xref: /linux/drivers/iio/adc/ti-ads131e08.c (revision 7ec462100ef9142344ddbf86f2c3008b97acddbe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Texas Instruments ADS131E0x 4-, 6- and 8-Channel ADCs
4  *
5  * Copyright (c) 2020 AVL DiTEST GmbH
6  *   Tomislav Denis <tomislav.denis@avl.com>
7  *
8  * Datasheet: https://www.ti.com/lit/ds/symlink/ads131e08.pdf
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/module.h>
15 
16 #include <linux/iio/buffer.h>
17 #include <linux/iio/iio.h>
18 #include <linux/iio/sysfs.h>
19 #include <linux/iio/trigger.h>
20 #include <linux/iio/trigger_consumer.h>
21 #include <linux/iio/triggered_buffer.h>
22 
23 #include <linux/regulator/consumer.h>
24 #include <linux/spi/spi.h>
25 
26 #include <linux/unaligned.h>
27 
28 /* Commands */
29 #define ADS131E08_CMD_RESET		0x06
30 #define ADS131E08_CMD_START		0x08
31 #define ADS131E08_CMD_STOP		0x0A
32 #define ADS131E08_CMD_OFFSETCAL		0x1A
33 #define ADS131E08_CMD_SDATAC		0x11
34 #define ADS131E08_CMD_RDATA		0x12
35 #define ADS131E08_CMD_RREG(r)		(BIT(5) | (r & GENMASK(4, 0)))
36 #define ADS131E08_CMD_WREG(r)		(BIT(6) | (r & GENMASK(4, 0)))
37 
38 /* Registers */
39 #define ADS131E08_ADR_CFG1R		0x01
40 #define ADS131E08_ADR_CFG3R		0x03
41 #define ADS131E08_ADR_CH0R		0x05
42 
43 /* Configuration register 1 */
44 #define ADS131E08_CFG1R_DR_MASK		GENMASK(2, 0)
45 
46 /* Configuration register 3 */
47 #define ADS131E08_CFG3R_PDB_REFBUF_MASK	BIT(7)
48 #define ADS131E08_CFG3R_VREF_4V_MASK	BIT(5)
49 
50 /* Channel settings register */
51 #define ADS131E08_CHR_GAIN_MASK		GENMASK(6, 4)
52 #define ADS131E08_CHR_MUX_MASK		GENMASK(2, 0)
53 #define ADS131E08_CHR_PWD_MASK		BIT(7)
54 
55 /* ADC  misc */
56 #define ADS131E08_DEFAULT_DATA_RATE	1
57 #define ADS131E08_DEFAULT_PGA_GAIN	1
58 #define ADS131E08_DEFAULT_MUX		0
59 
60 #define ADS131E08_VREF_2V4_mV		2400
61 #define ADS131E08_VREF_4V_mV		4000
62 
63 #define ADS131E08_WAIT_RESET_CYCLES	18
64 #define ADS131E08_WAIT_SDECODE_CYCLES	4
65 #define ADS131E08_WAIT_OFFSETCAL_MS	153
66 #define ADS131E08_MAX_SETTLING_TIME_MS	6
67 
68 #define ADS131E08_NUM_STATUS_BYTES	3
69 #define ADS131E08_NUM_DATA_BYTES_MAX	24
70 #define ADS131E08_NUM_DATA_BYTES(dr)	(((dr) >= 32) ? 2 : 3)
71 #define ADS131E08_NUM_DATA_BITS(dr)	(ADS131E08_NUM_DATA_BYTES(dr) * 8)
72 #define ADS131E08_NUM_STORAGE_BYTES	4
73 
74 enum ads131e08_ids {
75 	ads131e04,
76 	ads131e06,
77 	ads131e08,
78 };
79 
80 struct ads131e08_info {
81 	unsigned int max_channels;
82 	const char *name;
83 };
84 
85 struct ads131e08_channel_config {
86 	unsigned int pga_gain;
87 	unsigned int mux;
88 };
89 
90 struct ads131e08_state {
91 	const struct ads131e08_info *info;
92 	struct spi_device *spi;
93 	struct iio_trigger *trig;
94 	struct clk *adc_clk;
95 	struct regulator *vref_reg;
96 	struct ads131e08_channel_config *channel_config;
97 	unsigned int data_rate;
98 	unsigned int vref_mv;
99 	unsigned int sdecode_delay_us;
100 	unsigned int reset_delay_us;
101 	unsigned int readback_len;
102 	struct completion completion;
103 	struct {
104 		u8 data[ADS131E08_NUM_DATA_BYTES_MAX];
105 		s64 ts __aligned(8);
106 	} tmp_buf;
107 
108 	u8 tx_buf[3] __aligned(IIO_DMA_MINALIGN);
109 	/*
110 	 * Add extra one padding byte to be able to access the last channel
111 	 * value using u32 pointer
112 	 */
113 	u8 rx_buf[ADS131E08_NUM_STATUS_BYTES +
114 		ADS131E08_NUM_DATA_BYTES_MAX + 1];
115 };
116 
117 static const struct ads131e08_info ads131e08_info_tbl[] = {
118 	[ads131e04] = {
119 		.max_channels = 4,
120 		.name = "ads131e04",
121 	},
122 	[ads131e06] = {
123 		.max_channels = 6,
124 		.name = "ads131e06",
125 	},
126 	[ads131e08] = {
127 		.max_channels = 8,
128 		.name = "ads131e08",
129 	},
130 };
131 
132 struct ads131e08_data_rate_desc {
133 	unsigned int rate;  /* data rate in kSPS */
134 	u8 reg;             /* reg value */
135 };
136 
137 static const struct ads131e08_data_rate_desc ads131e08_data_rate_tbl[] = {
138 	{ .rate = 64,   .reg = 0x00 },
139 	{ .rate = 32,   .reg = 0x01 },
140 	{ .rate = 16,   .reg = 0x02 },
141 	{ .rate = 8,    .reg = 0x03 },
142 	{ .rate = 4,    .reg = 0x04 },
143 	{ .rate = 2,    .reg = 0x05 },
144 	{ .rate = 1,    .reg = 0x06 },
145 };
146 
147 struct ads131e08_pga_gain_desc {
148 	unsigned int gain;  /* PGA gain value */
149 	u8 reg;             /* field value */
150 };
151 
152 static const struct ads131e08_pga_gain_desc ads131e08_pga_gain_tbl[] = {
153 	{ .gain = 1,   .reg = 0x01 },
154 	{ .gain = 2,   .reg = 0x02 },
155 	{ .gain = 4,   .reg = 0x04 },
156 	{ .gain = 8,   .reg = 0x05 },
157 	{ .gain = 12,  .reg = 0x06 },
158 };
159 
160 static const u8 ads131e08_valid_channel_mux_values[] = { 0, 1, 3, 4 };
161 
ads131e08_exec_cmd(struct ads131e08_state * st,u8 cmd)162 static int ads131e08_exec_cmd(struct ads131e08_state *st, u8 cmd)
163 {
164 	int ret;
165 
166 	ret = spi_write_then_read(st->spi, &cmd, 1, NULL, 0);
167 	if (ret)
168 		dev_err(&st->spi->dev, "Exec cmd(%02x) failed\n", cmd);
169 
170 	return ret;
171 }
172 
ads131e08_read_reg(struct ads131e08_state * st,u8 reg)173 static int ads131e08_read_reg(struct ads131e08_state *st, u8 reg)
174 {
175 	int ret;
176 	struct spi_transfer transfer[] = {
177 		{
178 			.tx_buf = &st->tx_buf,
179 			.len = 2,
180 			.delay = {
181 				.value = st->sdecode_delay_us,
182 				.unit = SPI_DELAY_UNIT_USECS,
183 			},
184 		}, {
185 			.rx_buf = &st->rx_buf,
186 			.len = 1,
187 		},
188 	};
189 
190 	st->tx_buf[0] = ADS131E08_CMD_RREG(reg);
191 	st->tx_buf[1] = 0;
192 
193 	ret = spi_sync_transfer(st->spi, transfer, ARRAY_SIZE(transfer));
194 	if (ret) {
195 		dev_err(&st->spi->dev, "Read register failed\n");
196 		return ret;
197 	}
198 
199 	return st->rx_buf[0];
200 }
201 
ads131e08_write_reg(struct ads131e08_state * st,u8 reg,u8 value)202 static int ads131e08_write_reg(struct ads131e08_state *st, u8 reg, u8 value)
203 {
204 	int ret;
205 	struct spi_transfer transfer[] = {
206 		{
207 			.tx_buf = &st->tx_buf,
208 			.len = 3,
209 			.delay = {
210 				.value = st->sdecode_delay_us,
211 				.unit = SPI_DELAY_UNIT_USECS,
212 			},
213 		}
214 	};
215 
216 	st->tx_buf[0] = ADS131E08_CMD_WREG(reg);
217 	st->tx_buf[1] = 0;
218 	st->tx_buf[2] = value;
219 
220 	ret = spi_sync_transfer(st->spi, transfer, ARRAY_SIZE(transfer));
221 	if (ret)
222 		dev_err(&st->spi->dev, "Write register failed\n");
223 
224 	return ret;
225 }
226 
ads131e08_read_data(struct ads131e08_state * st,int rx_len)227 static int ads131e08_read_data(struct ads131e08_state *st, int rx_len)
228 {
229 	int ret;
230 	struct spi_transfer transfer[] = {
231 		{
232 			.tx_buf = &st->tx_buf,
233 			.len = 1,
234 		}, {
235 			.rx_buf = &st->rx_buf,
236 			.len = rx_len,
237 		},
238 	};
239 
240 	st->tx_buf[0] = ADS131E08_CMD_RDATA;
241 
242 	ret = spi_sync_transfer(st->spi, transfer, ARRAY_SIZE(transfer));
243 	if (ret)
244 		dev_err(&st->spi->dev, "Read data failed\n");
245 
246 	return ret;
247 }
248 
ads131e08_set_data_rate(struct ads131e08_state * st,int data_rate)249 static int ads131e08_set_data_rate(struct ads131e08_state *st, int data_rate)
250 {
251 	int i, reg, ret;
252 
253 	for (i = 0; i < ARRAY_SIZE(ads131e08_data_rate_tbl); i++) {
254 		if (ads131e08_data_rate_tbl[i].rate == data_rate)
255 			break;
256 	}
257 
258 	if (i == ARRAY_SIZE(ads131e08_data_rate_tbl)) {
259 		dev_err(&st->spi->dev, "invalid data rate value\n");
260 		return -EINVAL;
261 	}
262 
263 	reg = ads131e08_read_reg(st, ADS131E08_ADR_CFG1R);
264 	if (reg < 0)
265 		return reg;
266 
267 	reg &= ~ADS131E08_CFG1R_DR_MASK;
268 	reg |= FIELD_PREP(ADS131E08_CFG1R_DR_MASK,
269 		ads131e08_data_rate_tbl[i].reg);
270 
271 	ret = ads131e08_write_reg(st, ADS131E08_ADR_CFG1R, reg);
272 	if (ret)
273 		return ret;
274 
275 	st->data_rate = data_rate;
276 	st->readback_len = ADS131E08_NUM_STATUS_BYTES +
277 		ADS131E08_NUM_DATA_BYTES(st->data_rate) *
278 		st->info->max_channels;
279 
280 	return 0;
281 }
282 
ads131e08_pga_gain_to_field_value(struct ads131e08_state * st,unsigned int pga_gain)283 static int ads131e08_pga_gain_to_field_value(struct ads131e08_state *st,
284 	unsigned int pga_gain)
285 {
286 	int i;
287 
288 	for (i = 0; i < ARRAY_SIZE(ads131e08_pga_gain_tbl); i++) {
289 		if (ads131e08_pga_gain_tbl[i].gain == pga_gain)
290 			break;
291 	}
292 
293 	if (i == ARRAY_SIZE(ads131e08_pga_gain_tbl)) {
294 		dev_err(&st->spi->dev, "invalid PGA gain value\n");
295 		return -EINVAL;
296 	}
297 
298 	return ads131e08_pga_gain_tbl[i].reg;
299 }
300 
ads131e08_set_pga_gain(struct ads131e08_state * st,unsigned int channel,unsigned int pga_gain)301 static int ads131e08_set_pga_gain(struct ads131e08_state *st,
302 	unsigned int channel, unsigned int pga_gain)
303 {
304 	int field_value, reg;
305 
306 	field_value = ads131e08_pga_gain_to_field_value(st, pga_gain);
307 	if (field_value < 0)
308 		return field_value;
309 
310 	reg = ads131e08_read_reg(st, ADS131E08_ADR_CH0R + channel);
311 	if (reg < 0)
312 		return reg;
313 
314 	reg &= ~ADS131E08_CHR_GAIN_MASK;
315 	reg |= FIELD_PREP(ADS131E08_CHR_GAIN_MASK, field_value);
316 
317 	return ads131e08_write_reg(st, ADS131E08_ADR_CH0R + channel, reg);
318 }
319 
ads131e08_validate_channel_mux(struct ads131e08_state * st,unsigned int mux)320 static int ads131e08_validate_channel_mux(struct ads131e08_state *st,
321 	unsigned int mux)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(ads131e08_valid_channel_mux_values); i++) {
326 		if (ads131e08_valid_channel_mux_values[i] == mux)
327 			break;
328 	}
329 
330 	if (i == ARRAY_SIZE(ads131e08_valid_channel_mux_values)) {
331 		dev_err(&st->spi->dev, "invalid channel mux value\n");
332 		return -EINVAL;
333 	}
334 
335 	return 0;
336 }
337 
ads131e08_set_channel_mux(struct ads131e08_state * st,unsigned int channel,unsigned int mux)338 static int ads131e08_set_channel_mux(struct ads131e08_state *st,
339 	unsigned int channel, unsigned int mux)
340 {
341 	int reg;
342 
343 	reg = ads131e08_read_reg(st, ADS131E08_ADR_CH0R + channel);
344 	if (reg < 0)
345 		return reg;
346 
347 	reg &= ~ADS131E08_CHR_MUX_MASK;
348 	reg |= FIELD_PREP(ADS131E08_CHR_MUX_MASK, mux);
349 
350 	return ads131e08_write_reg(st, ADS131E08_ADR_CH0R + channel, reg);
351 }
352 
ads131e08_power_down_channel(struct ads131e08_state * st,unsigned int channel,bool value)353 static int ads131e08_power_down_channel(struct ads131e08_state *st,
354 	unsigned int channel, bool value)
355 {
356 	int reg;
357 
358 	reg = ads131e08_read_reg(st, ADS131E08_ADR_CH0R + channel);
359 	if (reg < 0)
360 		return reg;
361 
362 	reg &= ~ADS131E08_CHR_PWD_MASK;
363 	reg |= FIELD_PREP(ADS131E08_CHR_PWD_MASK, value);
364 
365 	return ads131e08_write_reg(st, ADS131E08_ADR_CH0R + channel, reg);
366 }
367 
ads131e08_config_reference_voltage(struct ads131e08_state * st)368 static int ads131e08_config_reference_voltage(struct ads131e08_state *st)
369 {
370 	int reg;
371 
372 	reg = ads131e08_read_reg(st, ADS131E08_ADR_CFG3R);
373 	if (reg < 0)
374 		return reg;
375 
376 	reg &= ~ADS131E08_CFG3R_PDB_REFBUF_MASK;
377 	if (!st->vref_reg) {
378 		reg |= FIELD_PREP(ADS131E08_CFG3R_PDB_REFBUF_MASK, 1);
379 		reg &= ~ADS131E08_CFG3R_VREF_4V_MASK;
380 		reg |= FIELD_PREP(ADS131E08_CFG3R_VREF_4V_MASK,
381 			st->vref_mv == ADS131E08_VREF_4V_mV);
382 	}
383 
384 	return ads131e08_write_reg(st, ADS131E08_ADR_CFG3R, reg);
385 }
386 
ads131e08_initial_config(struct iio_dev * indio_dev)387 static int ads131e08_initial_config(struct iio_dev *indio_dev)
388 {
389 	const struct iio_chan_spec *channel = indio_dev->channels;
390 	struct ads131e08_state *st = iio_priv(indio_dev);
391 	unsigned long active_channels = 0;
392 	int ret, i;
393 
394 	ret = ads131e08_exec_cmd(st, ADS131E08_CMD_RESET);
395 	if (ret)
396 		return ret;
397 
398 	udelay(st->reset_delay_us);
399 
400 	/* Disable read data in continuous mode (enabled by default) */
401 	ret = ads131e08_exec_cmd(st, ADS131E08_CMD_SDATAC);
402 	if (ret)
403 		return ret;
404 
405 	ret = ads131e08_set_data_rate(st, ADS131E08_DEFAULT_DATA_RATE);
406 	if (ret)
407 		return ret;
408 
409 	ret = ads131e08_config_reference_voltage(st);
410 	if (ret)
411 		return ret;
412 
413 	for (i = 0;  i < indio_dev->num_channels; i++) {
414 		ret = ads131e08_set_pga_gain(st, channel->channel,
415 			st->channel_config[i].pga_gain);
416 		if (ret)
417 			return ret;
418 
419 		ret = ads131e08_set_channel_mux(st, channel->channel,
420 			st->channel_config[i].mux);
421 		if (ret)
422 			return ret;
423 
424 		active_channels |= BIT(channel->channel);
425 		channel++;
426 	}
427 
428 	/* Power down unused channels */
429 	for_each_clear_bit(i, &active_channels, st->info->max_channels) {
430 		ret = ads131e08_power_down_channel(st, i, true);
431 		if (ret)
432 			return ret;
433 	}
434 
435 	/* Request channel offset calibration */
436 	ret = ads131e08_exec_cmd(st, ADS131E08_CMD_OFFSETCAL);
437 	if (ret)
438 		return ret;
439 
440 	/*
441 	 * Channel offset calibration is triggered with the first START
442 	 * command. Since calibration takes more time than settling operation,
443 	 * this causes timeout error when command START is sent first
444 	 * time (e.g. first call of the ads131e08_read_direct method).
445 	 * To avoid this problem offset calibration is triggered here.
446 	 */
447 	ret = ads131e08_exec_cmd(st, ADS131E08_CMD_START);
448 	if (ret)
449 		return ret;
450 
451 	msleep(ADS131E08_WAIT_OFFSETCAL_MS);
452 
453 	return ads131e08_exec_cmd(st, ADS131E08_CMD_STOP);
454 }
455 
ads131e08_pool_data(struct ads131e08_state * st)456 static int ads131e08_pool_data(struct ads131e08_state *st)
457 {
458 	unsigned long timeout;
459 	int ret;
460 
461 	reinit_completion(&st->completion);
462 
463 	ret = ads131e08_exec_cmd(st, ADS131E08_CMD_START);
464 	if (ret)
465 		return ret;
466 
467 	timeout = msecs_to_jiffies(ADS131E08_MAX_SETTLING_TIME_MS);
468 	ret = wait_for_completion_timeout(&st->completion, timeout);
469 	if (!ret)
470 		return -ETIMEDOUT;
471 
472 	ret = ads131e08_read_data(st, st->readback_len);
473 	if (ret)
474 		return ret;
475 
476 	return ads131e08_exec_cmd(st, ADS131E08_CMD_STOP);
477 }
478 
ads131e08_read_direct(struct iio_dev * indio_dev,struct iio_chan_spec const * channel,int * value)479 static int ads131e08_read_direct(struct iio_dev *indio_dev,
480 	struct iio_chan_spec const *channel, int *value)
481 {
482 	struct ads131e08_state *st = iio_priv(indio_dev);
483 	u8 num_bits, *src;
484 	int ret;
485 
486 	ret = ads131e08_pool_data(st);
487 	if (ret)
488 		return ret;
489 
490 	src = st->rx_buf + ADS131E08_NUM_STATUS_BYTES +
491 		channel->channel * ADS131E08_NUM_DATA_BYTES(st->data_rate);
492 
493 	num_bits = ADS131E08_NUM_DATA_BITS(st->data_rate);
494 	*value = sign_extend32(get_unaligned_be32(src) >> (32 - num_bits), num_bits - 1);
495 
496 	return 0;
497 }
498 
ads131e08_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * channel,int * value,int * value2,long mask)499 static int ads131e08_read_raw(struct iio_dev *indio_dev,
500 	struct iio_chan_spec const *channel, int *value,
501 	int *value2, long mask)
502 {
503 	struct ads131e08_state *st = iio_priv(indio_dev);
504 	int ret;
505 
506 	switch (mask) {
507 	case IIO_CHAN_INFO_RAW:
508 		ret = iio_device_claim_direct_mode(indio_dev);
509 		if (ret)
510 			return ret;
511 
512 		ret = ads131e08_read_direct(indio_dev, channel, value);
513 		iio_device_release_direct_mode(indio_dev);
514 		if (ret)
515 			return ret;
516 
517 		return IIO_VAL_INT;
518 
519 	case IIO_CHAN_INFO_SCALE:
520 		if (st->vref_reg) {
521 			ret = regulator_get_voltage(st->vref_reg);
522 			if (ret < 0)
523 				return ret;
524 
525 			*value = ret / 1000;
526 		} else {
527 			*value = st->vref_mv;
528 		}
529 
530 		*value /= st->channel_config[channel->address].pga_gain;
531 		*value2 = ADS131E08_NUM_DATA_BITS(st->data_rate) - 1;
532 
533 		return IIO_VAL_FRACTIONAL_LOG2;
534 
535 	case IIO_CHAN_INFO_SAMP_FREQ:
536 		*value = st->data_rate;
537 
538 		return IIO_VAL_INT;
539 
540 	default:
541 		return -EINVAL;
542 	}
543 }
544 
ads131e08_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * channel,int value,int value2,long mask)545 static int ads131e08_write_raw(struct iio_dev *indio_dev,
546 	struct iio_chan_spec const *channel, int value,
547 	int value2, long mask)
548 {
549 	struct ads131e08_state *st = iio_priv(indio_dev);
550 	int ret;
551 
552 	switch (mask) {
553 	case IIO_CHAN_INFO_SAMP_FREQ:
554 		ret = iio_device_claim_direct_mode(indio_dev);
555 		if (ret)
556 			return ret;
557 
558 		ret = ads131e08_set_data_rate(st, value);
559 		iio_device_release_direct_mode(indio_dev);
560 		return ret;
561 
562 	default:
563 		return -EINVAL;
564 	}
565 }
566 
567 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("1 2 4 8 16 32 64");
568 
569 static struct attribute *ads131e08_attributes[] = {
570 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
571 	NULL
572 };
573 
574 static const struct attribute_group ads131e08_attribute_group = {
575 	.attrs = ads131e08_attributes,
576 };
577 
ads131e08_debugfs_reg_access(struct iio_dev * indio_dev,unsigned int reg,unsigned int writeval,unsigned int * readval)578 static int ads131e08_debugfs_reg_access(struct iio_dev *indio_dev,
579 	unsigned int reg, unsigned int writeval, unsigned int *readval)
580 {
581 	struct ads131e08_state *st = iio_priv(indio_dev);
582 
583 	if (readval) {
584 		int ret = ads131e08_read_reg(st, reg);
585 		*readval = ret;
586 		return ret;
587 	}
588 
589 	return ads131e08_write_reg(st, reg, writeval);
590 }
591 
592 static const struct iio_info ads131e08_iio_info = {
593 	.read_raw = ads131e08_read_raw,
594 	.write_raw = ads131e08_write_raw,
595 	.attrs = &ads131e08_attribute_group,
596 	.debugfs_reg_access = &ads131e08_debugfs_reg_access,
597 };
598 
ads131e08_set_trigger_state(struct iio_trigger * trig,bool state)599 static int ads131e08_set_trigger_state(struct iio_trigger *trig, bool state)
600 {
601 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
602 	struct ads131e08_state *st = iio_priv(indio_dev);
603 	u8 cmd = state ? ADS131E08_CMD_START : ADS131E08_CMD_STOP;
604 
605 	return ads131e08_exec_cmd(st, cmd);
606 }
607 
608 static const struct iio_trigger_ops ads131e08_trigger_ops = {
609 	.set_trigger_state = &ads131e08_set_trigger_state,
610 	.validate_device = &iio_trigger_validate_own_device,
611 };
612 
ads131e08_trigger_handler(int irq,void * private)613 static irqreturn_t ads131e08_trigger_handler(int irq, void *private)
614 {
615 	struct iio_poll_func *pf = private;
616 	struct iio_dev *indio_dev = pf->indio_dev;
617 	struct ads131e08_state *st = iio_priv(indio_dev);
618 	unsigned int chn, i = 0;
619 	u8 *src, *dest;
620 	int ret;
621 
622 	/*
623 	 * The number of data bits per channel depends on the data rate.
624 	 * For 32 and 64 ksps data rates, number of data bits per channel
625 	 * is 16. This case is not compliant with used (fixed) scan element
626 	 * type (be:s24/32>>8). So we use a little tweak to pack properly
627 	 * 16 bits of data into the buffer.
628 	 */
629 	unsigned int num_bytes = ADS131E08_NUM_DATA_BYTES(st->data_rate);
630 	u8 tweek_offset = num_bytes == 2 ? 1 : 0;
631 
632 	if (iio_trigger_using_own(indio_dev))
633 		ret = ads131e08_read_data(st, st->readback_len);
634 	else
635 		ret = ads131e08_pool_data(st);
636 
637 	if (ret)
638 		goto out;
639 
640 	iio_for_each_active_channel(indio_dev, chn) {
641 		src = st->rx_buf + ADS131E08_NUM_STATUS_BYTES + chn * num_bytes;
642 		dest = st->tmp_buf.data + i * ADS131E08_NUM_STORAGE_BYTES;
643 
644 		/*
645 		 * Tweek offset is 0:
646 		 * +---+---+---+---+
647 		 * |D0 |D1 |D2 | X | (3 data bytes)
648 		 * +---+---+---+---+
649 		 *  a+0 a+1 a+2 a+3
650 		 *
651 		 * Tweek offset is 1:
652 		 * +---+---+---+---+
653 		 * |P0 |D0 |D1 | X | (one padding byte and 2 data bytes)
654 		 * +---+---+---+---+
655 		 *  a+0 a+1 a+2 a+3
656 		 */
657 		memcpy(dest + tweek_offset, src, num_bytes);
658 
659 		/*
660 		 * Data conversion from 16 bits of data to 24 bits of data
661 		 * is done by sign extension (properly filling padding byte).
662 		 */
663 		if (tweek_offset)
664 			*dest = *src & BIT(7) ? 0xff : 0x00;
665 
666 		i++;
667 	}
668 
669 	iio_push_to_buffers_with_timestamp(indio_dev, st->tmp_buf.data,
670 		iio_get_time_ns(indio_dev));
671 
672 out:
673 	iio_trigger_notify_done(indio_dev->trig);
674 
675 	return IRQ_HANDLED;
676 }
677 
ads131e08_interrupt(int irq,void * private)678 static irqreturn_t ads131e08_interrupt(int irq, void *private)
679 {
680 	struct iio_dev *indio_dev = private;
681 	struct ads131e08_state *st = iio_priv(indio_dev);
682 
683 	if (iio_buffer_enabled(indio_dev) && iio_trigger_using_own(indio_dev))
684 		iio_trigger_poll(st->trig);
685 	else
686 		complete(&st->completion);
687 
688 	return IRQ_HANDLED;
689 }
690 
ads131e08_alloc_channels(struct iio_dev * indio_dev)691 static int ads131e08_alloc_channels(struct iio_dev *indio_dev)
692 {
693 	struct ads131e08_state *st = iio_priv(indio_dev);
694 	struct ads131e08_channel_config *channel_config;
695 	struct device *dev = &st->spi->dev;
696 	struct iio_chan_spec *channels;
697 	unsigned int channel, tmp;
698 	int num_channels, i, ret;
699 
700 	ret = device_property_read_u32(dev, "ti,vref-internal", &tmp);
701 	if (ret)
702 		tmp = 0;
703 
704 	switch (tmp) {
705 	case 0:
706 		st->vref_mv = ADS131E08_VREF_2V4_mV;
707 		break;
708 	case 1:
709 		st->vref_mv = ADS131E08_VREF_4V_mV;
710 		break;
711 	default:
712 		dev_err(&st->spi->dev, "invalid internal voltage reference\n");
713 		return -EINVAL;
714 	}
715 
716 	num_channels = device_get_child_node_count(dev);
717 	if (num_channels == 0) {
718 		dev_err(&st->spi->dev, "no channel children\n");
719 		return -ENODEV;
720 	}
721 
722 	if (num_channels > st->info->max_channels) {
723 		dev_err(&st->spi->dev, "num of channel children out of range\n");
724 		return -EINVAL;
725 	}
726 
727 	channels = devm_kcalloc(&st->spi->dev, num_channels,
728 		sizeof(*channels), GFP_KERNEL);
729 	if (!channels)
730 		return -ENOMEM;
731 
732 	channel_config = devm_kcalloc(&st->spi->dev, num_channels,
733 		sizeof(*channel_config), GFP_KERNEL);
734 	if (!channel_config)
735 		return -ENOMEM;
736 
737 	i = 0;
738 	device_for_each_child_node_scoped(dev, node) {
739 		ret = fwnode_property_read_u32(node, "reg", &channel);
740 		if (ret)
741 			return ret;
742 
743 		ret = fwnode_property_read_u32(node, "ti,gain", &tmp);
744 		if (ret) {
745 			channel_config[i].pga_gain = ADS131E08_DEFAULT_PGA_GAIN;
746 		} else {
747 			ret = ads131e08_pga_gain_to_field_value(st, tmp);
748 			if (ret < 0)
749 				return ret;
750 
751 			channel_config[i].pga_gain = tmp;
752 		}
753 
754 		ret = fwnode_property_read_u32(node, "ti,mux", &tmp);
755 		if (ret) {
756 			channel_config[i].mux = ADS131E08_DEFAULT_MUX;
757 		} else {
758 			ret = ads131e08_validate_channel_mux(st, tmp);
759 			if (ret)
760 				return ret;
761 
762 			channel_config[i].mux = tmp;
763 		}
764 
765 		channels[i].type = IIO_VOLTAGE;
766 		channels[i].indexed = 1;
767 		channels[i].channel = channel;
768 		channels[i].address = i;
769 		channels[i].info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
770 						BIT(IIO_CHAN_INFO_SCALE);
771 		channels[i].info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ);
772 		channels[i].scan_index = channel;
773 		channels[i].scan_type.sign = 's';
774 		channels[i].scan_type.realbits = 24;
775 		channels[i].scan_type.storagebits = 32;
776 		channels[i].scan_type.shift = 8;
777 		channels[i].scan_type.endianness = IIO_BE;
778 		i++;
779 	}
780 
781 	indio_dev->channels = channels;
782 	indio_dev->num_channels = num_channels;
783 	st->channel_config = channel_config;
784 
785 	return 0;
786 
787 }
788 
ads131e08_regulator_disable(void * data)789 static void ads131e08_regulator_disable(void *data)
790 {
791 	struct ads131e08_state *st = data;
792 
793 	regulator_disable(st->vref_reg);
794 }
795 
ads131e08_probe(struct spi_device * spi)796 static int ads131e08_probe(struct spi_device *spi)
797 {
798 	const struct ads131e08_info *info;
799 	struct ads131e08_state *st;
800 	struct iio_dev *indio_dev;
801 	unsigned long adc_clk_hz;
802 	unsigned long adc_clk_ns;
803 	int ret;
804 
805 	info = spi_get_device_match_data(spi);
806 	if (!info) {
807 		dev_err(&spi->dev, "failed to get match data\n");
808 		return -ENODEV;
809 	}
810 
811 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
812 	if (!indio_dev) {
813 		dev_err(&spi->dev, "failed to allocate IIO device\n");
814 		return -ENOMEM;
815 	}
816 
817 	st = iio_priv(indio_dev);
818 	st->info = info;
819 	st->spi = spi;
820 
821 	ret = ads131e08_alloc_channels(indio_dev);
822 	if (ret)
823 		return ret;
824 
825 	indio_dev->name = st->info->name;
826 	indio_dev->info = &ads131e08_iio_info;
827 	indio_dev->modes = INDIO_DIRECT_MODE;
828 
829 	init_completion(&st->completion);
830 
831 	if (spi->irq) {
832 		ret = devm_request_irq(&spi->dev, spi->irq,
833 			ads131e08_interrupt,
834 			IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
835 			spi->dev.driver->name, indio_dev);
836 		if (ret)
837 			return dev_err_probe(&spi->dev, ret,
838 					     "request irq failed\n");
839 	} else {
840 		dev_err(&spi->dev, "data ready IRQ missing\n");
841 		return -ENODEV;
842 	}
843 
844 	st->trig = devm_iio_trigger_alloc(&spi->dev, "%s-dev%d",
845 		indio_dev->name, iio_device_id(indio_dev));
846 	if (!st->trig) {
847 		dev_err(&spi->dev, "failed to allocate IIO trigger\n");
848 		return -ENOMEM;
849 	}
850 
851 	st->trig->ops = &ads131e08_trigger_ops;
852 	st->trig->dev.parent = &spi->dev;
853 	iio_trigger_set_drvdata(st->trig, indio_dev);
854 	ret = devm_iio_trigger_register(&spi->dev, st->trig);
855 	if (ret) {
856 		dev_err(&spi->dev, "failed to register IIO trigger\n");
857 		return -ENOMEM;
858 	}
859 
860 	indio_dev->trig = iio_trigger_get(st->trig);
861 
862 	ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
863 		NULL, &ads131e08_trigger_handler, NULL);
864 	if (ret) {
865 		dev_err(&spi->dev, "failed to setup IIO buffer\n");
866 		return ret;
867 	}
868 
869 	st->vref_reg = devm_regulator_get_optional(&spi->dev, "vref");
870 	if (!IS_ERR(st->vref_reg)) {
871 		ret = regulator_enable(st->vref_reg);
872 		if (ret) {
873 			dev_err(&spi->dev,
874 				"failed to enable external vref supply\n");
875 			return ret;
876 		}
877 
878 		ret = devm_add_action_or_reset(&spi->dev, ads131e08_regulator_disable, st);
879 		if (ret)
880 			return ret;
881 	} else {
882 		if (PTR_ERR(st->vref_reg) != -ENODEV)
883 			return PTR_ERR(st->vref_reg);
884 
885 		st->vref_reg = NULL;
886 	}
887 
888 	st->adc_clk = devm_clk_get_enabled(&spi->dev, "adc-clk");
889 	if (IS_ERR(st->adc_clk))
890 		return dev_err_probe(&spi->dev, PTR_ERR(st->adc_clk),
891 				     "failed to get the ADC clock\n");
892 
893 	adc_clk_hz = clk_get_rate(st->adc_clk);
894 	if (!adc_clk_hz) {
895 		dev_err(&spi->dev, "failed to get the ADC clock rate\n");
896 		return  -EINVAL;
897 	}
898 
899 	adc_clk_ns = NSEC_PER_SEC / adc_clk_hz;
900 	st->sdecode_delay_us = DIV_ROUND_UP(
901 		ADS131E08_WAIT_SDECODE_CYCLES * adc_clk_ns, NSEC_PER_USEC);
902 	st->reset_delay_us = DIV_ROUND_UP(
903 		ADS131E08_WAIT_RESET_CYCLES * adc_clk_ns, NSEC_PER_USEC);
904 
905 	ret = ads131e08_initial_config(indio_dev);
906 	if (ret) {
907 		dev_err(&spi->dev, "initial configuration failed\n");
908 		return ret;
909 	}
910 
911 	return devm_iio_device_register(&spi->dev, indio_dev);
912 }
913 
914 static const struct of_device_id ads131e08_of_match[] = {
915 	{ .compatible = "ti,ads131e04",
916 	  .data = &ads131e08_info_tbl[ads131e04], },
917 	{ .compatible = "ti,ads131e06",
918 	  .data = &ads131e08_info_tbl[ads131e06], },
919 	{ .compatible = "ti,ads131e08",
920 	  .data = &ads131e08_info_tbl[ads131e08], },
921 	{ }
922 };
923 MODULE_DEVICE_TABLE(of, ads131e08_of_match);
924 
925 static const struct spi_device_id ads131e08_ids[] = {
926 	{ "ads131e04", (kernel_ulong_t)&ads131e08_info_tbl[ads131e04] },
927 	{ "ads131e06", (kernel_ulong_t)&ads131e08_info_tbl[ads131e06] },
928 	{ "ads131e08", (kernel_ulong_t)&ads131e08_info_tbl[ads131e08] },
929 	{ }
930 };
931 MODULE_DEVICE_TABLE(spi, ads131e08_ids);
932 
933 static struct spi_driver ads131e08_driver = {
934 	.driver = {
935 		.name = "ads131e08",
936 		.of_match_table = ads131e08_of_match,
937 	},
938 	.probe = ads131e08_probe,
939 	.id_table = ads131e08_ids,
940 };
941 module_spi_driver(ads131e08_driver);
942 
943 MODULE_AUTHOR("Tomislav Denis <tomislav.denis@avl.com>");
944 MODULE_DESCRIPTION("Driver for ADS131E0x ADC family");
945 MODULE_LICENSE("GPL v2");
946