Lines Matching +full:1 +full:e

23  *  P[0] x^n  +  P[1] x^(n-1)  +  ...  +  P[n]
42 * x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
51 n -= 1; in __p1evll()
92 * of the approximation interval the logarithm equal 1/32
93 * and its relative error is about 1 lsb = 1.1e-19. Hence
94 * the predicted relative error in the result is 2.3e-21 y .
99 * IEEE +-1000 40000 2.8e-18 3.7e-19
103 * IEEE 0,8700 60000 6.5e-18 1.0e-18
111 * pow underflow x**y < 1/MAXNUM 0.0
126 /* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z)
127 * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
130 8.3319510773868690346226E-4L,
131 4.9000050881978028599627E-1L,
146 9.7857206208770013448287E-1L,
147 9.5760328069857364691013E-1L,
148 9.3708381705514995065011E-1L,
149 9.1700404320467123175367E-1L,
150 8.9735453750155359320742E-1L,
151 8.7812608018664974155474E-1L,
152 8.5930964906123895780165E-1L,
153 8.4089641525371454301892E-1L,
154 8.2287773907698242225554E-1L,
155 8.0524516597462715409607E-1L,
156 7.8799042255394324325455E-1L,
157 7.7110541270397041179298E-1L,
158 7.5458221379671136985669E-1L,
159 7.3841307296974965571198E-1L,
160 7.2259040348852331001267E-1L,
161 7.0710678118654752438189E-1L,
162 6.9195494098191597746178E-1L,
163 6.7712777346844636413344E-1L,
164 6.6261832157987064729696E-1L,
165 6.4841977732550483296079E-1L,
166 6.3452547859586661129850E-1L,
167 6.2092890603674202431705E-1L,
168 6.0762367999023443907803E-1L,
169 5.9460355750136053334378E-1L,
170 5.8186242938878875689693E-1L,
171 5.6939431737834582684856E-1L,
172 5.5719337129794626814472E-1L,
173 5.4525386633262882960438E-1L,
174 5.3357020033841180906486E-1L,
175 5.2213689121370692017331E-1L,
176 5.1094857432705833910408E-1L,
177 5.0000000000000000000000E-1L,
181 2.6176170809902549338711E-20L,
182 -1.0126791927256478897086E-20L,
183 1.3438228172316276937655E-21L,
184 1.2207982955417546912101E-20L,
185 -6.3084814358060867200133E-21L,
186 1.3164426894366316434230E-20L,
187 -1.8527916071632873716786E-20L,
188 1.8950325588932570796551E-20L,
189 1.5564775779538780478155E-20L,
190 6.0859793637556860974380E-21L,
191 -2.0208749253662532228949E-20L,
192 1.4966292219224761844552E-20L,
193 3.3540909728056476875639E-21L,
194 -8.6987564101742849540743E-22L,
195 -1.2327176863327626135542E-20L,
199 /* 2^x = 1 + x P(x),
200 * on the interval -1/32 <= x <= 0
203 1.5089970579127659901157E-5L,
204 1.5402715328927013076125E-4L,
205 1.3333556028915671091390E-3L,
206 9.6181291046036762031786E-3L,
207 5.5504108664798463044015E-2L,
208 2.4022650695910062854352E-1L,
209 6.9314718055994530931447E-1L,
217 /* log2(e) - 1 */
232 static const long double LOGE2L = 6.9314718055994530941723E-1L;
250 long e; in powl() local
299 /* Set iyflg to 1 if y is an integer. */ in powl()
302 iyflg = 1; in powl()
312 yoddint = 1; in powl()
332 nflg = 0; /* flag = 1 if x<0 raised to integer power */ in powl()
358 nflg = 1; in powl()
381 e = i; in powl()
384 i = 1; in powl()
393 if( x >= douba(1) ) in powl()
394 i = -1; in powl()
395 i += 1; in powl()
403 * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a in powl()
410 /* rational approximation for log(1+v): in powl()
412 * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v) in powl()
416 w = w - ldexpl( z, -1 ); /* w - 0.5 * z */ in powl()
419 * multiply by log2(e) = 1 + LOG2EA in powl()
429 w += e; in powl()
435 * and small part yb less than 1/NXT in powl()
462 e = w; in powl()
467 e += 1; in powl()
471 /* Now the product y * log2(x) = Hb + e/NXT. in powl()
476 z = Hb * __polevll( Hb, R, 6 ); /* z = 2**Hb - 1 */ in powl()
478 /* Express e/NXT as an integer plus a negative number of (1/NXT)ths. in powl()
481 if( e < 0 ) in powl()
484 i = 1; in powl()
485 i = e/NXT + i; in powl()
486 e = NXT*i - e; in powl()
487 w = douba( e ); in powl()
488 z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */ in powl()
498 w = ldexpl( y, -1 ); in powl()
500 w = ldexpl( w, 1 ); in powl()
509 /* Find a multiple of 1/NXT that is within 1/NXT of x. */
551 * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18
552 * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18
553 * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17
564 int n, e, sign, asign, lx; in powil() local
582 asign = -1; in powil()
591 sign = -1; in powil()
596 sign = 1; in powil()
605 e = (lx - 1)*n; in powil()
606 if( (e == 0) || (e > 64) || (e < -64) ) in powil()
608 s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L); in powil()
613 s = LOGE2L * e; in powil()
632 if( n & 1 ) in powil()
642 n >>= 1; in powil()
646 if( n & 1 ) /* if that bit is set, then include in product */ in powil()
648 n >>= 1; in powil()