Lines Matching +full:range +full:- +full:double
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
4 * Copyright (c) 2009-2013 Steven G. Kargl
43 static const volatile long double
45 tiny = 0x1p-10000L;
47 static const long double
48 twom10000 = 0x1p-10000L;
50 static const long double
51 /* log(2**16384 - 0.5) rounded towards zero: */
52 /* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
54 /* log(2**(-16381-64-1)) rounded towards zero: */
55 u_threshold = -11433.462743336297878837243843452621503L;
57 long double
58 expl(long double x) in expl()
61 long double hi, lo, t, twopk; in expl()
71 if (hx & 0x8000) /* x is -Inf or -NaN */ in expl()
72 RETURNF(-1 / x); in expl()
79 } else if (ix < BIAS - 114) { /* |x| < 0x1p-114 */ in expl()
113 * range for it.
116 * Setting T3 to 0 would require the |x| < 0x1p-113 condition to appear
117 * in both subintervals, so set T3 = 2**-5, which places the condition
124 * XXX these micro-optimizations are excessive.
126 static const double
127 T1 = -0.1659, /* ~-30.625/128 * log(2) */
132 * Domain [-0.1659, 0.03125], range ~[2.9134e-44, 1.8404e-37]:
133 * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-122.03
135 * XXX none of the long double C or D coeffs except C10 is correctly printed.
136 * If you re-print their values in %.35Le format, the result is always
138 * 67 is apparently from rounding an extra-precision value to 36 decimal
141 static const long double
142 C3 = 1.66666666666666666666666666666666667e-1L,
143 C4 = 4.16666666666666666666666666666666645e-2L,
144 C5 = 8.33333333333333333333333333333371638e-3L,
145 C6 = 1.38888888888888888888888888891188658e-3L,
146 C7 = 1.98412698412698412698412697235950394e-4L,
147 C8 = 2.48015873015873015873015112487849040e-5L,
148 C9 = 2.75573192239858906525606685484412005e-6L,
149 C10 = 2.75573192239858906612966093057020362e-7L,
150 C11 = 2.50521083854417203619031960151253944e-8L,
151 C12 = 2.08767569878679576457272282566520649e-9L,
152 C13 = 1.60590438367252471783548748824255707e-10L;
156 * XXX can start the double coeffs but not the double mults at C10.
157 * With my coeffs (C10-C17 double; s = best_s):
158 * Domain [-0.1659, 0.03125], range ~[-1.1976e-37, 1.1976e-37]:
159 * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
161 static const double
162 C14 = 1.1470745580491932e-11, /* 0x1.93974a81dae30p-37 */
163 C15 = 7.6471620181090468e-13, /* 0x1.ae7f3820adab1p-41 */
164 C16 = 4.7793721460260450e-14, /* 0x1.ae7cd18a18eacp-45 */
165 C17 = 2.8074757356658877e-15, /* 0x1.949992a1937d9p-49 */
166 C18 = 1.4760610323699476e-16; /* 0x1.545b43aabfbcdp-53 */
169 * Domain [0.03125, 0.1659], range ~[-2.7676e-37, -1.0367e-38]:
170 * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-121.44
172 static const long double
173 D3 = 1.66666666666666666666666666666682245e-1L,
174 D4 = 4.16666666666666666666666666634228324e-2L,
175 D5 = 8.33333333333333333333333364022244481e-3L,
176 D6 = 1.38888888888888888888887138722762072e-3L,
177 D7 = 1.98412698412698412699085805424661471e-4L,
178 D8 = 2.48015873015873015687993712101479612e-5L,
179 D9 = 2.75573192239858944101036288338208042e-6L,
180 D10 = 2.75573192239853161148064676533754048e-7L,
181 D11 = 2.50521083855084570046480450935267433e-8L,
182 D12 = 2.08767569819738524488686318024854942e-9L,
183 D13 = 1.60590442297008495301927448122499313e-10L;
187 * XXX can start the double coeffs but not the double mults at D11.
188 * With my coeffs (D11-D16 double):
189 * Domain [0.03125, 0.1659], range ~[-1.1980e-37, 1.1980e-37]:
190 * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
192 static const double
193 D14 = 1.1470726176204336e-11, /* 0x1.93971dc395d9ep-37 */
194 D15 = 7.6478532249581686e-13, /* 0x1.ae892e3D16fcep-41 */
195 D16 = 4.7628892832607741e-14, /* 0x1.ad00Dfe41feccp-45 */
196 D17 = 3.0524857220358650e-15; /* 0x1.D7e8d886Df921p-49 */
198 long double
199 expm1l(long double x) in expm1l()
202 long double hx2_hi, hx2_lo, q, r, r1, t, twomk, twopk, x_hi; in expm1l()
203 long double x_lo, x2; in expm1l()
204 double dr, dx, fn, r2; in expm1l()
214 if (hx & 0x8000) /* x is -Inf or -NaN */ in expm1l()
215 RETURNF(-1 / x - 1); in expm1l()
227 if (hx & 0x8000) /* x <= -128 */ in expm1l()
228 RETURNF(tiny - 1); /* good for x < -114ln2 - eps */ in expm1l()
238 if (ix < BIAS - 113) { /* |x| < 0x1p-113 */ in expm1l()
241 (0x1p200 * x + fabsl(x)) * 0x1p-200); in expm1l()
257 x_lo = x - x_hi; in expm1l()
260 if (ix >= BIAS - 7) in expm1l()
267 fn = rnint((double)x * INV_L); in expm1l()
271 r1 = x - fn * L1; in expm1l()
272 r2 = fn * -L2; in expm1l()
291 t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q + in expm1l()
295 if (k == -1) { in expm1l()
296 t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q + in expm1l()
300 if (k < -7) { in expm1l()
302 RETURNI(t * twopk - 1); in expm1l()
304 if (k > 2 * LDBL_MANT_DIG - 1) { in expm1l()
307 RETURNI(t * 2 * 0x1p16383L - 1); in expm1l()
308 RETURNI(t * twopk - 1); in expm1l()
311 v.xbits.expsign = BIAS - k; in expm1l()
314 if (k > LDBL_MANT_DIG - 1) in expm1l()
315 t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1)); in expm1l()
317 t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1)); in expm1l()