
9434 PMAP_UNLOCK(kernel_pmap);
9435 } else
9436 i = 0;
9437 if (!i)
9438 return ((void *)(va + offset));
9439 }
9440 va = kva_alloc(size);
9441 if (va == 0)
9442 panic("%s: Couldn't allocate KVA", __func__);
9443 }
9444 for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9445 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9446 pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9447 if ((flags & MAPDEV_FLUSHCACHE) != 0)
9448 pmap_invalidate_cache_range(va, va + tmpsize);
9449 return ((void *)(va + offset));
9450 }
9451
9452 void *
pmap_mapdev_attr(vm_paddr_t pa,vm_size_t size,int mode)9453 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9454 {
9455
9456 return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9457 MAPDEV_SETATTR));
9458 }
9459
9460 void *
pmap_mapdev(vm_paddr_t pa,vm_size_t size)9461 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9462 {
9463
9464 return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9465 }
9466
9467 void *
pmap_mapdev_pciecfg(vm_paddr_t pa,vm_size_t size)9468 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9469 {
9470
9471 return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9472 MAPDEV_SETATTR));
9473 }
9474
9475 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)9476 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9477 {
9478
9479 return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9480 MAPDEV_FLUSHCACHE));
9481 }
9482
9483 void
pmap_unmapdev(void * p,vm_size_t size)9484 pmap_unmapdev(void *p, vm_size_t size)
9485 {
9486 struct pmap_preinit_mapping *ppim;
9487 vm_offset_t offset, va;
9488 int i;
9489
9490 va = (vm_offset_t)p;
9491
9492 /* If we gave a direct map region in pmap_mapdev, do nothing */
9493 if (va >= kva_layout.dmap_low && va < kva_layout.dmap_high)
9494 return;
9495 offset = va & PAGE_MASK;
9496 size = round_page(offset + size);
9497 va = trunc_page(va);
9498 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9499 ppim = pmap_preinit_mapping + i;
9500 if (ppim->va == va && ppim->sz == size) {
9501 if (pmap_initialized)
9502 return;
9503 ppim->pa = 0;
9504 ppim->va = 0;
9505 ppim->sz = 0;
9506 ppim->mode = 0;
9507 if (va + size == virtual_avail)
9508 virtual_avail = va;
9509 return;
9510 }
9511 }
9512 if (pmap_initialized) {
9513 pmap_qremove(va, atop(size));
9514 kva_free(va, size);
9515 }
9516 }
9517
9518 /*
9519 * Tries to demote a 1GB page mapping.
9520 */
9521 static bool
pmap_demote_pdpe(pmap_t pmap,pdp_entry_t * pdpe,vm_offset_t va,vm_page_t m)9522 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va, vm_page_t m)
9523 {
9524 pdp_entry_t newpdpe, oldpdpe;
9525 pd_entry_t *firstpde, newpde, *pde;
9526 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9527 vm_paddr_t pdpgpa;
9528 vm_page_t pdpg;
9529
9530 PG_A = pmap_accessed_bit(pmap);
9531 PG_M = pmap_modified_bit(pmap);
9532 PG_V = pmap_valid_bit(pmap);
9533 PG_RW = pmap_rw_bit(pmap);
9534
9535 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9536 oldpdpe = *pdpe;
9537 KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9538 ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9539 if (m == NULL) {
9540 pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9541 VM_ALLOC_WIRED);
9542 if (pdpg == NULL) {
9543 CTR2(KTR_PMAP,
9544 "pmap_demote_pdpe: failure for va %#lx in pmap %p",
9545 va, pmap);
9546 return (false);
9547 }
9548 } else {
9549 pdpg = m;
9550 pdpg->pindex = va >> PDPSHIFT;
9551 pmap_pt_page_count_adj(pmap, 1);
9552 }
9553 pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9554 firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9555 newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9556 KASSERT((oldpdpe & PG_A) != 0,
9557 ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9558 KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9559 ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9560 newpde = oldpdpe;
9561
9562 /*
9563 * Initialize the page directory page.
9564 */
9565 for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9566 *pde = newpde;
9567 newpde += NBPDR;
9568 }
9569
9570 /*
9571 * Demote the mapping.
9572 */
9573 *pdpe = newpdpe;
9574
9575 /*
9576 * Invalidate a stale recursive mapping of the page directory page.
9577 */
9578 pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9579
9580 counter_u64_add(pmap_pdpe_demotions, 1);
9581 CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9582 " in pmap %p", va, pmap);
9583 return (true);
9584 }
9585
9586 /*
9587 * Sets the memory attribute for the specified page.
9588 */
9589 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)9590 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9591 {
9592 if (m->md.pat_mode == ma)
9593 return;
9594
9595 m->md.pat_mode = ma;
9596
9597 /*
9598 * If "m" is a normal page, update its direct mapping. This update
9599 * can be relied upon to perform any cache operations that are
9600 * required for data coherence.
9601 */
9602 if ((m->flags & PG_FICTITIOUS) == 0 &&
9603 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9604 m->md.pat_mode))
9605 panic("memory attribute change on the direct map failed");
9606 }
9607
9608 void
pmap_page_set_memattr_noflush(vm_page_t m,vm_memattr_t ma)9609 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9610 {
9611 int error;
9612
9613 if (m->md.pat_mode == ma)
9614 return;
9615
9616 m->md.pat_mode = ma;
9617
9618 if ((m->flags & PG_FICTITIOUS) != 0)
9619 return;
9620 PMAP_LOCK(kernel_pmap);
9621 error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9622 PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9623 PMAP_UNLOCK(kernel_pmap);
9624 if (error != 0)
9625 panic("memory attribute change on the direct map failed");
9626 }
9627
9628 /*
9629 * Changes the specified virtual address range's memory type to that given by
9630 * the parameter "mode". The specified virtual address range must be
9631 * completely contained within either the direct map or the kernel map. If
9632 * the virtual address range is contained within the kernel map, then the
9633 * memory type for each of the corresponding ranges of the direct map is also
9634 * changed. (The corresponding ranges of the direct map are those ranges that
9635 * map the same physical pages as the specified virtual address range.) These
9636 * changes to the direct map are necessary because Intel describes the
9637 * behavior of their processors as "undefined" if two or more mappings to the
9638 * same physical page have different memory types.
9639 *
9640 * Returns zero if the change completed successfully, and either EINVAL or
9641 * ENOMEM if the change failed. Specifically, EINVAL is returned if some part
9642 * of the virtual address range was not mapped, and ENOMEM is returned if
9643 * there was insufficient memory available to complete the change. In the
9644 * latter case, the memory type may have been changed on some part of the
9645 * virtual address range or the direct map.
9646 */
9647 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)9648 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9649 {
9650 int error;
9651
9652 PMAP_LOCK(kernel_pmap);
9653 error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9654 MAPDEV_FLUSHCACHE);
9655 PMAP_UNLOCK(kernel_pmap);
9656 return (error);
9657 }
9658
9659 /*
9660 * Changes the specified virtual address range's protections to those
9661 * specified by "prot". Like pmap_change_attr(), protections for aliases
9662 * in the direct map are updated as well. Protections on aliasing mappings may
9663 * be a subset of the requested protections; for example, mappings in the direct
9664 * map are never executable.
9665 */
9666 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)9667 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9668 {
9669 int error;
9670
9671 /* Only supported within the kernel map. */
9672 if (va < kva_layout.km_low)
9673 return (EINVAL);
9674
9675 PMAP_LOCK(kernel_pmap);
9676 error = pmap_change_props_locked(va, size, prot, -1,
9677 MAPDEV_ASSERTVALID);
9678 PMAP_UNLOCK(kernel_pmap);
9679 return (error);
9680 }
9681
9682 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,int flags)9683 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9684 int mode, int flags)
9685 {
9686 vm_offset_t base, offset, tmpva;
9687 vm_paddr_t pa_start, pa_end, pa_end1;
9688 pdp_entry_t *pdpe;
9689 pd_entry_t *pde, pde_bits, pde_mask;
9690 pt_entry_t *pte, pte_bits, pte_mask;
9691 int error;
9692 bool changed;
9693
9694 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9695 base = trunc_page(va);
9696 offset = va & PAGE_MASK;
9697 size = round_page(offset + size);
9698
9699 /*
9700 * Only supported on kernel virtual addresses, including the direct
9701 * map but excluding the recursive map.
9702 */
9703 if (base < kva_layout.dmap_low)
9704 return (EINVAL);
9705
9706 /*
9707 * Construct our flag sets and masks. "bits" is the subset of
9708 * "mask" that will be set in each modified PTE.
9709 *
9710 * Mappings in the direct map are never allowed to be executable.
9711 */
9712 pde_bits = pte_bits = 0;
9713 pde_mask = pte_mask = 0;
9714 if (mode != -1) {
9715 pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9716 pde_mask |= X86_PG_PDE_CACHE;
9717 pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9718 pte_mask |= X86_PG_PTE_CACHE;
9719 }
9720 if (prot != VM_PROT_NONE) {
9721 if ((prot & VM_PROT_WRITE) != 0) {
9722 pde_bits |= X86_PG_RW;
9723 pte_bits |= X86_PG_RW;
9724 }
9725 if ((prot & VM_PROT_EXECUTE) == 0 ||
9726 va < kva_layout.km_low) {
9727 pde_bits |= pg_nx;
9728 pte_bits |= pg_nx;
9729 }
9730 pde_mask |= X86_PG_RW | pg_nx;
9731 pte_mask |= X86_PG_RW | pg_nx;
9732 }
9733
9734 /*
9735 * Pages that aren't mapped aren't supported. Also break down 2MB pages
9736 * into 4KB pages if required.
9737 */
9738 for (tmpva = base; tmpva < base + size; ) {
9739 pdpe = pmap_pdpe(kernel_pmap, tmpva);
9740 if (pdpe == NULL || *pdpe == 0) {
9741 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9742 ("%s: addr %#lx is not mapped", __func__, tmpva));
9743 return (EINVAL);
9744 }
9745 if (*pdpe & PG_PS) {
9746 /*
9747 * If the current 1GB page already has the required
9748 * properties, then we need not demote this page. Just
9749 * increment tmpva to the next 1GB page frame.
9750 */
9751 if ((*pdpe & pde_mask) == pde_bits) {
9752 tmpva = trunc_1gpage(tmpva) + NBPDP;
9753 continue;
9754 }
9755
9756 /*
9757 * If the current offset aligns with a 1GB page frame
9758 * and there is at least 1GB left within the range, then
9759 * we need not break down this page into 2MB pages.
9760 */
9761 if ((tmpva & PDPMASK) == 0 &&
9762 tmpva + PDPMASK < base + size) {
9763 tmpva += NBPDP;
9764 continue;
9765 }
9766 if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva, NULL))
9767 return (ENOMEM);
9768 }
9769 pde = pmap_pdpe_to_pde(pdpe, tmpva);
9770 if (*pde == 0) {
9771 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9772 ("%s: addr %#lx is not mapped", __func__, tmpva));
9773 return (EINVAL);
9774 }
9775 if (*pde & PG_PS) {
9776 /*
9777 * If the current 2MB page already has the required
9778 * properties, then we need not demote this page. Just
9779 * increment tmpva to the next 2MB page frame.
9780 */
9781 if ((*pde & pde_mask) == pde_bits) {
9782 tmpva = trunc_2mpage(tmpva) + NBPDR;
9783 continue;
9784 }
9785
9786 /*
9787 * If the current offset aligns with a 2MB page frame
9788 * and there is at least 2MB left within the range, then
9789 * we need not break down this page into 4KB pages.
9790 */
9791 if ((tmpva & PDRMASK) == 0 &&
9792 tmpva + PDRMASK < base + size) {
9793 tmpva += NBPDR;
9794 continue;
9795 }
9796 if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9797 return (ENOMEM);
9798 }
9799 pte = pmap_pde_to_pte(pde, tmpva);
9800 if (*pte == 0) {
9801 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9802 ("%s: addr %#lx is not mapped", __func__, tmpva));
9803 return (EINVAL);
9804 }
9805 tmpva += PAGE_SIZE;
9806 }
9807 error = 0;
9808
9809 /*
9810 * Ok, all the pages exist, so run through them updating their
9811 * properties if required.
9812 */
9813 changed = false;
9814 pa_start = pa_end = 0;
9815 for (tmpva = base; tmpva < base + size; ) {
9816 pdpe = pmap_pdpe(kernel_pmap, tmpva);
9817 if (*pdpe & PG_PS) {
9818 if ((*pdpe & pde_mask) != pde_bits) {
9819 pmap_pte_props(pdpe, pde_bits, pde_mask);
9820 changed = true;
9821 }
9822 if (tmpva >= kva_layout.km_low &&
9823 (*pdpe & PG_PS_FRAME) < dmaplimit) {
9824 if (pa_start == pa_end) {
9825 /* Start physical address run. */
9826 pa_start = *pdpe & PG_PS_FRAME;
9827 pa_end = pa_start + NBPDP;
9828 } else if (pa_end == (*pdpe & PG_PS_FRAME))
9829 pa_end += NBPDP;
9830 else {
9831 /* Run ended, update direct map. */
9832 error = pmap_change_props_locked(
9833 PHYS_TO_DMAP(pa_start),
9834 pa_end - pa_start, prot, mode,
9835 flags);
9836 if (error != 0)
9837 break;
9838 /* Start physical address run. */
9839 pa_start = *pdpe & PG_PS_FRAME;
9840 pa_end = pa_start + NBPDP;
9841 }
9842 }
9843 tmpva = trunc_1gpage(tmpva) + NBPDP;
9844 continue;
9845 }
9846 pde = pmap_pdpe_to_pde(pdpe, tmpva);
9847 if (*pde & PG_PS) {
9848 if ((*pde & pde_mask) != pde_bits) {
9849 pmap_pte_props(pde, pde_bits, pde_mask);
9850 changed = true;
9851 }
9852 if (tmpva >= kva_layout.km_low &&
9853 (*pde & PG_PS_FRAME) < dmaplimit) {
9854 if (pa_start == pa_end) {
9855 /* Start physical address run. */
9856 pa_start = *pde & PG_PS_FRAME;
9857 pa_end = pa_start + NBPDR;
9858 } else if (pa_end == (*pde & PG_PS_FRAME))
9859 pa_end += NBPDR;
9860 else {
9861 /* Run ended, update direct map. */
9862 error = pmap_change_props_locked(
9863 PHYS_TO_DMAP(pa_start),
9864 pa_end - pa_start, prot, mode,
9865 flags);
9866 if (error != 0)
9867 break;
9868 /* Start physical address run. */
9869 pa_start = *pde & PG_PS_FRAME;
9870 pa_end = pa_start + NBPDR;
9871 }
9872 }
9873 tmpva = trunc_2mpage(tmpva) + NBPDR;
9874 } else {
9875 pte = pmap_pde_to_pte(pde, tmpva);
9876 if ((*pte & pte_mask) != pte_bits) {
9877 pmap_pte_props(pte, pte_bits, pte_mask);
9878 changed = true;
9879 }
9880 if (tmpva >= kva_layout.km_low &&
9881 (*pte & PG_FRAME) < dmaplimit) {
9882 if (pa_start == pa_end) {
9883 /* Start physical address run. */
9884 pa_start = *pte & PG_FRAME;
9885 pa_end = pa_start + PAGE_SIZE;
9886 } else if (pa_end == (*pte & PG_FRAME))
9887 pa_end += PAGE_SIZE;
9888 else {
9889 /* Run ended, update direct map. */
9890 error = pmap_change_props_locked(
9891 PHYS_TO_DMAP(pa_start),
9892 pa_end - pa_start, prot, mode,
9893 flags);
9894 if (error != 0)
9895 break;
9896 /* Start physical address run. */
9897 pa_start = *pte & PG_FRAME;
9898 pa_end = pa_start + PAGE_SIZE;
9899 }
9900 }
9901 tmpva += PAGE_SIZE;
9902 }
9903 }
9904 if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9905 pa_end1 = MIN(pa_end, dmaplimit);
9906 if (pa_start != pa_end1)
9907 error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9908 pa_end1 - pa_start, prot, mode, flags);
9909 }
9910
9911 /*
9912 * Flush CPU caches if required to make sure any data isn't cached that
9913 * shouldn't be, etc.
9914 */
9915 if (changed) {
9916 pmap_invalidate_range(kernel_pmap, base, tmpva);
9917 if ((flags & MAPDEV_FLUSHCACHE) != 0)
9918 pmap_invalidate_cache_range(base, tmpva);
9919 }
9920 return (error);
9921 }
9922
9923 /*
9924 * Demotes any mapping within the direct map region that covers more
9925 * than the specified range of physical addresses. This range's size
9926 * must be a power of two and its starting address must be a multiple
9927 * of its size, which means that any pdp from the mapping is fully
9928 * covered by the range if len > NBPDP. Since the demotion does not
9929 * change any attributes of the mapping, a TLB invalidation is not
9930 * mandatory. The caller may, however, request a TLB invalidation.
9931 */
9932 void
pmap_demote_DMAP(vm_paddr_t base,vm_size_t len,bool invalidate)9933 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate)
9934 {
9935 pdp_entry_t *pdpe;
9936 pd_entry_t *pde;
9937 vm_offset_t va;
9938 vm_page_t m, mpte;
9939 bool changed, rv __diagused;
9940
9941 if (len == 0)
9942 return;
9943 KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9944 KASSERT((base & (len - 1)) == 0,
9945 ("pmap_demote_DMAP: base is not a multiple of len"));
9946 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "pmap_demote_DMAP");
9947
9948 if (len < NBPDP && base < dmaplimit) {
9949 va = PHYS_TO_DMAP(base);
9950 changed = false;
9951
9952 /*
9953 * Assume that it is fine to sleep there.
9954 * The only existing caller of pmap_demote_DMAP() is the
9955 * x86_mr_split_dmap() function.
9956 */
9957 m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
9958 if (len < NBPDR) {
9959 mpte = vm_page_alloc_noobj(VM_ALLOC_WIRED |
9960 VM_ALLOC_WAITOK);
9961 } else
9962 mpte = NULL;
9963
9964 PMAP_LOCK(kernel_pmap);
9965 pdpe = pmap_pdpe(kernel_pmap, va);
9966 if ((*pdpe & X86_PG_V) == 0)
9967 panic("pmap_demote_DMAP: invalid PDPE");
9968 if ((*pdpe & PG_PS) != 0) {
9969 rv = pmap_demote_pdpe(kernel_pmap, pdpe, va, m);
9970 KASSERT(rv, ("pmap_demote_DMAP: PDPE failed"));
9971 changed = true;
9972 m = NULL;
9973 }
9974 if (len < NBPDR) {
9975 pde = pmap_pdpe_to_pde(pdpe, va);
9976 if ((*pde & X86_PG_V) == 0)
9977 panic("pmap_demote_DMAP: invalid PDE");
9978 if ((*pde & PG_PS) != 0) {
9979 mpte->pindex = pmap_pde_pindex(va);
9980 pmap_pt_page_count_adj(kernel_pmap, 1);
9981 rv = pmap_demote_pde_mpte(kernel_pmap, pde, va,
9982 NULL, mpte);
9983 KASSERT(rv, ("pmap_demote_DMAP: PDE failed"));
9984 changed = true;
9985 mpte = NULL;
9986 }
9987 }
9988 if (changed && invalidate)
9989 pmap_invalidate_page(kernel_pmap, va);
9990 PMAP_UNLOCK(kernel_pmap);
9991 if (m != NULL) {
9992 vm_page_unwire_noq(m);
9993 vm_page_free(m);
9994 }
9995 if (mpte != NULL) {
9996 vm_page_unwire_noq(mpte);
9997 vm_page_free(mpte);
9998 }
9999 }
10000 }
10001
10002 /*
10003 * Perform the pmap work for mincore(2). If the page is not both referenced and
10004 * modified by this pmap, returns its physical address so that the caller can
10005 * find other mappings.
10006 */
10007 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)10008 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
10009 {
10010 pdp_entry_t *pdpe;
10011 pd_entry_t *pdep;
10012 pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
10013 vm_paddr_t pa;
10014 int val;
10015
10016 PG_A = pmap_accessed_bit(pmap);
10017 PG_M = pmap_modified_bit(pmap);
10018 PG_V = pmap_valid_bit(pmap);
10019 PG_RW = pmap_rw_bit(pmap);
10020
10021 PMAP_LOCK(pmap);
10022 pte = 0;
10023 pa = 0;
10024 val = 0;
10025 pdpe = pmap_pdpe(pmap, addr);
10026 if (pdpe == NULL)
10027 goto out;
10028 if ((*pdpe & PG_V) != 0) {
10029 if ((*pdpe & PG_PS) != 0) {
10030 pte = *pdpe;
10031 pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
10032 PG_FRAME;
10033 val = MINCORE_PSIND(2);
10034 } else {
10035 pdep = pmap_pde(pmap, addr);
10036 if (pdep != NULL && (*pdep & PG_V) != 0) {
10037 if ((*pdep & PG_PS) != 0) {
10038 pte = *pdep;
10039 /* Compute the physical address of the 4KB page. */
10040 pa = ((pte & PG_PS_FRAME) | (addr &
10041 PDRMASK)) & PG_FRAME;
10042 val = MINCORE_PSIND(1);
10043 } else {
10044 pte = *pmap_pde_to_pte(pdep, addr);
10045 pa = pte & PG_FRAME;
10046 val = 0;
10047 }
10048 }
10049 }
10050 }
10051 if ((pte & PG_V) != 0) {
10052 val |= MINCORE_INCORE;
10053 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
10054 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
10055 if ((pte & PG_A) != 0)
10056 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
10057 }
10058 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
10059 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
10060 (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
10061 *pap = pa;
10062 }
10063 out:
10064 PMAP_UNLOCK(pmap);
10065 return (val);
10066 }
10067
10068 static uint64_t
pmap_pcid_alloc(pmap_t pmap,struct pmap_pcid * pcidp)10069 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
10070 {
10071 uint32_t gen, new_gen, pcid_next;
10072
10073 CRITICAL_ASSERT(curthread);
10074 gen = PCPU_GET(pcid_gen);
10075 if (pcidp->pm_pcid == PMAP_PCID_KERN)
10076 return (pti ? 0 : CR3_PCID_SAVE);
10077 if (pcidp->pm_gen == gen)
10078 return (CR3_PCID_SAVE);
10079 pcid_next = PCPU_GET(pcid_next);
10080 KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
10081 (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
10082 ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
10083 if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
10084 (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
10085 new_gen = gen + 1;
10086 if (new_gen == 0)
10087 new_gen = 1;
10088 PCPU_SET(pcid_gen, new_gen);
10089 pcid_next = PMAP_PCID_KERN + 1;
10090 } else {
10091 new_gen = gen;
10092 }
10093 pcidp->pm_pcid = pcid_next;
10094 pcidp->pm_gen = new_gen;
10095 PCPU_SET(pcid_next, pcid_next + 1);
10096 return (0);
10097 }
10098
10099 static uint64_t
pmap_pcid_alloc_checked(pmap_t pmap,struct pmap_pcid * pcidp)10100 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
10101 {
10102 uint64_t cached;
10103
10104 cached = pmap_pcid_alloc(pmap, pcidp);
10105 KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
10106 ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10107 KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
10108 ("non-kernel pmap pmap %p cpu %d pcid %#x",
10109 pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10110 return (cached);
10111 }
10112
10113 static void
pmap_activate_sw_pti_post(struct thread * td,pmap_t pmap)10114 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
10115 {
10116
10117 PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
10118 PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
10119 }
10120
10121 static void
pmap_activate_sw_pcid_pti(struct thread * td,pmap_t pmap,u_int cpuid)10122 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
10123 {
10124 pmap_t old_pmap;
10125 struct pmap_pcid *pcidp, *old_pcidp;
10126 uint64_t cached, cr3, kcr3, ucr3;
10127
10128 KASSERT((read_rflags() & PSL_I) == 0,
10129 ("PCID needs interrupts disabled in pmap_activate_sw()"));
10130
10131 /* See the comment in pmap_invalidate_page_pcid(). */
10132 if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
10133 PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
10134 old_pmap = PCPU_GET(curpmap);
10135 MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
10136 old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
10137 old_pcidp->pm_gen = 0;
10138 }
10139
10140 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10141 cached = pmap_pcid_alloc_checked(pmap, pcidp);
10142 cr3 = rcr3();
10143 if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10144 load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
10145 PCPU_SET(curpmap, pmap);
10146 kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
10147 ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
10148
10149 if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10150 PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10151
10152 PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10153 PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10154 if (cached)
10155 counter_u64_add(pcid_save_cnt, 1);
10156
10157 pmap_activate_sw_pti_post(td, pmap);
10158 }
10159
10160 static void
pmap_activate_sw_pcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid)10161 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10162 u_int cpuid)
10163 {
10164 struct pmap_pcid *pcidp;
10165 uint64_t cached, cr3;
10166
10167 KASSERT((read_rflags() & PSL_I) == 0,
10168 ("PCID needs interrupts disabled in pmap_activate_sw()"));
10169
10170 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10171 cached = pmap_pcid_alloc_checked(pmap, pcidp);
10172 cr3 = rcr3();
10173 if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10174 load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
10175 PCPU_SET(curpmap, pmap);
10176 if (cached)
10177 counter_u64_add(pcid_save_cnt, 1);
10178 }
10179
10180 static void
pmap_activate_sw_nopcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid __unused)10181 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10182 u_int cpuid __unused)
10183 {
10184
10185 load_cr3(pmap->pm_cr3);
10186 PCPU_SET(curpmap, pmap);
10187 }
10188
10189 static void
pmap_activate_sw_nopcid_pti(struct thread * td,pmap_t pmap,u_int cpuid __unused)10190 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10191 u_int cpuid __unused)
10192 {
10193
10194 pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10195 PCPU_SET(kcr3, pmap->pm_cr3);
10196 PCPU_SET(ucr3, pmap->pm_ucr3);
10197 pmap_activate_sw_pti_post(td, pmap);
10198 }
10199
10200 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10201 u_int))
10202 {
10203
10204 if (pmap_pcid_enabled && pti)
10205 return (pmap_activate_sw_pcid_pti);
10206 else if (pmap_pcid_enabled && !pti)
10207 return (pmap_activate_sw_pcid_nopti);
10208 else if (!pmap_pcid_enabled && pti)
10209 return (pmap_activate_sw_nopcid_pti);
10210 else /* if (!pmap_pcid_enabled && !pti) */
10211 return (pmap_activate_sw_nopcid_nopti);
10212 }
10213
10214 void
pmap_activate_sw(struct thread * td)10215 pmap_activate_sw(struct thread *td)
10216 {
10217 pmap_t oldpmap, pmap;
10218 u_int cpuid;
10219
10220 oldpmap = PCPU_GET(curpmap);
10221 pmap = vmspace_pmap(td->td_proc->p_vmspace);
10222 if (oldpmap == pmap) {
10223 if (cpu_vendor_id != CPU_VENDOR_INTEL)
10224 mfence();
10225 return;
10226 }
10227 cpuid = PCPU_GET(cpuid);
10228 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10229 pmap_activate_sw_mode(td, pmap, cpuid);
10230 CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10231 }
10232
10233 void
pmap_activate(struct thread * td)10234 pmap_activate(struct thread *td)
10235 {
10236 /*
10237 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10238 * invalidate_all IPI, which checks for curpmap ==
10239 * smp_tlb_pmap. The below sequence of operations has a
10240 * window where %CR3 is loaded with the new pmap's PML4
10241 * address, but the curpmap value has not yet been updated.
10242 * This causes the invltlb IPI handler, which is called
10243 * between the updates, to execute as a NOP, which leaves
10244 * stale TLB entries.
10245 *
10246 * Note that the most common use of pmap_activate_sw(), from
10247 * a context switch, is immune to this race, because
10248 * interrupts are disabled (while the thread lock is owned),
10249 * so the IPI is delayed until after curpmap is updated. Protect
10250 * other callers in a similar way, by disabling interrupts
10251 * around the %cr3 register reload and curpmap assignment.
10252 */
10253 spinlock_enter();
10254 pmap_activate_sw(td);
10255 spinlock_exit();
10256 }
10257
10258 void
pmap_activate_boot(pmap_t pmap)10259 pmap_activate_boot(pmap_t pmap)
10260 {
10261 uint64_t kcr3;
10262 u_int cpuid;
10263
10264 /*
10265 * kernel_pmap must be never deactivated, and we ensure that
10266 * by never activating it at all.
10267 */
10268 MPASS(pmap != kernel_pmap);
10269
10270 cpuid = PCPU_GET(cpuid);
10271 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10272 PCPU_SET(curpmap, pmap);
10273 if (pti) {
10274 kcr3 = pmap->pm_cr3;
10275 if (pmap_pcid_enabled)
10276 kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
10277 } else {
10278 kcr3 = PMAP_NO_CR3;
10279 }
10280 PCPU_SET(kcr3, kcr3);
10281 PCPU_SET(ucr3, PMAP_NO_CR3);
10282 }
10283
10284 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)10285 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
10286 {
10287 *res = pmap->pm_active;
10288 }
10289
10290 void
pmap_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)10291 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10292 {
10293 }
10294
10295 /*
10296 * Increase the starting virtual address of the given mapping if a
10297 * different alignment might result in more superpage mappings.
10298 */
10299 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)10300 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10301 vm_offset_t *addr, vm_size_t size)
10302 {
10303 vm_offset_t superpage_offset;
10304
10305 if (size < NBPDR)
10306 return;
10307 if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10308 offset += ptoa(object->pg_color);
10309 superpage_offset = offset & PDRMASK;
10310 if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10311 (*addr & PDRMASK) == superpage_offset)
10312 return;
10313 if ((*addr & PDRMASK) < superpage_offset)
10314 *addr = (*addr & ~PDRMASK) + superpage_offset;
10315 else
10316 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10317 }
10318
10319 #ifdef INVARIANTS
10320 static unsigned long num_dirty_emulations;
10321 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10322 &num_dirty_emulations, 0, NULL);
10323
10324 static unsigned long num_accessed_emulations;
10325 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10326 &num_accessed_emulations, 0, NULL);
10327
10328 static unsigned long num_superpage_accessed_emulations;
10329 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10330 &num_superpage_accessed_emulations, 0, NULL);
10331
10332 static unsigned long ad_emulation_superpage_promotions;
10333 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10334 &ad_emulation_superpage_promotions, 0, NULL);
10335 #endif /* INVARIANTS */
10336
10337 int
pmap_emulate_accessed_dirty(pmap_t pmap,vm_offset_t va,int ftype)10338 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10339 {
10340 int rv;
10341 struct rwlock *lock;
10342 #if VM_NRESERVLEVEL > 0
10343 vm_page_t m, mpte;
10344 #endif
10345 pd_entry_t *pde;
10346 pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10347
10348 KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10349 ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10350
10351 if (!pmap_emulate_ad_bits(pmap))
10352 return (-1);
10353
10354 PG_A = pmap_accessed_bit(pmap);
10355 PG_M = pmap_modified_bit(pmap);
10356 PG_V = pmap_valid_bit(pmap);
10357 PG_RW = pmap_rw_bit(pmap);
10358
10359 rv = -1;
10360 lock = NULL;
10361 PMAP_LOCK(pmap);
10362
10363 pde = pmap_pde(pmap, va);
10364 if (pde == NULL || (*pde & PG_V) == 0)
10365 goto done;
10366
10367 if ((*pde & PG_PS) != 0) {
10368 if (ftype == VM_PROT_READ) {
10369 #ifdef INVARIANTS
10370 atomic_add_long(&num_superpage_accessed_emulations, 1);
10371 #endif
10372 *pde |= PG_A;
10373 rv = 0;
10374 }
10375 goto done;
10376 }
10377
10378 pte = pmap_pde_to_pte(pde, va);
10379 if ((*pte & PG_V) == 0)
10380 goto done;
10381
10382 if (ftype == VM_PROT_WRITE) {
10383 if ((*pte & PG_RW) == 0)
10384 goto done;
10385 /*
10386 * Set the modified and accessed bits simultaneously.
10387 *
10388 * Intel EPT PTEs that do software emulation of A/D bits map
10389 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10390 * An EPT misconfiguration is triggered if the PTE is writable
10391 * but not readable (WR=10). This is avoided by setting PG_A
10392 * and PG_M simultaneously.
10393 */
10394 *pte |= PG_M | PG_A;
10395 } else {
10396 *pte |= PG_A;
10397 }
10398
10399 #if VM_NRESERVLEVEL > 0
10400 /* try to promote the mapping */
10401 if (va < VM_MAXUSER_ADDRESS)
10402 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10403 else
10404 mpte = NULL;
10405
10406 m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10407
10408 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10409 (m->flags & PG_FICTITIOUS) == 0 &&
10410 vm_reserv_level_iffullpop(m) == 0 &&
10411 pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
10412 #ifdef INVARIANTS
10413 atomic_add_long(&ad_emulation_superpage_promotions, 1);
10414 #endif
10415 }
10416 #endif
10417
10418 #ifdef INVARIANTS
10419 if (ftype == VM_PROT_WRITE)
10420 atomic_add_long(&num_dirty_emulations, 1);
10421 else
10422 atomic_add_long(&num_accessed_emulations, 1);
10423 #endif
10424 rv = 0; /* success */
10425 done:
10426 if (lock != NULL)
10427 rw_wunlock(lock);
10428 PMAP_UNLOCK(pmap);
10429 return (rv);
10430 }
10431
10432 void
pmap_get_mapping(pmap_t pmap,vm_offset_t va,uint64_t * ptr,int * num)10433 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10434 {
10435 pml4_entry_t *pml4;
10436 pdp_entry_t *pdp;
10437 pd_entry_t *pde;
10438 pt_entry_t *pte, PG_V;
10439 int idx;
10440
10441 idx = 0;
10442 PG_V = pmap_valid_bit(pmap);
10443 PMAP_LOCK(pmap);
10444
10445 pml4 = pmap_pml4e(pmap, va);
10446 if (pml4 == NULL)
10447 goto done;
10448 ptr[idx++] = *pml4;
10449 if ((*pml4 & PG_V) == 0)
10450 goto done;
10451
10452 pdp = pmap_pml4e_to_pdpe(pml4, va);
10453 ptr[idx++] = *pdp;
10454 if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10455 goto done;
10456
10457 pde = pmap_pdpe_to_pde(pdp, va);
10458 ptr[idx++] = *pde;
10459 if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10460 goto done;
10461
10462 pte = pmap_pde_to_pte(pde, va);
10463 ptr[idx++] = *pte;
10464
10465 done:
10466 PMAP_UNLOCK(pmap);
10467 *num = idx;
10468 }
10469
10470 /**
10471 * Get the kernel virtual address of a set of physical pages. If there are
10472 * physical addresses not covered by the DMAP perform a transient mapping
10473 * that will be removed when calling pmap_unmap_io_transient.
10474 *
10475 * \param page The pages the caller wishes to obtain the virtual
10476 * address on the kernel memory map.
10477 * \param vaddr On return contains the kernel virtual memory address
10478 * of the pages passed in the page parameter.
10479 * \param count Number of pages passed in.
10480 * \param can_fault true if the thread using the mapped pages can take
10481 * page faults, false otherwise.
10482 *
10483 * \returns true if the caller must call pmap_unmap_io_transient when
10484 * finished or false otherwise.
10485 *
10486 */
10487 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10488 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10489 bool can_fault)
10490 {
10491 vm_paddr_t paddr;
10492 bool needs_mapping;
10493 int error __unused, i;
10494
10495 /*
10496 * Allocate any KVA space that we need, this is done in a separate
10497 * loop to prevent calling vmem_alloc while pinned.
10498 */
10499 needs_mapping = false;
10500 for (i = 0; i < count; i++) {
10501 paddr = VM_PAGE_TO_PHYS(page[i]);
10502 if (__predict_false(paddr >= dmaplimit)) {
10503 error = vmem_alloc(kernel_arena, PAGE_SIZE,
10504 M_BESTFIT | M_WAITOK, &vaddr[i]);
10505 KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10506 needs_mapping = true;
10507 } else {
10508 vaddr[i] = PHYS_TO_DMAP(paddr);
10509 }
10510 }
10511
10512 /* Exit early if everything is covered by the DMAP */
10513 if (!needs_mapping)
10514 return (false);
10515
10516 /*
10517 * NB: The sequence of updating a page table followed by accesses
10518 * to the corresponding pages used in the !DMAP case is subject to
10519 * the situation described in the "AMD64 Architecture Programmer's
10520 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10521 * Coherency Considerations". Therefore, issuing the INVLPG right
10522 * after modifying the PTE bits is crucial.
10523 */
10524 if (!can_fault)
10525 sched_pin();
10526 for (i = 0; i < count; i++) {
10527 paddr = VM_PAGE_TO_PHYS(page[i]);
10528 if (paddr >= dmaplimit) {
10529 if (can_fault) {
10530 /*
10531 * Slow path, since we can get page faults
10532 * while mappings are active don't pin the
10533 * thread to the CPU and instead add a global
10534 * mapping visible to all CPUs.
10535 */
10536 pmap_qenter(vaddr[i], &page[i], 1);
10537 } else {
10538 pmap_kenter_attr(vaddr[i], paddr,
10539 page[i]->md.pat_mode);
10540 pmap_invlpg(kernel_pmap, vaddr[i]);
10541 }
10542 }
10543 }
10544
10545 return (needs_mapping);
10546 }
10547
10548 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10549 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10550 bool can_fault)
10551 {
10552 vm_paddr_t paddr;
10553 int i;
10554
10555 if (!can_fault)
10556 sched_unpin();
10557 for (i = 0; i < count; i++) {
10558 paddr = VM_PAGE_TO_PHYS(page[i]);
10559 if (paddr >= dmaplimit) {
10560 if (can_fault)
10561 pmap_qremove(vaddr[i], 1);
10562 vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10563 }
10564 }
10565 }
10566
10567 vm_offset_t
pmap_quick_enter_page(vm_page_t m)10568 pmap_quick_enter_page(vm_page_t m)
10569 {
10570 vm_paddr_t paddr;
10571
10572 paddr = VM_PAGE_TO_PHYS(m);
10573 if (paddr < dmaplimit)
10574 return (PHYS_TO_DMAP(paddr));
10575 mtx_lock_spin(&qframe_mtx);
10576 KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10577
10578 /*
10579 * Since qframe is exclusively mapped by us, and we do not set
10580 * PG_G, we can use INVLPG here.
10581 */
10582 invlpg(qframe);
10583
10584 pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10585 X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, false));
10586 return (qframe);
10587 }
10588
10589 void
pmap_quick_remove_page(vm_offset_t addr)10590 pmap_quick_remove_page(vm_offset_t addr)
10591 {
10592
10593 if (addr != qframe)
10594 return;
10595 pte_store(vtopte(qframe), 0);
10596 mtx_unlock_spin(&qframe_mtx);
10597 }
10598
10599 /*
10600 * Pdp pages from the large map are managed differently from either
10601 * kernel or user page table pages. They are permanently allocated at
10602 * initialization time, and their reference count is permanently set to
10603 * zero. The pml4 entries pointing to those pages are copied into
10604 * each allocated pmap.
10605 *
10606 * In contrast, pd and pt pages are managed like user page table
10607 * pages. They are dynamically allocated, and their reference count
10608 * represents the number of valid entries within the page.
10609 */
10610 static vm_page_t
pmap_large_map_getptp_unlocked(void)10611 pmap_large_map_getptp_unlocked(void)
10612 {
10613 return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10614 }
10615
10616 static vm_page_t
pmap_large_map_getptp(void)10617 pmap_large_map_getptp(void)
10618 {
10619 vm_page_t m;
10620
10621 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10622 m = pmap_large_map_getptp_unlocked();
10623 if (m == NULL) {
10624 PMAP_UNLOCK(kernel_pmap);
10625 vm_wait(NULL);
10626 PMAP_LOCK(kernel_pmap);
10627 /* Callers retry. */
10628 }
10629 return (m);
10630 }
10631
10632 static pdp_entry_t *
pmap_large_map_pdpe(vm_offset_t va)10633 pmap_large_map_pdpe(vm_offset_t va)
10634 {
10635 pml4_entry_t *pml4;
10636 vm_pindex_t pml4_idx;
10637 vm_paddr_t mphys;
10638
10639 KASSERT(va >= kva_layout.lm_low && va < kva_layout.lm_low +
10640 (vm_offset_t)NBPML4 * lm_ents, ("va %#lx not in large map", va));
10641 if (la57) {
10642 pml4 = pmap_pml4e(kernel_pmap, va);
10643 mphys = *pml4 & PG_FRAME;
10644 } else {
10645 pml4_idx = pmap_pml4e_index(va);
10646
10647 KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10648 ("pmap_large_map_pdpe: va %#jx out of range idx %#jx "
10649 "LMSPML4I %#jx lm_ents %d",
10650 (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10651 KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10652 ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10653 "LMSPML4I %#jx lm_ents %d",
10654 (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10655 mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10656 }
10657 return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10658 }
10659
10660 static pd_entry_t *
pmap_large_map_pde(vm_offset_t va)10661 pmap_large_map_pde(vm_offset_t va)
10662 {
10663 pdp_entry_t *pdpe;
10664 vm_page_t m;
10665 vm_paddr_t mphys;
10666
10667 retry:
10668 pdpe = pmap_large_map_pdpe(va);
10669 if (*pdpe == 0) {
10670 m = pmap_large_map_getptp();
10671 if (m == NULL)
10672 goto retry;
10673 mphys = VM_PAGE_TO_PHYS(m);
10674 *pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10675 } else {
10676 MPASS((*pdpe & X86_PG_PS) == 0);
10677 mphys = *pdpe & PG_FRAME;
10678 }
10679 return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10680 }
10681
10682 static pt_entry_t *
pmap_large_map_pte(vm_offset_t va)10683 pmap_large_map_pte(vm_offset_t va)
10684 {
10685 pd_entry_t *pde;
10686 vm_page_t m;
10687 vm_paddr_t mphys;
10688
10689 retry:
10690 pde = pmap_large_map_pde(va);
10691 if (*pde == 0) {
10692 m = pmap_large_map_getptp();
10693 if (m == NULL)
10694 goto retry;
10695 mphys = VM_PAGE_TO_PHYS(m);
10696 *pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10697 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10698 } else {
10699 MPASS((*pde & X86_PG_PS) == 0);
10700 mphys = *pde & PG_FRAME;
10701 }
10702 return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10703 }
10704
10705 static vm_paddr_t
pmap_large_map_kextract(vm_offset_t va)10706 pmap_large_map_kextract(vm_offset_t va)
10707 {
10708 pdp_entry_t *pdpe, pdp;
10709 pd_entry_t *pde, pd;
10710 pt_entry_t *pte, pt;
10711
10712 KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10713 ("not largemap range %#lx", (u_long)va));
10714 pdpe = pmap_large_map_pdpe(va);
10715 pdp = *pdpe;
10716 KASSERT((pdp & X86_PG_V) != 0,
10717 ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10718 (u_long)pdpe, pdp));
10719 if ((pdp & X86_PG_PS) != 0) {
10720 KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10721 ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10722 (u_long)pdpe, pdp));
10723 return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10724 }
10725 pde = pmap_pdpe_to_pde(pdpe, va);
10726 pd = *pde;
10727 KASSERT((pd & X86_PG_V) != 0,
10728 ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10729 if ((pd & X86_PG_PS) != 0)
10730 return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10731 pte = pmap_pde_to_pte(pde, va);
10732 pt = *pte;
10733 KASSERT((pt & X86_PG_V) != 0,
10734 ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10735 return ((pt & PG_FRAME) | (va & PAGE_MASK));
10736 }
10737
10738 static int
pmap_large_map_getva(vm_size_t len,vm_offset_t align,vm_offset_t phase,vmem_addr_t * vmem_res)10739 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10740 vmem_addr_t *vmem_res)
10741 {
10742
10743 /*
10744 * Large mappings are all but static. Consequently, there
10745 * is no point in waiting for an earlier allocation to be
10746 * freed.
10747 */
10748 return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10749 VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10750 }
10751
10752 int
pmap_large_map(vm_paddr_t spa,vm_size_t len,void ** addr,vm_memattr_t mattr)10753 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10754 vm_memattr_t mattr)
10755 {
10756 pdp_entry_t *pdpe;
10757 pd_entry_t *pde;
10758 pt_entry_t *pte;
10759 vm_offset_t va, inc;
10760 vmem_addr_t vmem_res;
10761 vm_paddr_t pa;
10762 int error;
10763
10764 if (len == 0 || spa + len < spa)
10765 return (EINVAL);
10766
10767 /* See if DMAP can serve. */
10768 if (spa + len <= dmaplimit) {
10769 va = PHYS_TO_DMAP(spa);
10770 *addr = (void *)va;
10771 return (pmap_change_attr(va, len, mattr));
10772 }
10773
10774 /*
10775 * No, allocate KVA. Fit the address with best possible
10776 * alignment for superpages. Fall back to worse align if
10777 * failed.
10778 */
10779 error = ENOMEM;
10780 if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10781 NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10782 error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10783 &vmem_res);
10784 if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10785 NBPDR) + NBPDR)
10786 error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10787 &vmem_res);
10788 if (error != 0)
10789 error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10790 if (error != 0)
10791 return (error);
10792
10793 /*
10794 * Fill pagetable. PG_M is not pre-set, we scan modified bits
10795 * in the pagetable to minimize flushing. No need to
10796 * invalidate TLB, since we only update invalid entries.
10797 */
10798 PMAP_LOCK(kernel_pmap);
10799 for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10800 len -= inc) {
10801 if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10802 (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10803 pdpe = pmap_large_map_pdpe(va);
10804 MPASS(*pdpe == 0);
10805 *pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10806 X86_PG_V | X86_PG_A | pg_nx |
10807 pmap_cache_bits(kernel_pmap, mattr, true);
10808 inc = NBPDP;
10809 } else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10810 (va & PDRMASK) == 0) {
10811 pde = pmap_large_map_pde(va);
10812 MPASS(*pde == 0);
10813 *pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10814 X86_PG_V | X86_PG_A | pg_nx |
10815 pmap_cache_bits(kernel_pmap, mattr, true);
10816 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10817 ref_count++;
10818 inc = NBPDR;
10819 } else {
10820 pte = pmap_large_map_pte(va);
10821 MPASS(*pte == 0);
10822 *pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10823 X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10824 mattr, false);
10825 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10826 ref_count++;
10827 inc = PAGE_SIZE;
10828 }
10829 }
10830 PMAP_UNLOCK(kernel_pmap);
10831 MPASS(len == 0);
10832
10833 *addr = (void *)vmem_res;
10834 return (0);
10835 }
10836
10837 void
pmap_large_unmap(void * svaa,vm_size_t len)10838 pmap_large_unmap(void *svaa, vm_size_t len)
10839 {
10840 vm_offset_t sva, va;
10841 vm_size_t inc;
10842 pdp_entry_t *pdpe, pdp;
10843 pd_entry_t *pde, pd;
10844 pt_entry_t *pte;
10845 vm_page_t m;
10846 struct spglist spgf;
10847
10848 sva = (vm_offset_t)svaa;
10849 if (len == 0 || sva + len < sva || (sva >= kva_layout.dmap_low &&
10850 sva + len < kva_layout.dmap_high))
10851 return;
10852
10853 SLIST_INIT(&spgf);
10854 KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10855 PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10856 ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10857 PMAP_LOCK(kernel_pmap);
10858 for (va = sva; va < sva + len; va += inc) {
10859 pdpe = pmap_large_map_pdpe(va);
10860 pdp = *pdpe;
10861 KASSERT((pdp & X86_PG_V) != 0,
10862 ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10863 (u_long)pdpe, pdp));
10864 if ((pdp & X86_PG_PS) != 0) {
10865 KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10866 ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10867 (u_long)pdpe, pdp));
10868 KASSERT((va & PDPMASK) == 0,
10869 ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10870 (u_long)pdpe, pdp));
10871 KASSERT(va + NBPDP <= sva + len,
10872 ("unmap covers partial 1GB page, sva %#lx va %#lx "
10873 "pdpe %#lx pdp %#lx len %#lx", sva, va,
10874 (u_long)pdpe, pdp, len));
10875 *pdpe = 0;
10876 inc = NBPDP;
10877 continue;
10878 }
10879 pde = pmap_pdpe_to_pde(pdpe, va);
10880 pd = *pde;
10881 KASSERT((pd & X86_PG_V) != 0,
10882 ("invalid pd va %#lx pde %#lx pd %#lx", va,
10883 (u_long)pde, pd));
10884 if ((pd & X86_PG_PS) != 0) {
10885 KASSERT((va & PDRMASK) == 0,
10886 ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10887 (u_long)pde, pd));
10888 KASSERT(va + NBPDR <= sva + len,
10889 ("unmap covers partial 2MB page, sva %#lx va %#lx "
10890 "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10891 pd, len));
10892 pde_store(pde, 0);
10893 inc = NBPDR;
10894 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10895 m->ref_count--;
10896 if (m->ref_count == 0) {
10897 *pdpe = 0;
10898 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10899 }
10900 continue;
10901 }
10902 pte = pmap_pde_to_pte(pde, va);
10903 KASSERT((*pte & X86_PG_V) != 0,
10904 ("invalid pte va %#lx pte %#lx pt %#lx", va,
10905 (u_long)pte, *pte));
10906 pte_clear(pte);
10907 inc = PAGE_SIZE;
10908 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10909 m->ref_count--;
10910 if (m->ref_count == 0) {
10911 *pde = 0;
10912 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10913 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10914 m->ref_count--;
10915 if (m->ref_count == 0) {
10916 *pdpe = 0;
10917 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10918 }
10919 }
10920 }
10921 pmap_invalidate_range(kernel_pmap, sva, sva + len);
10922 PMAP_UNLOCK(kernel_pmap);
10923 vm_page_free_pages_toq(&spgf, false);
10924 vmem_free(large_vmem, sva, len);
10925 }
10926
10927 static void
pmap_large_map_wb_fence_mfence(void)10928 pmap_large_map_wb_fence_mfence(void)
10929 {
10930
10931 mfence();
10932 }
10933
10934 static void
pmap_large_map_wb_fence_atomic(void)10935 pmap_large_map_wb_fence_atomic(void)
10936 {
10937
10938 atomic_thread_fence_seq_cst();
10939 }
10940
10941 static void
pmap_large_map_wb_fence_nop(void)10942 pmap_large_map_wb_fence_nop(void)
10943 {
10944 }
10945
10946 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10947 {
10948
10949 if (cpu_vendor_id != CPU_VENDOR_INTEL)
10950 return (pmap_large_map_wb_fence_mfence);
10951 else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10952 CPUID_STDEXT_CLFLUSHOPT)) == 0)
10953 return (pmap_large_map_wb_fence_atomic);
10954 else
10955 /* clflush is strongly enough ordered */
10956 return (pmap_large_map_wb_fence_nop);
10957 }
10958
10959 static void
pmap_large_map_flush_range_clwb(vm_offset_t va,vm_size_t len)10960 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10961 {
10962
10963 for (; len > 0; len -= cpu_clflush_line_size,
10964 va += cpu_clflush_line_size)
10965 clwb(va);
10966 }
10967
10968 static void
pmap_large_map_flush_range_clflushopt(vm_offset_t va,vm_size_t len)10969 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10970 {
10971
10972 for (; len > 0; len -= cpu_clflush_line_size,
10973 va += cpu_clflush_line_size)
10974 clflushopt(va);
10975 }
10976
10977 static void
pmap_large_map_flush_range_clflush(vm_offset_t va,vm_size_t len)10978 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10979 {
10980
10981 for (; len > 0; len -= cpu_clflush_line_size,
10982 va += cpu_clflush_line_size)
10983 clflush(va);
10984 }
10985
10986 static void
pmap_large_map_flush_range_nop(vm_offset_t sva __unused,vm_size_t len __unused)10987 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
10988 {
10989 }
10990
10991 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
10992 {
10993
10994 if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
10995 return (pmap_large_map_flush_range_clwb);
10996 else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
10997 return (pmap_large_map_flush_range_clflushopt);
10998 else if ((cpu_feature & CPUID_CLFSH) != 0)
10999 return (pmap_large_map_flush_range_clflush);
11000 else
11001 return (pmap_large_map_flush_range_nop);
11002 }
11003
11004 static void
pmap_large_map_wb_large(vm_offset_t sva,vm_offset_t eva)11005 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
11006 {
11007 volatile u_long *pe;
11008 u_long p;
11009 vm_offset_t va;
11010 vm_size_t inc;
11011 bool seen_other;
11012
11013 for (va = sva; va < eva; va += inc) {
11014 inc = 0;
11015 if ((amd_feature & AMDID_PAGE1GB) != 0) {
11016 pe = (volatile u_long *)pmap_large_map_pdpe(va);
11017 p = *pe;
11018 if ((p & X86_PG_PS) != 0)
11019 inc = NBPDP;
11020 }
11021 if (inc == 0) {
11022 pe = (volatile u_long *)pmap_large_map_pde(va);
11023 p = *pe;
11024 if ((p & X86_PG_PS) != 0)
11025 inc = NBPDR;
11026 }
11027 if (inc == 0) {
11028 pe = (volatile u_long *)pmap_large_map_pte(va);
11029 p = *pe;
11030 inc = PAGE_SIZE;
11031 }
11032 seen_other = false;
11033 for (;;) {
11034 if ((p & X86_PG_AVAIL1) != 0) {
11035 /*
11036 * Spin-wait for the end of a parallel
11037 * write-back.
11038 */
11039 cpu_spinwait();
11040 p = *pe;
11041
11042 /*
11043 * If we saw other write-back
11044 * occurring, we cannot rely on PG_M to
11045 * indicate state of the cache. The
11046 * PG_M bit is cleared before the
11047 * flush to avoid ignoring new writes,
11048 * and writes which are relevant for
11049 * us might happen after.
11050 */
11051 seen_other = true;
11052 continue;
11053 }
11054
11055 if ((p & X86_PG_M) != 0 || seen_other) {
11056 if (!atomic_fcmpset_long(pe, &p,
11057 (p & ~X86_PG_M) | X86_PG_AVAIL1))
11058 /*
11059 * If we saw PG_M without
11060 * PG_AVAIL1, and then on the
11061 * next attempt we do not
11062 * observe either PG_M or
11063 * PG_AVAIL1, the other
11064 * write-back started after us
11065 * and finished before us. We
11066 * can rely on it doing our
11067 * work.
11068 */
11069 continue;
11070 pmap_large_map_flush_range(va, inc);
11071 atomic_clear_long(pe, X86_PG_AVAIL1);
11072 }
11073 break;
11074 }
11075 maybe_yield();
11076 }
11077 }
11078
11079 /*
11080 * Write-back cache lines for the given address range.
11081 *
11082 * Must be called only on the range or sub-range returned from
11083 * pmap_large_map(). Must not be called on the coalesced ranges.
11084 *
11085 * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
11086 * instructions support.
11087 */
11088 void
pmap_large_map_wb(void * svap,vm_size_t len)11089 pmap_large_map_wb(void *svap, vm_size_t len)
11090 {
11091 vm_offset_t eva, sva;
11092
11093 sva = (vm_offset_t)svap;
11094 eva = sva + len;
11095 pmap_large_map_wb_fence();
11096 if (sva >= kva_layout.dmap_low && eva < kva_layout.dmap_high) {
11097 pmap_large_map_flush_range(sva, len);
11098 } else {
11099 KASSERT(sva >= kva_layout.lm_low && eva < kva_layout.lm_high,
11100 ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
11101 pmap_large_map_wb_large(sva, eva);
11102 }
11103 pmap_large_map_wb_fence();
11104 }
11105
11106 static vm_page_t
pmap_pti_alloc_page(void)11107 pmap_pti_alloc_page(void)
11108 {
11109 vm_page_t m;
11110
11111 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11112 m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
11113 return (m);
11114 }
11115
11116 static bool
pmap_pti_free_page(vm_page_t m)11117 pmap_pti_free_page(vm_page_t m)
11118 {
11119 if (!vm_page_unwire_noq(m))
11120 return (false);
11121 vm_page_xbusy_claim(m);
11122 vm_page_free_zero(m);
11123 return (true);
11124 }
11125
11126 static void
pmap_pti_init(void)11127 pmap_pti_init(void)
11128 {
11129 vm_page_t pml4_pg;
11130 pdp_entry_t *pdpe;
11131 vm_offset_t va;
11132 int i;
11133
11134 if (!pti)
11135 return;
11136 pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
11137 VM_OBJECT_WLOCK(pti_obj);
11138 pml4_pg = pmap_pti_alloc_page();
11139 pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11140 for (va = kva_layout.km_low; va <= kva_layout.km_high &&
11141 va >= kva_layout.km_low && va > NBPML4; va += NBPML4) {
11142 pdpe = pmap_pti_pdpe(va);
11143 pmap_pti_wire_pte(pdpe);
11144 }
11145 pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11146 (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11147 pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11148 sizeof(struct gate_descriptor) * NIDT, false);
11149 CPU_FOREACH(i) {
11150 /* Doublefault stack IST 1 */
11151 va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11152 pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11153 /* NMI stack IST 2 */
11154 va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11155 pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11156 /* MC# stack IST 3 */
11157 va = __pcpu[i].pc_common_tss.tss_ist3 +
11158 sizeof(struct nmi_pcpu);
11159 pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11160 /* DB# stack IST 4 */
11161 va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11162 pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11163 }
11164 pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11165 true);
11166 pti_finalized = true;
11167 VM_OBJECT_WUNLOCK(pti_obj);
11168 }
11169
11170 static void
pmap_cpu_init(void * arg __unused)11171 pmap_cpu_init(void *arg __unused)
11172 {
11173 CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11174 pmap_pti_init();
11175 }
11176 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11177
11178 static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)11179 pmap_pti_pdpe(vm_offset_t va)
11180 {
11181 pml4_entry_t *pml4e;
11182 pdp_entry_t *pdpe;
11183 vm_page_t m;
11184 vm_pindex_t pml4_idx;
11185 vm_paddr_t mphys;
11186
11187 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11188
11189 pml4_idx = pmap_pml4e_index(va);
11190 pml4e = &pti_pml4[pml4_idx];
11191 m = NULL;
11192 if (*pml4e == 0) {
11193 if (pti_finalized)
11194 panic("pml4 alloc after finalization\n");
11195 m = pmap_pti_alloc_page();
11196 if (*pml4e != 0) {
11197 pmap_pti_free_page(m);
11198 mphys = *pml4e & ~PAGE_MASK;
11199 } else {
11200 mphys = VM_PAGE_TO_PHYS(m);
11201 *pml4e = mphys | X86_PG_RW | X86_PG_V;
11202 }
11203 } else {
11204 mphys = *pml4e & ~PAGE_MASK;
11205 }
11206 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11207 return (pdpe);
11208 }
11209
11210 static void
pmap_pti_wire_pte(void * pte)11211 pmap_pti_wire_pte(void *pte)
11212 {
11213 vm_page_t m;
11214
11215 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11216 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11217 m->ref_count++;
11218 }
11219
11220 static void
pmap_pti_unwire_pde(void * pde,bool only_ref)11221 pmap_pti_unwire_pde(void *pde, bool only_ref)
11222 {
11223 vm_page_t m;
11224
11225 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11226 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11227 MPASS(only_ref || m->ref_count > 1);
11228 pmap_pti_free_page(m);
11229 }
11230
11231 static void
pmap_pti_unwire_pte(void * pte,vm_offset_t va)11232 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11233 {
11234 vm_page_t m;
11235 pd_entry_t *pde;
11236
11237 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11238 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11239 if (pmap_pti_free_page(m)) {
11240 pde = pmap_pti_pde(va);
11241 MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11242 *pde = 0;
11243 pmap_pti_unwire_pde(pde, false);
11244 }
11245 }
11246
11247 static pd_entry_t *
pmap_pti_pde(vm_offset_t va)11248 pmap_pti_pde(vm_offset_t va)
11249 {
11250 pdp_entry_t *pdpe;
11251 pd_entry_t *pde;
11252 vm_page_t m;
11253 vm_pindex_t pd_idx;
11254 vm_paddr_t mphys;
11255
11256 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11257
11258 pdpe = pmap_pti_pdpe(va);
11259 if (*pdpe == 0) {
11260 m = pmap_pti_alloc_page();
11261 if (*pdpe != 0) {
11262 pmap_pti_free_page(m);
11263 MPASS((*pdpe & X86_PG_PS) == 0);
11264 mphys = *pdpe & ~PAGE_MASK;
11265 } else {
11266 mphys = VM_PAGE_TO_PHYS(m);
11267 *pdpe = mphys | X86_PG_RW | X86_PG_V;
11268 }
11269 } else {
11270 MPASS((*pdpe & X86_PG_PS) == 0);
11271 mphys = *pdpe & ~PAGE_MASK;
11272 }
11273
11274 pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11275 pd_idx = pmap_pde_index(va);
11276 pde += pd_idx;
11277 return (pde);
11278 }
11279
11280 static pt_entry_t *
pmap_pti_pte(vm_offset_t va,bool * unwire_pde)11281 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11282 {
11283 pd_entry_t *pde;
11284 pt_entry_t *pte;
11285 vm_page_t m;
11286 vm_paddr_t mphys;
11287
11288 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11289
11290 pde = pmap_pti_pde(va);
11291 if (unwire_pde != NULL) {
11292 *unwire_pde = true;
11293 pmap_pti_wire_pte(pde);
11294 }
11295 if (*pde == 0) {
11296 m = pmap_pti_alloc_page();
11297 if (*pde != 0) {
11298 pmap_pti_free_page(m);
11299 MPASS((*pde & X86_PG_PS) == 0);
11300 mphys = *pde & ~(PAGE_MASK | pg_nx);
11301 } else {
11302 mphys = VM_PAGE_TO_PHYS(m);
11303 *pde = mphys | X86_PG_RW | X86_PG_V;
11304 if (unwire_pde != NULL)
11305 *unwire_pde = false;
11306 }
11307 } else {
11308 MPASS((*pde & X86_PG_PS) == 0);
11309 mphys = *pde & ~(PAGE_MASK | pg_nx);
11310 }
11311
11312 pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11313 pte += pmap_pte_index(va);
11314
11315 return (pte);
11316 }
11317
11318 static void
pmap_pti_add_kva_locked(vm_offset_t sva,vm_offset_t eva,bool exec)11319 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11320 {
11321 vm_paddr_t pa;
11322 pd_entry_t *pde;
11323 pt_entry_t *pte, ptev;
11324 bool unwire_pde;
11325
11326 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11327
11328 sva = trunc_page(sva);
11329 MPASS(sva > VM_MAXUSER_ADDRESS);
11330 eva = round_page(eva);
11331 MPASS(sva < eva);
11332 for (; sva < eva; sva += PAGE_SIZE) {
11333 pte = pmap_pti_pte(sva, &unwire_pde);
11334 pa = pmap_kextract(sva);
11335 ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11336 (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11337 VM_MEMATTR_DEFAULT, false);
11338 if (*pte == 0) {
11339 pte_store(pte, ptev);
11340 pmap_pti_wire_pte(pte);
11341 } else {
11342 KASSERT(!pti_finalized,
11343 ("pti overlap after fin %#lx %#lx %#lx",
11344 sva, *pte, ptev));
11345 KASSERT(*pte == ptev,
11346 ("pti non-identical pte after fin %#lx %#lx %#lx",
11347 sva, *pte, ptev));
11348 }
11349 if (unwire_pde) {
11350 pde = pmap_pti_pde(sva);
11351 pmap_pti_unwire_pde(pde, true);
11352 }
11353 }
11354 }
11355
11356 void
pmap_pti_add_kva(vm_offset_t sva,vm_offset_t eva,bool exec)11357 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11358 {
11359
11360 if (!pti)
11361 return;
11362 VM_OBJECT_WLOCK(pti_obj);
11363 pmap_pti_add_kva_locked(sva, eva, exec);
11364 VM_OBJECT_WUNLOCK(pti_obj);
11365 }
11366
11367 void
pmap_pti_remove_kva(vm_offset_t sva,vm_offset_t eva)11368 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11369 {
11370 pt_entry_t *pte;
11371 vm_offset_t va;
11372
11373 if (!pti)
11374 return;
11375 sva = rounddown2(sva, PAGE_SIZE);
11376 MPASS(sva > VM_MAXUSER_ADDRESS);
11377 eva = roundup2(eva, PAGE_SIZE);
11378 MPASS(sva < eva);
11379 VM_OBJECT_WLOCK(pti_obj);
11380 for (va = sva; va < eva; va += PAGE_SIZE) {
11381 pte = pmap_pti_pte(va, NULL);
11382 KASSERT((*pte & X86_PG_V) != 0,
11383 ("invalid pte va %#lx pte %#lx pt %#lx", va,
11384 (u_long)pte, *pte));
11385 pte_clear(pte);
11386 pmap_pti_unwire_pte(pte, va);
11387 }
11388 pmap_invalidate_range(kernel_pmap, sva, eva);
11389 VM_OBJECT_WUNLOCK(pti_obj);
11390 }
11391
11392 static void *
pkru_dup_range(void * ctx __unused,void * data)11393 pkru_dup_range(void *ctx __unused, void *data)
11394 {
11395 struct pmap_pkru_range *node, *new_node;
11396
11397 new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11398 if (new_node == NULL)
11399 return (NULL);
11400 node = data;
11401 memcpy(new_node, node, sizeof(*node));
11402 return (new_node);
11403 }
11404
11405 static void
pkru_free_range(void * ctx __unused,void * node)11406 pkru_free_range(void *ctx __unused, void *node)
11407 {
11408
11409 uma_zfree(pmap_pkru_ranges_zone, node);
11410 }
11411
11412 static int
pmap_pkru_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11413 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11414 int flags)
11415 {
11416 struct pmap_pkru_range *ppr;
11417 int error;
11418
11419 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11420 MPASS(pmap->pm_type == PT_X86);
11421 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11422 if ((flags & AMD64_PKRU_EXCL) != 0 &&
11423 !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11424 return (EBUSY);
11425 ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11426 if (ppr == NULL)
11427 return (ENOMEM);
11428 ppr->pkru_keyidx = keyidx;
11429 ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11430 error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11431 if (error != 0)
11432 uma_zfree(pmap_pkru_ranges_zone, ppr);
11433 return (error);
11434 }
11435
11436 static int
pmap_pkru_deassign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11437 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11438 {
11439
11440 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11441 MPASS(pmap->pm_type == PT_X86);
11442 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11443 return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11444 }
11445
11446 static void
pmap_pkru_deassign_all(pmap_t pmap)11447 pmap_pkru_deassign_all(pmap_t pmap)
11448 {
11449
11450 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11451 if (pmap->pm_type == PT_X86 &&
11452 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11453 rangeset_remove_all(&pmap->pm_pkru);
11454 }
11455
11456 /*
11457 * Returns true if the PKU setting is the same across the specified address
11458 * range, and false otherwise. When returning true, updates the referenced PTE
11459 * to reflect the PKU setting.
11460 */
11461 static bool
pmap_pkru_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t * pte)11462 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t *pte)
11463 {
11464 struct pmap_pkru_range *ppr;
11465 vm_offset_t va;
11466 u_int keyidx;
11467
11468 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11469 KASSERT(pmap->pm_type != PT_X86 || (*pte & X86_PG_PKU_MASK) == 0,
11470 ("pte %p has unexpected PKU %ld", pte, *pte & X86_PG_PKU_MASK));
11471 if (pmap->pm_type != PT_X86 ||
11472 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11473 sva >= VM_MAXUSER_ADDRESS)
11474 return (true);
11475 MPASS(eva <= VM_MAXUSER_ADDRESS);
11476 ppr = rangeset_containing(&pmap->pm_pkru, sva);
11477 if (ppr == NULL)
11478 return (rangeset_empty(&pmap->pm_pkru, sva, eva));
11479 keyidx = ppr->pkru_keyidx;
11480 while ((va = ppr->pkru_rs_el.re_end) < eva) {
11481 if ((ppr = rangeset_beginning(&pmap->pm_pkru, va)) == NULL ||
11482 keyidx != ppr->pkru_keyidx)
11483 return (false);
11484 }
11485 *pte |= X86_PG_PKU(keyidx);
11486 return (true);
11487 }
11488
11489 static pt_entry_t
pmap_pkru_get(pmap_t pmap,vm_offset_t va)11490 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11491 {
11492 struct pmap_pkru_range *ppr;
11493
11494 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11495 if (pmap->pm_type != PT_X86 ||
11496 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11497 va >= VM_MAXUSER_ADDRESS)
11498 return (0);
11499 ppr = rangeset_containing(&pmap->pm_pkru, va);
11500 if (ppr != NULL)
11501 return (X86_PG_PKU(ppr->pkru_keyidx));
11502 return (0);
11503 }
11504
11505 static bool
pred_pkru_on_remove(void * ctx __unused,void * r)11506 pred_pkru_on_remove(void *ctx __unused, void *r)
11507 {
11508 struct pmap_pkru_range *ppr;
11509
11510 ppr = r;
11511 return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11512 }
11513
11514 static void
pmap_pkru_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11515 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11516 {
11517
11518 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11519 if (pmap->pm_type == PT_X86 &&
11520 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11521 rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11522 pred_pkru_on_remove);
11523 }
11524 }
11525
11526 static int
pmap_pkru_copy(pmap_t dst_pmap,pmap_t src_pmap)11527 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11528 {
11529
11530 PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11531 PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11532 MPASS(dst_pmap->pm_type == PT_X86);
11533 MPASS(src_pmap->pm_type == PT_X86);
11534 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11535 if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11536 return (0);
11537 return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11538 }
11539
11540 static void
pmap_pkru_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx)11541 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11542 u_int keyidx)
11543 {
11544 pml4_entry_t *pml4e;
11545 pdp_entry_t *pdpe;
11546 pd_entry_t newpde, ptpaddr, *pde;
11547 pt_entry_t newpte, *ptep, pte;
11548 vm_offset_t va, va_next;
11549 bool changed;
11550
11551 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11552 MPASS(pmap->pm_type == PT_X86);
11553 MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11554
11555 for (changed = false, va = sva; va < eva; va = va_next) {
11556 pml4e = pmap_pml4e(pmap, va);
11557 if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11558 va_next = (va + NBPML4) & ~PML4MASK;
11559 if (va_next < va)
11560 va_next = eva;
11561 continue;
11562 }
11563
11564 pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11565 if ((*pdpe & X86_PG_V) == 0) {
11566 va_next = (va + NBPDP) & ~PDPMASK;
11567 if (va_next < va)
11568 va_next = eva;
11569 continue;
11570 }
11571
11572 va_next = (va + NBPDR) & ~PDRMASK;
11573 if (va_next < va)
11574 va_next = eva;
11575
11576 pde = pmap_pdpe_to_pde(pdpe, va);
11577 ptpaddr = *pde;
11578 if (ptpaddr == 0)
11579 continue;
11580
11581 MPASS((ptpaddr & X86_PG_V) != 0);
11582 if ((ptpaddr & PG_PS) != 0) {
11583 if (va + NBPDR == va_next && eva >= va_next) {
11584 newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11585 X86_PG_PKU(keyidx);
11586 if (newpde != ptpaddr) {
11587 *pde = newpde;
11588 changed = true;
11589 }
11590 continue;
11591 } else if (!pmap_demote_pde(pmap, pde, va)) {
11592 continue;
11593 }
11594 }
11595
11596 if (va_next > eva)
11597 va_next = eva;
11598
11599 for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11600 ptep++, va += PAGE_SIZE) {
11601 pte = *ptep;
11602 if ((pte & X86_PG_V) == 0)
11603 continue;
11604 newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11605 if (newpte != pte) {
11606 *ptep = newpte;
11607 changed = true;
11608 }
11609 }
11610 }
11611 if (changed)
11612 pmap_invalidate_range(pmap, sva, eva);
11613 }
11614
11615 static int
pmap_pkru_check_uargs(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11616 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11617 u_int keyidx, int flags)
11618 {
11619
11620 if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11621 (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11622 return (EINVAL);
11623 if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11624 return (EFAULT);
11625 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11626 return (ENOTSUP);
11627 return (0);
11628 }
11629
11630 int
pmap_pkru_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11631 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11632 int flags)
11633 {
11634 int error;
11635
11636 sva = trunc_page(sva);
11637 eva = round_page(eva);
11638 error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11639 if (error != 0)
11640 return (error);
11641 for (;;) {
11642 PMAP_LOCK(pmap);
11643 error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11644 if (error == 0)
11645 pmap_pkru_update_range(pmap, sva, eva, keyidx);
11646 PMAP_UNLOCK(pmap);
11647 if (error != ENOMEM)
11648 break;
11649 vm_wait(NULL);
11650 }
11651 return (error);
11652 }
11653
11654 int
pmap_pkru_clear(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11655 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11656 {
11657 int error;
11658
11659 sva = trunc_page(sva);
11660 eva = round_page(eva);
11661 error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11662 if (error != 0)
11663 return (error);
11664 for (;;) {
11665 PMAP_LOCK(pmap);
11666 error = pmap_pkru_deassign(pmap, sva, eva);
11667 if (error == 0)
11668 pmap_pkru_update_range(pmap, sva, eva, 0);
11669 PMAP_UNLOCK(pmap);
11670 if (error != ENOMEM)
11671 break;
11672 vm_wait(NULL);
11673 }
11674 return (error);
11675 }
11676
11677 #if defined(KASAN) || defined(KMSAN)
11678
11679 /*
11680 * Reserve enough memory to:
11681 * 1) allocate PDP pages for the shadow map(s),
11682 * 2) shadow the boot stack of KSTACK_PAGES pages,
11683 * 3) assuming that the kernel stack does not cross a 1GB boundary,
11684 * so we need one or two PD pages, one or two PT pages, and KSTACK_PAGES shadow
11685 * pages per shadow map.
11686 */
11687 #ifdef KASAN
11688 #define SAN_EARLY_PAGES \
11689 (NKASANPML4E + 2 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
11690 #else
11691 #define SAN_EARLY_PAGES \
11692 (NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (2 + 2 + KSTACK_PAGES))
11693 #endif
11694
11695 static uint64_t __nosanitizeaddress __nosanitizememory
pmap_san_enter_early_alloc_4k(uint64_t pabase)11696 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11697 {
11698 static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11699 static size_t offset = 0;
11700 uint64_t pa;
11701
11702 if (offset == sizeof(data)) {
11703 panic("%s: ran out of memory for the bootstrap shadow map",
11704 __func__);
11705 }
11706
11707 pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11708 offset += PAGE_SIZE;
11709 return (pa);
11710 }
11711
11712 /*
11713 * Map a shadow page, before the kernel has bootstrapped its page tables. This
11714 * is currently only used to shadow the temporary boot stack set up by locore.
11715 */
11716 static void __nosanitizeaddress __nosanitizememory
pmap_san_enter_early(vm_offset_t va)11717 pmap_san_enter_early(vm_offset_t va)
11718 {
11719 static bool first = true;
11720 pml4_entry_t *pml4e;
11721 pdp_entry_t *pdpe;
11722 pd_entry_t *pde;
11723 pt_entry_t *pte;
11724 uint64_t cr3, pa, base;
11725 int i;
11726
11727 base = amd64_loadaddr();
11728 cr3 = rcr3();
11729
11730 if (first) {
11731 /*
11732 * If this the first call, we need to allocate new PML4Es for
11733 * the bootstrap shadow map(s). We don't know how the PML4 page
11734 * was initialized by the boot loader, so we can't simply test
11735 * whether the shadow map's PML4Es are zero.
11736 */
11737 first = false;
11738 #ifdef KASAN
11739 for (i = 0; i < NKASANPML4E; i++) {
11740 pa = pmap_san_enter_early_alloc_4k(base);
11741
11742 pml4e = (pml4_entry_t *)cr3 +
11743 pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11744 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11745 }
11746 #else
11747 for (i = 0; i < NKMSANORIGPML4E; i++) {
11748 pa = pmap_san_enter_early_alloc_4k(base);
11749
11750 pml4e = (pml4_entry_t *)cr3 +
11751 pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11752 i * NBPML4);
11753 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11754 }
11755 for (i = 0; i < NKMSANSHADPML4E; i++) {
11756 pa = pmap_san_enter_early_alloc_4k(base);
11757
11758 pml4e = (pml4_entry_t *)cr3 +
11759 pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11760 i * NBPML4);
11761 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11762 }
11763 #endif
11764 }
11765 pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11766 pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11767 if (*pdpe == 0) {
11768 pa = pmap_san_enter_early_alloc_4k(base);
11769 *pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11770 }
11771 pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11772 if (*pde == 0) {
11773 pa = pmap_san_enter_early_alloc_4k(base);
11774 *pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11775 }
11776 pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11777 if (*pte != 0)
11778 panic("%s: PTE for %#lx is already initialized", __func__, va);
11779 pa = pmap_san_enter_early_alloc_4k(base);
11780 *pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11781 }
11782
11783 static vm_page_t
pmap_san_enter_alloc_4k(void)11784 pmap_san_enter_alloc_4k(void)
11785 {
11786 vm_page_t m;
11787
11788 m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11789 VM_ALLOC_ZERO);
11790 if (m == NULL)
11791 panic("%s: no memory to grow shadow map", __func__);
11792 return (m);
11793 }
11794
11795 static vm_page_t
pmap_san_enter_alloc_2m(void)11796 pmap_san_enter_alloc_2m(void)
11797 {
11798 return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11799 NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11800 }
11801
11802 /*
11803 * Grow a shadow map by at least one 4KB page at the specified address. Use 2MB
11804 * pages when possible.
11805 */
11806 void __nosanitizeaddress __nosanitizememory
pmap_san_enter(vm_offset_t va)11807 pmap_san_enter(vm_offset_t va)
11808 {
11809 pdp_entry_t *pdpe;
11810 pd_entry_t *pde;
11811 pt_entry_t *pte;
11812 vm_page_t m;
11813
11814 if (kernphys == 0) {
11815 /*
11816 * We're creating a temporary shadow map for the boot stack.
11817 */
11818 pmap_san_enter_early(va);
11819 return;
11820 }
11821
11822 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11823
11824 pdpe = pmap_pdpe(kernel_pmap, va);
11825 if ((*pdpe & X86_PG_V) == 0) {
11826 m = pmap_san_enter_alloc_4k();
11827 *pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11828 X86_PG_V | pg_nx);
11829 }
11830 pde = pmap_pdpe_to_pde(pdpe, va);
11831 if ((*pde & X86_PG_V) == 0) {
11832 m = pmap_san_enter_alloc_2m();
11833 if (m != NULL) {
11834 *pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11835 X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11836 } else {
11837 m = pmap_san_enter_alloc_4k();
11838 *pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11839 X86_PG_V | pg_nx);
11840 }
11841 }
11842 if ((*pde & X86_PG_PS) != 0)
11843 return;
11844 pte = pmap_pde_to_pte(pde, va);
11845 if ((*pte & X86_PG_V) != 0)
11846 return;
11847 m = pmap_san_enter_alloc_4k();
11848 *pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11849 X86_PG_M | X86_PG_A | pg_nx);
11850 }
11851 #endif
11852
11853 /*
11854 * Track a range of the kernel's virtual address space that is contiguous
11855 * in various mapping attributes.
11856 */
11857 struct pmap_kernel_map_range {
11858 vm_offset_t sva;
11859 pt_entry_t attrs;
11860 int ptes;
11861 int pdes;
11862 int pdpes;
11863 };
11864
11865 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)11866 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11867 vm_offset_t eva)
11868 {
11869 const char *mode;
11870 int i, pat_idx;
11871
11872 if (eva <= range->sva)
11873 return;
11874
11875 pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11876 for (i = 0; i < PAT_INDEX_SIZE; i++)
11877 if (pat_index[i] == pat_idx)
11878 break;
11879
11880 switch (i) {
11881 case PAT_WRITE_BACK:
11882 mode = "WB";
11883 break;
11884 case PAT_WRITE_THROUGH:
11885 mode = "WT";
11886 break;
11887 case PAT_UNCACHEABLE:
11888 mode = "UC";
11889 break;
11890 case PAT_UNCACHED:
11891 mode = "U-";
11892 break;
11893 case PAT_WRITE_PROTECTED:
11894 mode = "WP";
11895 break;
11896 case PAT_WRITE_COMBINING:
11897 mode = "WC";
11898 break;
11899 default:
11900 printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11901 __func__, pat_idx, range->sva, eva);
11902 mode = "??";
11903 break;
11904 }
11905
11906 sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11907 range->sva, eva,
11908 (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11909 (range->attrs & pg_nx) != 0 ? '-' : 'x',
11910 (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11911 (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11912 mode, range->pdpes, range->pdes, range->ptes);
11913
11914 /* Reset to sentinel value. */
11915 range->sva = kva_layout.kva_max;
11916 }
11917
11918 /*
11919 * Determine whether the attributes specified by a page table entry match those
11920 * being tracked by the current range. This is not quite as simple as a direct
11921 * flag comparison since some PAT modes have multiple representations.
11922 */
11923 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)11924 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11925 {
11926 pt_entry_t diff, mask;
11927
11928 mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11929 diff = (range->attrs ^ attrs) & mask;
11930 if (diff == 0)
11931 return (true);
11932 if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11933 pmap_pat_index(kernel_pmap, range->attrs, true) ==
11934 pmap_pat_index(kernel_pmap, attrs, true))
11935 return (true);
11936 return (false);
11937 }
11938
11939 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)11940 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11941 pt_entry_t attrs)
11942 {
11943
11944 memset(range, 0, sizeof(*range));
11945 range->sva = va;
11946 range->attrs = attrs;
11947 }
11948
11949 /*
11950 * Given a leaf PTE, derive the mapping's attributes. If they do not match
11951 * those of the current run, dump the address range and its attributes, and
11952 * begin a new run.
11953 */
11954 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pml5_entry_t pml5e,pml4_entry_t pml4e,pdp_entry_t pdpe,pd_entry_t pde,pt_entry_t pte)11955 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11956 vm_offset_t va, pml5_entry_t pml5e, pml4_entry_t pml4e, pdp_entry_t pdpe,
11957 pd_entry_t pde, pt_entry_t pte)
11958 {
11959 pt_entry_t attrs;
11960
11961 if (la57) {
11962 attrs = pml5e & (X86_PG_RW | X86_PG_U | pg_nx);
11963 attrs |= pml4e & pg_nx;
11964 attrs &= pg_nx | (pml4e & (X86_PG_RW | X86_PG_U));
11965 } else {
11966 attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11967 }
11968
11969 attrs |= pdpe & pg_nx;
11970 attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11971 if ((pdpe & PG_PS) != 0) {
11972 attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11973 } else if (pde != 0) {
11974 attrs |= pde & pg_nx;
11975 attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11976 }
11977 if ((pde & PG_PS) != 0) {
11978 attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11979 } else if (pte != 0) {
11980 attrs |= pte & pg_nx;
11981 attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11982 attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11983
11984 /* Canonicalize by always using the PDE PAT bit. */
11985 if ((attrs & X86_PG_PTE_PAT) != 0)
11986 attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
11987 }
11988
11989 if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
11990 sysctl_kmaps_dump(sb, range, va);
11991 sysctl_kmaps_reinit(range, va, attrs);
11992 }
11993 }
11994
11995 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)11996 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
11997 {
11998 struct pmap_kernel_map_range range;
11999 struct sbuf sbuf, *sb;
12000 pml5_entry_t pml5e;
12001 pml4_entry_t pml4e;
12002 pdp_entry_t *pdp, pdpe;
12003 pd_entry_t *pd, pde;
12004 pt_entry_t *pt, pte;
12005 vm_offset_t sva;
12006 vm_paddr_t pa;
12007 int error, j, k, l;
12008 bool first;
12009
12010 error = sysctl_wire_old_buffer(req, 0);
12011 if (error != 0)
12012 return (error);
12013 sb = &sbuf;
12014 sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
12015
12016 /* Sentinel value. */
12017 range.sva = kva_layout.kva_max;
12018 pml5e = 0; /* no UB for la48 */
12019
12020 /*
12021 * Iterate over the kernel page tables without holding the kernel pmap
12022 * lock. Outside of the large map, kernel page table pages are never
12023 * freed, so at worst we will observe inconsistencies in the output.
12024 * Within the large map, ensure that PDP and PD page addresses are
12025 * valid before descending.
12026 */
12027 for (first = true, sva = 0; sva != 0 || first; first = false) {
12028 if (sva == kva_layout.rec_pt)
12029 sbuf_printf(sb, "\nRecursive map:\n");
12030 else if (sva == kva_layout.dmap_low)
12031 sbuf_printf(sb, "\nDirect map:\n");
12032 #ifdef KASAN
12033 else if (sva == kva_layout.kasan_shadow_low)
12034 sbuf_printf(sb, "\nKASAN shadow map:\n");
12035 #endif
12036 #ifdef KMSAN
12037 else if (sva == kva_layout.kmsan_shadow_low)
12038 sbuf_printf(sb, "\nKMSAN shadow map:\n");
12039 else if (sva == kva_layout.kmsan_origin_low)
12040 sbuf_printf(sb, "\nKMSAN origin map:\n");
12041 #endif
12042 else if (sva == kva_layout.km_low)
12043 sbuf_printf(sb, "\nKernel map:\n");
12044 else if (sva == kva_layout.lm_low)
12045 sbuf_printf(sb, "\nLarge map:\n");
12046
12047 /* Convert to canonical form. */
12048 if (la57) {
12049 if (sva == 1ul << 56) {
12050 sva |= -1ul << 57;
12051 continue;
12052 }
12053 } else {
12054 if (sva == 1ul << 47) {
12055 sva |= -1ul << 48;
12056 continue;
12057 }
12058 }
12059
12060 restart:
12061 if (la57) {
12062 pml5e = *pmap_pml5e(kernel_pmap, sva);
12063 if ((pml5e & X86_PG_V) == 0) {
12064 sva = rounddown2(sva, NBPML5);
12065 sysctl_kmaps_dump(sb, &range, sva);
12066 sva += NBPML5;
12067 continue;
12068 }
12069 }
12070 pml4e = *pmap_pml4e(kernel_pmap, sva);
12071 if ((pml4e & X86_PG_V) == 0) {
12072 sva = rounddown2(sva, NBPML4);
12073 sysctl_kmaps_dump(sb, &range, sva);
12074 sva += NBPML4;
12075 continue;
12076 }
12077 pa = pml4e & PG_FRAME;
12078 pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
12079
12080 for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
12081 pdpe = pdp[j];
12082 if ((pdpe & X86_PG_V) == 0) {
12083 sva = rounddown2(sva, NBPDP);
12084 sysctl_kmaps_dump(sb, &range, sva);
12085 sva += NBPDP;
12086 continue;
12087 }
12088 pa = pdpe & PG_FRAME;
12089 if ((pdpe & PG_PS) != 0) {
12090 sva = rounddown2(sva, NBPDP);
12091 sysctl_kmaps_check(sb, &range, sva, pml5e,
12092 pml4e, pdpe, 0, 0);
12093 range.pdpes++;
12094 sva += NBPDP;
12095 continue;
12096 }
12097 if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12098 vm_phys_paddr_to_vm_page(pa) == NULL) {
12099 /*
12100 * Page table pages for the large map may be
12101 * freed. Validate the next-level address
12102 * before descending.
12103 */
12104 sva += NBPDP;
12105 goto restart;
12106 }
12107 pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
12108
12109 for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
12110 pde = pd[k];
12111 if ((pde & X86_PG_V) == 0) {
12112 sva = rounddown2(sva, NBPDR);
12113 sysctl_kmaps_dump(sb, &range, sva);
12114 sva += NBPDR;
12115 continue;
12116 }
12117 pa = pde & PG_FRAME;
12118 if ((pde & PG_PS) != 0) {
12119 sva = rounddown2(sva, NBPDR);
12120 sysctl_kmaps_check(sb, &range, sva,
12121 pml5e, pml4e, pdpe, pde, 0);
12122 range.pdes++;
12123 sva += NBPDR;
12124 continue;
12125 }
12126 if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12127 vm_phys_paddr_to_vm_page(pa) == NULL) {
12128 /*
12129 * Page table pages for the large map
12130 * may be freed. Validate the
12131 * next-level address before descending.
12132 */
12133 sva += NBPDR;
12134 goto restart;
12135 }
12136 pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
12137
12138 for (l = pmap_pte_index(sva); l < NPTEPG; l++,
12139 sva += PAGE_SIZE) {
12140 pte = pt[l];
12141 if ((pte & X86_PG_V) == 0) {
12142 sysctl_kmaps_dump(sb, &range,
12143 sva);
12144 continue;
12145 }
12146 sysctl_kmaps_check(sb, &range, sva,
12147 pml5e, pml4e, pdpe, pde, pte);
12148 range.ptes++;
12149 }
12150 }
12151 }
12152 }
12153
12154 error = sbuf_finish(sb);
12155 sbuf_delete(sb);
12156 return (error);
12157 }
12158 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
12159 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
12160 NULL, 0, sysctl_kmaps, "A",
12161 "Dump kernel address layout");
12162
12163 #ifdef DDB
DB_SHOW_COMMAND(pte,pmap_print_pte)12164 DB_SHOW_COMMAND(pte, pmap_print_pte)
12165 {
12166 pmap_t pmap;
12167 pml5_entry_t *pml5;
12168 pml4_entry_t *pml4;
12169 pdp_entry_t *pdp;
12170 pd_entry_t *pde;
12171 pt_entry_t *pte, PG_V;
12172 vm_offset_t va;
12173
12174 if (!have_addr) {
12175 db_printf("show pte addr\n");
12176 return;
12177 }
12178 va = (vm_offset_t)addr;
12179
12180 if (kdb_thread != NULL)
12181 pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12182 else
12183 pmap = PCPU_GET(curpmap);
12184
12185 PG_V = pmap_valid_bit(pmap);
12186 db_printf("VA 0x%016lx", va);
12187
12188 if (pmap_is_la57(pmap)) {
12189 pml5 = pmap_pml5e(pmap, va);
12190 db_printf(" pml5e@0x%016lx 0x%016lx", (uint64_t)pml5, *pml5);
12191 if ((*pml5 & PG_V) == 0) {
12192 db_printf("\n");
12193 return;
12194 }
12195 pml4 = pmap_pml5e_to_pml4e(pml5, va);
12196 } else {
12197 pml4 = pmap_pml4e(pmap, va);
12198 }
12199 db_printf(" pml4e@0x%016lx 0x%016lx", (uint64_t)pml4, *pml4);
12200 if ((*pml4 & PG_V) == 0) {
12201 db_printf("\n");
12202 return;
12203 }
12204 pdp = pmap_pml4e_to_pdpe(pml4, va);
12205 db_printf(" pdpe@0x%016lx 0x%016lx", (uint64_t)pdp, *pdp);
12206 if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12207 db_printf("\n");
12208 return;
12209 }
12210 pde = pmap_pdpe_to_pde(pdp, va);
12211 db_printf(" pde@0x%016lx 0x%016lx", (uint64_t)pde, *pde);
12212 if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12213 db_printf("\n");
12214 return;
12215 }
12216 pte = pmap_pde_to_pte(pde, va);
12217 db_printf(" pte@0x%016lx 0x%016lx\n", (uint64_t)pte, *pte);
12218 }
12219
DB_SHOW_COMMAND(phys2dmap,pmap_phys2dmap)12220 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12221 {
12222 vm_paddr_t a;
12223
12224 if (have_addr) {
12225 a = (vm_paddr_t)addr;
12226 db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12227 } else {
12228 db_printf("show phys2dmap addr\n");
12229 }
12230 }
12231
12232 static void
ptpages_show_page(int level,int idx,vm_page_t pg)12233 ptpages_show_page(int level, int idx, vm_page_t pg)
12234 {
12235 db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12236 level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12237 }
12238
12239 static void
ptpages_show_complain(int level,int idx,uint64_t pte)12240 ptpages_show_complain(int level, int idx, uint64_t pte)
12241 {
12242 db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12243 }
12244
12245 static void
ptpages_show_pml4(vm_page_t pg4,int num_entries,uint64_t PG_V)12246 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12247 {
12248 vm_page_t pg3, pg2, pg1;
12249 pml4_entry_t *pml4;
12250 pdp_entry_t *pdp;
12251 pd_entry_t *pd;
12252 int i4, i3, i2;
12253
12254 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12255 for (i4 = 0; i4 < num_entries; i4++) {
12256 if ((pml4[i4] & PG_V) == 0)
12257 continue;
12258 pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12259 if (pg3 == NULL) {
12260 ptpages_show_complain(3, i4, pml4[i4]);
12261 continue;
12262 }
12263 ptpages_show_page(3, i4, pg3);
12264 pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12265 for (i3 = 0; i3 < NPDPEPG; i3++) {
12266 if ((pdp[i3] & PG_V) == 0)
12267 continue;
12268 pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12269 if (pg3 == NULL) {
12270 ptpages_show_complain(2, i3, pdp[i3]);
12271 continue;
12272 }
12273 ptpages_show_page(2, i3, pg2);
12274 pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12275 for (i2 = 0; i2 < NPDEPG; i2++) {
12276 if ((pd[i2] & PG_V) == 0)
12277 continue;
12278 pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12279 if (pg1 == NULL) {
12280 ptpages_show_complain(1, i2, pd[i2]);
12281 continue;
12282 }
12283 ptpages_show_page(1, i2, pg1);
12284 }
12285 }
12286 }
12287 }
12288
DB_SHOW_COMMAND(ptpages,pmap_ptpages)12289 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12290 {
12291 pmap_t pmap;
12292 vm_page_t pg;
12293 pml5_entry_t *pml5;
12294 uint64_t PG_V;
12295 int i5;
12296
12297 if (have_addr)
12298 pmap = (pmap_t)addr;
12299 else
12300 pmap = PCPU_GET(curpmap);
12301
12302 PG_V = pmap_valid_bit(pmap);
12303
12304 if (pmap_is_la57(pmap)) {
12305 pml5 = pmap->pm_pmltop;
12306 for (i5 = 0; i5 < NUPML5E; i5++) {
12307 if ((pml5[i5] & PG_V) == 0)
12308 continue;
12309 pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12310 if (pg == NULL) {
12311 ptpages_show_complain(4, i5, pml5[i5]);
12312 continue;
12313 }
12314 ptpages_show_page(4, i5, pg);
12315 ptpages_show_pml4(pg, NPML4EPG, PG_V);
12316 }
12317 } else {
12318 ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12319 (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12320 }
12321 }
12322 #endif
12323