Lines Matching +full:integer +full:- +full:n
31 .Nd fixed-point math library based on the
39 data types and APIs support fixed-point math based on the
58 integer types.
79 None of the operations is affected by the floating-point environment.
86 .Bl -column "isgreaterequal" "bessel function of the second kind of the order 0"
144 .Ss Functions which manipulate the combined integer/fractional data bits
146 .Xr Q_IFRAWMASK 3 integer/fractional bitmask
147 .Xr Q_IFVALIMASK 3 value of integer bits
149 .Xr Q_GIFRAW 3 raw integer/fractional bits
152 .Xr Q_SIFVAL 3 set integer/fractional bits
153 .Xr Q_SIFVALS 3 set separate integer/fractional values
155 .Ss Functions which manipulate the integer data bits
157 .Xr Q_IRAWMASK 3 integer bitmask
158 .Xr Q_GIRAW 3 raw integer bits
159 .Xr Q_GIABSVAL 3 absolute value of integer bits
160 .Xr Q_GIVAL 3 real value of integer bits
161 .Xr Q_SIVAL 3 set integer bits
177 .Xr Q_NFCBITS 3 number of control-encoded fractional bits
180 .Xr Q_NIBITS 3 number of integer bits
185 .Xr Q_SHL 3 left-shifted value
186 .Xr Q_SHR 3 right-shifted value
193 data types and APIs support fixed-point math based on the
197 .Em Qm.n ,
203 .Em n
207 .Bd -literal -offset indent
224 integer types the Q data types are derived from.
234 .Bl -dash
236 bits 1-2 specify the binary radix point shift index operand, with 00,01,10,11 ==
267 integer
273 .Bd -literal -offset indent
284 Important bit counts are: total, control, control-encoded fractional, maximum
285 fractional, effective fractional and integer bits.
290 The count of control-encoded fractional bits is derived from calculating the
297 For example, a s32q_t has a maximum of 32 - 3 - 1 = 28 fractional bits.
300 control-encoded fractional bits and the maximum fractional bits.
301 For example, a s32q_t with 32 control-encoded fractional bits is effectively
304 The count of integer bits is derived from the difference between the counts of
305 total bits and all other non-integer data bits
307 For example, a s32q_t with 8 effective fractional bits has 32 - 3 - 8 - 1 = 20 integer
309 The count of integer bits can be zero if all available numeric data bits have
310 been reserved for fractional data, e.g., when the number of control-encoded
315 .Bd -literal -offset indent
327 Q_TOSTR(a, -1, 10, buf, sizeof(buf));
328 printf("%s\\n", buf);
333 initialise it with the fixed-point value for 5/3, and render a debugging
335 .Pq including its full precision decimal C-string representation ,
337 .Bd -literal -offset indent
342 Q_TOSTR(s32, -1, 10, buf, sizeof(buf));
343 printf(Q_DEBUG(s32, "", "\\n\\ttostr=%s\\n\\n", 0), buf);
347 .Bd -literal -offset indent
349 type=s32q_t, Qm.n=Q20.8, rpshft=11, imin=0xfff00001, \\
382 .An -nosplit