Lines Matching +full:camera +full:- +full:lens

1 # SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
3 ---
4 $id: http://devicetree.org/schemas/media/video-interface-devices.yaml#
5 $schema: http://devicetree.org/meta-schemas/core.yaml#
10 - Jacopo Mondi <jacopo@jmondi.org>
11 - Sakari Ailus <sakari.ailus@linux.intel.com>
14 flash-leds:
15 $ref: /schemas/types.yaml#/definitions/phandle-array
17 An array of phandles, each referring to a flash LED, a sub-node of the LED
20 lens-focus:
23 A phandle to the node of the focus lens controller.
29 The camera rotation is expressed as the angular difference in degrees
30 between two reference systems, one relative to the camera module, and one
34 A camera sensor has a 2-dimensional reference system 'Rc' defined by its
35 pixel array read-out order. The origin is set to the first pixel being
36 read out, the X-axis points along the column read-out direction towards
37 the last columns, and the Y-axis along the row read-out direction towards
43 2591 X-axis 0
44 <------------------------+ 0
46 .......... ... ..........! Y-axis
52 The external world scene reference system 'Rs' is a 2-dimensional
53 reference system on the focal plane of the camera module. The origin is
54 placed on the top-left corner of the visible scene, the X-axis points
55 towards the right, and the Y-axis points towards the bottom of the scene.
57 and depend on the environment in which the camera is used.
60 to right, as seen from the camera, is:
62 0 X-axis
63 0 +------------------------------------->
74 Y-axis
76 with the reference system 'Rs' placed on the camera focal plane:
81 +-/ \-+¸.·˙ !
82 | (o) | ! Camera focal plane
83 +-----+˙·.¸ !
90 camera module's lens optical inversion effect.
92 Assuming the above represented scene of the swimming shark, the lens
94 pixel array, seen from the front of the camera sensor, as follows:
96 Y-axis
107 0 +------------------------------------->
108 0 X-axis
110 Note the shark being upside-down.
114 The camera rotation property is then defined as the angular difference in
115 the counter-clockwise direction between the camera reference system 'Rc'
121 0 degrees camera rotation:
124 Y-Rp
126 Y-Rc !
135 ! 0 +------------------------------------->
136 ! 0 X-Rp
137 0 +------------------------------------->
138 0 X-Rc
141 X-Rc 0
142 <------------------------------------+ 0
143 X-Rp 0 !
144 <------------------------------------+ 0 !
153 ! Y-Rc
155 Y-Rp
157 90 degrees camera rotation:
159 0 Y-Rc
160 0 +-------------------->
161 ! Y-Rp
172 ! 0 +------------------------------------->
173 ! 0 X-Rp
179 X-Rc
181 180 degrees camera rotation:
184 <------------------------------------+ 0
185 X-Rc !
186 Y-Rp !
195 ! Y-Rc
196 0 +------------------------------------->
197 0 X-Rp
199 270 degrees camera rotation:
201 0 Y-Rc
202 0 +-------------------->
204 ! <-----------------------------------+ 0
205 ! X-Rp !
215 ! Y-Rp
221 X-Rc
224 Example one - Webcam
226 A camera module installed on the user facing part of a laptop screen
230 The camera is typically mounted upside-down to compensate the lens optical
233 Y-Rp
234 Y-Rc ^
243 ! 0 +------------------------------------->
244 ! 0 X-Rp
245 0 +------------------------------------->
246 0 X-Rc
248 The two reference systems are aligned, the resulting camera rotation is
252 +--------------------------------------+
262 +--------------------------------------+
264 If the camera sensor is not mounted upside-down to compensate for the lens
269 X-Rc 0
270 <------------------------------------+ 0
272 Y-Rp !
281 ! Y-Rc
282 0 +------------------------------------->
283 0 X-Rp
287 +--------------------------------------+
297 +--------------------------------------+
302 +--------------------------------------+
312 +--------------------------------------+
314 Example two - Phone camera
316 A camera installed on the back side of a mobile device facing away from
321 The camera sensor is typically mounted with its pixel array longer side
322 aligned to the device longer side, upside-down mounted to compensate for
323 the lens optical inversion effect:
325 0 Y-Rc
326 0 +-------------------->
327 ! Y-Rp
338 ! 0 +------------------------------------->
339 ! 0 X-Rp
345 X-Rc
348 rotated by 90 degrees in the counter-clockwise direction relatively to the
353 +-------------------------------------+
363 +-------------------------------------+
365 A correction of 90 degrees in counter-clockwise direction has to be
369 +--------------------+
384 +--------------------+
396 - 0
399 - 1
402 - 2