Lines Matching +full:0 +full:- +full:1023
22 B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
23 B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
25 /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
27 P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */
28 P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */
29 P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */
30 P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */
31 P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
46 sign=hx&0x80000000; /* sign= sign(x) */ in cbrt()
48 if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */ in cbrt()
53 * where e is integral and >= 0, m is real and in [0, 1), and "/" and in cbrt()
56 * error of about 1 in 16. Adding a bias of -0.03306235651 to the in cbrt()
61 * exponent bias (1023 for doubles) and later add it back. We do the in cbrt()
62 * subtraction virtually to keep e >= 0 so that ordinary integer in cbrt()
65 if(hx<0x00100000) { /* zero or subnormal? */ in cbrt()
66 if((hx|low)==0) in cbrt()
67 return(x); /* cbrt(0) is itself */ in cbrt()
68 SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */ in cbrt()
71 INSERT_WORDS(t,sign|((high&0x7fffffff)/3+B2),0); in cbrt()
73 INSERT_WORDS(t,sign|(hx/3+B1),0); in cbrt()
79 * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation in cbrt()
80 * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this in cbrt()
91 * 2 23-bit ulps larger). With rounding towards zero, the error bound in cbrt()
92 * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps in cbrt()
93 * in the rounded t, the infinite-precision error in the Halley in cbrt()
95 * 0.667; the error in the rounded t can be up to about 3 23-bit ulps in cbrt()
99 u.bits=(u.bits+0x80000000)&0xffffffffc0000000ULL; in cbrt()
106 r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */ in cbrt()