xref: /linux/drivers/iio/accel/adxl355_core.c (revision 6cf62f0174de64e4161e301bb0ed52e198ce25dc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ADXL355 3-Axis Digital Accelerometer IIO core driver
4  *
5  * Copyright (c) 2021 Puranjay Mohan <puranjay12@gmail.com>
6  *
7  * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_adxl355.pdf
8  */
9 
10 #include <linux/bits.h>
11 #include <linux/bitfield.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/trigger.h>
15 #include <linux/iio/triggered_buffer.h>
16 #include <linux/iio/trigger_consumer.h>
17 #include <linux/limits.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/property.h>
22 #include <linux/regmap.h>
23 #include <linux/units.h>
24 
25 #include <linux/unaligned.h>
26 
27 #include "adxl355.h"
28 
29 /* ADXL355 Register Definitions */
30 #define ADXL355_DEVID_AD_REG		0x00
31 #define ADXL355_DEVID_MST_REG		0x01
32 #define ADXL355_PARTID_REG		0x02
33 #define ADXL355_STATUS_REG		0x04
34 #define ADXL355_FIFO_ENTRIES_REG	0x05
35 #define ADXL355_TEMP2_REG		0x06
36 #define ADXL355_XDATA3_REG		0x08
37 #define ADXL355_YDATA3_REG		0x0B
38 #define ADXL355_ZDATA3_REG		0x0E
39 #define ADXL355_FIFO_DATA_REG		0x11
40 #define ADXL355_OFFSET_X_H_REG		0x1E
41 #define ADXL355_OFFSET_Y_H_REG		0x20
42 #define ADXL355_OFFSET_Z_H_REG		0x22
43 #define ADXL355_ACT_EN_REG		0x24
44 #define ADXL355_ACT_THRESH_H_REG	0x25
45 #define ADXL355_ACT_THRESH_L_REG	0x26
46 #define ADXL355_ACT_COUNT_REG		0x27
47 #define ADXL355_FILTER_REG		0x28
48 #define  ADXL355_FILTER_ODR_MSK GENMASK(3, 0)
49 #define  ADXL355_FILTER_HPF_MSK	GENMASK(6, 4)
50 #define ADXL355_FIFO_SAMPLES_REG	0x29
51 #define ADXL355_INT_MAP_REG		0x2A
52 #define ADXL355_SYNC_REG		0x2B
53 #define ADXL355_RANGE_REG		0x2C
54 #define ADXL355_POWER_CTL_REG		0x2D
55 #define  ADXL355_POWER_CTL_MODE_MSK	GENMASK(1, 0)
56 #define  ADXL355_POWER_CTL_DRDY_MSK	BIT(2)
57 #define ADXL355_SELF_TEST_REG		0x2E
58 #define ADXL355_RESET_REG		0x2F
59 #define ADXL355_BASE_ADDR_SHADOW_REG	0x50
60 #define ADXL355_SHADOW_REG_COUNT	5
61 
62 #define ADXL355_DEVID_AD_VAL		0xAD
63 #define ADXL355_DEVID_MST_VAL		0x1D
64 #define ADXL355_PARTID_VAL		0xED
65 #define ADXL359_PARTID_VAL		0xE9
66 #define ADXL355_RESET_CODE		0x52
67 
68 static const struct regmap_range adxl355_read_reg_range[] = {
69 	regmap_reg_range(ADXL355_DEVID_AD_REG, ADXL355_FIFO_DATA_REG),
70 	regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_SELF_TEST_REG),
71 };
72 
73 const struct regmap_access_table adxl355_readable_regs_tbl = {
74 	.yes_ranges = adxl355_read_reg_range,
75 	.n_yes_ranges = ARRAY_SIZE(adxl355_read_reg_range),
76 };
77 EXPORT_SYMBOL_NS_GPL(adxl355_readable_regs_tbl, "IIO_ADXL355");
78 
79 static const struct regmap_range adxl355_write_reg_range[] = {
80 	regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_RESET_REG),
81 };
82 
83 const struct regmap_access_table adxl355_writeable_regs_tbl = {
84 	.yes_ranges = adxl355_write_reg_range,
85 	.n_yes_ranges = ARRAY_SIZE(adxl355_write_reg_range),
86 };
87 EXPORT_SYMBOL_NS_GPL(adxl355_writeable_regs_tbl, "IIO_ADXL355");
88 
89 const struct adxl355_chip_info adxl35x_chip_info[] = {
90 	[ADXL355] = {
91 		.name = "adxl355",
92 		.part_id = ADXL355_PARTID_VAL,
93 		/*
94 		 * At +/- 2g with 20-bit resolution, scale is given in datasheet
95 		 * as 3.9ug/LSB = 0.0000039 * 9.80665 = 0.00003824593 m/s^2.
96 		 */
97 		.accel_scale = {
98 			.integer = 0,
99 			.decimal = 38245,
100 		},
101 		/*
102 		 * The datasheet defines an intercept of 1885 LSB at 25 degC
103 		 * and a slope of -9.05 LSB/C. The following formula can be used
104 		 * to find the temperature:
105 		 * Temp = ((RAW - 1885)/(-9.05)) + 25 but this doesn't follow
106 		 * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE.
107 		 * Hence using some rearranging we get the scale as -110.497238
108 		 * and offset as -2111.25.
109 		 */
110 		.temp_offset = {
111 			.integer =  -2111,
112 			.decimal = 250000,
113 		},
114 	},
115 	[ADXL359] = {
116 		.name = "adxl359",
117 		.part_id = ADXL359_PARTID_VAL,
118 		/*
119 		 * At +/- 10g with 20-bit resolution, scale is given in datasheet
120 		 * as 19.5ug/LSB = 0.0000195 * 9.80665 = 0.0.00019122967 m/s^2.
121 		 */
122 		.accel_scale = {
123 			.integer = 0,
124 			.decimal = 191229,
125 		},
126 		/*
127 		 * The datasheet defines an intercept of 1852 LSB at 25 degC
128 		 * and a slope of -9.05 LSB/C. The following formula can be used
129 		 * to find the temperature:
130 		 * Temp = ((RAW - 1852)/(-9.05)) + 25 but this doesn't follow
131 		 * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE.
132 		 * Hence using some rearranging we get the scale as -110.497238
133 		 * and offset as -2079.25.
134 		 */
135 		.temp_offset = {
136 			.integer = -2079,
137 			.decimal = 250000,
138 		},
139 	},
140 };
141 EXPORT_SYMBOL_NS_GPL(adxl35x_chip_info, "IIO_ADXL355");
142 
143 enum adxl355_op_mode {
144 	ADXL355_MEASUREMENT,
145 	ADXL355_STANDBY,
146 	ADXL355_TEMP_OFF,
147 };
148 
149 enum adxl355_odr {
150 	ADXL355_ODR_4000HZ,
151 	ADXL355_ODR_2000HZ,
152 	ADXL355_ODR_1000HZ,
153 	ADXL355_ODR_500HZ,
154 	ADXL355_ODR_250HZ,
155 	ADXL355_ODR_125HZ,
156 	ADXL355_ODR_62_5HZ,
157 	ADXL355_ODR_31_25HZ,
158 	ADXL355_ODR_15_625HZ,
159 	ADXL355_ODR_7_813HZ,
160 	ADXL355_ODR_3_906HZ,
161 };
162 
163 enum adxl355_hpf_3db {
164 	ADXL355_HPF_OFF,
165 	ADXL355_HPF_24_7,
166 	ADXL355_HPF_6_2084,
167 	ADXL355_HPF_1_5545,
168 	ADXL355_HPF_0_3862,
169 	ADXL355_HPF_0_0954,
170 	ADXL355_HPF_0_0238,
171 };
172 
173 static const int adxl355_odr_table[][2] = {
174 	[0] = {4000, 0},
175 	[1] = {2000, 0},
176 	[2] = {1000, 0},
177 	[3] = {500, 0},
178 	[4] = {250, 0},
179 	[5] = {125, 0},
180 	[6] = {62, 500000},
181 	[7] = {31, 250000},
182 	[8] = {15, 625000},
183 	[9] = {7, 813000},
184 	[10] = {3, 906000},
185 };
186 
187 static const int adxl355_hpf_3db_multipliers[] = {
188 	0,
189 	247000,
190 	62084,
191 	15545,
192 	3862,
193 	954,
194 	238,
195 };
196 
197 enum adxl355_chans {
198 	chan_x, chan_y, chan_z,
199 };
200 
201 struct adxl355_chan_info {
202 	u8 data_reg;
203 	u8 offset_reg;
204 };
205 
206 static const struct adxl355_chan_info adxl355_chans[] = {
207 	[chan_x] = {
208 		.data_reg = ADXL355_XDATA3_REG,
209 		.offset_reg = ADXL355_OFFSET_X_H_REG
210 	},
211 	[chan_y] = {
212 		.data_reg = ADXL355_YDATA3_REG,
213 		.offset_reg = ADXL355_OFFSET_Y_H_REG
214 	},
215 	[chan_z] = {
216 		.data_reg = ADXL355_ZDATA3_REG,
217 		.offset_reg = ADXL355_OFFSET_Z_H_REG
218 	},
219 };
220 
221 struct adxl355_data {
222 	const struct adxl355_chip_info *chip_info;
223 	struct regmap *regmap;
224 	struct device *dev;
225 	struct mutex lock; /* lock to protect op_mode */
226 	enum adxl355_op_mode op_mode;
227 	enum adxl355_odr odr;
228 	enum adxl355_hpf_3db hpf_3db;
229 	int calibbias[3];
230 	int adxl355_hpf_3db_table[7][2];
231 	struct iio_trigger *dready_trig;
232 	union {
233 		u8 transf_buf[3];
234 		struct {
235 			u8 buf[14];
236 			aligned_s64 ts;
237 		} buffer;
238 	} __aligned(IIO_DMA_MINALIGN);
239 };
240 
adxl355_set_op_mode(struct adxl355_data * data,enum adxl355_op_mode op_mode)241 static int adxl355_set_op_mode(struct adxl355_data *data,
242 			       enum adxl355_op_mode op_mode)
243 {
244 	int ret;
245 
246 	if (data->op_mode == op_mode)
247 		return 0;
248 
249 	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
250 				 ADXL355_POWER_CTL_MODE_MSK, op_mode);
251 	if (ret)
252 		return ret;
253 
254 	data->op_mode = op_mode;
255 
256 	return ret;
257 }
258 
adxl355_data_rdy_trigger_set_state(struct iio_trigger * trig,bool state)259 static int adxl355_data_rdy_trigger_set_state(struct iio_trigger *trig,
260 					      bool state)
261 {
262 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
263 	struct adxl355_data *data = iio_priv(indio_dev);
264 	int ret;
265 
266 	mutex_lock(&data->lock);
267 	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
268 				 ADXL355_POWER_CTL_DRDY_MSK,
269 				 FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK,
270 					    state ? 0 : 1));
271 	mutex_unlock(&data->lock);
272 
273 	return ret;
274 }
275 
adxl355_fill_3db_frequency_table(struct adxl355_data * data)276 static void adxl355_fill_3db_frequency_table(struct adxl355_data *data)
277 {
278 	u32 multiplier;
279 	u64 div, rem;
280 	u64 odr;
281 	int i;
282 
283 	odr = mul_u64_u32_shr(adxl355_odr_table[data->odr][0], MEGA, 0) +
284 			      adxl355_odr_table[data->odr][1];
285 
286 	for (i = 0; i < ARRAY_SIZE(adxl355_hpf_3db_multipliers); i++) {
287 		multiplier = adxl355_hpf_3db_multipliers[i];
288 		div = div64_u64_rem(mul_u64_u32_shr(odr, multiplier, 0),
289 				    TERA * 100, &rem);
290 
291 		data->adxl355_hpf_3db_table[i][0] = div;
292 		data->adxl355_hpf_3db_table[i][1] = div_u64(rem, MEGA * 100);
293 	}
294 }
295 
adxl355_setup(struct adxl355_data * data)296 static int adxl355_setup(struct adxl355_data *data)
297 {
298 	unsigned int regval;
299 	int retries = 5; /* the number is chosen based on empirical reasons */
300 	int ret;
301 	u8 *shadow_regs __free(kfree) = kzalloc(ADXL355_SHADOW_REG_COUNT, GFP_KERNEL);
302 
303 	if (!shadow_regs)
304 		return -ENOMEM;
305 
306 	ret = regmap_read(data->regmap, ADXL355_DEVID_AD_REG, &regval);
307 	if (ret)
308 		return ret;
309 
310 	if (regval != ADXL355_DEVID_AD_VAL) {
311 		dev_err(data->dev, "Invalid ADI ID 0x%02x\n", regval);
312 		return -ENODEV;
313 	}
314 
315 	ret = regmap_read(data->regmap, ADXL355_DEVID_MST_REG, &regval);
316 	if (ret)
317 		return ret;
318 
319 	if (regval != ADXL355_DEVID_MST_VAL) {
320 		dev_err(data->dev, "Invalid MEMS ID 0x%02x\n", regval);
321 		return -ENODEV;
322 	}
323 
324 	ret = regmap_read(data->regmap, ADXL355_PARTID_REG, &regval);
325 	if (ret)
326 		return ret;
327 
328 	if (regval != ADXL355_PARTID_VAL)
329 		dev_warn(data->dev, "Invalid DEV ID 0x%02x\n", regval);
330 
331 	/* Read shadow registers to be compared after reset */
332 	ret = regmap_bulk_read(data->regmap,
333 			       ADXL355_BASE_ADDR_SHADOW_REG,
334 			       shadow_regs, ADXL355_SHADOW_REG_COUNT);
335 	if (ret)
336 		return ret;
337 
338 	do {
339 		if (--retries == 0) {
340 			dev_err(data->dev, "Shadow registers mismatch\n");
341 			return -EIO;
342 		}
343 
344 		/*
345 		 * Perform a software reset to make sure the device is in a consistent
346 		 * state after start-up.
347 		 */
348 		ret = regmap_write(data->regmap, ADXL355_RESET_REG,
349 				   ADXL355_RESET_CODE);
350 		if (ret)
351 			return ret;
352 
353 		/* Wait at least 5ms after software reset */
354 		usleep_range(5000, 10000);
355 
356 		/* Read shadow registers for comparison */
357 		ret = regmap_bulk_read(data->regmap,
358 				       ADXL355_BASE_ADDR_SHADOW_REG,
359 				       data->buffer.buf,
360 				       ADXL355_SHADOW_REG_COUNT);
361 		if (ret)
362 			return ret;
363 	} while (memcmp(shadow_regs, data->buffer.buf,
364 			ADXL355_SHADOW_REG_COUNT));
365 
366 	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
367 				 ADXL355_POWER_CTL_DRDY_MSK,
368 				 FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK, 1));
369 	if (ret)
370 		return ret;
371 
372 	adxl355_fill_3db_frequency_table(data);
373 
374 	return adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
375 }
376 
adxl355_get_temp_data(struct adxl355_data * data,u8 addr)377 static int adxl355_get_temp_data(struct adxl355_data *data, u8 addr)
378 {
379 	return regmap_bulk_read(data->regmap, addr, data->transf_buf, 2);
380 }
381 
adxl355_read_axis(struct adxl355_data * data,u8 addr)382 static int adxl355_read_axis(struct adxl355_data *data, u8 addr)
383 {
384 	int ret;
385 
386 	ret = regmap_bulk_read(data->regmap, addr, data->transf_buf,
387 			       ARRAY_SIZE(data->transf_buf));
388 	if (ret)
389 		return ret;
390 
391 	return get_unaligned_be24(data->transf_buf);
392 }
393 
adxl355_find_match(const int (* freq_tbl)[2],const int n,const int val,const int val2)394 static int adxl355_find_match(const int (*freq_tbl)[2], const int n,
395 			      const int val, const int val2)
396 {
397 	int i;
398 
399 	for (i = 0; i < n; i++) {
400 		if (freq_tbl[i][0] == val && freq_tbl[i][1] == val2)
401 			return i;
402 	}
403 
404 	return -EINVAL;
405 }
406 
adxl355_set_odr(struct adxl355_data * data,enum adxl355_odr odr)407 static int adxl355_set_odr(struct adxl355_data *data,
408 			   enum adxl355_odr odr)
409 {
410 	int ret;
411 
412 	mutex_lock(&data->lock);
413 
414 	if (data->odr == odr) {
415 		mutex_unlock(&data->lock);
416 		return 0;
417 	}
418 
419 	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
420 	if (ret)
421 		goto err_unlock;
422 
423 	ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG,
424 				 ADXL355_FILTER_ODR_MSK,
425 				 FIELD_PREP(ADXL355_FILTER_ODR_MSK, odr));
426 	if (ret)
427 		goto err_set_opmode;
428 
429 	data->odr = odr;
430 	adxl355_fill_3db_frequency_table(data);
431 
432 	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
433 	if (ret)
434 		goto err_set_opmode;
435 
436 	mutex_unlock(&data->lock);
437 	return 0;
438 
439 err_set_opmode:
440 	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
441 err_unlock:
442 	mutex_unlock(&data->lock);
443 	return ret;
444 }
445 
adxl355_set_hpf_3db(struct adxl355_data * data,enum adxl355_hpf_3db hpf)446 static int adxl355_set_hpf_3db(struct adxl355_data *data,
447 			       enum adxl355_hpf_3db hpf)
448 {
449 	int ret;
450 
451 	mutex_lock(&data->lock);
452 
453 	if (data->hpf_3db == hpf) {
454 		mutex_unlock(&data->lock);
455 		return 0;
456 	}
457 
458 	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
459 	if (ret)
460 		goto err_unlock;
461 
462 	ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG,
463 				 ADXL355_FILTER_HPF_MSK,
464 				 FIELD_PREP(ADXL355_FILTER_HPF_MSK, hpf));
465 	if (ret)
466 		goto err_set_opmode;
467 
468 	data->hpf_3db = hpf;
469 
470 	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
471 	if (ret)
472 		goto err_set_opmode;
473 
474 	mutex_unlock(&data->lock);
475 	return 0;
476 
477 err_set_opmode:
478 	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
479 err_unlock:
480 	mutex_unlock(&data->lock);
481 	return ret;
482 }
483 
adxl355_set_calibbias(struct adxl355_data * data,enum adxl355_chans chan,int calibbias)484 static int adxl355_set_calibbias(struct adxl355_data *data,
485 				 enum adxl355_chans chan, int calibbias)
486 {
487 	int ret;
488 
489 	mutex_lock(&data->lock);
490 
491 	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
492 	if (ret)
493 		goto err_unlock;
494 
495 	put_unaligned_be16(calibbias, data->transf_buf);
496 	ret = regmap_bulk_write(data->regmap,
497 				adxl355_chans[chan].offset_reg,
498 				data->transf_buf, 2);
499 	if (ret)
500 		goto err_set_opmode;
501 
502 	data->calibbias[chan] = calibbias;
503 
504 	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
505 	if (ret)
506 		goto err_set_opmode;
507 
508 	mutex_unlock(&data->lock);
509 	return 0;
510 
511 err_set_opmode:
512 	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
513 err_unlock:
514 	mutex_unlock(&data->lock);
515 	return ret;
516 }
517 
adxl355_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)518 static int adxl355_read_raw(struct iio_dev *indio_dev,
519 			    struct iio_chan_spec const *chan,
520 			    int *val, int *val2, long mask)
521 {
522 	struct adxl355_data *data = iio_priv(indio_dev);
523 	int ret;
524 
525 	switch (mask) {
526 	case IIO_CHAN_INFO_RAW:
527 		switch (chan->type) {
528 		case IIO_TEMP:
529 			ret = adxl355_get_temp_data(data, chan->address);
530 			if (ret < 0)
531 				return ret;
532 			*val = get_unaligned_be16(data->transf_buf);
533 
534 			return IIO_VAL_INT;
535 		case IIO_ACCEL:
536 			ret = adxl355_read_axis(data, adxl355_chans[
537 						chan->address].data_reg);
538 			if (ret < 0)
539 				return ret;
540 			*val = sign_extend32(ret >> chan->scan_type.shift,
541 					     chan->scan_type.realbits - 1);
542 			return IIO_VAL_INT;
543 		default:
544 			return -EINVAL;
545 		}
546 
547 	case IIO_CHAN_INFO_SCALE:
548 		switch (chan->type) {
549 		case IIO_TEMP:
550 			/*
551 			 * Temperature scale is -110.497238.
552 			 * See the detailed explanation in adxl35x_chip_info
553 			 * definition above.
554 			 */
555 			*val = -110;
556 			*val2 = 497238;
557 			return IIO_VAL_INT_PLUS_MICRO;
558 		case IIO_ACCEL:
559 			*val = data->chip_info->accel_scale.integer;
560 			*val2 = data->chip_info->accel_scale.decimal;
561 			return IIO_VAL_INT_PLUS_NANO;
562 		default:
563 			return -EINVAL;
564 		}
565 	case IIO_CHAN_INFO_OFFSET:
566 		*val = data->chip_info->temp_offset.integer;
567 		*val2 = data->chip_info->temp_offset.decimal;
568 		return IIO_VAL_INT_PLUS_MICRO;
569 	case IIO_CHAN_INFO_CALIBBIAS:
570 		*val = sign_extend32(data->calibbias[chan->address], 15);
571 		return IIO_VAL_INT;
572 	case IIO_CHAN_INFO_SAMP_FREQ:
573 		*val = adxl355_odr_table[data->odr][0];
574 		*val2 = adxl355_odr_table[data->odr][1];
575 		return IIO_VAL_INT_PLUS_MICRO;
576 	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
577 		*val = data->adxl355_hpf_3db_table[data->hpf_3db][0];
578 		*val2 = data->adxl355_hpf_3db_table[data->hpf_3db][1];
579 		return IIO_VAL_INT_PLUS_MICRO;
580 	default:
581 		return -EINVAL;
582 	}
583 }
584 
adxl355_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)585 static int adxl355_write_raw(struct iio_dev *indio_dev,
586 			     struct iio_chan_spec const *chan,
587 			     int val, int val2, long mask)
588 {
589 	struct adxl355_data *data = iio_priv(indio_dev);
590 	int odr_idx, hpf_idx, calibbias;
591 
592 	switch (mask) {
593 	case IIO_CHAN_INFO_SAMP_FREQ:
594 		odr_idx = adxl355_find_match(adxl355_odr_table,
595 					     ARRAY_SIZE(adxl355_odr_table),
596 					     val, val2);
597 		if (odr_idx < 0)
598 			return odr_idx;
599 
600 		return adxl355_set_odr(data, odr_idx);
601 	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
602 		hpf_idx = adxl355_find_match(data->adxl355_hpf_3db_table,
603 					ARRAY_SIZE(data->adxl355_hpf_3db_table),
604 					     val, val2);
605 		if (hpf_idx < 0)
606 			return hpf_idx;
607 
608 		return adxl355_set_hpf_3db(data, hpf_idx);
609 	case IIO_CHAN_INFO_CALIBBIAS:
610 		calibbias = clamp_t(int, val, S16_MIN, S16_MAX);
611 
612 		return adxl355_set_calibbias(data, chan->address, calibbias);
613 	default:
614 		return -EINVAL;
615 	}
616 }
617 
adxl355_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)618 static int adxl355_read_avail(struct iio_dev *indio_dev,
619 			      struct iio_chan_spec const *chan,
620 			      const int **vals, int *type, int *length,
621 			      long mask)
622 {
623 	struct adxl355_data *data = iio_priv(indio_dev);
624 
625 	switch (mask) {
626 	case IIO_CHAN_INFO_SAMP_FREQ:
627 		*vals = (const int *)adxl355_odr_table;
628 		*type = IIO_VAL_INT_PLUS_MICRO;
629 		/* Values are stored in a 2D matrix */
630 		*length = ARRAY_SIZE(adxl355_odr_table) * 2;
631 
632 		return IIO_AVAIL_LIST;
633 	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
634 		*vals = (const int *)data->adxl355_hpf_3db_table;
635 		*type = IIO_VAL_INT_PLUS_MICRO;
636 		/* Values are stored in a 2D matrix */
637 		*length = ARRAY_SIZE(data->adxl355_hpf_3db_table) * 2;
638 
639 		return IIO_AVAIL_LIST;
640 	default:
641 		return -EINVAL;
642 	}
643 }
644 
645 static const unsigned long adxl355_avail_scan_masks[] = {
646 	GENMASK(3, 0),
647 	0
648 };
649 
650 static const struct iio_info adxl355_info = {
651 	.read_raw	= adxl355_read_raw,
652 	.write_raw	= adxl355_write_raw,
653 	.read_avail	= &adxl355_read_avail,
654 };
655 
656 static const struct iio_trigger_ops adxl355_trigger_ops = {
657 	.set_trigger_state = &adxl355_data_rdy_trigger_set_state,
658 	.validate_device = &iio_trigger_validate_own_device,
659 };
660 
adxl355_trigger_handler(int irq,void * p)661 static irqreturn_t adxl355_trigger_handler(int irq, void *p)
662 {
663 	struct iio_poll_func *pf = p;
664 	struct iio_dev *indio_dev = pf->indio_dev;
665 	struct adxl355_data *data = iio_priv(indio_dev);
666 	int ret;
667 
668 	mutex_lock(&data->lock);
669 
670 	/*
671 	 * data->buffer is used both for triggered buffer support
672 	 * and read/write_raw(), hence, it has to be zeroed here before usage.
673 	 */
674 	data->buffer.buf[0] = 0;
675 
676 	/*
677 	 * The acceleration data is 24 bits and big endian. It has to be saved
678 	 * in 32 bits, hence, it is saved in the 2nd byte of the 4 byte buffer.
679 	 * The buf array is 14 bytes as it includes 3x4=12 bytes for
680 	 * acceleration data of x, y, and z axis. It also includes 2 bytes for
681 	 * temperature data.
682 	 */
683 	ret = regmap_bulk_read(data->regmap, ADXL355_XDATA3_REG,
684 			       &data->buffer.buf[1], 3);
685 	if (ret)
686 		goto out_unlock_notify;
687 
688 	ret = regmap_bulk_read(data->regmap, ADXL355_YDATA3_REG,
689 			       &data->buffer.buf[5], 3);
690 	if (ret)
691 		goto out_unlock_notify;
692 
693 	ret = regmap_bulk_read(data->regmap, ADXL355_ZDATA3_REG,
694 			       &data->buffer.buf[9], 3);
695 	if (ret)
696 		goto out_unlock_notify;
697 
698 	ret = regmap_bulk_read(data->regmap, ADXL355_TEMP2_REG,
699 			       &data->buffer.buf[12], 2);
700 	if (ret)
701 		goto out_unlock_notify;
702 
703 	iio_push_to_buffers_with_ts(indio_dev, &data->buffer,
704 				    sizeof(data->buffer), pf->timestamp);
705 
706 out_unlock_notify:
707 	mutex_unlock(&data->lock);
708 	iio_trigger_notify_done(indio_dev->trig);
709 
710 	return IRQ_HANDLED;
711 }
712 
713 #define ADXL355_ACCEL_CHANNEL(index, reg, axis) {			\
714 	.type = IIO_ACCEL,						\
715 	.address = reg,							\
716 	.modified = 1,							\
717 	.channel2 = IIO_MOD_##axis,					\
718 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
719 			      BIT(IIO_CHAN_INFO_CALIBBIAS),		\
720 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
721 				    BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
722 		BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),	\
723 	.info_mask_shared_by_type_available =				\
724 		BIT(IIO_CHAN_INFO_SAMP_FREQ) |				\
725 		BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),	\
726 	.scan_index = index,						\
727 	.scan_type = {							\
728 		.sign = 's',						\
729 		.realbits = 20,						\
730 		.storagebits = 32,					\
731 		.shift = 4,						\
732 		.endianness = IIO_BE,					\
733 	}								\
734 }
735 
736 static const struct iio_chan_spec adxl355_channels[] = {
737 	ADXL355_ACCEL_CHANNEL(0, chan_x, X),
738 	ADXL355_ACCEL_CHANNEL(1, chan_y, Y),
739 	ADXL355_ACCEL_CHANNEL(2, chan_z, Z),
740 	{
741 		.type = IIO_TEMP,
742 		.address = ADXL355_TEMP2_REG,
743 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
744 				      BIT(IIO_CHAN_INFO_SCALE) |
745 				      BIT(IIO_CHAN_INFO_OFFSET),
746 		.scan_index = 3,
747 		.scan_type = {
748 			.sign = 's',
749 			.realbits = 12,
750 			.storagebits = 16,
751 			.endianness = IIO_BE,
752 		},
753 	},
754 	IIO_CHAN_SOFT_TIMESTAMP(4),
755 };
756 
adxl355_probe_trigger(struct iio_dev * indio_dev,int irq)757 static int adxl355_probe_trigger(struct iio_dev *indio_dev, int irq)
758 {
759 	struct adxl355_data *data = iio_priv(indio_dev);
760 	int ret;
761 
762 	data->dready_trig = devm_iio_trigger_alloc(data->dev, "%s-dev%d",
763 						   indio_dev->name,
764 						   iio_device_id(indio_dev));
765 	if (!data->dready_trig)
766 		return -ENOMEM;
767 
768 	data->dready_trig->ops = &adxl355_trigger_ops;
769 	iio_trigger_set_drvdata(data->dready_trig, indio_dev);
770 
771 	ret = devm_request_irq(data->dev, irq,
772 			       &iio_trigger_generic_data_rdy_poll,
773 			       IRQF_ONESHOT, "adxl355_irq", data->dready_trig);
774 	if (ret)
775 		return dev_err_probe(data->dev, ret, "request irq %d failed\n",
776 				     irq);
777 
778 	ret = devm_iio_trigger_register(data->dev, data->dready_trig);
779 	if (ret) {
780 		dev_err(data->dev, "iio trigger register failed\n");
781 		return ret;
782 	}
783 
784 	indio_dev->trig = iio_trigger_get(data->dready_trig);
785 
786 	return 0;
787 }
788 
adxl355_core_probe(struct device * dev,struct regmap * regmap,const struct adxl355_chip_info * chip_info)789 int adxl355_core_probe(struct device *dev, struct regmap *regmap,
790 		       const struct adxl355_chip_info *chip_info)
791 {
792 	struct adxl355_data *data;
793 	struct iio_dev *indio_dev;
794 	int ret;
795 	int irq;
796 
797 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
798 	if (!indio_dev)
799 		return -ENOMEM;
800 
801 	data = iio_priv(indio_dev);
802 	data->regmap = regmap;
803 	data->dev = dev;
804 	data->op_mode = ADXL355_STANDBY;
805 	data->chip_info = chip_info;
806 	mutex_init(&data->lock);
807 
808 	indio_dev->name = chip_info->name;
809 	indio_dev->info = &adxl355_info;
810 	indio_dev->modes = INDIO_DIRECT_MODE;
811 	indio_dev->channels = adxl355_channels;
812 	indio_dev->num_channels = ARRAY_SIZE(adxl355_channels);
813 	indio_dev->available_scan_masks = adxl355_avail_scan_masks;
814 
815 	ret = adxl355_setup(data);
816 	if (ret) {
817 		dev_err(dev, "ADXL355 setup failed\n");
818 		return ret;
819 	}
820 
821 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
822 					      &iio_pollfunc_store_time,
823 					      &adxl355_trigger_handler, NULL);
824 	if (ret) {
825 		dev_err(dev, "iio triggered buffer setup failed\n");
826 		return ret;
827 	}
828 
829 	irq = fwnode_irq_get_byname(dev_fwnode(dev), "DRDY");
830 	if (irq > 0) {
831 		ret = adxl355_probe_trigger(indio_dev, irq);
832 		if (ret)
833 			return ret;
834 	}
835 
836 	return devm_iio_device_register(dev, indio_dev);
837 }
838 EXPORT_SYMBOL_NS_GPL(adxl355_core_probe, "IIO_ADXL355");
839 
840 MODULE_AUTHOR("Puranjay Mohan <puranjay12@gmail.com>");
841 MODULE_DESCRIPTION("ADXL355 3-Axis Digital Accelerometer core driver");
842 MODULE_LICENSE("GPL v2");
843