xref: /freebsd/sys/amd64/amd64/pmap.c (revision ecf65a4ae5cb9f18ebdc5fd9a40332f443e04959)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13  * All rights reserved.
14  *
15  * This code is derived from software contributed to Berkeley by
16  * the Systems Programming Group of the University of Utah Computer
17  * Science Department and William Jolitz of UUNET Technologies Inc.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by the University of
30  *	California, Berkeley and its contributors.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  */
47 /*-
48  * Copyright (c) 2003 Networks Associates Technology, Inc.
49  * Copyright (c) 2014-2020 The FreeBSD Foundation
50  * All rights reserved.
51  *
52  * This software was developed for the FreeBSD Project by Jake Burkholder,
53  * Safeport Network Services, and Network Associates Laboratories, the
54  * Security Research Division of Network Associates, Inc. under
55  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
56  * CHATS research program.
57  *
58  * Portions of this software were developed by
59  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
60  * the FreeBSD Foundation.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions
64  * are met:
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in the
69  *    documentation and/or other materials provided with the distribution.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  */
83 
84 #define	AMD64_NPT_AWARE
85 
86 #include <sys/cdefs.h>
87 /*
88  *	Manages physical address maps.
89  *
90  *	Since the information managed by this module is
91  *	also stored by the logical address mapping module,
92  *	this module may throw away valid virtual-to-physical
93  *	mappings at almost any time.  However, invalidations
94  *	of virtual-to-physical mappings must be done as
95  *	requested.
96  *
97  *	In order to cope with hardware architectures which
98  *	make virtual-to-physical map invalidates expensive,
99  *	this module may delay invalidate or reduced protection
100  *	operations until such time as they are actually
101  *	necessary.  This module is given full information as
102  *	to which processors are currently using which maps,
103  *	and to when physical maps must be made correct.
104  */
105 
106 #include "opt_ddb.h"
107 #include "opt_kstack_pages.h"
108 #include "opt_pmap.h"
109 #include "opt_vm.h"
110 
111 #include <sys/param.h>
112 #include <sys/asan.h>
113 #include <sys/bitstring.h>
114 #include <sys/bus.h>
115 #include <sys/systm.h>
116 #include <sys/counter.h>
117 #include <sys/kernel.h>
118 #include <sys/ktr.h>
119 #include <sys/lock.h>
120 #include <sys/malloc.h>
121 #include <sys/mman.h>
122 #include <sys/msan.h>
123 #include <sys/mutex.h>
124 #include <sys/proc.h>
125 #include <sys/rangeset.h>
126 #include <sys/rwlock.h>
127 #include <sys/sbuf.h>
128 #include <sys/smr.h>
129 #include <sys/sx.h>
130 #include <sys/turnstile.h>
131 #include <sys/vmem.h>
132 #include <sys/vmmeter.h>
133 #include <sys/sched.h>
134 #include <sys/sysctl.h>
135 #include <sys/smp.h>
136 #ifdef DDB
137 #include <sys/kdb.h>
138 #include <ddb/ddb.h>
139 #endif
140 
141 #include <vm/vm.h>
142 #include <vm/vm_param.h>
143 #include <vm/vm_kern.h>
144 #include <vm/vm_page.h>
145 #include <vm/vm_map.h>
146 #include <vm/vm_object.h>
147 #include <vm/vm_extern.h>
148 #include <vm/vm_pageout.h>
149 #include <vm/vm_pager.h>
150 #include <vm/vm_phys.h>
151 #include <vm/vm_radix.h>
152 #include <vm/vm_reserv.h>
153 #include <vm/vm_dumpset.h>
154 #include <vm/uma.h>
155 
156 #include <machine/asan.h>
157 #include <machine/intr_machdep.h>
158 #include <x86/apicvar.h>
159 #include <x86/ifunc.h>
160 #include <machine/cpu.h>
161 #include <machine/cputypes.h>
162 #include <machine/md_var.h>
163 #include <machine/msan.h>
164 #include <machine/pcb.h>
165 #include <machine/specialreg.h>
166 #include <machine/smp.h>
167 #include <machine/sysarch.h>
168 #include <machine/tss.h>
169 
170 #ifdef NUMA
171 #define	PMAP_MEMDOM	MAXMEMDOM
172 #else
173 #define	PMAP_MEMDOM	1
174 #endif
175 
176 static __inline bool
pmap_type_guest(pmap_t pmap)177 pmap_type_guest(pmap_t pmap)
178 {
179 
180 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
181 }
182 
183 static __inline bool
pmap_emulate_ad_bits(pmap_t pmap)184 pmap_emulate_ad_bits(pmap_t pmap)
185 {
186 
187 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
188 }
189 
190 static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)191 pmap_valid_bit(pmap_t pmap)
192 {
193 	pt_entry_t mask;
194 
195 	switch (pmap->pm_type) {
196 	case PT_X86:
197 	case PT_RVI:
198 		mask = X86_PG_V;
199 		break;
200 	case PT_EPT:
201 		if (pmap_emulate_ad_bits(pmap))
202 			mask = EPT_PG_EMUL_V;
203 		else
204 			mask = EPT_PG_READ;
205 		break;
206 	default:
207 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
208 	}
209 
210 	return (mask);
211 }
212 
213 static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)214 pmap_rw_bit(pmap_t pmap)
215 {
216 	pt_entry_t mask;
217 
218 	switch (pmap->pm_type) {
219 	case PT_X86:
220 	case PT_RVI:
221 		mask = X86_PG_RW;
222 		break;
223 	case PT_EPT:
224 		if (pmap_emulate_ad_bits(pmap))
225 			mask = EPT_PG_EMUL_RW;
226 		else
227 			mask = EPT_PG_WRITE;
228 		break;
229 	default:
230 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
231 	}
232 
233 	return (mask);
234 }
235 
236 static pt_entry_t pg_g;
237 
238 static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)239 pmap_global_bit(pmap_t pmap)
240 {
241 	pt_entry_t mask;
242 
243 	switch (pmap->pm_type) {
244 	case PT_X86:
245 		mask = pg_g;
246 		break;
247 	case PT_RVI:
248 	case PT_EPT:
249 		mask = 0;
250 		break;
251 	default:
252 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
253 	}
254 
255 	return (mask);
256 }
257 
258 static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)259 pmap_accessed_bit(pmap_t pmap)
260 {
261 	pt_entry_t mask;
262 
263 	switch (pmap->pm_type) {
264 	case PT_X86:
265 	case PT_RVI:
266 		mask = X86_PG_A;
267 		break;
268 	case PT_EPT:
269 		if (pmap_emulate_ad_bits(pmap))
270 			mask = EPT_PG_READ;
271 		else
272 			mask = EPT_PG_A;
273 		break;
274 	default:
275 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
276 	}
277 
278 	return (mask);
279 }
280 
281 static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)282 pmap_modified_bit(pmap_t pmap)
283 {
284 	pt_entry_t mask;
285 
286 	switch (pmap->pm_type) {
287 	case PT_X86:
288 	case PT_RVI:
289 		mask = X86_PG_M;
290 		break;
291 	case PT_EPT:
292 		if (pmap_emulate_ad_bits(pmap))
293 			mask = EPT_PG_WRITE;
294 		else
295 			mask = EPT_PG_M;
296 		break;
297 	default:
298 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
299 	}
300 
301 	return (mask);
302 }
303 
304 static __inline pt_entry_t
pmap_pku_mask_bit(pmap_t pmap)305 pmap_pku_mask_bit(pmap_t pmap)
306 {
307 
308 	return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
309 }
310 
311 static __inline bool
safe_to_clear_referenced(pmap_t pmap,pt_entry_t pte)312 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
313 {
314 
315 	if (!pmap_emulate_ad_bits(pmap))
316 		return (true);
317 
318 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
319 
320 	/*
321 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
322 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
323 	 * if the EPT_PG_WRITE bit is set.
324 	 */
325 	if ((pte & EPT_PG_WRITE) != 0)
326 		return (false);
327 
328 	/*
329 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
330 	 */
331 	if ((pte & EPT_PG_EXECUTE) == 0 ||
332 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
333 		return (true);
334 	else
335 		return (false);
336 }
337 
338 #ifdef PV_STATS
339 #define PV_STAT(x)	do { x ; } while (0)
340 #else
341 #define PV_STAT(x)	do { } while (0)
342 #endif
343 
344 #ifdef NUMA
345 #define	pa_index(pa)	({					\
346 	KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end,	\
347 	    ("address %lx beyond the last segment", (pa)));	\
348 	(pa) >> PDRSHIFT;					\
349 })
350 #define	pa_to_pmdp(pa)	(&pv_table[pa_index(pa)])
351 #define	pa_to_pvh(pa)	(&(pa_to_pmdp(pa)->pv_page))
352 #define	PHYS_TO_PV_LIST_LOCK(pa)	({			\
353 	struct rwlock *_lock;					\
354 	if (__predict_false((pa) > pmap_last_pa))		\
355 		_lock = &pv_dummy_large.pv_lock;		\
356 	else							\
357 		_lock = &(pa_to_pmdp(pa)->pv_lock);		\
358 	_lock;							\
359 })
360 #else
361 #define	pa_index(pa)	((pa) >> PDRSHIFT)
362 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
363 
364 #define	NPV_LIST_LOCKS	MAXCPU
365 
366 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
367 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
368 #endif
369 
370 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
371 	struct rwlock **_lockp = (lockp);		\
372 	struct rwlock *_new_lock;			\
373 							\
374 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
375 	if (_new_lock != *_lockp) {			\
376 		if (*_lockp != NULL)			\
377 			rw_wunlock(*_lockp);		\
378 		*_lockp = _new_lock;			\
379 		rw_wlock(*_lockp);			\
380 	}						\
381 } while (0)
382 
383 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
384 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
385 
386 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
387 	struct rwlock **_lockp = (lockp);		\
388 							\
389 	if (*_lockp != NULL) {				\
390 		rw_wunlock(*_lockp);			\
391 		*_lockp = NULL;				\
392 	}						\
393 } while (0)
394 
395 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
396 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
397 
398 /*
399  * Statically allocate kernel pmap memory.  However, memory for
400  * pm_pcids is obtained after the dynamic allocator is operational.
401  * Initialize it with a non-canonical pointer to catch early accesses
402  * regardless of the active mapping.
403  */
404 struct pmap kernel_pmap_store = {
405 	.pm_pcidp = (void *)0xdeadbeefdeadbeef,
406 };
407 
408 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
409 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
410 
411 int nkpt;
412 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
413     "Number of kernel page table pages allocated on bootup");
414 
415 static int ndmpdp;
416 vm_paddr_t dmaplimit;
417 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS_LA48;
418 pt_entry_t pg_nx;
419 
420 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
421     "VM/pmap parameters");
422 
423 static int __read_frequently pg_ps_enabled = 1;
424 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
425     &pg_ps_enabled, 0, "Are large page mappings enabled?");
426 
427 int __read_frequently la57 = 0;
428 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
429     &la57, 0,
430     "5-level paging for host is enabled");
431 
432 /*
433  * The default value is needed in order to preserve compatibility with
434  * some userspace programs that put tags into sign-extended bits.
435  */
436 int prefer_uva_la48 = 1;
437 SYSCTL_INT(_vm_pmap, OID_AUTO, prefer_uva_la48, CTLFLAG_RDTUN,
438     &prefer_uva_la48, 0,
439     "Userspace maps are limited to LA48 unless otherwise configured");
440 
441 static bool
pmap_is_la57(pmap_t pmap)442 pmap_is_la57(pmap_t pmap)
443 {
444 	if (pmap->pm_type == PT_X86)
445 		return (la57);
446 	return (false);		/* XXXKIB handle EPT */
447 }
448 
449 #define	PAT_INDEX_SIZE	8
450 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
451 
452 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
453 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
454 static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
455 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
456 u_int64_t		KPML5phys;	/* phys addr of kernel level 5,
457 					   if supported */
458 
459 #ifdef KASAN
460 static uint64_t		KASANPDPphys;
461 #endif
462 #ifdef KMSAN
463 static uint64_t		KMSANSHADPDPphys;
464 static uint64_t		KMSANORIGPDPphys;
465 
466 /*
467  * To support systems with large amounts of memory, it is necessary to extend
468  * the maximum size of the direct map.  This could eat into the space reserved
469  * for the shadow map.
470  */
471 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
472 #endif
473 
474 static pml4_entry_t	*kernel_pml4;
475 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
476 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
477 static u_int64_t	DMPML4phys;	/* ... level 4, for la57 */
478 static int		ndmpdpphys;	/* number of DMPDPphys pages */
479 
480 vm_paddr_t		kernphys;	/* phys addr of start of bootstrap data */
481 vm_paddr_t		KERNend;	/* and the end */
482 
483 struct kva_layout_s	kva_layout = {
484 	.kva_min =	KV4ADDR(PML4PML4I, 0, 0, 0),
485 	.kva_max =	KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
486 			    NPDEPG - 1, NPTEPG - 1),
487 	.dmap_low =	KV4ADDR(DMPML4I, 0, 0, 0),
488 	.dmap_high =	KV4ADDR(DMPML4I + NDMPML4E, 0, 0, 0),
489 	.lm_low =	KV4ADDR(LMSPML4I, 0, 0, 0),
490 	.lm_high =	KV4ADDR(LMEPML4I + 1, 0, 0, 0),
491 	.km_low =	KV4ADDR(KPML4BASE, 0, 0, 0),
492 	.km_high =	KV4ADDR(KPML4BASE + NKPML4E - 1, NPDPEPG - 1,
493 			    NPDEPG - 1, NPTEPG - 1),
494 	.rec_pt =	KV4ADDR(PML4PML4I, 0, 0, 0),
495 	.kasan_shadow_low = KV4ADDR(KASANPML4I, 0, 0, 0),
496 	.kasan_shadow_high = KV4ADDR(KASANPML4I + NKASANPML4E, 0, 0, 0),
497 	.kmsan_shadow_low = KV4ADDR(KMSANSHADPML4I, 0, 0, 0),
498 	.kmsan_shadow_high = KV4ADDR(KMSANSHADPML4I + NKMSANSHADPML4E,
499 			    0, 0, 0),
500 	.kmsan_origin_low = KV4ADDR(KMSANORIGPML4I, 0, 0, 0),
501 	.kmsan_origin_high = KV4ADDR(KMSANORIGPML4I + NKMSANORIGPML4E,
502 			    0, 0, 0),
503 };
504 
505 struct kva_layout_s	kva_layout_la57 = {
506 	.kva_min =	KV5ADDR(NPML5EPG / 2, 0, 0, 0, 0),	/* == rec_pt */
507 	.kva_max =	KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
508 			    NPDEPG - 1, NPTEPG - 1),
509 	.dmap_low =	KV5ADDR(DMPML5I, 0, 0, 0, 0),
510 	.dmap_high =	KV5ADDR(DMPML5I + NDMPML5E, 0, 0, 0, 0),
511 	.lm_low =	KV5ADDR(LMSPML5I, 0, 0, 0, 0),
512 	.lm_high =	KV5ADDR(LMEPML5I + 1, 0, 0, 0, 0),
513 	.km_low =	KV4ADDR(KPML4BASE, 0, 0, 0),
514 	.km_high =	KV4ADDR(KPML4BASE + NKPML4E - 1, NPDPEPG - 1,
515 			    NPDEPG - 1, NPTEPG - 1),
516 	.rec_pt =	KV5ADDR(PML5PML5I, 0, 0, 0, 0),
517 	.kasan_shadow_low = KV4ADDR(KASANPML4I, 0, 0, 0),
518 	.kasan_shadow_high = KV4ADDR(KASANPML4I + NKASANPML4E, 0, 0, 0),
519 	.kmsan_shadow_low = KV4ADDR(KMSANSHADPML4I, 0, 0, 0),
520 	.kmsan_shadow_high = KV4ADDR(KMSANSHADPML4I + NKMSANSHADPML4E,
521 			    0, 0, 0),
522 	.kmsan_origin_low = KV4ADDR(KMSANORIGPML4I, 0, 0, 0),
523 	.kmsan_origin_high = KV4ADDR(KMSANORIGPML4I + NKMSANORIGPML4E,
524 			    0, 0, 0),
525 };
526 
527 /*
528  * pmap_mapdev support pre initialization (i.e. console)
529  */
530 #define	PMAP_PREINIT_MAPPING_COUNT	8
531 static struct pmap_preinit_mapping {
532 	vm_paddr_t	pa;
533 	vm_offset_t	va;
534 	vm_size_t	sz;
535 	int		mode;
536 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
537 static int pmap_initialized;
538 
539 /*
540  * Data for the pv entry allocation mechanism.
541  * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
542  */
543 #ifdef NUMA
544 static __inline int
pc_to_domain(struct pv_chunk * pc)545 pc_to_domain(struct pv_chunk *pc)
546 {
547 
548 	return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
549 }
550 #else
551 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)552 pc_to_domain(struct pv_chunk *pc __unused)
553 {
554 
555 	return (0);
556 }
557 #endif
558 
559 struct pv_chunks_list {
560 	struct mtx pvc_lock;
561 	TAILQ_HEAD(pch, pv_chunk) pvc_list;
562 	int active_reclaims;
563 } __aligned(CACHE_LINE_SIZE);
564 
565 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
566 
567 #ifdef	NUMA
568 struct pmap_large_md_page {
569 	struct rwlock   pv_lock;
570 	struct md_page  pv_page;
571 	u_long pv_invl_gen;
572 };
573 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
574 #define pv_dummy pv_dummy_large.pv_page
575 __read_mostly static struct pmap_large_md_page *pv_table;
576 __read_mostly vm_paddr_t pmap_last_pa;
577 #else
578 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
579 static u_long pv_invl_gen[NPV_LIST_LOCKS];
580 static struct md_page *pv_table;
581 static struct md_page pv_dummy;
582 #endif
583 
584 /*
585  * All those kernel PT submaps that BSD is so fond of
586  */
587 pt_entry_t *CMAP1 = NULL;
588 caddr_t CADDR1 = 0;
589 static vm_offset_t qframe = 0;
590 static struct mtx qframe_mtx;
591 
592 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
593 
594 static vmem_t *large_vmem;
595 static u_int lm_ents;
596 #define	PMAP_ADDRESS_IN_LARGEMAP(va)	((va) >= kva_layout.lm_low && \
597 	(va) < kva_layout.lm_high)
598 
599 int pmap_pcid_enabled = 1;
600 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
601     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
602 int invpcid_works = 0;
603 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
604     "Is the invpcid instruction available ?");
605 int invlpgb_works;
606 SYSCTL_INT(_vm_pmap, OID_AUTO, invlpgb_works, CTLFLAG_RD, &invlpgb_works, 0,
607     "Is the invlpgb instruction available?");
608 int invlpgb_maxcnt;
609 int pmap_pcid_invlpg_workaround = 0;
610 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
611     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
612     &pmap_pcid_invlpg_workaround, 0,
613     "Enable small core PCID/INVLPG workaround");
614 int pmap_pcid_invlpg_workaround_uena = 1;
615 
616 int __read_frequently pti = 0;
617 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
618     &pti, 0,
619     "Page Table Isolation enabled");
620 static vm_object_t pti_obj;
621 static pml4_entry_t *pti_pml4;
622 static vm_pindex_t pti_pg_idx;
623 static bool pti_finalized;
624 
625 static int pmap_growkernel_panic = 0;
626 SYSCTL_INT(_vm_pmap, OID_AUTO, growkernel_panic, CTLFLAG_RDTUN,
627     &pmap_growkernel_panic, 0,
628     "panic on failure to allocate kernel page table page");
629 
630 struct pmap_pkru_range {
631 	struct rs_el	pkru_rs_el;
632 	u_int		pkru_keyidx;
633 	int		pkru_flags;
634 };
635 
636 static uma_zone_t pmap_pkru_ranges_zone;
637 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
638     pt_entry_t *pte);
639 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
640 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
641 static void *pkru_dup_range(void *ctx, void *data);
642 static void pkru_free_range(void *ctx, void *node);
643 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
644 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
645 static void pmap_pkru_deassign_all(pmap_t pmap);
646 
647 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
648 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
649     &pcid_save_cnt, "Count of saved TLB context on switch");
650 
651 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
652     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
653 static struct mtx invl_gen_mtx;
654 /* Fake lock object to satisfy turnstiles interface. */
655 static struct lock_object invl_gen_ts = {
656 	.lo_name = "invlts",
657 };
658 static struct pmap_invl_gen pmap_invl_gen_head = {
659 	.gen = 1,
660 	.next = NULL,
661 };
662 static u_long pmap_invl_gen = 1;
663 static int pmap_invl_waiters;
664 static struct callout pmap_invl_callout;
665 static bool pmap_invl_callout_inited;
666 
667 #define	PMAP_ASSERT_NOT_IN_DI() \
668     KASSERT(pmap_not_in_di(), ("DI already started"))
669 
670 static bool
pmap_di_locked(void)671 pmap_di_locked(void)
672 {
673 	int tun;
674 
675 	if ((cpu_feature2 & CPUID2_CX16) == 0)
676 		return (true);
677 	tun = 0;
678 	TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
679 	return (tun != 0);
680 }
681 
682 static int
sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)683 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
684 {
685 	int locked;
686 
687 	locked = pmap_di_locked();
688 	return (sysctl_handle_int(oidp, &locked, 0, req));
689 }
690 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
691     CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
692     "Locked delayed invalidation");
693 
694 static bool pmap_not_in_di_l(void);
695 static bool pmap_not_in_di_u(void);
696 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
697 {
698 
699 	return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
700 }
701 
702 static bool
pmap_not_in_di_l(void)703 pmap_not_in_di_l(void)
704 {
705 	struct pmap_invl_gen *invl_gen;
706 
707 	invl_gen = &curthread->td_md.md_invl_gen;
708 	return (invl_gen->gen == 0);
709 }
710 
711 static void
pmap_thread_init_invl_gen_l(struct thread * td)712 pmap_thread_init_invl_gen_l(struct thread *td)
713 {
714 	struct pmap_invl_gen *invl_gen;
715 
716 	invl_gen = &td->td_md.md_invl_gen;
717 	invl_gen->gen = 0;
718 }
719 
720 static void
pmap_delayed_invl_wait_block(u_long * m_gen,u_long * invl_gen)721 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
722 {
723 	struct turnstile *ts;
724 
725 	ts = turnstile_trywait(&invl_gen_ts);
726 	if (*m_gen > atomic_load_long(invl_gen))
727 		turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
728 	else
729 		turnstile_cancel(ts);
730 }
731 
732 static void
pmap_delayed_invl_finish_unblock(u_long new_gen)733 pmap_delayed_invl_finish_unblock(u_long new_gen)
734 {
735 	struct turnstile *ts;
736 
737 	turnstile_chain_lock(&invl_gen_ts);
738 	ts = turnstile_lookup(&invl_gen_ts);
739 	if (new_gen != 0)
740 		pmap_invl_gen = new_gen;
741 	if (ts != NULL) {
742 		turnstile_broadcast(ts, TS_SHARED_QUEUE);
743 		turnstile_unpend(ts);
744 	}
745 	turnstile_chain_unlock(&invl_gen_ts);
746 }
747 
748 /*
749  * Start a new Delayed Invalidation (DI) block of code, executed by
750  * the current thread.  Within a DI block, the current thread may
751  * destroy both the page table and PV list entries for a mapping and
752  * then release the corresponding PV list lock before ensuring that
753  * the mapping is flushed from the TLBs of any processors with the
754  * pmap active.
755  */
756 static void
pmap_delayed_invl_start_l(void)757 pmap_delayed_invl_start_l(void)
758 {
759 	struct pmap_invl_gen *invl_gen;
760 	u_long currgen;
761 
762 	invl_gen = &curthread->td_md.md_invl_gen;
763 	PMAP_ASSERT_NOT_IN_DI();
764 	mtx_lock(&invl_gen_mtx);
765 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
766 		currgen = pmap_invl_gen;
767 	else
768 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
769 	invl_gen->gen = currgen + 1;
770 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
771 	mtx_unlock(&invl_gen_mtx);
772 }
773 
774 /*
775  * Finish the DI block, previously started by the current thread.  All
776  * required TLB flushes for the pages marked by
777  * pmap_delayed_invl_page() must be finished before this function is
778  * called.
779  *
780  * This function works by bumping the global DI generation number to
781  * the generation number of the current thread's DI, unless there is a
782  * pending DI that started earlier.  In the latter case, bumping the
783  * global DI generation number would incorrectly signal that the
784  * earlier DI had finished.  Instead, this function bumps the earlier
785  * DI's generation number to match the generation number of the
786  * current thread's DI.
787  */
788 static void
pmap_delayed_invl_finish_l(void)789 pmap_delayed_invl_finish_l(void)
790 {
791 	struct pmap_invl_gen *invl_gen, *next;
792 
793 	invl_gen = &curthread->td_md.md_invl_gen;
794 	KASSERT(invl_gen->gen != 0, ("missed invl_start"));
795 	mtx_lock(&invl_gen_mtx);
796 	next = LIST_NEXT(invl_gen, link);
797 	if (next == NULL)
798 		pmap_delayed_invl_finish_unblock(invl_gen->gen);
799 	else
800 		next->gen = invl_gen->gen;
801 	LIST_REMOVE(invl_gen, link);
802 	mtx_unlock(&invl_gen_mtx);
803 	invl_gen->gen = 0;
804 }
805 
806 static bool
pmap_not_in_di_u(void)807 pmap_not_in_di_u(void)
808 {
809 	struct pmap_invl_gen *invl_gen;
810 
811 	invl_gen = &curthread->td_md.md_invl_gen;
812 	return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
813 }
814 
815 static void
pmap_thread_init_invl_gen_u(struct thread * td)816 pmap_thread_init_invl_gen_u(struct thread *td)
817 {
818 	struct pmap_invl_gen *invl_gen;
819 
820 	invl_gen = &td->td_md.md_invl_gen;
821 	invl_gen->gen = 0;
822 	invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
823 }
824 
825 static bool
pmap_di_load_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * out)826 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
827 {
828 	uint64_t new_high, new_low, old_high, old_low;
829 	char res;
830 
831 	old_low = new_low = 0;
832 	old_high = new_high = (uintptr_t)0;
833 
834 	__asm volatile("lock;cmpxchg16b\t%1"
835 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
836 	    : "b"(new_low), "c" (new_high)
837 	    : "memory", "cc");
838 	if (res == 0) {
839 		if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
840 			return (false);
841 		out->gen = old_low;
842 		out->next = (void *)old_high;
843 	} else {
844 		out->gen = new_low;
845 		out->next = (void *)new_high;
846 	}
847 	return (true);
848 }
849 
850 static bool
pmap_di_store_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * old_val,struct pmap_invl_gen * new_val)851 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
852     struct pmap_invl_gen *new_val)
853 {
854 	uint64_t new_high, new_low, old_high, old_low;
855 	char res;
856 
857 	new_low = new_val->gen;
858 	new_high = (uintptr_t)new_val->next;
859 	old_low = old_val->gen;
860 	old_high = (uintptr_t)old_val->next;
861 
862 	__asm volatile("lock;cmpxchg16b\t%1"
863 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
864 	    : "b"(new_low), "c" (new_high)
865 	    : "memory", "cc");
866 	return (res);
867 }
868 
869 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
870 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
871     &pv_page_count, "Current number of allocated pv pages");
872 
873 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
874 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
875     &user_pt_page_count,
876     "Current number of allocated page table pages for userspace");
877 
878 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
879 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
880     &kernel_pt_page_count,
881     "Current number of allocated page table pages for the kernel");
882 
883 #ifdef PV_STATS
884 
885 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
886 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
887     CTLFLAG_RD, &invl_start_restart,
888     "Number of delayed TLB invalidation request restarts");
889 
890 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
891 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
892     &invl_finish_restart,
893     "Number of delayed TLB invalidation completion restarts");
894 
895 static int invl_max_qlen;
896 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
897     &invl_max_qlen, 0,
898     "Maximum delayed TLB invalidation request queue length");
899 #endif
900 
901 #define di_delay	locks_delay
902 
903 static void
pmap_delayed_invl_start_u(void)904 pmap_delayed_invl_start_u(void)
905 {
906 	struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
907 	struct thread *td;
908 	struct lock_delay_arg lda;
909 	uintptr_t prevl;
910 	u_char pri;
911 #ifdef PV_STATS
912 	int i, ii;
913 #endif
914 
915 	td = curthread;
916 	invl_gen = &td->td_md.md_invl_gen;
917 	PMAP_ASSERT_NOT_IN_DI();
918 	lock_delay_arg_init(&lda, &di_delay);
919 	invl_gen->saved_pri = 0;
920 	pri = td->td_base_pri;
921 	if (pri > PVM) {
922 		thread_lock(td);
923 		pri = td->td_base_pri;
924 		if (pri > PVM) {
925 			invl_gen->saved_pri = pri;
926 			sched_prio(td, PVM);
927 		}
928 		thread_unlock(td);
929 	}
930 again:
931 	PV_STAT(i = 0);
932 	for (p = &pmap_invl_gen_head;; p = prev.next) {
933 		PV_STAT(i++);
934 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
935 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
936 			PV_STAT(counter_u64_add(invl_start_restart, 1));
937 			lock_delay(&lda);
938 			goto again;
939 		}
940 		if (prevl == 0)
941 			break;
942 		prev.next = (void *)prevl;
943 	}
944 #ifdef PV_STATS
945 	if ((ii = invl_max_qlen) < i)
946 		atomic_cmpset_int(&invl_max_qlen, ii, i);
947 #endif
948 
949 	if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
950 		PV_STAT(counter_u64_add(invl_start_restart, 1));
951 		lock_delay(&lda);
952 		goto again;
953 	}
954 
955 	new_prev.gen = prev.gen;
956 	new_prev.next = invl_gen;
957 	invl_gen->gen = prev.gen + 1;
958 
959 	/* Formal fence between store to invl->gen and updating *p. */
960 	atomic_thread_fence_rel();
961 
962 	/*
963 	 * After inserting an invl_gen element with invalid bit set,
964 	 * this thread blocks any other thread trying to enter the
965 	 * delayed invalidation block.  Do not allow to remove us from
966 	 * the CPU, because it causes starvation for other threads.
967 	 */
968 	critical_enter();
969 
970 	/*
971 	 * ABA for *p is not possible there, since p->gen can only
972 	 * increase.  So if the *p thread finished its di, then
973 	 * started a new one and got inserted into the list at the
974 	 * same place, its gen will appear greater than the previously
975 	 * read gen.
976 	 */
977 	if (!pmap_di_store_invl(p, &prev, &new_prev)) {
978 		critical_exit();
979 		PV_STAT(counter_u64_add(invl_start_restart, 1));
980 		lock_delay(&lda);
981 		goto again;
982 	}
983 
984 	/*
985 	 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
986 	 * invl_gen->next, allowing other threads to iterate past us.
987 	 * pmap_di_store_invl() provides fence between the generation
988 	 * write and the update of next.
989 	 */
990 	invl_gen->next = NULL;
991 	critical_exit();
992 }
993 
994 static bool
pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen * invl_gen,struct pmap_invl_gen * p)995 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
996     struct pmap_invl_gen *p)
997 {
998 	struct pmap_invl_gen prev, new_prev;
999 	u_long mygen;
1000 
1001 	/*
1002 	 * Load invl_gen->gen after setting invl_gen->next
1003 	 * PMAP_INVL_GEN_NEXT_INVALID.  This prevents larger
1004 	 * generations to propagate to our invl_gen->gen.  Lock prefix
1005 	 * in atomic_set_ptr() worked as seq_cst fence.
1006 	 */
1007 	mygen = atomic_load_long(&invl_gen->gen);
1008 
1009 	if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
1010 		return (false);
1011 
1012 	KASSERT(prev.gen < mygen,
1013 	    ("invalid di gen sequence %lu %lu", prev.gen, mygen));
1014 	new_prev.gen = mygen;
1015 	new_prev.next = (void *)((uintptr_t)invl_gen->next &
1016 	    ~PMAP_INVL_GEN_NEXT_INVALID);
1017 
1018 	/* Formal fence between load of prev and storing update to it. */
1019 	atomic_thread_fence_rel();
1020 
1021 	return (pmap_di_store_invl(p, &prev, &new_prev));
1022 }
1023 
1024 static void
pmap_delayed_invl_finish_u(void)1025 pmap_delayed_invl_finish_u(void)
1026 {
1027 	struct pmap_invl_gen *invl_gen, *p;
1028 	struct thread *td;
1029 	struct lock_delay_arg lda;
1030 	uintptr_t prevl;
1031 
1032 	td = curthread;
1033 	invl_gen = &td->td_md.md_invl_gen;
1034 	KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
1035 	KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
1036 	    ("missed invl_start: INVALID"));
1037 	lock_delay_arg_init(&lda, &di_delay);
1038 
1039 again:
1040 	for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
1041 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
1042 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
1043 			PV_STAT(counter_u64_add(invl_finish_restart, 1));
1044 			lock_delay(&lda);
1045 			goto again;
1046 		}
1047 		if ((void *)prevl == invl_gen)
1048 			break;
1049 	}
1050 
1051 	/*
1052 	 * It is legitimate to not find ourself on the list if a
1053 	 * thread before us finished its DI and started it again.
1054 	 */
1055 	if (__predict_false(p == NULL)) {
1056 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1057 		lock_delay(&lda);
1058 		goto again;
1059 	}
1060 
1061 	critical_enter();
1062 	atomic_set_ptr((uintptr_t *)&invl_gen->next,
1063 	    PMAP_INVL_GEN_NEXT_INVALID);
1064 	if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
1065 		atomic_clear_ptr((uintptr_t *)&invl_gen->next,
1066 		    PMAP_INVL_GEN_NEXT_INVALID);
1067 		critical_exit();
1068 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1069 		lock_delay(&lda);
1070 		goto again;
1071 	}
1072 	critical_exit();
1073 	if (atomic_load_int(&pmap_invl_waiters) > 0)
1074 		pmap_delayed_invl_finish_unblock(0);
1075 	if (invl_gen->saved_pri != 0) {
1076 		thread_lock(td);
1077 		sched_prio(td, invl_gen->saved_pri);
1078 		thread_unlock(td);
1079 	}
1080 }
1081 
1082 #ifdef DDB
DB_SHOW_COMMAND(di_queue,pmap_di_queue)1083 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1084 {
1085 	struct pmap_invl_gen *p, *pn;
1086 	struct thread *td;
1087 	uintptr_t nextl;
1088 	bool first;
1089 
1090 	for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1091 	    first = false) {
1092 		nextl = (uintptr_t)atomic_load_ptr(&p->next);
1093 		pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1094 		td = first ? NULL : __containerof(p, struct thread,
1095 		    td_md.md_invl_gen);
1096 		db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1097 		    (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1098 		    td != NULL ? td->td_tid : -1);
1099 	}
1100 }
1101 #endif
1102 
1103 #ifdef PV_STATS
1104 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1105 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1106     CTLFLAG_RD, &invl_wait,
1107     "Number of times DI invalidation blocked pmap_remove_all/write");
1108 
1109 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1110 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1111      &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1112 
1113 #endif
1114 
1115 #ifdef NUMA
1116 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1117 pmap_delayed_invl_genp(vm_page_t m)
1118 {
1119 	vm_paddr_t pa;
1120 	u_long *gen;
1121 
1122 	pa = VM_PAGE_TO_PHYS(m);
1123 	if (__predict_false((pa) > pmap_last_pa))
1124 		gen = &pv_dummy_large.pv_invl_gen;
1125 	else
1126 		gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1127 
1128 	return (gen);
1129 }
1130 #else
1131 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1132 pmap_delayed_invl_genp(vm_page_t m)
1133 {
1134 
1135 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1136 }
1137 #endif
1138 
1139 static void
pmap_delayed_invl_callout_func(void * arg __unused)1140 pmap_delayed_invl_callout_func(void *arg __unused)
1141 {
1142 
1143 	if (atomic_load_int(&pmap_invl_waiters) == 0)
1144 		return;
1145 	pmap_delayed_invl_finish_unblock(0);
1146 }
1147 
1148 static void
pmap_delayed_invl_callout_init(void * arg __unused)1149 pmap_delayed_invl_callout_init(void *arg __unused)
1150 {
1151 
1152 	if (pmap_di_locked())
1153 		return;
1154 	callout_init(&pmap_invl_callout, 1);
1155 	pmap_invl_callout_inited = true;
1156 }
1157 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1158     pmap_delayed_invl_callout_init, NULL);
1159 
1160 /*
1161  * Ensure that all currently executing DI blocks, that need to flush
1162  * TLB for the given page m, actually flushed the TLB at the time the
1163  * function returned.  If the page m has an empty PV list and we call
1164  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1165  * valid mapping for the page m in either its page table or TLB.
1166  *
1167  * This function works by blocking until the global DI generation
1168  * number catches up with the generation number associated with the
1169  * given page m and its PV list.  Since this function's callers
1170  * typically own an object lock and sometimes own a page lock, it
1171  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
1172  * processor.
1173  */
1174 static void
pmap_delayed_invl_wait_l(vm_page_t m)1175 pmap_delayed_invl_wait_l(vm_page_t m)
1176 {
1177 	u_long *m_gen;
1178 #ifdef PV_STATS
1179 	bool accounted = false;
1180 #endif
1181 
1182 	m_gen = pmap_delayed_invl_genp(m);
1183 	while (*m_gen > pmap_invl_gen) {
1184 #ifdef PV_STATS
1185 		if (!accounted) {
1186 			counter_u64_add(invl_wait, 1);
1187 			accounted = true;
1188 		}
1189 #endif
1190 		pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1191 	}
1192 }
1193 
1194 static void
pmap_delayed_invl_wait_u(vm_page_t m)1195 pmap_delayed_invl_wait_u(vm_page_t m)
1196 {
1197 	u_long *m_gen;
1198 	struct lock_delay_arg lda;
1199 	bool fast;
1200 
1201 	fast = true;
1202 	m_gen = pmap_delayed_invl_genp(m);
1203 	lock_delay_arg_init(&lda, &di_delay);
1204 	while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1205 		if (fast || !pmap_invl_callout_inited) {
1206 			PV_STAT(counter_u64_add(invl_wait, 1));
1207 			lock_delay(&lda);
1208 			fast = false;
1209 		} else {
1210 			/*
1211 			 * The page's invalidation generation number
1212 			 * is still below the current thread's number.
1213 			 * Prepare to block so that we do not waste
1214 			 * CPU cycles or worse, suffer livelock.
1215 			 *
1216 			 * Since it is impossible to block without
1217 			 * racing with pmap_delayed_invl_finish_u(),
1218 			 * prepare for the race by incrementing
1219 			 * pmap_invl_waiters and arming a 1-tick
1220 			 * callout which will unblock us if we lose
1221 			 * the race.
1222 			 */
1223 			atomic_add_int(&pmap_invl_waiters, 1);
1224 
1225 			/*
1226 			 * Re-check the current thread's invalidation
1227 			 * generation after incrementing
1228 			 * pmap_invl_waiters, so that there is no race
1229 			 * with pmap_delayed_invl_finish_u() setting
1230 			 * the page generation and checking
1231 			 * pmap_invl_waiters.  The only race allowed
1232 			 * is for a missed unblock, which is handled
1233 			 * by the callout.
1234 			 */
1235 			if (*m_gen >
1236 			    atomic_load_long(&pmap_invl_gen_head.gen)) {
1237 				callout_reset(&pmap_invl_callout, 1,
1238 				    pmap_delayed_invl_callout_func, NULL);
1239 				PV_STAT(counter_u64_add(invl_wait_slow, 1));
1240 				pmap_delayed_invl_wait_block(m_gen,
1241 				    &pmap_invl_gen_head.gen);
1242 			}
1243 			atomic_add_int(&pmap_invl_waiters, -1);
1244 		}
1245 	}
1246 }
1247 
1248 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1249 {
1250 
1251 	return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1252 	    pmap_thread_init_invl_gen_u);
1253 }
1254 
1255 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1256 {
1257 
1258 	return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1259 	    pmap_delayed_invl_start_u);
1260 }
1261 
1262 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1263 {
1264 
1265 	return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1266 	    pmap_delayed_invl_finish_u);
1267 }
1268 
1269 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1270 {
1271 
1272 	return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1273 	    pmap_delayed_invl_wait_u);
1274 }
1275 
1276 /*
1277  * Mark the page m's PV list as participating in the current thread's
1278  * DI block.  Any threads concurrently using m's PV list to remove or
1279  * restrict all mappings to m will wait for the current thread's DI
1280  * block to complete before proceeding.
1281  *
1282  * The function works by setting the DI generation number for m's PV
1283  * list to at least the DI generation number of the current thread.
1284  * This forces a caller of pmap_delayed_invl_wait() to block until
1285  * current thread calls pmap_delayed_invl_finish().
1286  */
1287 static void
pmap_delayed_invl_page(vm_page_t m)1288 pmap_delayed_invl_page(vm_page_t m)
1289 {
1290 	u_long gen, *m_gen;
1291 
1292 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1293 	gen = curthread->td_md.md_invl_gen.gen;
1294 	if (gen == 0)
1295 		return;
1296 	m_gen = pmap_delayed_invl_genp(m);
1297 	if (*m_gen < gen)
1298 		*m_gen = gen;
1299 }
1300 
1301 /*
1302  * Crashdump maps.
1303  */
1304 static caddr_t crashdumpmap;
1305 
1306 /*
1307  * Internal flags for pmap_enter()'s helper functions.
1308  */
1309 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
1310 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
1311 
1312 /*
1313  * Internal flags for pmap_mapdev_internal() and
1314  * pmap_change_props_locked().
1315  */
1316 #define	MAPDEV_FLUSHCACHE	0x00000001	/* Flush cache after mapping. */
1317 #define	MAPDEV_SETATTR		0x00000002	/* Modify existing attrs. */
1318 #define	MAPDEV_ASSERTVALID	0x00000004	/* Assert mapping validity. */
1319 
1320 TAILQ_HEAD(pv_chunklist, pv_chunk);
1321 
1322 static void	free_pv_chunk(struct pv_chunk *pc);
1323 static void	free_pv_chunk_batch(struct pv_chunklist *batch);
1324 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
1325 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1326 static int	popcnt_pc_map_pq(uint64_t *map);
1327 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1328 static void	reserve_pv_entries(pmap_t pmap, int needed,
1329 		    struct rwlock **lockp);
1330 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1331 		    struct rwlock **lockp);
1332 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1333 		    u_int flags, struct rwlock **lockp);
1334 #if VM_NRESERVLEVEL > 0
1335 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1336 		    struct rwlock **lockp);
1337 #endif
1338 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1339 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1340 		    vm_offset_t va);
1341 
1342 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1343 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1344     vm_prot_t prot, int mode, int flags);
1345 static bool	pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1346 static bool	pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1347     vm_offset_t va, struct rwlock **lockp);
1348 static bool	pmap_demote_pde_mpte(pmap_t pmap, pd_entry_t *pde,
1349     vm_offset_t va, struct rwlock **lockp, vm_page_t mpte);
1350 static bool	pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1351     vm_offset_t va, vm_page_t m);
1352 static int	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1353 		    vm_prot_t prot, struct rwlock **lockp);
1354 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1355 		    u_int flags, vm_page_t m, struct rwlock **lockp);
1356 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1357     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1358 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1359 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1360     bool allpte_PG_A_set);
1361 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1362     vm_offset_t eva);
1363 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1364     vm_offset_t eva);
1365 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1366 		    pd_entry_t pde);
1367 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1368 static vm_page_t pmap_large_map_getptp_unlocked(void);
1369 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1370 #if VM_NRESERVLEVEL > 0
1371 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1372     vm_page_t mpte, struct rwlock **lockp);
1373 #endif
1374 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1375     vm_prot_t prot);
1376 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1377 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1378     bool exec);
1379 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1380 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1381 static void pmap_pti_wire_pte(void *pte);
1382 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1383     bool demote_kpde, struct spglist *free, struct rwlock **lockp);
1384 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1385     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1386 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1387 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1388     struct spglist *free);
1389 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1390 		    pd_entry_t *pde, struct spglist *free,
1391 		    struct rwlock **lockp);
1392 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1393     vm_page_t m, struct rwlock **lockp);
1394 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1395     pd_entry_t newpde);
1396 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1397 
1398 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1399 		struct rwlock **lockp);
1400 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1401 		struct rwlock **lockp, vm_offset_t va);
1402 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1403 		struct rwlock **lockp, vm_offset_t va);
1404 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1405 		struct rwlock **lockp);
1406 
1407 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1408     struct spglist *free);
1409 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1410 
1411 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1412 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1413 
1414 /********************/
1415 /* Inline functions */
1416 /********************/
1417 
1418 /*
1419  * Return a non-clipped indexes for a given VA, which are page table
1420  * pages indexes at the corresponding level.
1421  */
1422 static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)1423 pmap_pde_pindex(vm_offset_t va)
1424 {
1425 	return (va >> PDRSHIFT);
1426 }
1427 
1428 static __inline vm_pindex_t
pmap_pdpe_pindex(vm_offset_t va)1429 pmap_pdpe_pindex(vm_offset_t va)
1430 {
1431 	return (NUPDE + (va >> PDPSHIFT));
1432 }
1433 
1434 static __inline vm_pindex_t
pmap_pml4e_pindex(vm_offset_t va)1435 pmap_pml4e_pindex(vm_offset_t va)
1436 {
1437 	return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1438 }
1439 
1440 static __inline vm_pindex_t
pmap_pml5e_pindex(vm_offset_t va)1441 pmap_pml5e_pindex(vm_offset_t va)
1442 {
1443 	return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1444 }
1445 
1446 static __inline pml4_entry_t *
pmap_pml5e(pmap_t pmap,vm_offset_t va)1447 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1448 {
1449 
1450 	MPASS(pmap_is_la57(pmap));
1451 	return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1452 }
1453 
1454 static __inline pml4_entry_t *
pmap_pml5e_u(pmap_t pmap,vm_offset_t va)1455 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1456 {
1457 
1458 	MPASS(pmap_is_la57(pmap));
1459 	return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1460 }
1461 
1462 static __inline pml4_entry_t *
pmap_pml5e_to_pml4e(pml5_entry_t * pml5e,vm_offset_t va)1463 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1464 {
1465 	pml4_entry_t *pml4e;
1466 
1467 	/* XXX MPASS(pmap_is_la57(pmap); */
1468 	pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1469 	return (&pml4e[pmap_pml4e_index(va)]);
1470 }
1471 
1472 /* Return a pointer to the PML4 slot that corresponds to a VA */
1473 static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap,vm_offset_t va)1474 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1475 {
1476 	pml5_entry_t *pml5e;
1477 	pml4_entry_t *pml4e;
1478 	pt_entry_t PG_V;
1479 
1480 	if (pmap_is_la57(pmap)) {
1481 		pml5e = pmap_pml5e(pmap, va);
1482 		PG_V = pmap_valid_bit(pmap);
1483 		if ((*pml5e & PG_V) == 0)
1484 			return (NULL);
1485 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1486 	} else {
1487 		pml4e = pmap->pm_pmltop;
1488 	}
1489 	return (&pml4e[pmap_pml4e_index(va)]);
1490 }
1491 
1492 static __inline pml4_entry_t *
pmap_pml4e_u(pmap_t pmap,vm_offset_t va)1493 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1494 {
1495 	MPASS(!pmap_is_la57(pmap));
1496 	return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1497 }
1498 
1499 /* Return a pointer to the PDP slot that corresponds to a VA */
1500 static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t * pml4e,vm_offset_t va)1501 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1502 {
1503 	pdp_entry_t *pdpe;
1504 
1505 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1506 	return (&pdpe[pmap_pdpe_index(va)]);
1507 }
1508 
1509 /* Return a pointer to the PDP slot that corresponds to a VA */
1510 static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap,vm_offset_t va)1511 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1512 {
1513 	pml4_entry_t *pml4e;
1514 	pt_entry_t PG_V;
1515 
1516 	PG_V = pmap_valid_bit(pmap);
1517 	pml4e = pmap_pml4e(pmap, va);
1518 	if (pml4e == NULL || (*pml4e & PG_V) == 0)
1519 		return (NULL);
1520 	return (pmap_pml4e_to_pdpe(pml4e, va));
1521 }
1522 
1523 /* Return a pointer to the PD slot that corresponds to a VA */
1524 static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t * pdpe,vm_offset_t va)1525 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1526 {
1527 	pd_entry_t *pde;
1528 
1529 	KASSERT((*pdpe & PG_PS) == 0,
1530 	    ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1531 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1532 	return (&pde[pmap_pde_index(va)]);
1533 }
1534 
1535 /* Return a pointer to the PD slot that corresponds to a VA */
1536 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va)1537 pmap_pde(pmap_t pmap, vm_offset_t va)
1538 {
1539 	pdp_entry_t *pdpe;
1540 	pt_entry_t PG_V;
1541 
1542 	PG_V = pmap_valid_bit(pmap);
1543 	pdpe = pmap_pdpe(pmap, va);
1544 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
1545 		return (NULL);
1546 	KASSERT((*pdpe & PG_PS) == 0,
1547 	    ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1548 	return (pmap_pdpe_to_pde(pdpe, va));
1549 }
1550 
1551 /* Return a pointer to the PT slot that corresponds to a VA */
1552 static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t * pde,vm_offset_t va)1553 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1554 {
1555 	pt_entry_t *pte;
1556 
1557 	KASSERT((*pde & PG_PS) == 0,
1558 	    ("%s: pde %#lx is a leaf", __func__, *pde));
1559 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1560 	return (&pte[pmap_pte_index(va)]);
1561 }
1562 
1563 /* Return a pointer to the PT slot that corresponds to a VA */
1564 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va)1565 pmap_pte(pmap_t pmap, vm_offset_t va)
1566 {
1567 	pd_entry_t *pde;
1568 	pt_entry_t PG_V;
1569 
1570 	PG_V = pmap_valid_bit(pmap);
1571 	pde = pmap_pde(pmap, va);
1572 	if (pde == NULL || (*pde & PG_V) == 0)
1573 		return (NULL);
1574 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
1575 		return ((pt_entry_t *)pde);
1576 	return (pmap_pde_to_pte(pde, va));
1577 }
1578 
1579 static __inline void
pmap_resident_count_adj(pmap_t pmap,int count)1580 pmap_resident_count_adj(pmap_t pmap, int count)
1581 {
1582 
1583 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1584 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1585 	    ("pmap %p resident count underflow %ld %d", pmap,
1586 	    pmap->pm_stats.resident_count, count));
1587 	pmap->pm_stats.resident_count += count;
1588 }
1589 
1590 static __inline void
pmap_pt_page_count_pinit(pmap_t pmap,int count)1591 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1592 {
1593 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1594 	    ("pmap %p resident count underflow %ld %d", pmap,
1595 	    pmap->pm_stats.resident_count, count));
1596 	pmap->pm_stats.resident_count += count;
1597 }
1598 
1599 static __inline void
pmap_pt_page_count_adj(pmap_t pmap,int count)1600 pmap_pt_page_count_adj(pmap_t pmap, int count)
1601 {
1602 	if (pmap == kernel_pmap)
1603 		counter_u64_add(kernel_pt_page_count, count);
1604 	else {
1605 		if (pmap != NULL)
1606 			pmap_resident_count_adj(pmap, count);
1607 		counter_u64_add(user_pt_page_count, count);
1608 	}
1609 }
1610 
1611 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1612     NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1613 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1614 
1615 pt_entry_t *
vtopte(vm_offset_t va)1616 vtopte(vm_offset_t va)
1617 {
1618 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1619 
1620 	return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1621 }
1622 
1623 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1624     NPML4EPGSHIFT)) - 1) << 3;
1625 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1626 
1627 static __inline pd_entry_t *
vtopde(vm_offset_t va)1628 vtopde(vm_offset_t va)
1629 {
1630 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1631 
1632 	return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1633 }
1634 
1635 static u_int64_t
allocpages(vm_paddr_t * firstaddr,int n)1636 allocpages(vm_paddr_t *firstaddr, int n)
1637 {
1638 	u_int64_t ret;
1639 
1640 	ret = *firstaddr;
1641 	bzero((void *)ret, n * PAGE_SIZE);
1642 	*firstaddr += n * PAGE_SIZE;
1643 	return (ret);
1644 }
1645 
1646 CTASSERT(powerof2(NDMPML4E));
1647 
1648 /* number of kernel PDP slots */
1649 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
1650 
1651 static void
nkpt_init(vm_paddr_t addr)1652 nkpt_init(vm_paddr_t addr)
1653 {
1654 	int pt_pages;
1655 
1656 #ifdef NKPT
1657 	pt_pages = NKPT;
1658 #else
1659 	pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1660 	pt_pages += NKPDPE(pt_pages);
1661 
1662 	/*
1663 	 * Add some slop beyond the bare minimum required for bootstrapping
1664 	 * the kernel.
1665 	 *
1666 	 * This is quite important when allocating KVA for kernel modules.
1667 	 * The modules are required to be linked in the negative 2GB of
1668 	 * the address space.  If we run out of KVA in this region then
1669 	 * pmap_growkernel() will need to allocate page table pages to map
1670 	 * the entire 512GB of KVA space which is an unnecessary tax on
1671 	 * physical memory.
1672 	 *
1673 	 * Secondly, device memory mapped as part of setting up the low-
1674 	 * level console(s) is taken from KVA, starting at virtual_avail.
1675 	 * This is because cninit() is called after pmap_bootstrap() but
1676 	 * before vm_mem_init() and pmap_init(). 20MB for a frame buffer
1677 	 * is not uncommon.
1678 	 */
1679 	pt_pages += 32;		/* 64MB additional slop. */
1680 #endif
1681 	nkpt = pt_pages;
1682 }
1683 
1684 /*
1685  * Returns the proper write/execute permission for a physical page that is
1686  * part of the initial boot allocations.
1687  *
1688  * If the page has kernel text, it is marked as read-only. If the page has
1689  * kernel read-only data, it is marked as read-only/not-executable. If the
1690  * page has only read-write data, it is marked as read-write/not-executable.
1691  * If the page is below/above the kernel range, it is marked as read-write.
1692  *
1693  * This function operates on 2M pages, since we map the kernel space that
1694  * way.
1695  */
1696 static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)1697 bootaddr_rwx(vm_paddr_t pa)
1698 {
1699 	/*
1700 	 * The kernel is loaded at a 2MB-aligned address, and memory below that
1701 	 * need not be executable.  The .bss section is padded to a 2MB
1702 	 * boundary, so memory following the kernel need not be executable
1703 	 * either.  Preloaded kernel modules have their mapping permissions
1704 	 * fixed up by the linker.
1705 	 */
1706 	if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1707 	    pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1708 		return (X86_PG_RW | pg_nx);
1709 
1710 	/*
1711 	 * The linker should ensure that the read-only and read-write
1712 	 * portions don't share the same 2M page, so this shouldn't
1713 	 * impact read-only data. However, in any case, any page with
1714 	 * read-write data needs to be read-write.
1715 	 */
1716 	if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1717 		return (X86_PG_RW | pg_nx);
1718 
1719 	/*
1720 	 * Mark any 2M page containing kernel text as read-only. Mark
1721 	 * other pages with read-only data as read-only and not executable.
1722 	 * (It is likely a small portion of the read-only data section will
1723 	 * be marked as read-only, but executable. This should be acceptable
1724 	 * since the read-only protection will keep the data from changing.)
1725 	 * Note that fixups to the .text section will still work until we
1726 	 * set CR0.WP.
1727 	 */
1728 	if (pa < round_2mpage(kernphys + etext - KERNSTART))
1729 		return (0);
1730 	return (pg_nx);
1731 }
1732 
1733 extern const char la57_trampoline[];
1734 
1735 static void
pmap_bootstrap_la57(vm_paddr_t * firstaddr)1736 pmap_bootstrap_la57(vm_paddr_t *firstaddr)
1737 {
1738 	void (*la57_tramp)(uint64_t pml5);
1739 	pml5_entry_t *pt;
1740 
1741 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
1742 		return;
1743 	la57 = 1;
1744 	TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
1745 	if (!la57)
1746 		return;
1747 
1748 	KPML5phys = allocpages(firstaddr, 1);
1749 	KPML4phys = rcr3() & 0xfffff000; /* pml4 from loader must be < 4G */
1750 
1751 	pt = (pml5_entry_t *)KPML5phys;
1752 	pt[0] = KPML4phys | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
1753 	pt[NPML4EPG - 1] = KPML4phys | X86_PG_V | X86_PG_RW | X86_PG_A |
1754 	    X86_PG_M;
1755 
1756 	la57_tramp = (void (*)(uint64_t))((uintptr_t)la57_trampoline -
1757 	    KERNSTART + amd64_loadaddr());
1758 	printf("Calling la57 trampoline at %p, KPML5phys %#lx ...",
1759 	    la57_tramp, KPML5phys);
1760 	la57_tramp(KPML5phys);
1761 	printf(" alive in la57 mode\n");
1762 }
1763 
1764 static void
create_pagetables(vm_paddr_t * firstaddr)1765 create_pagetables(vm_paddr_t *firstaddr)
1766 {
1767 	pd_entry_t *pd_p;
1768 	pdp_entry_t *pdp_p;
1769 	pml4_entry_t *p4_p, *p4d_p;
1770 	pml5_entry_t *p5_p;
1771 	uint64_t DMPDkernphys;
1772 	vm_paddr_t pax;
1773 #ifdef KASAN
1774 	pt_entry_t *pt_p;
1775 	uint64_t KASANPDphys, KASANPTphys, KASANphys;
1776 	vm_offset_t kasankernbase;
1777 	int kasankpdpi, kasankpdi, nkasanpte;
1778 #endif
1779 	int i, j, ndm1g, nkpdpe, nkdmpde, ndmpml4phys;
1780 
1781 	TSENTER();
1782 	/* Allocate page table pages for the direct map */
1783 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1784 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
1785 		ndmpdp = 4;
1786 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1787 	if (la57) {
1788 		ndmpml4phys = howmany(ndmpdpphys, NPML4EPG);
1789 		if (ndmpml4phys > NDMPML5E) {
1790 			printf("NDMPML5E limits system to %ld GB\n",
1791 			    (u_long)NDMPML5E * NBPML5 / 1024 / 1024 / 1024);
1792 			Maxmem = atop(NDMPML5E * NBPML5);
1793 			ndmpml4phys = NDMPML5E;
1794 			ndmpdpphys = ndmpml4phys * NPML4EPG;
1795 			ndmpdp = ndmpdpphys * NPDEPG;
1796 		}
1797 		DMPML4phys = allocpages(firstaddr, ndmpml4phys);
1798 	} else {
1799 		if (ndmpdpphys > NDMPML4E) {
1800 			/*
1801 			 * Each NDMPML4E allows 512 GB, so limit to
1802 			 * that, and then readjust ndmpdp and
1803 			 * ndmpdpphys.
1804 			 */
1805 			printf("NDMPML4E limits system to %d GB\n",
1806 			    NDMPML4E * 512);
1807 			Maxmem = atop(NDMPML4E * NBPML4);
1808 			ndmpdpphys = NDMPML4E;
1809 			ndmpdp = NDMPML4E * NPDEPG;
1810 		}
1811 	}
1812 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1813 	ndm1g = 0;
1814 	if ((amd_feature & AMDID_PAGE1GB) != 0) {
1815 		/*
1816 		 * Calculate the number of 1G pages that will fully fit in
1817 		 * Maxmem.
1818 		 */
1819 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1820 
1821 		/*
1822 		 * Allocate 2M pages for the kernel. These will be used in
1823 		 * place of the one or more 1G pages from ndm1g that maps
1824 		 * kernel memory into DMAP.
1825 		 */
1826 		nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1827 		    kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1828 		DMPDkernphys = allocpages(firstaddr, nkdmpde);
1829 	}
1830 	if (ndm1g < ndmpdp)
1831 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1832 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1833 
1834 	/* Allocate pages. */
1835 	if (la57) {
1836 		KPML5phys = allocpages(firstaddr, 1);
1837 		p5_p = (pml5_entry_t *)KPML5phys;
1838 	}
1839 	KPML4phys = allocpages(firstaddr, 1);
1840 	p4_p = (pml4_entry_t *)KPML4phys;
1841 
1842 	KPDPphys = allocpages(firstaddr, NKPML4E);
1843 #ifdef KASAN
1844 	KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1845 	KASANPDphys = allocpages(firstaddr, 1);
1846 #endif
1847 #ifdef KMSAN
1848 	/*
1849 	 * The KMSAN shadow maps are initially left unpopulated, since there is
1850 	 * no need to shadow memory above KERNBASE.
1851 	 */
1852 	KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1853 	KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1854 #endif
1855 
1856 	/*
1857 	 * Allocate the initial number of kernel page table pages required to
1858 	 * bootstrap.  We defer this until after all memory-size dependent
1859 	 * allocations are done (e.g. direct map), so that we don't have to
1860 	 * build in too much slop in our estimate.
1861 	 *
1862 	 * Note that when NKPML4E > 1, we have an empty page underneath
1863 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1864 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
1865 	 */
1866 	nkpt_init(*firstaddr);
1867 	nkpdpe = NKPDPE(nkpt);
1868 
1869 	KPTphys = allocpages(firstaddr, nkpt);
1870 	KPDphys = allocpages(firstaddr, nkpdpe);
1871 
1872 #ifdef KASAN
1873 	nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1874 	KASANPTphys = allocpages(firstaddr, nkasanpte);
1875 	KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1876 #endif
1877 
1878 	/*
1879 	 * Connect the zero-filled PT pages to their PD entries.  This
1880 	 * implicitly maps the PT pages at their correct locations within
1881 	 * the PTmap.
1882 	 */
1883 	pd_p = (pd_entry_t *)KPDphys;
1884 	for (i = 0; i < nkpt; i++)
1885 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1886 
1887 	/*
1888 	 * Map from start of the kernel in physical memory (staging
1889 	 * area) to the end of loader preallocated memory using 2MB
1890 	 * pages.  This replaces some of the PD entries created above.
1891 	 * For compatibility, identity map 2M at the start.
1892 	 */
1893 	pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1894 	    X86_PG_RW | pg_nx;
1895 	for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1896 		/* Preset PG_M and PG_A because demotion expects it. */
1897 		pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1898 		    X86_PG_A | bootaddr_rwx(pax);
1899 	}
1900 
1901 	/*
1902 	 * Because we map the physical blocks in 2M pages, adjust firstaddr
1903 	 * to record the physical blocks we've actually mapped into kernel
1904 	 * virtual address space.
1905 	 */
1906 	if (*firstaddr < round_2mpage(KERNend))
1907 		*firstaddr = round_2mpage(KERNend);
1908 
1909 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
1910 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1911 	for (i = 0; i < nkpdpe; i++)
1912 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1913 
1914 #ifdef KASAN
1915 	kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1916 	kasankpdpi = pmap_pdpe_index(kasankernbase);
1917 	kasankpdi = pmap_pde_index(kasankernbase);
1918 
1919 	pdp_p = (pdp_entry_t *)KASANPDPphys;
1920 	pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1921 
1922 	pd_p = (pd_entry_t *)KASANPDphys;
1923 	for (i = 0; i < nkasanpte; i++)
1924 		pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1925 		    X86_PG_V | pg_nx;
1926 
1927 	pt_p = (pt_entry_t *)KASANPTphys;
1928 	for (i = 0; i < nkasanpte * NPTEPG; i++)
1929 		pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1930 		    X86_PG_M | X86_PG_A | pg_nx;
1931 #endif
1932 
1933 	/*
1934 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
1935 	 * the end of physical memory is not aligned to a 1GB page boundary,
1936 	 * then the residual physical memory is mapped with 2MB pages.  Later,
1937 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1938 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1939 	 * that are partially used.
1940 	 */
1941 	pd_p = (pd_entry_t *)DMPDphys;
1942 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1943 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1944 		/* Preset PG_M and PG_A because demotion expects it. */
1945 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1946 		    X86_PG_M | X86_PG_A | pg_nx;
1947 	}
1948 	pdp_p = (pdp_entry_t *)DMPDPphys;
1949 	for (i = 0; i < ndm1g; i++) {
1950 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1951 		/* Preset PG_M and PG_A because demotion expects it. */
1952 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1953 		    X86_PG_M | X86_PG_A | pg_nx;
1954 	}
1955 	for (j = 0; i < ndmpdp; i++, j++) {
1956 		pdp_p[i] = DMPDphys + ptoa(j);
1957 		pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1958 	}
1959 
1960 	/*
1961 	 * Connect the Direct Map slots up to the PML4.
1962 	 * pml5 entries for DMAP are handled below in global pml5 loop.
1963 	 */
1964 	p4d_p = la57 ? (pml4_entry_t *)DMPML4phys : &p4_p[DMPML4I];
1965 	for (i = 0; i < ndmpdpphys; i++) {
1966 		p4d_p[i] = (DMPDPphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1967 		    pg_nx;
1968 	}
1969 
1970 	/*
1971 	 * Instead of using a 1G page for the memory containing the kernel,
1972 	 * use 2M pages with read-only and no-execute permissions.  (If using 1G
1973 	 * pages, this will partially overwrite the PDPEs above.)
1974 	 */
1975 	if (ndm1g > 0) {
1976 		pd_p = (pd_entry_t *)DMPDkernphys;
1977 		for (i = 0, pax = rounddown2(kernphys, NBPDP);
1978 		    i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1979 			pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1980 			    X86_PG_A | pg_nx | bootaddr_rwx(pax);
1981 		}
1982 		j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1983 		for (i = 0; i < nkdmpde; i++) {
1984 			pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1985 			    X86_PG_RW | X86_PG_V | pg_nx;
1986 		}
1987 	}
1988 
1989 #ifdef KASAN
1990 	/* Connect the KASAN shadow map slots up to the PML4. */
1991 	for (i = 0; i < NKASANPML4E; i++) {
1992 		p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1993 		p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1994 	}
1995 #endif
1996 
1997 #ifdef KMSAN
1998 	/* Connect the KMSAN shadow map slots up to the PML4. */
1999 	for (i = 0; i < NKMSANSHADPML4E; i++) {
2000 		p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
2001 		p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
2002 	}
2003 
2004 	/* Connect the KMSAN origin map slots up to the PML4. */
2005 	for (i = 0; i < NKMSANORIGPML4E; i++) {
2006 		p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
2007 		p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
2008 	}
2009 #endif
2010 
2011 	/* Connect the KVA slots up to the PML4 */
2012 	for (i = 0; i < NKPML4E; i++) {
2013 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
2014 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
2015 	}
2016 
2017 	if (la57) {
2018 		/* XXXKIB bootstrap KPML5phys page is lost */
2019 		for (i = 0; i < NPML5EPG; i++) {
2020 			if (i == PML5PML5I) {
2021 				/*
2022 				 * Recursively map PML5 to itself in
2023 				 * order to get PTmap and PDmap.
2024 				 */
2025 				p5_p[i] = KPML5phys | X86_PG_RW | X86_PG_A |
2026 				    X86_PG_M | X86_PG_V | pg_nx;
2027 			} else if (i >= DMPML5I && i < DMPML5I + ndmpml4phys) {
2028 				/* Connect DMAP pml4 pages to PML5. */
2029 				p5_p[i] = (DMPML4phys + ptoa(i - DMPML5I)) |
2030 				    X86_PG_RW | X86_PG_V | pg_nx;
2031 			} else if (i == pmap_pml5e_index(UPT_MAX_ADDRESS)) {
2032 				p5_p[i] = KPML4phys | X86_PG_RW | X86_PG_A |
2033 				    X86_PG_M | X86_PG_V;
2034 			} else {
2035 				p5_p[i] = 0;
2036 			}
2037 		}
2038 	} else {
2039 		/* Recursively map PML4 to itself in order to get PTmap */
2040 		p4_p[PML4PML4I] = KPML4phys;
2041 		p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
2042 	}
2043 	TSEXIT();
2044 }
2045 
2046 /*
2047  *	Bootstrap the system enough to run with virtual memory.
2048  *
2049  *	On amd64 this is called after mapping has already been enabled
2050  *	and just syncs the pmap module with what has already been done.
2051  *	[We can't call it easily with mapping off since the kernel is not
2052  *	mapped with PA == VA, hence we would have to relocate every address
2053  *	from the linked base (virtual) address "KERNBASE" to the actual
2054  *	(physical) address starting relative to 0]
2055  */
2056 void
pmap_bootstrap(vm_paddr_t * firstaddr)2057 pmap_bootstrap(vm_paddr_t *firstaddr)
2058 {
2059 	vm_offset_t va;
2060 	pt_entry_t *pte, *pcpu_pte;
2061 	struct region_descriptor r_gdt;
2062 	uint64_t cr4, pcpu0_phys;
2063 	u_long res;
2064 	int i;
2065 
2066 	TSENTER();
2067 	KERNend = *firstaddr;
2068 	res = atop(KERNend - (vm_paddr_t)kernphys);
2069 
2070 	if (!pti)
2071 		pg_g = X86_PG_G;
2072 
2073 	/*
2074 	 * Create an initial set of page tables to run the kernel in.
2075 	 */
2076 	pmap_bootstrap_la57(firstaddr);
2077 	create_pagetables(firstaddr);
2078 
2079 	pcpu0_phys = allocpages(firstaddr, 1);
2080 
2081 	/*
2082 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
2083 	 * preallocated kernel page table pages so that vm_page structures
2084 	 * representing these pages will be created.  The vm_page structures
2085 	 * are required for promotion of the corresponding kernel virtual
2086 	 * addresses to superpage mappings.
2087 	 */
2088 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
2089 
2090 	/*
2091 	 * Account for the virtual addresses mapped by create_pagetables().
2092 	 */
2093 	virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
2094 	    (vm_paddr_t)kernphys);
2095 	virtual_end = kva_layout.km_high;
2096 
2097 	/*
2098 	 * Enable PG_G global pages, then switch to the kernel page
2099 	 * table from the bootstrap page table.  After the switch, it
2100 	 * is possible to enable SMEP and SMAP since PG_U bits are
2101 	 * correct now.
2102 	 */
2103 	cr4 = rcr4();
2104 	cr4 |= CR4_PGE;
2105 	load_cr4(cr4);
2106 	load_cr3(la57 ? KPML5phys : KPML4phys);
2107 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
2108 		cr4 |= CR4_SMEP;
2109 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
2110 		cr4 |= CR4_SMAP;
2111 	load_cr4(cr4);
2112 
2113 	/*
2114 	 * Initialize the kernel pmap (which is statically allocated).
2115 	 * Count bootstrap data as being resident in case any of this data is
2116 	 * later unmapped (using pmap_remove()) and freed.
2117 	 *
2118 	 * DMAP_TO_PHYS()/PHYS_TO_DMAP() are functional only after
2119 	 * kva_layout is fixed.
2120 	 */
2121 	PMAP_LOCK_INIT(kernel_pmap);
2122 	if (la57) {
2123 		kva_layout = kva_layout_la57;
2124 		vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2125 		    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2126 		PTmap = (vm_offset_t)P5Tmap;
2127 		vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2128 		    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2129 		PDmap = (vm_offset_t)P5Dmap;
2130 		kernel_pmap->pm_pmltop = (void *)PHYS_TO_DMAP(KPML5phys);
2131 		kernel_pmap->pm_cr3 = KPML5phys;
2132 		pmap_pt_page_count_adj(kernel_pmap, 1);	/* top-level page */
2133 	} else {
2134 		kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
2135 		kernel_pmap->pm_pmltop = kernel_pml4;
2136 		kernel_pmap->pm_cr3 = KPML4phys;
2137 	}
2138 	kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
2139 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
2140 	kernel_pmap->pm_stats.resident_count = res;
2141 	vm_radix_init(&kernel_pmap->pm_root);
2142 	kernel_pmap->pm_flags = pmap_flags;
2143 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
2144 		rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
2145 		    pkru_free_range, kernel_pmap, M_NOWAIT);
2146 	}
2147 
2148 	/*
2149 	 * The kernel pmap is always active on all CPUs.  Once CPUs are
2150 	 * enumerated, the mask will be set equal to all_cpus.
2151 	 */
2152 	CPU_FILL(&kernel_pmap->pm_active);
2153 
2154  	/*
2155 	 * Initialize the TLB invalidations generation number lock.
2156 	 */
2157 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
2158 
2159 	/*
2160 	 * Reserve some special page table entries/VA space for temporary
2161 	 * mapping of pages.
2162 	 */
2163 #define	SYSMAP(c, p, v, n)	\
2164 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2165 
2166 	va = virtual_avail;
2167 	pte = vtopte(va);
2168 
2169 	/*
2170 	 * Crashdump maps.  The first page is reused as CMAP1 for the
2171 	 * memory test.
2172 	 */
2173 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
2174 	CADDR1 = crashdumpmap;
2175 
2176 	SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
2177 	virtual_avail = va;
2178 
2179 	/*
2180 	 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
2181 	 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
2182 	 * number of CPUs and NUMA affinity.
2183 	 */
2184 	pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
2185 	    X86_PG_M | X86_PG_A;
2186 	for (i = 1; i < MAXCPU; i++)
2187 		pcpu_pte[i] = 0;
2188 
2189 	/*
2190 	 * Re-initialize PCPU area for BSP after switching.
2191 	 * Make hardware use gdt and common_tss from the new PCPU.
2192 	 * Also clears the usage of temporary gdt during switch to
2193 	 * LA57 paging.
2194 	 */
2195 	STAILQ_INIT(&cpuhead);
2196 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2197 	pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2198 	amd64_bsp_pcpu_init1(&__pcpu[0]);
2199 	amd64_bsp_ist_init(&__pcpu[0]);
2200 	__pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2201 	    IOPERM_BITMAP_SIZE;
2202 	memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2203 	    sizeof(struct user_segment_descriptor));
2204 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2205 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2206 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2207 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2208 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2209 	lgdt(&r_gdt);
2210 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2211 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2212 	__pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2213 	__pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2214 
2215 	/*
2216 	 * Initialize the PAT MSR.
2217 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2218 	 * side-effect, invalidates stale PG_G TLB entries that might
2219 	 * have been created in our pre-boot environment.
2220 	 */
2221 	pmap_init_pat();
2222 
2223 	/* Initialize TLB Context Id. */
2224 	if (pmap_pcid_enabled) {
2225 		kernel_pmap->pm_pcidp = (void *)(uintptr_t)
2226 		    offsetof(struct pcpu, pc_kpmap_store);
2227 
2228 		PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
2229 		PCPU_SET(kpmap_store.pm_gen, 1);
2230 
2231 		/*
2232 		 * PMAP_PCID_KERN + 1 is used for initialization of
2233 		 * proc0 pmap.  The pmap' pcid state might be used by
2234 		 * EFIRT entry before first context switch, so it
2235 		 * needs to be valid.
2236 		 */
2237 		PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2238 		PCPU_SET(pcid_gen, 1);
2239 
2240 		/*
2241 		 * pcpu area for APs is zeroed during AP startup.
2242 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
2243 		 * during pcpu setup.
2244 		 */
2245 		load_cr4(rcr4() | CR4_PCIDE);
2246 	}
2247 	TSEXIT();
2248 }
2249 
2250 /*
2251  * Setup the PAT MSR.
2252  */
2253 void
pmap_init_pat(void)2254 pmap_init_pat(void)
2255 {
2256 	uint64_t pat_msr;
2257 	u_long cr0, cr4;
2258 	int i;
2259 
2260 	/* Bail if this CPU doesn't implement PAT. */
2261 	if ((cpu_feature & CPUID_PAT) == 0)
2262 		panic("no PAT??");
2263 
2264 	/* Set default PAT index table. */
2265 	for (i = 0; i < PAT_INDEX_SIZE; i++)
2266 		pat_index[i] = -1;
2267 	pat_index[PAT_WRITE_BACK] = 0;
2268 	pat_index[PAT_WRITE_THROUGH] = 1;
2269 	pat_index[PAT_UNCACHEABLE] = 3;
2270 	pat_index[PAT_WRITE_COMBINING] = 6;
2271 	pat_index[PAT_WRITE_PROTECTED] = 5;
2272 	pat_index[PAT_UNCACHED] = 2;
2273 
2274 	/*
2275 	 * Initialize default PAT entries.
2276 	 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2277 	 * Program 5 and 6 as WP and WC.
2278 	 *
2279 	 * Leave 4 and 7 as WB and UC.  Note that a recursive page table
2280 	 * mapping for a 2M page uses a PAT value with the bit 3 set due
2281 	 * to its overload with PG_PS.
2282 	 */
2283 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2284 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
2285 	    PAT_VALUE(2, PAT_UNCACHED) |
2286 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
2287 	    PAT_VALUE(4, PAT_WRITE_BACK) |
2288 	    PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2289 	    PAT_VALUE(6, PAT_WRITE_COMBINING) |
2290 	    PAT_VALUE(7, PAT_UNCACHEABLE);
2291 
2292 	/* Disable PGE. */
2293 	cr4 = rcr4();
2294 	load_cr4(cr4 & ~CR4_PGE);
2295 
2296 	/* Disable caches (CD = 1, NW = 0). */
2297 	cr0 = rcr0();
2298 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2299 
2300 	/* Flushes caches and TLBs. */
2301 	wbinvd();
2302 	invltlb();
2303 
2304 	/* Update PAT and index table. */
2305 	wrmsr(MSR_PAT, pat_msr);
2306 
2307 	/* Flush caches and TLBs again. */
2308 	wbinvd();
2309 	invltlb();
2310 
2311 	/* Restore caches and PGE. */
2312 	load_cr0(cr0);
2313 	load_cr4(cr4);
2314 }
2315 
2316 vm_page_t
pmap_page_alloc_below_4g(bool zeroed)2317 pmap_page_alloc_below_4g(bool zeroed)
2318 {
2319 	return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2320 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2321 }
2322 
2323 /*
2324  *	Initialize a vm_page's machine-dependent fields.
2325  */
2326 void
pmap_page_init(vm_page_t m)2327 pmap_page_init(vm_page_t m)
2328 {
2329 
2330 	TAILQ_INIT(&m->md.pv_list);
2331 	m->md.pat_mode = PAT_WRITE_BACK;
2332 }
2333 
2334 static int pmap_allow_2m_x_ept;
2335 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2336     &pmap_allow_2m_x_ept, 0,
2337     "Allow executable superpage mappings in EPT");
2338 
2339 void
pmap_allow_2m_x_ept_recalculate(void)2340 pmap_allow_2m_x_ept_recalculate(void)
2341 {
2342 	/*
2343 	 * SKL002, SKL012S.  Since the EPT format is only used by
2344 	 * Intel CPUs, the vendor check is merely a formality.
2345 	 */
2346 	if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2347 	    (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2348 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2349 	    (CPUID_TO_MODEL(cpu_id) == 0x26 ||	/* Atoms */
2350 	    CPUID_TO_MODEL(cpu_id) == 0x27 ||
2351 	    CPUID_TO_MODEL(cpu_id) == 0x35 ||
2352 	    CPUID_TO_MODEL(cpu_id) == 0x36 ||
2353 	    CPUID_TO_MODEL(cpu_id) == 0x37 ||
2354 	    CPUID_TO_MODEL(cpu_id) == 0x86 ||
2355 	    CPUID_TO_MODEL(cpu_id) == 0x1c ||
2356 	    CPUID_TO_MODEL(cpu_id) == 0x4a ||
2357 	    CPUID_TO_MODEL(cpu_id) == 0x4c ||
2358 	    CPUID_TO_MODEL(cpu_id) == 0x4d ||
2359 	    CPUID_TO_MODEL(cpu_id) == 0x5a ||
2360 	    CPUID_TO_MODEL(cpu_id) == 0x5c ||
2361 	    CPUID_TO_MODEL(cpu_id) == 0x5d ||
2362 	    CPUID_TO_MODEL(cpu_id) == 0x5f ||
2363 	    CPUID_TO_MODEL(cpu_id) == 0x6e ||
2364 	    CPUID_TO_MODEL(cpu_id) == 0x7a ||
2365 	    CPUID_TO_MODEL(cpu_id) == 0x57 ||	/* Knights */
2366 	    CPUID_TO_MODEL(cpu_id) == 0x85))))
2367 		pmap_allow_2m_x_ept = 1;
2368 #ifndef BURN_BRIDGES
2369 	TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2370 #endif
2371 	TUNABLE_INT_FETCH("vm.pmap.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2372 }
2373 
2374 static bool
pmap_allow_2m_x_page(pmap_t pmap,bool executable)2375 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2376 {
2377 
2378 	return (pmap->pm_type != PT_EPT || !executable ||
2379 	    !pmap_allow_2m_x_ept);
2380 }
2381 
2382 #ifdef NUMA
2383 static void
pmap_init_pv_table(void)2384 pmap_init_pv_table(void)
2385 {
2386 	struct pmap_large_md_page *pvd;
2387 	vm_size_t s;
2388 	long start, end, highest, pv_npg;
2389 	int domain, i, j, pages;
2390 
2391 	/*
2392 	 * For correctness we depend on the size being evenly divisible into a
2393 	 * page. As a tradeoff between performance and total memory use, the
2394 	 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2395 	 * avoids false-sharing, but not being 128 bytes potentially allows for
2396 	 * avoidable traffic due to adjacent cacheline prefetcher.
2397 	 *
2398 	 * Assert the size so that accidental changes fail to compile.
2399 	 */
2400 	CTASSERT((sizeof(*pvd) == 64));
2401 
2402 	/*
2403 	 * Calculate the size of the array.
2404 	 */
2405 	pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2406 	pv_npg = howmany(pmap_last_pa, NBPDR);
2407 	s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2408 	s = round_page(s);
2409 	pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2410 	if (pv_table == NULL)
2411 		panic("%s: kva_alloc failed\n", __func__);
2412 
2413 	/*
2414 	 * Iterate physical segments to allocate space for respective pages.
2415 	 */
2416 	highest = -1;
2417 	s = 0;
2418 	for (i = 0; i < vm_phys_nsegs; i++) {
2419 		end = vm_phys_segs[i].end / NBPDR;
2420 		domain = vm_phys_segs[i].domain;
2421 
2422 		if (highest >= end)
2423 			continue;
2424 
2425 		start = highest + 1;
2426 		pvd = &pv_table[start];
2427 
2428 		pages = end - start + 1;
2429 		s = round_page(pages * sizeof(*pvd));
2430 		highest = start + (s / sizeof(*pvd)) - 1;
2431 
2432 		for (j = 0; j < s; j += PAGE_SIZE) {
2433 			vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2434 			if (m == NULL)
2435 				panic("failed to allocate PV table page");
2436 			pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2437 		}
2438 
2439 		for (j = 0; j < s / sizeof(*pvd); j++) {
2440 			rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2441 			TAILQ_INIT(&pvd->pv_page.pv_list);
2442 			pvd->pv_page.pv_gen = 0;
2443 			pvd->pv_page.pat_mode = 0;
2444 			pvd->pv_invl_gen = 0;
2445 			pvd++;
2446 		}
2447 	}
2448 	pvd = &pv_dummy_large;
2449 	rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2450 	TAILQ_INIT(&pvd->pv_page.pv_list);
2451 	pvd->pv_page.pv_gen = 0;
2452 	pvd->pv_page.pat_mode = 0;
2453 	pvd->pv_invl_gen = 0;
2454 }
2455 #else
2456 static void
pmap_init_pv_table(void)2457 pmap_init_pv_table(void)
2458 {
2459 	vm_size_t s;
2460 	long i, pv_npg;
2461 
2462 	/*
2463 	 * Initialize the pool of pv list locks.
2464 	 */
2465 	for (i = 0; i < NPV_LIST_LOCKS; i++)
2466 		rw_init(&pv_list_locks[i], "pmap pv list");
2467 
2468 	/*
2469 	 * Calculate the size of the pv head table for superpages.
2470 	 */
2471 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2472 
2473 	/*
2474 	 * Allocate memory for the pv head table for superpages.
2475 	 */
2476 	s = (vm_size_t)pv_npg * sizeof(struct md_page);
2477 	s = round_page(s);
2478 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2479 	for (i = 0; i < pv_npg; i++)
2480 		TAILQ_INIT(&pv_table[i].pv_list);
2481 	TAILQ_INIT(&pv_dummy.pv_list);
2482 }
2483 #endif
2484 
2485 /*
2486  *	Initialize the pmap module.
2487  *
2488  *	Called by vm_mem_init(), to initialize any structures that the pmap
2489  *	system needs to map virtual memory.
2490  */
2491 void
pmap_init(void)2492 pmap_init(void)
2493 {
2494 	struct pmap_preinit_mapping *ppim;
2495 	vm_page_t m, mpte;
2496 	pml4_entry_t *pml4e;
2497 	unsigned long lm_max;
2498 	int error, i, ret, skz63;
2499 
2500 	/* L1TF, reserve page @0 unconditionally */
2501 	vm_page_blacklist_add(0, bootverbose);
2502 
2503 	/* Detect bare-metal Skylake Server and Skylake-X. */
2504 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2505 	    CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2506 		/*
2507 		 * Skylake-X errata SKZ63. Processor May Hang When
2508 		 * Executing Code In an HLE Transaction Region between
2509 		 * 40000000H and 403FFFFFH.
2510 		 *
2511 		 * Mark the pages in the range as preallocated.  It
2512 		 * seems to be impossible to distinguish between
2513 		 * Skylake Server and Skylake X.
2514 		 */
2515 		skz63 = 1;
2516 		TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2517 		if (skz63 != 0) {
2518 			if (bootverbose)
2519 				printf("SKZ63: skipping 4M RAM starting "
2520 				    "at physical 1G\n");
2521 			for (i = 0; i < atop(0x400000); i++) {
2522 				ret = vm_page_blacklist_add(0x40000000 +
2523 				    ptoa(i), false);
2524 				if (!ret && bootverbose)
2525 					printf("page at %#x already used\n",
2526 					    0x40000000 + ptoa(i));
2527 			}
2528 		}
2529 	}
2530 
2531 	/* IFU */
2532 	pmap_allow_2m_x_ept_recalculate();
2533 
2534 	/*
2535 	 * Initialize the vm page array entries for the kernel pmap's
2536 	 * page table pages.
2537 	 */
2538 	PMAP_LOCK(kernel_pmap);
2539 	for (i = 0; i < nkpt; i++) {
2540 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2541 		KASSERT(mpte >= vm_page_array &&
2542 		    mpte < &vm_page_array[vm_page_array_size],
2543 		    ("pmap_init: page table page is out of range"));
2544 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2545 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2546 		mpte->ref_count = 1;
2547 
2548 		/*
2549 		 * Collect the page table pages that were replaced by a 2MB
2550 		 * page in create_pagetables().  They are zero filled.
2551 		 */
2552 		if ((i == 0 ||
2553 		    kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2554 		    pmap_insert_pt_page(kernel_pmap, mpte, false, false))
2555 			panic("pmap_init: pmap_insert_pt_page failed");
2556 	}
2557 	PMAP_UNLOCK(kernel_pmap);
2558 	vm_wire_add(nkpt);
2559 
2560 	/*
2561 	 * If the kernel is running on a virtual machine, then it must assume
2562 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
2563 	 * be prepared for the hypervisor changing the vendor and family that
2564 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
2565 	 * 10h Erratum 383 is enabled if the processor's feature set does not
2566 	 * include at least one feature that is only supported by older Intel
2567 	 * or newer AMD processors.
2568 	 */
2569 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2570 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2571 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2572 	    AMDID2_FMA4)) == 0)
2573 		workaround_erratum383 = 1;
2574 
2575 	/*
2576 	 * Are large page mappings enabled?
2577 	 */
2578 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2579 	if (pg_ps_enabled) {
2580 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2581 		    ("pmap_init: can't assign to pagesizes[1]"));
2582 		pagesizes[1] = NBPDR;
2583 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
2584 			KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2585 			    ("pmap_init: can't assign to pagesizes[2]"));
2586 			pagesizes[2] = NBPDP;
2587 		}
2588 	}
2589 
2590 	/*
2591 	 * Initialize pv chunk lists.
2592 	 */
2593 	for (i = 0; i < PMAP_MEMDOM; i++) {
2594 		mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2595 		TAILQ_INIT(&pv_chunks[i].pvc_list);
2596 	}
2597 	pmap_init_pv_table();
2598 
2599 	pmap_initialized = 1;
2600 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2601 		ppim = pmap_preinit_mapping + i;
2602 		if (ppim->va == 0)
2603 			continue;
2604 		/* Make the direct map consistent */
2605 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2606 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2607 			    ppim->sz, ppim->mode);
2608 		}
2609 		if (!bootverbose)
2610 			continue;
2611 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2612 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
2613 	}
2614 
2615 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2616 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2617 	    (vmem_addr_t *)&qframe);
2618 	if (error != 0)
2619 		panic("qframe allocation failed");
2620 
2621 	lm_ents = 8;
2622 	TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2623 	lm_max = (kva_layout.lm_high - kva_layout.lm_low) / NBPML4;
2624 	if (lm_ents > lm_max) {
2625 		printf(
2626 	    "pmap: shrinking large map from requested %d slots to %ld slots\n",
2627 		    lm_ents, lm_max);
2628 		lm_ents = lm_max;
2629 	}
2630 #ifdef KMSAN
2631 	if (!la57 && lm_ents > KMSANORIGPML4I - LMSPML4I) {
2632 		printf(
2633 	    "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2634 		    lm_ents, KMSANORIGPML4I - LMSPML4I);
2635 		lm_ents = KMSANORIGPML4I - LMSPML4I;
2636 	}
2637 #endif
2638 	if (bootverbose)
2639 		printf("pmap: large map %u PML4 slots (%lu GB)\n",
2640 		    lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2641 	if (lm_ents != 0) {
2642 		large_vmem = vmem_create("large", kva_layout.lm_low,
2643 		    (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2644 		if (large_vmem == NULL) {
2645 			printf("pmap: cannot create large map\n");
2646 			lm_ents = 0;
2647 		}
2648 		if (la57) {
2649 			for (i = 0; i < howmany((vm_offset_t)NBPML4 *
2650 			    lm_ents, NBPML5); i++) {
2651 				m = pmap_large_map_getptp_unlocked();
2652 				kernel_pmap->pm_pmltop[LMSPML5I + i] = X86_PG_V |
2653 				    X86_PG_RW | X86_PG_A | X86_PG_M |
2654 				    pg_nx | VM_PAGE_TO_PHYS(m);
2655 			}
2656 		}
2657 		for (i = 0; i < lm_ents; i++) {
2658 			m = pmap_large_map_getptp_unlocked();
2659 			pml4e = pmap_pml4e(kernel_pmap, kva_layout.lm_low +
2660 			    (u_long)i * NBPML4);
2661 			*pml4e = X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M |
2662 			    pg_nx | VM_PAGE_TO_PHYS(m);
2663 		}
2664 	}
2665 }
2666 
2667 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2668     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2669     "Maximum number of PML4 entries for use by large map (tunable).  "
2670     "Each entry corresponds to 512GB of address space.");
2671 
2672 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2673     "2MB page mapping counters");
2674 
2675 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2676 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2677     CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2678 
2679 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2680 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2681     &pmap_pde_mappings, "2MB page mappings");
2682 
2683 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2684 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2685     &pmap_pde_p_failures, "2MB page promotion failures");
2686 
2687 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2688 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2689     &pmap_pde_promotions, "2MB page promotions");
2690 
2691 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2692     "1GB page mapping counters");
2693 
2694 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2695 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2696     &pmap_pdpe_demotions, "1GB page demotions");
2697 
2698 /***************************************************
2699  * Low level helper routines.....
2700  ***************************************************/
2701 
2702 static pt_entry_t
pmap_swap_pat(pmap_t pmap,pt_entry_t entry)2703 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2704 {
2705 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2706 
2707 	switch (pmap->pm_type) {
2708 	case PT_X86:
2709 	case PT_RVI:
2710 		/* Verify that both PAT bits are not set at the same time */
2711 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2712 		    ("Invalid PAT bits in entry %#lx", entry));
2713 
2714 		/* Swap the PAT bits if one of them is set */
2715 		if ((entry & x86_pat_bits) != 0)
2716 			entry ^= x86_pat_bits;
2717 		break;
2718 	case PT_EPT:
2719 		/*
2720 		 * Nothing to do - the memory attributes are represented
2721 		 * the same way for regular pages and superpages.
2722 		 */
2723 		break;
2724 	default:
2725 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2726 	}
2727 
2728 	return (entry);
2729 }
2730 
2731 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)2732 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2733 {
2734 
2735 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2736 	    pat_index[(int)mode] >= 0);
2737 }
2738 
2739 /*
2740  * Determine the appropriate bits to set in a PTE or PDE for a specified
2741  * caching mode.
2742  */
2743 int
pmap_cache_bits(pmap_t pmap,int mode,bool is_pde)2744 pmap_cache_bits(pmap_t pmap, int mode, bool is_pde)
2745 {
2746 	int cache_bits, pat_flag, pat_idx;
2747 
2748 	if (!pmap_is_valid_memattr(pmap, mode))
2749 		panic("Unknown caching mode %d\n", mode);
2750 
2751 	switch (pmap->pm_type) {
2752 	case PT_X86:
2753 	case PT_RVI:
2754 		/* The PAT bit is different for PTE's and PDE's. */
2755 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2756 
2757 		/* Map the caching mode to a PAT index. */
2758 		pat_idx = pat_index[mode];
2759 
2760 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2761 		cache_bits = 0;
2762 		if (pat_idx & 0x4)
2763 			cache_bits |= pat_flag;
2764 		if (pat_idx & 0x2)
2765 			cache_bits |= PG_NC_PCD;
2766 		if (pat_idx & 0x1)
2767 			cache_bits |= PG_NC_PWT;
2768 		break;
2769 
2770 	case PT_EPT:
2771 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2772 		break;
2773 
2774 	default:
2775 		panic("unsupported pmap type %d", pmap->pm_type);
2776 	}
2777 
2778 	return (cache_bits);
2779 }
2780 
2781 static int
pmap_cache_mask(pmap_t pmap,bool is_pde)2782 pmap_cache_mask(pmap_t pmap, bool is_pde)
2783 {
2784 	int mask;
2785 
2786 	switch (pmap->pm_type) {
2787 	case PT_X86:
2788 	case PT_RVI:
2789 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2790 		break;
2791 	case PT_EPT:
2792 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2793 		break;
2794 	default:
2795 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2796 	}
2797 
2798 	return (mask);
2799 }
2800 
2801 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)2802 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2803 {
2804 	int pat_flag, pat_idx;
2805 
2806 	pat_idx = 0;
2807 	switch (pmap->pm_type) {
2808 	case PT_X86:
2809 	case PT_RVI:
2810 		/* The PAT bit is different for PTE's and PDE's. */
2811 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2812 
2813 		if ((pte & pat_flag) != 0)
2814 			pat_idx |= 0x4;
2815 		if ((pte & PG_NC_PCD) != 0)
2816 			pat_idx |= 0x2;
2817 		if ((pte & PG_NC_PWT) != 0)
2818 			pat_idx |= 0x1;
2819 		break;
2820 	case PT_EPT:
2821 		if ((pte & EPT_PG_IGNORE_PAT) != 0)
2822 			panic("EPT PTE %#lx has no PAT memory type", pte);
2823 		pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2824 		break;
2825 	}
2826 
2827 	/* See pmap_init_pat(). */
2828 	if (pat_idx == 4)
2829 		pat_idx = 0;
2830 	if (pat_idx == 7)
2831 		pat_idx = 3;
2832 
2833 	return (pat_idx);
2834 }
2835 
2836 bool
pmap_ps_enabled(pmap_t pmap)2837 pmap_ps_enabled(pmap_t pmap)
2838 {
2839 
2840 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2841 }
2842 
2843 static void
pmap_update_pde_store(pmap_t pmap,pd_entry_t * pde,pd_entry_t newpde)2844 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2845 {
2846 
2847 	switch (pmap->pm_type) {
2848 	case PT_X86:
2849 		break;
2850 	case PT_RVI:
2851 	case PT_EPT:
2852 		/*
2853 		 * XXX
2854 		 * This is a little bogus since the generation number is
2855 		 * supposed to be bumped up when a region of the address
2856 		 * space is invalidated in the page tables.
2857 		 *
2858 		 * In this case the old PDE entry is valid but yet we want
2859 		 * to make sure that any mappings using the old entry are
2860 		 * invalidated in the TLB.
2861 		 *
2862 		 * The reason this works as expected is because we rendezvous
2863 		 * "all" host cpus and force any vcpu context to exit as a
2864 		 * side-effect.
2865 		 */
2866 		atomic_add_long(&pmap->pm_eptgen, 1);
2867 		break;
2868 	default:
2869 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2870 	}
2871 	pde_store(pde, newpde);
2872 }
2873 
2874 /*
2875  * After changing the page size for the specified virtual address in the page
2876  * table, flush the corresponding entries from the processor's TLB.  Only the
2877  * calling processor's TLB is affected.
2878  *
2879  * The calling thread must be pinned to a processor.
2880  */
2881 static void
pmap_update_pde_invalidate(pmap_t pmap,vm_offset_t va,pd_entry_t newpde)2882 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2883 {
2884 	pt_entry_t PG_G;
2885 
2886 	if (pmap_type_guest(pmap))
2887 		return;
2888 
2889 	KASSERT(pmap->pm_type == PT_X86,
2890 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2891 
2892 	PG_G = pmap_global_bit(pmap);
2893 
2894 	if ((newpde & PG_PS) == 0)
2895 		/* Demotion: flush a specific 2MB page mapping. */
2896 		pmap_invlpg(pmap, va);
2897 	else if ((newpde & PG_G) == 0)
2898 		/*
2899 		 * Promotion: flush every 4KB page mapping from the TLB
2900 		 * because there are too many to flush individually.
2901 		 */
2902 		invltlb();
2903 	else {
2904 		/*
2905 		 * Promotion: flush every 4KB page mapping from the TLB,
2906 		 * including any global (PG_G) mappings.
2907 		 *
2908 		 * This function is only used on older processors that
2909 		 * do not support the invpcid instruction.
2910 		 */
2911 		invltlb_glob();
2912 	}
2913 }
2914 
2915 /*
2916  * The amd64 pmap uses different approaches to TLB invalidation
2917  * depending on the kernel configuration, available hardware features,
2918  * and known hardware errata.  The kernel configuration option that
2919  * has the greatest operational impact on TLB invalidation is PTI,
2920  * which is enabled automatically on affected Intel CPUs.  The most
2921  * impactful hardware features are first PCID, and then INVPCID
2922  * instruction presence.  PCID usage is quite different for PTI
2923  * vs. non-PTI.
2924  *
2925  * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2926  *   the Meltdown bug in some Intel CPUs.  Under PTI, each user address
2927  *   space is served by two page tables, user and kernel.  The user
2928  *   page table only maps user space and a kernel trampoline.  The
2929  *   kernel trampoline includes the entirety of the kernel text but
2930  *   only the kernel data that is needed to switch from user to kernel
2931  *   mode.  The kernel page table maps the user and kernel address
2932  *   spaces in their entirety.  It is identical to the per-process
2933  *   page table used in non-PTI mode.
2934  *
2935  *   User page tables are only used when the CPU is in user mode.
2936  *   Consequently, some TLB invalidations can be postponed until the
2937  *   switch from kernel to user mode.  In contrast, the user
2938  *   space part of the kernel page table is used for copyout(9), so
2939  *   TLB invalidations on this page table cannot be similarly postponed.
2940  *
2941  *   The existence of a user mode page table for the given pmap is
2942  *   indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2943  *   which case pm_ucr3 contains the %cr3 register value for the user
2944  *   mode page table's root.
2945  *
2946  * * The pm_active bitmask indicates which CPUs currently have the
2947  *   pmap active.  A CPU's bit is set on context switch to the pmap, and
2948  *   cleared on switching off this CPU.  For the kernel page table,
2949  *   the pm_active field is immutable and contains all CPUs.  The
2950  *   kernel page table is always logically active on every processor,
2951  *   but not necessarily in use by the hardware, e.g., in PTI mode.
2952  *
2953  *   When requesting invalidation of virtual addresses with
2954  *   pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2955  *   all CPUs recorded as active in pm_active.  Updates to and reads
2956  *   from pm_active are not synchronized, and so they may race with
2957  *   each other.  Shootdown handlers are prepared to handle the race.
2958  *
2959  * * PCID is an optional feature of the long mode x86 MMU where TLB
2960  *   entries are tagged with the 'Process ID' of the address space
2961  *   they belong to.  This feature provides a limited namespace for
2962  *   process identifiers, 12 bits, supporting 4095 simultaneous IDs
2963  *   total.
2964  *
2965  *   Allocation of a PCID to a pmap is done by an algorithm described
2966  *   in section 15.12, "Other TLB Consistency Algorithms", of
2967  *   Vahalia's book "Unix Internals".  A PCID cannot be allocated for
2968  *   the whole lifetime of a pmap in pmap_pinit() due to the limited
2969  *   namespace.  Instead, a per-CPU, per-pmap PCID is assigned when
2970  *   the CPU is about to start caching TLB entries from a pmap,
2971  *   i.e., on the context switch that activates the pmap on the CPU.
2972  *
2973  *   The PCID allocator maintains a per-CPU, per-pmap generation
2974  *   count, pm_gen, which is incremented each time a new PCID is
2975  *   allocated.  On TLB invalidation, the generation counters for the
2976  *   pmap are zeroed, which signals the context switch code that the
2977  *   previously allocated PCID is no longer valid.  Effectively,
2978  *   zeroing any of these counters triggers a TLB shootdown for the
2979  *   given CPU/address space, due to the allocation of a new PCID.
2980  *
2981  *   Zeroing can be performed remotely.  Consequently, if a pmap is
2982  *   inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2983  *   be initiated by an ordinary memory access to reset the target
2984  *   CPU's generation count within the pmap.  The CPU initiating the
2985  *   TLB shootdown does not need to send an IPI to the target CPU.
2986  *
2987  * * PTI + PCID.  The available PCIDs are divided into two sets: PCIDs
2988  *   for complete (kernel) page tables, and PCIDs for user mode page
2989  *   tables.  A user PCID value is obtained from the kernel PCID value
2990  *   by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2991  *
2992  *   User space page tables are activated on return to user mode, by
2993  *   loading pm_ucr3 into %cr3.  If the PCPU(ucr3_load_mask) requests
2994  *   clearing bit 63 of the loaded ucr3, this effectively causes
2995  *   complete invalidation of the user mode TLB entries for the
2996  *   current pmap.  In which case, local invalidations of individual
2997  *   pages in the user page table are skipped.
2998  *
2999  * * Local invalidation, all modes.  If the requested invalidation is
3000  *   for a specific address or the total invalidation of a currently
3001  *   active pmap, then the TLB is flushed using INVLPG for a kernel
3002  *   page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
3003  *   user space page table(s).
3004  *
3005  *   If the INVPCID instruction is available, it is used to flush user
3006  *   entries from the kernel page table.
3007  *
3008  *   When PCID is enabled, the INVLPG instruction invalidates all TLB
3009  *   entries for the given page that either match the current PCID or
3010  *   are global. Since TLB entries for the same page under different
3011  *   PCIDs are unaffected, kernel pages which reside in all address
3012  *   spaces could be problematic.  We avoid the problem by creating
3013  *   all kernel PTEs with the global flag (PG_G) set, when PTI is
3014  *   disabled.
3015  *
3016  * * mode: PTI disabled, PCID present.  The kernel reserves PCID 0 for its
3017  *   address space, all other 4095 PCIDs are used for user mode spaces
3018  *   as described above.  A context switch allocates a new PCID if
3019  *   the recorded PCID is zero or the recorded generation does not match
3020  *   the CPU's generation, effectively flushing the TLB for this address space.
3021  *   Total remote invalidation is performed by zeroing pm_gen for all CPUs.
3022  *	local user page: INVLPG
3023  *	local kernel page: INVLPG
3024  *	local user total: INVPCID(CTX)
3025  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
3026  *	remote user page, inactive pmap: zero pm_gen
3027  *	remote user page, active pmap: zero pm_gen + IPI:INVLPG
3028  *	(Both actions are required to handle the aforementioned pm_active races.)
3029  *	remote kernel page: IPI:INVLPG
3030  *	remote user total, inactive pmap: zero pm_gen
3031  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
3032  *          reload %cr3)
3033  *	(See note above about pm_active races.)
3034  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
3035  *
3036  * PTI enabled, PCID present.
3037  *	local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
3038  *          for upt
3039  *	local kernel page: INVLPG
3040  *	local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
3041  *          on loading UCR3 into %cr3 for upt
3042  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
3043  *	remote user page, inactive pmap: zero pm_gen
3044  *	remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
3045  *          INVPCID(ADDR) for upt)
3046  *	remote kernel page: IPI:INVLPG
3047  *	remote user total, inactive pmap: zero pm_gen
3048  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
3049  *          clear PCID_SAVE on loading UCR3 into $cr3 for upt)
3050  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
3051  *
3052  *  No PCID.
3053  *	local user page: INVLPG
3054  *	local kernel page: INVLPG
3055  *	local user total: reload %cr3
3056  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
3057  *	remote user page, inactive pmap: -
3058  *	remote user page, active pmap: IPI:INVLPG
3059  *	remote kernel page: IPI:INVLPG
3060  *	remote user total, inactive pmap: -
3061  *	remote user total, active pmap: IPI:(reload %cr3)
3062  *	remote kernel total: IPI:INVPCID(CTXGLOB) or invltlb_glob()
3063  *  Since on return to user mode, the reload of %cr3 with ucr3 causes
3064  *  TLB invalidation, no specific action is required for user page table.
3065  *
3066  * EPT.  EPT pmaps do not map KVA, all mappings are userspace.
3067  * XXX TODO
3068  */
3069 
3070 /*
3071  * Interrupt the cpus that are executing in the guest context.
3072  * This will force the vcpu to exit and the cached EPT mappings
3073  * will be invalidated by the host before the next vmresume.
3074  */
3075 static __inline void
pmap_invalidate_ept(pmap_t pmap)3076 pmap_invalidate_ept(pmap_t pmap)
3077 {
3078 	smr_seq_t goal;
3079 	int ipinum;
3080 
3081 	sched_pin();
3082 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
3083 	    ("pmap_invalidate_ept: absurd pm_active"));
3084 
3085 	/*
3086 	 * The TLB mappings associated with a vcpu context are not
3087 	 * flushed each time a different vcpu is chosen to execute.
3088 	 *
3089 	 * This is in contrast with a process's vtop mappings that
3090 	 * are flushed from the TLB on each context switch.
3091 	 *
3092 	 * Therefore we need to do more than just a TLB shootdown on
3093 	 * the active cpus in 'pmap->pm_active'. To do this we keep
3094 	 * track of the number of invalidations performed on this pmap.
3095 	 *
3096 	 * Each vcpu keeps a cache of this counter and compares it
3097 	 * just before a vmresume. If the counter is out-of-date an
3098 	 * invept will be done to flush stale mappings from the TLB.
3099 	 *
3100 	 * To ensure that all vCPU threads have observed the new counter
3101 	 * value before returning, we use SMR.  Ordering is important here:
3102 	 * the VMM enters an SMR read section before loading the counter
3103 	 * and after updating the pm_active bit set.  Thus, pm_active is
3104 	 * a superset of active readers, and any reader that has observed
3105 	 * the goal has observed the new counter value.
3106 	 */
3107 	atomic_add_long(&pmap->pm_eptgen, 1);
3108 
3109 	goal = smr_advance(pmap->pm_eptsmr);
3110 
3111 	/*
3112 	 * Force the vcpu to exit and trap back into the hypervisor.
3113 	 */
3114 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3115 	ipi_selected(pmap->pm_active, ipinum);
3116 	sched_unpin();
3117 
3118 	/*
3119 	 * Ensure that all active vCPUs will observe the new generation counter
3120 	 * value before executing any more guest instructions.
3121 	 */
3122 	smr_wait(pmap->pm_eptsmr, goal);
3123 }
3124 
3125 static inline void
pmap_invalidate_preipi_pcid(pmap_t pmap)3126 pmap_invalidate_preipi_pcid(pmap_t pmap)
3127 {
3128 	struct pmap_pcid *pcidp;
3129 	u_int cpuid, i;
3130 
3131 	sched_pin();
3132 
3133 	cpuid = PCPU_GET(cpuid);
3134 	if (pmap != PCPU_GET(curpmap))
3135 		cpuid = 0xffffffff;	/* An impossible value */
3136 
3137 	CPU_FOREACH(i) {
3138 		if (cpuid != i) {
3139 			pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
3140 			pcidp->pm_gen = 0;
3141 		}
3142 	}
3143 
3144 	/*
3145 	 * The fence is between stores to pm_gen and the read of the
3146 	 * pm_active mask.  We need to ensure that it is impossible
3147 	 * for us to miss the bit update in pm_active and
3148 	 * simultaneously observe a non-zero pm_gen in
3149 	 * pmap_activate_sw(), otherwise TLB update is missed.
3150 	 * Without the fence, IA32 allows such an outcome.  Note that
3151 	 * pm_active is updated by a locked operation, which provides
3152 	 * the reciprocal fence.
3153 	 */
3154 	atomic_thread_fence_seq_cst();
3155 }
3156 
3157 static void
pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)3158 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3159 {
3160 	sched_pin();
3161 }
3162 
3163 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3164 {
3165 	return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3166 	    pmap_invalidate_preipi_nopcid);
3167 }
3168 
3169 static inline void
pmap_invalidate_page_pcid_cb(pmap_t pmap,vm_offset_t va,const bool invpcid_works1)3170 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3171     const bool invpcid_works1)
3172 {
3173 	struct invpcid_descr d;
3174 	uint64_t kcr3, ucr3;
3175 	uint32_t pcid;
3176 
3177 	/*
3178 	 * Because pm_pcid is recalculated on a context switch, we
3179 	 * must ensure there is no preemption, not just pinning.
3180 	 * Otherwise, we might use a stale value below.
3181 	 */
3182 	CRITICAL_ASSERT(curthread);
3183 
3184 	/*
3185 	 * No need to do anything with user page tables invalidation
3186 	 * if there is no user page table, or invalidation is deferred
3187 	 * until the return to userspace.  ucr3_load_mask is stable
3188 	 * because we have preemption disabled.
3189 	 */
3190 	if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3191 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3192 		return;
3193 
3194 	pcid = pmap_get_pcid(pmap);
3195 	if (invpcid_works1) {
3196 		d.pcid = pcid | PMAP_PCID_USER_PT;
3197 		d.pad = 0;
3198 		d.addr = va;
3199 		invpcid(&d, INVPCID_ADDR);
3200 	} else {
3201 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3202 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3203 		pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3204 	}
3205 }
3206 
3207 static void
pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap,vm_offset_t va)3208 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3209 {
3210 	pmap_invalidate_page_pcid_cb(pmap, va, true);
3211 }
3212 
3213 static void
pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t va)3214 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3215 {
3216 	pmap_invalidate_page_pcid_cb(pmap, va, false);
3217 }
3218 
3219 static void
pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused,vm_offset_t va __unused)3220 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3221 {
3222 }
3223 
3224 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3225 {
3226 	if (pmap_pcid_enabled)
3227 		return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3228 		    pmap_invalidate_page_pcid_noinvpcid_cb);
3229 	return (pmap_invalidate_page_nopcid_cb);
3230 }
3231 
3232 static void
pmap_invalidate_page_curcpu_cb(pmap_t pmap,vm_offset_t va,vm_offset_t addr2 __unused)3233 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3234     vm_offset_t addr2 __unused)
3235 {
3236 	if (pmap == kernel_pmap) {
3237 		pmap_invlpg(kernel_pmap, va);
3238 	} else if (pmap == PCPU_GET(curpmap)) {
3239 		invlpg(va);
3240 		pmap_invalidate_page_cb(pmap, va);
3241 	}
3242 }
3243 
3244 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3245 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3246 {
3247 	if (pmap_type_guest(pmap)) {
3248 		pmap_invalidate_ept(pmap);
3249 		return;
3250 	}
3251 
3252 	KASSERT(pmap->pm_type == PT_X86,
3253 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3254 
3255 	pmap_invalidate_preipi(pmap);
3256 	smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3257 }
3258 
3259 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3260 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
3261 
3262 static void
pmap_invalidate_range_pcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,const bool invpcid_works1)3263 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3264     const bool invpcid_works1)
3265 {
3266 	struct invpcid_descr d;
3267 	uint64_t kcr3, ucr3;
3268 	uint32_t pcid;
3269 
3270 	CRITICAL_ASSERT(curthread);
3271 
3272 	if (pmap != PCPU_GET(curpmap) ||
3273 	    pmap->pm_ucr3 == PMAP_NO_CR3 ||
3274 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3275 		return;
3276 
3277 	pcid = pmap_get_pcid(pmap);
3278 	if (invpcid_works1) {
3279 		d.pcid = pcid | PMAP_PCID_USER_PT;
3280 		d.pad = 0;
3281 		for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3282 			invpcid(&d, INVPCID_ADDR);
3283 	} else {
3284 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3285 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3286 		pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3287 	}
3288 }
3289 
3290 static void
pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3291 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3292     vm_offset_t eva)
3293 {
3294 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3295 }
3296 
3297 static void
pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3298 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3299     vm_offset_t eva)
3300 {
3301 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3302 }
3303 
3304 static void
pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused,vm_offset_t sva __unused,vm_offset_t eva __unused)3305 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3306     vm_offset_t eva __unused)
3307 {
3308 }
3309 
3310 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3311     vm_offset_t))
3312 {
3313 	if (pmap_pcid_enabled)
3314 		return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3315 		    pmap_invalidate_range_pcid_noinvpcid_cb);
3316 	return (pmap_invalidate_range_nopcid_cb);
3317 }
3318 
3319 static void
pmap_invalidate_range_curcpu_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3320 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3321 {
3322 	vm_offset_t addr;
3323 
3324 	if (pmap == kernel_pmap) {
3325 		if (PCPU_GET(pcid_invlpg_workaround)) {
3326 			struct invpcid_descr d = { 0 };
3327 
3328 			invpcid(&d, INVPCID_CTXGLOB);
3329 		} else {
3330 			for (addr = sva; addr < eva; addr += PAGE_SIZE)
3331 				invlpg(addr);
3332 		}
3333 	} else if (pmap == PCPU_GET(curpmap)) {
3334 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3335 			invlpg(addr);
3336 		pmap_invalidate_range_cb(pmap, sva, eva);
3337 	}
3338 }
3339 
3340 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3341 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3342 {
3343 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3344 		pmap_invalidate_all(pmap);
3345 		return;
3346 	}
3347 
3348 	if (pmap_type_guest(pmap)) {
3349 		pmap_invalidate_ept(pmap);
3350 		return;
3351 	}
3352 
3353 	KASSERT(pmap->pm_type == PT_X86,
3354 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3355 
3356 	pmap_invalidate_preipi(pmap);
3357 	smp_masked_invlpg_range(sva, eva, pmap,
3358 	    pmap_invalidate_range_curcpu_cb);
3359 }
3360 
3361 static inline void
pmap_invalidate_all_cb_template(pmap_t pmap,bool pmap_pcid_enabled1,bool invpcid_works1)3362 pmap_invalidate_all_cb_template(pmap_t pmap, bool pmap_pcid_enabled1,
3363     bool invpcid_works1)
3364 {
3365 	struct invpcid_descr d;
3366 	uint64_t kcr3;
3367 	uint32_t pcid;
3368 
3369 	if (pmap == kernel_pmap) {
3370 		if (invpcid_works1) {
3371 			bzero(&d, sizeof(d));
3372 			invpcid(&d, INVPCID_CTXGLOB);
3373 		} else {
3374 			invltlb_glob();
3375 		}
3376 	} else if (pmap == PCPU_GET(curpmap)) {
3377 		if (pmap_pcid_enabled1) {
3378 			CRITICAL_ASSERT(curthread);
3379 
3380 			pcid = pmap_get_pcid(pmap);
3381 			if (invpcid_works1) {
3382 				d.pcid = pcid;
3383 				d.pad = 0;
3384 				d.addr = 0;
3385 				invpcid(&d, INVPCID_CTX);
3386 			} else {
3387 				kcr3 = pmap->pm_cr3 | pcid;
3388 				load_cr3(kcr3);
3389 			}
3390 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
3391 				PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3392 		} else {
3393 			invltlb();
3394 		}
3395 	}
3396 }
3397 
3398 static void
pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3399 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3400     vm_offset_t addr2 __unused)
3401 {
3402 	pmap_invalidate_all_cb_template(pmap, true, true);
3403 }
3404 
3405 static void
pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3406 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3407     vm_offset_t addr2 __unused)
3408 {
3409 	pmap_invalidate_all_cb_template(pmap, true, false);
3410 }
3411 
3412 static void
pmap_invalidate_all_nopcid_invpcid_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3413 pmap_invalidate_all_nopcid_invpcid_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3414     vm_offset_t addr2 __unused)
3415 {
3416 	pmap_invalidate_all_cb_template(pmap, false, true);
3417 }
3418 
3419 static void
pmap_invalidate_all_nopcid_noinvpcid_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3420 pmap_invalidate_all_nopcid_noinvpcid_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3421     vm_offset_t addr2 __unused)
3422 {
3423 	pmap_invalidate_all_cb_template(pmap, false, false);
3424 }
3425 
3426 DEFINE_IFUNC(static, void, pmap_invalidate_all_curcpu_cb, (pmap_t, vm_offset_t,
3427     vm_offset_t))
3428 {
3429 	if (pmap_pcid_enabled)
3430 		return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3431 		    pmap_invalidate_all_pcid_noinvpcid_cb);
3432 	return (invpcid_works ? pmap_invalidate_all_nopcid_invpcid_cb :
3433 	    pmap_invalidate_all_nopcid_noinvpcid_cb);
3434 }
3435 
3436 void
pmap_invalidate_all(pmap_t pmap)3437 pmap_invalidate_all(pmap_t pmap)
3438 {
3439 	if (pmap_type_guest(pmap)) {
3440 		pmap_invalidate_ept(pmap);
3441 		return;
3442 	}
3443 
3444 	KASSERT(pmap->pm_type == PT_X86,
3445 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3446 
3447 	pmap_invalidate_preipi(pmap);
3448 	smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3449 }
3450 
3451 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t va __unused,vm_offset_t addr2 __unused)3452 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3453     vm_offset_t addr2 __unused)
3454 {
3455 	wbinvd();
3456 }
3457 
3458 void
pmap_invalidate_cache(void)3459 pmap_invalidate_cache(void)
3460 {
3461 	sched_pin();
3462 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3463 }
3464 
3465 struct pde_action {
3466 	cpuset_t invalidate;	/* processors that invalidate their TLB */
3467 	pmap_t pmap;
3468 	vm_offset_t va;
3469 	pd_entry_t *pde;
3470 	pd_entry_t newpde;
3471 	u_int store;		/* processor that updates the PDE */
3472 };
3473 
3474 static void
pmap_update_pde_action(void * arg)3475 pmap_update_pde_action(void *arg)
3476 {
3477 	struct pde_action *act = arg;
3478 
3479 	if (act->store == PCPU_GET(cpuid))
3480 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3481 }
3482 
3483 static void
pmap_update_pde_teardown(void * arg)3484 pmap_update_pde_teardown(void *arg)
3485 {
3486 	struct pde_action *act = arg;
3487 
3488 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3489 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3490 }
3491 
3492 /*
3493  * Change the page size for the specified virtual address in a way that
3494  * prevents any possibility of the TLB ever having two entries that map the
3495  * same virtual address using different page sizes.  This is the recommended
3496  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
3497  * machine check exception for a TLB state that is improperly diagnosed as a
3498  * hardware error.
3499  */
3500 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3501 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3502 {
3503 	struct pde_action act;
3504 	cpuset_t active, other_cpus;
3505 	u_int cpuid;
3506 
3507 	sched_pin();
3508 	cpuid = PCPU_GET(cpuid);
3509 	other_cpus = all_cpus;
3510 	CPU_CLR(cpuid, &other_cpus);
3511 	if (pmap == kernel_pmap || pmap_type_guest(pmap))
3512 		active = all_cpus;
3513 	else {
3514 		active = pmap->pm_active;
3515 	}
3516 	if (CPU_OVERLAP(&active, &other_cpus)) {
3517 		act.store = cpuid;
3518 		act.invalidate = active;
3519 		act.va = va;
3520 		act.pmap = pmap;
3521 		act.pde = pde;
3522 		act.newpde = newpde;
3523 		CPU_SET(cpuid, &active);
3524 		smp_rendezvous_cpus(active,
3525 		    smp_no_rendezvous_barrier, pmap_update_pde_action,
3526 		    pmap_update_pde_teardown, &act);
3527 	} else {
3528 		pmap_update_pde_store(pmap, pde, newpde);
3529 		if (CPU_ISSET(cpuid, &active))
3530 			pmap_update_pde_invalidate(pmap, va, newpde);
3531 	}
3532 	sched_unpin();
3533 }
3534 
3535 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)3536 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3537 {
3538 
3539 	/*
3540 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3541 	 * by a promotion that did not invalidate the 512 4KB page mappings
3542 	 * that might exist in the TLB.  Consequently, at this point, the TLB
3543 	 * may hold both 4KB and 2MB page mappings for the address range [va,
3544 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
3545 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3546 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3547 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
3548 	 * TLB.
3549 	 */
3550 	if ((pde & PG_PROMOTED) != 0)
3551 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3552 	else
3553 		pmap_invalidate_page(pmap, va);
3554 }
3555 
3556 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3557     (vm_offset_t sva, vm_offset_t eva))
3558 {
3559 
3560 	if ((cpu_feature & CPUID_SS) != 0)
3561 		return (pmap_invalidate_cache_range_selfsnoop);
3562 	if ((cpu_feature & CPUID_CLFSH) != 0)
3563 		return (pmap_force_invalidate_cache_range);
3564 	return (pmap_invalidate_cache_range_all);
3565 }
3566 
3567 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
3568 
3569 static void
pmap_invalidate_cache_range_check_align(vm_offset_t sva,vm_offset_t eva)3570 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3571 {
3572 
3573 	KASSERT((sva & PAGE_MASK) == 0,
3574 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
3575 	KASSERT((eva & PAGE_MASK) == 0,
3576 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
3577 }
3578 
3579 static void
pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,vm_offset_t eva)3580 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3581 {
3582 
3583 	pmap_invalidate_cache_range_check_align(sva, eva);
3584 }
3585 
3586 void
pmap_force_invalidate_cache_range(vm_offset_t sva,vm_offset_t eva)3587 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3588 {
3589 
3590 	sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3591 
3592 	/*
3593 	 * XXX: Some CPUs fault, hang, or trash the local APIC
3594 	 * registers if we use CLFLUSH on the local APIC range.  The
3595 	 * local APIC is always uncached, so we don't need to flush
3596 	 * for that range anyway.
3597 	 */
3598 	if (pmap_kextract(sva) == lapic_paddr)
3599 		return;
3600 
3601 	if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3602 		/*
3603 		 * Do per-cache line flush.  Use a locked
3604 		 * instruction to insure that previous stores are
3605 		 * included in the write-back.  The processor
3606 		 * propagates flush to other processors in the cache
3607 		 * coherence domain.
3608 		 */
3609 		atomic_thread_fence_seq_cst();
3610 		for (; sva < eva; sva += cpu_clflush_line_size)
3611 			clflushopt(sva);
3612 		atomic_thread_fence_seq_cst();
3613 	} else {
3614 		/*
3615 		 * Writes are ordered by CLFLUSH on Intel CPUs.
3616 		 */
3617 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3618 			mfence();
3619 		for (; sva < eva; sva += cpu_clflush_line_size)
3620 			clflush(sva);
3621 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3622 			mfence();
3623 	}
3624 }
3625 
3626 static void
pmap_invalidate_cache_range_all(vm_offset_t sva,vm_offset_t eva)3627 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3628 {
3629 
3630 	pmap_invalidate_cache_range_check_align(sva, eva);
3631 	pmap_invalidate_cache();
3632 }
3633 
3634 /*
3635  * Remove the specified set of pages from the data and instruction caches.
3636  *
3637  * In contrast to pmap_invalidate_cache_range(), this function does not
3638  * rely on the CPU's self-snoop feature, because it is intended for use
3639  * when moving pages into a different cache domain.
3640  */
3641 void
pmap_invalidate_cache_pages(vm_page_t * pages,int count)3642 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3643 {
3644 	vm_offset_t daddr, eva;
3645 	int i;
3646 	bool useclflushopt;
3647 
3648 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3649 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3650 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3651 		pmap_invalidate_cache();
3652 	else {
3653 		if (useclflushopt)
3654 			atomic_thread_fence_seq_cst();
3655 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3656 			mfence();
3657 		for (i = 0; i < count; i++) {
3658 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3659 			eva = daddr + PAGE_SIZE;
3660 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
3661 				if (useclflushopt)
3662 					clflushopt(daddr);
3663 				else
3664 					clflush(daddr);
3665 			}
3666 		}
3667 		if (useclflushopt)
3668 			atomic_thread_fence_seq_cst();
3669 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3670 			mfence();
3671 	}
3672 }
3673 
3674 void
pmap_flush_cache_range(vm_offset_t sva,vm_offset_t eva)3675 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3676 {
3677 
3678 	pmap_invalidate_cache_range_check_align(sva, eva);
3679 
3680 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3681 		pmap_force_invalidate_cache_range(sva, eva);
3682 		return;
3683 	}
3684 
3685 	/* See comment in pmap_force_invalidate_cache_range(). */
3686 	if (pmap_kextract(sva) == lapic_paddr)
3687 		return;
3688 
3689 	atomic_thread_fence_seq_cst();
3690 	for (; sva < eva; sva += cpu_clflush_line_size)
3691 		clwb(sva);
3692 	atomic_thread_fence_seq_cst();
3693 }
3694 
3695 void
pmap_flush_cache_phys_range(vm_paddr_t spa,vm_paddr_t epa,vm_memattr_t mattr)3696 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3697 {
3698 	pt_entry_t *pte;
3699 	vm_offset_t vaddr;
3700 	int error __diagused;
3701 	int pte_bits;
3702 
3703 	KASSERT((spa & PAGE_MASK) == 0,
3704 	    ("pmap_flush_cache_phys_range: spa not page-aligned"));
3705 	KASSERT((epa & PAGE_MASK) == 0,
3706 	    ("pmap_flush_cache_phys_range: epa not page-aligned"));
3707 
3708 	if (spa < dmaplimit) {
3709 		pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3710 		    dmaplimit, epa)));
3711 		if (dmaplimit >= epa)
3712 			return;
3713 		spa = dmaplimit;
3714 	}
3715 
3716 	pte_bits = pmap_cache_bits(kernel_pmap, mattr, false) | X86_PG_RW |
3717 	    X86_PG_V;
3718 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3719 	    &vaddr);
3720 	KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3721 	pte = vtopte(vaddr);
3722 	for (; spa < epa; spa += PAGE_SIZE) {
3723 		sched_pin();
3724 		pte_store(pte, spa | pte_bits);
3725 		pmap_invlpg(kernel_pmap, vaddr);
3726 		/* XXXKIB atomic inside flush_cache_range are excessive */
3727 		pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3728 		sched_unpin();
3729 	}
3730 	vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3731 }
3732 
3733 /*
3734  *	Routine:	pmap_extract
3735  *	Function:
3736  *		Extract the physical page address associated
3737  *		with the given map/virtual_address pair.
3738  */
3739 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)3740 pmap_extract(pmap_t pmap, vm_offset_t va)
3741 {
3742 	pdp_entry_t *pdpe;
3743 	pd_entry_t *pde;
3744 	pt_entry_t *pte, PG_V;
3745 	vm_paddr_t pa;
3746 
3747 	pa = 0;
3748 	PG_V = pmap_valid_bit(pmap);
3749 	PMAP_LOCK(pmap);
3750 	pdpe = pmap_pdpe(pmap, va);
3751 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3752 		if ((*pdpe & PG_PS) != 0)
3753 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3754 		else {
3755 			pde = pmap_pdpe_to_pde(pdpe, va);
3756 			if ((*pde & PG_V) != 0) {
3757 				if ((*pde & PG_PS) != 0) {
3758 					pa = (*pde & PG_PS_FRAME) |
3759 					    (va & PDRMASK);
3760 				} else {
3761 					pte = pmap_pde_to_pte(pde, va);
3762 					pa = (*pte & PG_FRAME) |
3763 					    (va & PAGE_MASK);
3764 				}
3765 			}
3766 		}
3767 	}
3768 	PMAP_UNLOCK(pmap);
3769 	return (pa);
3770 }
3771 
3772 /*
3773  *	Routine:	pmap_extract_and_hold
3774  *	Function:
3775  *		Atomically extract and hold the physical page
3776  *		with the given pmap and virtual address pair
3777  *		if that mapping permits the given protection.
3778  */
3779 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)3780 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3781 {
3782 	pdp_entry_t pdpe, *pdpep;
3783 	pd_entry_t pde, *pdep;
3784 	pt_entry_t pte, PG_RW, PG_V;
3785 	vm_page_t m;
3786 
3787 	m = NULL;
3788 	PG_RW = pmap_rw_bit(pmap);
3789 	PG_V = pmap_valid_bit(pmap);
3790 	PMAP_LOCK(pmap);
3791 
3792 	pdpep = pmap_pdpe(pmap, va);
3793 	if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3794 		goto out;
3795 	if ((pdpe & PG_PS) != 0) {
3796 		if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3797 			goto out;
3798 		m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3799 		goto check_page;
3800 	}
3801 
3802 	pdep = pmap_pdpe_to_pde(pdpep, va);
3803 	if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3804 		goto out;
3805 	if ((pde & PG_PS) != 0) {
3806 		if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3807 			goto out;
3808 		m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3809 		goto check_page;
3810 	}
3811 
3812 	pte = *pmap_pde_to_pte(pdep, va);
3813 	if ((pte & PG_V) == 0 ||
3814 	    ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3815 		goto out;
3816 	m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3817 
3818 check_page:
3819 	if (m != NULL && !vm_page_wire_mapped(m))
3820 		m = NULL;
3821 out:
3822 	PMAP_UNLOCK(pmap);
3823 	return (m);
3824 }
3825 
3826 /*
3827  *	Routine:	pmap_kextract
3828  *	Function:
3829  *		Extract the physical page address associated with the given kernel
3830  *		virtual address.
3831  */
3832 vm_paddr_t
pmap_kextract(vm_offset_t va)3833 pmap_kextract(vm_offset_t va)
3834 {
3835 	pd_entry_t pde;
3836 	vm_paddr_t pa;
3837 
3838 	if (va >= kva_layout.dmap_low && va < kva_layout.dmap_high) {
3839 		pa = DMAP_TO_PHYS(va);
3840 	} else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3841 		pa = pmap_large_map_kextract(va);
3842 	} else {
3843 		pde = *vtopde(va);
3844 		if (pde & PG_PS) {
3845 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3846 		} else {
3847 			/*
3848 			 * Beware of a concurrent promotion that changes the
3849 			 * PDE at this point!  For example, vtopte() must not
3850 			 * be used to access the PTE because it would use the
3851 			 * new PDE.  It is, however, safe to use the old PDE
3852 			 * because the page table page is preserved by the
3853 			 * promotion.
3854 			 */
3855 			pa = *pmap_pde_to_pte(&pde, va);
3856 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3857 		}
3858 	}
3859 	return (pa);
3860 }
3861 
3862 /***************************************************
3863  * Low level mapping routines.....
3864  ***************************************************/
3865 
3866 /*
3867  * Add a wired page to the kva.
3868  * Note: not SMP coherent.
3869  */
3870 void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)3871 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3872 {
3873 	pt_entry_t *pte;
3874 
3875 	pte = vtopte(va);
3876 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3877 	    X86_PG_RW | X86_PG_V);
3878 }
3879 
3880 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)3881 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3882 {
3883 	pt_entry_t *pte;
3884 	int cache_bits;
3885 
3886 	pte = vtopte(va);
3887 	cache_bits = pmap_cache_bits(kernel_pmap, mode, false);
3888 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3889 	    X86_PG_RW | X86_PG_V | cache_bits);
3890 }
3891 
3892 /*
3893  * Remove a page from the kernel pagetables.
3894  * Note: not SMP coherent.
3895  */
3896 void
pmap_kremove(vm_offset_t va)3897 pmap_kremove(vm_offset_t va)
3898 {
3899 	pt_entry_t *pte;
3900 
3901 	pte = vtopte(va);
3902 	pte_clear(pte);
3903 }
3904 
3905 /*
3906  *	Used to map a range of physical addresses into kernel
3907  *	virtual address space.
3908  *
3909  *	The value passed in '*virt' is a suggested virtual address for
3910  *	the mapping. Architectures which can support a direct-mapped
3911  *	physical to virtual region can return the appropriate address
3912  *	within that region, leaving '*virt' unchanged. Other
3913  *	architectures should map the pages starting at '*virt' and
3914  *	update '*virt' with the first usable address after the mapped
3915  *	region.
3916  */
3917 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)3918 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
3919 {
3920 	return PHYS_TO_DMAP(start);
3921 }
3922 
3923 /*
3924  * Add a list of wired pages to the kva
3925  * this routine is only used for temporary
3926  * kernel mappings that do not need to have
3927  * page modification or references recorded.
3928  * Note that old mappings are simply written
3929  * over.  The page *must* be wired.
3930  * Note: SMP coherent.  Uses a ranged shootdown IPI.
3931  */
3932 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)3933 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
3934 {
3935 	pt_entry_t *endpte, oldpte, pa, *pte;
3936 	vm_page_t m;
3937 	int cache_bits;
3938 
3939 	oldpte = 0;
3940 	pte = vtopte(sva);
3941 	endpte = pte + count;
3942 	while (pte < endpte) {
3943 		m = *ma++;
3944 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
3945 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
3946 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
3947 			oldpte |= *pte;
3948 			pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
3949 			    X86_PG_M | X86_PG_RW | X86_PG_V);
3950 		}
3951 		pte++;
3952 	}
3953 	if (__predict_false((oldpte & X86_PG_V) != 0))
3954 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
3955 		    PAGE_SIZE);
3956 }
3957 
3958 /*
3959  * This routine tears out page mappings from the
3960  * kernel -- it is meant only for temporary mappings.
3961  * Note: SMP coherent.  Uses a ranged shootdown IPI.
3962  */
3963 void
pmap_qremove(vm_offset_t sva,int count)3964 pmap_qremove(vm_offset_t sva, int count)
3965 {
3966 	vm_offset_t va;
3967 
3968 	va = sva;
3969 	while (count-- > 0) {
3970 		/*
3971 		 * pmap_enter() calls within the kernel virtual
3972 		 * address space happen on virtual addresses from
3973 		 * subarenas that import superpage-sized and -aligned
3974 		 * address ranges.  So, the virtual address that we
3975 		 * allocate to use with pmap_qenter() can't be close
3976 		 * enough to one of those pmap_enter() calls for it to
3977 		 * be caught up in a promotion.
3978 		 */
3979 		KASSERT(va >= kva_layout.km_low, ("usermode va %lx", va));
3980 		KASSERT((*vtopde(va) & X86_PG_PS) == 0,
3981 		    ("pmap_qremove on promoted va %#lx", va));
3982 
3983 		pmap_kremove(va);
3984 		va += PAGE_SIZE;
3985 	}
3986 	pmap_invalidate_range(kernel_pmap, sva, va);
3987 }
3988 
3989 /***************************************************
3990  * Page table page management routines.....
3991  ***************************************************/
3992 /*
3993  * Schedule the specified unused page table page to be freed.  Specifically,
3994  * add the page to the specified list of pages that will be released to the
3995  * physical memory manager after the TLB has been updated.
3996  */
3997 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)3998 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
3999 {
4000 
4001 	if (set_PG_ZERO)
4002 		m->flags |= PG_ZERO;
4003 	else
4004 		m->flags &= ~PG_ZERO;
4005 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4006 }
4007 
4008 /*
4009  * Inserts the specified page table page into the specified pmap's collection
4010  * of idle page table pages.  Each of a pmap's page table pages is responsible
4011  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4012  * ordered by this virtual address range.
4013  *
4014  * If "promoted" is false, then the page table page "mpte" must be zero filled;
4015  * "mpte"'s valid field will be set to 0.
4016  *
4017  * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
4018  * contain valid mappings with identical attributes except for PG_A; "mpte"'s
4019  * valid field will be set to 1.
4020  *
4021  * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
4022  * valid mappings with identical attributes including PG_A; "mpte"'s valid
4023  * field will be set to VM_PAGE_BITS_ALL.
4024  */
4025 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)4026 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4027     bool allpte_PG_A_set)
4028 {
4029 
4030 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4031 	KASSERT(promoted || !allpte_PG_A_set,
4032 	    ("a zero-filled PTP can't have PG_A set in every PTE"));
4033 	mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
4034 	return (vm_radix_insert(&pmap->pm_root, mpte));
4035 }
4036 
4037 /*
4038  * Removes the page table page mapping the specified virtual address from the
4039  * specified pmap's collection of idle page table pages, and returns it.
4040  * Otherwise, returns NULL if there is no page table page corresponding to the
4041  * specified virtual address.
4042  */
4043 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)4044 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4045 {
4046 
4047 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4048 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4049 }
4050 
4051 /*
4052  * Decrements a page table page's reference count, which is used to record the
4053  * number of valid page table entries within the page.  If the reference count
4054  * drops to zero, then the page table page is unmapped.  Returns true if the
4055  * page table page was unmapped and false otherwise.
4056  */
4057 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4058 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4059 {
4060 
4061 	--m->ref_count;
4062 	if (m->ref_count == 0) {
4063 		_pmap_unwire_ptp(pmap, va, m, free);
4064 		return (true);
4065 	} else
4066 		return (false);
4067 }
4068 
4069 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4070 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4071 {
4072 	pml5_entry_t *pml5;
4073 	pml4_entry_t *pml4;
4074 	pdp_entry_t *pdp;
4075 	pd_entry_t *pd;
4076 	vm_page_t pdpg, pdppg, pml4pg;
4077 
4078 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4079 
4080 	/*
4081 	 * unmap the page table page
4082 	 */
4083 	if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4084 		/* PML4 page */
4085 		MPASS(pmap_is_la57(pmap));
4086 		pml5 = pmap_pml5e(pmap, va);
4087 		*pml5 = 0;
4088 		if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4089 			pml5 = pmap_pml5e_u(pmap, va);
4090 			*pml5 = 0;
4091 		}
4092 	} else if (m->pindex >= NUPDE + NUPDPE) {
4093 		/* PDP page */
4094 		pml4 = pmap_pml4e(pmap, va);
4095 		*pml4 = 0;
4096 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4097 		    va <= VM_MAXUSER_ADDRESS) {
4098 			pml4 = pmap_pml4e_u(pmap, va);
4099 			*pml4 = 0;
4100 		}
4101 	} else if (m->pindex >= NUPDE) {
4102 		/* PD page */
4103 		pdp = pmap_pdpe(pmap, va);
4104 		*pdp = 0;
4105 	} else {
4106 		/* PTE page */
4107 		pd = pmap_pde(pmap, va);
4108 		*pd = 0;
4109 	}
4110 	if (m->pindex < NUPDE) {
4111 		/* We just released a PT, unhold the matching PD */
4112 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4113 		pmap_unwire_ptp(pmap, va, pdpg, free);
4114 	} else if (m->pindex < NUPDE + NUPDPE) {
4115 		/* We just released a PD, unhold the matching PDP */
4116 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4117 		pmap_unwire_ptp(pmap, va, pdppg, free);
4118 	} else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4119 		/* We just released a PDP, unhold the matching PML4 */
4120 		pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4121 		pmap_unwire_ptp(pmap, va, pml4pg, free);
4122 	}
4123 
4124 	pmap_pt_page_count_adj(pmap, -1);
4125 
4126 	/*
4127 	 * Put page on a list so that it is released after
4128 	 * *ALL* TLB shootdown is done
4129 	 */
4130 	pmap_add_delayed_free_list(m, free, true);
4131 }
4132 
4133 /*
4134  * After removing a page table entry, this routine is used to
4135  * conditionally free the page, and manage the reference count.
4136  */
4137 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)4138 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4139     struct spglist *free)
4140 {
4141 	vm_page_t mpte;
4142 
4143 	if (va >= VM_MAXUSER_ADDRESS)
4144 		return (0);
4145 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4146 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4147 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4148 }
4149 
4150 /*
4151  * Release a page table page reference after a failed attempt to create a
4152  * mapping.
4153  */
4154 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)4155 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4156 {
4157 	struct spglist free;
4158 
4159 	SLIST_INIT(&free);
4160 	if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4161 		/*
4162 		 * Although "va" was never mapped, paging-structure caches
4163 		 * could nonetheless have entries that refer to the freed
4164 		 * page table pages.  Invalidate those entries.
4165 		 */
4166 		pmap_invalidate_page(pmap, va);
4167 		vm_page_free_pages_toq(&free, true);
4168 	}
4169 }
4170 
4171 static void
pmap_pinit_pcids(pmap_t pmap,uint32_t pcid,int gen)4172 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
4173 {
4174 	struct pmap_pcid *pcidp;
4175 	int i;
4176 
4177 	CPU_FOREACH(i) {
4178 		pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
4179 		pcidp->pm_pcid = pcid;
4180 		pcidp->pm_gen = gen;
4181 	}
4182 }
4183 
4184 void
pmap_pinit0(pmap_t pmap)4185 pmap_pinit0(pmap_t pmap)
4186 {
4187 	struct proc *p;
4188 	struct thread *td;
4189 
4190 	PMAP_LOCK_INIT(pmap);
4191 	pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4192 	pmap->pm_pmltopu = NULL;
4193 	pmap->pm_cr3 = kernel_pmap->pm_cr3;
4194 	/* hack to keep pmap_pti_pcid_invalidate() alive */
4195 	pmap->pm_ucr3 = PMAP_NO_CR3;
4196 	vm_radix_init(&pmap->pm_root);
4197 	CPU_ZERO(&pmap->pm_active);
4198 	TAILQ_INIT(&pmap->pm_pvchunk);
4199 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4200 	pmap->pm_flags = pmap_flags;
4201 	pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
4202 	pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
4203 	pmap_activate_boot(pmap);
4204 	td = curthread;
4205 	if (pti) {
4206 		p = td->td_proc;
4207 		PROC_LOCK(p);
4208 		p->p_md.md_flags |= P_MD_KPTI;
4209 		PROC_UNLOCK(p);
4210 	}
4211 	pmap_thread_init_invl_gen(td);
4212 
4213 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4214 		pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4215 		    sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4216 		    UMA_ALIGN_PTR, 0);
4217 	}
4218 }
4219 
4220 void
pmap_pinit_pml4(vm_page_t pml4pg)4221 pmap_pinit_pml4(vm_page_t pml4pg)
4222 {
4223 	pml4_entry_t *pm_pml4;
4224 	int i;
4225 
4226 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4227 
4228 	/* Wire in kernel global address entries. */
4229 	for (i = 0; i < NKPML4E; i++) {
4230 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4231 		    X86_PG_V;
4232 	}
4233 #ifdef KASAN
4234 	for (i = 0; i < NKASANPML4E; i++) {
4235 		pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4236 		    X86_PG_V | pg_nx;
4237 	}
4238 #endif
4239 #ifdef KMSAN
4240 	for (i = 0; i < NKMSANSHADPML4E; i++) {
4241 		pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4242 		    X86_PG_RW | X86_PG_V | pg_nx;
4243 	}
4244 	for (i = 0; i < NKMSANORIGPML4E; i++) {
4245 		pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4246 		    X86_PG_RW | X86_PG_V | pg_nx;
4247 	}
4248 #endif
4249 	for (i = 0; i < ndmpdpphys; i++) {
4250 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4251 		    X86_PG_V;
4252 	}
4253 
4254 	/* install self-referential address mapping entry(s) */
4255 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4256 	    X86_PG_A | X86_PG_M;
4257 
4258 	/* install large map entries if configured */
4259 	for (i = 0; i < lm_ents; i++)
4260 		pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4261 }
4262 
4263 void
pmap_pinit_pml5(vm_page_t pml5pg)4264 pmap_pinit_pml5(vm_page_t pml5pg)
4265 {
4266 	pml5_entry_t *pm_pml5;
4267 	int i;
4268 
4269 	pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4270 	for (i = 0; i < NPML5EPG / 2; i++)
4271 		pm_pml5[i] = 0;
4272 	for (; i < NPML5EPG; i++)
4273 		pm_pml5[i] = kernel_pmap->pm_pmltop[i];
4274 }
4275 
4276 static void
pmap_pinit_pml4_pti(vm_page_t pml4pgu)4277 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4278 {
4279 	pml4_entry_t *pm_pml4u;
4280 	int i;
4281 
4282 	pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4283 	for (i = 0; i < NPML4EPG; i++)
4284 		pm_pml4u[i] = pti_pml4[i];
4285 }
4286 
4287 static void
pmap_pinit_pml5_pti(vm_page_t pml5pgu)4288 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4289 {
4290 	pml5_entry_t *pm_pml5u;
4291 
4292 	pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4293 	pagezero(pm_pml5u);
4294 
4295 	/*
4296 	 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4297 	 * table, entering all kernel mappings needed for usermode
4298 	 * into level 5 table.
4299 	 */
4300 	pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4301 	    pmap_kextract((vm_offset_t)pti_pml4) |
4302 	    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
4303 }
4304 
4305 /* Allocate a page table page and do related bookkeeping */
4306 static vm_page_t
pmap_alloc_pt_page(pmap_t pmap,vm_pindex_t pindex,int flags)4307 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4308 {
4309 	vm_page_t m;
4310 
4311 	m = vm_page_alloc_noobj(flags);
4312 	if (__predict_false(m == NULL))
4313 		return (NULL);
4314 	m->pindex = pindex;
4315 	pmap_pt_page_count_adj(pmap, 1);
4316 	return (m);
4317 }
4318 
4319 static void
pmap_free_pt_page(pmap_t pmap,vm_page_t m,bool zerofilled)4320 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4321 {
4322 	/*
4323 	 * This function assumes the page will need to be unwired,
4324 	 * even though the counterpart allocation in pmap_alloc_pt_page()
4325 	 * doesn't enforce VM_ALLOC_WIRED.  However, all current uses
4326 	 * of pmap_free_pt_page() require unwiring.  The case in which
4327 	 * a PT page doesn't require unwiring because its ref_count has
4328 	 * naturally reached 0 is handled through _pmap_unwire_ptp().
4329 	 */
4330 	vm_page_unwire_noq(m);
4331 	if (zerofilled)
4332 		vm_page_free_zero(m);
4333 	else
4334 		vm_page_free(m);
4335 
4336 	pmap_pt_page_count_adj(pmap, -1);
4337 }
4338 
4339 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
4340 
4341 /*
4342  * Initialize a preallocated and zeroed pmap structure,
4343  * such as one in a vmspace structure.
4344  */
4345 int
pmap_pinit_type(pmap_t pmap,enum pmap_type pm_type,int flags)4346 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4347 {
4348 	vm_page_t pmltop_pg, pmltop_pgu;
4349 	vm_paddr_t pmltop_phys;
4350 
4351 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4352 
4353 	/*
4354 	 * Allocate the page directory page.  Pass NULL instead of a
4355 	 * pointer to the pmap here to avoid calling
4356 	 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4357 	 * since that requires pmap lock.  Instead do the accounting
4358 	 * manually.
4359 	 *
4360 	 * Note that final call to pmap_remove() optimization that
4361 	 * checks for zero resident_count is basically disabled by
4362 	 * accounting for top-level page.  But the optimization was
4363 	 * not effective since we started using non-managed mapping of
4364 	 * the shared page.
4365 	 */
4366 	pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4367 	    VM_ALLOC_WAITOK);
4368 	pmap_pt_page_count_pinit(pmap, 1);
4369 
4370 	pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4371 	pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4372 
4373 	if (pmap_pcid_enabled) {
4374 		if (pmap->pm_pcidp == NULL)
4375 			pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
4376 			    M_WAITOK);
4377 		pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
4378 	}
4379 	pmap->pm_cr3 = PMAP_NO_CR3;	/* initialize to an invalid value */
4380 	pmap->pm_ucr3 = PMAP_NO_CR3;
4381 	pmap->pm_pmltopu = NULL;
4382 
4383 	pmap->pm_type = pm_type;
4384 
4385 	/*
4386 	 * Do not install the host kernel mappings in the nested page
4387 	 * tables. These mappings are meaningless in the guest physical
4388 	 * address space.
4389 	 * Install minimal kernel mappings in PTI case.
4390 	 */
4391 	switch (pm_type) {
4392 	case PT_X86:
4393 		pmap->pm_cr3 = pmltop_phys;
4394 		if (pmap_is_la57(pmap))
4395 			pmap_pinit_pml5(pmltop_pg);
4396 		else
4397 			pmap_pinit_pml4(pmltop_pg);
4398 		if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4399 			/*
4400 			 * As with pmltop_pg, pass NULL instead of a
4401 			 * pointer to the pmap to ensure that the PTI
4402 			 * page counted explicitly.
4403 			 */
4404 			pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4405 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4406 			pmap_pt_page_count_pinit(pmap, 1);
4407 			pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4408 			    VM_PAGE_TO_PHYS(pmltop_pgu));
4409 			if (pmap_is_la57(pmap))
4410 				pmap_pinit_pml5_pti(pmltop_pgu);
4411 			else
4412 				pmap_pinit_pml4_pti(pmltop_pgu);
4413 			pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4414 		}
4415 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4416 			rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4417 			    pkru_free_range, pmap, M_NOWAIT);
4418 		}
4419 		break;
4420 	case PT_EPT:
4421 	case PT_RVI:
4422 		pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4423 		break;
4424 	}
4425 
4426 	vm_radix_init(&pmap->pm_root);
4427 	CPU_ZERO(&pmap->pm_active);
4428 	TAILQ_INIT(&pmap->pm_pvchunk);
4429 	pmap->pm_flags = flags;
4430 	pmap->pm_eptgen = 0;
4431 
4432 	return (1);
4433 }
4434 
4435 int
pmap_pinit(pmap_t pmap)4436 pmap_pinit(pmap_t pmap)
4437 {
4438 
4439 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4440 }
4441 
4442 static void
pmap_allocpte_free_unref(pmap_t pmap,vm_offset_t va,pt_entry_t * pte)4443 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4444 {
4445 	vm_page_t mpg;
4446 	struct spglist free;
4447 
4448 	mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4449 	if (mpg->ref_count != 0)
4450 		return;
4451 	SLIST_INIT(&free);
4452 	_pmap_unwire_ptp(pmap, va, mpg, &free);
4453 	pmap_invalidate_page(pmap, va);
4454 	vm_page_free_pages_toq(&free, true);
4455 }
4456 
4457 static pml4_entry_t *
pmap_allocpte_getpml4(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4458 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4459     bool addref)
4460 {
4461 	vm_pindex_t pml5index;
4462 	pml5_entry_t *pml5;
4463 	pml4_entry_t *pml4;
4464 	vm_page_t pml4pg;
4465 	pt_entry_t PG_V;
4466 	bool allocated;
4467 
4468 	if (!pmap_is_la57(pmap))
4469 		return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4470 
4471 	PG_V = pmap_valid_bit(pmap);
4472 	pml5index = pmap_pml5e_index(va);
4473 	pml5 = &pmap->pm_pmltop[pml5index];
4474 	if ((*pml5 & PG_V) == 0) {
4475 		if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4476 		    va) == NULL)
4477 			return (NULL);
4478 		allocated = true;
4479 	} else {
4480 		allocated = false;
4481 	}
4482 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4483 	pml4 = &pml4[pmap_pml4e_index(va)];
4484 	if ((*pml4 & PG_V) == 0) {
4485 		pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4486 		if (allocated && !addref)
4487 			pml4pg->ref_count--;
4488 		else if (!allocated && addref)
4489 			pml4pg->ref_count++;
4490 	}
4491 	return (pml4);
4492 }
4493 
4494 static pdp_entry_t *
pmap_allocpte_getpdp(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4495 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4496     bool addref)
4497 {
4498 	vm_page_t pdppg;
4499 	pml4_entry_t *pml4;
4500 	pdp_entry_t *pdp;
4501 	pt_entry_t PG_V;
4502 	bool allocated;
4503 
4504 	PG_V = pmap_valid_bit(pmap);
4505 
4506 	pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4507 	if (pml4 == NULL)
4508 		return (NULL);
4509 
4510 	if ((*pml4 & PG_V) == 0) {
4511 		/* Have to allocate a new pdp, recurse */
4512 		if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4513 		    va) == NULL) {
4514 			if (pmap_is_la57(pmap))
4515 				pmap_allocpte_free_unref(pmap, va,
4516 				    pmap_pml5e(pmap, va));
4517 			return (NULL);
4518 		}
4519 		allocated = true;
4520 	} else {
4521 		allocated = false;
4522 	}
4523 	pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4524 	pdp = &pdp[pmap_pdpe_index(va)];
4525 	if ((*pdp & PG_V) == 0) {
4526 		pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4527 		if (allocated && !addref)
4528 			pdppg->ref_count--;
4529 		else if (!allocated && addref)
4530 			pdppg->ref_count++;
4531 	}
4532 	return (pdp);
4533 }
4534 
4535 /*
4536  * The ptepindexes, i.e. page indices, of the page table pages encountered
4537  * while translating virtual address va are defined as follows:
4538  * - for the page table page (last level),
4539  *      ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4540  *   in other words, it is just the index of the PDE that maps the page
4541  *   table page.
4542  * - for the page directory page,
4543  *      ptepindex = NUPDE (number of userland PD entries) +
4544  *          (pmap_pde_index(va) >> NPDEPGSHIFT)
4545  *   i.e. index of PDPE is put after the last index of PDE,
4546  * - for the page directory pointer page,
4547  *      ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4548  *          NPML4EPGSHIFT),
4549  *   i.e. index of pml4e is put after the last index of PDPE,
4550  * - for the PML4 page (if LA57 mode is enabled),
4551  *      ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4552  *          (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4553  *   i.e. index of pml5e is put after the last index of PML4E.
4554  *
4555  * Define an order on the paging entries, where all entries of the
4556  * same height are put together, then heights are put from deepest to
4557  * root.  Then ptexpindex is the sequential number of the
4558  * corresponding paging entry in this order.
4559  *
4560  * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4561  * LA57 paging structures even in LA48 paging mode. Moreover, the
4562  * ptepindexes are calculated as if the paging structures were 5-level
4563  * regardless of the actual mode of operation.
4564  *
4565  * The root page at PML4/PML5 does not participate in this indexing scheme,
4566  * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4567  */
4568 static vm_page_t
pmap_allocpte_nosleep(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4569 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4570     vm_offset_t va)
4571 {
4572 	vm_pindex_t pml5index, pml4index;
4573 	pml5_entry_t *pml5, *pml5u;
4574 	pml4_entry_t *pml4, *pml4u;
4575 	pdp_entry_t *pdp;
4576 	pd_entry_t *pd;
4577 	vm_page_t m, pdpg;
4578 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4579 
4580 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4581 
4582 	PG_A = pmap_accessed_bit(pmap);
4583 	PG_M = pmap_modified_bit(pmap);
4584 	PG_V = pmap_valid_bit(pmap);
4585 	PG_RW = pmap_rw_bit(pmap);
4586 
4587 	/*
4588 	 * Allocate a page table page.
4589 	 */
4590 	m = pmap_alloc_pt_page(pmap, ptepindex,
4591 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4592 	if (m == NULL)
4593 		return (NULL);
4594 
4595 	/*
4596 	 * Map the pagetable page into the process address space, if
4597 	 * it isn't already there.
4598 	 */
4599 	if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4600 		MPASS(pmap_is_la57(pmap));
4601 
4602 		pml5index = pmap_pml5e_index(va);
4603 		pml5 = &pmap->pm_pmltop[pml5index];
4604 		KASSERT((*pml5 & PG_V) == 0,
4605 		    ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4606 		*pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4607 
4608 		if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4609 			MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4610 			*pml5 |= pg_nx;
4611 
4612 			pml5u = &pmap->pm_pmltopu[pml5index];
4613 			*pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4614 			    PG_A | PG_M;
4615 		}
4616 	} else if (ptepindex >= NUPDE + NUPDPE) {
4617 		pml4index = pmap_pml4e_index(va);
4618 		/* Wire up a new PDPE page */
4619 		pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4620 		if (pml4 == NULL) {
4621 			pmap_free_pt_page(pmap, m, true);
4622 			return (NULL);
4623 		}
4624 		KASSERT((*pml4 & PG_V) == 0,
4625 		    ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4626 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4627 
4628 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4629 		    pml4index < NUPML4E) {
4630 			MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4631 
4632 			/*
4633 			 * PTI: Make all user-space mappings in the
4634 			 * kernel-mode page table no-execute so that
4635 			 * we detect any programming errors that leave
4636 			 * the kernel-mode page table active on return
4637 			 * to user space.
4638 			 */
4639 			*pml4 |= pg_nx;
4640 
4641 			pml4u = &pmap->pm_pmltopu[pml4index];
4642 			*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4643 			    PG_A | PG_M;
4644 		}
4645 	} else if (ptepindex >= NUPDE) {
4646 		/* Wire up a new PDE page */
4647 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4648 		if (pdp == NULL) {
4649 			pmap_free_pt_page(pmap, m, true);
4650 			return (NULL);
4651 		}
4652 		KASSERT((*pdp & PG_V) == 0,
4653 		    ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4654 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4655 	} else {
4656 		/* Wire up a new PTE page */
4657 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4658 		if (pdp == NULL) {
4659 			pmap_free_pt_page(pmap, m, true);
4660 			return (NULL);
4661 		}
4662 		if ((*pdp & PG_V) == 0) {
4663 			/* Have to allocate a new pd, recurse */
4664 			if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4665 			    lockp, va) == NULL) {
4666 				pmap_allocpte_free_unref(pmap, va,
4667 				    pmap_pml4e(pmap, va));
4668 				pmap_free_pt_page(pmap, m, true);
4669 				return (NULL);
4670 			}
4671 		} else {
4672 			/* Add reference to the pd page */
4673 			pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4674 			pdpg->ref_count++;
4675 		}
4676 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4677 
4678 		/* Now we know where the page directory page is */
4679 		pd = &pd[pmap_pde_index(va)];
4680 		KASSERT((*pd & PG_V) == 0,
4681 		    ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4682 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4683 	}
4684 
4685 	return (m);
4686 }
4687 
4688 /*
4689  * This routine is called if the desired page table page does not exist.
4690  *
4691  * If page table page allocation fails, this routine may sleep before
4692  * returning NULL.  It sleeps only if a lock pointer was given.  Sleep
4693  * occurs right before returning to the caller. This way, we never
4694  * drop pmap lock to sleep while a page table page has ref_count == 0,
4695  * which prevents the page from being freed under us.
4696  */
4697 static vm_page_t
pmap_allocpte_alloc(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4698 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4699     vm_offset_t va)
4700 {
4701 	vm_page_t m;
4702 
4703 	m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4704 	if (m == NULL && lockp != NULL) {
4705 		RELEASE_PV_LIST_LOCK(lockp);
4706 		PMAP_UNLOCK(pmap);
4707 		PMAP_ASSERT_NOT_IN_DI();
4708 		vm_wait(NULL);
4709 		PMAP_LOCK(pmap);
4710 	}
4711 	return (m);
4712 }
4713 
4714 static pd_entry_t *
pmap_alloc_pde(pmap_t pmap,vm_offset_t va,vm_page_t * pdpgp,struct rwlock ** lockp)4715 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4716     struct rwlock **lockp)
4717 {
4718 	pdp_entry_t *pdpe, PG_V;
4719 	pd_entry_t *pde;
4720 	vm_page_t pdpg;
4721 	vm_pindex_t pdpindex;
4722 
4723 	PG_V = pmap_valid_bit(pmap);
4724 
4725 retry:
4726 	pdpe = pmap_pdpe(pmap, va);
4727 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4728 		pde = pmap_pdpe_to_pde(pdpe, va);
4729 		if (va < VM_MAXUSER_ADDRESS) {
4730 			/* Add a reference to the pd page. */
4731 			pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4732 			pdpg->ref_count++;
4733 		} else
4734 			pdpg = NULL;
4735 	} else if (va < VM_MAXUSER_ADDRESS) {
4736 		/* Allocate a pd page. */
4737 		pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4738 		pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4739 		if (pdpg == NULL) {
4740 			if (lockp != NULL)
4741 				goto retry;
4742 			else
4743 				return (NULL);
4744 		}
4745 		pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4746 		pde = &pde[pmap_pde_index(va)];
4747 	} else
4748 		panic("pmap_alloc_pde: missing page table page for va %#lx",
4749 		    va);
4750 	*pdpgp = pdpg;
4751 	return (pde);
4752 }
4753 
4754 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)4755 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4756 {
4757 	vm_pindex_t ptepindex;
4758 	pd_entry_t *pd, PG_V;
4759 	vm_page_t m;
4760 
4761 	PG_V = pmap_valid_bit(pmap);
4762 
4763 	/*
4764 	 * Calculate pagetable page index
4765 	 */
4766 	ptepindex = pmap_pde_pindex(va);
4767 retry:
4768 	/*
4769 	 * Get the page directory entry
4770 	 */
4771 	pd = pmap_pde(pmap, va);
4772 
4773 	/*
4774 	 * This supports switching from a 2MB page to a
4775 	 * normal 4K page.
4776 	 */
4777 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4778 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4779 			/*
4780 			 * Invalidation of the 2MB page mapping may have caused
4781 			 * the deallocation of the underlying PD page.
4782 			 */
4783 			pd = NULL;
4784 		}
4785 	}
4786 
4787 	/*
4788 	 * If the page table page is mapped, we just increment the
4789 	 * hold count, and activate it.
4790 	 */
4791 	if (pd != NULL && (*pd & PG_V) != 0) {
4792 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4793 		m->ref_count++;
4794 	} else {
4795 		/*
4796 		 * Here if the pte page isn't mapped, or if it has been
4797 		 * deallocated.
4798 		 */
4799 		m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4800 		if (m == NULL && lockp != NULL)
4801 			goto retry;
4802 	}
4803 	return (m);
4804 }
4805 
4806 /***************************************************
4807  * Pmap allocation/deallocation routines.
4808  ***************************************************/
4809 
4810 /*
4811  * Release any resources held by the given physical map.
4812  * Called when a pmap initialized by pmap_pinit is being released.
4813  * Should only be called if the map contains no valid mappings.
4814  */
4815 void
pmap_release(pmap_t pmap)4816 pmap_release(pmap_t pmap)
4817 {
4818 	vm_page_t m;
4819 	int i;
4820 
4821 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
4822 	    ("pmap_release: pmap %p has reserved page table page(s)",
4823 	    pmap));
4824 	KASSERT(CPU_EMPTY(&pmap->pm_active),
4825 	    ("releasing active pmap %p", pmap));
4826 
4827 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4828 
4829 	if (pmap_is_la57(pmap)) {
4830 		for (i = NPML5EPG / 2; i < NPML5EPG; i++)
4831 			pmap->pm_pmltop[i] = 0;
4832 	} else {
4833 		for (i = 0; i < NKPML4E; i++)	/* KVA */
4834 			pmap->pm_pmltop[KPML4BASE + i] = 0;
4835 #ifdef KASAN
4836 		for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4837 			pmap->pm_pmltop[KASANPML4I + i] = 0;
4838 #endif
4839 #ifdef KMSAN
4840 		for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4841 			pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4842 		for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4843 			pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4844 #endif
4845 		for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4846 			pmap->pm_pmltop[DMPML4I + i] = 0;
4847 		pmap->pm_pmltop[PML4PML4I] = 0;	/* Recursive Mapping */
4848 		for (i = 0; i < lm_ents; i++)	/* Large Map */
4849 			pmap->pm_pmltop[LMSPML4I + i] = 0;
4850 	}
4851 
4852 	pmap_free_pt_page(NULL, m, true);
4853 	pmap_pt_page_count_pinit(pmap, -1);
4854 
4855 	if (pmap->pm_pmltopu != NULL) {
4856 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4857 		    pm_pmltopu));
4858 		pmap_free_pt_page(NULL, m, false);
4859 		pmap_pt_page_count_pinit(pmap, -1);
4860 	}
4861 	if (pmap->pm_type == PT_X86 &&
4862 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4863 		rangeset_fini(&pmap->pm_pkru);
4864 
4865 	KASSERT(pmap->pm_stats.resident_count == 0,
4866 	    ("pmap_release: pmap %p resident count %ld != 0",
4867 	    pmap, pmap->pm_stats.resident_count));
4868 }
4869 
4870 static int
kvm_size(SYSCTL_HANDLER_ARGS)4871 kvm_size(SYSCTL_HANDLER_ARGS)
4872 {
4873 	unsigned long ksize = kva_layout.km_high - kva_layout.km_low;
4874 
4875 	return sysctl_handle_long(oidp, &ksize, 0, req);
4876 }
4877 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4878     0, 0, kvm_size, "LU",
4879     "Size of KVM");
4880 
4881 static int
kvm_free(SYSCTL_HANDLER_ARGS)4882 kvm_free(SYSCTL_HANDLER_ARGS)
4883 {
4884 	unsigned long kfree = kva_layout.km_high - kernel_vm_end;
4885 
4886 	return sysctl_handle_long(oidp, &kfree, 0, req);
4887 }
4888 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4889     0, 0, kvm_free, "LU",
4890     "Amount of KVM free");
4891 
4892 #ifdef KMSAN
4893 static void
pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa,vm_size_t size)4894 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
4895 {
4896 	pdp_entry_t *pdpe;
4897 	pd_entry_t *pde;
4898 	pt_entry_t *pte;
4899 	vm_paddr_t dummypa, dummypd, dummypt;
4900 	int i, npde, npdpg;
4901 
4902 	npdpg = howmany(size, NBPDP);
4903 	npde = size / NBPDR;
4904 
4905 	dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
4906 	pagezero((void *)PHYS_TO_DMAP(dummypa));
4907 
4908 	dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
4909 	pagezero((void *)PHYS_TO_DMAP(dummypt));
4910 	dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
4911 	for (i = 0; i < npdpg; i++)
4912 		pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
4913 
4914 	pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
4915 	for (i = 0; i < NPTEPG; i++)
4916 		pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
4917 		    X86_PG_A | X86_PG_M | pg_nx);
4918 
4919 	pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
4920 	for (i = 0; i < npde; i++)
4921 		pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
4922 
4923 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
4924 	for (i = 0; i < npdpg; i++)
4925 		pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
4926 		    X86_PG_RW | pg_nx);
4927 }
4928 
4929 static void
pmap_kmsan_page_array_startup(vm_offset_t start,vm_offset_t end)4930 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
4931 {
4932 	vm_size_t size;
4933 
4934 	KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
4935 
4936 	/*
4937 	 * The end of the page array's KVA region is 2MB aligned, see
4938 	 * kmem_init().
4939 	 */
4940 	size = round_2mpage(end) - start;
4941 	pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
4942 	pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
4943 }
4944 #endif
4945 
4946 /*
4947  * Allocate physical memory for the vm_page array and map it into KVA,
4948  * attempting to back the vm_pages with domain-local memory.
4949  */
4950 void
pmap_page_array_startup(long pages)4951 pmap_page_array_startup(long pages)
4952 {
4953 	pdp_entry_t *pdpe;
4954 	pd_entry_t *pde, newpdir;
4955 	vm_offset_t va, start, end;
4956 	vm_paddr_t pa;
4957 	long pfn;
4958 	int domain, i;
4959 
4960 	vm_page_array_size = pages;
4961 
4962 	start = kva_layout.km_low;
4963 	end = start + pages * sizeof(struct vm_page);
4964 	for (va = start; va < end; va += NBPDR) {
4965 		pfn = first_page + (va - start) / sizeof(struct vm_page);
4966 		domain = vm_phys_domain(ptoa(pfn));
4967 		pdpe = pmap_pdpe(kernel_pmap, va);
4968 		if ((*pdpe & X86_PG_V) == 0) {
4969 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
4970 			dump_add_page(pa);
4971 			pagezero((void *)PHYS_TO_DMAP(pa));
4972 			*pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
4973 			    X86_PG_A | X86_PG_M);
4974 		}
4975 		pde = pmap_pdpe_to_pde(pdpe, va);
4976 		if ((*pde & X86_PG_V) != 0)
4977 			panic("Unexpected pde");
4978 		pa = vm_phys_early_alloc(domain, NBPDR);
4979 		for (i = 0; i < NPDEPG; i++)
4980 			dump_add_page(pa + i * PAGE_SIZE);
4981 		newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
4982 		    X86_PG_M | PG_PS | pg_g | pg_nx);
4983 		pde_store(pde, newpdir);
4984 	}
4985 	vm_page_array = (vm_page_t)start;
4986 
4987 #ifdef KMSAN
4988 	pmap_kmsan_page_array_startup(start, end);
4989 #endif
4990 }
4991 
4992 /*
4993  * grow the number of kernel page table entries, if needed
4994  */
4995 static int
pmap_growkernel_nopanic(vm_offset_t addr)4996 pmap_growkernel_nopanic(vm_offset_t addr)
4997 {
4998 	vm_paddr_t paddr;
4999 	vm_page_t nkpg;
5000 	pd_entry_t *pde, newpdir;
5001 	pdp_entry_t *pdpe;
5002 	vm_offset_t end;
5003 	int rv;
5004 
5005 	TSENTER();
5006 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5007 	rv = KERN_SUCCESS;
5008 
5009 	/*
5010 	 * The kernel map covers two distinct regions of KVA: that used
5011 	 * for dynamic kernel memory allocations, and the uppermost 2GB
5012 	 * of the virtual address space.  The latter is used to map the
5013 	 * kernel and loadable kernel modules.  This scheme enables the
5014 	 * use of a special code generation model for kernel code which
5015 	 * takes advantage of compact addressing modes in machine code.
5016 	 *
5017 	 * Both regions grow upwards; to avoid wasting memory, the gap
5018 	 * in between is unmapped.  If "addr" is above "KERNBASE", the
5019 	 * kernel's region is grown, otherwise the kmem region is grown.
5020 	 *
5021 	 * The correctness of this action is based on the following
5022 	 * argument: vm_map_insert() allocates contiguous ranges of the
5023 	 * kernel virtual address space.  It calls this function if a range
5024 	 * ends after "kernel_vm_end".  If the kernel is mapped between
5025 	 * "kernel_vm_end" and "addr", then the range cannot begin at
5026 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
5027 	 * than the kernel.  Thus, there is no immediate need to allocate
5028 	 * any new kernel page table pages between "kernel_vm_end" and
5029 	 * "KERNBASE".
5030 	 */
5031 	if (KERNBASE < addr) {
5032 		end = KERNBASE + nkpt * NBPDR;
5033 		if (end == 0) {
5034 			TSEXIT();
5035 			return (rv);
5036 		}
5037 	} else {
5038 		end = kernel_vm_end;
5039 	}
5040 
5041 	addr = roundup2(addr, NBPDR);
5042 	if (addr - 1 >= vm_map_max(kernel_map))
5043 		addr = vm_map_max(kernel_map);
5044 	if (addr <= end) {
5045 		/*
5046 		 * The grown region is already mapped, so there is
5047 		 * nothing to do.
5048 		 */
5049 		TSEXIT();
5050 		return (rv);
5051 	}
5052 
5053 	kasan_shadow_map(end, addr - end);
5054 	kmsan_shadow_map(end, addr - end);
5055 	while (end < addr) {
5056 		pdpe = pmap_pdpe(kernel_pmap, end);
5057 		if ((*pdpe & X86_PG_V) == 0) {
5058 			nkpg = pmap_alloc_pt_page(kernel_pmap,
5059 			    pmap_pdpe_pindex(end), VM_ALLOC_INTERRUPT |
5060 			        VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
5061 			if (nkpg == NULL) {
5062 				rv = KERN_RESOURCE_SHORTAGE;
5063 				break;
5064 			}
5065 			paddr = VM_PAGE_TO_PHYS(nkpg);
5066 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5067 			    X86_PG_A | X86_PG_M);
5068 			continue; /* try again */
5069 		}
5070 		pde = pmap_pdpe_to_pde(pdpe, end);
5071 		if ((*pde & X86_PG_V) != 0) {
5072 			end = (end + NBPDR) & ~PDRMASK;
5073 			if (end - 1 >= vm_map_max(kernel_map)) {
5074 				end = vm_map_max(kernel_map);
5075 				break;
5076 			}
5077 			continue;
5078 		}
5079 
5080 		nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5081 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOFREE | VM_ALLOC_WIRED |
5082 			VM_ALLOC_ZERO);
5083 		if (nkpg == NULL) {
5084 			rv = KERN_RESOURCE_SHORTAGE;
5085 			break;
5086 		}
5087 
5088 		paddr = VM_PAGE_TO_PHYS(nkpg);
5089 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5090 		pde_store(pde, newpdir);
5091 
5092 		end = (end + NBPDR) & ~PDRMASK;
5093 		if (end - 1 >= vm_map_max(kernel_map)) {
5094 			end = vm_map_max(kernel_map);
5095 			break;
5096 		}
5097 	}
5098 
5099 	if (end <= KERNBASE)
5100 		kernel_vm_end = end;
5101 	else
5102 		nkpt = howmany(end - KERNBASE, NBPDR);
5103 	TSEXIT();
5104 	return (rv);
5105 }
5106 
5107 int
pmap_growkernel(vm_offset_t addr)5108 pmap_growkernel(vm_offset_t addr)
5109 {
5110 	int rv;
5111 
5112 	rv = pmap_growkernel_nopanic(addr);
5113 	if (rv != KERN_SUCCESS && pmap_growkernel_panic)
5114 		panic("pmap_growkernel: no memory to grow kernel");
5115 	return (rv);
5116 }
5117 
5118 /***************************************************
5119  * page management routines.
5120  ***************************************************/
5121 
5122 static const uint64_t pc_freemask[_NPCM] = {
5123 	[0 ... _NPCM - 2] = PC_FREEN,
5124 	[_NPCM - 1] = PC_FREEL
5125 };
5126 
5127 #ifdef PV_STATS
5128 
5129 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5130 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5131     &pc_chunk_count, "Current number of pv entry cnunks");
5132 
5133 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5134 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5135     &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5136 
5137 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5138 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5139     &pc_chunk_frees, "Total number of pv entry chunks freed");
5140 
5141 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5142 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5143     &pc_chunk_tryfail,
5144     "Number of failed attempts to get a pv entry chunk page");
5145 
5146 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5147 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5148     &pv_entry_frees, "Total number of pv entries freed");
5149 
5150 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5151 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5152     &pv_entry_allocs, "Total number of pv entries allocated");
5153 
5154 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5155 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5156     &pv_entry_count, "Current number of pv entries");
5157 
5158 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5159 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5160     &pv_entry_spare, "Current number of spare pv entries");
5161 #endif
5162 
5163 static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap,pmap_t locked_pmap,bool start_di)5164 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5165 {
5166 
5167 	if (pmap == NULL)
5168 		return;
5169 	pmap_invalidate_all(pmap);
5170 	if (pmap != locked_pmap)
5171 		PMAP_UNLOCK(pmap);
5172 	if (start_di)
5173 		pmap_delayed_invl_finish();
5174 }
5175 
5176 /*
5177  * We are in a serious low memory condition.  Resort to
5178  * drastic measures to free some pages so we can allocate
5179  * another pv entry chunk.
5180  *
5181  * Returns NULL if PV entries were reclaimed from the specified pmap.
5182  *
5183  * We do not, however, unmap 2mpages because subsequent accesses will
5184  * allocate per-page pv entries until repromotion occurs, thereby
5185  * exacerbating the shortage of free pv entries.
5186  */
5187 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)5188 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5189 {
5190 	struct pv_chunks_list *pvc;
5191 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5192 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5193 	struct md_page *pvh;
5194 	pd_entry_t *pde;
5195 	pmap_t next_pmap, pmap;
5196 	pt_entry_t *pte, tpte;
5197 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5198 	pv_entry_t pv;
5199 	vm_offset_t va;
5200 	vm_page_t m, m_pc;
5201 	struct spglist free;
5202 	uint64_t inuse;
5203 	int bit, field, freed;
5204 	bool start_di, restart;
5205 
5206 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5207 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5208 	pmap = NULL;
5209 	m_pc = NULL;
5210 	PG_G = PG_A = PG_M = PG_RW = 0;
5211 	SLIST_INIT(&free);
5212 	bzero(&pc_marker_b, sizeof(pc_marker_b));
5213 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5214 	pc_marker = (struct pv_chunk *)&pc_marker_b;
5215 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5216 
5217 	/*
5218 	 * A delayed invalidation block should already be active if
5219 	 * pmap_advise() or pmap_remove() called this function by way
5220 	 * of pmap_demote_pde_locked().
5221 	 */
5222 	start_di = pmap_not_in_di();
5223 
5224 	pvc = &pv_chunks[domain];
5225 	mtx_lock(&pvc->pvc_lock);
5226 	pvc->active_reclaims++;
5227 	TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5228 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5229 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5230 	    SLIST_EMPTY(&free)) {
5231 		next_pmap = pc->pc_pmap;
5232 		if (next_pmap == NULL) {
5233 			/*
5234 			 * The next chunk is a marker.  However, it is
5235 			 * not our marker, so active_reclaims must be
5236 			 * > 1.  Consequently, the next_chunk code
5237 			 * will not rotate the pv_chunks list.
5238 			 */
5239 			goto next_chunk;
5240 		}
5241 		mtx_unlock(&pvc->pvc_lock);
5242 
5243 		/*
5244 		 * A pv_chunk can only be removed from the pc_lru list
5245 		 * when both pc_chunks_mutex is owned and the
5246 		 * corresponding pmap is locked.
5247 		 */
5248 		if (pmap != next_pmap) {
5249 			restart = false;
5250 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5251 			    start_di);
5252 			pmap = next_pmap;
5253 			/* Avoid deadlock and lock recursion. */
5254 			if (pmap > locked_pmap) {
5255 				RELEASE_PV_LIST_LOCK(lockp);
5256 				PMAP_LOCK(pmap);
5257 				if (start_di)
5258 					pmap_delayed_invl_start();
5259 				mtx_lock(&pvc->pvc_lock);
5260 				restart = true;
5261 			} else if (pmap != locked_pmap) {
5262 				if (PMAP_TRYLOCK(pmap)) {
5263 					if (start_di)
5264 						pmap_delayed_invl_start();
5265 					mtx_lock(&pvc->pvc_lock);
5266 					restart = true;
5267 				} else {
5268 					pmap = NULL; /* pmap is not locked */
5269 					mtx_lock(&pvc->pvc_lock);
5270 					pc = TAILQ_NEXT(pc_marker, pc_lru);
5271 					if (pc == NULL ||
5272 					    pc->pc_pmap != next_pmap)
5273 						continue;
5274 					goto next_chunk;
5275 				}
5276 			} else if (start_di)
5277 				pmap_delayed_invl_start();
5278 			PG_G = pmap_global_bit(pmap);
5279 			PG_A = pmap_accessed_bit(pmap);
5280 			PG_M = pmap_modified_bit(pmap);
5281 			PG_RW = pmap_rw_bit(pmap);
5282 			if (restart)
5283 				continue;
5284 		}
5285 
5286 		/*
5287 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
5288 		 */
5289 		freed = 0;
5290 		for (field = 0; field < _NPCM; field++) {
5291 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5292 			    inuse != 0; inuse &= ~(1UL << bit)) {
5293 				bit = bsfq(inuse);
5294 				pv = &pc->pc_pventry[field * 64 + bit];
5295 				va = pv->pv_va;
5296 				pde = pmap_pde(pmap, va);
5297 				if ((*pde & PG_PS) != 0)
5298 					continue;
5299 				pte = pmap_pde_to_pte(pde, va);
5300 				if ((*pte & PG_W) != 0)
5301 					continue;
5302 				tpte = pte_load_clear(pte);
5303 				if ((tpte & PG_G) != 0)
5304 					pmap_invalidate_page(pmap, va);
5305 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5306 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5307 					vm_page_dirty(m);
5308 				if ((tpte & PG_A) != 0)
5309 					vm_page_aflag_set(m, PGA_REFERENCED);
5310 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5311 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5312 				m->md.pv_gen++;
5313 				if (TAILQ_EMPTY(&m->md.pv_list) &&
5314 				    (m->flags & PG_FICTITIOUS) == 0) {
5315 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5316 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5317 						vm_page_aflag_clear(m,
5318 						    PGA_WRITEABLE);
5319 					}
5320 				}
5321 				pmap_delayed_invl_page(m);
5322 				pc->pc_map[field] |= 1UL << bit;
5323 				pmap_unuse_pt(pmap, va, *pde, &free);
5324 				freed++;
5325 			}
5326 		}
5327 		if (freed == 0) {
5328 			mtx_lock(&pvc->pvc_lock);
5329 			goto next_chunk;
5330 		}
5331 		/* Every freed mapping is for a 4 KB page. */
5332 		pmap_resident_count_adj(pmap, -freed);
5333 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
5334 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
5335 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
5336 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5337 		if (pc_is_free(pc)) {
5338 			PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5339 			PV_STAT(counter_u64_add(pc_chunk_count, -1));
5340 			PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5341 			/* Entire chunk is free; return it. */
5342 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5343 			dump_drop_page(m_pc->phys_addr);
5344 			mtx_lock(&pvc->pvc_lock);
5345 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5346 			break;
5347 		}
5348 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5349 		mtx_lock(&pvc->pvc_lock);
5350 		/* One freed pv entry in locked_pmap is sufficient. */
5351 		if (pmap == locked_pmap)
5352 			break;
5353 next_chunk:
5354 		TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5355 		TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5356 		if (pvc->active_reclaims == 1 && pmap != NULL) {
5357 			/*
5358 			 * Rotate the pv chunks list so that we do not
5359 			 * scan the same pv chunks that could not be
5360 			 * freed (because they contained a wired
5361 			 * and/or superpage mapping) on every
5362 			 * invocation of reclaim_pv_chunk().
5363 			 */
5364 			while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5365 				MPASS(pc->pc_pmap != NULL);
5366 				TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5367 				TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5368 			}
5369 		}
5370 	}
5371 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5372 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5373 	pvc->active_reclaims--;
5374 	mtx_unlock(&pvc->pvc_lock);
5375 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5376 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5377 		m_pc = SLIST_FIRST(&free);
5378 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5379 		/* Recycle a freed page table page. */
5380 		m_pc->ref_count = 1;
5381 	}
5382 	vm_page_free_pages_toq(&free, true);
5383 	return (m_pc);
5384 }
5385 
5386 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)5387 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5388 {
5389 	vm_page_t m;
5390 	int i, domain;
5391 
5392 	domain = PCPU_GET(domain);
5393 	for (i = 0; i < vm_ndomains; i++) {
5394 		m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5395 		if (m != NULL)
5396 			break;
5397 		domain = (domain + 1) % vm_ndomains;
5398 	}
5399 
5400 	return (m);
5401 }
5402 
5403 /*
5404  * free the pv_entry back to the free list
5405  */
5406 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)5407 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5408 {
5409 	struct pv_chunk *pc;
5410 	int idx, field, bit;
5411 
5412 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5413 	PV_STAT(counter_u64_add(pv_entry_frees, 1));
5414 	PV_STAT(counter_u64_add(pv_entry_spare, 1));
5415 	PV_STAT(counter_u64_add(pv_entry_count, -1));
5416 	pc = pv_to_chunk(pv);
5417 	idx = pv - &pc->pc_pventry[0];
5418 	field = idx / 64;
5419 	bit = idx % 64;
5420 	pc->pc_map[field] |= 1ul << bit;
5421 	if (!pc_is_free(pc)) {
5422 		/* 98% of the time, pc is already at the head of the list. */
5423 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5424 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5425 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5426 		}
5427 		return;
5428 	}
5429 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5430 	free_pv_chunk(pc);
5431 }
5432 
5433 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)5434 free_pv_chunk_dequeued(struct pv_chunk *pc)
5435 {
5436 	vm_page_t m;
5437 
5438 	PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5439 	PV_STAT(counter_u64_add(pc_chunk_count, -1));
5440 	PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5441 	counter_u64_add(pv_page_count, -1);
5442 	/* entire chunk is free, return it */
5443 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5444 	dump_drop_page(m->phys_addr);
5445 	vm_page_unwire_noq(m);
5446 	vm_page_free(m);
5447 }
5448 
5449 static void
free_pv_chunk(struct pv_chunk * pc)5450 free_pv_chunk(struct pv_chunk *pc)
5451 {
5452 	struct pv_chunks_list *pvc;
5453 
5454 	pvc = &pv_chunks[pc_to_domain(pc)];
5455 	mtx_lock(&pvc->pvc_lock);
5456 	TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5457 	mtx_unlock(&pvc->pvc_lock);
5458 	free_pv_chunk_dequeued(pc);
5459 }
5460 
5461 static void
free_pv_chunk_batch(struct pv_chunklist * batch)5462 free_pv_chunk_batch(struct pv_chunklist *batch)
5463 {
5464 	struct pv_chunks_list *pvc;
5465 	struct pv_chunk *pc, *npc;
5466 	int i;
5467 
5468 	for (i = 0; i < vm_ndomains; i++) {
5469 		if (TAILQ_EMPTY(&batch[i]))
5470 			continue;
5471 		pvc = &pv_chunks[i];
5472 		mtx_lock(&pvc->pvc_lock);
5473 		TAILQ_FOREACH(pc, &batch[i], pc_list) {
5474 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5475 		}
5476 		mtx_unlock(&pvc->pvc_lock);
5477 	}
5478 
5479 	for (i = 0; i < vm_ndomains; i++) {
5480 		TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5481 			free_pv_chunk_dequeued(pc);
5482 		}
5483 	}
5484 }
5485 
5486 /*
5487  * Returns a new PV entry, allocating a new PV chunk from the system when
5488  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
5489  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
5490  * returned.
5491  *
5492  * The given PV list lock may be released.
5493  */
5494 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)5495 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5496 {
5497 	struct pv_chunks_list *pvc;
5498 	int bit, field;
5499 	pv_entry_t pv;
5500 	struct pv_chunk *pc;
5501 	vm_page_t m;
5502 
5503 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5504 	PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5505 retry:
5506 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5507 	if (pc != NULL) {
5508 		for (field = 0; field < _NPCM; field++) {
5509 			if (pc->pc_map[field]) {
5510 				bit = bsfq(pc->pc_map[field]);
5511 				break;
5512 			}
5513 		}
5514 		if (field < _NPCM) {
5515 			pv = &pc->pc_pventry[field * 64 + bit];
5516 			pc->pc_map[field] &= ~(1ul << bit);
5517 			/* If this was the last item, move it to tail */
5518 			if (pc_is_full(pc)) {
5519 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5520 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5521 				    pc_list);
5522 			}
5523 			PV_STAT(counter_u64_add(pv_entry_count, 1));
5524 			PV_STAT(counter_u64_add(pv_entry_spare, -1));
5525 			return (pv);
5526 		}
5527 	}
5528 	/* No free items, allocate another chunk */
5529 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5530 	if (m == NULL) {
5531 		if (lockp == NULL) {
5532 			PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5533 			return (NULL);
5534 		}
5535 		m = reclaim_pv_chunk(pmap, lockp);
5536 		if (m == NULL)
5537 			goto retry;
5538 	} else
5539 		counter_u64_add(pv_page_count, 1);
5540 	PV_STAT(counter_u64_add(pc_chunk_count, 1));
5541 	PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5542 	dump_add_page(m->phys_addr);
5543 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5544 	pc->pc_pmap = pmap;
5545 	pc->pc_map[0] = PC_FREEN & ~1ul;	/* preallocated bit 0 */
5546 	pc->pc_map[1] = PC_FREEN;
5547 	pc->pc_map[2] = PC_FREEL;
5548 	pvc = &pv_chunks[vm_page_domain(m)];
5549 	mtx_lock(&pvc->pvc_lock);
5550 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5551 	mtx_unlock(&pvc->pvc_lock);
5552 	pv = &pc->pc_pventry[0];
5553 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5554 	PV_STAT(counter_u64_add(pv_entry_count, 1));
5555 	PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5556 	return (pv);
5557 }
5558 
5559 /*
5560  * Returns the number of one bits within the given PV chunk map.
5561  *
5562  * The erratas for Intel processors state that "POPCNT Instruction May
5563  * Take Longer to Execute Than Expected".  It is believed that the
5564  * issue is the spurious dependency on the destination register.
5565  * Provide a hint to the register rename logic that the destination
5566  * value is overwritten, by clearing it, as suggested in the
5567  * optimization manual.  It should be cheap for unaffected processors
5568  * as well.
5569  *
5570  * Reference numbers for erratas are
5571  * 4th Gen Core: HSD146
5572  * 5th Gen Core: BDM85
5573  * 6th Gen Core: SKL029
5574  */
5575 static int
popcnt_pc_map_pq(uint64_t * map)5576 popcnt_pc_map_pq(uint64_t *map)
5577 {
5578 	u_long result, tmp;
5579 
5580 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5581 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5582 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5583 	    : "=&r" (result), "=&r" (tmp)
5584 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5585 	return (result);
5586 }
5587 
5588 /*
5589  * Ensure that the number of spare PV entries in the specified pmap meets or
5590  * exceeds the given count, "needed".
5591  *
5592  * The given PV list lock may be released.
5593  */
5594 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)5595 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5596 {
5597 	struct pv_chunks_list *pvc;
5598 	struct pch new_tail[PMAP_MEMDOM];
5599 	struct pv_chunk *pc;
5600 	vm_page_t m;
5601 	int avail, free, i;
5602 	bool reclaimed;
5603 
5604 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5605 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5606 
5607 	/*
5608 	 * Newly allocated PV chunks must be stored in a private list until
5609 	 * the required number of PV chunks have been allocated.  Otherwise,
5610 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
5611 	 * contrast, these chunks must be added to the pmap upon allocation.
5612 	 */
5613 	for (i = 0; i < PMAP_MEMDOM; i++)
5614 		TAILQ_INIT(&new_tail[i]);
5615 retry:
5616 	avail = 0;
5617 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5618 #ifndef __POPCNT__
5619 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5620 			bit_count((bitstr_t *)pc->pc_map, 0,
5621 			    sizeof(pc->pc_map) * NBBY, &free);
5622 		else
5623 #endif
5624 		free = popcnt_pc_map_pq(pc->pc_map);
5625 		if (free == 0)
5626 			break;
5627 		avail += free;
5628 		if (avail >= needed)
5629 			break;
5630 	}
5631 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
5632 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5633 		if (m == NULL) {
5634 			m = reclaim_pv_chunk(pmap, lockp);
5635 			if (m == NULL)
5636 				goto retry;
5637 			reclaimed = true;
5638 		} else
5639 			counter_u64_add(pv_page_count, 1);
5640 		PV_STAT(counter_u64_add(pc_chunk_count, 1));
5641 		PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5642 		dump_add_page(m->phys_addr);
5643 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5644 		pc->pc_pmap = pmap;
5645 		pc->pc_map[0] = PC_FREEN;
5646 		pc->pc_map[1] = PC_FREEN;
5647 		pc->pc_map[2] = PC_FREEL;
5648 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5649 		TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5650 		PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5651 
5652 		/*
5653 		 * The reclaim might have freed a chunk from the current pmap.
5654 		 * If that chunk contained available entries, we need to
5655 		 * re-count the number of available entries.
5656 		 */
5657 		if (reclaimed)
5658 			goto retry;
5659 	}
5660 	for (i = 0; i < vm_ndomains; i++) {
5661 		if (TAILQ_EMPTY(&new_tail[i]))
5662 			continue;
5663 		pvc = &pv_chunks[i];
5664 		mtx_lock(&pvc->pvc_lock);
5665 		TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5666 		mtx_unlock(&pvc->pvc_lock);
5667 	}
5668 }
5669 
5670 /*
5671  * First find and then remove the pv entry for the specified pmap and virtual
5672  * address from the specified pv list.  Returns the pv entry if found and NULL
5673  * otherwise.  This operation can be performed on pv lists for either 4KB or
5674  * 2MB page mappings.
5675  */
5676 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5677 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5678 {
5679 	pv_entry_t pv;
5680 
5681 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5682 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5683 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5684 			pvh->pv_gen++;
5685 			break;
5686 		}
5687 	}
5688 	return (pv);
5689 }
5690 
5691 /*
5692  * After demotion from a 2MB page mapping to 512 4KB page mappings,
5693  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5694  * entries for each of the 4KB page mappings.
5695  */
5696 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5697 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5698     struct rwlock **lockp)
5699 {
5700 	struct md_page *pvh;
5701 	struct pv_chunk *pc;
5702 	pv_entry_t pv;
5703 	vm_offset_t va_last;
5704 	vm_page_t m;
5705 	int bit, field;
5706 
5707 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5708 	KASSERT((pa & PDRMASK) == 0,
5709 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5710 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5711 
5712 	/*
5713 	 * Transfer the 2mpage's pv entry for this mapping to the first
5714 	 * page's pv list.  Once this transfer begins, the pv list lock
5715 	 * must not be released until the last pv entry is reinstantiated.
5716 	 */
5717 	pvh = pa_to_pvh(pa);
5718 	va = trunc_2mpage(va);
5719 	pv = pmap_pvh_remove(pvh, pmap, va);
5720 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5721 	m = PHYS_TO_VM_PAGE(pa);
5722 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5723 	m->md.pv_gen++;
5724 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
5725 	PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5726 	va_last = va + NBPDR - PAGE_SIZE;
5727 	for (;;) {
5728 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5729 		KASSERT(!pc_is_full(pc), ("pmap_pv_demote_pde: missing spare"));
5730 		for (field = 0; field < _NPCM; field++) {
5731 			while (pc->pc_map[field]) {
5732 				bit = bsfq(pc->pc_map[field]);
5733 				pc->pc_map[field] &= ~(1ul << bit);
5734 				pv = &pc->pc_pventry[field * 64 + bit];
5735 				va += PAGE_SIZE;
5736 				pv->pv_va = va;
5737 				m++;
5738 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5739 			    ("pmap_pv_demote_pde: page %p is not managed", m));
5740 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5741 				m->md.pv_gen++;
5742 				if (va == va_last)
5743 					goto out;
5744 			}
5745 		}
5746 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5747 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5748 	}
5749 out:
5750 	if (pc_is_full(pc)) {
5751 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5752 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5753 	}
5754 	PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5755 	PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5756 }
5757 
5758 #if VM_NRESERVLEVEL > 0
5759 /*
5760  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5761  * replace the many pv entries for the 4KB page mappings by a single pv entry
5762  * for the 2MB page mapping.
5763  */
5764 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5765 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5766     struct rwlock **lockp)
5767 {
5768 	struct md_page *pvh;
5769 	pv_entry_t pv;
5770 	vm_offset_t va_last;
5771 	vm_page_t m;
5772 
5773 	KASSERT((pa & PDRMASK) == 0,
5774 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5775 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5776 
5777 	/*
5778 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
5779 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
5780 	 * a transfer avoids the possibility that get_pv_entry() calls
5781 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5782 	 * mappings that is being promoted.
5783 	 */
5784 	m = PHYS_TO_VM_PAGE(pa);
5785 	va = trunc_2mpage(va);
5786 	pv = pmap_pvh_remove(&m->md, pmap, va);
5787 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5788 	pvh = pa_to_pvh(pa);
5789 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5790 	pvh->pv_gen++;
5791 	/* Free the remaining NPTEPG - 1 pv entries. */
5792 	va_last = va + NBPDR - PAGE_SIZE;
5793 	do {
5794 		m++;
5795 		va += PAGE_SIZE;
5796 		pmap_pvh_free(&m->md, pmap, va);
5797 	} while (va < va_last);
5798 }
5799 #endif /* VM_NRESERVLEVEL > 0 */
5800 
5801 /*
5802  * First find and then destroy the pv entry for the specified pmap and virtual
5803  * address.  This operation can be performed on pv lists for either 4KB or 2MB
5804  * page mappings.
5805  */
5806 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5807 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5808 {
5809 	pv_entry_t pv;
5810 
5811 	pv = pmap_pvh_remove(pvh, pmap, va);
5812 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5813 	free_pv_entry(pmap, pv);
5814 }
5815 
5816 /*
5817  * Conditionally create the PV entry for a 4KB page mapping if the required
5818  * memory can be allocated without resorting to reclamation.
5819  */
5820 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)5821 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5822     struct rwlock **lockp)
5823 {
5824 	pv_entry_t pv;
5825 
5826 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5827 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5828 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5829 		pv->pv_va = va;
5830 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5831 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5832 		m->md.pv_gen++;
5833 		return (true);
5834 	} else
5835 		return (false);
5836 }
5837 
5838 /*
5839  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
5840  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
5841  * false if the PV entry cannot be allocated without resorting to reclamation.
5842  */
5843 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags,struct rwlock ** lockp)5844 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5845     struct rwlock **lockp)
5846 {
5847 	struct md_page *pvh;
5848 	pv_entry_t pv;
5849 	vm_paddr_t pa;
5850 
5851 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5852 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5853 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5854 	    NULL : lockp)) == NULL)
5855 		return (false);
5856 	pv->pv_va = va;
5857 	pa = pde & PG_PS_FRAME;
5858 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5859 	pvh = pa_to_pvh(pa);
5860 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5861 	pvh->pv_gen++;
5862 	return (true);
5863 }
5864 
5865 /*
5866  * Fills a page table page with mappings to consecutive physical pages.
5867  */
5868 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)5869 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5870 {
5871 	pt_entry_t *pte;
5872 
5873 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5874 		*pte = newpte;
5875 		newpte += PAGE_SIZE;
5876 	}
5877 }
5878 
5879 /*
5880  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
5881  * mapping is invalidated.
5882  */
5883 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5884 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5885 {
5886 	struct rwlock *lock;
5887 	bool rv;
5888 
5889 	lock = NULL;
5890 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5891 	if (lock != NULL)
5892 		rw_wunlock(lock);
5893 	return (rv);
5894 }
5895 
5896 static void
pmap_demote_pde_check(pt_entry_t * firstpte __unused,pt_entry_t newpte __unused)5897 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5898 {
5899 #ifdef INVARIANTS
5900 #ifdef DIAGNOSTIC
5901 	pt_entry_t *xpte, *ypte;
5902 
5903 	for (xpte = firstpte; xpte < firstpte + NPTEPG;
5904 	    xpte++, newpte += PAGE_SIZE) {
5905 		if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5906 			printf("pmap_demote_pde: xpte %zd and newpte map "
5907 			    "different pages: found %#lx, expected %#lx\n",
5908 			    xpte - firstpte, *xpte, newpte);
5909 			printf("page table dump\n");
5910 			for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5911 				printf("%zd %#lx\n", ypte - firstpte, *ypte);
5912 			panic("firstpte");
5913 		}
5914 	}
5915 #else
5916 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
5917 	    ("pmap_demote_pde: firstpte and newpte map different physical"
5918 	    " addresses"));
5919 #endif
5920 #endif
5921 }
5922 
5923 static void
pmap_demote_pde_abort(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t oldpde,struct rwlock ** lockp)5924 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
5925     pd_entry_t oldpde, struct rwlock **lockp)
5926 {
5927 	struct spglist free;
5928 	vm_offset_t sva;
5929 
5930 	SLIST_INIT(&free);
5931 	sva = trunc_2mpage(va);
5932 	pmap_remove_pde(pmap, pde, sva, true, &free, lockp);
5933 	if ((oldpde & pmap_global_bit(pmap)) == 0)
5934 		pmap_invalidate_pde_page(pmap, sva, oldpde);
5935 	vm_page_free_pages_toq(&free, true);
5936 	CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
5937 	    va, pmap);
5938 }
5939 
5940 static bool
pmap_demote_pde_locked(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)5941 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
5942     struct rwlock **lockp)
5943 {
5944 	return (pmap_demote_pde_mpte(pmap, pde, va, lockp, NULL));
5945 }
5946 
5947 static bool
pmap_demote_pde_mpte(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp,vm_page_t mpte)5948 pmap_demote_pde_mpte(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
5949     struct rwlock **lockp, vm_page_t mpte)
5950 {
5951 	pd_entry_t newpde, oldpde;
5952 	pt_entry_t *firstpte, newpte;
5953 	pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
5954 	vm_paddr_t mptepa;
5955 	int PG_PTE_CACHE;
5956 	bool in_kernel;
5957 
5958 	PG_A = pmap_accessed_bit(pmap);
5959 	PG_G = pmap_global_bit(pmap);
5960 	PG_M = pmap_modified_bit(pmap);
5961 	PG_RW = pmap_rw_bit(pmap);
5962 	PG_V = pmap_valid_bit(pmap);
5963 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
5964 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
5965 
5966 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5967 	oldpde = *pde;
5968 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
5969 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
5970 	KASSERT((oldpde & PG_MANAGED) == 0 || lockp != NULL,
5971 	    ("pmap_demote_pde: lockp for a managed mapping is NULL"));
5972 	in_kernel = va >= VM_MAXUSER_ADDRESS;
5973 	if (mpte == NULL) {
5974 		/*
5975 		 * Invalidate the 2MB page mapping and return "failure" if the
5976 		 * mapping was never accessed and not wired.
5977 		 */
5978 		if ((oldpde & PG_A) == 0) {
5979 			if ((oldpde & PG_W) == 0) {
5980 				pmap_demote_pde_abort(pmap, va, pde, oldpde,
5981 				    lockp);
5982 				return (false);
5983 			}
5984 			mpte = pmap_remove_pt_page(pmap, va);
5985 			/* Fill the PTP with PTEs that have PG_A cleared. */
5986 			mpte->valid = 0;
5987 		} else if ((mpte = pmap_remove_pt_page(pmap, va)) == NULL) {
5988 			KASSERT((oldpde & PG_W) == 0,
5989     ("pmap_demote_pde: page table page for a wired mapping is missing"));
5990 
5991 			/*
5992 			 * If the page table page is missing and the mapping
5993 			 * is for a kernel address, the mapping must belong to
5994 			 * the direct map.  Page table pages are preallocated
5995 			 * for every other part of the kernel address space,
5996 			 * so the direct map region is the only part of the
5997 			 * kernel address space that must be handled here.
5998 			 */
5999 			KASSERT(!in_kernel || (va >= kva_layout.dmap_low &&
6000 			    va < kva_layout.dmap_high),
6001 			    ("pmap_demote_pde: No saved mpte for va %#lx", va));
6002 
6003 			/*
6004 			 * If the 2MB page mapping belongs to the direct map
6005 			 * region of the kernel's address space, then the page
6006 			 * allocation request specifies the highest possible
6007 			 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
6008 			 * priority is normal.
6009 			 */
6010 			mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6011 			    (in_kernel ? VM_ALLOC_INTERRUPT : 0) |
6012 			    VM_ALLOC_WIRED);
6013 
6014 			/*
6015 			 * If the allocation of the new page table page fails,
6016 			 * invalidate the 2MB page mapping and return "failure".
6017 			 */
6018 			if (mpte == NULL) {
6019 				pmap_demote_pde_abort(pmap, va, pde, oldpde,
6020 				    lockp);
6021 				return (false);
6022 			}
6023 
6024 			if (!in_kernel)
6025 				mpte->ref_count = NPTEPG;
6026 		}
6027 	}
6028 	mptepa = VM_PAGE_TO_PHYS(mpte);
6029 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6030 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6031 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6032 	    ("pmap_demote_pde: oldpde is missing PG_M"));
6033 	newpte = oldpde & ~PG_PS;
6034 	newpte = pmap_swap_pat(pmap, newpte);
6035 
6036 	/*
6037 	 * If the PTP is not leftover from an earlier promotion or it does not
6038 	 * have PG_A set in every PTE, then fill it.  The new PTEs will all
6039 	 * have PG_A set, unless this is a wired mapping with PG_A clear.
6040 	 */
6041 	if (!vm_page_all_valid(mpte))
6042 		pmap_fill_ptp(firstpte, newpte);
6043 
6044 	pmap_demote_pde_check(firstpte, newpte);
6045 
6046 	/*
6047 	 * If the mapping has changed attributes, update the PTEs.
6048 	 */
6049 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6050 		pmap_fill_ptp(firstpte, newpte);
6051 
6052 	/*
6053 	 * The spare PV entries must be reserved prior to demoting the
6054 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
6055 	 * of the PDE and the PV lists will be inconsistent, which can result
6056 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6057 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6058 	 * PV entry for the 2MB page mapping that is being demoted.
6059 	 */
6060 	if ((oldpde & PG_MANAGED) != 0)
6061 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6062 
6063 	/*
6064 	 * Demote the mapping.  This pmap is locked.  The old PDE has
6065 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
6066 	 * set.  Thus, there is no danger of a race with another
6067 	 * processor changing the setting of PG_A and/or PG_M between
6068 	 * the read above and the store below.
6069 	 */
6070 	if (workaround_erratum383)
6071 		pmap_update_pde(pmap, va, pde, newpde);
6072 	else
6073 		pde_store(pde, newpde);
6074 
6075 	/*
6076 	 * Invalidate a stale recursive mapping of the page table page.
6077 	 */
6078 	if (in_kernel)
6079 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6080 
6081 	/*
6082 	 * Demote the PV entry.
6083 	 */
6084 	if ((oldpde & PG_MANAGED) != 0)
6085 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6086 
6087 	counter_u64_add(pmap_pde_demotions, 1);
6088 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6089 	    va, pmap);
6090 	return (true);
6091 }
6092 
6093 /*
6094  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6095  */
6096 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)6097 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
6098 {
6099 	pd_entry_t newpde;
6100 	vm_paddr_t mptepa;
6101 	vm_page_t mpte;
6102 
6103 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6104 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6105 	mpte = pmap_remove_pt_page(pmap, va);
6106 	KASSERT(mpte != NULL, ("pmap_remove_kernel_pde: missing pt page"));
6107 
6108 	mptepa = VM_PAGE_TO_PHYS(mpte);
6109 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6110 
6111 	/*
6112 	 * If this page table page was unmapped by a promotion, then it
6113 	 * contains valid mappings.  Zero it to invalidate those mappings.
6114 	 */
6115 	if (vm_page_any_valid(mpte))
6116 		pagezero((void *)PHYS_TO_DMAP(mptepa));
6117 
6118 	/*
6119 	 * Demote the mapping.
6120 	 */
6121 	if (workaround_erratum383)
6122 		pmap_update_pde(pmap, va, pde, newpde);
6123 	else
6124 		pde_store(pde, newpde);
6125 
6126 	/*
6127 	 * Invalidate a stale recursive mapping of the page table page.
6128 	 */
6129 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6130 }
6131 
6132 /*
6133  * pmap_remove_pde: do the things to unmap a superpage in a process
6134  */
6135 static int
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,bool demote_kpde,struct spglist * free,struct rwlock ** lockp)6136 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva, bool demote_kpde,
6137     struct spglist *free, struct rwlock **lockp)
6138 {
6139 	struct md_page *pvh;
6140 	pd_entry_t oldpde;
6141 	vm_offset_t eva, va;
6142 	vm_page_t m, mpte;
6143 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6144 
6145 	PG_G = pmap_global_bit(pmap);
6146 	PG_A = pmap_accessed_bit(pmap);
6147 	PG_M = pmap_modified_bit(pmap);
6148 	PG_RW = pmap_rw_bit(pmap);
6149 
6150 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6151 	KASSERT((sva & PDRMASK) == 0,
6152 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
6153 	oldpde = pte_load_clear(pdq);
6154 	if (oldpde & PG_W)
6155 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6156 	if ((oldpde & PG_G) != 0)
6157 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6158 	pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6159 	if (oldpde & PG_MANAGED) {
6160 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6161 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6162 		pmap_pvh_free(pvh, pmap, sva);
6163 		eva = sva + NBPDR;
6164 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6165 		    va < eva; va += PAGE_SIZE, m++) {
6166 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6167 				vm_page_dirty(m);
6168 			if (oldpde & PG_A)
6169 				vm_page_aflag_set(m, PGA_REFERENCED);
6170 			if (TAILQ_EMPTY(&m->md.pv_list) &&
6171 			    TAILQ_EMPTY(&pvh->pv_list))
6172 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6173 			pmap_delayed_invl_page(m);
6174 		}
6175 	}
6176 	if (pmap != kernel_pmap) {
6177 		mpte = pmap_remove_pt_page(pmap, sva);
6178 		if (mpte != NULL) {
6179 			KASSERT(vm_page_any_valid(mpte),
6180 			    ("pmap_remove_pde: pte page not promoted"));
6181 			pmap_pt_page_count_adj(pmap, -1);
6182 			KASSERT(mpte->ref_count == NPTEPG,
6183 			    ("pmap_remove_pde: pte page ref count error"));
6184 			mpte->ref_count = 0;
6185 			pmap_add_delayed_free_list(mpte, free, false);
6186 		}
6187 	} else if (demote_kpde) {
6188 		pmap_remove_kernel_pde(pmap, pdq, sva);
6189 	} else {
6190 		mpte = vm_radix_lookup(&pmap->pm_root, pmap_pde_pindex(sva));
6191 		if (vm_page_any_valid(mpte)) {
6192 			mpte->valid = 0;
6193 			pmap_zero_page(mpte);
6194 		}
6195 	}
6196 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6197 }
6198 
6199 /*
6200  * pmap_remove_pte: do the things to unmap a page in a process
6201  */
6202 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,pd_entry_t ptepde,struct spglist * free,struct rwlock ** lockp)6203 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6204     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6205 {
6206 	struct md_page *pvh;
6207 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6208 	vm_page_t m;
6209 
6210 	PG_A = pmap_accessed_bit(pmap);
6211 	PG_M = pmap_modified_bit(pmap);
6212 	PG_RW = pmap_rw_bit(pmap);
6213 
6214 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6215 	oldpte = pte_load_clear(ptq);
6216 	if (oldpte & PG_W)
6217 		pmap->pm_stats.wired_count -= 1;
6218 	pmap_resident_count_adj(pmap, -1);
6219 	if (oldpte & PG_MANAGED) {
6220 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6221 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6222 			vm_page_dirty(m);
6223 		if (oldpte & PG_A)
6224 			vm_page_aflag_set(m, PGA_REFERENCED);
6225 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6226 		pmap_pvh_free(&m->md, pmap, va);
6227 		if (TAILQ_EMPTY(&m->md.pv_list) &&
6228 		    (m->flags & PG_FICTITIOUS) == 0) {
6229 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6230 			if (TAILQ_EMPTY(&pvh->pv_list))
6231 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6232 		}
6233 		pmap_delayed_invl_page(m);
6234 	}
6235 	return (pmap_unuse_pt(pmap, va, ptepde, free));
6236 }
6237 
6238 /*
6239  * Remove a single page from a process address space
6240  */
6241 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,struct spglist * free)6242 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6243     struct spglist *free)
6244 {
6245 	struct rwlock *lock;
6246 	pt_entry_t *pte, PG_V;
6247 
6248 	PG_V = pmap_valid_bit(pmap);
6249 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6250 	if ((*pde & PG_V) == 0)
6251 		return;
6252 	pte = pmap_pde_to_pte(pde, va);
6253 	if ((*pte & PG_V) == 0)
6254 		return;
6255 	lock = NULL;
6256 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6257 	if (lock != NULL)
6258 		rw_wunlock(lock);
6259 	pmap_invalidate_page(pmap, va);
6260 }
6261 
6262 /*
6263  * Removes the specified range of addresses from the page table page.
6264  */
6265 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pd_entry_t * pde,struct spglist * free,struct rwlock ** lockp)6266 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6267     pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6268 {
6269 	pt_entry_t PG_G, *pte;
6270 	vm_offset_t va;
6271 	bool anyvalid;
6272 
6273 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6274 	PG_G = pmap_global_bit(pmap);
6275 	anyvalid = false;
6276 	va = eva;
6277 	for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6278 	    sva += PAGE_SIZE) {
6279 		if (*pte == 0) {
6280 			if (va != eva) {
6281 				pmap_invalidate_range(pmap, va, sva);
6282 				va = eva;
6283 			}
6284 			continue;
6285 		}
6286 		if ((*pte & PG_G) == 0)
6287 			anyvalid = true;
6288 		else if (va == eva)
6289 			va = sva;
6290 		if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6291 			sva += PAGE_SIZE;
6292 			break;
6293 		}
6294 	}
6295 	if (va != eva)
6296 		pmap_invalidate_range(pmap, va, sva);
6297 	return (anyvalid);
6298 }
6299 
6300 static void
pmap_remove1(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool map_delete)6301 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6302 {
6303 	struct rwlock *lock;
6304 	vm_page_t mt;
6305 	vm_offset_t va_next;
6306 	pml5_entry_t *pml5e;
6307 	pml4_entry_t *pml4e;
6308 	pdp_entry_t *pdpe;
6309 	pd_entry_t ptpaddr, *pde;
6310 	pt_entry_t PG_G, PG_V;
6311 	struct spglist free;
6312 	int anyvalid;
6313 
6314 	PG_G = pmap_global_bit(pmap);
6315 	PG_V = pmap_valid_bit(pmap);
6316 
6317 	/*
6318 	 * If there are no resident pages besides the top level page
6319 	 * table page(s), there is nothing to do.  Kernel pmap always
6320 	 * accounts whole preloaded area as resident, which makes its
6321 	 * resident count > 2.
6322 	 * Perform an unsynchronized read.  This is, however, safe.
6323 	 */
6324 	if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6325 	    1 : 0))
6326 		return;
6327 
6328 	anyvalid = 0;
6329 	SLIST_INIT(&free);
6330 
6331 	pmap_delayed_invl_start();
6332 	PMAP_LOCK(pmap);
6333 	if (map_delete)
6334 		pmap_pkru_on_remove(pmap, sva, eva);
6335 
6336 	/*
6337 	 * special handling of removing one page.  a very
6338 	 * common operation and easy to short circuit some
6339 	 * code.
6340 	 */
6341 	if (sva + PAGE_SIZE == eva) {
6342 		pde = pmap_pde(pmap, sva);
6343 		if (pde && (*pde & PG_PS) == 0) {
6344 			pmap_remove_page(pmap, sva, pde, &free);
6345 			goto out;
6346 		}
6347 	}
6348 
6349 	lock = NULL;
6350 	for (; sva < eva; sva = va_next) {
6351 		if (pmap->pm_stats.resident_count == 0)
6352 			break;
6353 
6354 		if (pmap_is_la57(pmap)) {
6355 			pml5e = pmap_pml5e(pmap, sva);
6356 			if ((*pml5e & PG_V) == 0) {
6357 				va_next = (sva + NBPML5) & ~PML5MASK;
6358 				if (va_next < sva)
6359 					va_next = eva;
6360 				continue;
6361 			}
6362 			pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6363 		} else {
6364 			pml4e = pmap_pml4e(pmap, sva);
6365 		}
6366 		if ((*pml4e & PG_V) == 0) {
6367 			va_next = (sva + NBPML4) & ~PML4MASK;
6368 			if (va_next < sva)
6369 				va_next = eva;
6370 			continue;
6371 		}
6372 
6373 		va_next = (sva + NBPDP) & ~PDPMASK;
6374 		if (va_next < sva)
6375 			va_next = eva;
6376 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6377 		if ((*pdpe & PG_V) == 0)
6378 			continue;
6379 		if ((*pdpe & PG_PS) != 0) {
6380 			KASSERT(va_next <= eva,
6381 			    ("partial update of non-transparent 1G mapping "
6382 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6383 			    *pdpe, sva, eva, va_next));
6384 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6385 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6386 			anyvalid = 1;
6387 			*pdpe = 0;
6388 			pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6389 			mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6390 			pmap_unwire_ptp(pmap, sva, mt, &free);
6391 			continue;
6392 		}
6393 
6394 		/*
6395 		 * Calculate index for next page table.
6396 		 */
6397 		va_next = (sva + NBPDR) & ~PDRMASK;
6398 		if (va_next < sva)
6399 			va_next = eva;
6400 
6401 		pde = pmap_pdpe_to_pde(pdpe, sva);
6402 		ptpaddr = *pde;
6403 
6404 		/*
6405 		 * Weed out invalid mappings.
6406 		 */
6407 		if (ptpaddr == 0)
6408 			continue;
6409 
6410 		/*
6411 		 * Check for large page.
6412 		 */
6413 		if ((ptpaddr & PG_PS) != 0) {
6414 			/*
6415 			 * Are we removing the entire large page?  If not,
6416 			 * demote the mapping and fall through.
6417 			 */
6418 			if (sva + NBPDR == va_next && eva >= va_next) {
6419 				/*
6420 				 * The TLB entry for a PG_G mapping is
6421 				 * invalidated by pmap_remove_pde().
6422 				 */
6423 				if ((ptpaddr & PG_G) == 0)
6424 					anyvalid = 1;
6425 				pmap_remove_pde(pmap, pde, sva, true, &free,
6426 				    &lock);
6427 				continue;
6428 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
6429 			    &lock)) {
6430 				/* The large page mapping was destroyed. */
6431 				continue;
6432 			} else
6433 				ptpaddr = *pde;
6434 		}
6435 
6436 		/*
6437 		 * Limit our scan to either the end of the va represented
6438 		 * by the current page table page, or to the end of the
6439 		 * range being removed.
6440 		 */
6441 		if (va_next > eva)
6442 			va_next = eva;
6443 
6444 		if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6445 			anyvalid = 1;
6446 	}
6447 	if (lock != NULL)
6448 		rw_wunlock(lock);
6449 out:
6450 	if (anyvalid)
6451 		pmap_invalidate_all(pmap);
6452 	PMAP_UNLOCK(pmap);
6453 	pmap_delayed_invl_finish();
6454 	vm_page_free_pages_toq(&free, true);
6455 }
6456 
6457 /*
6458  *	Remove the given range of addresses from the specified map.
6459  *
6460  *	It is assumed that the start and end are properly
6461  *	rounded to the page size.
6462  */
6463 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6464 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6465 {
6466 	pmap_remove1(pmap, sva, eva, false);
6467 }
6468 
6469 /*
6470  *	Remove the given range of addresses as part of a logical unmap
6471  *	operation. This has the effect of calling pmap_remove(), but
6472  *	also clears any metadata that should persist for the lifetime
6473  *	of a logical mapping.
6474  */
6475 void
pmap_map_delete(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6476 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6477 {
6478 	pmap_remove1(pmap, sva, eva, true);
6479 }
6480 
6481 /*
6482  *	Routine:	pmap_remove_all
6483  *	Function:
6484  *		Removes this physical page from
6485  *		all physical maps in which it resides.
6486  *		Reflects back modify bits to the pager.
6487  *
6488  *	Notes:
6489  *		Original versions of this routine were very
6490  *		inefficient because they iteratively called
6491  *		pmap_remove (slow...)
6492  */
6493 
6494 void
pmap_remove_all(vm_page_t m)6495 pmap_remove_all(vm_page_t m)
6496 {
6497 	struct md_page *pvh;
6498 	pv_entry_t pv;
6499 	pmap_t pmap;
6500 	struct rwlock *lock;
6501 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6502 	pd_entry_t *pde;
6503 	vm_offset_t va;
6504 	struct spglist free;
6505 	int pvh_gen, md_gen;
6506 
6507 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6508 	    ("pmap_remove_all: page %p is not managed", m));
6509 	SLIST_INIT(&free);
6510 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6511 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6512 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
6513 	rw_wlock(lock);
6514 retry:
6515 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6516 		pmap = PV_PMAP(pv);
6517 		if (!PMAP_TRYLOCK(pmap)) {
6518 			pvh_gen = pvh->pv_gen;
6519 			rw_wunlock(lock);
6520 			PMAP_LOCK(pmap);
6521 			rw_wlock(lock);
6522 			if (pvh_gen != pvh->pv_gen) {
6523 				PMAP_UNLOCK(pmap);
6524 				goto retry;
6525 			}
6526 		}
6527 		va = pv->pv_va;
6528 		pde = pmap_pde(pmap, va);
6529 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6530 		PMAP_UNLOCK(pmap);
6531 	}
6532 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6533 		pmap = PV_PMAP(pv);
6534 		if (!PMAP_TRYLOCK(pmap)) {
6535 			pvh_gen = pvh->pv_gen;
6536 			md_gen = m->md.pv_gen;
6537 			rw_wunlock(lock);
6538 			PMAP_LOCK(pmap);
6539 			rw_wlock(lock);
6540 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6541 				PMAP_UNLOCK(pmap);
6542 				goto retry;
6543 			}
6544 		}
6545 		PG_A = pmap_accessed_bit(pmap);
6546 		PG_M = pmap_modified_bit(pmap);
6547 		PG_RW = pmap_rw_bit(pmap);
6548 		pmap_resident_count_adj(pmap, -1);
6549 		pde = pmap_pde(pmap, pv->pv_va);
6550 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6551 		    " a 2mpage in page %p's pv list", m));
6552 		pte = pmap_pde_to_pte(pde, pv->pv_va);
6553 		tpte = pte_load_clear(pte);
6554 		if (tpte & PG_W)
6555 			pmap->pm_stats.wired_count--;
6556 		if (tpte & PG_A)
6557 			vm_page_aflag_set(m, PGA_REFERENCED);
6558 
6559 		/*
6560 		 * Update the vm_page_t clean and reference bits.
6561 		 */
6562 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6563 			vm_page_dirty(m);
6564 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6565 		pmap_invalidate_page(pmap, pv->pv_va);
6566 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6567 		m->md.pv_gen++;
6568 		free_pv_entry(pmap, pv);
6569 		PMAP_UNLOCK(pmap);
6570 	}
6571 	vm_page_aflag_clear(m, PGA_WRITEABLE);
6572 	rw_wunlock(lock);
6573 	pmap_delayed_invl_wait(m);
6574 	vm_page_free_pages_toq(&free, true);
6575 }
6576 
6577 /*
6578  * pmap_protect_pde: do the things to protect a 2mpage in a process
6579  */
6580 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)6581 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6582 {
6583 	pd_entry_t newpde, oldpde;
6584 	vm_page_t m, mt;
6585 	bool anychanged;
6586 	pt_entry_t PG_G, PG_M, PG_RW;
6587 
6588 	PG_G = pmap_global_bit(pmap);
6589 	PG_M = pmap_modified_bit(pmap);
6590 	PG_RW = pmap_rw_bit(pmap);
6591 
6592 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6593 	KASSERT((sva & PDRMASK) == 0,
6594 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
6595 	anychanged = false;
6596 retry:
6597 	oldpde = newpde = *pde;
6598 	if ((prot & VM_PROT_WRITE) == 0) {
6599 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6600 		    (PG_MANAGED | PG_M | PG_RW)) {
6601 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6602 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6603 				vm_page_dirty(mt);
6604 		}
6605 		newpde &= ~(PG_RW | PG_M);
6606 	}
6607 	if ((prot & VM_PROT_EXECUTE) == 0)
6608 		newpde |= pg_nx;
6609 	if (newpde != oldpde) {
6610 		/*
6611 		 * As an optimization to future operations on this PDE, clear
6612 		 * PG_PROMOTED.  The impending invalidation will remove any
6613 		 * lingering 4KB page mappings from the TLB.
6614 		 */
6615 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6616 			goto retry;
6617 		if ((oldpde & PG_G) != 0)
6618 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6619 		else
6620 			anychanged = true;
6621 	}
6622 	return (anychanged);
6623 }
6624 
6625 /*
6626  *	Set the physical protection on the
6627  *	specified range of this map as requested.
6628  */
6629 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)6630 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6631 {
6632 	vm_page_t m;
6633 	vm_offset_t va_next;
6634 	pml4_entry_t *pml4e;
6635 	pdp_entry_t *pdpe;
6636 	pd_entry_t ptpaddr, *pde;
6637 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6638 	pt_entry_t obits, pbits;
6639 	bool anychanged;
6640 
6641 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6642 	if (prot == VM_PROT_NONE) {
6643 		pmap_remove(pmap, sva, eva);
6644 		return;
6645 	}
6646 
6647 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6648 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
6649 		return;
6650 
6651 	PG_G = pmap_global_bit(pmap);
6652 	PG_M = pmap_modified_bit(pmap);
6653 	PG_V = pmap_valid_bit(pmap);
6654 	PG_RW = pmap_rw_bit(pmap);
6655 	anychanged = false;
6656 
6657 	/*
6658 	 * Although this function delays and batches the invalidation
6659 	 * of stale TLB entries, it does not need to call
6660 	 * pmap_delayed_invl_start() and
6661 	 * pmap_delayed_invl_finish(), because it does not
6662 	 * ordinarily destroy mappings.  Stale TLB entries from
6663 	 * protection-only changes need only be invalidated before the
6664 	 * pmap lock is released, because protection-only changes do
6665 	 * not destroy PV entries.  Even operations that iterate over
6666 	 * a physical page's PV list of mappings, like
6667 	 * pmap_remove_write(), acquire the pmap lock for each
6668 	 * mapping.  Consequently, for protection-only changes, the
6669 	 * pmap lock suffices to synchronize both page table and TLB
6670 	 * updates.
6671 	 *
6672 	 * This function only destroys a mapping if pmap_demote_pde()
6673 	 * fails.  In that case, stale TLB entries are immediately
6674 	 * invalidated.
6675 	 */
6676 
6677 	PMAP_LOCK(pmap);
6678 	for (; sva < eva; sva = va_next) {
6679 		pml4e = pmap_pml4e(pmap, sva);
6680 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6681 			va_next = (sva + NBPML4) & ~PML4MASK;
6682 			if (va_next < sva)
6683 				va_next = eva;
6684 			continue;
6685 		}
6686 
6687 		va_next = (sva + NBPDP) & ~PDPMASK;
6688 		if (va_next < sva)
6689 			va_next = eva;
6690 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6691 		if ((*pdpe & PG_V) == 0)
6692 			continue;
6693 		if ((*pdpe & PG_PS) != 0) {
6694 			KASSERT(va_next <= eva,
6695 			    ("partial update of non-transparent 1G mapping "
6696 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6697 			    *pdpe, sva, eva, va_next));
6698 retry_pdpe:
6699 			obits = pbits = *pdpe;
6700 			MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6701 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6702 			if ((prot & VM_PROT_WRITE) == 0)
6703 				pbits &= ~(PG_RW | PG_M);
6704 			if ((prot & VM_PROT_EXECUTE) == 0)
6705 				pbits |= pg_nx;
6706 
6707 			if (pbits != obits) {
6708 				if (!atomic_cmpset_long(pdpe, obits, pbits))
6709 					/* PG_PS cannot be cleared under us, */
6710 					goto retry_pdpe;
6711 				anychanged = true;
6712 			}
6713 			continue;
6714 		}
6715 
6716 		va_next = (sva + NBPDR) & ~PDRMASK;
6717 		if (va_next < sva)
6718 			va_next = eva;
6719 
6720 		pde = pmap_pdpe_to_pde(pdpe, sva);
6721 		ptpaddr = *pde;
6722 
6723 		/*
6724 		 * Weed out invalid mappings.
6725 		 */
6726 		if (ptpaddr == 0)
6727 			continue;
6728 
6729 		/*
6730 		 * Check for large page.
6731 		 */
6732 		if ((ptpaddr & PG_PS) != 0) {
6733 			/*
6734 			 * Are we protecting the entire large page?
6735 			 */
6736 			if (sva + NBPDR == va_next && eva >= va_next) {
6737 				/*
6738 				 * The TLB entry for a PG_G mapping is
6739 				 * invalidated by pmap_protect_pde().
6740 				 */
6741 				if (pmap_protect_pde(pmap, pde, sva, prot))
6742 					anychanged = true;
6743 				continue;
6744 			}
6745 
6746 			/*
6747 			 * Does the large page mapping need to change?  If so,
6748 			 * demote it and fall through.
6749 			 */
6750 			pbits = ptpaddr;
6751 			if ((prot & VM_PROT_WRITE) == 0)
6752 				pbits &= ~(PG_RW | PG_M);
6753 			if ((prot & VM_PROT_EXECUTE) == 0)
6754 				pbits |= pg_nx;
6755 			if (ptpaddr == pbits || !pmap_demote_pde(pmap, pde,
6756 			    sva)) {
6757 				/*
6758 				 * Either the large page mapping doesn't need
6759 				 * to change, or it was destroyed during
6760 				 * demotion.
6761 				 */
6762 				continue;
6763 			}
6764 		}
6765 
6766 		if (va_next > eva)
6767 			va_next = eva;
6768 
6769 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6770 		    sva += PAGE_SIZE) {
6771 retry:
6772 			obits = pbits = *pte;
6773 			if ((pbits & PG_V) == 0)
6774 				continue;
6775 
6776 			if ((prot & VM_PROT_WRITE) == 0) {
6777 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6778 				    (PG_MANAGED | PG_M | PG_RW)) {
6779 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6780 					vm_page_dirty(m);
6781 				}
6782 				pbits &= ~(PG_RW | PG_M);
6783 			}
6784 			if ((prot & VM_PROT_EXECUTE) == 0)
6785 				pbits |= pg_nx;
6786 
6787 			if (pbits != obits) {
6788 				if (!atomic_cmpset_long(pte, obits, pbits))
6789 					goto retry;
6790 				if (obits & PG_G)
6791 					pmap_invalidate_page(pmap, sva);
6792 				else
6793 					anychanged = true;
6794 			}
6795 		}
6796 	}
6797 	if (anychanged)
6798 		pmap_invalidate_all(pmap);
6799 	PMAP_UNLOCK(pmap);
6800 }
6801 
6802 static bool
pmap_pde_ept_executable(pmap_t pmap,pd_entry_t pde)6803 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6804 {
6805 
6806 	if (pmap->pm_type != PT_EPT)
6807 		return (false);
6808 	return ((pde & EPT_PG_EXECUTE) != 0);
6809 }
6810 
6811 #if VM_NRESERVLEVEL > 0
6812 /*
6813  * Tries to promote the 512, contiguous 4KB page mappings that are within a
6814  * single page table page (PTP) to a single 2MB page mapping.  For promotion
6815  * to occur, two conditions must be met: (1) the 4KB page mappings must map
6816  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6817  * identical characteristics.
6818  */
6819 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte,struct rwlock ** lockp)6820 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6821     struct rwlock **lockp)
6822 {
6823 	pd_entry_t newpde;
6824 	pt_entry_t *firstpte, oldpte, pa, *pte;
6825 	pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6826 	int PG_PTE_CACHE;
6827 
6828 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6829 	if (!pmap_ps_enabled(pmap))
6830 		return (false);
6831 
6832 	PG_A = pmap_accessed_bit(pmap);
6833 	PG_G = pmap_global_bit(pmap);
6834 	PG_M = pmap_modified_bit(pmap);
6835 	PG_V = pmap_valid_bit(pmap);
6836 	PG_RW = pmap_rw_bit(pmap);
6837 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6838 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6839 
6840 	/*
6841 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
6842 	 * ineligible for promotion due to hardware errata, invalid, or does
6843 	 * not map the first 4KB physical page within a 2MB page.
6844 	 */
6845 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6846 	newpde = *firstpte;
6847 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6848 		return (false);
6849 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6850 		counter_u64_add(pmap_pde_p_failures, 1);
6851 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6852 		    " in pmap %p", va, pmap);
6853 		return (false);
6854 	}
6855 
6856 	/*
6857 	 * Both here and in the below "for" loop, to allow for repromotion
6858 	 * after MADV_FREE, conditionally write protect a clean PTE before
6859 	 * possibly aborting the promotion due to other PTE attributes.  Why?
6860 	 * Suppose that MADV_FREE is applied to a part of a superpage, the
6861 	 * address range [S, E).  pmap_advise() will demote the superpage
6862 	 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6863 	 * clear PG_M and PG_A in the PTEs for the rest of [S, E).  Later,
6864 	 * imagine that the memory in [S, E) is recycled, but the last 4KB
6865 	 * page in [S, E) is not the last to be rewritten, or simply accessed.
6866 	 * In other words, there is still a 4KB page in [S, E), call it P,
6867 	 * that is writeable but PG_M and PG_A are clear in P's PTE.  Unless
6868 	 * we write protect P before aborting the promotion, if and when P is
6869 	 * finally rewritten, there won't be a page fault to trigger
6870 	 * repromotion.
6871 	 */
6872 setpde:
6873 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6874 		/*
6875 		 * When PG_M is already clear, PG_RW can be cleared without
6876 		 * a TLB invalidation.
6877 		 */
6878 		if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6879 			goto setpde;
6880 		newpde &= ~PG_RW;
6881 		CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6882 		    " in pmap %p", va & ~PDRMASK, pmap);
6883 	}
6884 
6885 	/*
6886 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
6887 	 * PTE maps an unexpected 4KB physical page or does not have identical
6888 	 * characteristics to the first PTE.
6889 	 */
6890 	allpte_PG_A = newpde & PG_A;
6891 	pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6892 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6893 		oldpte = *pte;
6894 		if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6895 			counter_u64_add(pmap_pde_p_failures, 1);
6896 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6897 			    " in pmap %p", va, pmap);
6898 			return (false);
6899 		}
6900 setpte:
6901 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6902 			/*
6903 			 * When PG_M is already clear, PG_RW can be cleared
6904 			 * without a TLB invalidation.
6905 			 */
6906 			if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6907 				goto setpte;
6908 			oldpte &= ~PG_RW;
6909 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6910 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6911 			    (va & ~PDRMASK), pmap);
6912 		}
6913 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6914 			counter_u64_add(pmap_pde_p_failures, 1);
6915 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6916 			    " in pmap %p", va, pmap);
6917 			return (false);
6918 		}
6919 		allpte_PG_A &= oldpte;
6920 		pa -= PAGE_SIZE;
6921 	}
6922 
6923 	/*
6924 	 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
6925 	 * so that promotions triggered by speculative mappings, such as
6926 	 * pmap_enter_quick(), don't automatically mark the underlying pages
6927 	 * as referenced.
6928 	 */
6929 	newpde &= ~PG_A | allpte_PG_A;
6930 
6931 	/*
6932 	 * EPT PTEs with PG_M set and PG_A clear are not supported by early
6933 	 * MMUs supporting EPT.
6934 	 */
6935 	KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
6936 	    ("unsupported EPT PTE"));
6937 
6938 	/*
6939 	 * Save the PTP in its current state until the PDE mapping the
6940 	 * superpage is demoted by pmap_demote_pde() or destroyed by
6941 	 * pmap_remove_pde().  If PG_A is not set in every PTE, then request
6942 	 * that the PTP be refilled on demotion.
6943 	 */
6944 	if (mpte == NULL)
6945 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6946 	KASSERT(mpte >= vm_page_array &&
6947 	    mpte < &vm_page_array[vm_page_array_size],
6948 	    ("pmap_promote_pde: page table page is out of range"));
6949 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
6950 	    ("pmap_promote_pde: page table page's pindex is wrong "
6951 	    "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
6952 	    mpte, mpte->pindex, va, pmap_pde_pindex(va)));
6953 	if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
6954 		counter_u64_add(pmap_pde_p_failures, 1);
6955 		CTR2(KTR_PMAP,
6956 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
6957 		    pmap);
6958 		return (false);
6959 	}
6960 
6961 	/*
6962 	 * Promote the pv entries.
6963 	 */
6964 	if ((newpde & PG_MANAGED) != 0)
6965 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
6966 
6967 	/*
6968 	 * Propagate the PAT index to its proper position.
6969 	 */
6970 	newpde = pmap_swap_pat(pmap, newpde);
6971 
6972 	/*
6973 	 * Map the superpage.
6974 	 */
6975 	if (workaround_erratum383)
6976 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
6977 	else
6978 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
6979 
6980 	counter_u64_add(pmap_pde_promotions, 1);
6981 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
6982 	    " in pmap %p", va, pmap);
6983 	return (true);
6984 }
6985 #endif /* VM_NRESERVLEVEL > 0 */
6986 
6987 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)6988 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
6989     int psind)
6990 {
6991 	vm_page_t mp;
6992 	pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
6993 
6994 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6995 	KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
6996 	    ("psind %d unexpected", psind));
6997 	KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
6998 	    ("unaligned phys address %#lx newpte %#lx psind %d",
6999 	    newpte & PG_FRAME, newpte, psind));
7000 	KASSERT((va & (pagesizes[psind] - 1)) == 0,
7001 	    ("unaligned va %#lx psind %d", va, psind));
7002 	KASSERT(va < VM_MAXUSER_ADDRESS,
7003 	    ("kernel mode non-transparent superpage")); /* XXXKIB */
7004 	KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
7005 	    ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
7006 
7007 	PG_V = pmap_valid_bit(pmap);
7008 
7009 restart:
7010 	pten = newpte;
7011 	if (!pmap_pkru_same(pmap, va, va + pagesizes[psind], &pten))
7012 		return (KERN_PROTECTION_FAILURE);
7013 
7014 	if (psind == 2) {	/* 1G */
7015 		pml4e = pmap_pml4e(pmap, va);
7016 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7017 			mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
7018 			    NULL, va);
7019 			if (mp == NULL)
7020 				goto allocf;
7021 			pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7022 			pdpe = &pdpe[pmap_pdpe_index(va)];
7023 			origpte = *pdpe;
7024 			MPASS(origpte == 0);
7025 		} else {
7026 			pdpe = pmap_pml4e_to_pdpe(pml4e, va);
7027 			KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
7028 			origpte = *pdpe;
7029 			if ((origpte & PG_V) == 0) {
7030 				mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7031 				mp->ref_count++;
7032 			}
7033 		}
7034 		*pdpe = pten;
7035 	} else /* (psind == 1) */ {	/* 2M */
7036 		pde = pmap_pde(pmap, va);
7037 		if (pde == NULL) {
7038 			mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
7039 			    NULL, va);
7040 			if (mp == NULL)
7041 				goto allocf;
7042 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7043 			pde = &pde[pmap_pde_index(va)];
7044 			origpte = *pde;
7045 			MPASS(origpte == 0);
7046 		} else {
7047 			origpte = *pde;
7048 			if ((origpte & PG_V) == 0) {
7049 				pdpe = pmap_pdpe(pmap, va);
7050 				MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7051 				mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7052 				mp->ref_count++;
7053 			}
7054 		}
7055 		*pde = pten;
7056 	}
7057 	KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7058 	    (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7059 	    ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7060 	    va, psind == 2 ? "1G" : "2M", origpte, pten));
7061 	if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7062 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7063 	else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7064 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7065 	if ((origpte & PG_V) == 0)
7066 		pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7067 
7068 	return (KERN_SUCCESS);
7069 
7070 allocf:
7071 	if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7072 		return (KERN_RESOURCE_SHORTAGE);
7073 	PMAP_UNLOCK(pmap);
7074 	vm_wait(NULL);
7075 	PMAP_LOCK(pmap);
7076 	goto restart;
7077 }
7078 
7079 /*
7080  *	Insert the given physical page (p) at
7081  *	the specified virtual address (v) in the
7082  *	target physical map with the protection requested.
7083  *
7084  *	If specified, the page will be wired down, meaning
7085  *	that the related pte can not be reclaimed.
7086  *
7087  *	NB:  This is the only routine which MAY NOT lazy-evaluate
7088  *	or lose information.  That is, this routine must actually
7089  *	insert this page into the given map NOW.
7090  *
7091  *	When destroying both a page table and PV entry, this function
7092  *	performs the TLB invalidation before releasing the PV list
7093  *	lock, so we do not need pmap_delayed_invl_page() calls here.
7094  */
7095 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)7096 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7097     u_int flags, int8_t psind)
7098 {
7099 	struct rwlock *lock;
7100 	pd_entry_t *pde;
7101 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7102 	pt_entry_t newpte, origpte;
7103 	pv_entry_t pv;
7104 	vm_paddr_t opa, pa;
7105 	vm_page_t mpte, om;
7106 	int rv;
7107 	bool nosleep;
7108 
7109 	PG_A = pmap_accessed_bit(pmap);
7110 	PG_G = pmap_global_bit(pmap);
7111 	PG_M = pmap_modified_bit(pmap);
7112 	PG_V = pmap_valid_bit(pmap);
7113 	PG_RW = pmap_rw_bit(pmap);
7114 
7115 	va = trunc_page(va);
7116 	KASSERT(va <= kva_layout.km_high, ("pmap_enter: toobig"));
7117 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7118 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7119 	    va));
7120 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7121 	    ("pmap_enter: managed mapping within the clean submap"));
7122 	if ((m->oflags & VPO_UNMANAGED) == 0)
7123 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
7124 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7125 	    ("pmap_enter: flags %u has reserved bits set", flags));
7126 	pa = VM_PAGE_TO_PHYS(m);
7127 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
7128 	if ((flags & VM_PROT_WRITE) != 0)
7129 		newpte |= PG_M;
7130 	if ((prot & VM_PROT_WRITE) != 0)
7131 		newpte |= PG_RW;
7132 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7133 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7134 	if ((prot & VM_PROT_EXECUTE) == 0)
7135 		newpte |= pg_nx;
7136 	if ((flags & PMAP_ENTER_WIRED) != 0)
7137 		newpte |= PG_W;
7138 	if (va < VM_MAXUSER_ADDRESS)
7139 		newpte |= PG_U;
7140 	if (pmap == kernel_pmap)
7141 		newpte |= PG_G;
7142 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7143 
7144 	/*
7145 	 * Set modified bit gratuitously for writeable mappings if
7146 	 * the page is unmanaged. We do not want to take a fault
7147 	 * to do the dirty bit accounting for these mappings.
7148 	 */
7149 	if ((m->oflags & VPO_UNMANAGED) != 0) {
7150 		if ((newpte & PG_RW) != 0)
7151 			newpte |= PG_M;
7152 	} else
7153 		newpte |= PG_MANAGED;
7154 
7155 	lock = NULL;
7156 	PMAP_LOCK(pmap);
7157 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7158 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7159 		    ("managed largepage va %#lx flags %#x", va, flags));
7160 		rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7161 		    psind);
7162 		goto out;
7163 	}
7164 	if (psind == 1) {
7165 		/* Assert the required virtual and physical alignment. */
7166 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7167 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7168 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7169 		goto out;
7170 	}
7171 	mpte = NULL;
7172 
7173 	/*
7174 	 * In the case that a page table page is not
7175 	 * resident, we are creating it here.
7176 	 */
7177 retry:
7178 	pde = pmap_pde(pmap, va);
7179 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7180 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7181 		pte = pmap_pde_to_pte(pde, va);
7182 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7183 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7184 			mpte->ref_count++;
7185 		}
7186 	} else if (va < VM_MAXUSER_ADDRESS) {
7187 		/*
7188 		 * Here if the pte page isn't mapped, or if it has been
7189 		 * deallocated.
7190 		 */
7191 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7192 		mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7193 		    nosleep ? NULL : &lock, va);
7194 		if (mpte == NULL && nosleep) {
7195 			rv = KERN_RESOURCE_SHORTAGE;
7196 			goto out;
7197 		}
7198 		goto retry;
7199 	} else
7200 		panic("pmap_enter: invalid page directory va=%#lx", va);
7201 
7202 	origpte = *pte;
7203 	pv = NULL;
7204 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7205 		newpte |= pmap_pkru_get(pmap, va);
7206 
7207 	/*
7208 	 * Is the specified virtual address already mapped?
7209 	 */
7210 	if ((origpte & PG_V) != 0) {
7211 		/*
7212 		 * Wiring change, just update stats. We don't worry about
7213 		 * wiring PT pages as they remain resident as long as there
7214 		 * are valid mappings in them. Hence, if a user page is wired,
7215 		 * the PT page will be also.
7216 		 */
7217 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7218 			pmap->pm_stats.wired_count++;
7219 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7220 			pmap->pm_stats.wired_count--;
7221 
7222 		/*
7223 		 * Remove the extra PT page reference.
7224 		 */
7225 		if (mpte != NULL) {
7226 			mpte->ref_count--;
7227 			KASSERT(mpte->ref_count > 0,
7228 			    ("pmap_enter: missing reference to page table page,"
7229 			     " va: 0x%lx", va));
7230 		}
7231 
7232 		/*
7233 		 * Has the physical page changed?
7234 		 */
7235 		opa = origpte & PG_FRAME;
7236 		if (opa == pa) {
7237 			/*
7238 			 * No, might be a protection or wiring change.
7239 			 */
7240 			if ((origpte & PG_MANAGED) != 0 &&
7241 			    (newpte & PG_RW) != 0)
7242 				vm_page_aflag_set(m, PGA_WRITEABLE);
7243 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7244 				goto unchanged;
7245 			goto validate;
7246 		}
7247 
7248 		/*
7249 		 * The physical page has changed.  Temporarily invalidate
7250 		 * the mapping.  This ensures that all threads sharing the
7251 		 * pmap keep a consistent view of the mapping, which is
7252 		 * necessary for the correct handling of COW faults.  It
7253 		 * also permits reuse of the old mapping's PV entry,
7254 		 * avoiding an allocation.
7255 		 *
7256 		 * For consistency, handle unmanaged mappings the same way.
7257 		 */
7258 		origpte = pte_load_clear(pte);
7259 		KASSERT((origpte & PG_FRAME) == opa,
7260 		    ("pmap_enter: unexpected pa update for %#lx", va));
7261 		if ((origpte & PG_MANAGED) != 0) {
7262 			om = PHYS_TO_VM_PAGE(opa);
7263 
7264 			/*
7265 			 * The pmap lock is sufficient to synchronize with
7266 			 * concurrent calls to pmap_page_test_mappings() and
7267 			 * pmap_ts_referenced().
7268 			 */
7269 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7270 				vm_page_dirty(om);
7271 			if ((origpte & PG_A) != 0) {
7272 				pmap_invalidate_page(pmap, va);
7273 				vm_page_aflag_set(om, PGA_REFERENCED);
7274 			}
7275 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7276 			pv = pmap_pvh_remove(&om->md, pmap, va);
7277 			KASSERT(pv != NULL,
7278 			    ("pmap_enter: no PV entry for %#lx", va));
7279 			if ((newpte & PG_MANAGED) == 0)
7280 				free_pv_entry(pmap, pv);
7281 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7282 			    TAILQ_EMPTY(&om->md.pv_list) &&
7283 			    ((om->flags & PG_FICTITIOUS) != 0 ||
7284 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7285 				vm_page_aflag_clear(om, PGA_WRITEABLE);
7286 		} else {
7287 			/*
7288 			 * Since this mapping is unmanaged, assume that PG_A
7289 			 * is set.
7290 			 */
7291 			pmap_invalidate_page(pmap, va);
7292 		}
7293 		origpte = 0;
7294 	} else {
7295 		/*
7296 		 * Increment the counters.
7297 		 */
7298 		if ((newpte & PG_W) != 0)
7299 			pmap->pm_stats.wired_count++;
7300 		pmap_resident_count_adj(pmap, 1);
7301 	}
7302 
7303 	/*
7304 	 * Enter on the PV list if part of our managed memory.
7305 	 */
7306 	if ((newpte & PG_MANAGED) != 0) {
7307 		if (pv == NULL) {
7308 			pv = get_pv_entry(pmap, &lock);
7309 			pv->pv_va = va;
7310 		}
7311 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7312 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7313 		m->md.pv_gen++;
7314 		if ((newpte & PG_RW) != 0)
7315 			vm_page_aflag_set(m, PGA_WRITEABLE);
7316 	}
7317 
7318 	/*
7319 	 * Update the PTE.
7320 	 */
7321 	if ((origpte & PG_V) != 0) {
7322 validate:
7323 		origpte = pte_load_store(pte, newpte);
7324 		KASSERT((origpte & PG_FRAME) == pa,
7325 		    ("pmap_enter: unexpected pa update for %#lx", va));
7326 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7327 		    (PG_M | PG_RW)) {
7328 			if ((origpte & PG_MANAGED) != 0)
7329 				vm_page_dirty(m);
7330 
7331 			/*
7332 			 * Although the PTE may still have PG_RW set, TLB
7333 			 * invalidation may nonetheless be required because
7334 			 * the PTE no longer has PG_M set.
7335 			 */
7336 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7337 			/*
7338 			 * This PTE change does not require TLB invalidation.
7339 			 */
7340 			goto unchanged;
7341 		}
7342 		if ((origpte & PG_A) != 0)
7343 			pmap_invalidate_page(pmap, va);
7344 	} else
7345 		pte_store(pte, newpte);
7346 
7347 unchanged:
7348 
7349 #if VM_NRESERVLEVEL > 0
7350 	/*
7351 	 * If both the page table page and the reservation are fully
7352 	 * populated, then attempt promotion.
7353 	 */
7354 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7355 	    (m->flags & PG_FICTITIOUS) == 0 &&
7356 	    vm_reserv_level_iffullpop(m) == 0)
7357 		(void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
7358 #endif
7359 
7360 	rv = KERN_SUCCESS;
7361 out:
7362 	if (lock != NULL)
7363 		rw_wunlock(lock);
7364 	PMAP_UNLOCK(pmap);
7365 	return (rv);
7366 }
7367 
7368 /*
7369  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns
7370  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
7371  * value.  See pmap_enter_pde() for the possible error values when "no sleep",
7372  * "no replace", and "no reclaim" are specified.
7373  */
7374 static int
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)7375 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7376     struct rwlock **lockp)
7377 {
7378 	pd_entry_t newpde;
7379 	pt_entry_t PG_V;
7380 
7381 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7382 	PG_V = pmap_valid_bit(pmap);
7383 	newpde = VM_PAGE_TO_PHYS(m) |
7384 	    pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
7385 	if ((m->oflags & VPO_UNMANAGED) == 0)
7386 		newpde |= PG_MANAGED;
7387 	if ((prot & VM_PROT_EXECUTE) == 0)
7388 		newpde |= pg_nx;
7389 	if (va < VM_MAXUSER_ADDRESS)
7390 		newpde |= PG_U;
7391 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7392 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7393 }
7394 
7395 /*
7396  * Returns true if every page table entry in the specified page table page is
7397  * zero.
7398  */
7399 static bool
pmap_every_pte_zero(vm_paddr_t pa)7400 pmap_every_pte_zero(vm_paddr_t pa)
7401 {
7402 	pt_entry_t *pt_end, *pte;
7403 
7404 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7405 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7406 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7407 		if (*pte != 0)
7408 			return (false);
7409 	}
7410 	return (true);
7411 }
7412 
7413 /*
7414  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
7415  * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7416  * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise.  Returns
7417  * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7418  * page mapping already exists within the 2MB virtual address range starting
7419  * at the specified virtual address or (2) the requested 2MB page mapping is
7420  * not supported due to hardware errata.  Returns KERN_NO_SPACE if
7421  * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7422  * the specified virtual address.  Returns KERN_PROTECTION_FAILURE if the PKRU
7423  * settings are not the same across the 2MB virtual address range starting at
7424  * the specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if either
7425  * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7426  * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7427  * failed.
7428  *
7429  * The parameter "m" is only used when creating a managed, writeable mapping.
7430  */
7431 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m,struct rwlock ** lockp)7432 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7433     vm_page_t m, struct rwlock **lockp)
7434 {
7435 	struct spglist free;
7436 	pd_entry_t oldpde, *pde;
7437 	pt_entry_t PG_G, PG_RW, PG_V;
7438 	vm_page_t mt, pdpg;
7439 	vm_page_t uwptpg;
7440 
7441 	PG_G = pmap_global_bit(pmap);
7442 	PG_RW = pmap_rw_bit(pmap);
7443 	KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7444 	    ("pmap_enter_pde: newpde is missing PG_M"));
7445 	KASSERT((flags & (PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM)) !=
7446 	    PMAP_ENTER_NORECLAIM,
7447 	    ("pmap_enter_pde: flags is missing PMAP_ENTER_NOREPLACE"));
7448 	PG_V = pmap_valid_bit(pmap);
7449 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7450 
7451 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7452 	    newpde))) {
7453 		CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7454 		    " in pmap %p", va, pmap);
7455 		return (KERN_FAILURE);
7456 	}
7457 	if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7458 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7459 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7460 		    " in pmap %p", va, pmap);
7461 		return (KERN_RESOURCE_SHORTAGE);
7462 	}
7463 
7464 	/*
7465 	 * If pkru is not same for the whole pde range, return failure
7466 	 * and let vm_fault() cope.  Check after pde allocation, since
7467 	 * it could sleep.
7468 	 */
7469 	if (!pmap_pkru_same(pmap, va, va + NBPDR, &newpde)) {
7470 		pmap_abort_ptp(pmap, va, pdpg);
7471 		return (KERN_PROTECTION_FAILURE);
7472 	}
7473 
7474 	/*
7475 	 * If there are existing mappings, either abort or remove them.
7476 	 */
7477 	oldpde = *pde;
7478 	if ((oldpde & PG_V) != 0) {
7479 		KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7480 		    ("pmap_enter_pde: pdpg's reference count is too low"));
7481 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7482 			if ((oldpde & PG_PS) != 0) {
7483 				if (pdpg != NULL)
7484 					pdpg->ref_count--;
7485 				CTR2(KTR_PMAP,
7486 				    "pmap_enter_pde: no space for va %#lx"
7487 				    " in pmap %p", va, pmap);
7488 				return (KERN_NO_SPACE);
7489 			} else if (va < VM_MAXUSER_ADDRESS ||
7490 			    !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7491 				if (pdpg != NULL)
7492 					pdpg->ref_count--;
7493 				CTR2(KTR_PMAP,
7494 				    "pmap_enter_pde: failure for va %#lx"
7495 				    " in pmap %p", va, pmap);
7496 				return (KERN_FAILURE);
7497 			}
7498 		}
7499 		/* Break the existing mapping(s). */
7500 		SLIST_INIT(&free);
7501 		if ((oldpde & PG_PS) != 0) {
7502 			/*
7503 			 * The reference to the PD page that was acquired by
7504 			 * pmap_alloc_pde() ensures that it won't be freed.
7505 			 * However, if the PDE resulted from a promotion, and
7506 			 * the mapping is not from kernel_pmap, then
7507 			 * a reserved PT page could be freed.
7508 			 */
7509 			(void)pmap_remove_pde(pmap, pde, va, false, &free,
7510 			    lockp);
7511 			if ((oldpde & PG_G) == 0)
7512 				pmap_invalidate_pde_page(pmap, va, oldpde);
7513 		} else {
7514 			if (va >= VM_MAXUSER_ADDRESS) {
7515 				/*
7516 				 * Try to save the ptp in the trie
7517 				 * before any changes to mappings are
7518 				 * made.  Abort on failure.
7519 				 */
7520 				mt = PHYS_TO_VM_PAGE(oldpde & PG_FRAME);
7521 				if (pmap_insert_pt_page(pmap, mt, false,
7522 				    false)) {
7523 					CTR1(KTR_PMAP,
7524 			    "pmap_enter_pde: cannot ins kern ptp va %#lx",
7525 					    va);
7526 					return (KERN_RESOURCE_SHORTAGE);
7527 				}
7528 				/*
7529 				 * Both pmap_remove_pde() and
7530 				 * pmap_remove_ptes() will zero-fill
7531 				 * the kernel page table page.
7532 				 */
7533 			}
7534 			pmap_delayed_invl_start();
7535 			if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7536 			    lockp))
7537 		               pmap_invalidate_all(pmap);
7538 			pmap_delayed_invl_finish();
7539 		}
7540 		if (va < VM_MAXUSER_ADDRESS) {
7541 			vm_page_free_pages_toq(&free, true);
7542 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7543 			    pde));
7544 		} else {
7545 			KASSERT(SLIST_EMPTY(&free),
7546 			    ("pmap_enter_pde: freed kernel page table page"));
7547 		}
7548 	}
7549 
7550 	/*
7551 	 * Allocate leaf ptpage for wired userspace pages.
7552 	 */
7553 	uwptpg = NULL;
7554 	if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
7555 		uwptpg = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
7556 		    VM_ALLOC_WIRED);
7557 		if (uwptpg == NULL) {
7558 			pmap_abort_ptp(pmap, va, pdpg);
7559 			return (KERN_RESOURCE_SHORTAGE);
7560 		}
7561 		if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
7562 			pmap_free_pt_page(pmap, uwptpg, false);
7563 			pmap_abort_ptp(pmap, va, pdpg);
7564 			return (KERN_RESOURCE_SHORTAGE);
7565 		}
7566 
7567 		uwptpg->ref_count = NPTEPG;
7568 	}
7569 	if ((newpde & PG_MANAGED) != 0) {
7570 		/*
7571 		 * Abort this mapping if its PV entry could not be created.
7572 		 */
7573 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7574 			if (pdpg != NULL)
7575 				pmap_abort_ptp(pmap, va, pdpg);
7576 			else {
7577 				KASSERT(va >= VM_MAXUSER_ADDRESS &&
7578 				    (*pde & (PG_PS | PG_V)) == PG_V,
7579 				    ("pmap_enter_pde: invalid kernel PDE"));
7580 				mt = pmap_remove_pt_page(pmap, va);
7581 				KASSERT(mt != NULL,
7582 				    ("pmap_enter_pde: missing kernel PTP"));
7583 			}
7584 			if (uwptpg != NULL) {
7585 				mt = pmap_remove_pt_page(pmap, va);
7586 				KASSERT(mt == uwptpg,
7587 				    ("removed pt page %p, expected %p", mt,
7588 				    uwptpg));
7589 				uwptpg->ref_count = 1;
7590 				pmap_free_pt_page(pmap, uwptpg, false);
7591 			}
7592 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7593 			    " in pmap %p", va, pmap);
7594 			return (KERN_RESOURCE_SHORTAGE);
7595 		}
7596 		if ((newpde & PG_RW) != 0) {
7597 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7598 				vm_page_aflag_set(mt, PGA_WRITEABLE);
7599 		}
7600 	}
7601 
7602 	/*
7603 	 * Increment counters.
7604 	 */
7605 	if ((newpde & PG_W) != 0)
7606 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7607 	pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7608 
7609 	/*
7610 	 * Map the superpage.  (This is not a promoted mapping; there will not
7611 	 * be any lingering 4KB page mappings in the TLB.)
7612 	 */
7613 	pde_store(pde, newpde);
7614 
7615 	counter_u64_add(pmap_pde_mappings, 1);
7616 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7617 	    va, pmap);
7618 	return (KERN_SUCCESS);
7619 }
7620 
7621 /*
7622  * Maps a sequence of resident pages belonging to the same object.
7623  * The sequence begins with the given page m_start.  This page is
7624  * mapped at the given virtual address start.  Each subsequent page is
7625  * mapped at a virtual address that is offset from start by the same
7626  * amount as the page is offset from m_start within the object.  The
7627  * last page in the sequence is the page with the largest offset from
7628  * m_start that can be mapped at a virtual address less than the given
7629  * virtual address end.  Not every virtual page between start and end
7630  * is mapped; only those for which a resident page exists with the
7631  * corresponding offset from m_start are mapped.
7632  */
7633 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)7634 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7635     vm_page_t m_start, vm_prot_t prot)
7636 {
7637 	struct pctrie_iter pages;
7638 	struct rwlock *lock;
7639 	vm_offset_t va;
7640 	vm_page_t m, mpte;
7641 	int rv;
7642 
7643 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
7644 
7645 	mpte = NULL;
7646 	vm_page_iter_limit_init(&pages, m_start->object,
7647 	    m_start->pindex + atop(end - start));
7648 	m = vm_radix_iter_lookup(&pages, m_start->pindex);
7649 	lock = NULL;
7650 	PMAP_LOCK(pmap);
7651 	while (m != NULL) {
7652 		va = start + ptoa(m->pindex - m_start->pindex);
7653 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7654 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
7655 		    ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7656 		    KERN_SUCCESS || rv == KERN_NO_SPACE))
7657 			m = vm_radix_iter_jump(&pages, NBPDR / PAGE_SIZE);
7658 		else {
7659 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7660 			    mpte, &lock);
7661 			m = vm_radix_iter_step(&pages);
7662 		}
7663 	}
7664 	if (lock != NULL)
7665 		rw_wunlock(lock);
7666 	PMAP_UNLOCK(pmap);
7667 }
7668 
7669 /*
7670  * this code makes some *MAJOR* assumptions:
7671  * 1. Current pmap & pmap exists.
7672  * 2. Not wired.
7673  * 3. Read access.
7674  * 4. No page table pages.
7675  * but is *MUCH* faster than pmap_enter...
7676  */
7677 
7678 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)7679 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7680 {
7681 	struct rwlock *lock;
7682 
7683 	lock = NULL;
7684 	PMAP_LOCK(pmap);
7685 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7686 	if (lock != NULL)
7687 		rw_wunlock(lock);
7688 	PMAP_UNLOCK(pmap);
7689 }
7690 
7691 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)7692 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7693     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7694 {
7695 	pd_entry_t *pde;
7696 	pt_entry_t newpte, *pte, PG_V;
7697 
7698 	KASSERT(!VA_IS_CLEANMAP(va) ||
7699 	    (m->oflags & VPO_UNMANAGED) != 0,
7700 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7701 	PG_V = pmap_valid_bit(pmap);
7702 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7703 	pde = NULL;
7704 
7705 	/*
7706 	 * In the case that a page table page is not
7707 	 * resident, we are creating it here.
7708 	 */
7709 	if (va < VM_MAXUSER_ADDRESS) {
7710 		pdp_entry_t *pdpe;
7711 		vm_pindex_t ptepindex;
7712 
7713 		/*
7714 		 * Calculate pagetable page index
7715 		 */
7716 		ptepindex = pmap_pde_pindex(va);
7717 		if (mpte && (mpte->pindex == ptepindex)) {
7718 			mpte->ref_count++;
7719 		} else {
7720 			/*
7721 			 * If the page table page is mapped, we just increment
7722 			 * the hold count, and activate it.  Otherwise, we
7723 			 * attempt to allocate a page table page, passing NULL
7724 			 * instead of the PV list lock pointer because we don't
7725 			 * intend to sleep.  If this attempt fails, we don't
7726 			 * retry.  Instead, we give up.
7727 			 */
7728 			pdpe = pmap_pdpe(pmap, va);
7729 			if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7730 				if ((*pdpe & PG_PS) != 0)
7731 					return (NULL);
7732 				pde = pmap_pdpe_to_pde(pdpe, va);
7733 				if ((*pde & PG_V) != 0) {
7734 					if ((*pde & PG_PS) != 0)
7735 						return (NULL);
7736 					mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7737 					mpte->ref_count++;
7738 				} else {
7739 					mpte = pmap_allocpte_alloc(pmap,
7740 					    ptepindex, NULL, va);
7741 					if (mpte == NULL)
7742 						return (NULL);
7743 				}
7744 			} else {
7745 				mpte = pmap_allocpte_alloc(pmap, ptepindex,
7746 				    NULL, va);
7747 				if (mpte == NULL)
7748 					return (NULL);
7749 			}
7750 		}
7751 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7752 		pte = &pte[pmap_pte_index(va)];
7753 	} else {
7754 		mpte = NULL;
7755 		pte = vtopte(va);
7756 	}
7757 	if (*pte) {
7758 		if (mpte != NULL)
7759 			mpte->ref_count--;
7760 		return (NULL);
7761 	}
7762 
7763 	/*
7764 	 * Enter on the PV list if part of our managed memory.
7765 	 */
7766 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
7767 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7768 		if (mpte != NULL)
7769 			pmap_abort_ptp(pmap, va, mpte);
7770 		return (NULL);
7771 	}
7772 
7773 	/*
7774 	 * Increment counters
7775 	 */
7776 	pmap_resident_count_adj(pmap, 1);
7777 
7778 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7779 	    pmap_cache_bits(pmap, m->md.pat_mode, false);
7780 	if ((m->oflags & VPO_UNMANAGED) == 0)
7781 		newpte |= PG_MANAGED;
7782 	if ((prot & VM_PROT_EXECUTE) == 0)
7783 		newpte |= pg_nx;
7784 	if (va < VM_MAXUSER_ADDRESS)
7785 		newpte |= PG_U | pmap_pkru_get(pmap, va);
7786 	pte_store(pte, newpte);
7787 
7788 #if VM_NRESERVLEVEL > 0
7789 	/*
7790 	 * If both the PTP and the reservation are fully populated, then
7791 	 * attempt promotion.
7792 	 */
7793 	if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
7794 	    (mpte == NULL || mpte->ref_count == NPTEPG) &&
7795 	    (m->flags & PG_FICTITIOUS) == 0 &&
7796 	    vm_reserv_level_iffullpop(m) == 0) {
7797 		if (pde == NULL)
7798 			pde = pmap_pde(pmap, va);
7799 
7800 		/*
7801 		 * If promotion succeeds, then the next call to this function
7802 		 * should not be given the unmapped PTP as a hint.
7803 		 */
7804 		if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
7805 			mpte = NULL;
7806 	}
7807 #endif
7808 
7809 	return (mpte);
7810 }
7811 
7812 /*
7813  * Make a temporary mapping for a physical address.  This is only intended
7814  * to be used for panic dumps.
7815  */
7816 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)7817 pmap_kenter_temporary(vm_paddr_t pa, int i)
7818 {
7819 	vm_offset_t va;
7820 
7821 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7822 	pmap_kenter(va, pa);
7823 	pmap_invlpg(kernel_pmap, va);
7824 	return ((void *)crashdumpmap);
7825 }
7826 
7827 /*
7828  * This code maps large physical mmap regions into the
7829  * processor address space.  Note that some shortcuts
7830  * are taken, but the code works.
7831  */
7832 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)7833 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7834     vm_pindex_t pindex, vm_size_t size)
7835 {
7836 	struct pctrie_iter pages;
7837 	pd_entry_t *pde;
7838 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7839 	vm_paddr_t pa, ptepa;
7840 	vm_page_t p, pdpg;
7841 	int pat_mode;
7842 
7843 	PG_A = pmap_accessed_bit(pmap);
7844 	PG_M = pmap_modified_bit(pmap);
7845 	PG_V = pmap_valid_bit(pmap);
7846 	PG_RW = pmap_rw_bit(pmap);
7847 
7848 	VM_OBJECT_ASSERT_WLOCKED(object);
7849 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7850 	    ("pmap_object_init_pt: non-device object"));
7851 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7852 		if (!pmap_ps_enabled(pmap))
7853 			return;
7854 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
7855 			return;
7856 		vm_page_iter_init(&pages, object);
7857 		p = vm_radix_iter_lookup(&pages, pindex);
7858 		KASSERT(vm_page_all_valid(p),
7859 		    ("pmap_object_init_pt: invalid page %p", p));
7860 		pat_mode = p->md.pat_mode;
7861 
7862 		/*
7863 		 * Abort the mapping if the first page is not physically
7864 		 * aligned to a 2MB page boundary.
7865 		 */
7866 		ptepa = VM_PAGE_TO_PHYS(p);
7867 		if (ptepa & (NBPDR - 1))
7868 			return;
7869 
7870 		/*
7871 		 * Skip the first page.  Abort the mapping if the rest of
7872 		 * the pages are not physically contiguous or have differing
7873 		 * memory attributes.
7874 		 */
7875 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7876 		    pa += PAGE_SIZE) {
7877 			p = vm_radix_iter_next(&pages);
7878 			KASSERT(vm_page_all_valid(p),
7879 			    ("pmap_object_init_pt: invalid page %p", p));
7880 			if (pa != VM_PAGE_TO_PHYS(p) ||
7881 			    pat_mode != p->md.pat_mode)
7882 				return;
7883 		}
7884 
7885 		/*
7886 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
7887 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7888 		 * will not affect the termination of this loop.
7889 		 */
7890 		PMAP_LOCK(pmap);
7891 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
7892 		    pa < ptepa + size; pa += NBPDR) {
7893 			pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7894 			if (pde == NULL) {
7895 				/*
7896 				 * The creation of mappings below is only an
7897 				 * optimization.  If a page directory page
7898 				 * cannot be allocated without blocking,
7899 				 * continue on to the next mapping rather than
7900 				 * blocking.
7901 				 */
7902 				addr += NBPDR;
7903 				continue;
7904 			}
7905 			if ((*pde & PG_V) == 0) {
7906 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
7907 				    PG_U | PG_RW | PG_V);
7908 				pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7909 				counter_u64_add(pmap_pde_mappings, 1);
7910 			} else {
7911 				/* Continue on if the PDE is already valid. */
7912 				pdpg->ref_count--;
7913 				KASSERT(pdpg->ref_count > 0,
7914 				    ("pmap_object_init_pt: missing reference "
7915 				    "to page directory page, va: 0x%lx", addr));
7916 			}
7917 			addr += NBPDR;
7918 		}
7919 		PMAP_UNLOCK(pmap);
7920 	}
7921 }
7922 
7923 /*
7924  *	Clear the wired attribute from the mappings for the specified range of
7925  *	addresses in the given pmap.  Every valid mapping within that range
7926  *	must have the wired attribute set.  In contrast, invalid mappings
7927  *	cannot have the wired attribute set, so they are ignored.
7928  *
7929  *	The wired attribute of the page table entry is not a hardware
7930  *	feature, so there is no need to invalidate any TLB entries.
7931  *	Since pmap_demote_pde() for the wired entry must never fail,
7932  *	pmap_delayed_invl_start()/finish() calls around the
7933  *	function are not needed.
7934  */
7935 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)7936 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7937 {
7938 	vm_offset_t va_next;
7939 	pml4_entry_t *pml4e;
7940 	pdp_entry_t *pdpe;
7941 	pd_entry_t *pde;
7942 	pt_entry_t *pte, PG_V, PG_G __diagused;
7943 
7944 	PG_V = pmap_valid_bit(pmap);
7945 	PG_G = pmap_global_bit(pmap);
7946 	PMAP_LOCK(pmap);
7947 	for (; sva < eva; sva = va_next) {
7948 		pml4e = pmap_pml4e(pmap, sva);
7949 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7950 			va_next = (sva + NBPML4) & ~PML4MASK;
7951 			if (va_next < sva)
7952 				va_next = eva;
7953 			continue;
7954 		}
7955 
7956 		va_next = (sva + NBPDP) & ~PDPMASK;
7957 		if (va_next < sva)
7958 			va_next = eva;
7959 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
7960 		if ((*pdpe & PG_V) == 0)
7961 			continue;
7962 		if ((*pdpe & PG_PS) != 0) {
7963 			KASSERT(va_next <= eva,
7964 			    ("partial update of non-transparent 1G mapping "
7965 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7966 			    *pdpe, sva, eva, va_next));
7967 			MPASS(pmap != kernel_pmap); /* XXXKIB */
7968 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
7969 			atomic_clear_long(pdpe, PG_W);
7970 			pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
7971 			continue;
7972 		}
7973 
7974 		va_next = (sva + NBPDR) & ~PDRMASK;
7975 		if (va_next < sva)
7976 			va_next = eva;
7977 		pde = pmap_pdpe_to_pde(pdpe, sva);
7978 		if ((*pde & PG_V) == 0)
7979 			continue;
7980 		if ((*pde & PG_PS) != 0) {
7981 			if ((*pde & PG_W) == 0)
7982 				panic("pmap_unwire: pde %#jx is missing PG_W",
7983 				    (uintmax_t)*pde);
7984 
7985 			/*
7986 			 * Are we unwiring the entire large page?  If not,
7987 			 * demote the mapping and fall through.
7988 			 */
7989 			if (sva + NBPDR == va_next && eva >= va_next) {
7990 				atomic_clear_long(pde, PG_W);
7991 				pmap->pm_stats.wired_count -= NBPDR /
7992 				    PAGE_SIZE;
7993 				continue;
7994 			} else if (!pmap_demote_pde(pmap, pde, sva))
7995 				panic("pmap_unwire: demotion failed");
7996 		}
7997 		if (va_next > eva)
7998 			va_next = eva;
7999 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8000 		    sva += PAGE_SIZE) {
8001 			if ((*pte & PG_V) == 0)
8002 				continue;
8003 			if ((*pte & PG_W) == 0)
8004 				panic("pmap_unwire: pte %#jx is missing PG_W",
8005 				    (uintmax_t)*pte);
8006 
8007 			/*
8008 			 * PG_W must be cleared atomically.  Although the pmap
8009 			 * lock synchronizes access to PG_W, another processor
8010 			 * could be setting PG_M and/or PG_A concurrently.
8011 			 */
8012 			atomic_clear_long(pte, PG_W);
8013 			pmap->pm_stats.wired_count--;
8014 		}
8015 	}
8016 	PMAP_UNLOCK(pmap);
8017 }
8018 
8019 /*
8020  *	Copy the range specified by src_addr/len
8021  *	from the source map to the range dst_addr/len
8022  *	in the destination map.
8023  *
8024  *	This routine is only advisory and need not do anything.
8025  */
8026 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)8027 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
8028     vm_offset_t src_addr)
8029 {
8030 	struct rwlock *lock;
8031 	pml4_entry_t *pml4e;
8032 	pdp_entry_t *pdpe;
8033 	pd_entry_t *pde, srcptepaddr;
8034 	pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
8035 	vm_offset_t addr, end_addr, va_next;
8036 	vm_page_t dst_pdpg, dstmpte, srcmpte;
8037 
8038 	if (dst_addr != src_addr)
8039 		return;
8040 
8041 	if (dst_pmap->pm_type != src_pmap->pm_type)
8042 		return;
8043 
8044 	/*
8045 	 * EPT page table entries that require emulation of A/D bits are
8046 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
8047 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
8048 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
8049 	 * implementations flag an EPT misconfiguration for exec-only
8050 	 * mappings we skip this function entirely for emulated pmaps.
8051 	 */
8052 	if (pmap_emulate_ad_bits(dst_pmap))
8053 		return;
8054 
8055 	end_addr = src_addr + len;
8056 	lock = NULL;
8057 	if (dst_pmap < src_pmap) {
8058 		PMAP_LOCK(dst_pmap);
8059 		PMAP_LOCK(src_pmap);
8060 	} else {
8061 		PMAP_LOCK(src_pmap);
8062 		PMAP_LOCK(dst_pmap);
8063 	}
8064 
8065 	PG_A = pmap_accessed_bit(dst_pmap);
8066 	PG_M = pmap_modified_bit(dst_pmap);
8067 	PG_V = pmap_valid_bit(dst_pmap);
8068 
8069 	for (addr = src_addr; addr < end_addr; addr = va_next) {
8070 		KASSERT(addr < UPT_MIN_ADDRESS,
8071 		    ("pmap_copy: invalid to pmap_copy page tables"));
8072 
8073 		pml4e = pmap_pml4e(src_pmap, addr);
8074 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8075 			va_next = (addr + NBPML4) & ~PML4MASK;
8076 			if (va_next < addr)
8077 				va_next = end_addr;
8078 			continue;
8079 		}
8080 
8081 		va_next = (addr + NBPDP) & ~PDPMASK;
8082 		if (va_next < addr)
8083 			va_next = end_addr;
8084 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
8085 		if ((*pdpe & PG_V) == 0)
8086 			continue;
8087 		if ((*pdpe & PG_PS) != 0) {
8088 			KASSERT(va_next <= end_addr,
8089 			    ("partial update of non-transparent 1G mapping "
8090 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8091 			    *pdpe, addr, end_addr, va_next));
8092 			MPASS((addr & PDPMASK) == 0);
8093 			MPASS((*pdpe & PG_MANAGED) == 0);
8094 			srcptepaddr = *pdpe;
8095 			pdpe = pmap_pdpe(dst_pmap, addr);
8096 			if (pdpe == NULL) {
8097 				if (pmap_allocpte_alloc(dst_pmap,
8098 				    pmap_pml4e_pindex(addr), NULL, addr) ==
8099 				    NULL)
8100 					break;
8101 				pdpe = pmap_pdpe(dst_pmap, addr);
8102 			} else {
8103 				pml4e = pmap_pml4e(dst_pmap, addr);
8104 				dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
8105 				dst_pdpg->ref_count++;
8106 			}
8107 			KASSERT(*pdpe == 0,
8108 			    ("1G mapping present in dst pmap "
8109 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8110 			    *pdpe, addr, end_addr, va_next));
8111 			*pdpe = srcptepaddr & ~PG_W;
8112 			pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
8113 			continue;
8114 		}
8115 
8116 		va_next = (addr + NBPDR) & ~PDRMASK;
8117 		if (va_next < addr)
8118 			va_next = end_addr;
8119 
8120 		pde = pmap_pdpe_to_pde(pdpe, addr);
8121 		srcptepaddr = *pde;
8122 		if (srcptepaddr == 0)
8123 			continue;
8124 
8125 		if (srcptepaddr & PG_PS) {
8126 			/*
8127 			 * We can only virtual copy whole superpages.
8128 			 */
8129 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8130 				continue;
8131 			pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8132 			if (pde == NULL)
8133 				break;
8134 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8135 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8136 			    PMAP_ENTER_NORECLAIM, &lock))) {
8137 				/*
8138 				 * We leave the dirty bit unchanged because
8139 				 * managed read/write superpage mappings are
8140 				 * required to be dirty.  However, managed
8141 				 * superpage mappings are not required to
8142 				 * have their accessed bit set, so we clear
8143 				 * it because we don't know if this mapping
8144 				 * will be used.
8145 				 */
8146 				srcptepaddr &= ~PG_W;
8147 				if ((srcptepaddr & PG_MANAGED) != 0)
8148 					srcptepaddr &= ~PG_A;
8149 				*pde = srcptepaddr;
8150 				pmap_resident_count_adj(dst_pmap, NBPDR /
8151 				    PAGE_SIZE);
8152 				counter_u64_add(pmap_pde_mappings, 1);
8153 			} else
8154 				pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8155 			continue;
8156 		}
8157 
8158 		srcptepaddr &= PG_FRAME;
8159 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8160 		KASSERT(srcmpte->ref_count > 0,
8161 		    ("pmap_copy: source page table page is unused"));
8162 
8163 		if (va_next > end_addr)
8164 			va_next = end_addr;
8165 
8166 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8167 		src_pte = &src_pte[pmap_pte_index(addr)];
8168 		dstmpte = NULL;
8169 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8170 			ptetemp = *src_pte;
8171 
8172 			/*
8173 			 * We only virtual copy managed pages.
8174 			 */
8175 			if ((ptetemp & PG_MANAGED) == 0)
8176 				continue;
8177 
8178 			if (dstmpte != NULL) {
8179 				KASSERT(dstmpte->pindex ==
8180 				    pmap_pde_pindex(addr),
8181 				    ("dstmpte pindex/addr mismatch"));
8182 				dstmpte->ref_count++;
8183 			} else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8184 			    NULL)) == NULL)
8185 				goto out;
8186 			dst_pte = (pt_entry_t *)
8187 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8188 			dst_pte = &dst_pte[pmap_pte_index(addr)];
8189 			if (*dst_pte == 0 &&
8190 			    pmap_try_insert_pv_entry(dst_pmap, addr,
8191 			    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8192 				/*
8193 				 * Clear the wired, modified, and accessed
8194 				 * (referenced) bits during the copy.
8195 				 */
8196 				*dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8197 				pmap_resident_count_adj(dst_pmap, 1);
8198 			} else {
8199 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
8200 				goto out;
8201 			}
8202 			/* Have we copied all of the valid mappings? */
8203 			if (dstmpte->ref_count >= srcmpte->ref_count)
8204 				break;
8205 		}
8206 	}
8207 out:
8208 	if (lock != NULL)
8209 		rw_wunlock(lock);
8210 	PMAP_UNLOCK(src_pmap);
8211 	PMAP_UNLOCK(dst_pmap);
8212 }
8213 
8214 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)8215 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8216 {
8217 	int error;
8218 
8219 	if (dst_pmap->pm_type != src_pmap->pm_type ||
8220 	    dst_pmap->pm_type != PT_X86 ||
8221 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8222 		return (0);
8223 	for (;;) {
8224 		if (dst_pmap < src_pmap) {
8225 			PMAP_LOCK(dst_pmap);
8226 			PMAP_LOCK(src_pmap);
8227 		} else {
8228 			PMAP_LOCK(src_pmap);
8229 			PMAP_LOCK(dst_pmap);
8230 		}
8231 		error = pmap_pkru_copy(dst_pmap, src_pmap);
8232 		/* Clean up partial copy on failure due to no memory. */
8233 		if (error == ENOMEM)
8234 			pmap_pkru_deassign_all(dst_pmap);
8235 		PMAP_UNLOCK(src_pmap);
8236 		PMAP_UNLOCK(dst_pmap);
8237 		if (error != ENOMEM)
8238 			break;
8239 		vm_wait(NULL);
8240 	}
8241 	return (error);
8242 }
8243 
8244 /*
8245  * Zero the specified hardware page.
8246  */
8247 void
pmap_zero_page(vm_page_t m)8248 pmap_zero_page(vm_page_t m)
8249 {
8250 	vm_offset_t va;
8251 
8252 #ifdef TSLOG_PAGEZERO
8253 	TSENTER();
8254 #endif
8255 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8256 	pagezero((void *)va);
8257 #ifdef TSLOG_PAGEZERO
8258 	TSEXIT();
8259 #endif
8260 }
8261 
8262 /*
8263  * Zero an area within a single hardware page.  off and size must not
8264  * cover an area beyond a single hardware page.
8265  */
8266 void
pmap_zero_page_area(vm_page_t m,int off,int size)8267 pmap_zero_page_area(vm_page_t m, int off, int size)
8268 {
8269 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8270 
8271 	if (off == 0 && size == PAGE_SIZE)
8272 		pagezero((void *)va);
8273 	else
8274 		bzero((char *)va + off, size);
8275 }
8276 
8277 /*
8278  * Copy 1 specified hardware page to another.
8279  */
8280 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)8281 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8282 {
8283 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8284 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8285 
8286 	pagecopy((void *)src, (void *)dst);
8287 }
8288 
8289 int unmapped_buf_allowed = 1;
8290 
8291 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)8292 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8293     vm_offset_t b_offset, int xfersize)
8294 {
8295 	void *a_cp, *b_cp;
8296 	vm_page_t pages[2];
8297 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8298 	int cnt;
8299 	bool mapped;
8300 
8301 	while (xfersize > 0) {
8302 		a_pg_offset = a_offset & PAGE_MASK;
8303 		pages[0] = ma[a_offset >> PAGE_SHIFT];
8304 		b_pg_offset = b_offset & PAGE_MASK;
8305 		pages[1] = mb[b_offset >> PAGE_SHIFT];
8306 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8307 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8308 		mapped = pmap_map_io_transient(pages, vaddr, 2, false);
8309 		a_cp = (char *)vaddr[0] + a_pg_offset;
8310 		b_cp = (char *)vaddr[1] + b_pg_offset;
8311 		bcopy(a_cp, b_cp, cnt);
8312 		if (__predict_false(mapped))
8313 			pmap_unmap_io_transient(pages, vaddr, 2, false);
8314 		a_offset += cnt;
8315 		b_offset += cnt;
8316 		xfersize -= cnt;
8317 	}
8318 }
8319 
8320 /*
8321  * Returns true if the pmap's pv is one of the first
8322  * 16 pvs linked to from this page.  This count may
8323  * be changed upwards or downwards in the future; it
8324  * is only necessary that true be returned for a small
8325  * subset of pmaps for proper page aging.
8326  */
8327 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)8328 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8329 {
8330 	struct md_page *pvh;
8331 	struct rwlock *lock;
8332 	pv_entry_t pv;
8333 	int loops = 0;
8334 	bool rv;
8335 
8336 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8337 	    ("pmap_page_exists_quick: page %p is not managed", m));
8338 	rv = false;
8339 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8340 	rw_rlock(lock);
8341 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8342 		if (PV_PMAP(pv) == pmap) {
8343 			rv = true;
8344 			break;
8345 		}
8346 		loops++;
8347 		if (loops >= 16)
8348 			break;
8349 	}
8350 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8351 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8352 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8353 			if (PV_PMAP(pv) == pmap) {
8354 				rv = true;
8355 				break;
8356 			}
8357 			loops++;
8358 			if (loops >= 16)
8359 				break;
8360 		}
8361 	}
8362 	rw_runlock(lock);
8363 	return (rv);
8364 }
8365 
8366 /*
8367  *	pmap_page_wired_mappings:
8368  *
8369  *	Return the number of managed mappings to the given physical page
8370  *	that are wired.
8371  */
8372 int
pmap_page_wired_mappings(vm_page_t m)8373 pmap_page_wired_mappings(vm_page_t m)
8374 {
8375 	struct rwlock *lock;
8376 	struct md_page *pvh;
8377 	pmap_t pmap;
8378 	pt_entry_t *pte;
8379 	pv_entry_t pv;
8380 	int count, md_gen, pvh_gen;
8381 
8382 	if ((m->oflags & VPO_UNMANAGED) != 0)
8383 		return (0);
8384 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8385 	rw_rlock(lock);
8386 restart:
8387 	count = 0;
8388 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8389 		pmap = PV_PMAP(pv);
8390 		if (!PMAP_TRYLOCK(pmap)) {
8391 			md_gen = m->md.pv_gen;
8392 			rw_runlock(lock);
8393 			PMAP_LOCK(pmap);
8394 			rw_rlock(lock);
8395 			if (md_gen != m->md.pv_gen) {
8396 				PMAP_UNLOCK(pmap);
8397 				goto restart;
8398 			}
8399 		}
8400 		pte = pmap_pte(pmap, pv->pv_va);
8401 		if ((*pte & PG_W) != 0)
8402 			count++;
8403 		PMAP_UNLOCK(pmap);
8404 	}
8405 	if ((m->flags & PG_FICTITIOUS) == 0) {
8406 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8407 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8408 			pmap = PV_PMAP(pv);
8409 			if (!PMAP_TRYLOCK(pmap)) {
8410 				md_gen = m->md.pv_gen;
8411 				pvh_gen = pvh->pv_gen;
8412 				rw_runlock(lock);
8413 				PMAP_LOCK(pmap);
8414 				rw_rlock(lock);
8415 				if (md_gen != m->md.pv_gen ||
8416 				    pvh_gen != pvh->pv_gen) {
8417 					PMAP_UNLOCK(pmap);
8418 					goto restart;
8419 				}
8420 			}
8421 			pte = pmap_pde(pmap, pv->pv_va);
8422 			if ((*pte & PG_W) != 0)
8423 				count++;
8424 			PMAP_UNLOCK(pmap);
8425 		}
8426 	}
8427 	rw_runlock(lock);
8428 	return (count);
8429 }
8430 
8431 /*
8432  * Returns true if the given page is mapped individually or as part of
8433  * a 2mpage.  Otherwise, returns false.
8434  */
8435 bool
pmap_page_is_mapped(vm_page_t m)8436 pmap_page_is_mapped(vm_page_t m)
8437 {
8438 	struct rwlock *lock;
8439 	bool rv;
8440 
8441 	if ((m->oflags & VPO_UNMANAGED) != 0)
8442 		return (false);
8443 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8444 	rw_rlock(lock);
8445 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8446 	    ((m->flags & PG_FICTITIOUS) == 0 &&
8447 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8448 	rw_runlock(lock);
8449 	return (rv);
8450 }
8451 
8452 /*
8453  * Destroy all managed, non-wired mappings in the given user-space
8454  * pmap.  This pmap cannot be active on any processor besides the
8455  * caller.
8456  *
8457  * This function cannot be applied to the kernel pmap.  Moreover, it
8458  * is not intended for general use.  It is only to be used during
8459  * process termination.  Consequently, it can be implemented in ways
8460  * that make it faster than pmap_remove().  First, it can more quickly
8461  * destroy mappings by iterating over the pmap's collection of PV
8462  * entries, rather than searching the page table.  Second, it doesn't
8463  * have to test and clear the page table entries atomically, because
8464  * no processor is currently accessing the user address space.  In
8465  * particular, a page table entry's dirty bit won't change state once
8466  * this function starts.
8467  *
8468  * Although this function destroys all of the pmap's managed,
8469  * non-wired mappings, it can delay and batch the invalidation of TLB
8470  * entries without calling pmap_delayed_invl_start() and
8471  * pmap_delayed_invl_finish().  Because the pmap is not active on
8472  * any other processor, none of these TLB entries will ever be used
8473  * before their eventual invalidation.  Consequently, there is no need
8474  * for either pmap_remove_all() or pmap_remove_write() to wait for
8475  * that eventual TLB invalidation.
8476  */
8477 void
pmap_remove_pages(pmap_t pmap)8478 pmap_remove_pages(pmap_t pmap)
8479 {
8480 	pd_entry_t ptepde;
8481 	pt_entry_t *pte, tpte;
8482 	pt_entry_t PG_M, PG_RW, PG_V;
8483 	struct spglist free;
8484 	struct pv_chunklist free_chunks[PMAP_MEMDOM];
8485 	vm_page_t m, mpte, mt;
8486 	pv_entry_t pv;
8487 	struct md_page *pvh;
8488 	struct pv_chunk *pc, *npc;
8489 	struct rwlock *lock;
8490 	int64_t bit;
8491 	uint64_t inuse, bitmask;
8492 	int allfree, field, i, idx;
8493 #ifdef PV_STATS
8494 	int freed;
8495 #endif
8496 	bool superpage;
8497 	vm_paddr_t pa;
8498 
8499 	/*
8500 	 * Assert that the given pmap is only active on the current
8501 	 * CPU.  Unfortunately, we cannot block another CPU from
8502 	 * activating the pmap while this function is executing.
8503 	 */
8504 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8505 #ifdef INVARIANTS
8506 	{
8507 		cpuset_t other_cpus;
8508 
8509 		other_cpus = all_cpus;
8510 		critical_enter();
8511 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8512 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8513 		critical_exit();
8514 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8515 	}
8516 #endif
8517 
8518 	lock = NULL;
8519 	PG_M = pmap_modified_bit(pmap);
8520 	PG_V = pmap_valid_bit(pmap);
8521 	PG_RW = pmap_rw_bit(pmap);
8522 
8523 	for (i = 0; i < PMAP_MEMDOM; i++)
8524 		TAILQ_INIT(&free_chunks[i]);
8525 	SLIST_INIT(&free);
8526 	PMAP_LOCK(pmap);
8527 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8528 		allfree = 1;
8529 #ifdef PV_STATS
8530 		freed = 0;
8531 #endif
8532 		for (field = 0; field < _NPCM; field++) {
8533 			inuse = ~pc->pc_map[field] & pc_freemask[field];
8534 			while (inuse != 0) {
8535 				bit = bsfq(inuse);
8536 				bitmask = 1UL << bit;
8537 				idx = field * 64 + bit;
8538 				pv = &pc->pc_pventry[idx];
8539 				inuse &= ~bitmask;
8540 
8541 				pte = pmap_pdpe(pmap, pv->pv_va);
8542 				ptepde = *pte;
8543 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8544 				tpte = *pte;
8545 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
8546 					superpage = false;
8547 					ptepde = tpte;
8548 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8549 					    PG_FRAME);
8550 					pte = &pte[pmap_pte_index(pv->pv_va)];
8551 					tpte = *pte;
8552 				} else {
8553 					/*
8554 					 * Keep track whether 'tpte' is a
8555 					 * superpage explicitly instead of
8556 					 * relying on PG_PS being set.
8557 					 *
8558 					 * This is because PG_PS is numerically
8559 					 * identical to PG_PTE_PAT and thus a
8560 					 * regular page could be mistaken for
8561 					 * a superpage.
8562 					 */
8563 					superpage = true;
8564 				}
8565 
8566 				if ((tpte & PG_V) == 0) {
8567 					panic("bad pte va %lx pte %lx",
8568 					    pv->pv_va, tpte);
8569 				}
8570 
8571 /*
8572  * We cannot remove wired pages from a process' mapping at this time
8573  */
8574 				if (tpte & PG_W) {
8575 					allfree = 0;
8576 					continue;
8577 				}
8578 
8579 				/* Mark free */
8580 				pc->pc_map[field] |= bitmask;
8581 
8582 				/*
8583 				 * Because this pmap is not active on other
8584 				 * processors, the dirty bit cannot have
8585 				 * changed state since we last loaded pte.
8586 				 */
8587 				pte_clear(pte);
8588 
8589 				if (superpage)
8590 					pa = tpte & PG_PS_FRAME;
8591 				else
8592 					pa = tpte & PG_FRAME;
8593 
8594 				m = PHYS_TO_VM_PAGE(pa);
8595 				KASSERT(m->phys_addr == pa,
8596 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8597 				    m, (uintmax_t)m->phys_addr,
8598 				    (uintmax_t)tpte));
8599 
8600 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8601 				    m < &vm_page_array[vm_page_array_size],
8602 				    ("pmap_remove_pages: bad tpte %#jx",
8603 				    (uintmax_t)tpte));
8604 
8605 				/*
8606 				 * Update the vm_page_t clean/reference bits.
8607 				 */
8608 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8609 					if (superpage) {
8610 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8611 							vm_page_dirty(mt);
8612 					} else
8613 						vm_page_dirty(m);
8614 				}
8615 
8616 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8617 
8618 				if (superpage) {
8619 					pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8620 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8621 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8622 					pvh->pv_gen++;
8623 					if (TAILQ_EMPTY(&pvh->pv_list)) {
8624 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8625 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8626 							    TAILQ_EMPTY(&mt->md.pv_list))
8627 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
8628 					}
8629 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8630 					if (mpte != NULL) {
8631 						KASSERT(vm_page_any_valid(mpte),
8632 						    ("pmap_remove_pages: pte page not promoted"));
8633 						pmap_pt_page_count_adj(pmap, -1);
8634 						KASSERT(mpte->ref_count == NPTEPG,
8635 						    ("pmap_remove_pages: pte page reference count error"));
8636 						mpte->ref_count = 0;
8637 						pmap_add_delayed_free_list(mpte, &free, false);
8638 					}
8639 				} else {
8640 					pmap_resident_count_adj(pmap, -1);
8641 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8642 					m->md.pv_gen++;
8643 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8644 					    TAILQ_EMPTY(&m->md.pv_list) &&
8645 					    (m->flags & PG_FICTITIOUS) == 0) {
8646 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8647 						if (TAILQ_EMPTY(&pvh->pv_list))
8648 							vm_page_aflag_clear(m, PGA_WRITEABLE);
8649 					}
8650 				}
8651 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8652 #ifdef PV_STATS
8653 				freed++;
8654 #endif
8655 			}
8656 		}
8657 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
8658 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
8659 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
8660 		if (allfree) {
8661 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8662 			TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8663 		}
8664 	}
8665 	if (lock != NULL)
8666 		rw_wunlock(lock);
8667 	pmap_invalidate_all(pmap);
8668 	pmap_pkru_deassign_all(pmap);
8669 	free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8670 	PMAP_UNLOCK(pmap);
8671 	vm_page_free_pages_toq(&free, true);
8672 }
8673 
8674 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)8675 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
8676 {
8677 	struct rwlock *lock;
8678 	pv_entry_t pv;
8679 	struct md_page *pvh;
8680 	pt_entry_t *pte, mask;
8681 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8682 	pmap_t pmap;
8683 	int md_gen, pvh_gen;
8684 	bool rv;
8685 
8686 	rv = false;
8687 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8688 	rw_rlock(lock);
8689 restart:
8690 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8691 		pmap = PV_PMAP(pv);
8692 		if (!PMAP_TRYLOCK(pmap)) {
8693 			md_gen = m->md.pv_gen;
8694 			rw_runlock(lock);
8695 			PMAP_LOCK(pmap);
8696 			rw_rlock(lock);
8697 			if (md_gen != m->md.pv_gen) {
8698 				PMAP_UNLOCK(pmap);
8699 				goto restart;
8700 			}
8701 		}
8702 		pte = pmap_pte(pmap, pv->pv_va);
8703 		mask = 0;
8704 		if (modified) {
8705 			PG_M = pmap_modified_bit(pmap);
8706 			PG_RW = pmap_rw_bit(pmap);
8707 			mask |= PG_RW | PG_M;
8708 		}
8709 		if (accessed) {
8710 			PG_A = pmap_accessed_bit(pmap);
8711 			PG_V = pmap_valid_bit(pmap);
8712 			mask |= PG_V | PG_A;
8713 		}
8714 		rv = (*pte & mask) == mask;
8715 		PMAP_UNLOCK(pmap);
8716 		if (rv)
8717 			goto out;
8718 	}
8719 	if ((m->flags & PG_FICTITIOUS) == 0) {
8720 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8721 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8722 			pmap = PV_PMAP(pv);
8723 			if (!PMAP_TRYLOCK(pmap)) {
8724 				md_gen = m->md.pv_gen;
8725 				pvh_gen = pvh->pv_gen;
8726 				rw_runlock(lock);
8727 				PMAP_LOCK(pmap);
8728 				rw_rlock(lock);
8729 				if (md_gen != m->md.pv_gen ||
8730 				    pvh_gen != pvh->pv_gen) {
8731 					PMAP_UNLOCK(pmap);
8732 					goto restart;
8733 				}
8734 			}
8735 			pte = pmap_pde(pmap, pv->pv_va);
8736 			mask = 0;
8737 			if (modified) {
8738 				PG_M = pmap_modified_bit(pmap);
8739 				PG_RW = pmap_rw_bit(pmap);
8740 				mask |= PG_RW | PG_M;
8741 			}
8742 			if (accessed) {
8743 				PG_A = pmap_accessed_bit(pmap);
8744 				PG_V = pmap_valid_bit(pmap);
8745 				mask |= PG_V | PG_A;
8746 			}
8747 			rv = (*pte & mask) == mask;
8748 			PMAP_UNLOCK(pmap);
8749 			if (rv)
8750 				goto out;
8751 		}
8752 	}
8753 out:
8754 	rw_runlock(lock);
8755 	return (rv);
8756 }
8757 
8758 /*
8759  *	pmap_is_modified:
8760  *
8761  *	Return whether or not the specified physical page was modified
8762  *	in any physical maps.
8763  */
8764 bool
pmap_is_modified(vm_page_t m)8765 pmap_is_modified(vm_page_t m)
8766 {
8767 
8768 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8769 	    ("pmap_is_modified: page %p is not managed", m));
8770 
8771 	/*
8772 	 * If the page is not busied then this check is racy.
8773 	 */
8774 	if (!pmap_page_is_write_mapped(m))
8775 		return (false);
8776 	return (pmap_page_test_mappings(m, false, true));
8777 }
8778 
8779 /*
8780  *	pmap_is_prefaultable:
8781  *
8782  *	Return whether or not the specified virtual address is eligible
8783  *	for prefault.
8784  */
8785 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)8786 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8787 {
8788 	pd_entry_t *pde;
8789 	pt_entry_t *pte, PG_V;
8790 	bool rv;
8791 
8792 	PG_V = pmap_valid_bit(pmap);
8793 
8794 	/*
8795 	 * Return true if and only if the PTE for the specified virtual
8796 	 * address is allocated but invalid.
8797 	 */
8798 	rv = false;
8799 	PMAP_LOCK(pmap);
8800 	pde = pmap_pde(pmap, addr);
8801 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8802 		pte = pmap_pde_to_pte(pde, addr);
8803 		rv = (*pte & PG_V) == 0;
8804 	}
8805 	PMAP_UNLOCK(pmap);
8806 	return (rv);
8807 }
8808 
8809 /*
8810  *	pmap_is_referenced:
8811  *
8812  *	Return whether or not the specified physical page was referenced
8813  *	in any physical maps.
8814  */
8815 bool
pmap_is_referenced(vm_page_t m)8816 pmap_is_referenced(vm_page_t m)
8817 {
8818 
8819 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8820 	    ("pmap_is_referenced: page %p is not managed", m));
8821 	return (pmap_page_test_mappings(m, true, false));
8822 }
8823 
8824 /*
8825  * Clear the write and modified bits in each of the given page's mappings.
8826  */
8827 void
pmap_remove_write(vm_page_t m)8828 pmap_remove_write(vm_page_t m)
8829 {
8830 	struct md_page *pvh;
8831 	pmap_t pmap;
8832 	struct rwlock *lock;
8833 	pv_entry_t next_pv, pv;
8834 	pd_entry_t *pde;
8835 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
8836 	vm_offset_t va;
8837 	int pvh_gen, md_gen;
8838 
8839 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8840 	    ("pmap_remove_write: page %p is not managed", m));
8841 
8842 	vm_page_assert_busied(m);
8843 	if (!pmap_page_is_write_mapped(m))
8844 		return;
8845 
8846 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8847 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8848 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
8849 	rw_wlock(lock);
8850 retry:
8851 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8852 		pmap = PV_PMAP(pv);
8853 		if (!PMAP_TRYLOCK(pmap)) {
8854 			pvh_gen = pvh->pv_gen;
8855 			rw_wunlock(lock);
8856 			PMAP_LOCK(pmap);
8857 			rw_wlock(lock);
8858 			if (pvh_gen != pvh->pv_gen) {
8859 				PMAP_UNLOCK(pmap);
8860 				goto retry;
8861 			}
8862 		}
8863 		PG_RW = pmap_rw_bit(pmap);
8864 		va = pv->pv_va;
8865 		pde = pmap_pde(pmap, va);
8866 		if ((*pde & PG_RW) != 0)
8867 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8868 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8869 		    ("inconsistent pv lock %p %p for page %p",
8870 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8871 		PMAP_UNLOCK(pmap);
8872 	}
8873 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8874 		pmap = PV_PMAP(pv);
8875 		if (!PMAP_TRYLOCK(pmap)) {
8876 			pvh_gen = pvh->pv_gen;
8877 			md_gen = m->md.pv_gen;
8878 			rw_wunlock(lock);
8879 			PMAP_LOCK(pmap);
8880 			rw_wlock(lock);
8881 			if (pvh_gen != pvh->pv_gen ||
8882 			    md_gen != m->md.pv_gen) {
8883 				PMAP_UNLOCK(pmap);
8884 				goto retry;
8885 			}
8886 		}
8887 		PG_M = pmap_modified_bit(pmap);
8888 		PG_RW = pmap_rw_bit(pmap);
8889 		pde = pmap_pde(pmap, pv->pv_va);
8890 		KASSERT((*pde & PG_PS) == 0,
8891 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
8892 		    m));
8893 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8894 		oldpte = *pte;
8895 		if (oldpte & PG_RW) {
8896 			while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8897 			    ~(PG_RW | PG_M)))
8898 				cpu_spinwait();
8899 			if ((oldpte & PG_M) != 0)
8900 				vm_page_dirty(m);
8901 			pmap_invalidate_page(pmap, pv->pv_va);
8902 		}
8903 		PMAP_UNLOCK(pmap);
8904 	}
8905 	rw_wunlock(lock);
8906 	vm_page_aflag_clear(m, PGA_WRITEABLE);
8907 	pmap_delayed_invl_wait(m);
8908 }
8909 
8910 /*
8911  *	pmap_ts_referenced:
8912  *
8913  *	Return a count of reference bits for a page, clearing those bits.
8914  *	It is not necessary for every reference bit to be cleared, but it
8915  *	is necessary that 0 only be returned when there are truly no
8916  *	reference bits set.
8917  *
8918  *	As an optimization, update the page's dirty field if a modified bit is
8919  *	found while counting reference bits.  This opportunistic update can be
8920  *	performed at low cost and can eliminate the need for some future calls
8921  *	to pmap_is_modified().  However, since this function stops after
8922  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8923  *	dirty pages.  Those dirty pages will only be detected by a future call
8924  *	to pmap_is_modified().
8925  *
8926  *	A DI block is not needed within this function, because
8927  *	invalidations are performed before the PV list lock is
8928  *	released.
8929  */
8930 int
pmap_ts_referenced(vm_page_t m)8931 pmap_ts_referenced(vm_page_t m)
8932 {
8933 	struct md_page *pvh;
8934 	pv_entry_t pv, pvf;
8935 	pmap_t pmap;
8936 	struct rwlock *lock;
8937 	pd_entry_t oldpde, *pde;
8938 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
8939 	vm_offset_t va;
8940 	vm_paddr_t pa;
8941 	int cleared, md_gen, not_cleared, pvh_gen;
8942 	struct spglist free;
8943 	bool demoted;
8944 
8945 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8946 	    ("pmap_ts_referenced: page %p is not managed", m));
8947 	SLIST_INIT(&free);
8948 	cleared = 0;
8949 	pa = VM_PAGE_TO_PHYS(m);
8950 	lock = PHYS_TO_PV_LIST_LOCK(pa);
8951 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
8952 	rw_wlock(lock);
8953 retry:
8954 	not_cleared = 0;
8955 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
8956 		goto small_mappings;
8957 	pv = pvf;
8958 	do {
8959 		if (pvf == NULL)
8960 			pvf = pv;
8961 		pmap = PV_PMAP(pv);
8962 		if (!PMAP_TRYLOCK(pmap)) {
8963 			pvh_gen = pvh->pv_gen;
8964 			rw_wunlock(lock);
8965 			PMAP_LOCK(pmap);
8966 			rw_wlock(lock);
8967 			if (pvh_gen != pvh->pv_gen) {
8968 				PMAP_UNLOCK(pmap);
8969 				goto retry;
8970 			}
8971 		}
8972 		PG_A = pmap_accessed_bit(pmap);
8973 		PG_M = pmap_modified_bit(pmap);
8974 		PG_RW = pmap_rw_bit(pmap);
8975 		va = pv->pv_va;
8976 		pde = pmap_pde(pmap, pv->pv_va);
8977 		oldpde = *pde;
8978 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8979 			/*
8980 			 * Although "oldpde" is mapping a 2MB page, because
8981 			 * this function is called at a 4KB page granularity,
8982 			 * we only update the 4KB page under test.
8983 			 */
8984 			vm_page_dirty(m);
8985 		}
8986 		if ((oldpde & PG_A) != 0) {
8987 			/*
8988 			 * Since this reference bit is shared by 512 4KB
8989 			 * pages, it should not be cleared every time it is
8990 			 * tested.  Apply a simple "hash" function on the
8991 			 * physical page number, the virtual superpage number,
8992 			 * and the pmap address to select one 4KB page out of
8993 			 * the 512 on which testing the reference bit will
8994 			 * result in clearing that reference bit.  This
8995 			 * function is designed to avoid the selection of the
8996 			 * same 4KB page for every 2MB page mapping.
8997 			 *
8998 			 * On demotion, a mapping that hasn't been referenced
8999 			 * is simply destroyed.  To avoid the possibility of a
9000 			 * subsequent page fault on a demoted wired mapping,
9001 			 * always leave its reference bit set.  Moreover,
9002 			 * since the superpage is wired, the current state of
9003 			 * its reference bit won't affect page replacement.
9004 			 */
9005 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
9006 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
9007 			    (oldpde & PG_W) == 0) {
9008 				if (safe_to_clear_referenced(pmap, oldpde)) {
9009 					atomic_clear_long(pde, PG_A);
9010 					pmap_invalidate_page(pmap, pv->pv_va);
9011 					demoted = false;
9012 				} else if (pmap_demote_pde_locked(pmap, pde,
9013 				    pv->pv_va, &lock)) {
9014 					/*
9015 					 * Remove the mapping to a single page
9016 					 * so that a subsequent access may
9017 					 * repromote.  Since the underlying
9018 					 * page table page is fully populated,
9019 					 * this removal never frees a page
9020 					 * table page.
9021 					 */
9022 					demoted = true;
9023 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
9024 					    PG_PS_FRAME);
9025 					pte = pmap_pde_to_pte(pde, va);
9026 					pmap_remove_pte(pmap, pte, va, *pde,
9027 					    NULL, &lock);
9028 					pmap_invalidate_page(pmap, va);
9029 				} else
9030 					demoted = true;
9031 
9032 				if (demoted) {
9033 					/*
9034 					 * The superpage mapping was removed
9035 					 * entirely and therefore 'pv' is no
9036 					 * longer valid.
9037 					 */
9038 					if (pvf == pv)
9039 						pvf = NULL;
9040 					pv = NULL;
9041 				}
9042 				cleared++;
9043 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9044 				    ("inconsistent pv lock %p %p for page %p",
9045 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9046 			} else
9047 				not_cleared++;
9048 		}
9049 		PMAP_UNLOCK(pmap);
9050 		/* Rotate the PV list if it has more than one entry. */
9051 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9052 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
9053 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
9054 			pvh->pv_gen++;
9055 		}
9056 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
9057 			goto out;
9058 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
9059 small_mappings:
9060 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
9061 		goto out;
9062 	pv = pvf;
9063 	do {
9064 		if (pvf == NULL)
9065 			pvf = pv;
9066 		pmap = PV_PMAP(pv);
9067 		if (!PMAP_TRYLOCK(pmap)) {
9068 			pvh_gen = pvh->pv_gen;
9069 			md_gen = m->md.pv_gen;
9070 			rw_wunlock(lock);
9071 			PMAP_LOCK(pmap);
9072 			rw_wlock(lock);
9073 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9074 				PMAP_UNLOCK(pmap);
9075 				goto retry;
9076 			}
9077 		}
9078 		PG_A = pmap_accessed_bit(pmap);
9079 		PG_M = pmap_modified_bit(pmap);
9080 		PG_RW = pmap_rw_bit(pmap);
9081 		pde = pmap_pde(pmap, pv->pv_va);
9082 		KASSERT((*pde & PG_PS) == 0,
9083 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
9084 		    m));
9085 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9086 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9087 			vm_page_dirty(m);
9088 		if ((*pte & PG_A) != 0) {
9089 			if (safe_to_clear_referenced(pmap, *pte)) {
9090 				atomic_clear_long(pte, PG_A);
9091 				pmap_invalidate_page(pmap, pv->pv_va);
9092 				cleared++;
9093 			} else if ((*pte & PG_W) == 0) {
9094 				/*
9095 				 * Wired pages cannot be paged out so
9096 				 * doing accessed bit emulation for
9097 				 * them is wasted effort. We do the
9098 				 * hard work for unwired pages only.
9099 				 */
9100 				pmap_remove_pte(pmap, pte, pv->pv_va,
9101 				    *pde, &free, &lock);
9102 				pmap_invalidate_page(pmap, pv->pv_va);
9103 				cleared++;
9104 				if (pvf == pv)
9105 					pvf = NULL;
9106 				pv = NULL;
9107 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9108 				    ("inconsistent pv lock %p %p for page %p",
9109 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9110 			} else
9111 				not_cleared++;
9112 		}
9113 		PMAP_UNLOCK(pmap);
9114 		/* Rotate the PV list if it has more than one entry. */
9115 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9116 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9117 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9118 			m->md.pv_gen++;
9119 		}
9120 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9121 	    not_cleared < PMAP_TS_REFERENCED_MAX);
9122 out:
9123 	rw_wunlock(lock);
9124 	vm_page_free_pages_toq(&free, true);
9125 	return (cleared + not_cleared);
9126 }
9127 
9128 /*
9129  *	Apply the given advice to the specified range of addresses within the
9130  *	given pmap.  Depending on the advice, clear the referenced and/or
9131  *	modified flags in each mapping and set the mapped page's dirty field.
9132  */
9133 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)9134 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9135 {
9136 	struct rwlock *lock;
9137 	pml4_entry_t *pml4e;
9138 	pdp_entry_t *pdpe;
9139 	pd_entry_t oldpde, *pde;
9140 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9141 	vm_offset_t va, va_next;
9142 	vm_page_t m;
9143 	bool anychanged;
9144 
9145 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
9146 		return;
9147 
9148 	/*
9149 	 * A/D bit emulation requires an alternate code path when clearing
9150 	 * the modified and accessed bits below. Since this function is
9151 	 * advisory in nature we skip it entirely for pmaps that require
9152 	 * A/D bit emulation.
9153 	 */
9154 	if (pmap_emulate_ad_bits(pmap))
9155 		return;
9156 
9157 	PG_A = pmap_accessed_bit(pmap);
9158 	PG_G = pmap_global_bit(pmap);
9159 	PG_M = pmap_modified_bit(pmap);
9160 	PG_V = pmap_valid_bit(pmap);
9161 	PG_RW = pmap_rw_bit(pmap);
9162 	anychanged = false;
9163 	pmap_delayed_invl_start();
9164 	PMAP_LOCK(pmap);
9165 	for (; sva < eva; sva = va_next) {
9166 		pml4e = pmap_pml4e(pmap, sva);
9167 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9168 			va_next = (sva + NBPML4) & ~PML4MASK;
9169 			if (va_next < sva)
9170 				va_next = eva;
9171 			continue;
9172 		}
9173 
9174 		va_next = (sva + NBPDP) & ~PDPMASK;
9175 		if (va_next < sva)
9176 			va_next = eva;
9177 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9178 		if ((*pdpe & PG_V) == 0)
9179 			continue;
9180 		if ((*pdpe & PG_PS) != 0)
9181 			continue;
9182 
9183 		va_next = (sva + NBPDR) & ~PDRMASK;
9184 		if (va_next < sva)
9185 			va_next = eva;
9186 		pde = pmap_pdpe_to_pde(pdpe, sva);
9187 		oldpde = *pde;
9188 		if ((oldpde & PG_V) == 0)
9189 			continue;
9190 		else if ((oldpde & PG_PS) != 0) {
9191 			if ((oldpde & PG_MANAGED) == 0)
9192 				continue;
9193 			lock = NULL;
9194 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9195 				if (lock != NULL)
9196 					rw_wunlock(lock);
9197 
9198 				/*
9199 				 * The large page mapping was destroyed.
9200 				 */
9201 				continue;
9202 			}
9203 
9204 			/*
9205 			 * Unless the page mappings are wired, remove the
9206 			 * mapping to a single page so that a subsequent
9207 			 * access may repromote.  Choosing the last page
9208 			 * within the address range [sva, min(va_next, eva))
9209 			 * generally results in more repromotions.  Since the
9210 			 * underlying page table page is fully populated, this
9211 			 * removal never frees a page table page.
9212 			 */
9213 			if ((oldpde & PG_W) == 0) {
9214 				va = eva;
9215 				if (va > va_next)
9216 					va = va_next;
9217 				va -= PAGE_SIZE;
9218 				KASSERT(va >= sva,
9219 				    ("pmap_advise: no address gap"));
9220 				pte = pmap_pde_to_pte(pde, va);
9221 				KASSERT((*pte & PG_V) != 0,
9222 				    ("pmap_advise: invalid PTE"));
9223 				pmap_remove_pte(pmap, pte, va, *pde, NULL,
9224 				    &lock);
9225 				anychanged = true;
9226 			}
9227 			if (lock != NULL)
9228 				rw_wunlock(lock);
9229 		}
9230 		if (va_next > eva)
9231 			va_next = eva;
9232 		va = va_next;
9233 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9234 		    sva += PAGE_SIZE) {
9235 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9236 				goto maybe_invlrng;
9237 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9238 				if (advice == MADV_DONTNEED) {
9239 					/*
9240 					 * Future calls to pmap_is_modified()
9241 					 * can be avoided by making the page
9242 					 * dirty now.
9243 					 */
9244 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9245 					vm_page_dirty(m);
9246 				}
9247 				atomic_clear_long(pte, PG_M | PG_A);
9248 			} else if ((*pte & PG_A) != 0)
9249 				atomic_clear_long(pte, PG_A);
9250 			else
9251 				goto maybe_invlrng;
9252 
9253 			if ((*pte & PG_G) != 0) {
9254 				if (va == va_next)
9255 					va = sva;
9256 			} else
9257 				anychanged = true;
9258 			continue;
9259 maybe_invlrng:
9260 			if (va != va_next) {
9261 				pmap_invalidate_range(pmap, va, sva);
9262 				va = va_next;
9263 			}
9264 		}
9265 		if (va != va_next)
9266 			pmap_invalidate_range(pmap, va, sva);
9267 	}
9268 	if (anychanged)
9269 		pmap_invalidate_all(pmap);
9270 	PMAP_UNLOCK(pmap);
9271 	pmap_delayed_invl_finish();
9272 }
9273 
9274 /*
9275  *	Clear the modify bits on the specified physical page.
9276  */
9277 void
pmap_clear_modify(vm_page_t m)9278 pmap_clear_modify(vm_page_t m)
9279 {
9280 	struct md_page *pvh;
9281 	pmap_t pmap;
9282 	pv_entry_t next_pv, pv;
9283 	pd_entry_t oldpde, *pde;
9284 	pt_entry_t *pte, PG_M, PG_RW;
9285 	struct rwlock *lock;
9286 	vm_offset_t va;
9287 	int md_gen, pvh_gen;
9288 
9289 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9290 	    ("pmap_clear_modify: page %p is not managed", m));
9291 	vm_page_assert_busied(m);
9292 
9293 	if (!pmap_page_is_write_mapped(m))
9294 		return;
9295 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9296 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
9297 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9298 	rw_wlock(lock);
9299 restart:
9300 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9301 		pmap = PV_PMAP(pv);
9302 		if (!PMAP_TRYLOCK(pmap)) {
9303 			pvh_gen = pvh->pv_gen;
9304 			rw_wunlock(lock);
9305 			PMAP_LOCK(pmap);
9306 			rw_wlock(lock);
9307 			if (pvh_gen != pvh->pv_gen) {
9308 				PMAP_UNLOCK(pmap);
9309 				goto restart;
9310 			}
9311 		}
9312 		PG_M = pmap_modified_bit(pmap);
9313 		PG_RW = pmap_rw_bit(pmap);
9314 		va = pv->pv_va;
9315 		pde = pmap_pde(pmap, va);
9316 		oldpde = *pde;
9317 		/* If oldpde has PG_RW set, then it also has PG_M set. */
9318 		if ((oldpde & PG_RW) != 0 &&
9319 		    pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9320 		    (oldpde & PG_W) == 0) {
9321 			/*
9322 			 * Write protect the mapping to a single page so that
9323 			 * a subsequent write access may repromote.
9324 			 */
9325 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9326 			pte = pmap_pde_to_pte(pde, va);
9327 			atomic_clear_long(pte, PG_M | PG_RW);
9328 			vm_page_dirty(m);
9329 			pmap_invalidate_page(pmap, va);
9330 		}
9331 		PMAP_UNLOCK(pmap);
9332 	}
9333 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9334 		pmap = PV_PMAP(pv);
9335 		if (!PMAP_TRYLOCK(pmap)) {
9336 			md_gen = m->md.pv_gen;
9337 			pvh_gen = pvh->pv_gen;
9338 			rw_wunlock(lock);
9339 			PMAP_LOCK(pmap);
9340 			rw_wlock(lock);
9341 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9342 				PMAP_UNLOCK(pmap);
9343 				goto restart;
9344 			}
9345 		}
9346 		PG_M = pmap_modified_bit(pmap);
9347 		PG_RW = pmap_rw_bit(pmap);
9348 		pde = pmap_pde(pmap, pv->pv_va);
9349 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9350 		    " a 2mpage in page %p's pv list", m));
9351 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9352 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9353 			atomic_clear_long(pte, PG_M);
9354 			pmap_invalidate_page(pmap, pv->pv_va);
9355 		}
9356 		PMAP_UNLOCK(pmap);
9357 	}
9358 	rw_wunlock(lock);
9359 }
9360 
9361 /*
9362  * Miscellaneous support routines follow
9363  */
9364 
9365 /* Adjust the properties for a leaf page table entry. */
9366 static __inline void
pmap_pte_props(pt_entry_t * pte,u_long bits,u_long mask)9367 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9368 {
9369 	u_long opte, npte;
9370 
9371 	opte = *(u_long *)pte;
9372 	do {
9373 		npte = opte & ~mask;
9374 		npte |= bits;
9375 	} while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9376 	    npte));
9377 }
9378 
9379 /*
9380  * Map a set of physical memory pages into the kernel virtual
9381  * address space. Return a pointer to where it is mapped. This
9382  * routine is intended to be used for mapping device memory,
9383  * NOT real memory.
9384  */
9385 static void *
pmap_mapdev_internal(vm_paddr_t pa,vm_size_t size,int mode,int flags)9386 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9387 {
9388 	struct pmap_preinit_mapping *ppim;
9389 	vm_offset_t va, offset;
9390 	vm_size_t tmpsize;
9391 	int i;
9392 
9393 	offset = pa & PAGE_MASK;
9394 	size = round_page(offset + size);
9395 	pa = trunc_page(pa);
9396 
9397 	if (!pmap_initialized) {
9398 		va = 0;
9399 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9400 			ppim = pmap_preinit_mapping + i;
9401 			if (ppim->va == 0) {
9402 				ppim->pa = pa;
9403 				ppim->sz = size;
9404 				ppim->mode = mode;
9405 				ppim->va = virtual_avail;
9406 				virtual_avail += size;
9407 				va = ppim->va;
9408 				break;
9409 			}
9410 		}
9411 		if (va == 0)
9412 			panic("%s: too many preinit mappings", __func__);
9413 	} else {
9414 		/*
9415 		 * If we have a preinit mapping, reuse it.
9416 		 */
9417 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9418 			ppim = pmap_preinit_mapping + i;
9419 			if (ppim->pa == pa && ppim->sz == size &&
9420 			    (ppim->mode == mode ||
9421 			    (flags & MAPDEV_SETATTR) == 0))
9422 				return ((void *)(ppim->va + offset));
9423 		}
9424 		/*
9425 		 * If the specified range of physical addresses fits within
9426 		 * the direct map window, use the direct map.
9427 		 */
9428 		if (pa < dmaplimit && pa + size <= dmaplimit) {
9429 			va = PHYS_TO_DMAP(pa);
9430 			if ((flags & MAPDEV_SETATTR) != 0) {
9431 				PMAP_LOCK(kernel_pmap);
9432 				i = pmap_change_props_locked(va, size,
9433 				    PROT_NONE, mode, flags);
9434 				PMAP_UNLOCK(kernel_pmap);
9435 			} else
9436 				i = 0;
9437 			if (!i)
9438 				return ((void *)(va + offset));
9439 		}
9440 		va = kva_alloc(size);
9441 		if (va == 0)
9442 			panic("%s: Couldn't allocate KVA", __func__);
9443 	}
9444 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9445 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9446 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9447 	if ((flags & MAPDEV_FLUSHCACHE) != 0)
9448 		pmap_invalidate_cache_range(va, va + tmpsize);
9449 	return ((void *)(va + offset));
9450 }
9451 
9452 void *
pmap_mapdev_attr(vm_paddr_t pa,vm_size_t size,int mode)9453 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9454 {
9455 
9456 	return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9457 	    MAPDEV_SETATTR));
9458 }
9459 
9460 void *
pmap_mapdev(vm_paddr_t pa,vm_size_t size)9461 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9462 {
9463 
9464 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9465 }
9466 
9467 void *
pmap_mapdev_pciecfg(vm_paddr_t pa,vm_size_t size)9468 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9469 {
9470 
9471 	return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9472 	    MAPDEV_SETATTR));
9473 }
9474 
9475 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)9476 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9477 {
9478 
9479 	return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9480 	    MAPDEV_FLUSHCACHE));
9481 }
9482 
9483 void
pmap_unmapdev(void * p,vm_size_t size)9484 pmap_unmapdev(void *p, vm_size_t size)
9485 {
9486 	struct pmap_preinit_mapping *ppim;
9487 	vm_offset_t offset, va;
9488 	int i;
9489 
9490 	va = (vm_offset_t)p;
9491 
9492 	/* If we gave a direct map region in pmap_mapdev, do nothing */
9493 	if (va >= kva_layout.dmap_low && va < kva_layout.dmap_high)
9494 		return;
9495 	offset = va & PAGE_MASK;
9496 	size = round_page(offset + size);
9497 	va = trunc_page(va);
9498 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9499 		ppim = pmap_preinit_mapping + i;
9500 		if (ppim->va == va && ppim->sz == size) {
9501 			if (pmap_initialized)
9502 				return;
9503 			ppim->pa = 0;
9504 			ppim->va = 0;
9505 			ppim->sz = 0;
9506 			ppim->mode = 0;
9507 			if (va + size == virtual_avail)
9508 				virtual_avail = va;
9509 			return;
9510 		}
9511 	}
9512 	if (pmap_initialized) {
9513 		pmap_qremove(va, atop(size));
9514 		kva_free(va, size);
9515 	}
9516 }
9517 
9518 /*
9519  * Tries to demote a 1GB page mapping.
9520  */
9521 static bool
pmap_demote_pdpe(pmap_t pmap,pdp_entry_t * pdpe,vm_offset_t va,vm_page_t m)9522 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va, vm_page_t m)
9523 {
9524 	pdp_entry_t newpdpe, oldpdpe;
9525 	pd_entry_t *firstpde, newpde, *pde;
9526 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9527 	vm_paddr_t pdpgpa;
9528 	vm_page_t pdpg;
9529 
9530 	PG_A = pmap_accessed_bit(pmap);
9531 	PG_M = pmap_modified_bit(pmap);
9532 	PG_V = pmap_valid_bit(pmap);
9533 	PG_RW = pmap_rw_bit(pmap);
9534 
9535 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9536 	oldpdpe = *pdpe;
9537 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9538 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9539 	if (m == NULL) {
9540 		pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9541 		    VM_ALLOC_WIRED);
9542 		if (pdpg  == NULL) {
9543 			CTR2(KTR_PMAP,
9544 			    "pmap_demote_pdpe: failure for va %#lx in pmap %p",
9545 			    va, pmap);
9546 			return (false);
9547 		}
9548 	} else {
9549 		pdpg = m;
9550 		pdpg->pindex = va >> PDPSHIFT;
9551 		pmap_pt_page_count_adj(pmap, 1);
9552 	}
9553 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9554 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9555 	newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9556 	KASSERT((oldpdpe & PG_A) != 0,
9557 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9558 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9559 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9560 	newpde = oldpdpe;
9561 
9562 	/*
9563 	 * Initialize the page directory page.
9564 	 */
9565 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9566 		*pde = newpde;
9567 		newpde += NBPDR;
9568 	}
9569 
9570 	/*
9571 	 * Demote the mapping.
9572 	 */
9573 	*pdpe = newpdpe;
9574 
9575 	/*
9576 	 * Invalidate a stale recursive mapping of the page directory page.
9577 	 */
9578 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9579 
9580 	counter_u64_add(pmap_pdpe_demotions, 1);
9581 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9582 	    " in pmap %p", va, pmap);
9583 	return (true);
9584 }
9585 
9586 /*
9587  * Sets the memory attribute for the specified page.
9588  */
9589 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)9590 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9591 {
9592 	if (m->md.pat_mode == ma)
9593 		return;
9594 
9595 	m->md.pat_mode = ma;
9596 
9597 	/*
9598 	 * If "m" is a normal page, update its direct mapping.  This update
9599 	 * can be relied upon to perform any cache operations that are
9600 	 * required for data coherence.
9601 	 */
9602 	if ((m->flags & PG_FICTITIOUS) == 0 &&
9603 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9604 	    m->md.pat_mode))
9605 		panic("memory attribute change on the direct map failed");
9606 }
9607 
9608 void
pmap_page_set_memattr_noflush(vm_page_t m,vm_memattr_t ma)9609 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9610 {
9611 	int error;
9612 
9613 	if (m->md.pat_mode == ma)
9614 		return;
9615 
9616 	m->md.pat_mode = ma;
9617 
9618 	if ((m->flags & PG_FICTITIOUS) != 0)
9619 		return;
9620 	PMAP_LOCK(kernel_pmap);
9621 	error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9622 	    PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9623 	PMAP_UNLOCK(kernel_pmap);
9624 	if (error != 0)
9625 		panic("memory attribute change on the direct map failed");
9626 }
9627 
9628 /*
9629  * Changes the specified virtual address range's memory type to that given by
9630  * the parameter "mode".  The specified virtual address range must be
9631  * completely contained within either the direct map or the kernel map.  If
9632  * the virtual address range is contained within the kernel map, then the
9633  * memory type for each of the corresponding ranges of the direct map is also
9634  * changed.  (The corresponding ranges of the direct map are those ranges that
9635  * map the same physical pages as the specified virtual address range.)  These
9636  * changes to the direct map are necessary because Intel describes the
9637  * behavior of their processors as "undefined" if two or more mappings to the
9638  * same physical page have different memory types.
9639  *
9640  * Returns zero if the change completed successfully, and either EINVAL or
9641  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
9642  * of the virtual address range was not mapped, and ENOMEM is returned if
9643  * there was insufficient memory available to complete the change.  In the
9644  * latter case, the memory type may have been changed on some part of the
9645  * virtual address range or the direct map.
9646  */
9647 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)9648 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9649 {
9650 	int error;
9651 
9652 	PMAP_LOCK(kernel_pmap);
9653 	error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9654 	    MAPDEV_FLUSHCACHE);
9655 	PMAP_UNLOCK(kernel_pmap);
9656 	return (error);
9657 }
9658 
9659 /*
9660  * Changes the specified virtual address range's protections to those
9661  * specified by "prot".  Like pmap_change_attr(), protections for aliases
9662  * in the direct map are updated as well.  Protections on aliasing mappings may
9663  * be a subset of the requested protections; for example, mappings in the direct
9664  * map are never executable.
9665  */
9666 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)9667 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9668 {
9669 	int error;
9670 
9671 	/* Only supported within the kernel map. */
9672 	if (va < kva_layout.km_low)
9673 		return (EINVAL);
9674 
9675 	PMAP_LOCK(kernel_pmap);
9676 	error = pmap_change_props_locked(va, size, prot, -1,
9677 	    MAPDEV_ASSERTVALID);
9678 	PMAP_UNLOCK(kernel_pmap);
9679 	return (error);
9680 }
9681 
9682 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,int flags)9683 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9684     int mode, int flags)
9685 {
9686 	vm_offset_t base, offset, tmpva;
9687 	vm_paddr_t pa_start, pa_end, pa_end1;
9688 	pdp_entry_t *pdpe;
9689 	pd_entry_t *pde, pde_bits, pde_mask;
9690 	pt_entry_t *pte, pte_bits, pte_mask;
9691 	int error;
9692 	bool changed;
9693 
9694 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9695 	base = trunc_page(va);
9696 	offset = va & PAGE_MASK;
9697 	size = round_page(offset + size);
9698 
9699 	/*
9700 	 * Only supported on kernel virtual addresses, including the direct
9701 	 * map but excluding the recursive map.
9702 	 */
9703 	if (base < kva_layout.dmap_low)
9704 		return (EINVAL);
9705 
9706 	/*
9707 	 * Construct our flag sets and masks.  "bits" is the subset of
9708 	 * "mask" that will be set in each modified PTE.
9709 	 *
9710 	 * Mappings in the direct map are never allowed to be executable.
9711 	 */
9712 	pde_bits = pte_bits = 0;
9713 	pde_mask = pte_mask = 0;
9714 	if (mode != -1) {
9715 		pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9716 		pde_mask |= X86_PG_PDE_CACHE;
9717 		pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9718 		pte_mask |= X86_PG_PTE_CACHE;
9719 	}
9720 	if (prot != VM_PROT_NONE) {
9721 		if ((prot & VM_PROT_WRITE) != 0) {
9722 			pde_bits |= X86_PG_RW;
9723 			pte_bits |= X86_PG_RW;
9724 		}
9725 		if ((prot & VM_PROT_EXECUTE) == 0 ||
9726 		    va < kva_layout.km_low) {
9727 			pde_bits |= pg_nx;
9728 			pte_bits |= pg_nx;
9729 		}
9730 		pde_mask |= X86_PG_RW | pg_nx;
9731 		pte_mask |= X86_PG_RW | pg_nx;
9732 	}
9733 
9734 	/*
9735 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
9736 	 * into 4KB pages if required.
9737 	 */
9738 	for (tmpva = base; tmpva < base + size; ) {
9739 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9740 		if (pdpe == NULL || *pdpe == 0) {
9741 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9742 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9743 			return (EINVAL);
9744 		}
9745 		if (*pdpe & PG_PS) {
9746 			/*
9747 			 * If the current 1GB page already has the required
9748 			 * properties, then we need not demote this page.  Just
9749 			 * increment tmpva to the next 1GB page frame.
9750 			 */
9751 			if ((*pdpe & pde_mask) == pde_bits) {
9752 				tmpva = trunc_1gpage(tmpva) + NBPDP;
9753 				continue;
9754 			}
9755 
9756 			/*
9757 			 * If the current offset aligns with a 1GB page frame
9758 			 * and there is at least 1GB left within the range, then
9759 			 * we need not break down this page into 2MB pages.
9760 			 */
9761 			if ((tmpva & PDPMASK) == 0 &&
9762 			    tmpva + PDPMASK < base + size) {
9763 				tmpva += NBPDP;
9764 				continue;
9765 			}
9766 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva, NULL))
9767 				return (ENOMEM);
9768 		}
9769 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9770 		if (*pde == 0) {
9771 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9772 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9773 			return (EINVAL);
9774 		}
9775 		if (*pde & PG_PS) {
9776 			/*
9777 			 * If the current 2MB page already has the required
9778 			 * properties, then we need not demote this page.  Just
9779 			 * increment tmpva to the next 2MB page frame.
9780 			 */
9781 			if ((*pde & pde_mask) == pde_bits) {
9782 				tmpva = trunc_2mpage(tmpva) + NBPDR;
9783 				continue;
9784 			}
9785 
9786 			/*
9787 			 * If the current offset aligns with a 2MB page frame
9788 			 * and there is at least 2MB left within the range, then
9789 			 * we need not break down this page into 4KB pages.
9790 			 */
9791 			if ((tmpva & PDRMASK) == 0 &&
9792 			    tmpva + PDRMASK < base + size) {
9793 				tmpva += NBPDR;
9794 				continue;
9795 			}
9796 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9797 				return (ENOMEM);
9798 		}
9799 		pte = pmap_pde_to_pte(pde, tmpva);
9800 		if (*pte == 0) {
9801 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9802 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9803 			return (EINVAL);
9804 		}
9805 		tmpva += PAGE_SIZE;
9806 	}
9807 	error = 0;
9808 
9809 	/*
9810 	 * Ok, all the pages exist, so run through them updating their
9811 	 * properties if required.
9812 	 */
9813 	changed = false;
9814 	pa_start = pa_end = 0;
9815 	for (tmpva = base; tmpva < base + size; ) {
9816 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9817 		if (*pdpe & PG_PS) {
9818 			if ((*pdpe & pde_mask) != pde_bits) {
9819 				pmap_pte_props(pdpe, pde_bits, pde_mask);
9820 				changed = true;
9821 			}
9822 			if (tmpva >= kva_layout.km_low &&
9823 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
9824 				if (pa_start == pa_end) {
9825 					/* Start physical address run. */
9826 					pa_start = *pdpe & PG_PS_FRAME;
9827 					pa_end = pa_start + NBPDP;
9828 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
9829 					pa_end += NBPDP;
9830 				else {
9831 					/* Run ended, update direct map. */
9832 					error = pmap_change_props_locked(
9833 					    PHYS_TO_DMAP(pa_start),
9834 					    pa_end - pa_start, prot, mode,
9835 					    flags);
9836 					if (error != 0)
9837 						break;
9838 					/* Start physical address run. */
9839 					pa_start = *pdpe & PG_PS_FRAME;
9840 					pa_end = pa_start + NBPDP;
9841 				}
9842 			}
9843 			tmpva = trunc_1gpage(tmpva) + NBPDP;
9844 			continue;
9845 		}
9846 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9847 		if (*pde & PG_PS) {
9848 			if ((*pde & pde_mask) != pde_bits) {
9849 				pmap_pte_props(pde, pde_bits, pde_mask);
9850 				changed = true;
9851 			}
9852 			if (tmpva >= kva_layout.km_low &&
9853 			    (*pde & PG_PS_FRAME) < dmaplimit) {
9854 				if (pa_start == pa_end) {
9855 					/* Start physical address run. */
9856 					pa_start = *pde & PG_PS_FRAME;
9857 					pa_end = pa_start + NBPDR;
9858 				} else if (pa_end == (*pde & PG_PS_FRAME))
9859 					pa_end += NBPDR;
9860 				else {
9861 					/* Run ended, update direct map. */
9862 					error = pmap_change_props_locked(
9863 					    PHYS_TO_DMAP(pa_start),
9864 					    pa_end - pa_start, prot, mode,
9865 					    flags);
9866 					if (error != 0)
9867 						break;
9868 					/* Start physical address run. */
9869 					pa_start = *pde & PG_PS_FRAME;
9870 					pa_end = pa_start + NBPDR;
9871 				}
9872 			}
9873 			tmpva = trunc_2mpage(tmpva) + NBPDR;
9874 		} else {
9875 			pte = pmap_pde_to_pte(pde, tmpva);
9876 			if ((*pte & pte_mask) != pte_bits) {
9877 				pmap_pte_props(pte, pte_bits, pte_mask);
9878 				changed = true;
9879 			}
9880 			if (tmpva >= kva_layout.km_low &&
9881 			    (*pte & PG_FRAME) < dmaplimit) {
9882 				if (pa_start == pa_end) {
9883 					/* Start physical address run. */
9884 					pa_start = *pte & PG_FRAME;
9885 					pa_end = pa_start + PAGE_SIZE;
9886 				} else if (pa_end == (*pte & PG_FRAME))
9887 					pa_end += PAGE_SIZE;
9888 				else {
9889 					/* Run ended, update direct map. */
9890 					error = pmap_change_props_locked(
9891 					    PHYS_TO_DMAP(pa_start),
9892 					    pa_end - pa_start, prot, mode,
9893 					    flags);
9894 					if (error != 0)
9895 						break;
9896 					/* Start physical address run. */
9897 					pa_start = *pte & PG_FRAME;
9898 					pa_end = pa_start + PAGE_SIZE;
9899 				}
9900 			}
9901 			tmpva += PAGE_SIZE;
9902 		}
9903 	}
9904 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9905 		pa_end1 = MIN(pa_end, dmaplimit);
9906 		if (pa_start != pa_end1)
9907 			error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9908 			    pa_end1 - pa_start, prot, mode, flags);
9909 	}
9910 
9911 	/*
9912 	 * Flush CPU caches if required to make sure any data isn't cached that
9913 	 * shouldn't be, etc.
9914 	 */
9915 	if (changed) {
9916 		pmap_invalidate_range(kernel_pmap, base, tmpva);
9917 		if ((flags & MAPDEV_FLUSHCACHE) != 0)
9918 			pmap_invalidate_cache_range(base, tmpva);
9919 	}
9920 	return (error);
9921 }
9922 
9923 /*
9924  * Demotes any mapping within the direct map region that covers more
9925  * than the specified range of physical addresses.  This range's size
9926  * must be a power of two and its starting address must be a multiple
9927  * of its size, which means that any pdp from the mapping is fully
9928  * covered by the range if len > NBPDP.  Since the demotion does not
9929  * change any attributes of the mapping, a TLB invalidation is not
9930  * mandatory.  The caller may, however, request a TLB invalidation.
9931  */
9932 void
pmap_demote_DMAP(vm_paddr_t base,vm_size_t len,bool invalidate)9933 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate)
9934 {
9935 	pdp_entry_t *pdpe;
9936 	pd_entry_t *pde;
9937 	vm_offset_t va;
9938 	vm_page_t m, mpte;
9939 	bool changed, rv __diagused;
9940 
9941 	if (len == 0)
9942 		return;
9943 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9944 	KASSERT((base & (len - 1)) == 0,
9945 	    ("pmap_demote_DMAP: base is not a multiple of len"));
9946 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "pmap_demote_DMAP");
9947 
9948 	if (len < NBPDP && base < dmaplimit) {
9949 		va = PHYS_TO_DMAP(base);
9950 		changed = false;
9951 
9952 		/*
9953 		 * Assume that it is fine to sleep there.
9954 		 * The only existing caller of pmap_demote_DMAP() is the
9955 		 * x86_mr_split_dmap() function.
9956 		 */
9957 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
9958 		if (len < NBPDR) {
9959 			mpte = vm_page_alloc_noobj(VM_ALLOC_WIRED |
9960 			    VM_ALLOC_WAITOK);
9961 		} else
9962 			mpte = NULL;
9963 
9964 		PMAP_LOCK(kernel_pmap);
9965 		pdpe = pmap_pdpe(kernel_pmap, va);
9966 		if ((*pdpe & X86_PG_V) == 0)
9967 			panic("pmap_demote_DMAP: invalid PDPE");
9968 		if ((*pdpe & PG_PS) != 0) {
9969 			rv = pmap_demote_pdpe(kernel_pmap, pdpe, va, m);
9970 			KASSERT(rv, ("pmap_demote_DMAP: PDPE failed"));
9971 			changed = true;
9972 			m = NULL;
9973 		}
9974 		if (len < NBPDR) {
9975 			pde = pmap_pdpe_to_pde(pdpe, va);
9976 			if ((*pde & X86_PG_V) == 0)
9977 				panic("pmap_demote_DMAP: invalid PDE");
9978 			if ((*pde & PG_PS) != 0) {
9979 				mpte->pindex = pmap_pde_pindex(va);
9980 				pmap_pt_page_count_adj(kernel_pmap, 1);
9981 				rv = pmap_demote_pde_mpte(kernel_pmap, pde, va,
9982 				    NULL, mpte);
9983 				KASSERT(rv, ("pmap_demote_DMAP: PDE failed"));
9984 				changed = true;
9985 				mpte = NULL;
9986 			}
9987 		}
9988 		if (changed && invalidate)
9989 			pmap_invalidate_page(kernel_pmap, va);
9990 		PMAP_UNLOCK(kernel_pmap);
9991 		if (m != NULL) {
9992 			vm_page_unwire_noq(m);
9993 			vm_page_free(m);
9994 		}
9995 		if (mpte != NULL) {
9996 			vm_page_unwire_noq(mpte);
9997 			vm_page_free(mpte);
9998 		}
9999 	}
10000 }
10001 
10002 /*
10003  * Perform the pmap work for mincore(2).  If the page is not both referenced and
10004  * modified by this pmap, returns its physical address so that the caller can
10005  * find other mappings.
10006  */
10007 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)10008 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
10009 {
10010 	pdp_entry_t *pdpe;
10011 	pd_entry_t *pdep;
10012 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
10013 	vm_paddr_t pa;
10014 	int val;
10015 
10016 	PG_A = pmap_accessed_bit(pmap);
10017 	PG_M = pmap_modified_bit(pmap);
10018 	PG_V = pmap_valid_bit(pmap);
10019 	PG_RW = pmap_rw_bit(pmap);
10020 
10021 	PMAP_LOCK(pmap);
10022 	pte = 0;
10023 	pa = 0;
10024 	val = 0;
10025 	pdpe = pmap_pdpe(pmap, addr);
10026 	if (pdpe == NULL)
10027 		goto out;
10028 	if ((*pdpe & PG_V) != 0) {
10029 		if ((*pdpe & PG_PS) != 0) {
10030 			pte = *pdpe;
10031 			pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
10032 			    PG_FRAME;
10033 			val = MINCORE_PSIND(2);
10034 		} else {
10035 			pdep = pmap_pde(pmap, addr);
10036 			if (pdep != NULL && (*pdep & PG_V) != 0) {
10037 				if ((*pdep & PG_PS) != 0) {
10038 					pte = *pdep;
10039 			/* Compute the physical address of the 4KB page. */
10040 					pa = ((pte & PG_PS_FRAME) | (addr &
10041 					    PDRMASK)) & PG_FRAME;
10042 					val = MINCORE_PSIND(1);
10043 				} else {
10044 					pte = *pmap_pde_to_pte(pdep, addr);
10045 					pa = pte & PG_FRAME;
10046 					val = 0;
10047 				}
10048 			}
10049 		}
10050 	}
10051 	if ((pte & PG_V) != 0) {
10052 		val |= MINCORE_INCORE;
10053 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
10054 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
10055 		if ((pte & PG_A) != 0)
10056 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
10057 	}
10058 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
10059 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
10060 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
10061 		*pap = pa;
10062 	}
10063 out:
10064 	PMAP_UNLOCK(pmap);
10065 	return (val);
10066 }
10067 
10068 static uint64_t
pmap_pcid_alloc(pmap_t pmap,struct pmap_pcid * pcidp)10069 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
10070 {
10071 	uint32_t gen, new_gen, pcid_next;
10072 
10073 	CRITICAL_ASSERT(curthread);
10074 	gen = PCPU_GET(pcid_gen);
10075 	if (pcidp->pm_pcid == PMAP_PCID_KERN)
10076 		return (pti ? 0 : CR3_PCID_SAVE);
10077 	if (pcidp->pm_gen == gen)
10078 		return (CR3_PCID_SAVE);
10079 	pcid_next = PCPU_GET(pcid_next);
10080 	KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
10081 	    (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
10082 	    ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
10083 	if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
10084 	    (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
10085 		new_gen = gen + 1;
10086 		if (new_gen == 0)
10087 			new_gen = 1;
10088 		PCPU_SET(pcid_gen, new_gen);
10089 		pcid_next = PMAP_PCID_KERN + 1;
10090 	} else {
10091 		new_gen = gen;
10092 	}
10093 	pcidp->pm_pcid = pcid_next;
10094 	pcidp->pm_gen = new_gen;
10095 	PCPU_SET(pcid_next, pcid_next + 1);
10096 	return (0);
10097 }
10098 
10099 static uint64_t
pmap_pcid_alloc_checked(pmap_t pmap,struct pmap_pcid * pcidp)10100 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
10101 {
10102 	uint64_t cached;
10103 
10104 	cached = pmap_pcid_alloc(pmap, pcidp);
10105 	KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
10106 	    ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10107 	KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
10108 	    ("non-kernel pmap pmap %p cpu %d pcid %#x",
10109 	    pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10110 	return (cached);
10111 }
10112 
10113 static void
pmap_activate_sw_pti_post(struct thread * td,pmap_t pmap)10114 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
10115 {
10116 
10117 	PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
10118 	    PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
10119 }
10120 
10121 static void
pmap_activate_sw_pcid_pti(struct thread * td,pmap_t pmap,u_int cpuid)10122 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
10123 {
10124 	pmap_t old_pmap;
10125 	struct pmap_pcid *pcidp, *old_pcidp;
10126 	uint64_t cached, cr3, kcr3, ucr3;
10127 
10128 	KASSERT((read_rflags() & PSL_I) == 0,
10129 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10130 
10131 	/* See the comment in pmap_invalidate_page_pcid(). */
10132 	if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
10133 		PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
10134 		old_pmap = PCPU_GET(curpmap);
10135 		MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
10136 		old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
10137 		old_pcidp->pm_gen = 0;
10138 	}
10139 
10140 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10141 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10142 	cr3 = rcr3();
10143 	if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10144 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
10145 	PCPU_SET(curpmap, pmap);
10146 	kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
10147 	ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
10148 
10149 	if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10150 		PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10151 
10152 	PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10153 	PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10154 	if (cached)
10155 		counter_u64_add(pcid_save_cnt, 1);
10156 
10157 	pmap_activate_sw_pti_post(td, pmap);
10158 }
10159 
10160 static void
pmap_activate_sw_pcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid)10161 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10162     u_int cpuid)
10163 {
10164 	struct pmap_pcid *pcidp;
10165 	uint64_t cached, cr3;
10166 
10167 	KASSERT((read_rflags() & PSL_I) == 0,
10168 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10169 
10170 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10171 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10172 	cr3 = rcr3();
10173 	if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10174 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
10175 	PCPU_SET(curpmap, pmap);
10176 	if (cached)
10177 		counter_u64_add(pcid_save_cnt, 1);
10178 }
10179 
10180 static void
pmap_activate_sw_nopcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid __unused)10181 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10182     u_int cpuid __unused)
10183 {
10184 
10185 	load_cr3(pmap->pm_cr3);
10186 	PCPU_SET(curpmap, pmap);
10187 }
10188 
10189 static void
pmap_activate_sw_nopcid_pti(struct thread * td,pmap_t pmap,u_int cpuid __unused)10190 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10191     u_int cpuid __unused)
10192 {
10193 
10194 	pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10195 	PCPU_SET(kcr3, pmap->pm_cr3);
10196 	PCPU_SET(ucr3, pmap->pm_ucr3);
10197 	pmap_activate_sw_pti_post(td, pmap);
10198 }
10199 
10200 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10201     u_int))
10202 {
10203 
10204 	if (pmap_pcid_enabled && pti)
10205 		return (pmap_activate_sw_pcid_pti);
10206 	else if (pmap_pcid_enabled && !pti)
10207 		return (pmap_activate_sw_pcid_nopti);
10208 	else if (!pmap_pcid_enabled && pti)
10209 		return (pmap_activate_sw_nopcid_pti);
10210 	else /* if (!pmap_pcid_enabled && !pti) */
10211 		return (pmap_activate_sw_nopcid_nopti);
10212 }
10213 
10214 void
pmap_activate_sw(struct thread * td)10215 pmap_activate_sw(struct thread *td)
10216 {
10217 	pmap_t oldpmap, pmap;
10218 	u_int cpuid;
10219 
10220 	oldpmap = PCPU_GET(curpmap);
10221 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
10222 	if (oldpmap == pmap) {
10223 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
10224 			mfence();
10225 		return;
10226 	}
10227 	cpuid = PCPU_GET(cpuid);
10228 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10229 	pmap_activate_sw_mode(td, pmap, cpuid);
10230 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10231 }
10232 
10233 void
pmap_activate(struct thread * td)10234 pmap_activate(struct thread *td)
10235 {
10236 	/*
10237 	 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10238 	 * invalidate_all IPI, which checks for curpmap ==
10239 	 * smp_tlb_pmap.  The below sequence of operations has a
10240 	 * window where %CR3 is loaded with the new pmap's PML4
10241 	 * address, but the curpmap value has not yet been updated.
10242 	 * This causes the invltlb IPI handler, which is called
10243 	 * between the updates, to execute as a NOP, which leaves
10244 	 * stale TLB entries.
10245 	 *
10246 	 * Note that the most common use of pmap_activate_sw(), from
10247 	 * a context switch, is immune to this race, because
10248 	 * interrupts are disabled (while the thread lock is owned),
10249 	 * so the IPI is delayed until after curpmap is updated.  Protect
10250 	 * other callers in a similar way, by disabling interrupts
10251 	 * around the %cr3 register reload and curpmap assignment.
10252 	 */
10253 	spinlock_enter();
10254 	pmap_activate_sw(td);
10255 	spinlock_exit();
10256 }
10257 
10258 void
pmap_activate_boot(pmap_t pmap)10259 pmap_activate_boot(pmap_t pmap)
10260 {
10261 	uint64_t kcr3;
10262 	u_int cpuid;
10263 
10264 	/*
10265 	 * kernel_pmap must be never deactivated, and we ensure that
10266 	 * by never activating it at all.
10267 	 */
10268 	MPASS(pmap != kernel_pmap);
10269 
10270 	cpuid = PCPU_GET(cpuid);
10271 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10272 	PCPU_SET(curpmap, pmap);
10273 	if (pti) {
10274 		kcr3 = pmap->pm_cr3;
10275 		if (pmap_pcid_enabled)
10276 			kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
10277 	} else {
10278 		kcr3 = PMAP_NO_CR3;
10279 	}
10280 	PCPU_SET(kcr3, kcr3);
10281 	PCPU_SET(ucr3, PMAP_NO_CR3);
10282 }
10283 
10284 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)10285 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
10286 {
10287 	*res = pmap->pm_active;
10288 }
10289 
10290 void
pmap_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)10291 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10292 {
10293 }
10294 
10295 /*
10296  *	Increase the starting virtual address of the given mapping if a
10297  *	different alignment might result in more superpage mappings.
10298  */
10299 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)10300 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10301     vm_offset_t *addr, vm_size_t size)
10302 {
10303 	vm_offset_t superpage_offset;
10304 
10305 	if (size < NBPDR)
10306 		return;
10307 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10308 		offset += ptoa(object->pg_color);
10309 	superpage_offset = offset & PDRMASK;
10310 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10311 	    (*addr & PDRMASK) == superpage_offset)
10312 		return;
10313 	if ((*addr & PDRMASK) < superpage_offset)
10314 		*addr = (*addr & ~PDRMASK) + superpage_offset;
10315 	else
10316 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10317 }
10318 
10319 #ifdef INVARIANTS
10320 static unsigned long num_dirty_emulations;
10321 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10322 	     &num_dirty_emulations, 0, NULL);
10323 
10324 static unsigned long num_accessed_emulations;
10325 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10326 	     &num_accessed_emulations, 0, NULL);
10327 
10328 static unsigned long num_superpage_accessed_emulations;
10329 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10330 	     &num_superpage_accessed_emulations, 0, NULL);
10331 
10332 static unsigned long ad_emulation_superpage_promotions;
10333 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10334 	     &ad_emulation_superpage_promotions, 0, NULL);
10335 #endif	/* INVARIANTS */
10336 
10337 int
pmap_emulate_accessed_dirty(pmap_t pmap,vm_offset_t va,int ftype)10338 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10339 {
10340 	int rv;
10341 	struct rwlock *lock;
10342 #if VM_NRESERVLEVEL > 0
10343 	vm_page_t m, mpte;
10344 #endif
10345 	pd_entry_t *pde;
10346 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10347 
10348 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10349 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10350 
10351 	if (!pmap_emulate_ad_bits(pmap))
10352 		return (-1);
10353 
10354 	PG_A = pmap_accessed_bit(pmap);
10355 	PG_M = pmap_modified_bit(pmap);
10356 	PG_V = pmap_valid_bit(pmap);
10357 	PG_RW = pmap_rw_bit(pmap);
10358 
10359 	rv = -1;
10360 	lock = NULL;
10361 	PMAP_LOCK(pmap);
10362 
10363 	pde = pmap_pde(pmap, va);
10364 	if (pde == NULL || (*pde & PG_V) == 0)
10365 		goto done;
10366 
10367 	if ((*pde & PG_PS) != 0) {
10368 		if (ftype == VM_PROT_READ) {
10369 #ifdef INVARIANTS
10370 			atomic_add_long(&num_superpage_accessed_emulations, 1);
10371 #endif
10372 			*pde |= PG_A;
10373 			rv = 0;
10374 		}
10375 		goto done;
10376 	}
10377 
10378 	pte = pmap_pde_to_pte(pde, va);
10379 	if ((*pte & PG_V) == 0)
10380 		goto done;
10381 
10382 	if (ftype == VM_PROT_WRITE) {
10383 		if ((*pte & PG_RW) == 0)
10384 			goto done;
10385 		/*
10386 		 * Set the modified and accessed bits simultaneously.
10387 		 *
10388 		 * Intel EPT PTEs that do software emulation of A/D bits map
10389 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10390 		 * An EPT misconfiguration is triggered if the PTE is writable
10391 		 * but not readable (WR=10). This is avoided by setting PG_A
10392 		 * and PG_M simultaneously.
10393 		 */
10394 		*pte |= PG_M | PG_A;
10395 	} else {
10396 		*pte |= PG_A;
10397 	}
10398 
10399 #if VM_NRESERVLEVEL > 0
10400 	/* try to promote the mapping */
10401 	if (va < VM_MAXUSER_ADDRESS)
10402 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10403 	else
10404 		mpte = NULL;
10405 
10406 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10407 
10408 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10409 	    (m->flags & PG_FICTITIOUS) == 0 &&
10410 	    vm_reserv_level_iffullpop(m) == 0 &&
10411 	    pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
10412 #ifdef INVARIANTS
10413 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
10414 #endif
10415 	}
10416 #endif
10417 
10418 #ifdef INVARIANTS
10419 	if (ftype == VM_PROT_WRITE)
10420 		atomic_add_long(&num_dirty_emulations, 1);
10421 	else
10422 		atomic_add_long(&num_accessed_emulations, 1);
10423 #endif
10424 	rv = 0;		/* success */
10425 done:
10426 	if (lock != NULL)
10427 		rw_wunlock(lock);
10428 	PMAP_UNLOCK(pmap);
10429 	return (rv);
10430 }
10431 
10432 void
pmap_get_mapping(pmap_t pmap,vm_offset_t va,uint64_t * ptr,int * num)10433 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10434 {
10435 	pml4_entry_t *pml4;
10436 	pdp_entry_t *pdp;
10437 	pd_entry_t *pde;
10438 	pt_entry_t *pte, PG_V;
10439 	int idx;
10440 
10441 	idx = 0;
10442 	PG_V = pmap_valid_bit(pmap);
10443 	PMAP_LOCK(pmap);
10444 
10445 	pml4 = pmap_pml4e(pmap, va);
10446 	if (pml4 == NULL)
10447 		goto done;
10448 	ptr[idx++] = *pml4;
10449 	if ((*pml4 & PG_V) == 0)
10450 		goto done;
10451 
10452 	pdp = pmap_pml4e_to_pdpe(pml4, va);
10453 	ptr[idx++] = *pdp;
10454 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10455 		goto done;
10456 
10457 	pde = pmap_pdpe_to_pde(pdp, va);
10458 	ptr[idx++] = *pde;
10459 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10460 		goto done;
10461 
10462 	pte = pmap_pde_to_pte(pde, va);
10463 	ptr[idx++] = *pte;
10464 
10465 done:
10466 	PMAP_UNLOCK(pmap);
10467 	*num = idx;
10468 }
10469 
10470 /**
10471  * Get the kernel virtual address of a set of physical pages. If there are
10472  * physical addresses not covered by the DMAP perform a transient mapping
10473  * that will be removed when calling pmap_unmap_io_transient.
10474  *
10475  * \param page        The pages the caller wishes to obtain the virtual
10476  *                    address on the kernel memory map.
10477  * \param vaddr       On return contains the kernel virtual memory address
10478  *                    of the pages passed in the page parameter.
10479  * \param count       Number of pages passed in.
10480  * \param can_fault   true if the thread using the mapped pages can take
10481  *                    page faults, false otherwise.
10482  *
10483  * \returns true if the caller must call pmap_unmap_io_transient when
10484  *          finished or false otherwise.
10485  *
10486  */
10487 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10488 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10489     bool can_fault)
10490 {
10491 	vm_paddr_t paddr;
10492 	bool needs_mapping;
10493 	int error __unused, i;
10494 
10495 	/*
10496 	 * Allocate any KVA space that we need, this is done in a separate
10497 	 * loop to prevent calling vmem_alloc while pinned.
10498 	 */
10499 	needs_mapping = false;
10500 	for (i = 0; i < count; i++) {
10501 		paddr = VM_PAGE_TO_PHYS(page[i]);
10502 		if (__predict_false(paddr >= dmaplimit)) {
10503 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
10504 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
10505 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10506 			needs_mapping = true;
10507 		} else {
10508 			vaddr[i] = PHYS_TO_DMAP(paddr);
10509 		}
10510 	}
10511 
10512 	/* Exit early if everything is covered by the DMAP */
10513 	if (!needs_mapping)
10514 		return (false);
10515 
10516 	/*
10517 	 * NB:  The sequence of updating a page table followed by accesses
10518 	 * to the corresponding pages used in the !DMAP case is subject to
10519 	 * the situation described in the "AMD64 Architecture Programmer's
10520 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10521 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
10522 	 * after modifying the PTE bits is crucial.
10523 	 */
10524 	if (!can_fault)
10525 		sched_pin();
10526 	for (i = 0; i < count; i++) {
10527 		paddr = VM_PAGE_TO_PHYS(page[i]);
10528 		if (paddr >= dmaplimit) {
10529 			if (can_fault) {
10530 				/*
10531 				 * Slow path, since we can get page faults
10532 				 * while mappings are active don't pin the
10533 				 * thread to the CPU and instead add a global
10534 				 * mapping visible to all CPUs.
10535 				 */
10536 				pmap_qenter(vaddr[i], &page[i], 1);
10537 			} else {
10538 				pmap_kenter_attr(vaddr[i], paddr,
10539 				    page[i]->md.pat_mode);
10540 				pmap_invlpg(kernel_pmap, vaddr[i]);
10541 			}
10542 		}
10543 	}
10544 
10545 	return (needs_mapping);
10546 }
10547 
10548 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10549 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10550     bool can_fault)
10551 {
10552 	vm_paddr_t paddr;
10553 	int i;
10554 
10555 	if (!can_fault)
10556 		sched_unpin();
10557 	for (i = 0; i < count; i++) {
10558 		paddr = VM_PAGE_TO_PHYS(page[i]);
10559 		if (paddr >= dmaplimit) {
10560 			if (can_fault)
10561 				pmap_qremove(vaddr[i], 1);
10562 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10563 		}
10564 	}
10565 }
10566 
10567 vm_offset_t
pmap_quick_enter_page(vm_page_t m)10568 pmap_quick_enter_page(vm_page_t m)
10569 {
10570 	vm_paddr_t paddr;
10571 
10572 	paddr = VM_PAGE_TO_PHYS(m);
10573 	if (paddr < dmaplimit)
10574 		return (PHYS_TO_DMAP(paddr));
10575 	mtx_lock_spin(&qframe_mtx);
10576 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10577 
10578 	/*
10579 	 * Since qframe is exclusively mapped by us, and we do not set
10580 	 * PG_G, we can use INVLPG here.
10581 	 */
10582 	invlpg(qframe);
10583 
10584 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10585 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, false));
10586 	return (qframe);
10587 }
10588 
10589 void
pmap_quick_remove_page(vm_offset_t addr)10590 pmap_quick_remove_page(vm_offset_t addr)
10591 {
10592 
10593 	if (addr != qframe)
10594 		return;
10595 	pte_store(vtopte(qframe), 0);
10596 	mtx_unlock_spin(&qframe_mtx);
10597 }
10598 
10599 /*
10600  * Pdp pages from the large map are managed differently from either
10601  * kernel or user page table pages.  They are permanently allocated at
10602  * initialization time, and their reference count is permanently set to
10603  * zero.  The pml4 entries pointing to those pages are copied into
10604  * each allocated pmap.
10605  *
10606  * In contrast, pd and pt pages are managed like user page table
10607  * pages.  They are dynamically allocated, and their reference count
10608  * represents the number of valid entries within the page.
10609  */
10610 static vm_page_t
pmap_large_map_getptp_unlocked(void)10611 pmap_large_map_getptp_unlocked(void)
10612 {
10613 	return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10614 }
10615 
10616 static vm_page_t
pmap_large_map_getptp(void)10617 pmap_large_map_getptp(void)
10618 {
10619 	vm_page_t m;
10620 
10621 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10622 	m = pmap_large_map_getptp_unlocked();
10623 	if (m == NULL) {
10624 		PMAP_UNLOCK(kernel_pmap);
10625 		vm_wait(NULL);
10626 		PMAP_LOCK(kernel_pmap);
10627 		/* Callers retry. */
10628 	}
10629 	return (m);
10630 }
10631 
10632 static pdp_entry_t *
pmap_large_map_pdpe(vm_offset_t va)10633 pmap_large_map_pdpe(vm_offset_t va)
10634 {
10635 	pml4_entry_t *pml4;
10636 	vm_pindex_t pml4_idx;
10637 	vm_paddr_t mphys;
10638 
10639 	KASSERT(va >= kva_layout.lm_low && va < kva_layout.lm_low +
10640 	    (vm_offset_t)NBPML4 * lm_ents, ("va %#lx not in large map", va));
10641 	if (la57) {
10642 		pml4 = pmap_pml4e(kernel_pmap, va);
10643 		mphys = *pml4 & PG_FRAME;
10644 	} else {
10645 		pml4_idx = pmap_pml4e_index(va);
10646 
10647 		KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10648 		    ("pmap_large_map_pdpe: va %#jx out of range idx %#jx "
10649 		    "LMSPML4I %#jx lm_ents %d",
10650 		    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10651 		KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10652 		    ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10653 		    "LMSPML4I %#jx lm_ents %d",
10654 		    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10655 		mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10656 	}
10657 	return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10658 }
10659 
10660 static pd_entry_t *
pmap_large_map_pde(vm_offset_t va)10661 pmap_large_map_pde(vm_offset_t va)
10662 {
10663 	pdp_entry_t *pdpe;
10664 	vm_page_t m;
10665 	vm_paddr_t mphys;
10666 
10667 retry:
10668 	pdpe = pmap_large_map_pdpe(va);
10669 	if (*pdpe == 0) {
10670 		m = pmap_large_map_getptp();
10671 		if (m == NULL)
10672 			goto retry;
10673 		mphys = VM_PAGE_TO_PHYS(m);
10674 		*pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10675 	} else {
10676 		MPASS((*pdpe & X86_PG_PS) == 0);
10677 		mphys = *pdpe & PG_FRAME;
10678 	}
10679 	return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10680 }
10681 
10682 static pt_entry_t *
pmap_large_map_pte(vm_offset_t va)10683 pmap_large_map_pte(vm_offset_t va)
10684 {
10685 	pd_entry_t *pde;
10686 	vm_page_t m;
10687 	vm_paddr_t mphys;
10688 
10689 retry:
10690 	pde = pmap_large_map_pde(va);
10691 	if (*pde == 0) {
10692 		m = pmap_large_map_getptp();
10693 		if (m == NULL)
10694 			goto retry;
10695 		mphys = VM_PAGE_TO_PHYS(m);
10696 		*pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10697 		PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10698 	} else {
10699 		MPASS((*pde & X86_PG_PS) == 0);
10700 		mphys = *pde & PG_FRAME;
10701 	}
10702 	return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10703 }
10704 
10705 static vm_paddr_t
pmap_large_map_kextract(vm_offset_t va)10706 pmap_large_map_kextract(vm_offset_t va)
10707 {
10708 	pdp_entry_t *pdpe, pdp;
10709 	pd_entry_t *pde, pd;
10710 	pt_entry_t *pte, pt;
10711 
10712 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10713 	    ("not largemap range %#lx", (u_long)va));
10714 	pdpe = pmap_large_map_pdpe(va);
10715 	pdp = *pdpe;
10716 	KASSERT((pdp & X86_PG_V) != 0,
10717 	    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10718 	    (u_long)pdpe, pdp));
10719 	if ((pdp & X86_PG_PS) != 0) {
10720 		KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10721 		    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10722 		    (u_long)pdpe, pdp));
10723 		return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10724 	}
10725 	pde = pmap_pdpe_to_pde(pdpe, va);
10726 	pd = *pde;
10727 	KASSERT((pd & X86_PG_V) != 0,
10728 	    ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10729 	if ((pd & X86_PG_PS) != 0)
10730 		return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10731 	pte = pmap_pde_to_pte(pde, va);
10732 	pt = *pte;
10733 	KASSERT((pt & X86_PG_V) != 0,
10734 	    ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10735 	return ((pt & PG_FRAME) | (va & PAGE_MASK));
10736 }
10737 
10738 static int
pmap_large_map_getva(vm_size_t len,vm_offset_t align,vm_offset_t phase,vmem_addr_t * vmem_res)10739 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10740     vmem_addr_t *vmem_res)
10741 {
10742 
10743 	/*
10744 	 * Large mappings are all but static.  Consequently, there
10745 	 * is no point in waiting for an earlier allocation to be
10746 	 * freed.
10747 	 */
10748 	return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10749 	    VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10750 }
10751 
10752 int
pmap_large_map(vm_paddr_t spa,vm_size_t len,void ** addr,vm_memattr_t mattr)10753 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10754     vm_memattr_t mattr)
10755 {
10756 	pdp_entry_t *pdpe;
10757 	pd_entry_t *pde;
10758 	pt_entry_t *pte;
10759 	vm_offset_t va, inc;
10760 	vmem_addr_t vmem_res;
10761 	vm_paddr_t pa;
10762 	int error;
10763 
10764 	if (len == 0 || spa + len < spa)
10765 		return (EINVAL);
10766 
10767 	/* See if DMAP can serve. */
10768 	if (spa + len <= dmaplimit) {
10769 		va = PHYS_TO_DMAP(spa);
10770 		*addr = (void *)va;
10771 		return (pmap_change_attr(va, len, mattr));
10772 	}
10773 
10774 	/*
10775 	 * No, allocate KVA.  Fit the address with best possible
10776 	 * alignment for superpages.  Fall back to worse align if
10777 	 * failed.
10778 	 */
10779 	error = ENOMEM;
10780 	if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10781 	    NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10782 		error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10783 		    &vmem_res);
10784 	if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10785 	    NBPDR) + NBPDR)
10786 		error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10787 		    &vmem_res);
10788 	if (error != 0)
10789 		error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10790 	if (error != 0)
10791 		return (error);
10792 
10793 	/*
10794 	 * Fill pagetable.  PG_M is not pre-set, we scan modified bits
10795 	 * in the pagetable to minimize flushing.  No need to
10796 	 * invalidate TLB, since we only update invalid entries.
10797 	 */
10798 	PMAP_LOCK(kernel_pmap);
10799 	for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10800 	    len -= inc) {
10801 		if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10802 		    (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10803 			pdpe = pmap_large_map_pdpe(va);
10804 			MPASS(*pdpe == 0);
10805 			*pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10806 			    X86_PG_V | X86_PG_A | pg_nx |
10807 			    pmap_cache_bits(kernel_pmap, mattr, true);
10808 			inc = NBPDP;
10809 		} else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10810 		    (va & PDRMASK) == 0) {
10811 			pde = pmap_large_map_pde(va);
10812 			MPASS(*pde == 0);
10813 			*pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10814 			    X86_PG_V | X86_PG_A | pg_nx |
10815 			    pmap_cache_bits(kernel_pmap, mattr, true);
10816 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10817 			    ref_count++;
10818 			inc = NBPDR;
10819 		} else {
10820 			pte = pmap_large_map_pte(va);
10821 			MPASS(*pte == 0);
10822 			*pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10823 			    X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10824 			    mattr, false);
10825 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10826 			    ref_count++;
10827 			inc = PAGE_SIZE;
10828 		}
10829 	}
10830 	PMAP_UNLOCK(kernel_pmap);
10831 	MPASS(len == 0);
10832 
10833 	*addr = (void *)vmem_res;
10834 	return (0);
10835 }
10836 
10837 void
pmap_large_unmap(void * svaa,vm_size_t len)10838 pmap_large_unmap(void *svaa, vm_size_t len)
10839 {
10840 	vm_offset_t sva, va;
10841 	vm_size_t inc;
10842 	pdp_entry_t *pdpe, pdp;
10843 	pd_entry_t *pde, pd;
10844 	pt_entry_t *pte;
10845 	vm_page_t m;
10846 	struct spglist spgf;
10847 
10848 	sva = (vm_offset_t)svaa;
10849 	if (len == 0 || sva + len < sva || (sva >= kva_layout.dmap_low &&
10850 	    sva + len < kva_layout.dmap_high))
10851 		return;
10852 
10853 	SLIST_INIT(&spgf);
10854 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10855 	    PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10856 	    ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10857 	PMAP_LOCK(kernel_pmap);
10858 	for (va = sva; va < sva + len; va += inc) {
10859 		pdpe = pmap_large_map_pdpe(va);
10860 		pdp = *pdpe;
10861 		KASSERT((pdp & X86_PG_V) != 0,
10862 		    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10863 		    (u_long)pdpe, pdp));
10864 		if ((pdp & X86_PG_PS) != 0) {
10865 			KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10866 			    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10867 			    (u_long)pdpe, pdp));
10868 			KASSERT((va & PDPMASK) == 0,
10869 			    ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10870 			    (u_long)pdpe, pdp));
10871 			KASSERT(va + NBPDP <= sva + len,
10872 			    ("unmap covers partial 1GB page, sva %#lx va %#lx "
10873 			    "pdpe %#lx pdp %#lx len %#lx", sva, va,
10874 			    (u_long)pdpe, pdp, len));
10875 			*pdpe = 0;
10876 			inc = NBPDP;
10877 			continue;
10878 		}
10879 		pde = pmap_pdpe_to_pde(pdpe, va);
10880 		pd = *pde;
10881 		KASSERT((pd & X86_PG_V) != 0,
10882 		    ("invalid pd va %#lx pde %#lx pd %#lx", va,
10883 		    (u_long)pde, pd));
10884 		if ((pd & X86_PG_PS) != 0) {
10885 			KASSERT((va & PDRMASK) == 0,
10886 			    ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10887 			    (u_long)pde, pd));
10888 			KASSERT(va + NBPDR <= sva + len,
10889 			    ("unmap covers partial 2MB page, sva %#lx va %#lx "
10890 			    "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10891 			    pd, len));
10892 			pde_store(pde, 0);
10893 			inc = NBPDR;
10894 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10895 			m->ref_count--;
10896 			if (m->ref_count == 0) {
10897 				*pdpe = 0;
10898 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10899 			}
10900 			continue;
10901 		}
10902 		pte = pmap_pde_to_pte(pde, va);
10903 		KASSERT((*pte & X86_PG_V) != 0,
10904 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
10905 		    (u_long)pte, *pte));
10906 		pte_clear(pte);
10907 		inc = PAGE_SIZE;
10908 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10909 		m->ref_count--;
10910 		if (m->ref_count == 0) {
10911 			*pde = 0;
10912 			SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10913 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10914 			m->ref_count--;
10915 			if (m->ref_count == 0) {
10916 				*pdpe = 0;
10917 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10918 			}
10919 		}
10920 	}
10921 	pmap_invalidate_range(kernel_pmap, sva, sva + len);
10922 	PMAP_UNLOCK(kernel_pmap);
10923 	vm_page_free_pages_toq(&spgf, false);
10924 	vmem_free(large_vmem, sva, len);
10925 }
10926 
10927 static void
pmap_large_map_wb_fence_mfence(void)10928 pmap_large_map_wb_fence_mfence(void)
10929 {
10930 
10931 	mfence();
10932 }
10933 
10934 static void
pmap_large_map_wb_fence_atomic(void)10935 pmap_large_map_wb_fence_atomic(void)
10936 {
10937 
10938 	atomic_thread_fence_seq_cst();
10939 }
10940 
10941 static void
pmap_large_map_wb_fence_nop(void)10942 pmap_large_map_wb_fence_nop(void)
10943 {
10944 }
10945 
10946 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10947 {
10948 
10949 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
10950 		return (pmap_large_map_wb_fence_mfence);
10951 	else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10952 	    CPUID_STDEXT_CLFLUSHOPT)) == 0)
10953 		return (pmap_large_map_wb_fence_atomic);
10954 	else
10955 		/* clflush is strongly enough ordered */
10956 		return (pmap_large_map_wb_fence_nop);
10957 }
10958 
10959 static void
pmap_large_map_flush_range_clwb(vm_offset_t va,vm_size_t len)10960 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10961 {
10962 
10963 	for (; len > 0; len -= cpu_clflush_line_size,
10964 	    va += cpu_clflush_line_size)
10965 		clwb(va);
10966 }
10967 
10968 static void
pmap_large_map_flush_range_clflushopt(vm_offset_t va,vm_size_t len)10969 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10970 {
10971 
10972 	for (; len > 0; len -= cpu_clflush_line_size,
10973 	    va += cpu_clflush_line_size)
10974 		clflushopt(va);
10975 }
10976 
10977 static void
pmap_large_map_flush_range_clflush(vm_offset_t va,vm_size_t len)10978 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10979 {
10980 
10981 	for (; len > 0; len -= cpu_clflush_line_size,
10982 	    va += cpu_clflush_line_size)
10983 		clflush(va);
10984 }
10985 
10986 static void
pmap_large_map_flush_range_nop(vm_offset_t sva __unused,vm_size_t len __unused)10987 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
10988 {
10989 }
10990 
10991 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
10992 {
10993 
10994 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
10995 		return (pmap_large_map_flush_range_clwb);
10996 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
10997 		return (pmap_large_map_flush_range_clflushopt);
10998 	else if ((cpu_feature & CPUID_CLFSH) != 0)
10999 		return (pmap_large_map_flush_range_clflush);
11000 	else
11001 		return (pmap_large_map_flush_range_nop);
11002 }
11003 
11004 static void
pmap_large_map_wb_large(vm_offset_t sva,vm_offset_t eva)11005 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
11006 {
11007 	volatile u_long *pe;
11008 	u_long p;
11009 	vm_offset_t va;
11010 	vm_size_t inc;
11011 	bool seen_other;
11012 
11013 	for (va = sva; va < eva; va += inc) {
11014 		inc = 0;
11015 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
11016 			pe = (volatile u_long *)pmap_large_map_pdpe(va);
11017 			p = *pe;
11018 			if ((p & X86_PG_PS) != 0)
11019 				inc = NBPDP;
11020 		}
11021 		if (inc == 0) {
11022 			pe = (volatile u_long *)pmap_large_map_pde(va);
11023 			p = *pe;
11024 			if ((p & X86_PG_PS) != 0)
11025 				inc = NBPDR;
11026 		}
11027 		if (inc == 0) {
11028 			pe = (volatile u_long *)pmap_large_map_pte(va);
11029 			p = *pe;
11030 			inc = PAGE_SIZE;
11031 		}
11032 		seen_other = false;
11033 		for (;;) {
11034 			if ((p & X86_PG_AVAIL1) != 0) {
11035 				/*
11036 				 * Spin-wait for the end of a parallel
11037 				 * write-back.
11038 				 */
11039 				cpu_spinwait();
11040 				p = *pe;
11041 
11042 				/*
11043 				 * If we saw other write-back
11044 				 * occurring, we cannot rely on PG_M to
11045 				 * indicate state of the cache.  The
11046 				 * PG_M bit is cleared before the
11047 				 * flush to avoid ignoring new writes,
11048 				 * and writes which are relevant for
11049 				 * us might happen after.
11050 				 */
11051 				seen_other = true;
11052 				continue;
11053 			}
11054 
11055 			if ((p & X86_PG_M) != 0 || seen_other) {
11056 				if (!atomic_fcmpset_long(pe, &p,
11057 				    (p & ~X86_PG_M) | X86_PG_AVAIL1))
11058 					/*
11059 					 * If we saw PG_M without
11060 					 * PG_AVAIL1, and then on the
11061 					 * next attempt we do not
11062 					 * observe either PG_M or
11063 					 * PG_AVAIL1, the other
11064 					 * write-back started after us
11065 					 * and finished before us.  We
11066 					 * can rely on it doing our
11067 					 * work.
11068 					 */
11069 					continue;
11070 				pmap_large_map_flush_range(va, inc);
11071 				atomic_clear_long(pe, X86_PG_AVAIL1);
11072 			}
11073 			break;
11074 		}
11075 		maybe_yield();
11076 	}
11077 }
11078 
11079 /*
11080  * Write-back cache lines for the given address range.
11081  *
11082  * Must be called only on the range or sub-range returned from
11083  * pmap_large_map().  Must not be called on the coalesced ranges.
11084  *
11085  * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
11086  * instructions support.
11087  */
11088 void
pmap_large_map_wb(void * svap,vm_size_t len)11089 pmap_large_map_wb(void *svap, vm_size_t len)
11090 {
11091 	vm_offset_t eva, sva;
11092 
11093 	sva = (vm_offset_t)svap;
11094 	eva = sva + len;
11095 	pmap_large_map_wb_fence();
11096 	if (sva >= kva_layout.dmap_low && eva < kva_layout.dmap_high) {
11097 		pmap_large_map_flush_range(sva, len);
11098 	} else {
11099 		KASSERT(sva >= kva_layout.lm_low && eva < kva_layout.lm_high,
11100 		    ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
11101 		pmap_large_map_wb_large(sva, eva);
11102 	}
11103 	pmap_large_map_wb_fence();
11104 }
11105 
11106 static vm_page_t
pmap_pti_alloc_page(void)11107 pmap_pti_alloc_page(void)
11108 {
11109 	vm_page_t m;
11110 
11111 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11112 	m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
11113 	return (m);
11114 }
11115 
11116 static bool
pmap_pti_free_page(vm_page_t m)11117 pmap_pti_free_page(vm_page_t m)
11118 {
11119 	if (!vm_page_unwire_noq(m))
11120 		return (false);
11121 	vm_page_xbusy_claim(m);
11122 	vm_page_free_zero(m);
11123 	return (true);
11124 }
11125 
11126 static void
pmap_pti_init(void)11127 pmap_pti_init(void)
11128 {
11129 	vm_page_t pml4_pg;
11130 	pdp_entry_t *pdpe;
11131 	vm_offset_t va;
11132 	int i;
11133 
11134 	if (!pti)
11135 		return;
11136 	pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
11137 	VM_OBJECT_WLOCK(pti_obj);
11138 	pml4_pg = pmap_pti_alloc_page();
11139 	pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11140 	for (va = kva_layout.km_low; va <= kva_layout.km_high &&
11141 	    va >= kva_layout.km_low && va > NBPML4; va += NBPML4) {
11142 		pdpe = pmap_pti_pdpe(va);
11143 		pmap_pti_wire_pte(pdpe);
11144 	}
11145 	pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11146 	    (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11147 	pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11148 	    sizeof(struct gate_descriptor) * NIDT, false);
11149 	CPU_FOREACH(i) {
11150 		/* Doublefault stack IST 1 */
11151 		va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11152 		pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11153 		/* NMI stack IST 2 */
11154 		va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11155 		pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11156 		/* MC# stack IST 3 */
11157 		va = __pcpu[i].pc_common_tss.tss_ist3 +
11158 		    sizeof(struct nmi_pcpu);
11159 		pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11160 		/* DB# stack IST 4 */
11161 		va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11162 		pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11163 	}
11164 	pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11165 	    true);
11166 	pti_finalized = true;
11167 	VM_OBJECT_WUNLOCK(pti_obj);
11168 }
11169 
11170 static void
pmap_cpu_init(void * arg __unused)11171 pmap_cpu_init(void *arg __unused)
11172 {
11173 	CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11174 	pmap_pti_init();
11175 }
11176 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11177 
11178 static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)11179 pmap_pti_pdpe(vm_offset_t va)
11180 {
11181 	pml4_entry_t *pml4e;
11182 	pdp_entry_t *pdpe;
11183 	vm_page_t m;
11184 	vm_pindex_t pml4_idx;
11185 	vm_paddr_t mphys;
11186 
11187 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11188 
11189 	pml4_idx = pmap_pml4e_index(va);
11190 	pml4e = &pti_pml4[pml4_idx];
11191 	m = NULL;
11192 	if (*pml4e == 0) {
11193 		if (pti_finalized)
11194 			panic("pml4 alloc after finalization\n");
11195 		m = pmap_pti_alloc_page();
11196 		if (*pml4e != 0) {
11197 			pmap_pti_free_page(m);
11198 			mphys = *pml4e & ~PAGE_MASK;
11199 		} else {
11200 			mphys = VM_PAGE_TO_PHYS(m);
11201 			*pml4e = mphys | X86_PG_RW | X86_PG_V;
11202 		}
11203 	} else {
11204 		mphys = *pml4e & ~PAGE_MASK;
11205 	}
11206 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11207 	return (pdpe);
11208 }
11209 
11210 static void
pmap_pti_wire_pte(void * pte)11211 pmap_pti_wire_pte(void *pte)
11212 {
11213 	vm_page_t m;
11214 
11215 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11216 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11217 	m->ref_count++;
11218 }
11219 
11220 static void
pmap_pti_unwire_pde(void * pde,bool only_ref)11221 pmap_pti_unwire_pde(void *pde, bool only_ref)
11222 {
11223 	vm_page_t m;
11224 
11225 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11226 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11227 	MPASS(only_ref || m->ref_count > 1);
11228 	pmap_pti_free_page(m);
11229 }
11230 
11231 static void
pmap_pti_unwire_pte(void * pte,vm_offset_t va)11232 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11233 {
11234 	vm_page_t m;
11235 	pd_entry_t *pde;
11236 
11237 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11238 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11239 	if (pmap_pti_free_page(m)) {
11240 		pde = pmap_pti_pde(va);
11241 		MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11242 		*pde = 0;
11243 		pmap_pti_unwire_pde(pde, false);
11244 	}
11245 }
11246 
11247 static pd_entry_t *
pmap_pti_pde(vm_offset_t va)11248 pmap_pti_pde(vm_offset_t va)
11249 {
11250 	pdp_entry_t *pdpe;
11251 	pd_entry_t *pde;
11252 	vm_page_t m;
11253 	vm_pindex_t pd_idx;
11254 	vm_paddr_t mphys;
11255 
11256 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11257 
11258 	pdpe = pmap_pti_pdpe(va);
11259 	if (*pdpe == 0) {
11260 		m = pmap_pti_alloc_page();
11261 		if (*pdpe != 0) {
11262 			pmap_pti_free_page(m);
11263 			MPASS((*pdpe & X86_PG_PS) == 0);
11264 			mphys = *pdpe & ~PAGE_MASK;
11265 		} else {
11266 			mphys =  VM_PAGE_TO_PHYS(m);
11267 			*pdpe = mphys | X86_PG_RW | X86_PG_V;
11268 		}
11269 	} else {
11270 		MPASS((*pdpe & X86_PG_PS) == 0);
11271 		mphys = *pdpe & ~PAGE_MASK;
11272 	}
11273 
11274 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11275 	pd_idx = pmap_pde_index(va);
11276 	pde += pd_idx;
11277 	return (pde);
11278 }
11279 
11280 static pt_entry_t *
pmap_pti_pte(vm_offset_t va,bool * unwire_pde)11281 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11282 {
11283 	pd_entry_t *pde;
11284 	pt_entry_t *pte;
11285 	vm_page_t m;
11286 	vm_paddr_t mphys;
11287 
11288 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11289 
11290 	pde = pmap_pti_pde(va);
11291 	if (unwire_pde != NULL) {
11292 		*unwire_pde = true;
11293 		pmap_pti_wire_pte(pde);
11294 	}
11295 	if (*pde == 0) {
11296 		m = pmap_pti_alloc_page();
11297 		if (*pde != 0) {
11298 			pmap_pti_free_page(m);
11299 			MPASS((*pde & X86_PG_PS) == 0);
11300 			mphys = *pde & ~(PAGE_MASK | pg_nx);
11301 		} else {
11302 			mphys = VM_PAGE_TO_PHYS(m);
11303 			*pde = mphys | X86_PG_RW | X86_PG_V;
11304 			if (unwire_pde != NULL)
11305 				*unwire_pde = false;
11306 		}
11307 	} else {
11308 		MPASS((*pde & X86_PG_PS) == 0);
11309 		mphys = *pde & ~(PAGE_MASK | pg_nx);
11310 	}
11311 
11312 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11313 	pte += pmap_pte_index(va);
11314 
11315 	return (pte);
11316 }
11317 
11318 static void
pmap_pti_add_kva_locked(vm_offset_t sva,vm_offset_t eva,bool exec)11319 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11320 {
11321 	vm_paddr_t pa;
11322 	pd_entry_t *pde;
11323 	pt_entry_t *pte, ptev;
11324 	bool unwire_pde;
11325 
11326 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11327 
11328 	sva = trunc_page(sva);
11329 	MPASS(sva > VM_MAXUSER_ADDRESS);
11330 	eva = round_page(eva);
11331 	MPASS(sva < eva);
11332 	for (; sva < eva; sva += PAGE_SIZE) {
11333 		pte = pmap_pti_pte(sva, &unwire_pde);
11334 		pa = pmap_kextract(sva);
11335 		ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11336 		    (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11337 		    VM_MEMATTR_DEFAULT, false);
11338 		if (*pte == 0) {
11339 			pte_store(pte, ptev);
11340 			pmap_pti_wire_pte(pte);
11341 		} else {
11342 			KASSERT(!pti_finalized,
11343 			    ("pti overlap after fin %#lx %#lx %#lx",
11344 			    sva, *pte, ptev));
11345 			KASSERT(*pte == ptev,
11346 			    ("pti non-identical pte after fin %#lx %#lx %#lx",
11347 			    sva, *pte, ptev));
11348 		}
11349 		if (unwire_pde) {
11350 			pde = pmap_pti_pde(sva);
11351 			pmap_pti_unwire_pde(pde, true);
11352 		}
11353 	}
11354 }
11355 
11356 void
pmap_pti_add_kva(vm_offset_t sva,vm_offset_t eva,bool exec)11357 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11358 {
11359 
11360 	if (!pti)
11361 		return;
11362 	VM_OBJECT_WLOCK(pti_obj);
11363 	pmap_pti_add_kva_locked(sva, eva, exec);
11364 	VM_OBJECT_WUNLOCK(pti_obj);
11365 }
11366 
11367 void
pmap_pti_remove_kva(vm_offset_t sva,vm_offset_t eva)11368 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11369 {
11370 	pt_entry_t *pte;
11371 	vm_offset_t va;
11372 
11373 	if (!pti)
11374 		return;
11375 	sva = rounddown2(sva, PAGE_SIZE);
11376 	MPASS(sva > VM_MAXUSER_ADDRESS);
11377 	eva = roundup2(eva, PAGE_SIZE);
11378 	MPASS(sva < eva);
11379 	VM_OBJECT_WLOCK(pti_obj);
11380 	for (va = sva; va < eva; va += PAGE_SIZE) {
11381 		pte = pmap_pti_pte(va, NULL);
11382 		KASSERT((*pte & X86_PG_V) != 0,
11383 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
11384 		    (u_long)pte, *pte));
11385 		pte_clear(pte);
11386 		pmap_pti_unwire_pte(pte, va);
11387 	}
11388 	pmap_invalidate_range(kernel_pmap, sva, eva);
11389 	VM_OBJECT_WUNLOCK(pti_obj);
11390 }
11391 
11392 static void *
pkru_dup_range(void * ctx __unused,void * data)11393 pkru_dup_range(void *ctx __unused, void *data)
11394 {
11395 	struct pmap_pkru_range *node, *new_node;
11396 
11397 	new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11398 	if (new_node == NULL)
11399 		return (NULL);
11400 	node = data;
11401 	memcpy(new_node, node, sizeof(*node));
11402 	return (new_node);
11403 }
11404 
11405 static void
pkru_free_range(void * ctx __unused,void * node)11406 pkru_free_range(void *ctx __unused, void *node)
11407 {
11408 
11409 	uma_zfree(pmap_pkru_ranges_zone, node);
11410 }
11411 
11412 static int
pmap_pkru_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11413 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11414     int flags)
11415 {
11416 	struct pmap_pkru_range *ppr;
11417 	int error;
11418 
11419 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11420 	MPASS(pmap->pm_type == PT_X86);
11421 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11422 	if ((flags & AMD64_PKRU_EXCL) != 0 &&
11423 	    !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11424 		return (EBUSY);
11425 	ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11426 	if (ppr == NULL)
11427 		return (ENOMEM);
11428 	ppr->pkru_keyidx = keyidx;
11429 	ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11430 	error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11431 	if (error != 0)
11432 		uma_zfree(pmap_pkru_ranges_zone, ppr);
11433 	return (error);
11434 }
11435 
11436 static int
pmap_pkru_deassign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11437 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11438 {
11439 
11440 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11441 	MPASS(pmap->pm_type == PT_X86);
11442 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11443 	return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11444 }
11445 
11446 static void
pmap_pkru_deassign_all(pmap_t pmap)11447 pmap_pkru_deassign_all(pmap_t pmap)
11448 {
11449 
11450 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11451 	if (pmap->pm_type == PT_X86 &&
11452 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11453 		rangeset_remove_all(&pmap->pm_pkru);
11454 }
11455 
11456 /*
11457  * Returns true if the PKU setting is the same across the specified address
11458  * range, and false otherwise.  When returning true, updates the referenced PTE
11459  * to reflect the PKU setting.
11460  */
11461 static bool
pmap_pkru_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t * pte)11462 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t *pte)
11463 {
11464 	struct pmap_pkru_range *ppr;
11465 	vm_offset_t va;
11466 	u_int keyidx;
11467 
11468 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11469 	KASSERT(pmap->pm_type != PT_X86 || (*pte & X86_PG_PKU_MASK) == 0,
11470 	    ("pte %p has unexpected PKU %ld", pte, *pte & X86_PG_PKU_MASK));
11471 	if (pmap->pm_type != PT_X86 ||
11472 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11473 	    sva >= VM_MAXUSER_ADDRESS)
11474 		return (true);
11475 	MPASS(eva <= VM_MAXUSER_ADDRESS);
11476 	ppr = rangeset_containing(&pmap->pm_pkru, sva);
11477 	if (ppr == NULL)
11478 		return (rangeset_empty(&pmap->pm_pkru, sva, eva));
11479 	keyidx = ppr->pkru_keyidx;
11480 	while ((va = ppr->pkru_rs_el.re_end) < eva) {
11481 		if ((ppr = rangeset_beginning(&pmap->pm_pkru, va)) == NULL ||
11482 		    keyidx != ppr->pkru_keyidx)
11483 			return (false);
11484 	}
11485 	*pte |= X86_PG_PKU(keyidx);
11486 	return (true);
11487 }
11488 
11489 static pt_entry_t
pmap_pkru_get(pmap_t pmap,vm_offset_t va)11490 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11491 {
11492 	struct pmap_pkru_range *ppr;
11493 
11494 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11495 	if (pmap->pm_type != PT_X86 ||
11496 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11497 	    va >= VM_MAXUSER_ADDRESS)
11498 		return (0);
11499 	ppr = rangeset_containing(&pmap->pm_pkru, va);
11500 	if (ppr != NULL)
11501 		return (X86_PG_PKU(ppr->pkru_keyidx));
11502 	return (0);
11503 }
11504 
11505 static bool
pred_pkru_on_remove(void * ctx __unused,void * r)11506 pred_pkru_on_remove(void *ctx __unused, void *r)
11507 {
11508 	struct pmap_pkru_range *ppr;
11509 
11510 	ppr = r;
11511 	return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11512 }
11513 
11514 static void
pmap_pkru_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11515 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11516 {
11517 
11518 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11519 	if (pmap->pm_type == PT_X86 &&
11520 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11521 		rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11522 		    pred_pkru_on_remove);
11523 	}
11524 }
11525 
11526 static int
pmap_pkru_copy(pmap_t dst_pmap,pmap_t src_pmap)11527 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11528 {
11529 
11530 	PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11531 	PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11532 	MPASS(dst_pmap->pm_type == PT_X86);
11533 	MPASS(src_pmap->pm_type == PT_X86);
11534 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11535 	if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11536 		return (0);
11537 	return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11538 }
11539 
11540 static void
pmap_pkru_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx)11541 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11542     u_int keyidx)
11543 {
11544 	pml4_entry_t *pml4e;
11545 	pdp_entry_t *pdpe;
11546 	pd_entry_t newpde, ptpaddr, *pde;
11547 	pt_entry_t newpte, *ptep, pte;
11548 	vm_offset_t va, va_next;
11549 	bool changed;
11550 
11551 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11552 	MPASS(pmap->pm_type == PT_X86);
11553 	MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11554 
11555 	for (changed = false, va = sva; va < eva; va = va_next) {
11556 		pml4e = pmap_pml4e(pmap, va);
11557 		if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11558 			va_next = (va + NBPML4) & ~PML4MASK;
11559 			if (va_next < va)
11560 				va_next = eva;
11561 			continue;
11562 		}
11563 
11564 		pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11565 		if ((*pdpe & X86_PG_V) == 0) {
11566 			va_next = (va + NBPDP) & ~PDPMASK;
11567 			if (va_next < va)
11568 				va_next = eva;
11569 			continue;
11570 		}
11571 
11572 		va_next = (va + NBPDR) & ~PDRMASK;
11573 		if (va_next < va)
11574 			va_next = eva;
11575 
11576 		pde = pmap_pdpe_to_pde(pdpe, va);
11577 		ptpaddr = *pde;
11578 		if (ptpaddr == 0)
11579 			continue;
11580 
11581 		MPASS((ptpaddr & X86_PG_V) != 0);
11582 		if ((ptpaddr & PG_PS) != 0) {
11583 			if (va + NBPDR == va_next && eva >= va_next) {
11584 				newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11585 				    X86_PG_PKU(keyidx);
11586 				if (newpde != ptpaddr) {
11587 					*pde = newpde;
11588 					changed = true;
11589 				}
11590 				continue;
11591 			} else if (!pmap_demote_pde(pmap, pde, va)) {
11592 				continue;
11593 			}
11594 		}
11595 
11596 		if (va_next > eva)
11597 			va_next = eva;
11598 
11599 		for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11600 		    ptep++, va += PAGE_SIZE) {
11601 			pte = *ptep;
11602 			if ((pte & X86_PG_V) == 0)
11603 				continue;
11604 			newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11605 			if (newpte != pte) {
11606 				*ptep = newpte;
11607 				changed = true;
11608 			}
11609 		}
11610 	}
11611 	if (changed)
11612 		pmap_invalidate_range(pmap, sva, eva);
11613 }
11614 
11615 static int
pmap_pkru_check_uargs(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11616 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11617     u_int keyidx, int flags)
11618 {
11619 
11620 	if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11621 	    (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11622 		return (EINVAL);
11623 	if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11624 		return (EFAULT);
11625 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11626 		return (ENOTSUP);
11627 	return (0);
11628 }
11629 
11630 int
pmap_pkru_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11631 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11632     int flags)
11633 {
11634 	int error;
11635 
11636 	sva = trunc_page(sva);
11637 	eva = round_page(eva);
11638 	error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11639 	if (error != 0)
11640 		return (error);
11641 	for (;;) {
11642 		PMAP_LOCK(pmap);
11643 		error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11644 		if (error == 0)
11645 			pmap_pkru_update_range(pmap, sva, eva, keyidx);
11646 		PMAP_UNLOCK(pmap);
11647 		if (error != ENOMEM)
11648 			break;
11649 		vm_wait(NULL);
11650 	}
11651 	return (error);
11652 }
11653 
11654 int
pmap_pkru_clear(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11655 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11656 {
11657 	int error;
11658 
11659 	sva = trunc_page(sva);
11660 	eva = round_page(eva);
11661 	error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11662 	if (error != 0)
11663 		return (error);
11664 	for (;;) {
11665 		PMAP_LOCK(pmap);
11666 		error = pmap_pkru_deassign(pmap, sva, eva);
11667 		if (error == 0)
11668 			pmap_pkru_update_range(pmap, sva, eva, 0);
11669 		PMAP_UNLOCK(pmap);
11670 		if (error != ENOMEM)
11671 			break;
11672 		vm_wait(NULL);
11673 	}
11674 	return (error);
11675 }
11676 
11677 #if defined(KASAN) || defined(KMSAN)
11678 
11679 /*
11680  * Reserve enough memory to:
11681  * 1) allocate PDP pages for the shadow map(s),
11682  * 2) shadow the boot stack of KSTACK_PAGES pages,
11683  * 3) assuming that the kernel stack does not cross a 1GB boundary,
11684  * so we need one or two PD pages, one or two PT pages, and KSTACK_PAGES shadow
11685  * pages per shadow map.
11686  */
11687 #ifdef KASAN
11688 #define	SAN_EARLY_PAGES	\
11689 	(NKASANPML4E + 2 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
11690 #else
11691 #define	SAN_EARLY_PAGES	\
11692 	(NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (2 + 2 + KSTACK_PAGES))
11693 #endif
11694 
11695 static uint64_t __nosanitizeaddress __nosanitizememory
pmap_san_enter_early_alloc_4k(uint64_t pabase)11696 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11697 {
11698 	static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11699 	static size_t offset = 0;
11700 	uint64_t pa;
11701 
11702 	if (offset == sizeof(data)) {
11703 		panic("%s: ran out of memory for the bootstrap shadow map",
11704 		    __func__);
11705 	}
11706 
11707 	pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11708 	offset += PAGE_SIZE;
11709 	return (pa);
11710 }
11711 
11712 /*
11713  * Map a shadow page, before the kernel has bootstrapped its page tables.  This
11714  * is currently only used to shadow the temporary boot stack set up by locore.
11715  */
11716 static void __nosanitizeaddress __nosanitizememory
pmap_san_enter_early(vm_offset_t va)11717 pmap_san_enter_early(vm_offset_t va)
11718 {
11719 	static bool first = true;
11720 	pml4_entry_t *pml4e;
11721 	pdp_entry_t *pdpe;
11722 	pd_entry_t *pde;
11723 	pt_entry_t *pte;
11724 	uint64_t cr3, pa, base;
11725 	int i;
11726 
11727 	base = amd64_loadaddr();
11728 	cr3 = rcr3();
11729 
11730 	if (first) {
11731 		/*
11732 		 * If this the first call, we need to allocate new PML4Es for
11733 		 * the bootstrap shadow map(s).  We don't know how the PML4 page
11734 		 * was initialized by the boot loader, so we can't simply test
11735 		 * whether the shadow map's PML4Es are zero.
11736 		 */
11737 		first = false;
11738 #ifdef KASAN
11739 		for (i = 0; i < NKASANPML4E; i++) {
11740 			pa = pmap_san_enter_early_alloc_4k(base);
11741 
11742 			pml4e = (pml4_entry_t *)cr3 +
11743 			    pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11744 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11745 		}
11746 #else
11747 		for (i = 0; i < NKMSANORIGPML4E; i++) {
11748 			pa = pmap_san_enter_early_alloc_4k(base);
11749 
11750 			pml4e = (pml4_entry_t *)cr3 +
11751 			    pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11752 			    i * NBPML4);
11753 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11754 		}
11755 		for (i = 0; i < NKMSANSHADPML4E; i++) {
11756 			pa = pmap_san_enter_early_alloc_4k(base);
11757 
11758 			pml4e = (pml4_entry_t *)cr3 +
11759 			    pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11760 			    i * NBPML4);
11761 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11762 		}
11763 #endif
11764 	}
11765 	pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11766 	pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11767 	if (*pdpe == 0) {
11768 		pa = pmap_san_enter_early_alloc_4k(base);
11769 		*pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11770 	}
11771 	pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11772 	if (*pde == 0) {
11773 		pa = pmap_san_enter_early_alloc_4k(base);
11774 		*pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11775 	}
11776 	pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11777 	if (*pte != 0)
11778 		panic("%s: PTE for %#lx is already initialized", __func__, va);
11779 	pa = pmap_san_enter_early_alloc_4k(base);
11780 	*pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11781 }
11782 
11783 static vm_page_t
pmap_san_enter_alloc_4k(void)11784 pmap_san_enter_alloc_4k(void)
11785 {
11786 	vm_page_t m;
11787 
11788 	m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11789 	    VM_ALLOC_ZERO);
11790 	if (m == NULL)
11791 		panic("%s: no memory to grow shadow map", __func__);
11792 	return (m);
11793 }
11794 
11795 static vm_page_t
pmap_san_enter_alloc_2m(void)11796 pmap_san_enter_alloc_2m(void)
11797 {
11798 	return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11799 	    NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11800 }
11801 
11802 /*
11803  * Grow a shadow map by at least one 4KB page at the specified address.  Use 2MB
11804  * pages when possible.
11805  */
11806 void __nosanitizeaddress __nosanitizememory
pmap_san_enter(vm_offset_t va)11807 pmap_san_enter(vm_offset_t va)
11808 {
11809 	pdp_entry_t *pdpe;
11810 	pd_entry_t *pde;
11811 	pt_entry_t *pte;
11812 	vm_page_t m;
11813 
11814 	if (kernphys == 0) {
11815 		/*
11816 		 * We're creating a temporary shadow map for the boot stack.
11817 		 */
11818 		pmap_san_enter_early(va);
11819 		return;
11820 	}
11821 
11822 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11823 
11824 	pdpe = pmap_pdpe(kernel_pmap, va);
11825 	if ((*pdpe & X86_PG_V) == 0) {
11826 		m = pmap_san_enter_alloc_4k();
11827 		*pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11828 		    X86_PG_V | pg_nx);
11829 	}
11830 	pde = pmap_pdpe_to_pde(pdpe, va);
11831 	if ((*pde & X86_PG_V) == 0) {
11832 		m = pmap_san_enter_alloc_2m();
11833 		if (m != NULL) {
11834 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11835 			    X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11836 		} else {
11837 			m = pmap_san_enter_alloc_4k();
11838 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11839 			    X86_PG_V | pg_nx);
11840 		}
11841 	}
11842 	if ((*pde & X86_PG_PS) != 0)
11843 		return;
11844 	pte = pmap_pde_to_pte(pde, va);
11845 	if ((*pte & X86_PG_V) != 0)
11846 		return;
11847 	m = pmap_san_enter_alloc_4k();
11848 	*pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11849 	    X86_PG_M | X86_PG_A | pg_nx);
11850 }
11851 #endif
11852 
11853 /*
11854  * Track a range of the kernel's virtual address space that is contiguous
11855  * in various mapping attributes.
11856  */
11857 struct pmap_kernel_map_range {
11858 	vm_offset_t sva;
11859 	pt_entry_t attrs;
11860 	int ptes;
11861 	int pdes;
11862 	int pdpes;
11863 };
11864 
11865 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)11866 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11867     vm_offset_t eva)
11868 {
11869 	const char *mode;
11870 	int i, pat_idx;
11871 
11872 	if (eva <= range->sva)
11873 		return;
11874 
11875 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11876 	for (i = 0; i < PAT_INDEX_SIZE; i++)
11877 		if (pat_index[i] == pat_idx)
11878 			break;
11879 
11880 	switch (i) {
11881 	case PAT_WRITE_BACK:
11882 		mode = "WB";
11883 		break;
11884 	case PAT_WRITE_THROUGH:
11885 		mode = "WT";
11886 		break;
11887 	case PAT_UNCACHEABLE:
11888 		mode = "UC";
11889 		break;
11890 	case PAT_UNCACHED:
11891 		mode = "U-";
11892 		break;
11893 	case PAT_WRITE_PROTECTED:
11894 		mode = "WP";
11895 		break;
11896 	case PAT_WRITE_COMBINING:
11897 		mode = "WC";
11898 		break;
11899 	default:
11900 		printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11901 		    __func__, pat_idx, range->sva, eva);
11902 		mode = "??";
11903 		break;
11904 	}
11905 
11906 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11907 	    range->sva, eva,
11908 	    (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11909 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
11910 	    (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11911 	    (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11912 	    mode, range->pdpes, range->pdes, range->ptes);
11913 
11914 	/* Reset to sentinel value. */
11915 	range->sva = kva_layout.kva_max;
11916 }
11917 
11918 /*
11919  * Determine whether the attributes specified by a page table entry match those
11920  * being tracked by the current range.  This is not quite as simple as a direct
11921  * flag comparison since some PAT modes have multiple representations.
11922  */
11923 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)11924 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11925 {
11926 	pt_entry_t diff, mask;
11927 
11928 	mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11929 	diff = (range->attrs ^ attrs) & mask;
11930 	if (diff == 0)
11931 		return (true);
11932 	if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11933 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
11934 	    pmap_pat_index(kernel_pmap, attrs, true))
11935 		return (true);
11936 	return (false);
11937 }
11938 
11939 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)11940 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11941     pt_entry_t attrs)
11942 {
11943 
11944 	memset(range, 0, sizeof(*range));
11945 	range->sva = va;
11946 	range->attrs = attrs;
11947 }
11948 
11949 /*
11950  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
11951  * those of the current run, dump the address range and its attributes, and
11952  * begin a new run.
11953  */
11954 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pml5_entry_t pml5e,pml4_entry_t pml4e,pdp_entry_t pdpe,pd_entry_t pde,pt_entry_t pte)11955 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11956     vm_offset_t va, pml5_entry_t pml5e, pml4_entry_t pml4e, pdp_entry_t pdpe,
11957     pd_entry_t pde, pt_entry_t pte)
11958 {
11959 	pt_entry_t attrs;
11960 
11961 	if (la57) {
11962 		attrs = pml5e & (X86_PG_RW | X86_PG_U | pg_nx);
11963 		attrs |= pml4e & pg_nx;
11964 		attrs &= pg_nx | (pml4e & (X86_PG_RW | X86_PG_U));
11965 	} else {
11966 		attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11967 	}
11968 
11969 	attrs |= pdpe & pg_nx;
11970 	attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11971 	if ((pdpe & PG_PS) != 0) {
11972 		attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11973 	} else if (pde != 0) {
11974 		attrs |= pde & pg_nx;
11975 		attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11976 	}
11977 	if ((pde & PG_PS) != 0) {
11978 		attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11979 	} else if (pte != 0) {
11980 		attrs |= pte & pg_nx;
11981 		attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11982 		attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11983 
11984 		/* Canonicalize by always using the PDE PAT bit. */
11985 		if ((attrs & X86_PG_PTE_PAT) != 0)
11986 			attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
11987 	}
11988 
11989 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
11990 		sysctl_kmaps_dump(sb, range, va);
11991 		sysctl_kmaps_reinit(range, va, attrs);
11992 	}
11993 }
11994 
11995 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)11996 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
11997 {
11998 	struct pmap_kernel_map_range range;
11999 	struct sbuf sbuf, *sb;
12000 	pml5_entry_t pml5e;
12001 	pml4_entry_t pml4e;
12002 	pdp_entry_t *pdp, pdpe;
12003 	pd_entry_t *pd, pde;
12004 	pt_entry_t *pt, pte;
12005 	vm_offset_t sva;
12006 	vm_paddr_t pa;
12007 	int error, j, k, l;
12008 	bool first;
12009 
12010 	error = sysctl_wire_old_buffer(req, 0);
12011 	if (error != 0)
12012 		return (error);
12013 	sb = &sbuf;
12014 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
12015 
12016 	/* Sentinel value. */
12017 	range.sva = kva_layout.kva_max;
12018 	pml5e = 0;	/* no UB for la48 */
12019 
12020 	/*
12021 	 * Iterate over the kernel page tables without holding the kernel pmap
12022 	 * lock.  Outside of the large map, kernel page table pages are never
12023 	 * freed, so at worst we will observe inconsistencies in the output.
12024 	 * Within the large map, ensure that PDP and PD page addresses are
12025 	 * valid before descending.
12026 	 */
12027 	for (first = true, sva = 0; sva != 0 || first; first = false) {
12028 		if (sva == kva_layout.rec_pt)
12029 			sbuf_printf(sb, "\nRecursive map:\n");
12030 		else if (sva == kva_layout.dmap_low)
12031 			sbuf_printf(sb, "\nDirect map:\n");
12032 #ifdef KASAN
12033 		else if (sva == kva_layout.kasan_shadow_low)
12034 			sbuf_printf(sb, "\nKASAN shadow map:\n");
12035 #endif
12036 #ifdef KMSAN
12037 		else if (sva == kva_layout.kmsan_shadow_low)
12038 			sbuf_printf(sb, "\nKMSAN shadow map:\n");
12039 		else if (sva == kva_layout.kmsan_origin_low)
12040 			sbuf_printf(sb, "\nKMSAN origin map:\n");
12041 #endif
12042 		else if (sva == kva_layout.km_low)
12043 			sbuf_printf(sb, "\nKernel map:\n");
12044 		else if (sva == kva_layout.lm_low)
12045 			sbuf_printf(sb, "\nLarge map:\n");
12046 
12047 		/* Convert to canonical form. */
12048 		if (la57) {
12049 			if (sva == 1ul << 56) {
12050 				sva |= -1ul << 57;
12051 				continue;
12052 			}
12053 		} else {
12054 			if (sva == 1ul << 47) {
12055 				sva |= -1ul << 48;
12056 				continue;
12057 			}
12058 		}
12059 
12060 restart:
12061 		if (la57) {
12062 			pml5e = *pmap_pml5e(kernel_pmap, sva);
12063 			if ((pml5e & X86_PG_V) == 0) {
12064 				sva = rounddown2(sva, NBPML5);
12065 				sysctl_kmaps_dump(sb, &range, sva);
12066 				sva += NBPML5;
12067 				continue;
12068 			}
12069 		}
12070 		pml4e = *pmap_pml4e(kernel_pmap, sva);
12071 		if ((pml4e & X86_PG_V) == 0) {
12072 			sva = rounddown2(sva, NBPML4);
12073 			sysctl_kmaps_dump(sb, &range, sva);
12074 			sva += NBPML4;
12075 			continue;
12076 		}
12077 		pa = pml4e & PG_FRAME;
12078 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
12079 
12080 		for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
12081 			pdpe = pdp[j];
12082 			if ((pdpe & X86_PG_V) == 0) {
12083 				sva = rounddown2(sva, NBPDP);
12084 				sysctl_kmaps_dump(sb, &range, sva);
12085 				sva += NBPDP;
12086 				continue;
12087 			}
12088 			pa = pdpe & PG_FRAME;
12089 			if ((pdpe & PG_PS) != 0) {
12090 				sva = rounddown2(sva, NBPDP);
12091 				sysctl_kmaps_check(sb, &range, sva, pml5e,
12092 				    pml4e, pdpe, 0, 0);
12093 				range.pdpes++;
12094 				sva += NBPDP;
12095 				continue;
12096 			}
12097 			if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12098 			    vm_phys_paddr_to_vm_page(pa) == NULL) {
12099 				/*
12100 				 * Page table pages for the large map may be
12101 				 * freed.  Validate the next-level address
12102 				 * before descending.
12103 				 */
12104 				sva += NBPDP;
12105 				goto restart;
12106 			}
12107 			pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
12108 
12109 			for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
12110 				pde = pd[k];
12111 				if ((pde & X86_PG_V) == 0) {
12112 					sva = rounddown2(sva, NBPDR);
12113 					sysctl_kmaps_dump(sb, &range, sva);
12114 					sva += NBPDR;
12115 					continue;
12116 				}
12117 				pa = pde & PG_FRAME;
12118 				if ((pde & PG_PS) != 0) {
12119 					sva = rounddown2(sva, NBPDR);
12120 					sysctl_kmaps_check(sb, &range, sva,
12121 					    pml5e, pml4e, pdpe, pde, 0);
12122 					range.pdes++;
12123 					sva += NBPDR;
12124 					continue;
12125 				}
12126 				if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12127 				    vm_phys_paddr_to_vm_page(pa) == NULL) {
12128 					/*
12129 					 * Page table pages for the large map
12130 					 * may be freed.  Validate the
12131 					 * next-level address before descending.
12132 					 */
12133 					sva += NBPDR;
12134 					goto restart;
12135 				}
12136 				pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
12137 
12138 				for (l = pmap_pte_index(sva); l < NPTEPG; l++,
12139 				    sva += PAGE_SIZE) {
12140 					pte = pt[l];
12141 					if ((pte & X86_PG_V) == 0) {
12142 						sysctl_kmaps_dump(sb, &range,
12143 						    sva);
12144 						continue;
12145 					}
12146 					sysctl_kmaps_check(sb, &range, sva,
12147 					    pml5e, pml4e, pdpe, pde, pte);
12148 					range.ptes++;
12149 				}
12150 			}
12151 		}
12152 	}
12153 
12154 	error = sbuf_finish(sb);
12155 	sbuf_delete(sb);
12156 	return (error);
12157 }
12158 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
12159     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
12160     NULL, 0, sysctl_kmaps, "A",
12161     "Dump kernel address layout");
12162 
12163 #ifdef DDB
DB_SHOW_COMMAND(pte,pmap_print_pte)12164 DB_SHOW_COMMAND(pte, pmap_print_pte)
12165 {
12166 	pmap_t pmap;
12167 	pml5_entry_t *pml5;
12168 	pml4_entry_t *pml4;
12169 	pdp_entry_t *pdp;
12170 	pd_entry_t *pde;
12171 	pt_entry_t *pte, PG_V;
12172 	vm_offset_t va;
12173 
12174 	if (!have_addr) {
12175 		db_printf("show pte addr\n");
12176 		return;
12177 	}
12178 	va = (vm_offset_t)addr;
12179 
12180 	if (kdb_thread != NULL)
12181 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12182 	else
12183 		pmap = PCPU_GET(curpmap);
12184 
12185 	PG_V = pmap_valid_bit(pmap);
12186 	db_printf("VA 0x%016lx", va);
12187 
12188 	if (pmap_is_la57(pmap)) {
12189 		pml5 = pmap_pml5e(pmap, va);
12190 		db_printf(" pml5e@0x%016lx 0x%016lx", (uint64_t)pml5, *pml5);
12191 		if ((*pml5 & PG_V) == 0) {
12192 			db_printf("\n");
12193 			return;
12194 		}
12195 		pml4 = pmap_pml5e_to_pml4e(pml5, va);
12196 	} else {
12197 		pml4 = pmap_pml4e(pmap, va);
12198 	}
12199 	db_printf(" pml4e@0x%016lx 0x%016lx", (uint64_t)pml4, *pml4);
12200 	if ((*pml4 & PG_V) == 0) {
12201 		db_printf("\n");
12202 		return;
12203 	}
12204 	pdp = pmap_pml4e_to_pdpe(pml4, va);
12205 	db_printf(" pdpe@0x%016lx 0x%016lx", (uint64_t)pdp, *pdp);
12206 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12207 		db_printf("\n");
12208 		return;
12209 	}
12210 	pde = pmap_pdpe_to_pde(pdp, va);
12211 	db_printf(" pde@0x%016lx 0x%016lx", (uint64_t)pde, *pde);
12212 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12213 		db_printf("\n");
12214 		return;
12215 	}
12216 	pte = pmap_pde_to_pte(pde, va);
12217 	db_printf(" pte@0x%016lx 0x%016lx\n", (uint64_t)pte, *pte);
12218 }
12219 
DB_SHOW_COMMAND(phys2dmap,pmap_phys2dmap)12220 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12221 {
12222 	vm_paddr_t a;
12223 
12224 	if (have_addr) {
12225 		a = (vm_paddr_t)addr;
12226 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12227 	} else {
12228 		db_printf("show phys2dmap addr\n");
12229 	}
12230 }
12231 
12232 static void
ptpages_show_page(int level,int idx,vm_page_t pg)12233 ptpages_show_page(int level, int idx, vm_page_t pg)
12234 {
12235 	db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12236 	    level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12237 }
12238 
12239 static void
ptpages_show_complain(int level,int idx,uint64_t pte)12240 ptpages_show_complain(int level, int idx, uint64_t pte)
12241 {
12242 	db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12243 }
12244 
12245 static void
ptpages_show_pml4(vm_page_t pg4,int num_entries,uint64_t PG_V)12246 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12247 {
12248 	vm_page_t pg3, pg2, pg1;
12249 	pml4_entry_t *pml4;
12250 	pdp_entry_t *pdp;
12251 	pd_entry_t *pd;
12252 	int i4, i3, i2;
12253 
12254 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12255 	for (i4 = 0; i4 < num_entries; i4++) {
12256 		if ((pml4[i4] & PG_V) == 0)
12257 			continue;
12258 		pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12259 		if (pg3 == NULL) {
12260 			ptpages_show_complain(3, i4, pml4[i4]);
12261 			continue;
12262 		}
12263 		ptpages_show_page(3, i4, pg3);
12264 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12265 		for (i3 = 0; i3 < NPDPEPG; i3++) {
12266 			if ((pdp[i3] & PG_V) == 0)
12267 				continue;
12268 			pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12269 			if (pg3 == NULL) {
12270 				ptpages_show_complain(2, i3, pdp[i3]);
12271 				continue;
12272 			}
12273 			ptpages_show_page(2, i3, pg2);
12274 			pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12275 			for (i2 = 0; i2 < NPDEPG; i2++) {
12276 				if ((pd[i2] & PG_V) == 0)
12277 					continue;
12278 				pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12279 				if (pg1 == NULL) {
12280 					ptpages_show_complain(1, i2, pd[i2]);
12281 					continue;
12282 				}
12283 				ptpages_show_page(1, i2, pg1);
12284 			}
12285 		}
12286 	}
12287 }
12288 
DB_SHOW_COMMAND(ptpages,pmap_ptpages)12289 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12290 {
12291 	pmap_t pmap;
12292 	vm_page_t pg;
12293 	pml5_entry_t *pml5;
12294 	uint64_t PG_V;
12295 	int i5;
12296 
12297 	if (have_addr)
12298 		pmap = (pmap_t)addr;
12299 	else
12300 		pmap = PCPU_GET(curpmap);
12301 
12302 	PG_V = pmap_valid_bit(pmap);
12303 
12304 	if (pmap_is_la57(pmap)) {
12305 		pml5 = pmap->pm_pmltop;
12306 		for (i5 = 0; i5 < NUPML5E; i5++) {
12307 			if ((pml5[i5] & PG_V) == 0)
12308 				continue;
12309 			pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12310 			if (pg == NULL) {
12311 				ptpages_show_complain(4, i5, pml5[i5]);
12312 				continue;
12313 			}
12314 			ptpages_show_page(4, i5, pg);
12315 			ptpages_show_pml4(pg, NPML4EPG, PG_V);
12316 		}
12317 	} else {
12318 		ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12319 		    (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12320 	}
12321 }
12322 #endif
12323