Lines Matching +full:25 +full:a
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
49 * where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of
62 * testing of a float variant of this function showed a maximum final error
63 * of 0.5008 ulps. Non-exhaustive testing of a double variant of this
64 * function showed a maximum final error of 0.5078 ulps (near 1+1.0/256).
67 * degree of p(d)) small by using a large number of intervals. Using
68 * centers of intervals instead of endpoints reduces this maximum by a
69 * factor of 2 for a given number of intervals. p(d) is special only
71 * naturally. The most accurate minimax polynomial of a given degree might
133 * ln2_hi and each F_hi(i) are rounded to a number of bits that
147 * a minimum of 93. We only need about 12 bits in F_hi(i) for
152 * in a float for it automatically satisfies the above constraints.
191 0xc68000.0p-24, 0x823f30.0p-25, 0x19bd076f7c434e5fcf1a212e2a91e.0p-139L,
192 0xc58000.0p-24, 0x84d52c.0p-25, -0x1a327257af0f465e5ecab5f2a6f81.0p-139L,
193 0xc40000.0p-24, 0x88bc74.0p-25, 0x113f23def19c5a0fe396f40f1dda9.0p-141L,
194 0xc30000.0p-24, 0x8b5ae6.0p-25, 0x1759f6e6b37de945a049a962e66c6.0p-139L,
195 0xc20000.0p-24, 0x8dfccb.0p-25, 0x1ad35ca6ed5147bdb6ddcaf59c425.0p-141L,
196 0xc10000.0p-24, 0x90a22b.0p-25, 0x1a1d71a87deba46bae9827221dc98.0p-139L,
197 0xbf8000.0p-24, 0x94a0d8.0p-25, -0x139e5210c2b730e28aba001a9b5e0.0p-140L,
198 0xbe8000.0p-24, 0x974f16.0p-25, -0x18f6ebcff3ed72e23e13431adc4a5.0p-141L,
199 0xbd8000.0p-24, 0x9a00f1.0p-25, -0x1aa268be39aab7148e8d80caa10b7.0p-139L,
200 0xbc8000.0p-24, 0x9cb672.0p-25, -0x14c8815839c5663663d15faed7771.0p-139L,
201 0xbb0000.0p-24, 0xa0cda1.0p-25, 0x1eaf46390dbb2438273918db7df5c.0p-141L,
202 0xba0000.0p-24, 0xa38c6e.0p-25, 0x138e20d831f698298adddd7f32686.0p-141L,
203 0xb90000.0p-24, 0xa64f05.0p-25, -0x1e8d3c41123615b147a5d47bc208f.0p-142L,
204 0xb80000.0p-24, 0xa91570.0p-25, 0x1ce28f5f3840b263acb4351104631.0p-140L,
205 0xb70000.0p-24, 0xabdfbb.0p-25, -0x186e5c0a42423457e22d8c650b355.0p-139L,
206 0xb60000.0p-24, 0xaeadef.0p-25, -0x14d41a0b2a08a465dc513b13f567d.0p-143L,
207 0xb50000.0p-24, 0xb18018.0p-25, 0x16755892770633947ffe651e7352f.0p-139L,
208 0xb40000.0p-24, 0xb45642.0p-25, -0x16395ebe59b15228bfe8798d10ff0.0p-142L,
209 0xb30000.0p-24, 0xb73077.0p-25, 0x1abc65c8595f088b61a335f5b688c.0p-140L,
210 0xb20000.0p-24, 0xba0ec4.0p-25, -0x1273089d3dad88e7d353e9967d548.0p-139L,
211 0xb10000.0p-24, 0xbcf133.0p-25, 0x10f9f67b1f4bbf45de06ecebfaf6d.0p-139L,
212 0xb00000.0p-24, 0xbfd7d2.0p-25, -0x109fab904864092b34edda19a831e.0p-140L,
213 0xaf0000.0p-24, 0xc2c2ac.0p-25, -0x1124680aa43333221d8a9b475a6ba.0p-139L,
214 0xae8000.0p-24, 0xc439b3.0p-25, -0x1f360cc4710fbfe24b633f4e8d84d.0p-140L,
215 0xad8000.0p-24, 0xc72afd.0p-25, -0x132d91f21d89c89c45003fc5d7807.0p-140L,
216 0xac8000.0p-24, 0xca20a2.0p-25, -0x16bf9b4d1f8da8002f2449e174504.0p-139L,
217 0xab8000.0p-24, 0xcd1aae.0p-25, 0x19deb5ce6a6a8717d5626e16acc7d.0p-141L,
218 0xaa8000.0p-24, 0xd0192f.0p-25, 0x1a29fb48f7d3ca87dabf351aa41f4.0p-139L,
219 0xaa0000.0p-24, 0xd19a20.0p-25, 0x1127d3c6457f9d79f51dcc73014c9.0p-141L,
220 0xa90000.0p-24, 0xd49f6a.0p-25, -0x1ba930e486a0ac42d1bf9199188e7.0p-141L,
221 0xa80000.0p-24, 0xd7a94b.0p-25, -0x1b6e645f31549dd1160bcc45c7e2c.0p-139L,
222 0xa70000.0p-24, 0xdab7d0.0p-25, 0x1118a425494b610665377f15625b6.0p-140L,
223 0xa68000.0p-24, 0xdc40d5.0p-25, 0x1966f24d29d3a2d1b2176010478be.0p-140L,
224 0xa58000.0p-24, 0xdf566d.0p-25, -0x1d8e52eb2248f0c95dd83626d7333.0p-142L,
225 0xa48000.0p-24, 0xe270ce.0p-25, -0x1ee370f96e6b67ccb006a5b9890ea.0p-140L,
226 0xa40000.0p-24, 0xe3ffce.0p-25, 0x1d155324911f56db28da4d629d00a.0p-140L,
227 0xa30000.0p-24, 0xe72179.0p-25, -0x1fe6e2f2f867d8f4d60c713346641.0p-140L,
228 0xa20000.0p-24, 0xea4812.0p-25, 0x1b7be9add7f4d3b3d406b6cbf3ce5.0p-140L,
229 0xa18000.0p-24, 0xebdd3d.0p-25, 0x1b3cfb3f7511dd73692609040ccc2.0p-139L,
230 0xa08000.0p-24, 0xef0b5b.0p-25, -0x1220de1f7301901b8ad85c25afd09.0p-139L,
231 0xa00000.0p-24, 0xf0a451.0p-25, -0x176364c9ac81cc8a4dfb804de6867.0p-140L,
232 0x9f0000.0p-24, 0xf3da16.0p-25, 0x1eed6b9aafac8d42f78d3e65d3727.0p-141L,
233 0x9e8000.0p-24, 0xf576e9.0p-25, 0x1d593218675af269647b783d88999.0p-139L,
234 0x9d8000.0p-24, 0xf8b47c.0p-25, -0x13e8eb7da053e063714615f7cc91d.0p-144L,
235 0x9d0000.0p-24, 0xfa553f.0p-25, 0x1c063259bcade02951686d5373aec.0p-139L,
236 0x9c0000.0p-24, 0xfd9ac5.0p-25, 0x1ef491085fa3c1649349630531502.0p-139L,
237 0x9b8000.0p-24, 0xff3f8c.0p-25, 0x1d607a7c2b8c5320619fb9433d841.0p-139L,
502 * lets us avoid using a special method to give the desired
545 * being exact, and this gives a good place to sum the 'lo'
615 * x*G(i)-1 (with a reduced x) can be represented exactly, as
618 * Since x+x_lo is a hi+lo decomposition and subtracting 1
643 * it works in practice. It works even if it gives a wrong
647 * (By exhaustive testing, the worst case is d_hi = 0x1.bp-25.
648 * And if d is only a little tinier than that, we would have
687 * without any explicit conversions. More natural choices would require a