Lines Matching +full:fraction +full:- +full:z
18 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
19 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
25 * For n>x, a continued fraction approximation to
26 * j(n,x)/j(n-1,x) is evaluated and then backward
43 invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
54 double z, w; in jn() local
56 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) in jn()
57 * Thus, J(-n,x) = J(n,-x) in jn()
62 if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; in jn()
64 n = -n; in jn()
65 x = -x; in jn()
70 sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ in jn()
75 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ in jn()
78 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) in jn()
79 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) in jn()
81 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then in jn()
84 * ---------------------------------- in jn()
85 * 0 s-c c+s in jn()
86 * 1 -s-c -c+s in jn()
87 * 2 -s+c -c-s in jn()
88 * 3 s+c c-s in jn()
93 case 1: temp = -c+s; break; in jn()
94 case 2: temp = -c-s; break; in jn()
95 case 3: temp = c-s; break; in jn()
103 b = b*((double)(i+i)/x) - a; /* avoid underflow */ in jn()
108 if(ix<0x3e100000) { /* x < 2**-29 */ in jn()
110 * J(n,x) = 1/n!*(x/2)^n - ... in jn()
125 * J(n,x)/J(n-1,x) = ---- ------ ------ ..... in jn()
126 * 2n - 2(n+1) - 2(n+2) in jn()
129 * (for large x) = ---- ------ ------ ..... in jn()
131 * -- - ------ - ------ - in jn()
135 * is equal to the continued fraction: in jn()
137 * = ----------------------- in jn()
139 * w - ----------------- in jn()
141 * w+h - --------- in jn()
142 * w+2h - ... in jn()
145 * Q(0) = w, Q(1) = w(w+h) - 1, in jn()
146 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), in jn()
155 q0 = w; z = w+h; q1 = w*z - 1.0; k=1; in jn()
157 k += 1; z += h; in jn()
158 tmp = z*q1 - q0; in jn()
163 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); in jn()
178 for(i=n-1,di=(double)(i+i);i>0;i--){ in jn()
181 b = b/x - a; in jn()
183 di -= two; in jn()
186 for(i=n-1,di=(double)(i+i);i>0;i--){ in jn()
189 b = b/x - a; in jn()
191 di -= two; in jn()
200 z = j0(x); in jn()
202 if (fabs(z) >= fabs(w)) in jn()
203 b = (t*z/b); in jn()
208 if(sgn==1) return -b; else return b; in jn()
221 if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; in yn()
222 /* yn(n,+-0) = -inf and raise divide-by-zero exception. */ in yn()
223 if((ix|lx)==0) return -one/vzero; in yn()
228 n = -n; in yn()
229 sign = 1 - ((n&1)<<1); in yn()
236 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) in yn()
237 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) in yn()
239 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then in yn()
242 * ---------------------------------- in yn()
243 * 0 s-c c+s in yn()
244 * 1 -s-c -c+s in yn()
245 * 2 -s+c -c-s in yn()
246 * 3 s+c c-s in yn()
250 case 0: temp = s-c; break; in yn()
251 case 1: temp = -s-c; break; in yn()
252 case 2: temp = -s+c; break; in yn()
260 /* quit if b is -inf */ in yn()
264 b = ((double)(i+i)/x)*b - a; in yn()
269 if(sign>0) return b; else return -b; in yn()