Lines Matching refs:modulus
65 * These cryptographic routines are characterized by the prime modulus
123 #define PLEN 512 /* default prime modulus size (bits) */
124 #define ILEN 512 /* default identity modulus size (bits) */
180 u_int modulus = PLEN; /* prime modulus size (bits) */
181 u_int modulus2 = ILEN; /* identity modulus size (bits) */
424 modulus = OPT_VALUE_MODULUS;
1017 fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus);
1018 rsa = genRsaKeyPair(modulus, _UC("RSA"));
1029 * modulus turns out to be non-prime. Just for grins, we check
1074 "Generating DSA parameters (%d bits)...\n", modulus);
1075 dsa = genDsaParams(modulus, _UC("DSA"));
1086 fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus);
1258 * p modulus p
1259 * q modulus q
1301 * bit public modulus is n = p q, where p and q are secret large primes.
1314 * The scheme goes like this. Both Alice and Bob have the same modulus n
1457 * n modulus n
1620 * Compute the modulus q as the product of the primes. Compute
1621 * the modulus p as 2 * q + 1 and test p for primality. If p
1862 * p modulus p
1863 * q modulus q
1887 * p modulus p
1888 * q modulus q (used only when generating k)
1910 * p modulus p