j0.3 (3a8617a83f16ffc9db4f96e1f0f21af94078e6b1) j0.3 (7a15a32a17f4c2cbeb6f842c4c6b1cf93e4639e7)
1.\" Copyright (c) 1985, 1991 Regents of the University of California.
2.\" All rights reserved.
3.\"
4.\" Redistribution and use in source and binary forms, with or without
5.\" modification, are permitted provided that the following conditions
6.\" are met:
7.\" 1. Redistributions of source code must retain the above copyright
8.\" notice, this list of conditions and the following disclaimer.

--- 16 unchanged lines hidden (view full) ---

25.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30.\" SUCH DAMAGE.
31.\"
32.\" from: @(#)j0.3 6.7 (Berkeley) 4/19/91
1.\" Copyright (c) 1985, 1991 Regents of the University of California.
2.\" All rights reserved.
3.\"
4.\" Redistribution and use in source and binary forms, with or without
5.\" modification, are permitted provided that the following conditions
6.\" are met:
7.\" 1. Redistributions of source code must retain the above copyright
8.\" notice, this list of conditions and the following disclaimer.

--- 16 unchanged lines hidden (view full) ---

25.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30.\" SUCH DAMAGE.
31.\"
32.\" from: @(#)j0.3 6.7 (Berkeley) 4/19/91
33.\" $Id: j0.3,v 1.5 1994/01/11 00:46:54 jtc Exp $
33.\" $Id: j0.3,v 1.1.1.1 1994/08/19 09:39:42 jkh Exp $
34.\"
35.Dd April 19, 1991
36.Dt J0 3
37.Os BSD 4
38.Sh NAME
39.Nm j0 ,
34.\"
35.Dd April 19, 1991
36.Dt J0 3
37.Os BSD 4
38.Sh NAME
39.Nm j0 ,
40.Nm j0f ,
40.Nm j1 ,
41.Nm j1 ,
42.Nm j1f ,
41.Nm jn ,
43.Nm jn ,
44.Nm jnf ,
42.Nm y0 ,
45.Nm y0 ,
46.Nm y0f ,
43.Nm y1 ,
47.Nm y1 ,
44.Nm yn
48.Nm y1f ,
49.Nm yn ,
50.Nm ynf
45.Nd bessel functions of first and second kind
46.Sh SYNOPSIS
47.Fd #include <math.h>
48.Ft double
49.Fn j0 "double x"
51.Nd bessel functions of first and second kind
52.Sh SYNOPSIS
53.Fd #include <math.h>
54.Ft double
55.Fn j0 "double x"
56.Ft float
57.Fn j0f "float x"
50.Ft double
51.Fn j1 "double x"
58.Ft double
59.Fn j1 "double x"
60.Ft float
61.Fn j1f "float x"
52.Ft double
53.Fn jn "int n" "double x"
62.Ft double
63.Fn jn "int n" "double x"
64.Ft float
65.Fn jnf "int n" "float x"
54.Ft double
55.Fn y0 "double x"
66.Ft double
67.Fn y0 "double x"
68.Ft float
69.Fn y0f "float x"
56.Ft double
57.Fn y1 "double x"
70.Ft double
71.Fn y1 "double x"
72.Ft float
73.Fn y1f "float x"
58.Ft double
59.Fn yn "int n" "double x"
74.Ft double
75.Fn yn "int n" "double x"
76.Ft float
77.Fn ynf "int n" "float x"
60.Sh DESCRIPTION
61The functions
78.Sh DESCRIPTION
79The functions
62.Fn j0
63and
80.Fn j0 ,
81.Fn j0f ,
64.Fn j1
82.Fn j1
83and
84.Fn j1f
65compute the
66.Em Bessel function of the first kind of the order
670 and the
68.Em order
691, respectively,
70for the
71real value
72.Fa x ;
85compute the
86.Em Bessel function of the first kind of the order
870 and the
88.Em order
891, respectively,
90for the
91real value
92.Fa x ;
73the function
93the functions
74.Fn jn
94.Fn jn
75computes the
95and
96.Fn jnf
97compute the
76.Em Bessel function of the first kind of the integer order
77.Fa n
78for the real value
79.Fa x .
80.Pp
81The functions
98.Em Bessel function of the first kind of the integer order
99.Fa n
100for the real value
101.Fa x .
102.Pp
103The functions
82.Fn y0
104.Fn y0 ,
105.Fn y0f ,
106.Fn y1 ,
83and
107and
84.Fn y1
108.Fn y1f
85compute the linearly independent
86.Em Bessel function of the second kind of the order
870 and the
88.Em order
891, respectively,
90for the
91positive
92.Em integer
93value
94.Fa x
109compute the linearly independent
110.Em Bessel function of the second kind of the order
1110 and the
112.Em order
1131, respectively,
114for the
115positive
116.Em integer
117value
118.Fa x
95(expressed as a double);
96the function
119(expressed as a double or float);
120the functions
97.Fn yn
121.Fn yn
98computes the
122and
123.Fn ynf
124compute the
99.Em Bessel function of the second kind for the integer order
100.Fa n
101for the positive
102.Em integer
103value
104.Fa x
125.Em Bessel function of the second kind for the integer order
126.Fa n
127for the positive
128.Em integer
129value
130.Fa x
105(expressed as a double).
131(expressed as a double or float).
106.Sh RETURN VALUES
107If these functions are successful,
108the computed value is returned. On the
109.Tn VAX
110and
111.Tn Tahoe
112architectures,
113a negative

--- 15 unchanged lines hidden ---
132.Sh RETURN VALUES
133If these functions are successful,
134the computed value is returned. On the
135.Tn VAX
136and
137.Tn Tahoe
138architectures,
139a negative

--- 15 unchanged lines hidden ---