Lines Matching +full:controller +full:- +full:number

5 -----------------
7 GPIO properties should be named "[<name>-]gpios", with <name> being the purpose
8 of this GPIO for the device. While a non-existent <name> is considered valid
10 for new bindings. Also, GPIO properties named "[<name>-]gpio" are valid and old
24 and bit-banged data signals:
27 gpio-controller;
28 #gpio-cells = <2>;
32 data-gpios = <&gpio1 12 0>,
42 The exact meaning of each specifier cell is controller specific, and must be
44 recommended to use the two-cell approach.
48 include/dt-bindings/gpio/gpio.h whenever possible:
53 enable-gpios = <&qe_pio_e 18 GPIO_ACTIVE_HIGH>;
56 GPIO_ACTIVE_HIGH is 0, so in this example gpio-specifier is "18 0" and encodes
57 GPIO pin number, and GPIO flags as accepted by the "qe_pio_e" gpio-controller.
61 - Bit 0: 0 means active high, 1 means active low
62 - Bit 1: 0 mean push-pull wiring, see:
63 https://en.wikipedia.org/wiki/Push-pull_output
64 1 means single-ended wiring, see:
65 https://en.wikipedia.org/wiki/Single-ended_triode
66 - Bit 2: 0 means open-source, 1 means open drain, see:
68 - Bit 3: 0 means the output should be maintained during sleep/low-power mode
69 1 means the output state can be lost during sleep/low-power mode
70 - Bit 4: 0 means no pull-up resistor should be enabled
71 1 means a pull-up resistor should be enabled
73 control for pull-up configuration. If the hardware has more
74 elaborate pull-up configuration, it should be represented
76 - Bit 5: 0 means no pull-down resistor should be enabled
77 1 means a pull-down resistor should be enabled
79 control for pull-down configuration. If the hardware has more
80 elaborate pull-down configuration, it should be represented
84 ----------------------------------
86 A gpio-specifier should contain a flag indicating the GPIO polarity; active-
87 high or active-low. If it does, the following best practices should be
90 The gpio-specifier's polarity flag should represent the physical level at the
91 GPIO controller that achieves (or represents, for inputs) a logically asserted
94 the GPIO controller and the device, then the gpio-specifier will represent the
106 a1) (Preferred) Dictated by a binding-specific DT property.
112 In particular, the polarity cannot be derived from the gpio-specifier, since
114 concepts of configurable signal polarity in the device, and possible board-
120 in the binding. The gpio-specifier should represent the polarity of the signal
121 (at the GPIO controller) assuming that the device is configured for this
125 controller.
127 2) gpio-controller nodes
128 ------------------------
130 Every GPIO controller node must contain both an empty "gpio-controller"
131 property, and a #gpio-cells integer property, which indicates the number of
132 cells in a gpio-specifier.
134 Some system-on-chips (SoCs) use the concept of GPIO banks. A GPIO bank is an
137 exposed in the device tree as an individual gpio-controller node, reflecting
141 Optionally, a GPIO controller may have a "ngpios" property. This property
142 indicates the number of in-use slots of available slots for GPIOs. The
150 If these GPIOs do not happen to be the first N GPIOs at offset 0...N-1, an
152 the gpio-reserved-ranges binding. This property indicates the start and size
155 Optionally, a GPIO controller may have a "gpio-line-names" property. This is
157 GPIO controller.
159 For lines which are routed to on-board devices, this name should be
162 such lines have opaque names (since they are by definition general-purpose)
163 and such names are usually not very helpful. For example "MMC-CD", "Red LED
166 that is hard-wired to a specific device.
169 (e.g. the Raspberry Pi 40-pin header), and therefore are not hard-wired to
170 specific devices, using a pin number or the names on the header is fine
172 or package name, or names made up from kernel-internal software constructs,
183 from the passed array. An incomplete array (where the number of passed
189 gpio-controller@00000000 {
192 gpio-controller;
193 #gpio-cells = <2>;
195 gpio-reserved-ranges = <0 4>, <12 2>;
196 gpio-line-names = "MMC-CD", "MMC-WP", "VDD eth", "RST eth", "LED R",
204 gpio-controller's driver probe function.
206 Each GPIO hog definition is represented as a child node of the GPIO controller.
208 - gpio-hog: A property specifying that this child node represents a GPIO hog.
209 - gpios: Store the GPIO information (id, flags, ...) for each GPIO to
210 affect. Shall contain an integer multiple of the number of cells
211 specified in its parent node (GPIO controller node).
216 - input: A property specifying to set the GPIO direction as input.
217 - output-low A property specifying to set the GPIO direction as output with
219 - output-high A property specifying to set the GPIO direction as output with
223 - line-name: The GPIO label name. If not present the node name is used.
225 Example of two SOC GPIO banks defined as gpio-controller nodes:
227 qe_pio_a: gpio-controller@1400 {
228 compatible = "fsl,qe-pario-bank-a", "fsl,qe-pario-bank";
230 gpio-controller;
231 #gpio-cells = <2>;
233 line_b-hog {
234 gpio-hog;
236 output-low;
237 line-name = "foo-bar-gpio";
241 qe_pio_e: gpio-controller@1460 {
242 compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank";
244 gpio-controller;
245 #gpio-cells = <2>;
248 2.1) gpio- and pin-controller interaction
249 -----------------------------------------
251 Some or all of the GPIOs provided by a GPIO controller may be routed to pins
252 on the package via a pin controller. This allows muxing those pins between
257 -------------------------------------
260 controllers. The gpio-ranges property described below represents this with
261 a discrete set of ranges mapping pins from the pin controller local number space
262 to pins in the GPIO controller local number space.
264 The format is: <[pin controller phandle], [GPIO controller offset],
265 [pin controller offset], [number of pins]>;
267 The GPIO controller offset pertains to the GPIO controller node containing the
270 The pin controller node referenced by the phandle must conform to the bindings
271 described in pinctrl/pinctrl-bindings.txt.
273 Each offset runs from 0 to N. It is perfectly fine to pile any number of
274 ranges with just one pin-to-GPIO line mapping if the ranges are concocted, but
279 gpio-ranges = <&foo 0 20 10>, <&bar 10 50 20>;
282 - pins 20..29 on pin controller "foo" is mapped to GPIO line 0..9 and
283 - pins 50..69 on pin controller "bar" is mapped to GPIO line 10..29
288 qe_pio_e: gpio-controller@1460 {
289 #gpio-cells = <2>;
290 compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank";
292 gpio-controller;
293 gpio-ranges = <&pinctrl1 0 20 10>, <&pinctrl2 10 50 20>;
296 Here, a single GPIO controller has GPIOs 0..9 routed to pin controller
297 pinctrl1's pins 20..29, and GPIOs 10..29 routed to pin controller pinctrl2's
302 --------------------------------------
307 Both both <pinctrl-base> and <count> must set to 0 when using named pin groups
310 The property gpio-ranges-group-names must contain exactly one string for each
313 Elements of gpio-ranges-group-names must contain the name of a pin group
314 defined in the respective pin controller. The number of pins/GPIO lines in the
315 range is the number of pins in that pin group. The number of pins of that
319 numerical pin range in gpio-ranges-group-names must be empty.
323 gpio_pio_i: gpio-controller@14b0 {
324 #gpio-cells = <2>;
325 compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank";
327 gpio-controller;
328 gpio-ranges = <&pinctrl1 0 20 10>,
332 gpio-ranges-group-names = "",
343 Previous versions of this binding required all pin controller nodes that
344 were referenced by any gpio-ranges property to contain a property named
345 #gpio-range-cells with value <3>. This requirement is now deprecated.