Lines Matching defs:n
13 * n
18 * 2. Perform y*log2(x) = n+y' by simulating multi-precision
20 * 3. Return x**y = 2**n*exp(y'*log2)
101 int32_t i,j,k,yisint,n;
177 n = (hx>>31)+1;
180 n = ((u_int32_t)hx>>31)-1;
183 if((n|yisint)==0) return (x-x)/(x-x);
186 if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
208 n = 0;
211 {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
212 n += ((ix)>>20)-0x3ff;
218 else {k=0;n+=1;ix -= 0x00100000;}
249 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
250 t = n;
281 n = 0;
282 if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
283 n = j+(0x00100000>>(k+1));
284 k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
286 SET_HIGH_WORD(t,n&~(0x000fffff>>k));
287 n = ((n&0x000fffff)|0x00100000)>>(20-k);
288 if(j<0) n = -n;
306 j += (int32_t)((u_int32_t)n<<20);
307 if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */