1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * DTrace - Dynamic Tracing for Solaris 31 * 32 * This is the implementation of the Solaris Dynamic Tracing framework 33 * (DTrace). The user-visible interface to DTrace is described at length in 34 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 35 * library, the in-kernel DTrace framework, and the DTrace providers are 36 * described in the block comments in the <sys/dtrace.h> header file. The 37 * internal architecture of DTrace is described in the block comments in the 38 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 39 * implementation very much assume mastery of all of these sources; if one has 40 * an unanswered question about the implementation, one should consult them 41 * first. 42 * 43 * The functions here are ordered roughly as follows: 44 * 45 * - Probe context functions 46 * - Probe hashing functions 47 * - Non-probe context utility functions 48 * - Matching functions 49 * - Provider-to-Framework API functions 50 * - Probe management functions 51 * - DIF object functions 52 * - Format functions 53 * - Predicate functions 54 * - ECB functions 55 * - Buffer functions 56 * - Enabling functions 57 * - DOF functions 58 * - Anonymous enabling functions 59 * - Consumer state functions 60 * - Helper functions 61 * - Hook functions 62 * - Driver cookbook functions 63 * 64 * Each group of functions begins with a block comment labelled the "DTrace 65 * [Group] Functions", allowing one to find each block by searching forward 66 * on capital-f functions. 67 */ 68 #include <sys/errno.h> 69 #include <sys/stat.h> 70 #include <sys/modctl.h> 71 #include <sys/conf.h> 72 #include <sys/systm.h> 73 #include <sys/ddi.h> 74 #include <sys/sunddi.h> 75 #include <sys/cpuvar.h> 76 #include <sys/kmem.h> 77 #include <sys/strsubr.h> 78 #include <sys/sysmacros.h> 79 #include <sys/dtrace_impl.h> 80 #include <sys/atomic.h> 81 #include <sys/cmn_err.h> 82 #include <sys/mutex_impl.h> 83 #include <sys/rwlock_impl.h> 84 #include <sys/ctf_api.h> 85 #include <sys/panic.h> 86 #include <sys/priv_impl.h> 87 #include <sys/policy.h> 88 #include <sys/cred_impl.h> 89 #include <sys/procfs_isa.h> 90 #include <sys/taskq.h> 91 #include <sys/mkdev.h> 92 #include <sys/kdi.h> 93 #include <sys/zone.h> 94 #include <sys/socket.h> 95 #include <netinet/in.h> 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 121 size_t dtrace_global_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 32; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 150 /* 151 * DTrace External Variables 152 * 153 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 154 * available to DTrace consumers via the backtick (`) syntax. One of these, 155 * dtrace_zero, is made deliberately so: it is provided as a source of 156 * well-known, zero-filled memory. While this variable is not documented, 157 * it is used by some translators as an implementation detail. 158 */ 159 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 160 161 /* 162 * DTrace Internal Variables 163 */ 164 static dev_info_t *dtrace_devi; /* device info */ 165 static vmem_t *dtrace_arena; /* probe ID arena */ 166 static vmem_t *dtrace_minor; /* minor number arena */ 167 static taskq_t *dtrace_taskq; /* task queue */ 168 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 169 static int dtrace_nprobes; /* number of probes */ 170 static dtrace_provider_t *dtrace_provider; /* provider list */ 171 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 172 static int dtrace_opens; /* number of opens */ 173 static int dtrace_helpers; /* number of helpers */ 174 static void *dtrace_softstate; /* softstate pointer */ 175 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 176 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 177 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 178 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 179 static int dtrace_toxranges; /* number of toxic ranges */ 180 static int dtrace_toxranges_max; /* size of toxic range array */ 181 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 182 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 183 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 184 static kthread_t *dtrace_panicked; /* panicking thread */ 185 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 186 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 187 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 188 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 189 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 190 191 /* 192 * DTrace Locking 193 * DTrace is protected by three (relatively coarse-grained) locks: 194 * 195 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 196 * including enabling state, probes, ECBs, consumer state, helper state, 197 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 198 * probe context is lock-free -- synchronization is handled via the 199 * dtrace_sync() cross call mechanism. 200 * 201 * (2) dtrace_provider_lock is required when manipulating provider state, or 202 * when provider state must be held constant. 203 * 204 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 205 * when meta provider state must be held constant. 206 * 207 * The lock ordering between these three locks is dtrace_meta_lock before 208 * dtrace_provider_lock before dtrace_lock. (In particular, there are 209 * several places where dtrace_provider_lock is held by the framework as it 210 * calls into the providers -- which then call back into the framework, 211 * grabbing dtrace_lock.) 212 * 213 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 214 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 215 * role as a coarse-grained lock; it is acquired before both of these locks. 216 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 217 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 218 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 219 * acquired _between_ dtrace_provider_lock and dtrace_lock. 220 */ 221 static kmutex_t dtrace_lock; /* probe state lock */ 222 static kmutex_t dtrace_provider_lock; /* provider state lock */ 223 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 224 225 /* 226 * DTrace Provider Variables 227 * 228 * These are the variables relating to DTrace as a provider (that is, the 229 * provider of the BEGIN, END, and ERROR probes). 230 */ 231 static dtrace_pattr_t dtrace_provider_attr = { 232 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 233 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 234 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 }; 238 239 static void 240 dtrace_nullop(void) 241 {} 242 243 static dtrace_pops_t dtrace_provider_ops = { 244 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 245 (void (*)(void *, struct modctl *))dtrace_nullop, 246 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 247 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 248 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 249 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 250 NULL, 251 NULL, 252 NULL, 253 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 254 }; 255 256 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 257 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 258 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 259 260 /* 261 * DTrace Helper Tracing Variables 262 */ 263 uint32_t dtrace_helptrace_next = 0; 264 uint32_t dtrace_helptrace_nlocals; 265 char *dtrace_helptrace_buffer; 266 int dtrace_helptrace_bufsize = 512 * 1024; 267 268 #ifdef DEBUG 269 int dtrace_helptrace_enabled = 1; 270 #else 271 int dtrace_helptrace_enabled = 0; 272 #endif 273 274 /* 275 * DTrace Error Hashing 276 * 277 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 278 * table. This is very useful for checking coverage of tests that are 279 * expected to induce DIF or DOF processing errors, and may be useful for 280 * debugging problems in the DIF code generator or in DOF generation . The 281 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 282 */ 283 #ifdef DEBUG 284 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 285 static const char *dtrace_errlast; 286 static kthread_t *dtrace_errthread; 287 static kmutex_t dtrace_errlock; 288 #endif 289 290 /* 291 * DTrace Macros and Constants 292 * 293 * These are various macros that are useful in various spots in the 294 * implementation, along with a few random constants that have no meaning 295 * outside of the implementation. There is no real structure to this cpp 296 * mishmash -- but is there ever? 297 */ 298 #define DTRACE_HASHSTR(hash, probe) \ 299 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 300 301 #define DTRACE_HASHNEXT(hash, probe) \ 302 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 303 304 #define DTRACE_HASHPREV(hash, probe) \ 305 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 306 307 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 308 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 309 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 310 311 #define DTRACE_AGGHASHSIZE_SLEW 17 312 313 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 314 315 /* 316 * The key for a thread-local variable consists of the lower 61 bits of the 317 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 318 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 319 * equal to a variable identifier. This is necessary (but not sufficient) to 320 * assure that global associative arrays never collide with thread-local 321 * variables. To guarantee that they cannot collide, we must also define the 322 * order for keying dynamic variables. That order is: 323 * 324 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 325 * 326 * Because the variable-key and the tls-key are in orthogonal spaces, there is 327 * no way for a global variable key signature to match a thread-local key 328 * signature. 329 */ 330 #define DTRACE_TLS_THRKEY(where) { \ 331 uint_t intr = 0; \ 332 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 333 for (; actv; actv >>= 1) \ 334 intr++; \ 335 ASSERT(intr < (1 << 3)); \ 336 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 337 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 338 } 339 340 #define DT_BSWAP_8(x) ((x) & 0xff) 341 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 342 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 343 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 344 345 #define DTRACE_STORE(type, tomax, offset, what) \ 346 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 347 348 #ifndef __i386 349 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 350 if (addr & (size - 1)) { \ 351 *flags |= CPU_DTRACE_BADALIGN; \ 352 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 353 return (0); \ 354 } 355 #else 356 #define DTRACE_ALIGNCHECK(addr, size, flags) 357 #endif 358 359 /* 360 * Test whether a range of memory starting at testaddr of size testsz falls 361 * within the range of memory described by addr, sz. We take care to avoid 362 * problems with overflow and underflow of the unsigned quantities, and 363 * disallow all negative sizes. Ranges of size 0 are allowed. 364 */ 365 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 366 ((testaddr) - (baseaddr) < (basesz) && \ 367 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 368 (testaddr) + (testsz) >= (testaddr)) 369 370 /* 371 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 372 * alloc_sz on the righthand side of the comparison in order to avoid overflow 373 * or underflow in the comparison with it. This is simpler than the INRANGE 374 * check above, because we know that the dtms_scratch_ptr is valid in the 375 * range. Allocations of size zero are allowed. 376 */ 377 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 378 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 379 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 380 381 #define DTRACE_LOADFUNC(bits) \ 382 /*CSTYLED*/ \ 383 uint##bits##_t \ 384 dtrace_load##bits(uintptr_t addr) \ 385 { \ 386 size_t size = bits / NBBY; \ 387 /*CSTYLED*/ \ 388 uint##bits##_t rval; \ 389 int i; \ 390 volatile uint16_t *flags = (volatile uint16_t *) \ 391 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 392 \ 393 DTRACE_ALIGNCHECK(addr, size, flags); \ 394 \ 395 for (i = 0; i < dtrace_toxranges; i++) { \ 396 if (addr >= dtrace_toxrange[i].dtt_limit) \ 397 continue; \ 398 \ 399 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 400 continue; \ 401 \ 402 /* \ 403 * This address falls within a toxic region; return 0. \ 404 */ \ 405 *flags |= CPU_DTRACE_BADADDR; \ 406 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 407 return (0); \ 408 } \ 409 \ 410 *flags |= CPU_DTRACE_NOFAULT; \ 411 /*CSTYLED*/ \ 412 rval = *((volatile uint##bits##_t *)addr); \ 413 *flags &= ~CPU_DTRACE_NOFAULT; \ 414 \ 415 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 416 } 417 418 #ifdef _LP64 419 #define dtrace_loadptr dtrace_load64 420 #else 421 #define dtrace_loadptr dtrace_load32 422 #endif 423 424 #define DTRACE_DYNHASH_FREE 0 425 #define DTRACE_DYNHASH_SINK 1 426 #define DTRACE_DYNHASH_VALID 2 427 428 #define DTRACE_MATCH_NEXT 0 429 #define DTRACE_MATCH_DONE 1 430 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 431 #define DTRACE_STATE_ALIGN 64 432 433 #define DTRACE_FLAGS2FLT(flags) \ 434 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 435 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 436 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 437 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 438 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 439 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 440 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 441 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 442 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 443 DTRACEFLT_UNKNOWN) 444 445 #define DTRACEACT_ISSTRING(act) \ 446 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 447 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 448 449 static size_t dtrace_strlen(const char *, size_t); 450 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 451 static void dtrace_enabling_provide(dtrace_provider_t *); 452 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 453 static void dtrace_enabling_matchall(void); 454 static dtrace_state_t *dtrace_anon_grab(void); 455 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 456 dtrace_state_t *, uint64_t, uint64_t); 457 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 458 static void dtrace_buffer_drop(dtrace_buffer_t *); 459 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 460 dtrace_state_t *, dtrace_mstate_t *); 461 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 462 dtrace_optval_t); 463 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 464 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 465 466 /* 467 * DTrace Probe Context Functions 468 * 469 * These functions are called from probe context. Because probe context is 470 * any context in which C may be called, arbitrarily locks may be held, 471 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 472 * As a result, functions called from probe context may only call other DTrace 473 * support functions -- they may not interact at all with the system at large. 474 * (Note that the ASSERT macro is made probe-context safe by redefining it in 475 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 476 * loads are to be performed from probe context, they _must_ be in terms of 477 * the safe dtrace_load*() variants. 478 * 479 * Some functions in this block are not actually called from probe context; 480 * for these functions, there will be a comment above the function reading 481 * "Note: not called from probe context." 482 */ 483 void 484 dtrace_panic(const char *format, ...) 485 { 486 va_list alist; 487 488 va_start(alist, format); 489 dtrace_vpanic(format, alist); 490 va_end(alist); 491 } 492 493 int 494 dtrace_assfail(const char *a, const char *f, int l) 495 { 496 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 497 498 /* 499 * We just need something here that even the most clever compiler 500 * cannot optimize away. 501 */ 502 return (a[(uintptr_t)f]); 503 } 504 505 /* 506 * Atomically increment a specified error counter from probe context. 507 */ 508 static void 509 dtrace_error(uint32_t *counter) 510 { 511 /* 512 * Most counters stored to in probe context are per-CPU counters. 513 * However, there are some error conditions that are sufficiently 514 * arcane that they don't merit per-CPU storage. If these counters 515 * are incremented concurrently on different CPUs, scalability will be 516 * adversely affected -- but we don't expect them to be white-hot in a 517 * correctly constructed enabling... 518 */ 519 uint32_t oval, nval; 520 521 do { 522 oval = *counter; 523 524 if ((nval = oval + 1) == 0) { 525 /* 526 * If the counter would wrap, set it to 1 -- assuring 527 * that the counter is never zero when we have seen 528 * errors. (The counter must be 32-bits because we 529 * aren't guaranteed a 64-bit compare&swap operation.) 530 * To save this code both the infamy of being fingered 531 * by a priggish news story and the indignity of being 532 * the target of a neo-puritan witch trial, we're 533 * carefully avoiding any colorful description of the 534 * likelihood of this condition -- but suffice it to 535 * say that it is only slightly more likely than the 536 * overflow of predicate cache IDs, as discussed in 537 * dtrace_predicate_create(). 538 */ 539 nval = 1; 540 } 541 } while (dtrace_cas32(counter, oval, nval) != oval); 542 } 543 544 /* 545 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 546 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 547 */ 548 DTRACE_LOADFUNC(8) 549 DTRACE_LOADFUNC(16) 550 DTRACE_LOADFUNC(32) 551 DTRACE_LOADFUNC(64) 552 553 static int 554 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 555 { 556 if (dest < mstate->dtms_scratch_base) 557 return (0); 558 559 if (dest + size < dest) 560 return (0); 561 562 if (dest + size > mstate->dtms_scratch_ptr) 563 return (0); 564 565 return (1); 566 } 567 568 static int 569 dtrace_canstore_statvar(uint64_t addr, size_t sz, 570 dtrace_statvar_t **svars, int nsvars) 571 { 572 int i; 573 574 for (i = 0; i < nsvars; i++) { 575 dtrace_statvar_t *svar = svars[i]; 576 577 if (svar == NULL || svar->dtsv_size == 0) 578 continue; 579 580 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 581 return (1); 582 } 583 584 return (0); 585 } 586 587 /* 588 * Check to see if the address is within a memory region to which a store may 589 * be issued. This includes the DTrace scratch areas, and any DTrace variable 590 * region. The caller of dtrace_canstore() is responsible for performing any 591 * alignment checks that are needed before stores are actually executed. 592 */ 593 static int 594 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 595 dtrace_vstate_t *vstate) 596 { 597 /* 598 * First, check to see if the address is in scratch space... 599 */ 600 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 601 mstate->dtms_scratch_size)) 602 return (1); 603 604 /* 605 * Now check to see if it's a dynamic variable. This check will pick 606 * up both thread-local variables and any global dynamically-allocated 607 * variables. 608 */ 609 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 610 vstate->dtvs_dynvars.dtds_size)) 611 return (1); 612 613 /* 614 * Finally, check the static local and global variables. These checks 615 * take the longest, so we perform them last. 616 */ 617 if (dtrace_canstore_statvar(addr, sz, 618 vstate->dtvs_locals, vstate->dtvs_nlocals)) 619 return (1); 620 621 if (dtrace_canstore_statvar(addr, sz, 622 vstate->dtvs_globals, vstate->dtvs_nglobals)) 623 return (1); 624 625 return (0); 626 } 627 628 629 /* 630 * Convenience routine to check to see if the address is within a memory 631 * region in which a load may be issued given the user's privilege level; 632 * if not, it sets the appropriate error flags and loads 'addr' into the 633 * illegal value slot. 634 * 635 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 636 * appropriate memory access protection. 637 */ 638 static int 639 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 640 dtrace_vstate_t *vstate) 641 { 642 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 643 644 /* 645 * If we hold the privilege to read from kernel memory, then 646 * everything is readable. 647 */ 648 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 649 return (1); 650 651 /* 652 * You can obviously read that which you can store. 653 */ 654 if (dtrace_canstore(addr, sz, mstate, vstate)) 655 return (1); 656 657 /* 658 * We're allowed to read from our own string table. 659 */ 660 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 661 mstate->dtms_difo->dtdo_strlen)) 662 return (1); 663 664 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 665 *illval = addr; 666 return (0); 667 } 668 669 /* 670 * Convenience routine to check to see if a given string is within a memory 671 * region in which a load may be issued given the user's privilege level; 672 * this exists so that we don't need to issue unnecessary dtrace_strlen() 673 * calls in the event that the user has all privileges. 674 */ 675 static int 676 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 677 dtrace_vstate_t *vstate) 678 { 679 size_t strsz; 680 681 /* 682 * If we hold the privilege to read from kernel memory, then 683 * everything is readable. 684 */ 685 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 686 return (1); 687 688 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 689 if (dtrace_canload(addr, strsz, mstate, vstate)) 690 return (1); 691 692 return (0); 693 } 694 695 /* 696 * Convenience routine to check to see if a given variable is within a memory 697 * region in which a load may be issued given the user's privilege level. 698 */ 699 static int 700 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 701 dtrace_vstate_t *vstate) 702 { 703 size_t sz; 704 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 705 706 /* 707 * If we hold the privilege to read from kernel memory, then 708 * everything is readable. 709 */ 710 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 711 return (1); 712 713 if (type->dtdt_kind == DIF_TYPE_STRING) 714 sz = dtrace_strlen(src, 715 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 716 else 717 sz = type->dtdt_size; 718 719 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 720 } 721 722 /* 723 * Compare two strings using safe loads. 724 */ 725 static int 726 dtrace_strncmp(char *s1, char *s2, size_t limit) 727 { 728 uint8_t c1, c2; 729 volatile uint16_t *flags; 730 731 if (s1 == s2 || limit == 0) 732 return (0); 733 734 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 735 736 do { 737 if (s1 == NULL) { 738 c1 = '\0'; 739 } else { 740 c1 = dtrace_load8((uintptr_t)s1++); 741 } 742 743 if (s2 == NULL) { 744 c2 = '\0'; 745 } else { 746 c2 = dtrace_load8((uintptr_t)s2++); 747 } 748 749 if (c1 != c2) 750 return (c1 - c2); 751 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 752 753 return (0); 754 } 755 756 /* 757 * Compute strlen(s) for a string using safe memory accesses. The additional 758 * len parameter is used to specify a maximum length to ensure completion. 759 */ 760 static size_t 761 dtrace_strlen(const char *s, size_t lim) 762 { 763 uint_t len; 764 765 for (len = 0; len != lim; len++) { 766 if (dtrace_load8((uintptr_t)s++) == '\0') 767 break; 768 } 769 770 return (len); 771 } 772 773 /* 774 * Check if an address falls within a toxic region. 775 */ 776 static int 777 dtrace_istoxic(uintptr_t kaddr, size_t size) 778 { 779 uintptr_t taddr, tsize; 780 int i; 781 782 for (i = 0; i < dtrace_toxranges; i++) { 783 taddr = dtrace_toxrange[i].dtt_base; 784 tsize = dtrace_toxrange[i].dtt_limit - taddr; 785 786 if (kaddr - taddr < tsize) { 787 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 788 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 789 return (1); 790 } 791 792 if (taddr - kaddr < size) { 793 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 794 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 795 return (1); 796 } 797 } 798 799 return (0); 800 } 801 802 /* 803 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 804 * memory specified by the DIF program. The dst is assumed to be safe memory 805 * that we can store to directly because it is managed by DTrace. As with 806 * standard bcopy, overlapping copies are handled properly. 807 */ 808 static void 809 dtrace_bcopy(const void *src, void *dst, size_t len) 810 { 811 if (len != 0) { 812 uint8_t *s1 = dst; 813 const uint8_t *s2 = src; 814 815 if (s1 <= s2) { 816 do { 817 *s1++ = dtrace_load8((uintptr_t)s2++); 818 } while (--len != 0); 819 } else { 820 s2 += len; 821 s1 += len; 822 823 do { 824 *--s1 = dtrace_load8((uintptr_t)--s2); 825 } while (--len != 0); 826 } 827 } 828 } 829 830 /* 831 * Copy src to dst using safe memory accesses, up to either the specified 832 * length, or the point that a nul byte is encountered. The src is assumed to 833 * be unsafe memory specified by the DIF program. The dst is assumed to be 834 * safe memory that we can store to directly because it is managed by DTrace. 835 * Unlike dtrace_bcopy(), overlapping regions are not handled. 836 */ 837 static void 838 dtrace_strcpy(const void *src, void *dst, size_t len) 839 { 840 if (len != 0) { 841 uint8_t *s1 = dst, c; 842 const uint8_t *s2 = src; 843 844 do { 845 *s1++ = c = dtrace_load8((uintptr_t)s2++); 846 } while (--len != 0 && c != '\0'); 847 } 848 } 849 850 /* 851 * Copy src to dst, deriving the size and type from the specified (BYREF) 852 * variable type. The src is assumed to be unsafe memory specified by the DIF 853 * program. The dst is assumed to be DTrace variable memory that is of the 854 * specified type; we assume that we can store to directly. 855 */ 856 static void 857 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 858 { 859 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 860 861 if (type->dtdt_kind == DIF_TYPE_STRING) { 862 dtrace_strcpy(src, dst, type->dtdt_size); 863 } else { 864 dtrace_bcopy(src, dst, type->dtdt_size); 865 } 866 } 867 868 /* 869 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 870 * unsafe memory specified by the DIF program. The s2 data is assumed to be 871 * safe memory that we can access directly because it is managed by DTrace. 872 */ 873 static int 874 dtrace_bcmp(const void *s1, const void *s2, size_t len) 875 { 876 volatile uint16_t *flags; 877 878 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 879 880 if (s1 == s2) 881 return (0); 882 883 if (s1 == NULL || s2 == NULL) 884 return (1); 885 886 if (s1 != s2 && len != 0) { 887 const uint8_t *ps1 = s1; 888 const uint8_t *ps2 = s2; 889 890 do { 891 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 892 return (1); 893 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 894 } 895 return (0); 896 } 897 898 /* 899 * Zero the specified region using a simple byte-by-byte loop. Note that this 900 * is for safe DTrace-managed memory only. 901 */ 902 static void 903 dtrace_bzero(void *dst, size_t len) 904 { 905 uchar_t *cp; 906 907 for (cp = dst; len != 0; len--) 908 *cp++ = 0; 909 } 910 911 /* 912 * This privilege check should be used by actions and subroutines to 913 * verify that the user credentials of the process that enabled the 914 * invoking ECB match the target credentials 915 */ 916 static int 917 dtrace_priv_proc_common_user(dtrace_state_t *state) 918 { 919 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 920 921 /* 922 * We should always have a non-NULL state cred here, since if cred 923 * is null (anonymous tracing), we fast-path bypass this routine. 924 */ 925 ASSERT(s_cr != NULL); 926 927 if ((cr = CRED()) != NULL && 928 s_cr->cr_uid == cr->cr_uid && 929 s_cr->cr_uid == cr->cr_ruid && 930 s_cr->cr_uid == cr->cr_suid && 931 s_cr->cr_gid == cr->cr_gid && 932 s_cr->cr_gid == cr->cr_rgid && 933 s_cr->cr_gid == cr->cr_sgid) 934 return (1); 935 936 return (0); 937 } 938 939 /* 940 * This privilege check should be used by actions and subroutines to 941 * verify that the zone of the process that enabled the invoking ECB 942 * matches the target credentials 943 */ 944 static int 945 dtrace_priv_proc_common_zone(dtrace_state_t *state) 946 { 947 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 948 949 /* 950 * We should always have a non-NULL state cred here, since if cred 951 * is null (anonymous tracing), we fast-path bypass this routine. 952 */ 953 ASSERT(s_cr != NULL); 954 955 if ((cr = CRED()) != NULL && 956 s_cr->cr_zone == cr->cr_zone) 957 return (1); 958 959 return (0); 960 } 961 962 /* 963 * This privilege check should be used by actions and subroutines to 964 * verify that the process has not setuid or changed credentials. 965 */ 966 static int 967 dtrace_priv_proc_common_nocd() 968 { 969 proc_t *proc; 970 971 if ((proc = ttoproc(curthread)) != NULL && 972 !(proc->p_flag & SNOCD)) 973 return (1); 974 975 return (0); 976 } 977 978 static int 979 dtrace_priv_proc_destructive(dtrace_state_t *state) 980 { 981 int action = state->dts_cred.dcr_action; 982 983 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 984 dtrace_priv_proc_common_zone(state) == 0) 985 goto bad; 986 987 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 988 dtrace_priv_proc_common_user(state) == 0) 989 goto bad; 990 991 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 992 dtrace_priv_proc_common_nocd() == 0) 993 goto bad; 994 995 return (1); 996 997 bad: 998 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 999 1000 return (0); 1001 } 1002 1003 static int 1004 dtrace_priv_proc_control(dtrace_state_t *state) 1005 { 1006 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1007 return (1); 1008 1009 if (dtrace_priv_proc_common_zone(state) && 1010 dtrace_priv_proc_common_user(state) && 1011 dtrace_priv_proc_common_nocd()) 1012 return (1); 1013 1014 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1015 1016 return (0); 1017 } 1018 1019 static int 1020 dtrace_priv_proc(dtrace_state_t *state) 1021 { 1022 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1023 return (1); 1024 1025 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1026 1027 return (0); 1028 } 1029 1030 static int 1031 dtrace_priv_kernel(dtrace_state_t *state) 1032 { 1033 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1034 return (1); 1035 1036 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1037 1038 return (0); 1039 } 1040 1041 static int 1042 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1043 { 1044 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1045 return (1); 1046 1047 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1048 1049 return (0); 1050 } 1051 1052 /* 1053 * Note: not called from probe context. This function is called 1054 * asynchronously (and at a regular interval) from outside of probe context to 1055 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1056 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1057 */ 1058 void 1059 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1060 { 1061 dtrace_dynvar_t *dirty; 1062 dtrace_dstate_percpu_t *dcpu; 1063 int i, work = 0; 1064 1065 for (i = 0; i < NCPU; i++) { 1066 dcpu = &dstate->dtds_percpu[i]; 1067 1068 ASSERT(dcpu->dtdsc_rinsing == NULL); 1069 1070 /* 1071 * If the dirty list is NULL, there is no dirty work to do. 1072 */ 1073 if (dcpu->dtdsc_dirty == NULL) 1074 continue; 1075 1076 /* 1077 * If the clean list is non-NULL, then we're not going to do 1078 * any work for this CPU -- it means that there has not been 1079 * a dtrace_dynvar() allocation on this CPU (or from this CPU) 1080 * since the last time we cleaned house. 1081 */ 1082 if (dcpu->dtdsc_clean != NULL) 1083 continue; 1084 1085 work = 1; 1086 1087 /* 1088 * Atomically move the dirty list aside. 1089 */ 1090 do { 1091 dirty = dcpu->dtdsc_dirty; 1092 1093 /* 1094 * Before we zap the dirty list, set the rinsing list. 1095 * (This allows for a potential assertion in 1096 * dtrace_dynvar(): if a free dynamic variable appears 1097 * on a hash chain, either the dirty list or the 1098 * rinsing list for some CPU must be non-NULL.) 1099 */ 1100 dcpu->dtdsc_rinsing = dirty; 1101 dtrace_membar_producer(); 1102 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1103 dirty, NULL) != dirty); 1104 } 1105 1106 if (!work) { 1107 /* 1108 * We have no work to do; we can simply return. 1109 */ 1110 return; 1111 } 1112 1113 dtrace_sync(); 1114 1115 for (i = 0; i < NCPU; i++) { 1116 dcpu = &dstate->dtds_percpu[i]; 1117 1118 if (dcpu->dtdsc_rinsing == NULL) 1119 continue; 1120 1121 /* 1122 * We are now guaranteed that no hash chain contains a pointer 1123 * into this dirty list; we can make it clean. 1124 */ 1125 ASSERT(dcpu->dtdsc_clean == NULL); 1126 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1127 dcpu->dtdsc_rinsing = NULL; 1128 } 1129 1130 /* 1131 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1132 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1133 * This prevents a race whereby a CPU incorrectly decides that 1134 * the state should be something other than DTRACE_DSTATE_CLEAN 1135 * after dtrace_dynvar_clean() has completed. 1136 */ 1137 dtrace_sync(); 1138 1139 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1140 } 1141 1142 /* 1143 * Depending on the value of the op parameter, this function looks-up, 1144 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1145 * allocation is requested, this function will return a pointer to a 1146 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1147 * variable can be allocated. If NULL is returned, the appropriate counter 1148 * will be incremented. 1149 */ 1150 dtrace_dynvar_t * 1151 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1152 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1153 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1154 { 1155 uint64_t hashval = DTRACE_DYNHASH_VALID; 1156 dtrace_dynhash_t *hash = dstate->dtds_hash; 1157 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1158 processorid_t me = CPU->cpu_id, cpu = me; 1159 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1160 size_t bucket, ksize; 1161 size_t chunksize = dstate->dtds_chunksize; 1162 uintptr_t kdata, lock, nstate; 1163 uint_t i; 1164 1165 ASSERT(nkeys != 0); 1166 1167 /* 1168 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1169 * algorithm. For the by-value portions, we perform the algorithm in 1170 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1171 * bit, and seems to have only a minute effect on distribution. For 1172 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1173 * over each referenced byte. It's painful to do this, but it's much 1174 * better than pathological hash distribution. The efficacy of the 1175 * hashing algorithm (and a comparison with other algorithms) may be 1176 * found by running the ::dtrace_dynstat MDB dcmd. 1177 */ 1178 for (i = 0; i < nkeys; i++) { 1179 if (key[i].dttk_size == 0) { 1180 uint64_t val = key[i].dttk_value; 1181 1182 hashval += (val >> 48) & 0xffff; 1183 hashval += (hashval << 10); 1184 hashval ^= (hashval >> 6); 1185 1186 hashval += (val >> 32) & 0xffff; 1187 hashval += (hashval << 10); 1188 hashval ^= (hashval >> 6); 1189 1190 hashval += (val >> 16) & 0xffff; 1191 hashval += (hashval << 10); 1192 hashval ^= (hashval >> 6); 1193 1194 hashval += val & 0xffff; 1195 hashval += (hashval << 10); 1196 hashval ^= (hashval >> 6); 1197 } else { 1198 /* 1199 * This is incredibly painful, but it beats the hell 1200 * out of the alternative. 1201 */ 1202 uint64_t j, size = key[i].dttk_size; 1203 uintptr_t base = (uintptr_t)key[i].dttk_value; 1204 1205 if (!dtrace_canload(base, size, mstate, vstate)) 1206 break; 1207 1208 for (j = 0; j < size; j++) { 1209 hashval += dtrace_load8(base + j); 1210 hashval += (hashval << 10); 1211 hashval ^= (hashval >> 6); 1212 } 1213 } 1214 } 1215 1216 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1217 return (NULL); 1218 1219 hashval += (hashval << 3); 1220 hashval ^= (hashval >> 11); 1221 hashval += (hashval << 15); 1222 1223 /* 1224 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1225 * comes out to be one of our two sentinel hash values. If this 1226 * actually happens, we set the hashval to be a value known to be a 1227 * non-sentinel value. 1228 */ 1229 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1230 hashval = DTRACE_DYNHASH_VALID; 1231 1232 /* 1233 * Yes, it's painful to do a divide here. If the cycle count becomes 1234 * important here, tricks can be pulled to reduce it. (However, it's 1235 * critical that hash collisions be kept to an absolute minimum; 1236 * they're much more painful than a divide.) It's better to have a 1237 * solution that generates few collisions and still keeps things 1238 * relatively simple. 1239 */ 1240 bucket = hashval % dstate->dtds_hashsize; 1241 1242 if (op == DTRACE_DYNVAR_DEALLOC) { 1243 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1244 1245 for (;;) { 1246 while ((lock = *lockp) & 1) 1247 continue; 1248 1249 if (dtrace_casptr((void *)lockp, 1250 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1251 break; 1252 } 1253 1254 dtrace_membar_producer(); 1255 } 1256 1257 top: 1258 prev = NULL; 1259 lock = hash[bucket].dtdh_lock; 1260 1261 dtrace_membar_consumer(); 1262 1263 start = hash[bucket].dtdh_chain; 1264 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1265 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1266 op != DTRACE_DYNVAR_DEALLOC)); 1267 1268 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1269 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1270 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1271 1272 if (dvar->dtdv_hashval != hashval) { 1273 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1274 /* 1275 * We've reached the sink, and therefore the 1276 * end of the hash chain; we can kick out of 1277 * the loop knowing that we have seen a valid 1278 * snapshot of state. 1279 */ 1280 ASSERT(dvar->dtdv_next == NULL); 1281 ASSERT(dvar == &dtrace_dynhash_sink); 1282 break; 1283 } 1284 1285 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1286 /* 1287 * We've gone off the rails: somewhere along 1288 * the line, one of the members of this hash 1289 * chain was deleted. Note that we could also 1290 * detect this by simply letting this loop run 1291 * to completion, as we would eventually hit 1292 * the end of the dirty list. However, we 1293 * want to avoid running the length of the 1294 * dirty list unnecessarily (it might be quite 1295 * long), so we catch this as early as 1296 * possible by detecting the hash marker. In 1297 * this case, we simply set dvar to NULL and 1298 * break; the conditional after the loop will 1299 * send us back to top. 1300 */ 1301 dvar = NULL; 1302 break; 1303 } 1304 1305 goto next; 1306 } 1307 1308 if (dtuple->dtt_nkeys != nkeys) 1309 goto next; 1310 1311 for (i = 0; i < nkeys; i++, dkey++) { 1312 if (dkey->dttk_size != key[i].dttk_size) 1313 goto next; /* size or type mismatch */ 1314 1315 if (dkey->dttk_size != 0) { 1316 if (dtrace_bcmp( 1317 (void *)(uintptr_t)key[i].dttk_value, 1318 (void *)(uintptr_t)dkey->dttk_value, 1319 dkey->dttk_size)) 1320 goto next; 1321 } else { 1322 if (dkey->dttk_value != key[i].dttk_value) 1323 goto next; 1324 } 1325 } 1326 1327 if (op != DTRACE_DYNVAR_DEALLOC) 1328 return (dvar); 1329 1330 ASSERT(dvar->dtdv_next == NULL || 1331 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1332 1333 if (prev != NULL) { 1334 ASSERT(hash[bucket].dtdh_chain != dvar); 1335 ASSERT(start != dvar); 1336 ASSERT(prev->dtdv_next == dvar); 1337 prev->dtdv_next = dvar->dtdv_next; 1338 } else { 1339 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1340 start, dvar->dtdv_next) != start) { 1341 /* 1342 * We have failed to atomically swing the 1343 * hash table head pointer, presumably because 1344 * of a conflicting allocation on another CPU. 1345 * We need to reread the hash chain and try 1346 * again. 1347 */ 1348 goto top; 1349 } 1350 } 1351 1352 dtrace_membar_producer(); 1353 1354 /* 1355 * Now set the hash value to indicate that it's free. 1356 */ 1357 ASSERT(hash[bucket].dtdh_chain != dvar); 1358 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1359 1360 dtrace_membar_producer(); 1361 1362 /* 1363 * Set the next pointer to point at the dirty list, and 1364 * atomically swing the dirty pointer to the newly freed dvar. 1365 */ 1366 do { 1367 next = dcpu->dtdsc_dirty; 1368 dvar->dtdv_next = next; 1369 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1370 1371 /* 1372 * Finally, unlock this hash bucket. 1373 */ 1374 ASSERT(hash[bucket].dtdh_lock == lock); 1375 ASSERT(lock & 1); 1376 hash[bucket].dtdh_lock++; 1377 1378 return (NULL); 1379 next: 1380 prev = dvar; 1381 continue; 1382 } 1383 1384 if (dvar == NULL) { 1385 /* 1386 * If dvar is NULL, it is because we went off the rails: 1387 * one of the elements that we traversed in the hash chain 1388 * was deleted while we were traversing it. In this case, 1389 * we assert that we aren't doing a dealloc (deallocs lock 1390 * the hash bucket to prevent themselves from racing with 1391 * one another), and retry the hash chain traversal. 1392 */ 1393 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1394 goto top; 1395 } 1396 1397 if (op != DTRACE_DYNVAR_ALLOC) { 1398 /* 1399 * If we are not to allocate a new variable, we want to 1400 * return NULL now. Before we return, check that the value 1401 * of the lock word hasn't changed. If it has, we may have 1402 * seen an inconsistent snapshot. 1403 */ 1404 if (op == DTRACE_DYNVAR_NOALLOC) { 1405 if (hash[bucket].dtdh_lock != lock) 1406 goto top; 1407 } else { 1408 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1409 ASSERT(hash[bucket].dtdh_lock == lock); 1410 ASSERT(lock & 1); 1411 hash[bucket].dtdh_lock++; 1412 } 1413 1414 return (NULL); 1415 } 1416 1417 /* 1418 * We need to allocate a new dynamic variable. The size we need is the 1419 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1420 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1421 * the size of any referred-to data (dsize). We then round the final 1422 * size up to the chunksize for allocation. 1423 */ 1424 for (ksize = 0, i = 0; i < nkeys; i++) 1425 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1426 1427 /* 1428 * This should be pretty much impossible, but could happen if, say, 1429 * strange DIF specified the tuple. Ideally, this should be an 1430 * assertion and not an error condition -- but that requires that the 1431 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1432 * bullet-proof. (That is, it must not be able to be fooled by 1433 * malicious DIF.) Given the lack of backwards branches in DIF, 1434 * solving this would presumably not amount to solving the Halting 1435 * Problem -- but it still seems awfully hard. 1436 */ 1437 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1438 ksize + dsize > chunksize) { 1439 dcpu->dtdsc_drops++; 1440 return (NULL); 1441 } 1442 1443 nstate = DTRACE_DSTATE_EMPTY; 1444 1445 do { 1446 retry: 1447 free = dcpu->dtdsc_free; 1448 1449 if (free == NULL) { 1450 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1451 void *rval; 1452 1453 if (clean == NULL) { 1454 /* 1455 * We're out of dynamic variable space on 1456 * this CPU. Unless we have tried all CPUs, 1457 * we'll try to allocate from a different 1458 * CPU. 1459 */ 1460 switch (dstate->dtds_state) { 1461 case DTRACE_DSTATE_CLEAN: { 1462 void *sp = &dstate->dtds_state; 1463 1464 if (++cpu >= NCPU) 1465 cpu = 0; 1466 1467 if (dcpu->dtdsc_dirty != NULL && 1468 nstate == DTRACE_DSTATE_EMPTY) 1469 nstate = DTRACE_DSTATE_DIRTY; 1470 1471 if (dcpu->dtdsc_rinsing != NULL) 1472 nstate = DTRACE_DSTATE_RINSING; 1473 1474 dcpu = &dstate->dtds_percpu[cpu]; 1475 1476 if (cpu != me) 1477 goto retry; 1478 1479 (void) dtrace_cas32(sp, 1480 DTRACE_DSTATE_CLEAN, nstate); 1481 1482 /* 1483 * To increment the correct bean 1484 * counter, take another lap. 1485 */ 1486 goto retry; 1487 } 1488 1489 case DTRACE_DSTATE_DIRTY: 1490 dcpu->dtdsc_dirty_drops++; 1491 break; 1492 1493 case DTRACE_DSTATE_RINSING: 1494 dcpu->dtdsc_rinsing_drops++; 1495 break; 1496 1497 case DTRACE_DSTATE_EMPTY: 1498 dcpu->dtdsc_drops++; 1499 break; 1500 } 1501 1502 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1503 return (NULL); 1504 } 1505 1506 /* 1507 * The clean list appears to be non-empty. We want to 1508 * move the clean list to the free list; we start by 1509 * moving the clean pointer aside. 1510 */ 1511 if (dtrace_casptr(&dcpu->dtdsc_clean, 1512 clean, NULL) != clean) { 1513 /* 1514 * We are in one of two situations: 1515 * 1516 * (a) The clean list was switched to the 1517 * free list by another CPU. 1518 * 1519 * (b) The clean list was added to by the 1520 * cleansing cyclic. 1521 * 1522 * In either of these situations, we can 1523 * just reattempt the free list allocation. 1524 */ 1525 goto retry; 1526 } 1527 1528 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1529 1530 /* 1531 * Now we'll move the clean list to the free list. 1532 * It's impossible for this to fail: the only way 1533 * the free list can be updated is through this 1534 * code path, and only one CPU can own the clean list. 1535 * Thus, it would only be possible for this to fail if 1536 * this code were racing with dtrace_dynvar_clean(). 1537 * (That is, if dtrace_dynvar_clean() updated the clean 1538 * list, and we ended up racing to update the free 1539 * list.) This race is prevented by the dtrace_sync() 1540 * in dtrace_dynvar_clean() -- which flushes the 1541 * owners of the clean lists out before resetting 1542 * the clean lists. 1543 */ 1544 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1545 ASSERT(rval == NULL); 1546 goto retry; 1547 } 1548 1549 dvar = free; 1550 new_free = dvar->dtdv_next; 1551 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1552 1553 /* 1554 * We have now allocated a new chunk. We copy the tuple keys into the 1555 * tuple array and copy any referenced key data into the data space 1556 * following the tuple array. As we do this, we relocate dttk_value 1557 * in the final tuple to point to the key data address in the chunk. 1558 */ 1559 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1560 dvar->dtdv_data = (void *)(kdata + ksize); 1561 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1562 1563 for (i = 0; i < nkeys; i++) { 1564 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1565 size_t kesize = key[i].dttk_size; 1566 1567 if (kesize != 0) { 1568 dtrace_bcopy( 1569 (const void *)(uintptr_t)key[i].dttk_value, 1570 (void *)kdata, kesize); 1571 dkey->dttk_value = kdata; 1572 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1573 } else { 1574 dkey->dttk_value = key[i].dttk_value; 1575 } 1576 1577 dkey->dttk_size = kesize; 1578 } 1579 1580 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1581 dvar->dtdv_hashval = hashval; 1582 dvar->dtdv_next = start; 1583 1584 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1585 return (dvar); 1586 1587 /* 1588 * The cas has failed. Either another CPU is adding an element to 1589 * this hash chain, or another CPU is deleting an element from this 1590 * hash chain. The simplest way to deal with both of these cases 1591 * (though not necessarily the most efficient) is to free our 1592 * allocated block and tail-call ourselves. Note that the free is 1593 * to the dirty list and _not_ to the free list. This is to prevent 1594 * races with allocators, above. 1595 */ 1596 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1597 1598 dtrace_membar_producer(); 1599 1600 do { 1601 free = dcpu->dtdsc_dirty; 1602 dvar->dtdv_next = free; 1603 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1604 1605 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1606 } 1607 1608 /*ARGSUSED*/ 1609 static void 1610 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1611 { 1612 if (nval < *oval) 1613 *oval = nval; 1614 } 1615 1616 /*ARGSUSED*/ 1617 static void 1618 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1619 { 1620 if (nval > *oval) 1621 *oval = nval; 1622 } 1623 1624 static void 1625 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1626 { 1627 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1628 int64_t val = (int64_t)nval; 1629 1630 if (val < 0) { 1631 for (i = 0; i < zero; i++) { 1632 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1633 quanta[i] += incr; 1634 return; 1635 } 1636 } 1637 } else { 1638 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1639 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1640 quanta[i - 1] += incr; 1641 return; 1642 } 1643 } 1644 1645 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1646 return; 1647 } 1648 1649 ASSERT(0); 1650 } 1651 1652 static void 1653 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1654 { 1655 uint64_t arg = *lquanta++; 1656 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1657 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1658 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1659 int32_t val = (int32_t)nval, level; 1660 1661 ASSERT(step != 0); 1662 ASSERT(levels != 0); 1663 1664 if (val < base) { 1665 /* 1666 * This is an underflow. 1667 */ 1668 lquanta[0] += incr; 1669 return; 1670 } 1671 1672 level = (val - base) / step; 1673 1674 if (level < levels) { 1675 lquanta[level + 1] += incr; 1676 return; 1677 } 1678 1679 /* 1680 * This is an overflow. 1681 */ 1682 lquanta[levels + 1] += incr; 1683 } 1684 1685 /*ARGSUSED*/ 1686 static void 1687 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 1688 { 1689 data[0]++; 1690 data[1] += nval; 1691 } 1692 1693 /*ARGSUSED*/ 1694 static void 1695 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 1696 { 1697 *oval = *oval + 1; 1698 } 1699 1700 /*ARGSUSED*/ 1701 static void 1702 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 1703 { 1704 *oval += nval; 1705 } 1706 1707 /* 1708 * Aggregate given the tuple in the principal data buffer, and the aggregating 1709 * action denoted by the specified dtrace_aggregation_t. The aggregation 1710 * buffer is specified as the buf parameter. This routine does not return 1711 * failure; if there is no space in the aggregation buffer, the data will be 1712 * dropped, and a corresponding counter incremented. 1713 */ 1714 static void 1715 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 1716 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 1717 { 1718 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 1719 uint32_t i, ndx, size, fsize; 1720 uint32_t align = sizeof (uint64_t) - 1; 1721 dtrace_aggbuffer_t *agb; 1722 dtrace_aggkey_t *key; 1723 uint32_t hashval = 0, limit, isstr; 1724 caddr_t tomax, data, kdata; 1725 dtrace_actkind_t action; 1726 dtrace_action_t *act; 1727 uintptr_t offs; 1728 1729 if (buf == NULL) 1730 return; 1731 1732 if (!agg->dtag_hasarg) { 1733 /* 1734 * Currently, only quantize() and lquantize() take additional 1735 * arguments, and they have the same semantics: an increment 1736 * value that defaults to 1 when not present. If additional 1737 * aggregating actions take arguments, the setting of the 1738 * default argument value will presumably have to become more 1739 * sophisticated... 1740 */ 1741 arg = 1; 1742 } 1743 1744 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 1745 size = rec->dtrd_offset - agg->dtag_base; 1746 fsize = size + rec->dtrd_size; 1747 1748 ASSERT(dbuf->dtb_tomax != NULL); 1749 data = dbuf->dtb_tomax + offset + agg->dtag_base; 1750 1751 if ((tomax = buf->dtb_tomax) == NULL) { 1752 dtrace_buffer_drop(buf); 1753 return; 1754 } 1755 1756 /* 1757 * The metastructure is always at the bottom of the buffer. 1758 */ 1759 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 1760 sizeof (dtrace_aggbuffer_t)); 1761 1762 if (buf->dtb_offset == 0) { 1763 /* 1764 * We just kludge up approximately 1/8th of the size to be 1765 * buckets. If this guess ends up being routinely 1766 * off-the-mark, we may need to dynamically readjust this 1767 * based on past performance. 1768 */ 1769 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 1770 1771 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 1772 (uintptr_t)tomax || hashsize == 0) { 1773 /* 1774 * We've been given a ludicrously small buffer; 1775 * increment our drop count and leave. 1776 */ 1777 dtrace_buffer_drop(buf); 1778 return; 1779 } 1780 1781 /* 1782 * And now, a pathetic attempt to try to get a an odd (or 1783 * perchance, a prime) hash size for better hash distribution. 1784 */ 1785 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 1786 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 1787 1788 agb->dtagb_hashsize = hashsize; 1789 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 1790 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 1791 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 1792 1793 for (i = 0; i < agb->dtagb_hashsize; i++) 1794 agb->dtagb_hash[i] = NULL; 1795 } 1796 1797 ASSERT(agg->dtag_first != NULL); 1798 ASSERT(agg->dtag_first->dta_intuple); 1799 1800 /* 1801 * Calculate the hash value based on the key. Note that we _don't_ 1802 * include the aggid in the hashing (but we will store it as part of 1803 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 1804 * algorithm: a simple, quick algorithm that has no known funnels, and 1805 * gets good distribution in practice. The efficacy of the hashing 1806 * algorithm (and a comparison with other algorithms) may be found by 1807 * running the ::dtrace_aggstat MDB dcmd. 1808 */ 1809 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1810 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1811 limit = i + act->dta_rec.dtrd_size; 1812 ASSERT(limit <= size); 1813 isstr = DTRACEACT_ISSTRING(act); 1814 1815 for (; i < limit; i++) { 1816 hashval += data[i]; 1817 hashval += (hashval << 10); 1818 hashval ^= (hashval >> 6); 1819 1820 if (isstr && data[i] == '\0') 1821 break; 1822 } 1823 } 1824 1825 hashval += (hashval << 3); 1826 hashval ^= (hashval >> 11); 1827 hashval += (hashval << 15); 1828 1829 /* 1830 * Yes, the divide here is expensive -- but it's generally the least 1831 * of the performance issues given the amount of data that we iterate 1832 * over to compute hash values, compare data, etc. 1833 */ 1834 ndx = hashval % agb->dtagb_hashsize; 1835 1836 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 1837 ASSERT((caddr_t)key >= tomax); 1838 ASSERT((caddr_t)key < tomax + buf->dtb_size); 1839 1840 if (hashval != key->dtak_hashval || key->dtak_size != size) 1841 continue; 1842 1843 kdata = key->dtak_data; 1844 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 1845 1846 for (act = agg->dtag_first; act->dta_intuple; 1847 act = act->dta_next) { 1848 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1849 limit = i + act->dta_rec.dtrd_size; 1850 ASSERT(limit <= size); 1851 isstr = DTRACEACT_ISSTRING(act); 1852 1853 for (; i < limit; i++) { 1854 if (kdata[i] != data[i]) 1855 goto next; 1856 1857 if (isstr && data[i] == '\0') 1858 break; 1859 } 1860 } 1861 1862 if (action != key->dtak_action) { 1863 /* 1864 * We are aggregating on the same value in the same 1865 * aggregation with two different aggregating actions. 1866 * (This should have been picked up in the compiler, 1867 * so we may be dealing with errant or devious DIF.) 1868 * This is an error condition; we indicate as much, 1869 * and return. 1870 */ 1871 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 1872 return; 1873 } 1874 1875 /* 1876 * This is a hit: we need to apply the aggregator to 1877 * the value at this key. 1878 */ 1879 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 1880 return; 1881 next: 1882 continue; 1883 } 1884 1885 /* 1886 * We didn't find it. We need to allocate some zero-filled space, 1887 * link it into the hash table appropriately, and apply the aggregator 1888 * to the (zero-filled) value. 1889 */ 1890 offs = buf->dtb_offset; 1891 while (offs & (align - 1)) 1892 offs += sizeof (uint32_t); 1893 1894 /* 1895 * If we don't have enough room to both allocate a new key _and_ 1896 * its associated data, increment the drop count and return. 1897 */ 1898 if ((uintptr_t)tomax + offs + fsize > 1899 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 1900 dtrace_buffer_drop(buf); 1901 return; 1902 } 1903 1904 /*CONSTCOND*/ 1905 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 1906 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 1907 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 1908 1909 key->dtak_data = kdata = tomax + offs; 1910 buf->dtb_offset = offs + fsize; 1911 1912 /* 1913 * Now copy the data across. 1914 */ 1915 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 1916 1917 for (i = sizeof (dtrace_aggid_t); i < size; i++) 1918 kdata[i] = data[i]; 1919 1920 /* 1921 * Because strings are not zeroed out by default, we need to iterate 1922 * looking for actions that store strings, and we need to explicitly 1923 * pad these strings out with zeroes. 1924 */ 1925 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1926 int nul; 1927 1928 if (!DTRACEACT_ISSTRING(act)) 1929 continue; 1930 1931 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1932 limit = i + act->dta_rec.dtrd_size; 1933 ASSERT(limit <= size); 1934 1935 for (nul = 0; i < limit; i++) { 1936 if (nul) { 1937 kdata[i] = '\0'; 1938 continue; 1939 } 1940 1941 if (data[i] != '\0') 1942 continue; 1943 1944 nul = 1; 1945 } 1946 } 1947 1948 for (i = size; i < fsize; i++) 1949 kdata[i] = 0; 1950 1951 key->dtak_hashval = hashval; 1952 key->dtak_size = size; 1953 key->dtak_action = action; 1954 key->dtak_next = agb->dtagb_hash[ndx]; 1955 agb->dtagb_hash[ndx] = key; 1956 1957 /* 1958 * Finally, apply the aggregator. 1959 */ 1960 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 1961 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 1962 } 1963 1964 /* 1965 * Given consumer state, this routine finds a speculation in the INACTIVE 1966 * state and transitions it into the ACTIVE state. If there is no speculation 1967 * in the INACTIVE state, 0 is returned. In this case, no error counter is 1968 * incremented -- it is up to the caller to take appropriate action. 1969 */ 1970 static int 1971 dtrace_speculation(dtrace_state_t *state) 1972 { 1973 int i = 0; 1974 dtrace_speculation_state_t current; 1975 uint32_t *stat = &state->dts_speculations_unavail, count; 1976 1977 while (i < state->dts_nspeculations) { 1978 dtrace_speculation_t *spec = &state->dts_speculations[i]; 1979 1980 current = spec->dtsp_state; 1981 1982 if (current != DTRACESPEC_INACTIVE) { 1983 if (current == DTRACESPEC_COMMITTINGMANY || 1984 current == DTRACESPEC_COMMITTING || 1985 current == DTRACESPEC_DISCARDING) 1986 stat = &state->dts_speculations_busy; 1987 i++; 1988 continue; 1989 } 1990 1991 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 1992 current, DTRACESPEC_ACTIVE) == current) 1993 return (i + 1); 1994 } 1995 1996 /* 1997 * We couldn't find a speculation. If we found as much as a single 1998 * busy speculation buffer, we'll attribute this failure as "busy" 1999 * instead of "unavail". 2000 */ 2001 do { 2002 count = *stat; 2003 } while (dtrace_cas32(stat, count, count + 1) != count); 2004 2005 return (0); 2006 } 2007 2008 /* 2009 * This routine commits an active speculation. If the specified speculation 2010 * is not in a valid state to perform a commit(), this routine will silently do 2011 * nothing. The state of the specified speculation is transitioned according 2012 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2013 */ 2014 static void 2015 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2016 dtrace_specid_t which) 2017 { 2018 dtrace_speculation_t *spec; 2019 dtrace_buffer_t *src, *dest; 2020 uintptr_t daddr, saddr, dlimit; 2021 dtrace_speculation_state_t current, new; 2022 intptr_t offs; 2023 2024 if (which == 0) 2025 return; 2026 2027 if (which > state->dts_nspeculations) { 2028 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2029 return; 2030 } 2031 2032 spec = &state->dts_speculations[which - 1]; 2033 src = &spec->dtsp_buffer[cpu]; 2034 dest = &state->dts_buffer[cpu]; 2035 2036 do { 2037 current = spec->dtsp_state; 2038 2039 if (current == DTRACESPEC_COMMITTINGMANY) 2040 break; 2041 2042 switch (current) { 2043 case DTRACESPEC_INACTIVE: 2044 case DTRACESPEC_DISCARDING: 2045 return; 2046 2047 case DTRACESPEC_COMMITTING: 2048 /* 2049 * This is only possible if we are (a) commit()'ing 2050 * without having done a prior speculate() on this CPU 2051 * and (b) racing with another commit() on a different 2052 * CPU. There's nothing to do -- we just assert that 2053 * our offset is 0. 2054 */ 2055 ASSERT(src->dtb_offset == 0); 2056 return; 2057 2058 case DTRACESPEC_ACTIVE: 2059 new = DTRACESPEC_COMMITTING; 2060 break; 2061 2062 case DTRACESPEC_ACTIVEONE: 2063 /* 2064 * This speculation is active on one CPU. If our 2065 * buffer offset is non-zero, we know that the one CPU 2066 * must be us. Otherwise, we are committing on a 2067 * different CPU from the speculate(), and we must 2068 * rely on being asynchronously cleaned. 2069 */ 2070 if (src->dtb_offset != 0) { 2071 new = DTRACESPEC_COMMITTING; 2072 break; 2073 } 2074 /*FALLTHROUGH*/ 2075 2076 case DTRACESPEC_ACTIVEMANY: 2077 new = DTRACESPEC_COMMITTINGMANY; 2078 break; 2079 2080 default: 2081 ASSERT(0); 2082 } 2083 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2084 current, new) != current); 2085 2086 /* 2087 * We have set the state to indicate that we are committing this 2088 * speculation. Now reserve the necessary space in the destination 2089 * buffer. 2090 */ 2091 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2092 sizeof (uint64_t), state, NULL)) < 0) { 2093 dtrace_buffer_drop(dest); 2094 goto out; 2095 } 2096 2097 /* 2098 * We have the space; copy the buffer across. (Note that this is a 2099 * highly subobtimal bcopy(); in the unlikely event that this becomes 2100 * a serious performance issue, a high-performance DTrace-specific 2101 * bcopy() should obviously be invented.) 2102 */ 2103 daddr = (uintptr_t)dest->dtb_tomax + offs; 2104 dlimit = daddr + src->dtb_offset; 2105 saddr = (uintptr_t)src->dtb_tomax; 2106 2107 /* 2108 * First, the aligned portion. 2109 */ 2110 while (dlimit - daddr >= sizeof (uint64_t)) { 2111 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2112 2113 daddr += sizeof (uint64_t); 2114 saddr += sizeof (uint64_t); 2115 } 2116 2117 /* 2118 * Now any left-over bit... 2119 */ 2120 while (dlimit - daddr) 2121 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2122 2123 /* 2124 * Finally, commit the reserved space in the destination buffer. 2125 */ 2126 dest->dtb_offset = offs + src->dtb_offset; 2127 2128 out: 2129 /* 2130 * If we're lucky enough to be the only active CPU on this speculation 2131 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2132 */ 2133 if (current == DTRACESPEC_ACTIVE || 2134 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2135 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2136 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2137 2138 ASSERT(rval == DTRACESPEC_COMMITTING); 2139 } 2140 2141 src->dtb_offset = 0; 2142 src->dtb_xamot_drops += src->dtb_drops; 2143 src->dtb_drops = 0; 2144 } 2145 2146 /* 2147 * This routine discards an active speculation. If the specified speculation 2148 * is not in a valid state to perform a discard(), this routine will silently 2149 * do nothing. The state of the specified speculation is transitioned 2150 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2151 */ 2152 static void 2153 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2154 dtrace_specid_t which) 2155 { 2156 dtrace_speculation_t *spec; 2157 dtrace_speculation_state_t current, new; 2158 dtrace_buffer_t *buf; 2159 2160 if (which == 0) 2161 return; 2162 2163 if (which > state->dts_nspeculations) { 2164 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2165 return; 2166 } 2167 2168 spec = &state->dts_speculations[which - 1]; 2169 buf = &spec->dtsp_buffer[cpu]; 2170 2171 do { 2172 current = spec->dtsp_state; 2173 2174 switch (current) { 2175 case DTRACESPEC_INACTIVE: 2176 case DTRACESPEC_COMMITTINGMANY: 2177 case DTRACESPEC_COMMITTING: 2178 case DTRACESPEC_DISCARDING: 2179 return; 2180 2181 case DTRACESPEC_ACTIVE: 2182 case DTRACESPEC_ACTIVEMANY: 2183 new = DTRACESPEC_DISCARDING; 2184 break; 2185 2186 case DTRACESPEC_ACTIVEONE: 2187 if (buf->dtb_offset != 0) { 2188 new = DTRACESPEC_INACTIVE; 2189 } else { 2190 new = DTRACESPEC_DISCARDING; 2191 } 2192 break; 2193 2194 default: 2195 ASSERT(0); 2196 } 2197 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2198 current, new) != current); 2199 2200 buf->dtb_offset = 0; 2201 buf->dtb_drops = 0; 2202 } 2203 2204 /* 2205 * Note: not called from probe context. This function is called 2206 * asynchronously from cross call context to clean any speculations that are 2207 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2208 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2209 * speculation. 2210 */ 2211 static void 2212 dtrace_speculation_clean_here(dtrace_state_t *state) 2213 { 2214 dtrace_icookie_t cookie; 2215 processorid_t cpu = CPU->cpu_id; 2216 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2217 dtrace_specid_t i; 2218 2219 cookie = dtrace_interrupt_disable(); 2220 2221 if (dest->dtb_tomax == NULL) { 2222 dtrace_interrupt_enable(cookie); 2223 return; 2224 } 2225 2226 for (i = 0; i < state->dts_nspeculations; i++) { 2227 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2228 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2229 2230 if (src->dtb_tomax == NULL) 2231 continue; 2232 2233 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2234 src->dtb_offset = 0; 2235 continue; 2236 } 2237 2238 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2239 continue; 2240 2241 if (src->dtb_offset == 0) 2242 continue; 2243 2244 dtrace_speculation_commit(state, cpu, i + 1); 2245 } 2246 2247 dtrace_interrupt_enable(cookie); 2248 } 2249 2250 /* 2251 * Note: not called from probe context. This function is called 2252 * asynchronously (and at a regular interval) to clean any speculations that 2253 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2254 * is work to be done, it cross calls all CPUs to perform that work; 2255 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2256 * INACTIVE state until they have been cleaned by all CPUs. 2257 */ 2258 static void 2259 dtrace_speculation_clean(dtrace_state_t *state) 2260 { 2261 int work = 0, rv; 2262 dtrace_specid_t i; 2263 2264 for (i = 0; i < state->dts_nspeculations; i++) { 2265 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2266 2267 ASSERT(!spec->dtsp_cleaning); 2268 2269 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2270 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2271 continue; 2272 2273 work++; 2274 spec->dtsp_cleaning = 1; 2275 } 2276 2277 if (!work) 2278 return; 2279 2280 dtrace_xcall(DTRACE_CPUALL, 2281 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2282 2283 /* 2284 * We now know that all CPUs have committed or discarded their 2285 * speculation buffers, as appropriate. We can now set the state 2286 * to inactive. 2287 */ 2288 for (i = 0; i < state->dts_nspeculations; i++) { 2289 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2290 dtrace_speculation_state_t current, new; 2291 2292 if (!spec->dtsp_cleaning) 2293 continue; 2294 2295 current = spec->dtsp_state; 2296 ASSERT(current == DTRACESPEC_DISCARDING || 2297 current == DTRACESPEC_COMMITTINGMANY); 2298 2299 new = DTRACESPEC_INACTIVE; 2300 2301 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2302 ASSERT(rv == current); 2303 spec->dtsp_cleaning = 0; 2304 } 2305 } 2306 2307 /* 2308 * Called as part of a speculate() to get the speculative buffer associated 2309 * with a given speculation. Returns NULL if the specified speculation is not 2310 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2311 * the active CPU is not the specified CPU -- the speculation will be 2312 * atomically transitioned into the ACTIVEMANY state. 2313 */ 2314 static dtrace_buffer_t * 2315 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2316 dtrace_specid_t which) 2317 { 2318 dtrace_speculation_t *spec; 2319 dtrace_speculation_state_t current, new; 2320 dtrace_buffer_t *buf; 2321 2322 if (which == 0) 2323 return (NULL); 2324 2325 if (which > state->dts_nspeculations) { 2326 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2327 return (NULL); 2328 } 2329 2330 spec = &state->dts_speculations[which - 1]; 2331 buf = &spec->dtsp_buffer[cpuid]; 2332 2333 do { 2334 current = spec->dtsp_state; 2335 2336 switch (current) { 2337 case DTRACESPEC_INACTIVE: 2338 case DTRACESPEC_COMMITTINGMANY: 2339 case DTRACESPEC_DISCARDING: 2340 return (NULL); 2341 2342 case DTRACESPEC_COMMITTING: 2343 ASSERT(buf->dtb_offset == 0); 2344 return (NULL); 2345 2346 case DTRACESPEC_ACTIVEONE: 2347 /* 2348 * This speculation is currently active on one CPU. 2349 * Check the offset in the buffer; if it's non-zero, 2350 * that CPU must be us (and we leave the state alone). 2351 * If it's zero, assume that we're starting on a new 2352 * CPU -- and change the state to indicate that the 2353 * speculation is active on more than one CPU. 2354 */ 2355 if (buf->dtb_offset != 0) 2356 return (buf); 2357 2358 new = DTRACESPEC_ACTIVEMANY; 2359 break; 2360 2361 case DTRACESPEC_ACTIVEMANY: 2362 return (buf); 2363 2364 case DTRACESPEC_ACTIVE: 2365 new = DTRACESPEC_ACTIVEONE; 2366 break; 2367 2368 default: 2369 ASSERT(0); 2370 } 2371 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2372 current, new) != current); 2373 2374 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2375 return (buf); 2376 } 2377 2378 /* 2379 * Return a string. In the event that the user lacks the privilege to access 2380 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2381 * don't fail access checking. 2382 * 2383 * dtrace_dif_variable() uses this routine as a helper for various 2384 * builtin values such as 'execname' and 'probefunc.' 2385 */ 2386 uintptr_t 2387 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2388 dtrace_mstate_t *mstate) 2389 { 2390 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2391 uintptr_t ret; 2392 size_t strsz; 2393 2394 /* 2395 * The easy case: this probe is allowed to read all of memory, so 2396 * we can just return this as a vanilla pointer. 2397 */ 2398 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2399 return (addr); 2400 2401 /* 2402 * This is the tougher case: we copy the string in question from 2403 * kernel memory into scratch memory and return it that way: this 2404 * ensures that we won't trip up when access checking tests the 2405 * BYREF return value. 2406 */ 2407 strsz = dtrace_strlen((char *)addr, size) + 1; 2408 2409 if (mstate->dtms_scratch_ptr + strsz > 2410 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2411 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2412 return (NULL); 2413 } 2414 2415 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2416 strsz); 2417 ret = mstate->dtms_scratch_ptr; 2418 mstate->dtms_scratch_ptr += strsz; 2419 return (ret); 2420 } 2421 2422 /* 2423 * This function implements the DIF emulator's variable lookups. The emulator 2424 * passes a reserved variable identifier and optional built-in array index. 2425 */ 2426 static uint64_t 2427 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2428 uint64_t ndx) 2429 { 2430 /* 2431 * If we're accessing one of the uncached arguments, we'll turn this 2432 * into a reference in the args array. 2433 */ 2434 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2435 ndx = v - DIF_VAR_ARG0; 2436 v = DIF_VAR_ARGS; 2437 } 2438 2439 switch (v) { 2440 case DIF_VAR_ARGS: 2441 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2442 if (ndx >= sizeof (mstate->dtms_arg) / 2443 sizeof (mstate->dtms_arg[0])) { 2444 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2445 dtrace_provider_t *pv; 2446 uint64_t val; 2447 2448 pv = mstate->dtms_probe->dtpr_provider; 2449 if (pv->dtpv_pops.dtps_getargval != NULL) 2450 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2451 mstate->dtms_probe->dtpr_id, 2452 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2453 else 2454 val = dtrace_getarg(ndx, aframes); 2455 2456 /* 2457 * This is regrettably required to keep the compiler 2458 * from tail-optimizing the call to dtrace_getarg(). 2459 * The condition always evaluates to true, but the 2460 * compiler has no way of figuring that out a priori. 2461 * (None of this would be necessary if the compiler 2462 * could be relied upon to _always_ tail-optimize 2463 * the call to dtrace_getarg() -- but it can't.) 2464 */ 2465 if (mstate->dtms_probe != NULL) 2466 return (val); 2467 2468 ASSERT(0); 2469 } 2470 2471 return (mstate->dtms_arg[ndx]); 2472 2473 case DIF_VAR_UREGS: { 2474 klwp_t *lwp; 2475 2476 if (!dtrace_priv_proc(state)) 2477 return (0); 2478 2479 if ((lwp = curthread->t_lwp) == NULL) { 2480 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2481 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2482 return (0); 2483 } 2484 2485 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2486 } 2487 2488 case DIF_VAR_CURTHREAD: 2489 if (!dtrace_priv_kernel(state)) 2490 return (0); 2491 return ((uint64_t)(uintptr_t)curthread); 2492 2493 case DIF_VAR_TIMESTAMP: 2494 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2495 mstate->dtms_timestamp = dtrace_gethrtime(); 2496 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2497 } 2498 return (mstate->dtms_timestamp); 2499 2500 case DIF_VAR_VTIMESTAMP: 2501 ASSERT(dtrace_vtime_references != 0); 2502 return (curthread->t_dtrace_vtime); 2503 2504 case DIF_VAR_WALLTIMESTAMP: 2505 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2506 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2507 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2508 } 2509 return (mstate->dtms_walltimestamp); 2510 2511 case DIF_VAR_IPL: 2512 if (!dtrace_priv_kernel(state)) 2513 return (0); 2514 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2515 mstate->dtms_ipl = dtrace_getipl(); 2516 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2517 } 2518 return (mstate->dtms_ipl); 2519 2520 case DIF_VAR_EPID: 2521 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2522 return (mstate->dtms_epid); 2523 2524 case DIF_VAR_ID: 2525 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2526 return (mstate->dtms_probe->dtpr_id); 2527 2528 case DIF_VAR_STACKDEPTH: 2529 if (!dtrace_priv_kernel(state)) 2530 return (0); 2531 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2532 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2533 2534 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2535 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2536 } 2537 return (mstate->dtms_stackdepth); 2538 2539 case DIF_VAR_USTACKDEPTH: 2540 if (!dtrace_priv_proc(state)) 2541 return (0); 2542 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2543 /* 2544 * See comment in DIF_VAR_PID. 2545 */ 2546 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2547 CPU_ON_INTR(CPU)) { 2548 mstate->dtms_ustackdepth = 0; 2549 } else { 2550 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2551 mstate->dtms_ustackdepth = 2552 dtrace_getustackdepth(); 2553 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2554 } 2555 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2556 } 2557 return (mstate->dtms_ustackdepth); 2558 2559 case DIF_VAR_CALLER: 2560 if (!dtrace_priv_kernel(state)) 2561 return (0); 2562 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2563 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2564 2565 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2566 /* 2567 * If this is an unanchored probe, we are 2568 * required to go through the slow path: 2569 * dtrace_caller() only guarantees correct 2570 * results for anchored probes. 2571 */ 2572 pc_t caller[2]; 2573 2574 dtrace_getpcstack(caller, 2, aframes, 2575 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2576 mstate->dtms_caller = caller[1]; 2577 } else if ((mstate->dtms_caller = 2578 dtrace_caller(aframes)) == -1) { 2579 /* 2580 * We have failed to do this the quick way; 2581 * we must resort to the slower approach of 2582 * calling dtrace_getpcstack(). 2583 */ 2584 pc_t caller; 2585 2586 dtrace_getpcstack(&caller, 1, aframes, NULL); 2587 mstate->dtms_caller = caller; 2588 } 2589 2590 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2591 } 2592 return (mstate->dtms_caller); 2593 2594 case DIF_VAR_UCALLER: 2595 if (!dtrace_priv_proc(state)) 2596 return (0); 2597 2598 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 2599 uint64_t ustack[3]; 2600 2601 /* 2602 * dtrace_getupcstack() fills in the first uint64_t 2603 * with the current PID. The second uint64_t will 2604 * be the program counter at user-level. The third 2605 * uint64_t will contain the caller, which is what 2606 * we're after. 2607 */ 2608 ustack[2] = NULL; 2609 dtrace_getupcstack(ustack, 3); 2610 mstate->dtms_ucaller = ustack[2]; 2611 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 2612 } 2613 2614 return (mstate->dtms_ucaller); 2615 2616 case DIF_VAR_PROBEPROV: 2617 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2618 return (dtrace_dif_varstr( 2619 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 2620 state, mstate)); 2621 2622 case DIF_VAR_PROBEMOD: 2623 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2624 return (dtrace_dif_varstr( 2625 (uintptr_t)mstate->dtms_probe->dtpr_mod, 2626 state, mstate)); 2627 2628 case DIF_VAR_PROBEFUNC: 2629 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2630 return (dtrace_dif_varstr( 2631 (uintptr_t)mstate->dtms_probe->dtpr_func, 2632 state, mstate)); 2633 2634 case DIF_VAR_PROBENAME: 2635 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2636 return (dtrace_dif_varstr( 2637 (uintptr_t)mstate->dtms_probe->dtpr_name, 2638 state, mstate)); 2639 2640 case DIF_VAR_PID: 2641 if (!dtrace_priv_proc(state)) 2642 return (0); 2643 2644 /* 2645 * Note that we are assuming that an unanchored probe is 2646 * always due to a high-level interrupt. (And we're assuming 2647 * that there is only a single high level interrupt.) 2648 */ 2649 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2650 return (pid0.pid_id); 2651 2652 /* 2653 * It is always safe to dereference one's own t_procp pointer: 2654 * it always points to a valid, allocated proc structure. 2655 * Further, it is always safe to dereference the p_pidp member 2656 * of one's own proc structure. (These are truisms becuase 2657 * threads and processes don't clean up their own state -- 2658 * they leave that task to whomever reaps them.) 2659 */ 2660 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 2661 2662 case DIF_VAR_PPID: 2663 if (!dtrace_priv_proc(state)) 2664 return (0); 2665 2666 /* 2667 * See comment in DIF_VAR_PID. 2668 */ 2669 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2670 return (pid0.pid_id); 2671 2672 /* 2673 * It is always safe to dereference one's own t_procp pointer: 2674 * it always points to a valid, allocated proc structure. 2675 * (This is true because threads don't clean up their own 2676 * state -- they leave that task to whomever reaps them.) 2677 */ 2678 return ((uint64_t)curthread->t_procp->p_ppid); 2679 2680 case DIF_VAR_TID: 2681 /* 2682 * See comment in DIF_VAR_PID. 2683 */ 2684 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2685 return (0); 2686 2687 return ((uint64_t)curthread->t_tid); 2688 2689 case DIF_VAR_EXECNAME: 2690 if (!dtrace_priv_proc(state)) 2691 return (0); 2692 2693 /* 2694 * See comment in DIF_VAR_PID. 2695 */ 2696 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2697 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 2698 2699 /* 2700 * It is always safe to dereference one's own t_procp pointer: 2701 * it always points to a valid, allocated proc structure. 2702 * (This is true because threads don't clean up their own 2703 * state -- they leave that task to whomever reaps them.) 2704 */ 2705 return (dtrace_dif_varstr( 2706 (uintptr_t)curthread->t_procp->p_user.u_comm, 2707 state, mstate)); 2708 2709 case DIF_VAR_ZONENAME: 2710 if (!dtrace_priv_proc(state)) 2711 return (0); 2712 2713 /* 2714 * See comment in DIF_VAR_PID. 2715 */ 2716 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2717 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 2718 2719 /* 2720 * It is always safe to dereference one's own t_procp pointer: 2721 * it always points to a valid, allocated proc structure. 2722 * (This is true because threads don't clean up their own 2723 * state -- they leave that task to whomever reaps them.) 2724 */ 2725 return (dtrace_dif_varstr( 2726 (uintptr_t)curthread->t_procp->p_zone->zone_name, 2727 state, mstate)); 2728 2729 case DIF_VAR_UID: 2730 if (!dtrace_priv_proc(state)) 2731 return (0); 2732 2733 /* 2734 * See comment in DIF_VAR_PID. 2735 */ 2736 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2737 return ((uint64_t)p0.p_cred->cr_uid); 2738 2739 /* 2740 * It is always safe to dereference one's own t_procp pointer: 2741 * it always points to a valid, allocated proc structure. 2742 * (This is true because threads don't clean up their own 2743 * state -- they leave that task to whomever reaps them.) 2744 * 2745 * Additionally, it is safe to dereference one's own process 2746 * credential, since this is never NULL after process birth. 2747 */ 2748 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 2749 2750 case DIF_VAR_GID: 2751 if (!dtrace_priv_proc(state)) 2752 return (0); 2753 2754 /* 2755 * See comment in DIF_VAR_PID. 2756 */ 2757 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2758 return ((uint64_t)p0.p_cred->cr_gid); 2759 2760 /* 2761 * It is always safe to dereference one's own t_procp pointer: 2762 * it always points to a valid, allocated proc structure. 2763 * (This is true because threads don't clean up their own 2764 * state -- they leave that task to whomever reaps them.) 2765 * 2766 * Additionally, it is safe to dereference one's own process 2767 * credential, since this is never NULL after process birth. 2768 */ 2769 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 2770 2771 case DIF_VAR_ERRNO: { 2772 klwp_t *lwp; 2773 if (!dtrace_priv_proc(state)) 2774 return (0); 2775 2776 /* 2777 * See comment in DIF_VAR_PID. 2778 */ 2779 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2780 return (0); 2781 2782 /* 2783 * It is always safe to dereference one's own t_lwp pointer in 2784 * the event that this pointer is non-NULL. (This is true 2785 * because threads and lwps don't clean up their own state -- 2786 * they leave that task to whomever reaps them.) 2787 */ 2788 if ((lwp = curthread->t_lwp) == NULL) 2789 return (0); 2790 2791 return ((uint64_t)lwp->lwp_errno); 2792 } 2793 default: 2794 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2795 return (0); 2796 } 2797 } 2798 2799 /* 2800 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 2801 * Notice that we don't bother validating the proper number of arguments or 2802 * their types in the tuple stack. This isn't needed because all argument 2803 * interpretation is safe because of our load safety -- the worst that can 2804 * happen is that a bogus program can obtain bogus results. 2805 */ 2806 static void 2807 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 2808 dtrace_key_t *tupregs, int nargs, 2809 dtrace_mstate_t *mstate, dtrace_state_t *state) 2810 { 2811 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 2812 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 2813 dtrace_vstate_t *vstate = &state->dts_vstate; 2814 2815 union { 2816 mutex_impl_t mi; 2817 uint64_t mx; 2818 } m; 2819 2820 union { 2821 krwlock_t ri; 2822 uintptr_t rw; 2823 } r; 2824 2825 switch (subr) { 2826 case DIF_SUBR_RAND: 2827 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 2828 break; 2829 2830 case DIF_SUBR_MUTEX_OWNED: 2831 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2832 mstate, vstate)) { 2833 regs[rd] = NULL; 2834 break; 2835 } 2836 2837 m.mx = dtrace_load64(tupregs[0].dttk_value); 2838 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 2839 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 2840 else 2841 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 2842 break; 2843 2844 case DIF_SUBR_MUTEX_OWNER: 2845 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2846 mstate, vstate)) { 2847 regs[rd] = NULL; 2848 break; 2849 } 2850 2851 m.mx = dtrace_load64(tupregs[0].dttk_value); 2852 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 2853 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 2854 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 2855 else 2856 regs[rd] = 0; 2857 break; 2858 2859 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 2860 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2861 mstate, vstate)) { 2862 regs[rd] = NULL; 2863 break; 2864 } 2865 2866 m.mx = dtrace_load64(tupregs[0].dttk_value); 2867 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 2868 break; 2869 2870 case DIF_SUBR_MUTEX_TYPE_SPIN: 2871 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2872 mstate, vstate)) { 2873 regs[rd] = NULL; 2874 break; 2875 } 2876 2877 m.mx = dtrace_load64(tupregs[0].dttk_value); 2878 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 2879 break; 2880 2881 case DIF_SUBR_RW_READ_HELD: { 2882 uintptr_t tmp; 2883 2884 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 2885 mstate, vstate)) { 2886 regs[rd] = NULL; 2887 break; 2888 } 2889 2890 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2891 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 2892 break; 2893 } 2894 2895 case DIF_SUBR_RW_WRITE_HELD: 2896 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 2897 mstate, vstate)) { 2898 regs[rd] = NULL; 2899 break; 2900 } 2901 2902 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2903 regs[rd] = _RW_WRITE_HELD(&r.ri); 2904 break; 2905 2906 case DIF_SUBR_RW_ISWRITER: 2907 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 2908 mstate, vstate)) { 2909 regs[rd] = NULL; 2910 break; 2911 } 2912 2913 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2914 regs[rd] = _RW_ISWRITER(&r.ri); 2915 break; 2916 2917 case DIF_SUBR_BCOPY: { 2918 /* 2919 * We need to be sure that the destination is in the scratch 2920 * region -- no other region is allowed. 2921 */ 2922 uintptr_t src = tupregs[0].dttk_value; 2923 uintptr_t dest = tupregs[1].dttk_value; 2924 size_t size = tupregs[2].dttk_value; 2925 2926 if (!dtrace_inscratch(dest, size, mstate)) { 2927 *flags |= CPU_DTRACE_BADADDR; 2928 *illval = regs[rd]; 2929 break; 2930 } 2931 2932 if (!dtrace_canload(src, size, mstate, vstate)) { 2933 regs[rd] = NULL; 2934 break; 2935 } 2936 2937 dtrace_bcopy((void *)src, (void *)dest, size); 2938 break; 2939 } 2940 2941 case DIF_SUBR_ALLOCA: 2942 case DIF_SUBR_COPYIN: { 2943 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 2944 uint64_t size = 2945 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 2946 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 2947 2948 /* 2949 * This action doesn't require any credential checks since 2950 * probes will not activate in user contexts to which the 2951 * enabling user does not have permissions. 2952 */ 2953 2954 /* 2955 * Rounding up the user allocation size could have overflowed 2956 * a large, bogus allocation (like -1ULL) to 0. 2957 */ 2958 if (scratch_size < size || 2959 !DTRACE_INSCRATCH(mstate, scratch_size)) { 2960 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2961 regs[rd] = NULL; 2962 break; 2963 } 2964 2965 if (subr == DIF_SUBR_COPYIN) { 2966 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2967 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 2968 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2969 } 2970 2971 mstate->dtms_scratch_ptr += scratch_size; 2972 regs[rd] = dest; 2973 break; 2974 } 2975 2976 case DIF_SUBR_COPYINTO: { 2977 uint64_t size = tupregs[1].dttk_value; 2978 uintptr_t dest = tupregs[2].dttk_value; 2979 2980 /* 2981 * This action doesn't require any credential checks since 2982 * probes will not activate in user contexts to which the 2983 * enabling user does not have permissions. 2984 */ 2985 if (!dtrace_inscratch(dest, size, mstate)) { 2986 *flags |= CPU_DTRACE_BADADDR; 2987 *illval = regs[rd]; 2988 break; 2989 } 2990 2991 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2992 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 2993 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2994 break; 2995 } 2996 2997 case DIF_SUBR_COPYINSTR: { 2998 uintptr_t dest = mstate->dtms_scratch_ptr; 2999 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3000 3001 if (nargs > 1 && tupregs[1].dttk_value < size) 3002 size = tupregs[1].dttk_value + 1; 3003 3004 /* 3005 * This action doesn't require any credential checks since 3006 * probes will not activate in user contexts to which the 3007 * enabling user does not have permissions. 3008 */ 3009 if (!DTRACE_INSCRATCH(mstate, size)) { 3010 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3011 regs[rd] = NULL; 3012 break; 3013 } 3014 3015 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3016 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3017 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3018 3019 ((char *)dest)[size - 1] = '\0'; 3020 mstate->dtms_scratch_ptr += size; 3021 regs[rd] = dest; 3022 break; 3023 } 3024 3025 case DIF_SUBR_MSGSIZE: 3026 case DIF_SUBR_MSGDSIZE: { 3027 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3028 uintptr_t wptr, rptr; 3029 size_t count = 0; 3030 int cont = 0; 3031 3032 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3033 3034 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3035 vstate)) { 3036 regs[rd] = NULL; 3037 break; 3038 } 3039 3040 wptr = dtrace_loadptr(baddr + 3041 offsetof(mblk_t, b_wptr)); 3042 3043 rptr = dtrace_loadptr(baddr + 3044 offsetof(mblk_t, b_rptr)); 3045 3046 if (wptr < rptr) { 3047 *flags |= CPU_DTRACE_BADADDR; 3048 *illval = tupregs[0].dttk_value; 3049 break; 3050 } 3051 3052 daddr = dtrace_loadptr(baddr + 3053 offsetof(mblk_t, b_datap)); 3054 3055 baddr = dtrace_loadptr(baddr + 3056 offsetof(mblk_t, b_cont)); 3057 3058 /* 3059 * We want to prevent against denial-of-service here, 3060 * so we're only going to search the list for 3061 * dtrace_msgdsize_max mblks. 3062 */ 3063 if (cont++ > dtrace_msgdsize_max) { 3064 *flags |= CPU_DTRACE_ILLOP; 3065 break; 3066 } 3067 3068 if (subr == DIF_SUBR_MSGDSIZE) { 3069 if (dtrace_load8(daddr + 3070 offsetof(dblk_t, db_type)) != M_DATA) 3071 continue; 3072 } 3073 3074 count += wptr - rptr; 3075 } 3076 3077 if (!(*flags & CPU_DTRACE_FAULT)) 3078 regs[rd] = count; 3079 3080 break; 3081 } 3082 3083 case DIF_SUBR_PROGENYOF: { 3084 pid_t pid = tupregs[0].dttk_value; 3085 proc_t *p; 3086 int rval = 0; 3087 3088 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3089 3090 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3091 if (p->p_pidp->pid_id == pid) { 3092 rval = 1; 3093 break; 3094 } 3095 } 3096 3097 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3098 3099 regs[rd] = rval; 3100 break; 3101 } 3102 3103 case DIF_SUBR_SPECULATION: 3104 regs[rd] = dtrace_speculation(state); 3105 break; 3106 3107 case DIF_SUBR_COPYOUT: { 3108 uintptr_t kaddr = tupregs[0].dttk_value; 3109 uintptr_t uaddr = tupregs[1].dttk_value; 3110 uint64_t size = tupregs[2].dttk_value; 3111 3112 if (!dtrace_destructive_disallow && 3113 dtrace_priv_proc_control(state) && 3114 !dtrace_istoxic(kaddr, size)) { 3115 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3116 dtrace_copyout(kaddr, uaddr, size, flags); 3117 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3118 } 3119 break; 3120 } 3121 3122 case DIF_SUBR_COPYOUTSTR: { 3123 uintptr_t kaddr = tupregs[0].dttk_value; 3124 uintptr_t uaddr = tupregs[1].dttk_value; 3125 uint64_t size = tupregs[2].dttk_value; 3126 3127 if (!dtrace_destructive_disallow && 3128 dtrace_priv_proc_control(state) && 3129 !dtrace_istoxic(kaddr, size)) { 3130 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3131 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3132 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3133 } 3134 break; 3135 } 3136 3137 case DIF_SUBR_STRLEN: { 3138 size_t sz; 3139 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3140 sz = dtrace_strlen((char *)addr, 3141 state->dts_options[DTRACEOPT_STRSIZE]); 3142 3143 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3144 regs[rd] = NULL; 3145 break; 3146 } 3147 3148 regs[rd] = sz; 3149 3150 break; 3151 } 3152 3153 case DIF_SUBR_STRCHR: 3154 case DIF_SUBR_STRRCHR: { 3155 /* 3156 * We're going to iterate over the string looking for the 3157 * specified character. We will iterate until we have reached 3158 * the string length or we have found the character. If this 3159 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3160 * of the specified character instead of the first. 3161 */ 3162 uintptr_t saddr = tupregs[0].dttk_value; 3163 uintptr_t addr = tupregs[0].dttk_value; 3164 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3165 char c, target = (char)tupregs[1].dttk_value; 3166 3167 for (regs[rd] = NULL; addr < limit; addr++) { 3168 if ((c = dtrace_load8(addr)) == target) { 3169 regs[rd] = addr; 3170 3171 if (subr == DIF_SUBR_STRCHR) 3172 break; 3173 } 3174 3175 if (c == '\0') 3176 break; 3177 } 3178 3179 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3180 regs[rd] = NULL; 3181 break; 3182 } 3183 3184 break; 3185 } 3186 3187 case DIF_SUBR_STRSTR: 3188 case DIF_SUBR_INDEX: 3189 case DIF_SUBR_RINDEX: { 3190 /* 3191 * We're going to iterate over the string looking for the 3192 * specified string. We will iterate until we have reached 3193 * the string length or we have found the string. (Yes, this 3194 * is done in the most naive way possible -- but considering 3195 * that the string we're searching for is likely to be 3196 * relatively short, the complexity of Rabin-Karp or similar 3197 * hardly seems merited.) 3198 */ 3199 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3200 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3201 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3202 size_t len = dtrace_strlen(addr, size); 3203 size_t sublen = dtrace_strlen(substr, size); 3204 char *limit = addr + len, *orig = addr; 3205 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3206 int inc = 1; 3207 3208 regs[rd] = notfound; 3209 3210 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3211 regs[rd] = NULL; 3212 break; 3213 } 3214 3215 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3216 vstate)) { 3217 regs[rd] = NULL; 3218 break; 3219 } 3220 3221 /* 3222 * strstr() and index()/rindex() have similar semantics if 3223 * both strings are the empty string: strstr() returns a 3224 * pointer to the (empty) string, and index() and rindex() 3225 * both return index 0 (regardless of any position argument). 3226 */ 3227 if (sublen == 0 && len == 0) { 3228 if (subr == DIF_SUBR_STRSTR) 3229 regs[rd] = (uintptr_t)addr; 3230 else 3231 regs[rd] = 0; 3232 break; 3233 } 3234 3235 if (subr != DIF_SUBR_STRSTR) { 3236 if (subr == DIF_SUBR_RINDEX) { 3237 limit = orig - 1; 3238 addr += len; 3239 inc = -1; 3240 } 3241 3242 /* 3243 * Both index() and rindex() take an optional position 3244 * argument that denotes the starting position. 3245 */ 3246 if (nargs == 3) { 3247 int64_t pos = (int64_t)tupregs[2].dttk_value; 3248 3249 /* 3250 * If the position argument to index() is 3251 * negative, Perl implicitly clamps it at 3252 * zero. This semantic is a little surprising 3253 * given the special meaning of negative 3254 * positions to similar Perl functions like 3255 * substr(), but it appears to reflect a 3256 * notion that index() can start from a 3257 * negative index and increment its way up to 3258 * the string. Given this notion, Perl's 3259 * rindex() is at least self-consistent in 3260 * that it implicitly clamps positions greater 3261 * than the string length to be the string 3262 * length. Where Perl completely loses 3263 * coherence, however, is when the specified 3264 * substring is the empty string (""). In 3265 * this case, even if the position is 3266 * negative, rindex() returns 0 -- and even if 3267 * the position is greater than the length, 3268 * index() returns the string length. These 3269 * semantics violate the notion that index() 3270 * should never return a value less than the 3271 * specified position and that rindex() should 3272 * never return a value greater than the 3273 * specified position. (One assumes that 3274 * these semantics are artifacts of Perl's 3275 * implementation and not the results of 3276 * deliberate design -- it beggars belief that 3277 * even Larry Wall could desire such oddness.) 3278 * While in the abstract one would wish for 3279 * consistent position semantics across 3280 * substr(), index() and rindex() -- or at the 3281 * very least self-consistent position 3282 * semantics for index() and rindex() -- we 3283 * instead opt to keep with the extant Perl 3284 * semantics, in all their broken glory. (Do 3285 * we have more desire to maintain Perl's 3286 * semantics than Perl does? Probably.) 3287 */ 3288 if (subr == DIF_SUBR_RINDEX) { 3289 if (pos < 0) { 3290 if (sublen == 0) 3291 regs[rd] = 0; 3292 break; 3293 } 3294 3295 if (pos > len) 3296 pos = len; 3297 } else { 3298 if (pos < 0) 3299 pos = 0; 3300 3301 if (pos >= len) { 3302 if (sublen == 0) 3303 regs[rd] = len; 3304 break; 3305 } 3306 } 3307 3308 addr = orig + pos; 3309 } 3310 } 3311 3312 for (regs[rd] = notfound; addr != limit; addr += inc) { 3313 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3314 if (subr != DIF_SUBR_STRSTR) { 3315 /* 3316 * As D index() and rindex() are 3317 * modeled on Perl (and not on awk), 3318 * we return a zero-based (and not a 3319 * one-based) index. (For you Perl 3320 * weenies: no, we're not going to add 3321 * $[ -- and shouldn't you be at a con 3322 * or something?) 3323 */ 3324 regs[rd] = (uintptr_t)(addr - orig); 3325 break; 3326 } 3327 3328 ASSERT(subr == DIF_SUBR_STRSTR); 3329 regs[rd] = (uintptr_t)addr; 3330 break; 3331 } 3332 } 3333 3334 break; 3335 } 3336 3337 case DIF_SUBR_STRTOK: { 3338 uintptr_t addr = tupregs[0].dttk_value; 3339 uintptr_t tokaddr = tupregs[1].dttk_value; 3340 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3341 uintptr_t limit, toklimit = tokaddr + size; 3342 uint8_t c, tokmap[32]; /* 256 / 8 */ 3343 char *dest = (char *)mstate->dtms_scratch_ptr; 3344 int i; 3345 3346 /* 3347 * Check both the token buffer and (later) the input buffer, 3348 * since both could be non-scratch addresses. 3349 */ 3350 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3351 regs[rd] = NULL; 3352 break; 3353 } 3354 3355 if (!DTRACE_INSCRATCH(mstate, size)) { 3356 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3357 regs[rd] = NULL; 3358 break; 3359 } 3360 3361 if (addr == NULL) { 3362 /* 3363 * If the address specified is NULL, we use our saved 3364 * strtok pointer from the mstate. Note that this 3365 * means that the saved strtok pointer is _only_ 3366 * valid within multiple enablings of the same probe -- 3367 * it behaves like an implicit clause-local variable. 3368 */ 3369 addr = mstate->dtms_strtok; 3370 } else { 3371 /* 3372 * If the user-specified address is non-NULL we must 3373 * access check it. This is the only time we have 3374 * a chance to do so, since this address may reside 3375 * in the string table of this clause-- future calls 3376 * (when we fetch addr from mstate->dtms_strtok) 3377 * would fail this access check. 3378 */ 3379 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3380 regs[rd] = NULL; 3381 break; 3382 } 3383 } 3384 3385 /* 3386 * First, zero the token map, and then process the token 3387 * string -- setting a bit in the map for every character 3388 * found in the token string. 3389 */ 3390 for (i = 0; i < sizeof (tokmap); i++) 3391 tokmap[i] = 0; 3392 3393 for (; tokaddr < toklimit; tokaddr++) { 3394 if ((c = dtrace_load8(tokaddr)) == '\0') 3395 break; 3396 3397 ASSERT((c >> 3) < sizeof (tokmap)); 3398 tokmap[c >> 3] |= (1 << (c & 0x7)); 3399 } 3400 3401 for (limit = addr + size; addr < limit; addr++) { 3402 /* 3403 * We're looking for a character that is _not_ contained 3404 * in the token string. 3405 */ 3406 if ((c = dtrace_load8(addr)) == '\0') 3407 break; 3408 3409 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3410 break; 3411 } 3412 3413 if (c == '\0') { 3414 /* 3415 * We reached the end of the string without finding 3416 * any character that was not in the token string. 3417 * We return NULL in this case, and we set the saved 3418 * address to NULL as well. 3419 */ 3420 regs[rd] = NULL; 3421 mstate->dtms_strtok = NULL; 3422 break; 3423 } 3424 3425 /* 3426 * From here on, we're copying into the destination string. 3427 */ 3428 for (i = 0; addr < limit && i < size - 1; addr++) { 3429 if ((c = dtrace_load8(addr)) == '\0') 3430 break; 3431 3432 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3433 break; 3434 3435 ASSERT(i < size); 3436 dest[i++] = c; 3437 } 3438 3439 ASSERT(i < size); 3440 dest[i] = '\0'; 3441 regs[rd] = (uintptr_t)dest; 3442 mstate->dtms_scratch_ptr += size; 3443 mstate->dtms_strtok = addr; 3444 break; 3445 } 3446 3447 case DIF_SUBR_SUBSTR: { 3448 uintptr_t s = tupregs[0].dttk_value; 3449 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3450 char *d = (char *)mstate->dtms_scratch_ptr; 3451 int64_t index = (int64_t)tupregs[1].dttk_value; 3452 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3453 size_t len = dtrace_strlen((char *)s, size); 3454 int64_t i = 0; 3455 3456 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3457 regs[rd] = NULL; 3458 break; 3459 } 3460 3461 if (nargs <= 2) 3462 remaining = (int64_t)size; 3463 3464 if (!DTRACE_INSCRATCH(mstate, size)) { 3465 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3466 regs[rd] = NULL; 3467 break; 3468 } 3469 3470 if (index < 0) { 3471 index += len; 3472 3473 if (index < 0 && index + remaining > 0) { 3474 remaining += index; 3475 index = 0; 3476 } 3477 } 3478 3479 if (index >= len || index < 0) 3480 index = len; 3481 3482 for (d[0] = '\0'; remaining > 0; remaining--) { 3483 if ((d[i++] = dtrace_load8(s++ + index)) == '\0') 3484 break; 3485 3486 if (i == size) { 3487 d[i - 1] = '\0'; 3488 break; 3489 } 3490 } 3491 3492 mstate->dtms_scratch_ptr += size; 3493 regs[rd] = (uintptr_t)d; 3494 break; 3495 } 3496 3497 case DIF_SUBR_GETMAJOR: 3498 #ifdef _LP64 3499 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3500 #else 3501 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3502 #endif 3503 break; 3504 3505 case DIF_SUBR_GETMINOR: 3506 #ifdef _LP64 3507 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3508 #else 3509 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3510 #endif 3511 break; 3512 3513 case DIF_SUBR_DDI_PATHNAME: { 3514 /* 3515 * This one is a galactic mess. We are going to roughly 3516 * emulate ddi_pathname(), but it's made more complicated 3517 * by the fact that we (a) want to include the minor name and 3518 * (b) must proceed iteratively instead of recursively. 3519 */ 3520 uintptr_t dest = mstate->dtms_scratch_ptr; 3521 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3522 char *start = (char *)dest, *end = start + size - 1; 3523 uintptr_t daddr = tupregs[0].dttk_value; 3524 int64_t minor = (int64_t)tupregs[1].dttk_value; 3525 char *s; 3526 int i, len, depth = 0; 3527 3528 /* 3529 * Due to all the pointer jumping we do and context we must 3530 * rely upon, we just mandate that the user must have kernel 3531 * read privileges to use this routine. 3532 */ 3533 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 3534 *flags |= CPU_DTRACE_KPRIV; 3535 *illval = daddr; 3536 regs[rd] = NULL; 3537 } 3538 3539 if (!DTRACE_INSCRATCH(mstate, size)) { 3540 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3541 regs[rd] = NULL; 3542 break; 3543 } 3544 3545 *end = '\0'; 3546 3547 /* 3548 * We want to have a name for the minor. In order to do this, 3549 * we need to walk the minor list from the devinfo. We want 3550 * to be sure that we don't infinitely walk a circular list, 3551 * so we check for circularity by sending a scout pointer 3552 * ahead two elements for every element that we iterate over; 3553 * if the list is circular, these will ultimately point to the 3554 * same element. You may recognize this little trick as the 3555 * answer to a stupid interview question -- one that always 3556 * seems to be asked by those who had to have it laboriously 3557 * explained to them, and who can't even concisely describe 3558 * the conditions under which one would be forced to resort to 3559 * this technique. Needless to say, those conditions are 3560 * found here -- and probably only here. Is this is the only 3561 * use of this infamous trick in shipping, production code? 3562 * If it isn't, it probably should be... 3563 */ 3564 if (minor != -1) { 3565 uintptr_t maddr = dtrace_loadptr(daddr + 3566 offsetof(struct dev_info, devi_minor)); 3567 3568 uintptr_t next = offsetof(struct ddi_minor_data, next); 3569 uintptr_t name = offsetof(struct ddi_minor_data, 3570 d_minor) + offsetof(struct ddi_minor, name); 3571 uintptr_t dev = offsetof(struct ddi_minor_data, 3572 d_minor) + offsetof(struct ddi_minor, dev); 3573 uintptr_t scout; 3574 3575 if (maddr != NULL) 3576 scout = dtrace_loadptr(maddr + next); 3577 3578 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3579 uint64_t m; 3580 #ifdef _LP64 3581 m = dtrace_load64(maddr + dev) & MAXMIN64; 3582 #else 3583 m = dtrace_load32(maddr + dev) & MAXMIN; 3584 #endif 3585 if (m != minor) { 3586 maddr = dtrace_loadptr(maddr + next); 3587 3588 if (scout == NULL) 3589 continue; 3590 3591 scout = dtrace_loadptr(scout + next); 3592 3593 if (scout == NULL) 3594 continue; 3595 3596 scout = dtrace_loadptr(scout + next); 3597 3598 if (scout == NULL) 3599 continue; 3600 3601 if (scout == maddr) { 3602 *flags |= CPU_DTRACE_ILLOP; 3603 break; 3604 } 3605 3606 continue; 3607 } 3608 3609 /* 3610 * We have the minor data. Now we need to 3611 * copy the minor's name into the end of the 3612 * pathname. 3613 */ 3614 s = (char *)dtrace_loadptr(maddr + name); 3615 len = dtrace_strlen(s, size); 3616 3617 if (*flags & CPU_DTRACE_FAULT) 3618 break; 3619 3620 if (len != 0) { 3621 if ((end -= (len + 1)) < start) 3622 break; 3623 3624 *end = ':'; 3625 } 3626 3627 for (i = 1; i <= len; i++) 3628 end[i] = dtrace_load8((uintptr_t)s++); 3629 break; 3630 } 3631 } 3632 3633 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3634 ddi_node_state_t devi_state; 3635 3636 devi_state = dtrace_load32(daddr + 3637 offsetof(struct dev_info, devi_node_state)); 3638 3639 if (*flags & CPU_DTRACE_FAULT) 3640 break; 3641 3642 if (devi_state >= DS_INITIALIZED) { 3643 s = (char *)dtrace_loadptr(daddr + 3644 offsetof(struct dev_info, devi_addr)); 3645 len = dtrace_strlen(s, size); 3646 3647 if (*flags & CPU_DTRACE_FAULT) 3648 break; 3649 3650 if (len != 0) { 3651 if ((end -= (len + 1)) < start) 3652 break; 3653 3654 *end = '@'; 3655 } 3656 3657 for (i = 1; i <= len; i++) 3658 end[i] = dtrace_load8((uintptr_t)s++); 3659 } 3660 3661 /* 3662 * Now for the node name... 3663 */ 3664 s = (char *)dtrace_loadptr(daddr + 3665 offsetof(struct dev_info, devi_node_name)); 3666 3667 daddr = dtrace_loadptr(daddr + 3668 offsetof(struct dev_info, devi_parent)); 3669 3670 /* 3671 * If our parent is NULL (that is, if we're the root 3672 * node), we're going to use the special path 3673 * "devices". 3674 */ 3675 if (daddr == NULL) 3676 s = "devices"; 3677 3678 len = dtrace_strlen(s, size); 3679 if (*flags & CPU_DTRACE_FAULT) 3680 break; 3681 3682 if ((end -= (len + 1)) < start) 3683 break; 3684 3685 for (i = 1; i <= len; i++) 3686 end[i] = dtrace_load8((uintptr_t)s++); 3687 *end = '/'; 3688 3689 if (depth++ > dtrace_devdepth_max) { 3690 *flags |= CPU_DTRACE_ILLOP; 3691 break; 3692 } 3693 } 3694 3695 if (end < start) 3696 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3697 3698 if (daddr == NULL) { 3699 regs[rd] = (uintptr_t)end; 3700 mstate->dtms_scratch_ptr += size; 3701 } 3702 3703 break; 3704 } 3705 3706 case DIF_SUBR_STRJOIN: { 3707 char *d = (char *)mstate->dtms_scratch_ptr; 3708 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3709 uintptr_t s1 = tupregs[0].dttk_value; 3710 uintptr_t s2 = tupregs[1].dttk_value; 3711 int i = 0; 3712 3713 if (!dtrace_strcanload(s1, size, mstate, vstate) || 3714 !dtrace_strcanload(s2, size, mstate, vstate)) { 3715 regs[rd] = NULL; 3716 break; 3717 } 3718 3719 if (!DTRACE_INSCRATCH(mstate, size)) { 3720 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3721 regs[rd] = NULL; 3722 break; 3723 } 3724 3725 for (;;) { 3726 if (i >= size) { 3727 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3728 regs[rd] = NULL; 3729 break; 3730 } 3731 3732 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 3733 i--; 3734 break; 3735 } 3736 } 3737 3738 for (;;) { 3739 if (i >= size) { 3740 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3741 regs[rd] = NULL; 3742 break; 3743 } 3744 3745 if ((d[i++] = dtrace_load8(s2++)) == '\0') 3746 break; 3747 } 3748 3749 if (i < size) { 3750 mstate->dtms_scratch_ptr += i; 3751 regs[rd] = (uintptr_t)d; 3752 } 3753 3754 break; 3755 } 3756 3757 case DIF_SUBR_LLTOSTR: { 3758 int64_t i = (int64_t)tupregs[0].dttk_value; 3759 int64_t val = i < 0 ? i * -1 : i; 3760 uint64_t size = 22; /* enough room for 2^64 in decimal */ 3761 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 3762 3763 if (!DTRACE_INSCRATCH(mstate, size)) { 3764 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3765 regs[rd] = NULL; 3766 break; 3767 } 3768 3769 for (*end-- = '\0'; val; val /= 10) 3770 *end-- = '0' + (val % 10); 3771 3772 if (i == 0) 3773 *end-- = '0'; 3774 3775 if (i < 0) 3776 *end-- = '-'; 3777 3778 regs[rd] = (uintptr_t)end + 1; 3779 mstate->dtms_scratch_ptr += size; 3780 break; 3781 } 3782 3783 case DIF_SUBR_HTONS: 3784 case DIF_SUBR_NTOHS: 3785 #ifdef _BIG_ENDIAN 3786 regs[rd] = (uint16_t)tupregs[0].dttk_value; 3787 #else 3788 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 3789 #endif 3790 break; 3791 3792 3793 case DIF_SUBR_HTONL: 3794 case DIF_SUBR_NTOHL: 3795 #ifdef _BIG_ENDIAN 3796 regs[rd] = (uint32_t)tupregs[0].dttk_value; 3797 #else 3798 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 3799 #endif 3800 break; 3801 3802 3803 case DIF_SUBR_HTONLL: 3804 case DIF_SUBR_NTOHLL: 3805 #ifdef _BIG_ENDIAN 3806 regs[rd] = (uint64_t)tupregs[0].dttk_value; 3807 #else 3808 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 3809 #endif 3810 break; 3811 3812 3813 case DIF_SUBR_DIRNAME: 3814 case DIF_SUBR_BASENAME: { 3815 char *dest = (char *)mstate->dtms_scratch_ptr; 3816 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3817 uintptr_t src = tupregs[0].dttk_value; 3818 int i, j, len = dtrace_strlen((char *)src, size); 3819 int lastbase = -1, firstbase = -1, lastdir = -1; 3820 int start, end; 3821 3822 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 3823 regs[rd] = NULL; 3824 break; 3825 } 3826 3827 if (!DTRACE_INSCRATCH(mstate, size)) { 3828 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3829 regs[rd] = NULL; 3830 break; 3831 } 3832 3833 /* 3834 * The basename and dirname for a zero-length string is 3835 * defined to be "." 3836 */ 3837 if (len == 0) { 3838 len = 1; 3839 src = (uintptr_t)"."; 3840 } 3841 3842 /* 3843 * Start from the back of the string, moving back toward the 3844 * front until we see a character that isn't a slash. That 3845 * character is the last character in the basename. 3846 */ 3847 for (i = len - 1; i >= 0; i--) { 3848 if (dtrace_load8(src + i) != '/') 3849 break; 3850 } 3851 3852 if (i >= 0) 3853 lastbase = i; 3854 3855 /* 3856 * Starting from the last character in the basename, move 3857 * towards the front until we find a slash. The character 3858 * that we processed immediately before that is the first 3859 * character in the basename. 3860 */ 3861 for (; i >= 0; i--) { 3862 if (dtrace_load8(src + i) == '/') 3863 break; 3864 } 3865 3866 if (i >= 0) 3867 firstbase = i + 1; 3868 3869 /* 3870 * Now keep going until we find a non-slash character. That 3871 * character is the last character in the dirname. 3872 */ 3873 for (; i >= 0; i--) { 3874 if (dtrace_load8(src + i) != '/') 3875 break; 3876 } 3877 3878 if (i >= 0) 3879 lastdir = i; 3880 3881 ASSERT(!(lastbase == -1 && firstbase != -1)); 3882 ASSERT(!(firstbase == -1 && lastdir != -1)); 3883 3884 if (lastbase == -1) { 3885 /* 3886 * We didn't find a non-slash character. We know that 3887 * the length is non-zero, so the whole string must be 3888 * slashes. In either the dirname or the basename 3889 * case, we return '/'. 3890 */ 3891 ASSERT(firstbase == -1); 3892 firstbase = lastbase = lastdir = 0; 3893 } 3894 3895 if (firstbase == -1) { 3896 /* 3897 * The entire string consists only of a basename 3898 * component. If we're looking for dirname, we need 3899 * to change our string to be just "."; if we're 3900 * looking for a basename, we'll just set the first 3901 * character of the basename to be 0. 3902 */ 3903 if (subr == DIF_SUBR_DIRNAME) { 3904 ASSERT(lastdir == -1); 3905 src = (uintptr_t)"."; 3906 lastdir = 0; 3907 } else { 3908 firstbase = 0; 3909 } 3910 } 3911 3912 if (subr == DIF_SUBR_DIRNAME) { 3913 if (lastdir == -1) { 3914 /* 3915 * We know that we have a slash in the name -- 3916 * or lastdir would be set to 0, above. And 3917 * because lastdir is -1, we know that this 3918 * slash must be the first character. (That 3919 * is, the full string must be of the form 3920 * "/basename".) In this case, the last 3921 * character of the directory name is 0. 3922 */ 3923 lastdir = 0; 3924 } 3925 3926 start = 0; 3927 end = lastdir; 3928 } else { 3929 ASSERT(subr == DIF_SUBR_BASENAME); 3930 ASSERT(firstbase != -1 && lastbase != -1); 3931 start = firstbase; 3932 end = lastbase; 3933 } 3934 3935 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 3936 dest[j] = dtrace_load8(src + i); 3937 3938 dest[j] = '\0'; 3939 regs[rd] = (uintptr_t)dest; 3940 mstate->dtms_scratch_ptr += size; 3941 break; 3942 } 3943 3944 case DIF_SUBR_CLEANPATH: { 3945 char *dest = (char *)mstate->dtms_scratch_ptr, c; 3946 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3947 uintptr_t src = tupregs[0].dttk_value; 3948 int i = 0, j = 0; 3949 3950 if (!dtrace_strcanload(src, size, mstate, vstate)) { 3951 regs[rd] = NULL; 3952 break; 3953 } 3954 3955 if (!DTRACE_INSCRATCH(mstate, size)) { 3956 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3957 regs[rd] = NULL; 3958 break; 3959 } 3960 3961 /* 3962 * Move forward, loading each character. 3963 */ 3964 do { 3965 c = dtrace_load8(src + i++); 3966 next: 3967 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 3968 break; 3969 3970 if (c != '/') { 3971 dest[j++] = c; 3972 continue; 3973 } 3974 3975 c = dtrace_load8(src + i++); 3976 3977 if (c == '/') { 3978 /* 3979 * We have two slashes -- we can just advance 3980 * to the next character. 3981 */ 3982 goto next; 3983 } 3984 3985 if (c != '.') { 3986 /* 3987 * This is not "." and it's not ".." -- we can 3988 * just store the "/" and this character and 3989 * drive on. 3990 */ 3991 dest[j++] = '/'; 3992 dest[j++] = c; 3993 continue; 3994 } 3995 3996 c = dtrace_load8(src + i++); 3997 3998 if (c == '/') { 3999 /* 4000 * This is a "/./" component. We're not going 4001 * to store anything in the destination buffer; 4002 * we're just going to go to the next component. 4003 */ 4004 goto next; 4005 } 4006 4007 if (c != '.') { 4008 /* 4009 * This is not ".." -- we can just store the 4010 * "/." and this character and continue 4011 * processing. 4012 */ 4013 dest[j++] = '/'; 4014 dest[j++] = '.'; 4015 dest[j++] = c; 4016 continue; 4017 } 4018 4019 c = dtrace_load8(src + i++); 4020 4021 if (c != '/' && c != '\0') { 4022 /* 4023 * This is not ".." -- it's "..[mumble]". 4024 * We'll store the "/.." and this character 4025 * and continue processing. 4026 */ 4027 dest[j++] = '/'; 4028 dest[j++] = '.'; 4029 dest[j++] = '.'; 4030 dest[j++] = c; 4031 continue; 4032 } 4033 4034 /* 4035 * This is "/../" or "/..\0". We need to back up 4036 * our destination pointer until we find a "/". 4037 */ 4038 i--; 4039 while (j != 0 && dest[--j] != '/') 4040 continue; 4041 4042 if (c == '\0') 4043 dest[++j] = '/'; 4044 } while (c != '\0'); 4045 4046 dest[j] = '\0'; 4047 regs[rd] = (uintptr_t)dest; 4048 mstate->dtms_scratch_ptr += size; 4049 break; 4050 } 4051 4052 case DIF_SUBR_INET_NTOA: 4053 case DIF_SUBR_INET_NTOA6: 4054 case DIF_SUBR_INET_NTOP: { 4055 size_t size; 4056 int af, argi, i; 4057 char *base, *end; 4058 4059 if (subr == DIF_SUBR_INET_NTOP) { 4060 af = (int)tupregs[0].dttk_value; 4061 argi = 1; 4062 } else { 4063 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4064 argi = 0; 4065 } 4066 4067 if (af == AF_INET) { 4068 ipaddr_t ip4; 4069 uint8_t *ptr8, val; 4070 4071 /* 4072 * Safely load the IPv4 address. 4073 */ 4074 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4075 4076 /* 4077 * Check an IPv4 string will fit in scratch. 4078 */ 4079 size = INET_ADDRSTRLEN; 4080 if (!DTRACE_INSCRATCH(mstate, size)) { 4081 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4082 regs[rd] = NULL; 4083 break; 4084 } 4085 base = (char *)mstate->dtms_scratch_ptr; 4086 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4087 4088 /* 4089 * Stringify as a dotted decimal quad. 4090 */ 4091 *end-- = '\0'; 4092 ptr8 = (uint8_t *)&ip4; 4093 for (i = 3; i >= 0; i--) { 4094 val = ptr8[i]; 4095 4096 if (val == 0) { 4097 *end-- = '0'; 4098 } else { 4099 for (; val; val /= 10) { 4100 *end-- = '0' + (val % 10); 4101 } 4102 } 4103 4104 if (i > 0) 4105 *end-- = '.'; 4106 } 4107 ASSERT(end + 1 >= base); 4108 4109 } else if (af == AF_INET6) { 4110 struct in6_addr ip6; 4111 int firstzero, tryzero, numzero, v6end; 4112 uint16_t val; 4113 const char digits[] = "0123456789abcdef"; 4114 4115 /* 4116 * Stringify using RFC 1884 convention 2 - 16 bit 4117 * hexadecimal values with a zero-run compression. 4118 * Lower case hexadecimal digits are used. 4119 * eg, fe80::214:4fff:fe0b:76c8. 4120 * The IPv4 embedded form is returned for inet_ntop, 4121 * just the IPv4 string is returned for inet_ntoa6. 4122 */ 4123 4124 /* 4125 * Safely load the IPv6 address. 4126 */ 4127 dtrace_bcopy( 4128 (void *)(uintptr_t)tupregs[argi].dttk_value, 4129 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4130 4131 /* 4132 * Check an IPv6 string will fit in scratch. 4133 */ 4134 size = INET6_ADDRSTRLEN; 4135 if (!DTRACE_INSCRATCH(mstate, size)) { 4136 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4137 regs[rd] = NULL; 4138 break; 4139 } 4140 base = (char *)mstate->dtms_scratch_ptr; 4141 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4142 *end-- = '\0'; 4143 4144 /* 4145 * Find the longest run of 16 bit zero values 4146 * for the single allowed zero compression - "::". 4147 */ 4148 firstzero = -1; 4149 tryzero = -1; 4150 numzero = 1; 4151 for (i = 0; i < sizeof (struct in6_addr); i++) { 4152 if (ip6._S6_un._S6_u8[i] == 0 && 4153 tryzero == -1 && i % 2 == 0) { 4154 tryzero = i; 4155 continue; 4156 } 4157 4158 if (tryzero != -1 && 4159 (ip6._S6_un._S6_u8[i] != 0 || 4160 i == sizeof (struct in6_addr) - 1)) { 4161 4162 if (i - tryzero <= numzero) { 4163 tryzero = -1; 4164 continue; 4165 } 4166 4167 firstzero = tryzero; 4168 numzero = i - i % 2 - tryzero; 4169 tryzero = -1; 4170 4171 if (ip6._S6_un._S6_u8[i] == 0 && 4172 i == sizeof (struct in6_addr) - 1) 4173 numzero += 2; 4174 } 4175 } 4176 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4177 4178 /* 4179 * Check for an IPv4 embedded address. 4180 */ 4181 v6end = sizeof (struct in6_addr) - 2; 4182 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4183 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4184 for (i = sizeof (struct in6_addr) - 1; 4185 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4186 ASSERT(end >= base); 4187 4188 val = ip6._S6_un._S6_u8[i]; 4189 4190 if (val == 0) { 4191 *end-- = '0'; 4192 } else { 4193 for (; val; val /= 10) { 4194 *end-- = '0' + val % 10; 4195 } 4196 } 4197 4198 if (i > DTRACE_V4MAPPED_OFFSET) 4199 *end-- = '.'; 4200 } 4201 4202 if (subr == DIF_SUBR_INET_NTOA6) 4203 goto inetout; 4204 4205 /* 4206 * Set v6end to skip the IPv4 address that 4207 * we have already stringified. 4208 */ 4209 v6end = 10; 4210 } 4211 4212 /* 4213 * Build the IPv6 string by working through the 4214 * address in reverse. 4215 */ 4216 for (i = v6end; i >= 0; i -= 2) { 4217 ASSERT(end >= base); 4218 4219 if (i == firstzero + numzero - 2) { 4220 *end-- = ':'; 4221 *end-- = ':'; 4222 i -= numzero - 2; 4223 continue; 4224 } 4225 4226 if (i < 14 && i != firstzero - 2) 4227 *end-- = ':'; 4228 4229 val = (ip6._S6_un._S6_u8[i] << 8) + 4230 ip6._S6_un._S6_u8[i + 1]; 4231 4232 if (val == 0) { 4233 *end-- = '0'; 4234 } else { 4235 for (; val; val /= 16) { 4236 *end-- = digits[val % 16]; 4237 } 4238 } 4239 } 4240 ASSERT(end + 1 >= base); 4241 4242 } else { 4243 /* 4244 * The user didn't use AH_INET or AH_INET6. 4245 */ 4246 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4247 regs[rd] = NULL; 4248 break; 4249 } 4250 4251 inetout: regs[rd] = (uintptr_t)end + 1; 4252 mstate->dtms_scratch_ptr += size; 4253 break; 4254 } 4255 4256 } 4257 } 4258 4259 /* 4260 * Emulate the execution of DTrace IR instructions specified by the given 4261 * DIF object. This function is deliberately void of assertions as all of 4262 * the necessary checks are handled by a call to dtrace_difo_validate(). 4263 */ 4264 static uint64_t 4265 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4266 dtrace_vstate_t *vstate, dtrace_state_t *state) 4267 { 4268 const dif_instr_t *text = difo->dtdo_buf; 4269 const uint_t textlen = difo->dtdo_len; 4270 const char *strtab = difo->dtdo_strtab; 4271 const uint64_t *inttab = difo->dtdo_inttab; 4272 4273 uint64_t rval = 0; 4274 dtrace_statvar_t *svar; 4275 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4276 dtrace_difv_t *v; 4277 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4278 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4279 4280 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4281 uint64_t regs[DIF_DIR_NREGS]; 4282 uint64_t *tmp; 4283 4284 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4285 int64_t cc_r; 4286 uint_t pc = 0, id, opc; 4287 uint8_t ttop = 0; 4288 dif_instr_t instr; 4289 uint_t r1, r2, rd; 4290 4291 /* 4292 * We stash the current DIF object into the machine state: we need it 4293 * for subsequent access checking. 4294 */ 4295 mstate->dtms_difo = difo; 4296 4297 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4298 4299 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4300 opc = pc; 4301 4302 instr = text[pc++]; 4303 r1 = DIF_INSTR_R1(instr); 4304 r2 = DIF_INSTR_R2(instr); 4305 rd = DIF_INSTR_RD(instr); 4306 4307 switch (DIF_INSTR_OP(instr)) { 4308 case DIF_OP_OR: 4309 regs[rd] = regs[r1] | regs[r2]; 4310 break; 4311 case DIF_OP_XOR: 4312 regs[rd] = regs[r1] ^ regs[r2]; 4313 break; 4314 case DIF_OP_AND: 4315 regs[rd] = regs[r1] & regs[r2]; 4316 break; 4317 case DIF_OP_SLL: 4318 regs[rd] = regs[r1] << regs[r2]; 4319 break; 4320 case DIF_OP_SRL: 4321 regs[rd] = regs[r1] >> regs[r2]; 4322 break; 4323 case DIF_OP_SUB: 4324 regs[rd] = regs[r1] - regs[r2]; 4325 break; 4326 case DIF_OP_ADD: 4327 regs[rd] = regs[r1] + regs[r2]; 4328 break; 4329 case DIF_OP_MUL: 4330 regs[rd] = regs[r1] * regs[r2]; 4331 break; 4332 case DIF_OP_SDIV: 4333 if (regs[r2] == 0) { 4334 regs[rd] = 0; 4335 *flags |= CPU_DTRACE_DIVZERO; 4336 } else { 4337 regs[rd] = (int64_t)regs[r1] / 4338 (int64_t)regs[r2]; 4339 } 4340 break; 4341 4342 case DIF_OP_UDIV: 4343 if (regs[r2] == 0) { 4344 regs[rd] = 0; 4345 *flags |= CPU_DTRACE_DIVZERO; 4346 } else { 4347 regs[rd] = regs[r1] / regs[r2]; 4348 } 4349 break; 4350 4351 case DIF_OP_SREM: 4352 if (regs[r2] == 0) { 4353 regs[rd] = 0; 4354 *flags |= CPU_DTRACE_DIVZERO; 4355 } else { 4356 regs[rd] = (int64_t)regs[r1] % 4357 (int64_t)regs[r2]; 4358 } 4359 break; 4360 4361 case DIF_OP_UREM: 4362 if (regs[r2] == 0) { 4363 regs[rd] = 0; 4364 *flags |= CPU_DTRACE_DIVZERO; 4365 } else { 4366 regs[rd] = regs[r1] % regs[r2]; 4367 } 4368 break; 4369 4370 case DIF_OP_NOT: 4371 regs[rd] = ~regs[r1]; 4372 break; 4373 case DIF_OP_MOV: 4374 regs[rd] = regs[r1]; 4375 break; 4376 case DIF_OP_CMP: 4377 cc_r = regs[r1] - regs[r2]; 4378 cc_n = cc_r < 0; 4379 cc_z = cc_r == 0; 4380 cc_v = 0; 4381 cc_c = regs[r1] < regs[r2]; 4382 break; 4383 case DIF_OP_TST: 4384 cc_n = cc_v = cc_c = 0; 4385 cc_z = regs[r1] == 0; 4386 break; 4387 case DIF_OP_BA: 4388 pc = DIF_INSTR_LABEL(instr); 4389 break; 4390 case DIF_OP_BE: 4391 if (cc_z) 4392 pc = DIF_INSTR_LABEL(instr); 4393 break; 4394 case DIF_OP_BNE: 4395 if (cc_z == 0) 4396 pc = DIF_INSTR_LABEL(instr); 4397 break; 4398 case DIF_OP_BG: 4399 if ((cc_z | (cc_n ^ cc_v)) == 0) 4400 pc = DIF_INSTR_LABEL(instr); 4401 break; 4402 case DIF_OP_BGU: 4403 if ((cc_c | cc_z) == 0) 4404 pc = DIF_INSTR_LABEL(instr); 4405 break; 4406 case DIF_OP_BGE: 4407 if ((cc_n ^ cc_v) == 0) 4408 pc = DIF_INSTR_LABEL(instr); 4409 break; 4410 case DIF_OP_BGEU: 4411 if (cc_c == 0) 4412 pc = DIF_INSTR_LABEL(instr); 4413 break; 4414 case DIF_OP_BL: 4415 if (cc_n ^ cc_v) 4416 pc = DIF_INSTR_LABEL(instr); 4417 break; 4418 case DIF_OP_BLU: 4419 if (cc_c) 4420 pc = DIF_INSTR_LABEL(instr); 4421 break; 4422 case DIF_OP_BLE: 4423 if (cc_z | (cc_n ^ cc_v)) 4424 pc = DIF_INSTR_LABEL(instr); 4425 break; 4426 case DIF_OP_BLEU: 4427 if (cc_c | cc_z) 4428 pc = DIF_INSTR_LABEL(instr); 4429 break; 4430 case DIF_OP_RLDSB: 4431 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4432 *flags |= CPU_DTRACE_KPRIV; 4433 *illval = regs[r1]; 4434 break; 4435 } 4436 /*FALLTHROUGH*/ 4437 case DIF_OP_LDSB: 4438 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4439 break; 4440 case DIF_OP_RLDSH: 4441 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4442 *flags |= CPU_DTRACE_KPRIV; 4443 *illval = regs[r1]; 4444 break; 4445 } 4446 /*FALLTHROUGH*/ 4447 case DIF_OP_LDSH: 4448 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4449 break; 4450 case DIF_OP_RLDSW: 4451 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4452 *flags |= CPU_DTRACE_KPRIV; 4453 *illval = regs[r1]; 4454 break; 4455 } 4456 /*FALLTHROUGH*/ 4457 case DIF_OP_LDSW: 4458 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4459 break; 4460 case DIF_OP_RLDUB: 4461 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4462 *flags |= CPU_DTRACE_KPRIV; 4463 *illval = regs[r1]; 4464 break; 4465 } 4466 /*FALLTHROUGH*/ 4467 case DIF_OP_LDUB: 4468 regs[rd] = dtrace_load8(regs[r1]); 4469 break; 4470 case DIF_OP_RLDUH: 4471 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4472 *flags |= CPU_DTRACE_KPRIV; 4473 *illval = regs[r1]; 4474 break; 4475 } 4476 /*FALLTHROUGH*/ 4477 case DIF_OP_LDUH: 4478 regs[rd] = dtrace_load16(regs[r1]); 4479 break; 4480 case DIF_OP_RLDUW: 4481 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4482 *flags |= CPU_DTRACE_KPRIV; 4483 *illval = regs[r1]; 4484 break; 4485 } 4486 /*FALLTHROUGH*/ 4487 case DIF_OP_LDUW: 4488 regs[rd] = dtrace_load32(regs[r1]); 4489 break; 4490 case DIF_OP_RLDX: 4491 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 4492 *flags |= CPU_DTRACE_KPRIV; 4493 *illval = regs[r1]; 4494 break; 4495 } 4496 /*FALLTHROUGH*/ 4497 case DIF_OP_LDX: 4498 regs[rd] = dtrace_load64(regs[r1]); 4499 break; 4500 case DIF_OP_ULDSB: 4501 regs[rd] = (int8_t) 4502 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4503 break; 4504 case DIF_OP_ULDSH: 4505 regs[rd] = (int16_t) 4506 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4507 break; 4508 case DIF_OP_ULDSW: 4509 regs[rd] = (int32_t) 4510 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4511 break; 4512 case DIF_OP_ULDUB: 4513 regs[rd] = 4514 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4515 break; 4516 case DIF_OP_ULDUH: 4517 regs[rd] = 4518 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4519 break; 4520 case DIF_OP_ULDUW: 4521 regs[rd] = 4522 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4523 break; 4524 case DIF_OP_ULDX: 4525 regs[rd] = 4526 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 4527 break; 4528 case DIF_OP_RET: 4529 rval = regs[rd]; 4530 break; 4531 case DIF_OP_NOP: 4532 break; 4533 case DIF_OP_SETX: 4534 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 4535 break; 4536 case DIF_OP_SETS: 4537 regs[rd] = (uint64_t)(uintptr_t) 4538 (strtab + DIF_INSTR_STRING(instr)); 4539 break; 4540 case DIF_OP_SCMP: { 4541 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 4542 uintptr_t s1 = regs[r1]; 4543 uintptr_t s2 = regs[r2]; 4544 4545 if (s1 != NULL && 4546 !dtrace_strcanload(s1, sz, mstate, vstate)) 4547 break; 4548 if (s2 != NULL && 4549 !dtrace_strcanload(s2, sz, mstate, vstate)) 4550 break; 4551 4552 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 4553 4554 cc_n = cc_r < 0; 4555 cc_z = cc_r == 0; 4556 cc_v = cc_c = 0; 4557 break; 4558 } 4559 case DIF_OP_LDGA: 4560 regs[rd] = dtrace_dif_variable(mstate, state, 4561 r1, regs[r2]); 4562 break; 4563 case DIF_OP_LDGS: 4564 id = DIF_INSTR_VAR(instr); 4565 4566 if (id >= DIF_VAR_OTHER_UBASE) { 4567 uintptr_t a; 4568 4569 id -= DIF_VAR_OTHER_UBASE; 4570 svar = vstate->dtvs_globals[id]; 4571 ASSERT(svar != NULL); 4572 v = &svar->dtsv_var; 4573 4574 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 4575 regs[rd] = svar->dtsv_data; 4576 break; 4577 } 4578 4579 a = (uintptr_t)svar->dtsv_data; 4580 4581 if (*(uint8_t *)a == UINT8_MAX) { 4582 /* 4583 * If the 0th byte is set to UINT8_MAX 4584 * then this is to be treated as a 4585 * reference to a NULL variable. 4586 */ 4587 regs[rd] = NULL; 4588 } else { 4589 regs[rd] = a + sizeof (uint64_t); 4590 } 4591 4592 break; 4593 } 4594 4595 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 4596 break; 4597 4598 case DIF_OP_STGS: 4599 id = DIF_INSTR_VAR(instr); 4600 4601 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4602 id -= DIF_VAR_OTHER_UBASE; 4603 4604 svar = vstate->dtvs_globals[id]; 4605 ASSERT(svar != NULL); 4606 v = &svar->dtsv_var; 4607 4608 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4609 uintptr_t a = (uintptr_t)svar->dtsv_data; 4610 4611 ASSERT(a != NULL); 4612 ASSERT(svar->dtsv_size != 0); 4613 4614 if (regs[rd] == NULL) { 4615 *(uint8_t *)a = UINT8_MAX; 4616 break; 4617 } else { 4618 *(uint8_t *)a = 0; 4619 a += sizeof (uint64_t); 4620 } 4621 if (!dtrace_vcanload( 4622 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4623 mstate, vstate)) 4624 break; 4625 4626 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4627 (void *)a, &v->dtdv_type); 4628 break; 4629 } 4630 4631 svar->dtsv_data = regs[rd]; 4632 break; 4633 4634 case DIF_OP_LDTA: 4635 /* 4636 * There are no DTrace built-in thread-local arrays at 4637 * present. This opcode is saved for future work. 4638 */ 4639 *flags |= CPU_DTRACE_ILLOP; 4640 regs[rd] = 0; 4641 break; 4642 4643 case DIF_OP_LDLS: 4644 id = DIF_INSTR_VAR(instr); 4645 4646 if (id < DIF_VAR_OTHER_UBASE) { 4647 /* 4648 * For now, this has no meaning. 4649 */ 4650 regs[rd] = 0; 4651 break; 4652 } 4653 4654 id -= DIF_VAR_OTHER_UBASE; 4655 4656 ASSERT(id < vstate->dtvs_nlocals); 4657 ASSERT(vstate->dtvs_locals != NULL); 4658 4659 svar = vstate->dtvs_locals[id]; 4660 ASSERT(svar != NULL); 4661 v = &svar->dtsv_var; 4662 4663 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4664 uintptr_t a = (uintptr_t)svar->dtsv_data; 4665 size_t sz = v->dtdv_type.dtdt_size; 4666 4667 sz += sizeof (uint64_t); 4668 ASSERT(svar->dtsv_size == NCPU * sz); 4669 a += CPU->cpu_id * sz; 4670 4671 if (*(uint8_t *)a == UINT8_MAX) { 4672 /* 4673 * If the 0th byte is set to UINT8_MAX 4674 * then this is to be treated as a 4675 * reference to a NULL variable. 4676 */ 4677 regs[rd] = NULL; 4678 } else { 4679 regs[rd] = a + sizeof (uint64_t); 4680 } 4681 4682 break; 4683 } 4684 4685 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4686 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4687 regs[rd] = tmp[CPU->cpu_id]; 4688 break; 4689 4690 case DIF_OP_STLS: 4691 id = DIF_INSTR_VAR(instr); 4692 4693 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4694 id -= DIF_VAR_OTHER_UBASE; 4695 ASSERT(id < vstate->dtvs_nlocals); 4696 4697 ASSERT(vstate->dtvs_locals != NULL); 4698 svar = vstate->dtvs_locals[id]; 4699 ASSERT(svar != NULL); 4700 v = &svar->dtsv_var; 4701 4702 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4703 uintptr_t a = (uintptr_t)svar->dtsv_data; 4704 size_t sz = v->dtdv_type.dtdt_size; 4705 4706 sz += sizeof (uint64_t); 4707 ASSERT(svar->dtsv_size == NCPU * sz); 4708 a += CPU->cpu_id * sz; 4709 4710 if (regs[rd] == NULL) { 4711 *(uint8_t *)a = UINT8_MAX; 4712 break; 4713 } else { 4714 *(uint8_t *)a = 0; 4715 a += sizeof (uint64_t); 4716 } 4717 4718 if (!dtrace_vcanload( 4719 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4720 mstate, vstate)) 4721 break; 4722 4723 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4724 (void *)a, &v->dtdv_type); 4725 break; 4726 } 4727 4728 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4729 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4730 tmp[CPU->cpu_id] = regs[rd]; 4731 break; 4732 4733 case DIF_OP_LDTS: { 4734 dtrace_dynvar_t *dvar; 4735 dtrace_key_t *key; 4736 4737 id = DIF_INSTR_VAR(instr); 4738 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4739 id -= DIF_VAR_OTHER_UBASE; 4740 v = &vstate->dtvs_tlocals[id]; 4741 4742 key = &tupregs[DIF_DTR_NREGS]; 4743 key[0].dttk_value = (uint64_t)id; 4744 key[0].dttk_size = 0; 4745 DTRACE_TLS_THRKEY(key[1].dttk_value); 4746 key[1].dttk_size = 0; 4747 4748 dvar = dtrace_dynvar(dstate, 2, key, 4749 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 4750 mstate, vstate); 4751 4752 if (dvar == NULL) { 4753 regs[rd] = 0; 4754 break; 4755 } 4756 4757 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4758 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4759 } else { 4760 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4761 } 4762 4763 break; 4764 } 4765 4766 case DIF_OP_STTS: { 4767 dtrace_dynvar_t *dvar; 4768 dtrace_key_t *key; 4769 4770 id = DIF_INSTR_VAR(instr); 4771 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4772 id -= DIF_VAR_OTHER_UBASE; 4773 4774 key = &tupregs[DIF_DTR_NREGS]; 4775 key[0].dttk_value = (uint64_t)id; 4776 key[0].dttk_size = 0; 4777 DTRACE_TLS_THRKEY(key[1].dttk_value); 4778 key[1].dttk_size = 0; 4779 v = &vstate->dtvs_tlocals[id]; 4780 4781 dvar = dtrace_dynvar(dstate, 2, key, 4782 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4783 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4784 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4785 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 4786 4787 /* 4788 * Given that we're storing to thread-local data, 4789 * we need to flush our predicate cache. 4790 */ 4791 curthread->t_predcache = NULL; 4792 4793 if (dvar == NULL) 4794 break; 4795 4796 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4797 if (!dtrace_vcanload( 4798 (void *)(uintptr_t)regs[rd], 4799 &v->dtdv_type, mstate, vstate)) 4800 break; 4801 4802 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4803 dvar->dtdv_data, &v->dtdv_type); 4804 } else { 4805 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4806 } 4807 4808 break; 4809 } 4810 4811 case DIF_OP_SRA: 4812 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 4813 break; 4814 4815 case DIF_OP_CALL: 4816 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 4817 regs, tupregs, ttop, mstate, state); 4818 break; 4819 4820 case DIF_OP_PUSHTR: 4821 if (ttop == DIF_DTR_NREGS) { 4822 *flags |= CPU_DTRACE_TUPOFLOW; 4823 break; 4824 } 4825 4826 if (r1 == DIF_TYPE_STRING) { 4827 /* 4828 * If this is a string type and the size is 0, 4829 * we'll use the system-wide default string 4830 * size. Note that we are _not_ looking at 4831 * the value of the DTRACEOPT_STRSIZE option; 4832 * had this been set, we would expect to have 4833 * a non-zero size value in the "pushtr". 4834 */ 4835 tupregs[ttop].dttk_size = 4836 dtrace_strlen((char *)(uintptr_t)regs[rd], 4837 regs[r2] ? regs[r2] : 4838 dtrace_strsize_default) + 1; 4839 } else { 4840 tupregs[ttop].dttk_size = regs[r2]; 4841 } 4842 4843 tupregs[ttop++].dttk_value = regs[rd]; 4844 break; 4845 4846 case DIF_OP_PUSHTV: 4847 if (ttop == DIF_DTR_NREGS) { 4848 *flags |= CPU_DTRACE_TUPOFLOW; 4849 break; 4850 } 4851 4852 tupregs[ttop].dttk_value = regs[rd]; 4853 tupregs[ttop++].dttk_size = 0; 4854 break; 4855 4856 case DIF_OP_POPTS: 4857 if (ttop != 0) 4858 ttop--; 4859 break; 4860 4861 case DIF_OP_FLUSHTS: 4862 ttop = 0; 4863 break; 4864 4865 case DIF_OP_LDGAA: 4866 case DIF_OP_LDTAA: { 4867 dtrace_dynvar_t *dvar; 4868 dtrace_key_t *key = tupregs; 4869 uint_t nkeys = ttop; 4870 4871 id = DIF_INSTR_VAR(instr); 4872 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4873 id -= DIF_VAR_OTHER_UBASE; 4874 4875 key[nkeys].dttk_value = (uint64_t)id; 4876 key[nkeys++].dttk_size = 0; 4877 4878 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 4879 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 4880 key[nkeys++].dttk_size = 0; 4881 v = &vstate->dtvs_tlocals[id]; 4882 } else { 4883 v = &vstate->dtvs_globals[id]->dtsv_var; 4884 } 4885 4886 dvar = dtrace_dynvar(dstate, nkeys, key, 4887 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4888 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4889 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 4890 4891 if (dvar == NULL) { 4892 regs[rd] = 0; 4893 break; 4894 } 4895 4896 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4897 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4898 } else { 4899 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4900 } 4901 4902 break; 4903 } 4904 4905 case DIF_OP_STGAA: 4906 case DIF_OP_STTAA: { 4907 dtrace_dynvar_t *dvar; 4908 dtrace_key_t *key = tupregs; 4909 uint_t nkeys = ttop; 4910 4911 id = DIF_INSTR_VAR(instr); 4912 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4913 id -= DIF_VAR_OTHER_UBASE; 4914 4915 key[nkeys].dttk_value = (uint64_t)id; 4916 key[nkeys++].dttk_size = 0; 4917 4918 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 4919 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 4920 key[nkeys++].dttk_size = 0; 4921 v = &vstate->dtvs_tlocals[id]; 4922 } else { 4923 v = &vstate->dtvs_globals[id]->dtsv_var; 4924 } 4925 4926 dvar = dtrace_dynvar(dstate, nkeys, key, 4927 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4928 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4929 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4930 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 4931 4932 if (dvar == NULL) 4933 break; 4934 4935 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4936 if (!dtrace_vcanload( 4937 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4938 mstate, vstate)) 4939 break; 4940 4941 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4942 dvar->dtdv_data, &v->dtdv_type); 4943 } else { 4944 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4945 } 4946 4947 break; 4948 } 4949 4950 case DIF_OP_ALLOCS: { 4951 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4952 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 4953 4954 /* 4955 * Rounding up the user allocation size could have 4956 * overflowed large, bogus allocations (like -1ULL) to 4957 * 0. 4958 */ 4959 if (size < regs[r1] || 4960 !DTRACE_INSCRATCH(mstate, size)) { 4961 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4962 regs[rd] = NULL; 4963 break; 4964 } 4965 4966 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 4967 mstate->dtms_scratch_ptr += size; 4968 regs[rd] = ptr; 4969 break; 4970 } 4971 4972 case DIF_OP_COPYS: 4973 if (!dtrace_canstore(regs[rd], regs[r2], 4974 mstate, vstate)) { 4975 *flags |= CPU_DTRACE_BADADDR; 4976 *illval = regs[rd]; 4977 break; 4978 } 4979 4980 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 4981 break; 4982 4983 dtrace_bcopy((void *)(uintptr_t)regs[r1], 4984 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 4985 break; 4986 4987 case DIF_OP_STB: 4988 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 4989 *flags |= CPU_DTRACE_BADADDR; 4990 *illval = regs[rd]; 4991 break; 4992 } 4993 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 4994 break; 4995 4996 case DIF_OP_STH: 4997 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 4998 *flags |= CPU_DTRACE_BADADDR; 4999 *illval = regs[rd]; 5000 break; 5001 } 5002 if (regs[rd] & 1) { 5003 *flags |= CPU_DTRACE_BADALIGN; 5004 *illval = regs[rd]; 5005 break; 5006 } 5007 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5008 break; 5009 5010 case DIF_OP_STW: 5011 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5012 *flags |= CPU_DTRACE_BADADDR; 5013 *illval = regs[rd]; 5014 break; 5015 } 5016 if (regs[rd] & 3) { 5017 *flags |= CPU_DTRACE_BADALIGN; 5018 *illval = regs[rd]; 5019 break; 5020 } 5021 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5022 break; 5023 5024 case DIF_OP_STX: 5025 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5026 *flags |= CPU_DTRACE_BADADDR; 5027 *illval = regs[rd]; 5028 break; 5029 } 5030 if (regs[rd] & 7) { 5031 *flags |= CPU_DTRACE_BADALIGN; 5032 *illval = regs[rd]; 5033 break; 5034 } 5035 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5036 break; 5037 } 5038 } 5039 5040 if (!(*flags & CPU_DTRACE_FAULT)) 5041 return (rval); 5042 5043 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5044 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5045 5046 return (0); 5047 } 5048 5049 static void 5050 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5051 { 5052 dtrace_probe_t *probe = ecb->dte_probe; 5053 dtrace_provider_t *prov = probe->dtpr_provider; 5054 char c[DTRACE_FULLNAMELEN + 80], *str; 5055 char *msg = "dtrace: breakpoint action at probe "; 5056 char *ecbmsg = " (ecb "; 5057 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5058 uintptr_t val = (uintptr_t)ecb; 5059 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5060 5061 if (dtrace_destructive_disallow) 5062 return; 5063 5064 /* 5065 * It's impossible to be taking action on the NULL probe. 5066 */ 5067 ASSERT(probe != NULL); 5068 5069 /* 5070 * This is a poor man's (destitute man's?) sprintf(): we want to 5071 * print the provider name, module name, function name and name of 5072 * the probe, along with the hex address of the ECB with the breakpoint 5073 * action -- all of which we must place in the character buffer by 5074 * hand. 5075 */ 5076 while (*msg != '\0') 5077 c[i++] = *msg++; 5078 5079 for (str = prov->dtpv_name; *str != '\0'; str++) 5080 c[i++] = *str; 5081 c[i++] = ':'; 5082 5083 for (str = probe->dtpr_mod; *str != '\0'; str++) 5084 c[i++] = *str; 5085 c[i++] = ':'; 5086 5087 for (str = probe->dtpr_func; *str != '\0'; str++) 5088 c[i++] = *str; 5089 c[i++] = ':'; 5090 5091 for (str = probe->dtpr_name; *str != '\0'; str++) 5092 c[i++] = *str; 5093 5094 while (*ecbmsg != '\0') 5095 c[i++] = *ecbmsg++; 5096 5097 while (shift >= 0) { 5098 mask = (uintptr_t)0xf << shift; 5099 5100 if (val >= ((uintptr_t)1 << shift)) 5101 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5102 shift -= 4; 5103 } 5104 5105 c[i++] = ')'; 5106 c[i] = '\0'; 5107 5108 debug_enter(c); 5109 } 5110 5111 static void 5112 dtrace_action_panic(dtrace_ecb_t *ecb) 5113 { 5114 dtrace_probe_t *probe = ecb->dte_probe; 5115 5116 /* 5117 * It's impossible to be taking action on the NULL probe. 5118 */ 5119 ASSERT(probe != NULL); 5120 5121 if (dtrace_destructive_disallow) 5122 return; 5123 5124 if (dtrace_panicked != NULL) 5125 return; 5126 5127 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5128 return; 5129 5130 /* 5131 * We won the right to panic. (We want to be sure that only one 5132 * thread calls panic() from dtrace_probe(), and that panic() is 5133 * called exactly once.) 5134 */ 5135 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5136 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5137 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5138 } 5139 5140 static void 5141 dtrace_action_raise(uint64_t sig) 5142 { 5143 if (dtrace_destructive_disallow) 5144 return; 5145 5146 if (sig >= NSIG) { 5147 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5148 return; 5149 } 5150 5151 /* 5152 * raise() has a queue depth of 1 -- we ignore all subsequent 5153 * invocations of the raise() action. 5154 */ 5155 if (curthread->t_dtrace_sig == 0) 5156 curthread->t_dtrace_sig = (uint8_t)sig; 5157 5158 curthread->t_sig_check = 1; 5159 aston(curthread); 5160 } 5161 5162 static void 5163 dtrace_action_stop(void) 5164 { 5165 if (dtrace_destructive_disallow) 5166 return; 5167 5168 if (!curthread->t_dtrace_stop) { 5169 curthread->t_dtrace_stop = 1; 5170 curthread->t_sig_check = 1; 5171 aston(curthread); 5172 } 5173 } 5174 5175 static void 5176 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5177 { 5178 hrtime_t now; 5179 volatile uint16_t *flags; 5180 cpu_t *cpu = CPU; 5181 5182 if (dtrace_destructive_disallow) 5183 return; 5184 5185 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5186 5187 now = dtrace_gethrtime(); 5188 5189 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5190 /* 5191 * We need to advance the mark to the current time. 5192 */ 5193 cpu->cpu_dtrace_chillmark = now; 5194 cpu->cpu_dtrace_chilled = 0; 5195 } 5196 5197 /* 5198 * Now check to see if the requested chill time would take us over 5199 * the maximum amount of time allowed in the chill interval. (Or 5200 * worse, if the calculation itself induces overflow.) 5201 */ 5202 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5203 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5204 *flags |= CPU_DTRACE_ILLOP; 5205 return; 5206 } 5207 5208 while (dtrace_gethrtime() - now < val) 5209 continue; 5210 5211 /* 5212 * Normally, we assure that the value of the variable "timestamp" does 5213 * not change within an ECB. The presence of chill() represents an 5214 * exception to this rule, however. 5215 */ 5216 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5217 cpu->cpu_dtrace_chilled += val; 5218 } 5219 5220 static void 5221 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5222 uint64_t *buf, uint64_t arg) 5223 { 5224 int nframes = DTRACE_USTACK_NFRAMES(arg); 5225 int strsize = DTRACE_USTACK_STRSIZE(arg); 5226 uint64_t *pcs = &buf[1], *fps; 5227 char *str = (char *)&pcs[nframes]; 5228 int size, offs = 0, i, j; 5229 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5230 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5231 char *sym; 5232 5233 /* 5234 * Should be taking a faster path if string space has not been 5235 * allocated. 5236 */ 5237 ASSERT(strsize != 0); 5238 5239 /* 5240 * We will first allocate some temporary space for the frame pointers. 5241 */ 5242 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5243 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5244 (nframes * sizeof (uint64_t)); 5245 5246 if (!DTRACE_INSCRATCH(mstate, size)) { 5247 /* 5248 * Not enough room for our frame pointers -- need to indicate 5249 * that we ran out of scratch space. 5250 */ 5251 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5252 return; 5253 } 5254 5255 mstate->dtms_scratch_ptr += size; 5256 saved = mstate->dtms_scratch_ptr; 5257 5258 /* 5259 * Now get a stack with both program counters and frame pointers. 5260 */ 5261 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5262 dtrace_getufpstack(buf, fps, nframes + 1); 5263 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5264 5265 /* 5266 * If that faulted, we're cooked. 5267 */ 5268 if (*flags & CPU_DTRACE_FAULT) 5269 goto out; 5270 5271 /* 5272 * Now we want to walk up the stack, calling the USTACK helper. For 5273 * each iteration, we restore the scratch pointer. 5274 */ 5275 for (i = 0; i < nframes; i++) { 5276 mstate->dtms_scratch_ptr = saved; 5277 5278 if (offs >= strsize) 5279 break; 5280 5281 sym = (char *)(uintptr_t)dtrace_helper( 5282 DTRACE_HELPER_ACTION_USTACK, 5283 mstate, state, pcs[i], fps[i]); 5284 5285 /* 5286 * If we faulted while running the helper, we're going to 5287 * clear the fault and null out the corresponding string. 5288 */ 5289 if (*flags & CPU_DTRACE_FAULT) { 5290 *flags &= ~CPU_DTRACE_FAULT; 5291 str[offs++] = '\0'; 5292 continue; 5293 } 5294 5295 if (sym == NULL) { 5296 str[offs++] = '\0'; 5297 continue; 5298 } 5299 5300 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5301 5302 /* 5303 * Now copy in the string that the helper returned to us. 5304 */ 5305 for (j = 0; offs + j < strsize; j++) { 5306 if ((str[offs + j] = sym[j]) == '\0') 5307 break; 5308 } 5309 5310 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5311 5312 offs += j + 1; 5313 } 5314 5315 if (offs >= strsize) { 5316 /* 5317 * If we didn't have room for all of the strings, we don't 5318 * abort processing -- this needn't be a fatal error -- but we 5319 * still want to increment a counter (dts_stkstroverflows) to 5320 * allow this condition to be warned about. (If this is from 5321 * a jstack() action, it is easily tuned via jstackstrsize.) 5322 */ 5323 dtrace_error(&state->dts_stkstroverflows); 5324 } 5325 5326 while (offs < strsize) 5327 str[offs++] = '\0'; 5328 5329 out: 5330 mstate->dtms_scratch_ptr = old; 5331 } 5332 5333 /* 5334 * If you're looking for the epicenter of DTrace, you just found it. This 5335 * is the function called by the provider to fire a probe -- from which all 5336 * subsequent probe-context DTrace activity emanates. 5337 */ 5338 void 5339 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5340 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5341 { 5342 processorid_t cpuid; 5343 dtrace_icookie_t cookie; 5344 dtrace_probe_t *probe; 5345 dtrace_mstate_t mstate; 5346 dtrace_ecb_t *ecb; 5347 dtrace_action_t *act; 5348 intptr_t offs; 5349 size_t size; 5350 int vtime, onintr; 5351 volatile uint16_t *flags; 5352 hrtime_t now; 5353 5354 /* 5355 * Kick out immediately if this CPU is still being born (in which case 5356 * curthread will be set to -1) 5357 */ 5358 if ((uintptr_t)curthread & 1) 5359 return; 5360 5361 cookie = dtrace_interrupt_disable(); 5362 probe = dtrace_probes[id - 1]; 5363 cpuid = CPU->cpu_id; 5364 onintr = CPU_ON_INTR(CPU); 5365 5366 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5367 probe->dtpr_predcache == curthread->t_predcache) { 5368 /* 5369 * We have hit in the predicate cache; we know that 5370 * this predicate would evaluate to be false. 5371 */ 5372 dtrace_interrupt_enable(cookie); 5373 return; 5374 } 5375 5376 if (panic_quiesce) { 5377 /* 5378 * We don't trace anything if we're panicking. 5379 */ 5380 dtrace_interrupt_enable(cookie); 5381 return; 5382 } 5383 5384 now = dtrace_gethrtime(); 5385 vtime = dtrace_vtime_references != 0; 5386 5387 if (vtime && curthread->t_dtrace_start) 5388 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5389 5390 mstate.dtms_difo = NULL; 5391 mstate.dtms_probe = probe; 5392 mstate.dtms_strtok = NULL; 5393 mstate.dtms_arg[0] = arg0; 5394 mstate.dtms_arg[1] = arg1; 5395 mstate.dtms_arg[2] = arg2; 5396 mstate.dtms_arg[3] = arg3; 5397 mstate.dtms_arg[4] = arg4; 5398 5399 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5400 5401 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5402 dtrace_predicate_t *pred = ecb->dte_predicate; 5403 dtrace_state_t *state = ecb->dte_state; 5404 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5405 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5406 dtrace_vstate_t *vstate = &state->dts_vstate; 5407 dtrace_provider_t *prov = probe->dtpr_provider; 5408 int committed = 0; 5409 caddr_t tomax; 5410 5411 /* 5412 * A little subtlety with the following (seemingly innocuous) 5413 * declaration of the automatic 'val': by looking at the 5414 * code, you might think that it could be declared in the 5415 * action processing loop, below. (That is, it's only used in 5416 * the action processing loop.) However, it must be declared 5417 * out of that scope because in the case of DIF expression 5418 * arguments to aggregating actions, one iteration of the 5419 * action loop will use the last iteration's value. 5420 */ 5421 #ifdef lint 5422 uint64_t val = 0; 5423 #else 5424 uint64_t val; 5425 #endif 5426 5427 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5428 *flags &= ~CPU_DTRACE_ERROR; 5429 5430 if (prov == dtrace_provider) { 5431 /* 5432 * If dtrace itself is the provider of this probe, 5433 * we're only going to continue processing the ECB if 5434 * arg0 (the dtrace_state_t) is equal to the ECB's 5435 * creating state. (This prevents disjoint consumers 5436 * from seeing one another's metaprobes.) 5437 */ 5438 if (arg0 != (uint64_t)(uintptr_t)state) 5439 continue; 5440 } 5441 5442 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5443 /* 5444 * We're not currently active. If our provider isn't 5445 * the dtrace pseudo provider, we're not interested. 5446 */ 5447 if (prov != dtrace_provider) 5448 continue; 5449 5450 /* 5451 * Now we must further check if we are in the BEGIN 5452 * probe. If we are, we will only continue processing 5453 * if we're still in WARMUP -- if one BEGIN enabling 5454 * has invoked the exit() action, we don't want to 5455 * evaluate subsequent BEGIN enablings. 5456 */ 5457 if (probe->dtpr_id == dtrace_probeid_begin && 5458 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5459 ASSERT(state->dts_activity == 5460 DTRACE_ACTIVITY_DRAINING); 5461 continue; 5462 } 5463 } 5464 5465 if (ecb->dte_cond) { 5466 /* 5467 * If the dte_cond bits indicate that this 5468 * consumer is only allowed to see user-mode firings 5469 * of this probe, call the provider's dtps_usermode() 5470 * entry point to check that the probe was fired 5471 * while in a user context. Skip this ECB if that's 5472 * not the case. 5473 */ 5474 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 5475 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 5476 probe->dtpr_id, probe->dtpr_arg) == 0) 5477 continue; 5478 5479 /* 5480 * This is more subtle than it looks. We have to be 5481 * absolutely certain that CRED() isn't going to 5482 * change out from under us so it's only legit to 5483 * examine that structure if we're in constrained 5484 * situations. Currently, the only times we'll this 5485 * check is if a non-super-user has enabled the 5486 * profile or syscall providers -- providers that 5487 * allow visibility of all processes. For the 5488 * profile case, the check above will ensure that 5489 * we're examining a user context. 5490 */ 5491 if (ecb->dte_cond & DTRACE_COND_OWNER) { 5492 cred_t *cr; 5493 cred_t *s_cr = 5494 ecb->dte_state->dts_cred.dcr_cred; 5495 proc_t *proc; 5496 5497 ASSERT(s_cr != NULL); 5498 5499 if ((cr = CRED()) == NULL || 5500 s_cr->cr_uid != cr->cr_uid || 5501 s_cr->cr_uid != cr->cr_ruid || 5502 s_cr->cr_uid != cr->cr_suid || 5503 s_cr->cr_gid != cr->cr_gid || 5504 s_cr->cr_gid != cr->cr_rgid || 5505 s_cr->cr_gid != cr->cr_sgid || 5506 (proc = ttoproc(curthread)) == NULL || 5507 (proc->p_flag & SNOCD)) 5508 continue; 5509 } 5510 5511 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 5512 cred_t *cr; 5513 cred_t *s_cr = 5514 ecb->dte_state->dts_cred.dcr_cred; 5515 5516 ASSERT(s_cr != NULL); 5517 5518 if ((cr = CRED()) == NULL || 5519 s_cr->cr_zone->zone_id != 5520 cr->cr_zone->zone_id) 5521 continue; 5522 } 5523 } 5524 5525 if (now - state->dts_alive > dtrace_deadman_timeout) { 5526 /* 5527 * We seem to be dead. Unless we (a) have kernel 5528 * destructive permissions (b) have expicitly enabled 5529 * destructive actions and (c) destructive actions have 5530 * not been disabled, we're going to transition into 5531 * the KILLED state, from which no further processing 5532 * on this state will be performed. 5533 */ 5534 if (!dtrace_priv_kernel_destructive(state) || 5535 !state->dts_cred.dcr_destructive || 5536 dtrace_destructive_disallow) { 5537 void *activity = &state->dts_activity; 5538 dtrace_activity_t current; 5539 5540 do { 5541 current = state->dts_activity; 5542 } while (dtrace_cas32(activity, current, 5543 DTRACE_ACTIVITY_KILLED) != current); 5544 5545 continue; 5546 } 5547 } 5548 5549 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 5550 ecb->dte_alignment, state, &mstate)) < 0) 5551 continue; 5552 5553 tomax = buf->dtb_tomax; 5554 ASSERT(tomax != NULL); 5555 5556 if (ecb->dte_size != 0) 5557 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 5558 5559 mstate.dtms_epid = ecb->dte_epid; 5560 mstate.dtms_present |= DTRACE_MSTATE_EPID; 5561 5562 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 5563 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 5564 else 5565 mstate.dtms_access = 0; 5566 5567 if (pred != NULL) { 5568 dtrace_difo_t *dp = pred->dtp_difo; 5569 int rval; 5570 5571 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 5572 5573 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 5574 dtrace_cacheid_t cid = probe->dtpr_predcache; 5575 5576 if (cid != DTRACE_CACHEIDNONE && !onintr) { 5577 /* 5578 * Update the predicate cache... 5579 */ 5580 ASSERT(cid == pred->dtp_cacheid); 5581 curthread->t_predcache = cid; 5582 } 5583 5584 continue; 5585 } 5586 } 5587 5588 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 5589 act != NULL; act = act->dta_next) { 5590 size_t valoffs; 5591 dtrace_difo_t *dp; 5592 dtrace_recdesc_t *rec = &act->dta_rec; 5593 5594 size = rec->dtrd_size; 5595 valoffs = offs + rec->dtrd_offset; 5596 5597 if (DTRACEACT_ISAGG(act->dta_kind)) { 5598 uint64_t v = 0xbad; 5599 dtrace_aggregation_t *agg; 5600 5601 agg = (dtrace_aggregation_t *)act; 5602 5603 if ((dp = act->dta_difo) != NULL) 5604 v = dtrace_dif_emulate(dp, 5605 &mstate, vstate, state); 5606 5607 if (*flags & CPU_DTRACE_ERROR) 5608 continue; 5609 5610 /* 5611 * Note that we always pass the expression 5612 * value from the previous iteration of the 5613 * action loop. This value will only be used 5614 * if there is an expression argument to the 5615 * aggregating action, denoted by the 5616 * dtag_hasarg field. 5617 */ 5618 dtrace_aggregate(agg, buf, 5619 offs, aggbuf, v, val); 5620 continue; 5621 } 5622 5623 switch (act->dta_kind) { 5624 case DTRACEACT_STOP: 5625 if (dtrace_priv_proc_destructive(state)) 5626 dtrace_action_stop(); 5627 continue; 5628 5629 case DTRACEACT_BREAKPOINT: 5630 if (dtrace_priv_kernel_destructive(state)) 5631 dtrace_action_breakpoint(ecb); 5632 continue; 5633 5634 case DTRACEACT_PANIC: 5635 if (dtrace_priv_kernel_destructive(state)) 5636 dtrace_action_panic(ecb); 5637 continue; 5638 5639 case DTRACEACT_STACK: 5640 if (!dtrace_priv_kernel(state)) 5641 continue; 5642 5643 dtrace_getpcstack((pc_t *)(tomax + valoffs), 5644 size / sizeof (pc_t), probe->dtpr_aframes, 5645 DTRACE_ANCHORED(probe) ? NULL : 5646 (uint32_t *)arg0); 5647 5648 continue; 5649 5650 case DTRACEACT_JSTACK: 5651 case DTRACEACT_USTACK: 5652 if (!dtrace_priv_proc(state)) 5653 continue; 5654 5655 /* 5656 * See comment in DIF_VAR_PID. 5657 */ 5658 if (DTRACE_ANCHORED(mstate.dtms_probe) && 5659 CPU_ON_INTR(CPU)) { 5660 int depth = DTRACE_USTACK_NFRAMES( 5661 rec->dtrd_arg) + 1; 5662 5663 dtrace_bzero((void *)(tomax + valoffs), 5664 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 5665 + depth * sizeof (uint64_t)); 5666 5667 continue; 5668 } 5669 5670 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 5671 curproc->p_dtrace_helpers != NULL) { 5672 /* 5673 * This is the slow path -- we have 5674 * allocated string space, and we're 5675 * getting the stack of a process that 5676 * has helpers. Call into a separate 5677 * routine to perform this processing. 5678 */ 5679 dtrace_action_ustack(&mstate, state, 5680 (uint64_t *)(tomax + valoffs), 5681 rec->dtrd_arg); 5682 continue; 5683 } 5684 5685 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5686 dtrace_getupcstack((uint64_t *) 5687 (tomax + valoffs), 5688 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 5689 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5690 continue; 5691 5692 default: 5693 break; 5694 } 5695 5696 dp = act->dta_difo; 5697 ASSERT(dp != NULL); 5698 5699 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 5700 5701 if (*flags & CPU_DTRACE_ERROR) 5702 continue; 5703 5704 switch (act->dta_kind) { 5705 case DTRACEACT_SPECULATE: 5706 ASSERT(buf == &state->dts_buffer[cpuid]); 5707 buf = dtrace_speculation_buffer(state, 5708 cpuid, val); 5709 5710 if (buf == NULL) { 5711 *flags |= CPU_DTRACE_DROP; 5712 continue; 5713 } 5714 5715 offs = dtrace_buffer_reserve(buf, 5716 ecb->dte_needed, ecb->dte_alignment, 5717 state, NULL); 5718 5719 if (offs < 0) { 5720 *flags |= CPU_DTRACE_DROP; 5721 continue; 5722 } 5723 5724 tomax = buf->dtb_tomax; 5725 ASSERT(tomax != NULL); 5726 5727 if (ecb->dte_size != 0) 5728 DTRACE_STORE(uint32_t, tomax, offs, 5729 ecb->dte_epid); 5730 continue; 5731 5732 case DTRACEACT_CHILL: 5733 if (dtrace_priv_kernel_destructive(state)) 5734 dtrace_action_chill(&mstate, val); 5735 continue; 5736 5737 case DTRACEACT_RAISE: 5738 if (dtrace_priv_proc_destructive(state)) 5739 dtrace_action_raise(val); 5740 continue; 5741 5742 case DTRACEACT_COMMIT: 5743 ASSERT(!committed); 5744 5745 /* 5746 * We need to commit our buffer state. 5747 */ 5748 if (ecb->dte_size) 5749 buf->dtb_offset = offs + ecb->dte_size; 5750 buf = &state->dts_buffer[cpuid]; 5751 dtrace_speculation_commit(state, cpuid, val); 5752 committed = 1; 5753 continue; 5754 5755 case DTRACEACT_DISCARD: 5756 dtrace_speculation_discard(state, cpuid, val); 5757 continue; 5758 5759 case DTRACEACT_DIFEXPR: 5760 case DTRACEACT_LIBACT: 5761 case DTRACEACT_PRINTF: 5762 case DTRACEACT_PRINTA: 5763 case DTRACEACT_SYSTEM: 5764 case DTRACEACT_FREOPEN: 5765 break; 5766 5767 case DTRACEACT_SYM: 5768 case DTRACEACT_MOD: 5769 if (!dtrace_priv_kernel(state)) 5770 continue; 5771 break; 5772 5773 case DTRACEACT_USYM: 5774 case DTRACEACT_UMOD: 5775 case DTRACEACT_UADDR: { 5776 struct pid *pid = curthread->t_procp->p_pidp; 5777 5778 if (!dtrace_priv_proc(state)) 5779 continue; 5780 5781 DTRACE_STORE(uint64_t, tomax, 5782 valoffs, (uint64_t)pid->pid_id); 5783 DTRACE_STORE(uint64_t, tomax, 5784 valoffs + sizeof (uint64_t), val); 5785 5786 continue; 5787 } 5788 5789 case DTRACEACT_EXIT: { 5790 /* 5791 * For the exit action, we are going to attempt 5792 * to atomically set our activity to be 5793 * draining. If this fails (either because 5794 * another CPU has beat us to the exit action, 5795 * or because our current activity is something 5796 * other than ACTIVE or WARMUP), we will 5797 * continue. This assures that the exit action 5798 * can be successfully recorded at most once 5799 * when we're in the ACTIVE state. If we're 5800 * encountering the exit() action while in 5801 * COOLDOWN, however, we want to honor the new 5802 * status code. (We know that we're the only 5803 * thread in COOLDOWN, so there is no race.) 5804 */ 5805 void *activity = &state->dts_activity; 5806 dtrace_activity_t current = state->dts_activity; 5807 5808 if (current == DTRACE_ACTIVITY_COOLDOWN) 5809 break; 5810 5811 if (current != DTRACE_ACTIVITY_WARMUP) 5812 current = DTRACE_ACTIVITY_ACTIVE; 5813 5814 if (dtrace_cas32(activity, current, 5815 DTRACE_ACTIVITY_DRAINING) != current) { 5816 *flags |= CPU_DTRACE_DROP; 5817 continue; 5818 } 5819 5820 break; 5821 } 5822 5823 default: 5824 ASSERT(0); 5825 } 5826 5827 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 5828 uintptr_t end = valoffs + size; 5829 5830 if (!dtrace_vcanload((void *)(uintptr_t)val, 5831 &dp->dtdo_rtype, &mstate, vstate)) 5832 continue; 5833 5834 /* 5835 * If this is a string, we're going to only 5836 * load until we find the zero byte -- after 5837 * which we'll store zero bytes. 5838 */ 5839 if (dp->dtdo_rtype.dtdt_kind == 5840 DIF_TYPE_STRING) { 5841 char c = '\0' + 1; 5842 int intuple = act->dta_intuple; 5843 size_t s; 5844 5845 for (s = 0; s < size; s++) { 5846 if (c != '\0') 5847 c = dtrace_load8(val++); 5848 5849 DTRACE_STORE(uint8_t, tomax, 5850 valoffs++, c); 5851 5852 if (c == '\0' && intuple) 5853 break; 5854 } 5855 5856 continue; 5857 } 5858 5859 while (valoffs < end) { 5860 DTRACE_STORE(uint8_t, tomax, valoffs++, 5861 dtrace_load8(val++)); 5862 } 5863 5864 continue; 5865 } 5866 5867 switch (size) { 5868 case 0: 5869 break; 5870 5871 case sizeof (uint8_t): 5872 DTRACE_STORE(uint8_t, tomax, valoffs, val); 5873 break; 5874 case sizeof (uint16_t): 5875 DTRACE_STORE(uint16_t, tomax, valoffs, val); 5876 break; 5877 case sizeof (uint32_t): 5878 DTRACE_STORE(uint32_t, tomax, valoffs, val); 5879 break; 5880 case sizeof (uint64_t): 5881 DTRACE_STORE(uint64_t, tomax, valoffs, val); 5882 break; 5883 default: 5884 /* 5885 * Any other size should have been returned by 5886 * reference, not by value. 5887 */ 5888 ASSERT(0); 5889 break; 5890 } 5891 } 5892 5893 if (*flags & CPU_DTRACE_DROP) 5894 continue; 5895 5896 if (*flags & CPU_DTRACE_FAULT) { 5897 int ndx; 5898 dtrace_action_t *err; 5899 5900 buf->dtb_errors++; 5901 5902 if (probe->dtpr_id == dtrace_probeid_error) { 5903 /* 5904 * There's nothing we can do -- we had an 5905 * error on the error probe. We bump an 5906 * error counter to at least indicate that 5907 * this condition happened. 5908 */ 5909 dtrace_error(&state->dts_dblerrors); 5910 continue; 5911 } 5912 5913 if (vtime) { 5914 /* 5915 * Before recursing on dtrace_probe(), we 5916 * need to explicitly clear out our start 5917 * time to prevent it from being accumulated 5918 * into t_dtrace_vtime. 5919 */ 5920 curthread->t_dtrace_start = 0; 5921 } 5922 5923 /* 5924 * Iterate over the actions to figure out which action 5925 * we were processing when we experienced the error. 5926 * Note that act points _past_ the faulting action; if 5927 * act is ecb->dte_action, the fault was in the 5928 * predicate, if it's ecb->dte_action->dta_next it's 5929 * in action #1, and so on. 5930 */ 5931 for (err = ecb->dte_action, ndx = 0; 5932 err != act; err = err->dta_next, ndx++) 5933 continue; 5934 5935 dtrace_probe_error(state, ecb->dte_epid, ndx, 5936 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 5937 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 5938 cpu_core[cpuid].cpuc_dtrace_illval); 5939 5940 continue; 5941 } 5942 5943 if (!committed) 5944 buf->dtb_offset = offs + ecb->dte_size; 5945 } 5946 5947 if (vtime) 5948 curthread->t_dtrace_start = dtrace_gethrtime(); 5949 5950 dtrace_interrupt_enable(cookie); 5951 } 5952 5953 /* 5954 * DTrace Probe Hashing Functions 5955 * 5956 * The functions in this section (and indeed, the functions in remaining 5957 * sections) are not _called_ from probe context. (Any exceptions to this are 5958 * marked with a "Note:".) Rather, they are called from elsewhere in the 5959 * DTrace framework to look-up probes in, add probes to and remove probes from 5960 * the DTrace probe hashes. (Each probe is hashed by each element of the 5961 * probe tuple -- allowing for fast lookups, regardless of what was 5962 * specified.) 5963 */ 5964 static uint_t 5965 dtrace_hash_str(char *p) 5966 { 5967 unsigned int g; 5968 uint_t hval = 0; 5969 5970 while (*p) { 5971 hval = (hval << 4) + *p++; 5972 if ((g = (hval & 0xf0000000)) != 0) 5973 hval ^= g >> 24; 5974 hval &= ~g; 5975 } 5976 return (hval); 5977 } 5978 5979 static dtrace_hash_t * 5980 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 5981 { 5982 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 5983 5984 hash->dth_stroffs = stroffs; 5985 hash->dth_nextoffs = nextoffs; 5986 hash->dth_prevoffs = prevoffs; 5987 5988 hash->dth_size = 1; 5989 hash->dth_mask = hash->dth_size - 1; 5990 5991 hash->dth_tab = kmem_zalloc(hash->dth_size * 5992 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 5993 5994 return (hash); 5995 } 5996 5997 static void 5998 dtrace_hash_destroy(dtrace_hash_t *hash) 5999 { 6000 #ifdef DEBUG 6001 int i; 6002 6003 for (i = 0; i < hash->dth_size; i++) 6004 ASSERT(hash->dth_tab[i] == NULL); 6005 #endif 6006 6007 kmem_free(hash->dth_tab, 6008 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6009 kmem_free(hash, sizeof (dtrace_hash_t)); 6010 } 6011 6012 static void 6013 dtrace_hash_resize(dtrace_hash_t *hash) 6014 { 6015 int size = hash->dth_size, i, ndx; 6016 int new_size = hash->dth_size << 1; 6017 int new_mask = new_size - 1; 6018 dtrace_hashbucket_t **new_tab, *bucket, *next; 6019 6020 ASSERT((new_size & new_mask) == 0); 6021 6022 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6023 6024 for (i = 0; i < size; i++) { 6025 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6026 dtrace_probe_t *probe = bucket->dthb_chain; 6027 6028 ASSERT(probe != NULL); 6029 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6030 6031 next = bucket->dthb_next; 6032 bucket->dthb_next = new_tab[ndx]; 6033 new_tab[ndx] = bucket; 6034 } 6035 } 6036 6037 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6038 hash->dth_tab = new_tab; 6039 hash->dth_size = new_size; 6040 hash->dth_mask = new_mask; 6041 } 6042 6043 static void 6044 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6045 { 6046 int hashval = DTRACE_HASHSTR(hash, new); 6047 int ndx = hashval & hash->dth_mask; 6048 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6049 dtrace_probe_t **nextp, **prevp; 6050 6051 for (; bucket != NULL; bucket = bucket->dthb_next) { 6052 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6053 goto add; 6054 } 6055 6056 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6057 dtrace_hash_resize(hash); 6058 dtrace_hash_add(hash, new); 6059 return; 6060 } 6061 6062 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6063 bucket->dthb_next = hash->dth_tab[ndx]; 6064 hash->dth_tab[ndx] = bucket; 6065 hash->dth_nbuckets++; 6066 6067 add: 6068 nextp = DTRACE_HASHNEXT(hash, new); 6069 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6070 *nextp = bucket->dthb_chain; 6071 6072 if (bucket->dthb_chain != NULL) { 6073 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6074 ASSERT(*prevp == NULL); 6075 *prevp = new; 6076 } 6077 6078 bucket->dthb_chain = new; 6079 bucket->dthb_len++; 6080 } 6081 6082 static dtrace_probe_t * 6083 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6084 { 6085 int hashval = DTRACE_HASHSTR(hash, template); 6086 int ndx = hashval & hash->dth_mask; 6087 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6088 6089 for (; bucket != NULL; bucket = bucket->dthb_next) { 6090 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6091 return (bucket->dthb_chain); 6092 } 6093 6094 return (NULL); 6095 } 6096 6097 static int 6098 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6099 { 6100 int hashval = DTRACE_HASHSTR(hash, template); 6101 int ndx = hashval & hash->dth_mask; 6102 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6103 6104 for (; bucket != NULL; bucket = bucket->dthb_next) { 6105 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6106 return (bucket->dthb_len); 6107 } 6108 6109 return (NULL); 6110 } 6111 6112 static void 6113 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6114 { 6115 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6116 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6117 6118 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6119 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6120 6121 /* 6122 * Find the bucket that we're removing this probe from. 6123 */ 6124 for (; bucket != NULL; bucket = bucket->dthb_next) { 6125 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6126 break; 6127 } 6128 6129 ASSERT(bucket != NULL); 6130 6131 if (*prevp == NULL) { 6132 if (*nextp == NULL) { 6133 /* 6134 * The removed probe was the only probe on this 6135 * bucket; we need to remove the bucket. 6136 */ 6137 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6138 6139 ASSERT(bucket->dthb_chain == probe); 6140 ASSERT(b != NULL); 6141 6142 if (b == bucket) { 6143 hash->dth_tab[ndx] = bucket->dthb_next; 6144 } else { 6145 while (b->dthb_next != bucket) 6146 b = b->dthb_next; 6147 b->dthb_next = bucket->dthb_next; 6148 } 6149 6150 ASSERT(hash->dth_nbuckets > 0); 6151 hash->dth_nbuckets--; 6152 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6153 return; 6154 } 6155 6156 bucket->dthb_chain = *nextp; 6157 } else { 6158 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6159 } 6160 6161 if (*nextp != NULL) 6162 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6163 } 6164 6165 /* 6166 * DTrace Utility Functions 6167 * 6168 * These are random utility functions that are _not_ called from probe context. 6169 */ 6170 static int 6171 dtrace_badattr(const dtrace_attribute_t *a) 6172 { 6173 return (a->dtat_name > DTRACE_STABILITY_MAX || 6174 a->dtat_data > DTRACE_STABILITY_MAX || 6175 a->dtat_class > DTRACE_CLASS_MAX); 6176 } 6177 6178 /* 6179 * Return a duplicate copy of a string. If the specified string is NULL, 6180 * this function returns a zero-length string. 6181 */ 6182 static char * 6183 dtrace_strdup(const char *str) 6184 { 6185 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6186 6187 if (str != NULL) 6188 (void) strcpy(new, str); 6189 6190 return (new); 6191 } 6192 6193 #define DTRACE_ISALPHA(c) \ 6194 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6195 6196 static int 6197 dtrace_badname(const char *s) 6198 { 6199 char c; 6200 6201 if (s == NULL || (c = *s++) == '\0') 6202 return (0); 6203 6204 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6205 return (1); 6206 6207 while ((c = *s++) != '\0') { 6208 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6209 c != '-' && c != '_' && c != '.' && c != '`') 6210 return (1); 6211 } 6212 6213 return (0); 6214 } 6215 6216 static void 6217 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6218 { 6219 uint32_t priv; 6220 6221 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6222 /* 6223 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6224 */ 6225 priv = DTRACE_PRIV_ALL; 6226 } else { 6227 *uidp = crgetuid(cr); 6228 *zoneidp = crgetzoneid(cr); 6229 6230 priv = 0; 6231 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6232 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6233 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6234 priv |= DTRACE_PRIV_USER; 6235 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6236 priv |= DTRACE_PRIV_PROC; 6237 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6238 priv |= DTRACE_PRIV_OWNER; 6239 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6240 priv |= DTRACE_PRIV_ZONEOWNER; 6241 } 6242 6243 *privp = priv; 6244 } 6245 6246 #ifdef DTRACE_ERRDEBUG 6247 static void 6248 dtrace_errdebug(const char *str) 6249 { 6250 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6251 int occupied = 0; 6252 6253 mutex_enter(&dtrace_errlock); 6254 dtrace_errlast = str; 6255 dtrace_errthread = curthread; 6256 6257 while (occupied++ < DTRACE_ERRHASHSZ) { 6258 if (dtrace_errhash[hval].dter_msg == str) { 6259 dtrace_errhash[hval].dter_count++; 6260 goto out; 6261 } 6262 6263 if (dtrace_errhash[hval].dter_msg != NULL) { 6264 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6265 continue; 6266 } 6267 6268 dtrace_errhash[hval].dter_msg = str; 6269 dtrace_errhash[hval].dter_count = 1; 6270 goto out; 6271 } 6272 6273 panic("dtrace: undersized error hash"); 6274 out: 6275 mutex_exit(&dtrace_errlock); 6276 } 6277 #endif 6278 6279 /* 6280 * DTrace Matching Functions 6281 * 6282 * These functions are used to match groups of probes, given some elements of 6283 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6284 */ 6285 static int 6286 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6287 zoneid_t zoneid) 6288 { 6289 if (priv != DTRACE_PRIV_ALL) { 6290 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6291 uint32_t match = priv & ppriv; 6292 6293 /* 6294 * No PRIV_DTRACE_* privileges... 6295 */ 6296 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6297 DTRACE_PRIV_KERNEL)) == 0) 6298 return (0); 6299 6300 /* 6301 * No matching bits, but there were bits to match... 6302 */ 6303 if (match == 0 && ppriv != 0) 6304 return (0); 6305 6306 /* 6307 * Need to have permissions to the process, but don't... 6308 */ 6309 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6310 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6311 return (0); 6312 } 6313 6314 /* 6315 * Need to be in the same zone unless we possess the 6316 * privilege to examine all zones. 6317 */ 6318 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6319 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6320 return (0); 6321 } 6322 } 6323 6324 return (1); 6325 } 6326 6327 /* 6328 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6329 * consists of input pattern strings and an ops-vector to evaluate them. 6330 * This function returns >0 for match, 0 for no match, and <0 for error. 6331 */ 6332 static int 6333 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6334 uint32_t priv, uid_t uid, zoneid_t zoneid) 6335 { 6336 dtrace_provider_t *pvp = prp->dtpr_provider; 6337 int rv; 6338 6339 if (pvp->dtpv_defunct) 6340 return (0); 6341 6342 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6343 return (rv); 6344 6345 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6346 return (rv); 6347 6348 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6349 return (rv); 6350 6351 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6352 return (rv); 6353 6354 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6355 return (0); 6356 6357 return (rv); 6358 } 6359 6360 /* 6361 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6362 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 6363 * libc's version, the kernel version only applies to 8-bit ASCII strings. 6364 * In addition, all of the recursion cases except for '*' matching have been 6365 * unwound. For '*', we still implement recursive evaluation, but a depth 6366 * counter is maintained and matching is aborted if we recurse too deep. 6367 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 6368 */ 6369 static int 6370 dtrace_match_glob(const char *s, const char *p, int depth) 6371 { 6372 const char *olds; 6373 char s1, c; 6374 int gs; 6375 6376 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 6377 return (-1); 6378 6379 if (s == NULL) 6380 s = ""; /* treat NULL as empty string */ 6381 6382 top: 6383 olds = s; 6384 s1 = *s++; 6385 6386 if (p == NULL) 6387 return (0); 6388 6389 if ((c = *p++) == '\0') 6390 return (s1 == '\0'); 6391 6392 switch (c) { 6393 case '[': { 6394 int ok = 0, notflag = 0; 6395 char lc = '\0'; 6396 6397 if (s1 == '\0') 6398 return (0); 6399 6400 if (*p == '!') { 6401 notflag = 1; 6402 p++; 6403 } 6404 6405 if ((c = *p++) == '\0') 6406 return (0); 6407 6408 do { 6409 if (c == '-' && lc != '\0' && *p != ']') { 6410 if ((c = *p++) == '\0') 6411 return (0); 6412 if (c == '\\' && (c = *p++) == '\0') 6413 return (0); 6414 6415 if (notflag) { 6416 if (s1 < lc || s1 > c) 6417 ok++; 6418 else 6419 return (0); 6420 } else if (lc <= s1 && s1 <= c) 6421 ok++; 6422 6423 } else if (c == '\\' && (c = *p++) == '\0') 6424 return (0); 6425 6426 lc = c; /* save left-hand 'c' for next iteration */ 6427 6428 if (notflag) { 6429 if (s1 != c) 6430 ok++; 6431 else 6432 return (0); 6433 } else if (s1 == c) 6434 ok++; 6435 6436 if ((c = *p++) == '\0') 6437 return (0); 6438 6439 } while (c != ']'); 6440 6441 if (ok) 6442 goto top; 6443 6444 return (0); 6445 } 6446 6447 case '\\': 6448 if ((c = *p++) == '\0') 6449 return (0); 6450 /*FALLTHRU*/ 6451 6452 default: 6453 if (c != s1) 6454 return (0); 6455 /*FALLTHRU*/ 6456 6457 case '?': 6458 if (s1 != '\0') 6459 goto top; 6460 return (0); 6461 6462 case '*': 6463 while (*p == '*') 6464 p++; /* consecutive *'s are identical to a single one */ 6465 6466 if (*p == '\0') 6467 return (1); 6468 6469 for (s = olds; *s != '\0'; s++) { 6470 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 6471 return (gs); 6472 } 6473 6474 return (0); 6475 } 6476 } 6477 6478 /*ARGSUSED*/ 6479 static int 6480 dtrace_match_string(const char *s, const char *p, int depth) 6481 { 6482 return (s != NULL && strcmp(s, p) == 0); 6483 } 6484 6485 /*ARGSUSED*/ 6486 static int 6487 dtrace_match_nul(const char *s, const char *p, int depth) 6488 { 6489 return (1); /* always match the empty pattern */ 6490 } 6491 6492 /*ARGSUSED*/ 6493 static int 6494 dtrace_match_nonzero(const char *s, const char *p, int depth) 6495 { 6496 return (s != NULL && s[0] != '\0'); 6497 } 6498 6499 static int 6500 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 6501 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 6502 { 6503 dtrace_probe_t template, *probe; 6504 dtrace_hash_t *hash = NULL; 6505 int len, best = INT_MAX, nmatched = 0; 6506 dtrace_id_t i; 6507 6508 ASSERT(MUTEX_HELD(&dtrace_lock)); 6509 6510 /* 6511 * If the probe ID is specified in the key, just lookup by ID and 6512 * invoke the match callback once if a matching probe is found. 6513 */ 6514 if (pkp->dtpk_id != DTRACE_IDNONE) { 6515 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 6516 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 6517 (void) (*matched)(probe, arg); 6518 nmatched++; 6519 } 6520 return (nmatched); 6521 } 6522 6523 template.dtpr_mod = (char *)pkp->dtpk_mod; 6524 template.dtpr_func = (char *)pkp->dtpk_func; 6525 template.dtpr_name = (char *)pkp->dtpk_name; 6526 6527 /* 6528 * We want to find the most distinct of the module name, function 6529 * name, and name. So for each one that is not a glob pattern or 6530 * empty string, we perform a lookup in the corresponding hash and 6531 * use the hash table with the fewest collisions to do our search. 6532 */ 6533 if (pkp->dtpk_mmatch == &dtrace_match_string && 6534 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 6535 best = len; 6536 hash = dtrace_bymod; 6537 } 6538 6539 if (pkp->dtpk_fmatch == &dtrace_match_string && 6540 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 6541 best = len; 6542 hash = dtrace_byfunc; 6543 } 6544 6545 if (pkp->dtpk_nmatch == &dtrace_match_string && 6546 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 6547 best = len; 6548 hash = dtrace_byname; 6549 } 6550 6551 /* 6552 * If we did not select a hash table, iterate over every probe and 6553 * invoke our callback for each one that matches our input probe key. 6554 */ 6555 if (hash == NULL) { 6556 for (i = 0; i < dtrace_nprobes; i++) { 6557 if ((probe = dtrace_probes[i]) == NULL || 6558 dtrace_match_probe(probe, pkp, priv, uid, 6559 zoneid) <= 0) 6560 continue; 6561 6562 nmatched++; 6563 6564 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 6565 break; 6566 } 6567 6568 return (nmatched); 6569 } 6570 6571 /* 6572 * If we selected a hash table, iterate over each probe of the same key 6573 * name and invoke the callback for every probe that matches the other 6574 * attributes of our input probe key. 6575 */ 6576 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 6577 probe = *(DTRACE_HASHNEXT(hash, probe))) { 6578 6579 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 6580 continue; 6581 6582 nmatched++; 6583 6584 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 6585 break; 6586 } 6587 6588 return (nmatched); 6589 } 6590 6591 /* 6592 * Return the function pointer dtrace_probecmp() should use to compare the 6593 * specified pattern with a string. For NULL or empty patterns, we select 6594 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 6595 * For non-empty non-glob strings, we use dtrace_match_string(). 6596 */ 6597 static dtrace_probekey_f * 6598 dtrace_probekey_func(const char *p) 6599 { 6600 char c; 6601 6602 if (p == NULL || *p == '\0') 6603 return (&dtrace_match_nul); 6604 6605 while ((c = *p++) != '\0') { 6606 if (c == '[' || c == '?' || c == '*' || c == '\\') 6607 return (&dtrace_match_glob); 6608 } 6609 6610 return (&dtrace_match_string); 6611 } 6612 6613 /* 6614 * Build a probe comparison key for use with dtrace_match_probe() from the 6615 * given probe description. By convention, a null key only matches anchored 6616 * probes: if each field is the empty string, reset dtpk_fmatch to 6617 * dtrace_match_nonzero(). 6618 */ 6619 static void 6620 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 6621 { 6622 pkp->dtpk_prov = pdp->dtpd_provider; 6623 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 6624 6625 pkp->dtpk_mod = pdp->dtpd_mod; 6626 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 6627 6628 pkp->dtpk_func = pdp->dtpd_func; 6629 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 6630 6631 pkp->dtpk_name = pdp->dtpd_name; 6632 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 6633 6634 pkp->dtpk_id = pdp->dtpd_id; 6635 6636 if (pkp->dtpk_id == DTRACE_IDNONE && 6637 pkp->dtpk_pmatch == &dtrace_match_nul && 6638 pkp->dtpk_mmatch == &dtrace_match_nul && 6639 pkp->dtpk_fmatch == &dtrace_match_nul && 6640 pkp->dtpk_nmatch == &dtrace_match_nul) 6641 pkp->dtpk_fmatch = &dtrace_match_nonzero; 6642 } 6643 6644 /* 6645 * DTrace Provider-to-Framework API Functions 6646 * 6647 * These functions implement much of the Provider-to-Framework API, as 6648 * described in <sys/dtrace.h>. The parts of the API not in this section are 6649 * the functions in the API for probe management (found below), and 6650 * dtrace_probe() itself (found above). 6651 */ 6652 6653 /* 6654 * Register the calling provider with the DTrace framework. This should 6655 * generally be called by DTrace providers in their attach(9E) entry point. 6656 */ 6657 int 6658 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 6659 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 6660 { 6661 dtrace_provider_t *provider; 6662 6663 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 6664 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6665 "arguments", name ? name : "<NULL>"); 6666 return (EINVAL); 6667 } 6668 6669 if (name[0] == '\0' || dtrace_badname(name)) { 6670 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6671 "provider name", name); 6672 return (EINVAL); 6673 } 6674 6675 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 6676 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 6677 pops->dtps_destroy == NULL || 6678 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 6679 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6680 "provider ops", name); 6681 return (EINVAL); 6682 } 6683 6684 if (dtrace_badattr(&pap->dtpa_provider) || 6685 dtrace_badattr(&pap->dtpa_mod) || 6686 dtrace_badattr(&pap->dtpa_func) || 6687 dtrace_badattr(&pap->dtpa_name) || 6688 dtrace_badattr(&pap->dtpa_args)) { 6689 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6690 "provider attributes", name); 6691 return (EINVAL); 6692 } 6693 6694 if (priv & ~DTRACE_PRIV_ALL) { 6695 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6696 "privilege attributes", name); 6697 return (EINVAL); 6698 } 6699 6700 if ((priv & DTRACE_PRIV_KERNEL) && 6701 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 6702 pops->dtps_usermode == NULL) { 6703 cmn_err(CE_WARN, "failed to register provider '%s': need " 6704 "dtps_usermode() op for given privilege attributes", name); 6705 return (EINVAL); 6706 } 6707 6708 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 6709 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 6710 (void) strcpy(provider->dtpv_name, name); 6711 6712 provider->dtpv_attr = *pap; 6713 provider->dtpv_priv.dtpp_flags = priv; 6714 if (cr != NULL) { 6715 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 6716 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 6717 } 6718 provider->dtpv_pops = *pops; 6719 6720 if (pops->dtps_provide == NULL) { 6721 ASSERT(pops->dtps_provide_module != NULL); 6722 provider->dtpv_pops.dtps_provide = 6723 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 6724 } 6725 6726 if (pops->dtps_provide_module == NULL) { 6727 ASSERT(pops->dtps_provide != NULL); 6728 provider->dtpv_pops.dtps_provide_module = 6729 (void (*)(void *, struct modctl *))dtrace_nullop; 6730 } 6731 6732 if (pops->dtps_suspend == NULL) { 6733 ASSERT(pops->dtps_resume == NULL); 6734 provider->dtpv_pops.dtps_suspend = 6735 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6736 provider->dtpv_pops.dtps_resume = 6737 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6738 } 6739 6740 provider->dtpv_arg = arg; 6741 *idp = (dtrace_provider_id_t)provider; 6742 6743 if (pops == &dtrace_provider_ops) { 6744 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6745 ASSERT(MUTEX_HELD(&dtrace_lock)); 6746 ASSERT(dtrace_anon.dta_enabling == NULL); 6747 6748 /* 6749 * We make sure that the DTrace provider is at the head of 6750 * the provider chain. 6751 */ 6752 provider->dtpv_next = dtrace_provider; 6753 dtrace_provider = provider; 6754 return (0); 6755 } 6756 6757 mutex_enter(&dtrace_provider_lock); 6758 mutex_enter(&dtrace_lock); 6759 6760 /* 6761 * If there is at least one provider registered, we'll add this 6762 * provider after the first provider. 6763 */ 6764 if (dtrace_provider != NULL) { 6765 provider->dtpv_next = dtrace_provider->dtpv_next; 6766 dtrace_provider->dtpv_next = provider; 6767 } else { 6768 dtrace_provider = provider; 6769 } 6770 6771 if (dtrace_retained != NULL) { 6772 dtrace_enabling_provide(provider); 6773 6774 /* 6775 * Now we need to call dtrace_enabling_matchall() -- which 6776 * will acquire cpu_lock and dtrace_lock. We therefore need 6777 * to drop all of our locks before calling into it... 6778 */ 6779 mutex_exit(&dtrace_lock); 6780 mutex_exit(&dtrace_provider_lock); 6781 dtrace_enabling_matchall(); 6782 6783 return (0); 6784 } 6785 6786 mutex_exit(&dtrace_lock); 6787 mutex_exit(&dtrace_provider_lock); 6788 6789 return (0); 6790 } 6791 6792 /* 6793 * Unregister the specified provider from the DTrace framework. This should 6794 * generally be called by DTrace providers in their detach(9E) entry point. 6795 */ 6796 int 6797 dtrace_unregister(dtrace_provider_id_t id) 6798 { 6799 dtrace_provider_t *old = (dtrace_provider_t *)id; 6800 dtrace_provider_t *prev = NULL; 6801 int i, self = 0; 6802 dtrace_probe_t *probe, *first = NULL; 6803 6804 if (old->dtpv_pops.dtps_enable == 6805 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 6806 /* 6807 * If DTrace itself is the provider, we're called with locks 6808 * already held. 6809 */ 6810 ASSERT(old == dtrace_provider); 6811 ASSERT(dtrace_devi != NULL); 6812 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6813 ASSERT(MUTEX_HELD(&dtrace_lock)); 6814 self = 1; 6815 6816 if (dtrace_provider->dtpv_next != NULL) { 6817 /* 6818 * There's another provider here; return failure. 6819 */ 6820 return (EBUSY); 6821 } 6822 } else { 6823 mutex_enter(&dtrace_provider_lock); 6824 mutex_enter(&mod_lock); 6825 mutex_enter(&dtrace_lock); 6826 } 6827 6828 /* 6829 * If anyone has /dev/dtrace open, or if there are anonymous enabled 6830 * probes, we refuse to let providers slither away, unless this 6831 * provider has already been explicitly invalidated. 6832 */ 6833 if (!old->dtpv_defunct && 6834 (dtrace_opens || (dtrace_anon.dta_state != NULL && 6835 dtrace_anon.dta_state->dts_necbs > 0))) { 6836 if (!self) { 6837 mutex_exit(&dtrace_lock); 6838 mutex_exit(&mod_lock); 6839 mutex_exit(&dtrace_provider_lock); 6840 } 6841 return (EBUSY); 6842 } 6843 6844 /* 6845 * Attempt to destroy the probes associated with this provider. 6846 */ 6847 for (i = 0; i < dtrace_nprobes; i++) { 6848 if ((probe = dtrace_probes[i]) == NULL) 6849 continue; 6850 6851 if (probe->dtpr_provider != old) 6852 continue; 6853 6854 if (probe->dtpr_ecb == NULL) 6855 continue; 6856 6857 /* 6858 * We have at least one ECB; we can't remove this provider. 6859 */ 6860 if (!self) { 6861 mutex_exit(&dtrace_lock); 6862 mutex_exit(&mod_lock); 6863 mutex_exit(&dtrace_provider_lock); 6864 } 6865 return (EBUSY); 6866 } 6867 6868 /* 6869 * All of the probes for this provider are disabled; we can safely 6870 * remove all of them from their hash chains and from the probe array. 6871 */ 6872 for (i = 0; i < dtrace_nprobes; i++) { 6873 if ((probe = dtrace_probes[i]) == NULL) 6874 continue; 6875 6876 if (probe->dtpr_provider != old) 6877 continue; 6878 6879 dtrace_probes[i] = NULL; 6880 6881 dtrace_hash_remove(dtrace_bymod, probe); 6882 dtrace_hash_remove(dtrace_byfunc, probe); 6883 dtrace_hash_remove(dtrace_byname, probe); 6884 6885 if (first == NULL) { 6886 first = probe; 6887 probe->dtpr_nextmod = NULL; 6888 } else { 6889 probe->dtpr_nextmod = first; 6890 first = probe; 6891 } 6892 } 6893 6894 /* 6895 * The provider's probes have been removed from the hash chains and 6896 * from the probe array. Now issue a dtrace_sync() to be sure that 6897 * everyone has cleared out from any probe array processing. 6898 */ 6899 dtrace_sync(); 6900 6901 for (probe = first; probe != NULL; probe = first) { 6902 first = probe->dtpr_nextmod; 6903 6904 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 6905 probe->dtpr_arg); 6906 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 6907 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 6908 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 6909 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 6910 kmem_free(probe, sizeof (dtrace_probe_t)); 6911 } 6912 6913 if ((prev = dtrace_provider) == old) { 6914 ASSERT(self || dtrace_devi == NULL); 6915 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 6916 dtrace_provider = old->dtpv_next; 6917 } else { 6918 while (prev != NULL && prev->dtpv_next != old) 6919 prev = prev->dtpv_next; 6920 6921 if (prev == NULL) { 6922 panic("attempt to unregister non-existent " 6923 "dtrace provider %p\n", (void *)id); 6924 } 6925 6926 prev->dtpv_next = old->dtpv_next; 6927 } 6928 6929 if (!self) { 6930 mutex_exit(&dtrace_lock); 6931 mutex_exit(&mod_lock); 6932 mutex_exit(&dtrace_provider_lock); 6933 } 6934 6935 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 6936 kmem_free(old, sizeof (dtrace_provider_t)); 6937 6938 return (0); 6939 } 6940 6941 /* 6942 * Invalidate the specified provider. All subsequent probe lookups for the 6943 * specified provider will fail, but its probes will not be removed. 6944 */ 6945 void 6946 dtrace_invalidate(dtrace_provider_id_t id) 6947 { 6948 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 6949 6950 ASSERT(pvp->dtpv_pops.dtps_enable != 6951 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 6952 6953 mutex_enter(&dtrace_provider_lock); 6954 mutex_enter(&dtrace_lock); 6955 6956 pvp->dtpv_defunct = 1; 6957 6958 mutex_exit(&dtrace_lock); 6959 mutex_exit(&dtrace_provider_lock); 6960 } 6961 6962 /* 6963 * Indicate whether or not DTrace has attached. 6964 */ 6965 int 6966 dtrace_attached(void) 6967 { 6968 /* 6969 * dtrace_provider will be non-NULL iff the DTrace driver has 6970 * attached. (It's non-NULL because DTrace is always itself a 6971 * provider.) 6972 */ 6973 return (dtrace_provider != NULL); 6974 } 6975 6976 /* 6977 * Remove all the unenabled probes for the given provider. This function is 6978 * not unlike dtrace_unregister(), except that it doesn't remove the provider 6979 * -- just as many of its associated probes as it can. 6980 */ 6981 int 6982 dtrace_condense(dtrace_provider_id_t id) 6983 { 6984 dtrace_provider_t *prov = (dtrace_provider_t *)id; 6985 int i; 6986 dtrace_probe_t *probe; 6987 6988 /* 6989 * Make sure this isn't the dtrace provider itself. 6990 */ 6991 ASSERT(prov->dtpv_pops.dtps_enable != 6992 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 6993 6994 mutex_enter(&dtrace_provider_lock); 6995 mutex_enter(&dtrace_lock); 6996 6997 /* 6998 * Attempt to destroy the probes associated with this provider. 6999 */ 7000 for (i = 0; i < dtrace_nprobes; i++) { 7001 if ((probe = dtrace_probes[i]) == NULL) 7002 continue; 7003 7004 if (probe->dtpr_provider != prov) 7005 continue; 7006 7007 if (probe->dtpr_ecb != NULL) 7008 continue; 7009 7010 dtrace_probes[i] = NULL; 7011 7012 dtrace_hash_remove(dtrace_bymod, probe); 7013 dtrace_hash_remove(dtrace_byfunc, probe); 7014 dtrace_hash_remove(dtrace_byname, probe); 7015 7016 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7017 probe->dtpr_arg); 7018 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7019 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7020 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7021 kmem_free(probe, sizeof (dtrace_probe_t)); 7022 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7023 } 7024 7025 mutex_exit(&dtrace_lock); 7026 mutex_exit(&dtrace_provider_lock); 7027 7028 return (0); 7029 } 7030 7031 /* 7032 * DTrace Probe Management Functions 7033 * 7034 * The functions in this section perform the DTrace probe management, 7035 * including functions to create probes, look-up probes, and call into the 7036 * providers to request that probes be provided. Some of these functions are 7037 * in the Provider-to-Framework API; these functions can be identified by the 7038 * fact that they are not declared "static". 7039 */ 7040 7041 /* 7042 * Create a probe with the specified module name, function name, and name. 7043 */ 7044 dtrace_id_t 7045 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7046 const char *func, const char *name, int aframes, void *arg) 7047 { 7048 dtrace_probe_t *probe, **probes; 7049 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7050 dtrace_id_t id; 7051 7052 if (provider == dtrace_provider) { 7053 ASSERT(MUTEX_HELD(&dtrace_lock)); 7054 } else { 7055 mutex_enter(&dtrace_lock); 7056 } 7057 7058 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7059 VM_BESTFIT | VM_SLEEP); 7060 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7061 7062 probe->dtpr_id = id; 7063 probe->dtpr_gen = dtrace_probegen++; 7064 probe->dtpr_mod = dtrace_strdup(mod); 7065 probe->dtpr_func = dtrace_strdup(func); 7066 probe->dtpr_name = dtrace_strdup(name); 7067 probe->dtpr_arg = arg; 7068 probe->dtpr_aframes = aframes; 7069 probe->dtpr_provider = provider; 7070 7071 dtrace_hash_add(dtrace_bymod, probe); 7072 dtrace_hash_add(dtrace_byfunc, probe); 7073 dtrace_hash_add(dtrace_byname, probe); 7074 7075 if (id - 1 >= dtrace_nprobes) { 7076 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7077 size_t nsize = osize << 1; 7078 7079 if (nsize == 0) { 7080 ASSERT(osize == 0); 7081 ASSERT(dtrace_probes == NULL); 7082 nsize = sizeof (dtrace_probe_t *); 7083 } 7084 7085 probes = kmem_zalloc(nsize, KM_SLEEP); 7086 7087 if (dtrace_probes == NULL) { 7088 ASSERT(osize == 0); 7089 dtrace_probes = probes; 7090 dtrace_nprobes = 1; 7091 } else { 7092 dtrace_probe_t **oprobes = dtrace_probes; 7093 7094 bcopy(oprobes, probes, osize); 7095 dtrace_membar_producer(); 7096 dtrace_probes = probes; 7097 7098 dtrace_sync(); 7099 7100 /* 7101 * All CPUs are now seeing the new probes array; we can 7102 * safely free the old array. 7103 */ 7104 kmem_free(oprobes, osize); 7105 dtrace_nprobes <<= 1; 7106 } 7107 7108 ASSERT(id - 1 < dtrace_nprobes); 7109 } 7110 7111 ASSERT(dtrace_probes[id - 1] == NULL); 7112 dtrace_probes[id - 1] = probe; 7113 7114 if (provider != dtrace_provider) 7115 mutex_exit(&dtrace_lock); 7116 7117 return (id); 7118 } 7119 7120 static dtrace_probe_t * 7121 dtrace_probe_lookup_id(dtrace_id_t id) 7122 { 7123 ASSERT(MUTEX_HELD(&dtrace_lock)); 7124 7125 if (id == 0 || id > dtrace_nprobes) 7126 return (NULL); 7127 7128 return (dtrace_probes[id - 1]); 7129 } 7130 7131 static int 7132 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7133 { 7134 *((dtrace_id_t *)arg) = probe->dtpr_id; 7135 7136 return (DTRACE_MATCH_DONE); 7137 } 7138 7139 /* 7140 * Look up a probe based on provider and one or more of module name, function 7141 * name and probe name. 7142 */ 7143 dtrace_id_t 7144 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 7145 const char *func, const char *name) 7146 { 7147 dtrace_probekey_t pkey; 7148 dtrace_id_t id; 7149 int match; 7150 7151 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7152 pkey.dtpk_pmatch = &dtrace_match_string; 7153 pkey.dtpk_mod = mod; 7154 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7155 pkey.dtpk_func = func; 7156 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7157 pkey.dtpk_name = name; 7158 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7159 pkey.dtpk_id = DTRACE_IDNONE; 7160 7161 mutex_enter(&dtrace_lock); 7162 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7163 dtrace_probe_lookup_match, &id); 7164 mutex_exit(&dtrace_lock); 7165 7166 ASSERT(match == 1 || match == 0); 7167 return (match ? id : 0); 7168 } 7169 7170 /* 7171 * Returns the probe argument associated with the specified probe. 7172 */ 7173 void * 7174 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7175 { 7176 dtrace_probe_t *probe; 7177 void *rval = NULL; 7178 7179 mutex_enter(&dtrace_lock); 7180 7181 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7182 probe->dtpr_provider == (dtrace_provider_t *)id) 7183 rval = probe->dtpr_arg; 7184 7185 mutex_exit(&dtrace_lock); 7186 7187 return (rval); 7188 } 7189 7190 /* 7191 * Copy a probe into a probe description. 7192 */ 7193 static void 7194 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7195 { 7196 bzero(pdp, sizeof (dtrace_probedesc_t)); 7197 pdp->dtpd_id = prp->dtpr_id; 7198 7199 (void) strncpy(pdp->dtpd_provider, 7200 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7201 7202 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7203 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7204 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7205 } 7206 7207 /* 7208 * Called to indicate that a probe -- or probes -- should be provided by a 7209 * specfied provider. If the specified description is NULL, the provider will 7210 * be told to provide all of its probes. (This is done whenever a new 7211 * consumer comes along, or whenever a retained enabling is to be matched.) If 7212 * the specified description is non-NULL, the provider is given the 7213 * opportunity to dynamically provide the specified probe, allowing providers 7214 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7215 * probes.) If the provider is NULL, the operations will be applied to all 7216 * providers; if the provider is non-NULL the operations will only be applied 7217 * to the specified provider. The dtrace_provider_lock must be held, and the 7218 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7219 * will need to grab the dtrace_lock when it reenters the framework through 7220 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7221 */ 7222 static void 7223 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7224 { 7225 struct modctl *ctl; 7226 int all = 0; 7227 7228 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7229 7230 if (prv == NULL) { 7231 all = 1; 7232 prv = dtrace_provider; 7233 } 7234 7235 do { 7236 /* 7237 * First, call the blanket provide operation. 7238 */ 7239 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7240 7241 /* 7242 * Now call the per-module provide operation. We will grab 7243 * mod_lock to prevent the list from being modified. Note 7244 * that this also prevents the mod_busy bits from changing. 7245 * (mod_busy can only be changed with mod_lock held.) 7246 */ 7247 mutex_enter(&mod_lock); 7248 7249 ctl = &modules; 7250 do { 7251 if (ctl->mod_busy || ctl->mod_mp == NULL) 7252 continue; 7253 7254 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7255 7256 } while ((ctl = ctl->mod_next) != &modules); 7257 7258 mutex_exit(&mod_lock); 7259 } while (all && (prv = prv->dtpv_next) != NULL); 7260 } 7261 7262 /* 7263 * Iterate over each probe, and call the Framework-to-Provider API function 7264 * denoted by offs. 7265 */ 7266 static void 7267 dtrace_probe_foreach(uintptr_t offs) 7268 { 7269 dtrace_provider_t *prov; 7270 void (*func)(void *, dtrace_id_t, void *); 7271 dtrace_probe_t *probe; 7272 dtrace_icookie_t cookie; 7273 int i; 7274 7275 /* 7276 * We disable interrupts to walk through the probe array. This is 7277 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7278 * won't see stale data. 7279 */ 7280 cookie = dtrace_interrupt_disable(); 7281 7282 for (i = 0; i < dtrace_nprobes; i++) { 7283 if ((probe = dtrace_probes[i]) == NULL) 7284 continue; 7285 7286 if (probe->dtpr_ecb == NULL) { 7287 /* 7288 * This probe isn't enabled -- don't call the function. 7289 */ 7290 continue; 7291 } 7292 7293 prov = probe->dtpr_provider; 7294 func = *((void(**)(void *, dtrace_id_t, void *)) 7295 ((uintptr_t)&prov->dtpv_pops + offs)); 7296 7297 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7298 } 7299 7300 dtrace_interrupt_enable(cookie); 7301 } 7302 7303 static int 7304 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7305 { 7306 dtrace_probekey_t pkey; 7307 uint32_t priv; 7308 uid_t uid; 7309 zoneid_t zoneid; 7310 7311 ASSERT(MUTEX_HELD(&dtrace_lock)); 7312 dtrace_ecb_create_cache = NULL; 7313 7314 if (desc == NULL) { 7315 /* 7316 * If we're passed a NULL description, we're being asked to 7317 * create an ECB with a NULL probe. 7318 */ 7319 (void) dtrace_ecb_create_enable(NULL, enab); 7320 return (0); 7321 } 7322 7323 dtrace_probekey(desc, &pkey); 7324 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7325 &priv, &uid, &zoneid); 7326 7327 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7328 enab)); 7329 } 7330 7331 /* 7332 * DTrace Helper Provider Functions 7333 */ 7334 static void 7335 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7336 { 7337 attr->dtat_name = DOF_ATTR_NAME(dofattr); 7338 attr->dtat_data = DOF_ATTR_DATA(dofattr); 7339 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 7340 } 7341 7342 static void 7343 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 7344 const dof_provider_t *dofprov, char *strtab) 7345 { 7346 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 7347 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 7348 dofprov->dofpv_provattr); 7349 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 7350 dofprov->dofpv_modattr); 7351 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 7352 dofprov->dofpv_funcattr); 7353 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 7354 dofprov->dofpv_nameattr); 7355 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 7356 dofprov->dofpv_argsattr); 7357 } 7358 7359 static void 7360 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7361 { 7362 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7363 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7364 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 7365 dof_provider_t *provider; 7366 dof_probe_t *probe; 7367 uint32_t *off, *enoff; 7368 uint8_t *arg; 7369 char *strtab; 7370 uint_t i, nprobes; 7371 dtrace_helper_provdesc_t dhpv; 7372 dtrace_helper_probedesc_t dhpb; 7373 dtrace_meta_t *meta = dtrace_meta_pid; 7374 dtrace_mops_t *mops = &meta->dtm_mops; 7375 void *parg; 7376 7377 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7378 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7379 provider->dofpv_strtab * dof->dofh_secsize); 7380 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7381 provider->dofpv_probes * dof->dofh_secsize); 7382 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7383 provider->dofpv_prargs * dof->dofh_secsize); 7384 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7385 provider->dofpv_proffs * dof->dofh_secsize); 7386 7387 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7388 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 7389 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 7390 enoff = NULL; 7391 7392 /* 7393 * See dtrace_helper_provider_validate(). 7394 */ 7395 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 7396 provider->dofpv_prenoffs != DOF_SECT_NONE) { 7397 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7398 provider->dofpv_prenoffs * dof->dofh_secsize); 7399 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 7400 } 7401 7402 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 7403 7404 /* 7405 * Create the provider. 7406 */ 7407 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7408 7409 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 7410 return; 7411 7412 meta->dtm_count++; 7413 7414 /* 7415 * Create the probes. 7416 */ 7417 for (i = 0; i < nprobes; i++) { 7418 probe = (dof_probe_t *)(uintptr_t)(daddr + 7419 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 7420 7421 dhpb.dthpb_mod = dhp->dofhp_mod; 7422 dhpb.dthpb_func = strtab + probe->dofpr_func; 7423 dhpb.dthpb_name = strtab + probe->dofpr_name; 7424 dhpb.dthpb_base = probe->dofpr_addr; 7425 dhpb.dthpb_offs = off + probe->dofpr_offidx; 7426 dhpb.dthpb_noffs = probe->dofpr_noffs; 7427 if (enoff != NULL) { 7428 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 7429 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 7430 } else { 7431 dhpb.dthpb_enoffs = NULL; 7432 dhpb.dthpb_nenoffs = 0; 7433 } 7434 dhpb.dthpb_args = arg + probe->dofpr_argidx; 7435 dhpb.dthpb_nargc = probe->dofpr_nargc; 7436 dhpb.dthpb_xargc = probe->dofpr_xargc; 7437 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 7438 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 7439 7440 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 7441 } 7442 } 7443 7444 static void 7445 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 7446 { 7447 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7448 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7449 int i; 7450 7451 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7452 7453 for (i = 0; i < dof->dofh_secnum; i++) { 7454 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7455 dof->dofh_secoff + i * dof->dofh_secsize); 7456 7457 if (sec->dofs_type != DOF_SECT_PROVIDER) 7458 continue; 7459 7460 dtrace_helper_provide_one(dhp, sec, pid); 7461 } 7462 7463 /* 7464 * We may have just created probes, so we must now rematch against 7465 * any retained enablings. Note that this call will acquire both 7466 * cpu_lock and dtrace_lock; the fact that we are holding 7467 * dtrace_meta_lock now is what defines the ordering with respect to 7468 * these three locks. 7469 */ 7470 dtrace_enabling_matchall(); 7471 } 7472 7473 static void 7474 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7475 { 7476 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7477 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7478 dof_sec_t *str_sec; 7479 dof_provider_t *provider; 7480 char *strtab; 7481 dtrace_helper_provdesc_t dhpv; 7482 dtrace_meta_t *meta = dtrace_meta_pid; 7483 dtrace_mops_t *mops = &meta->dtm_mops; 7484 7485 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7486 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7487 provider->dofpv_strtab * dof->dofh_secsize); 7488 7489 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7490 7491 /* 7492 * Create the provider. 7493 */ 7494 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7495 7496 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 7497 7498 meta->dtm_count--; 7499 } 7500 7501 static void 7502 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 7503 { 7504 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7505 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7506 int i; 7507 7508 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7509 7510 for (i = 0; i < dof->dofh_secnum; i++) { 7511 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7512 dof->dofh_secoff + i * dof->dofh_secsize); 7513 7514 if (sec->dofs_type != DOF_SECT_PROVIDER) 7515 continue; 7516 7517 dtrace_helper_provider_remove_one(dhp, sec, pid); 7518 } 7519 } 7520 7521 /* 7522 * DTrace Meta Provider-to-Framework API Functions 7523 * 7524 * These functions implement the Meta Provider-to-Framework API, as described 7525 * in <sys/dtrace.h>. 7526 */ 7527 int 7528 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 7529 dtrace_meta_provider_id_t *idp) 7530 { 7531 dtrace_meta_t *meta; 7532 dtrace_helpers_t *help, *next; 7533 int i; 7534 7535 *idp = DTRACE_METAPROVNONE; 7536 7537 /* 7538 * We strictly don't need the name, but we hold onto it for 7539 * debuggability. All hail error queues! 7540 */ 7541 if (name == NULL) { 7542 cmn_err(CE_WARN, "failed to register meta-provider: " 7543 "invalid name"); 7544 return (EINVAL); 7545 } 7546 7547 if (mops == NULL || 7548 mops->dtms_create_probe == NULL || 7549 mops->dtms_provide_pid == NULL || 7550 mops->dtms_remove_pid == NULL) { 7551 cmn_err(CE_WARN, "failed to register meta-register %s: " 7552 "invalid ops", name); 7553 return (EINVAL); 7554 } 7555 7556 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 7557 meta->dtm_mops = *mops; 7558 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7559 (void) strcpy(meta->dtm_name, name); 7560 meta->dtm_arg = arg; 7561 7562 mutex_enter(&dtrace_meta_lock); 7563 mutex_enter(&dtrace_lock); 7564 7565 if (dtrace_meta_pid != NULL) { 7566 mutex_exit(&dtrace_lock); 7567 mutex_exit(&dtrace_meta_lock); 7568 cmn_err(CE_WARN, "failed to register meta-register %s: " 7569 "user-land meta-provider exists", name); 7570 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 7571 kmem_free(meta, sizeof (dtrace_meta_t)); 7572 return (EINVAL); 7573 } 7574 7575 dtrace_meta_pid = meta; 7576 *idp = (dtrace_meta_provider_id_t)meta; 7577 7578 /* 7579 * If there are providers and probes ready to go, pass them 7580 * off to the new meta provider now. 7581 */ 7582 7583 help = dtrace_deferred_pid; 7584 dtrace_deferred_pid = NULL; 7585 7586 mutex_exit(&dtrace_lock); 7587 7588 while (help != NULL) { 7589 for (i = 0; i < help->dthps_nprovs; i++) { 7590 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 7591 help->dthps_pid); 7592 } 7593 7594 next = help->dthps_next; 7595 help->dthps_next = NULL; 7596 help->dthps_prev = NULL; 7597 help->dthps_deferred = 0; 7598 help = next; 7599 } 7600 7601 mutex_exit(&dtrace_meta_lock); 7602 7603 return (0); 7604 } 7605 7606 int 7607 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 7608 { 7609 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 7610 7611 mutex_enter(&dtrace_meta_lock); 7612 mutex_enter(&dtrace_lock); 7613 7614 if (old == dtrace_meta_pid) { 7615 pp = &dtrace_meta_pid; 7616 } else { 7617 panic("attempt to unregister non-existent " 7618 "dtrace meta-provider %p\n", (void *)old); 7619 } 7620 7621 if (old->dtm_count != 0) { 7622 mutex_exit(&dtrace_lock); 7623 mutex_exit(&dtrace_meta_lock); 7624 return (EBUSY); 7625 } 7626 7627 *pp = NULL; 7628 7629 mutex_exit(&dtrace_lock); 7630 mutex_exit(&dtrace_meta_lock); 7631 7632 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 7633 kmem_free(old, sizeof (dtrace_meta_t)); 7634 7635 return (0); 7636 } 7637 7638 7639 /* 7640 * DTrace DIF Object Functions 7641 */ 7642 static int 7643 dtrace_difo_err(uint_t pc, const char *format, ...) 7644 { 7645 if (dtrace_err_verbose) { 7646 va_list alist; 7647 7648 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 7649 va_start(alist, format); 7650 (void) vuprintf(format, alist); 7651 va_end(alist); 7652 } 7653 7654 #ifdef DTRACE_ERRDEBUG 7655 dtrace_errdebug(format); 7656 #endif 7657 return (1); 7658 } 7659 7660 /* 7661 * Validate a DTrace DIF object by checking the IR instructions. The following 7662 * rules are currently enforced by dtrace_difo_validate(): 7663 * 7664 * 1. Each instruction must have a valid opcode 7665 * 2. Each register, string, variable, or subroutine reference must be valid 7666 * 3. No instruction can modify register %r0 (must be zero) 7667 * 4. All instruction reserved bits must be set to zero 7668 * 5. The last instruction must be a "ret" instruction 7669 * 6. All branch targets must reference a valid instruction _after_ the branch 7670 */ 7671 static int 7672 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 7673 cred_t *cr) 7674 { 7675 int err = 0, i; 7676 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 7677 int kcheckload; 7678 uint_t pc; 7679 7680 kcheckload = cr == NULL || 7681 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 7682 7683 dp->dtdo_destructive = 0; 7684 7685 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 7686 dif_instr_t instr = dp->dtdo_buf[pc]; 7687 7688 uint_t r1 = DIF_INSTR_R1(instr); 7689 uint_t r2 = DIF_INSTR_R2(instr); 7690 uint_t rd = DIF_INSTR_RD(instr); 7691 uint_t rs = DIF_INSTR_RS(instr); 7692 uint_t label = DIF_INSTR_LABEL(instr); 7693 uint_t v = DIF_INSTR_VAR(instr); 7694 uint_t subr = DIF_INSTR_SUBR(instr); 7695 uint_t type = DIF_INSTR_TYPE(instr); 7696 uint_t op = DIF_INSTR_OP(instr); 7697 7698 switch (op) { 7699 case DIF_OP_OR: 7700 case DIF_OP_XOR: 7701 case DIF_OP_AND: 7702 case DIF_OP_SLL: 7703 case DIF_OP_SRL: 7704 case DIF_OP_SRA: 7705 case DIF_OP_SUB: 7706 case DIF_OP_ADD: 7707 case DIF_OP_MUL: 7708 case DIF_OP_SDIV: 7709 case DIF_OP_UDIV: 7710 case DIF_OP_SREM: 7711 case DIF_OP_UREM: 7712 case DIF_OP_COPYS: 7713 if (r1 >= nregs) 7714 err += efunc(pc, "invalid register %u\n", r1); 7715 if (r2 >= nregs) 7716 err += efunc(pc, "invalid register %u\n", r2); 7717 if (rd >= nregs) 7718 err += efunc(pc, "invalid register %u\n", rd); 7719 if (rd == 0) 7720 err += efunc(pc, "cannot write to %r0\n"); 7721 break; 7722 case DIF_OP_NOT: 7723 case DIF_OP_MOV: 7724 case DIF_OP_ALLOCS: 7725 if (r1 >= nregs) 7726 err += efunc(pc, "invalid register %u\n", r1); 7727 if (r2 != 0) 7728 err += efunc(pc, "non-zero reserved bits\n"); 7729 if (rd >= nregs) 7730 err += efunc(pc, "invalid register %u\n", rd); 7731 if (rd == 0) 7732 err += efunc(pc, "cannot write to %r0\n"); 7733 break; 7734 case DIF_OP_LDSB: 7735 case DIF_OP_LDSH: 7736 case DIF_OP_LDSW: 7737 case DIF_OP_LDUB: 7738 case DIF_OP_LDUH: 7739 case DIF_OP_LDUW: 7740 case DIF_OP_LDX: 7741 if (r1 >= nregs) 7742 err += efunc(pc, "invalid register %u\n", r1); 7743 if (r2 != 0) 7744 err += efunc(pc, "non-zero reserved bits\n"); 7745 if (rd >= nregs) 7746 err += efunc(pc, "invalid register %u\n", rd); 7747 if (rd == 0) 7748 err += efunc(pc, "cannot write to %r0\n"); 7749 if (kcheckload) 7750 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 7751 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 7752 break; 7753 case DIF_OP_RLDSB: 7754 case DIF_OP_RLDSH: 7755 case DIF_OP_RLDSW: 7756 case DIF_OP_RLDUB: 7757 case DIF_OP_RLDUH: 7758 case DIF_OP_RLDUW: 7759 case DIF_OP_RLDX: 7760 if (r1 >= nregs) 7761 err += efunc(pc, "invalid register %u\n", r1); 7762 if (r2 != 0) 7763 err += efunc(pc, "non-zero reserved bits\n"); 7764 if (rd >= nregs) 7765 err += efunc(pc, "invalid register %u\n", rd); 7766 if (rd == 0) 7767 err += efunc(pc, "cannot write to %r0\n"); 7768 break; 7769 case DIF_OP_ULDSB: 7770 case DIF_OP_ULDSH: 7771 case DIF_OP_ULDSW: 7772 case DIF_OP_ULDUB: 7773 case DIF_OP_ULDUH: 7774 case DIF_OP_ULDUW: 7775 case DIF_OP_ULDX: 7776 if (r1 >= nregs) 7777 err += efunc(pc, "invalid register %u\n", r1); 7778 if (r2 != 0) 7779 err += efunc(pc, "non-zero reserved bits\n"); 7780 if (rd >= nregs) 7781 err += efunc(pc, "invalid register %u\n", rd); 7782 if (rd == 0) 7783 err += efunc(pc, "cannot write to %r0\n"); 7784 break; 7785 case DIF_OP_STB: 7786 case DIF_OP_STH: 7787 case DIF_OP_STW: 7788 case DIF_OP_STX: 7789 if (r1 >= nregs) 7790 err += efunc(pc, "invalid register %u\n", r1); 7791 if (r2 != 0) 7792 err += efunc(pc, "non-zero reserved bits\n"); 7793 if (rd >= nregs) 7794 err += efunc(pc, "invalid register %u\n", rd); 7795 if (rd == 0) 7796 err += efunc(pc, "cannot write to 0 address\n"); 7797 break; 7798 case DIF_OP_CMP: 7799 case DIF_OP_SCMP: 7800 if (r1 >= nregs) 7801 err += efunc(pc, "invalid register %u\n", r1); 7802 if (r2 >= nregs) 7803 err += efunc(pc, "invalid register %u\n", r2); 7804 if (rd != 0) 7805 err += efunc(pc, "non-zero reserved bits\n"); 7806 break; 7807 case DIF_OP_TST: 7808 if (r1 >= nregs) 7809 err += efunc(pc, "invalid register %u\n", r1); 7810 if (r2 != 0 || rd != 0) 7811 err += efunc(pc, "non-zero reserved bits\n"); 7812 break; 7813 case DIF_OP_BA: 7814 case DIF_OP_BE: 7815 case DIF_OP_BNE: 7816 case DIF_OP_BG: 7817 case DIF_OP_BGU: 7818 case DIF_OP_BGE: 7819 case DIF_OP_BGEU: 7820 case DIF_OP_BL: 7821 case DIF_OP_BLU: 7822 case DIF_OP_BLE: 7823 case DIF_OP_BLEU: 7824 if (label >= dp->dtdo_len) { 7825 err += efunc(pc, "invalid branch target %u\n", 7826 label); 7827 } 7828 if (label <= pc) { 7829 err += efunc(pc, "backward branch to %u\n", 7830 label); 7831 } 7832 break; 7833 case DIF_OP_RET: 7834 if (r1 != 0 || r2 != 0) 7835 err += efunc(pc, "non-zero reserved bits\n"); 7836 if (rd >= nregs) 7837 err += efunc(pc, "invalid register %u\n", rd); 7838 break; 7839 case DIF_OP_NOP: 7840 case DIF_OP_POPTS: 7841 case DIF_OP_FLUSHTS: 7842 if (r1 != 0 || r2 != 0 || rd != 0) 7843 err += efunc(pc, "non-zero reserved bits\n"); 7844 break; 7845 case DIF_OP_SETX: 7846 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 7847 err += efunc(pc, "invalid integer ref %u\n", 7848 DIF_INSTR_INTEGER(instr)); 7849 } 7850 if (rd >= nregs) 7851 err += efunc(pc, "invalid register %u\n", rd); 7852 if (rd == 0) 7853 err += efunc(pc, "cannot write to %r0\n"); 7854 break; 7855 case DIF_OP_SETS: 7856 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 7857 err += efunc(pc, "invalid string ref %u\n", 7858 DIF_INSTR_STRING(instr)); 7859 } 7860 if (rd >= nregs) 7861 err += efunc(pc, "invalid register %u\n", rd); 7862 if (rd == 0) 7863 err += efunc(pc, "cannot write to %r0\n"); 7864 break; 7865 case DIF_OP_LDGA: 7866 case DIF_OP_LDTA: 7867 if (r1 > DIF_VAR_ARRAY_MAX) 7868 err += efunc(pc, "invalid array %u\n", r1); 7869 if (r2 >= nregs) 7870 err += efunc(pc, "invalid register %u\n", r2); 7871 if (rd >= nregs) 7872 err += efunc(pc, "invalid register %u\n", rd); 7873 if (rd == 0) 7874 err += efunc(pc, "cannot write to %r0\n"); 7875 break; 7876 case DIF_OP_LDGS: 7877 case DIF_OP_LDTS: 7878 case DIF_OP_LDLS: 7879 case DIF_OP_LDGAA: 7880 case DIF_OP_LDTAA: 7881 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 7882 err += efunc(pc, "invalid variable %u\n", v); 7883 if (rd >= nregs) 7884 err += efunc(pc, "invalid register %u\n", rd); 7885 if (rd == 0) 7886 err += efunc(pc, "cannot write to %r0\n"); 7887 break; 7888 case DIF_OP_STGS: 7889 case DIF_OP_STTS: 7890 case DIF_OP_STLS: 7891 case DIF_OP_STGAA: 7892 case DIF_OP_STTAA: 7893 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 7894 err += efunc(pc, "invalid variable %u\n", v); 7895 if (rs >= nregs) 7896 err += efunc(pc, "invalid register %u\n", rd); 7897 break; 7898 case DIF_OP_CALL: 7899 if (subr > DIF_SUBR_MAX) 7900 err += efunc(pc, "invalid subr %u\n", subr); 7901 if (rd >= nregs) 7902 err += efunc(pc, "invalid register %u\n", rd); 7903 if (rd == 0) 7904 err += efunc(pc, "cannot write to %r0\n"); 7905 7906 if (subr == DIF_SUBR_COPYOUT || 7907 subr == DIF_SUBR_COPYOUTSTR) { 7908 dp->dtdo_destructive = 1; 7909 } 7910 break; 7911 case DIF_OP_PUSHTR: 7912 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 7913 err += efunc(pc, "invalid ref type %u\n", type); 7914 if (r2 >= nregs) 7915 err += efunc(pc, "invalid register %u\n", r2); 7916 if (rs >= nregs) 7917 err += efunc(pc, "invalid register %u\n", rs); 7918 break; 7919 case DIF_OP_PUSHTV: 7920 if (type != DIF_TYPE_CTF) 7921 err += efunc(pc, "invalid val type %u\n", type); 7922 if (r2 >= nregs) 7923 err += efunc(pc, "invalid register %u\n", r2); 7924 if (rs >= nregs) 7925 err += efunc(pc, "invalid register %u\n", rs); 7926 break; 7927 default: 7928 err += efunc(pc, "invalid opcode %u\n", 7929 DIF_INSTR_OP(instr)); 7930 } 7931 } 7932 7933 if (dp->dtdo_len != 0 && 7934 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 7935 err += efunc(dp->dtdo_len - 1, 7936 "expected 'ret' as last DIF instruction\n"); 7937 } 7938 7939 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 7940 /* 7941 * If we're not returning by reference, the size must be either 7942 * 0 or the size of one of the base types. 7943 */ 7944 switch (dp->dtdo_rtype.dtdt_size) { 7945 case 0: 7946 case sizeof (uint8_t): 7947 case sizeof (uint16_t): 7948 case sizeof (uint32_t): 7949 case sizeof (uint64_t): 7950 break; 7951 7952 default: 7953 err += efunc(dp->dtdo_len - 1, "bad return size"); 7954 } 7955 } 7956 7957 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 7958 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 7959 dtrace_diftype_t *vt, *et; 7960 uint_t id, ndx; 7961 7962 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 7963 v->dtdv_scope != DIFV_SCOPE_THREAD && 7964 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 7965 err += efunc(i, "unrecognized variable scope %d\n", 7966 v->dtdv_scope); 7967 break; 7968 } 7969 7970 if (v->dtdv_kind != DIFV_KIND_ARRAY && 7971 v->dtdv_kind != DIFV_KIND_SCALAR) { 7972 err += efunc(i, "unrecognized variable type %d\n", 7973 v->dtdv_kind); 7974 break; 7975 } 7976 7977 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 7978 err += efunc(i, "%d exceeds variable id limit\n", id); 7979 break; 7980 } 7981 7982 if (id < DIF_VAR_OTHER_UBASE) 7983 continue; 7984 7985 /* 7986 * For user-defined variables, we need to check that this 7987 * definition is identical to any previous definition that we 7988 * encountered. 7989 */ 7990 ndx = id - DIF_VAR_OTHER_UBASE; 7991 7992 switch (v->dtdv_scope) { 7993 case DIFV_SCOPE_GLOBAL: 7994 if (ndx < vstate->dtvs_nglobals) { 7995 dtrace_statvar_t *svar; 7996 7997 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 7998 existing = &svar->dtsv_var; 7999 } 8000 8001 break; 8002 8003 case DIFV_SCOPE_THREAD: 8004 if (ndx < vstate->dtvs_ntlocals) 8005 existing = &vstate->dtvs_tlocals[ndx]; 8006 break; 8007 8008 case DIFV_SCOPE_LOCAL: 8009 if (ndx < vstate->dtvs_nlocals) { 8010 dtrace_statvar_t *svar; 8011 8012 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8013 existing = &svar->dtsv_var; 8014 } 8015 8016 break; 8017 } 8018 8019 vt = &v->dtdv_type; 8020 8021 if (vt->dtdt_flags & DIF_TF_BYREF) { 8022 if (vt->dtdt_size == 0) { 8023 err += efunc(i, "zero-sized variable\n"); 8024 break; 8025 } 8026 8027 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8028 vt->dtdt_size > dtrace_global_maxsize) { 8029 err += efunc(i, "oversized by-ref global\n"); 8030 break; 8031 } 8032 } 8033 8034 if (existing == NULL || existing->dtdv_id == 0) 8035 continue; 8036 8037 ASSERT(existing->dtdv_id == v->dtdv_id); 8038 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8039 8040 if (existing->dtdv_kind != v->dtdv_kind) 8041 err += efunc(i, "%d changed variable kind\n", id); 8042 8043 et = &existing->dtdv_type; 8044 8045 if (vt->dtdt_flags != et->dtdt_flags) { 8046 err += efunc(i, "%d changed variable type flags\n", id); 8047 break; 8048 } 8049 8050 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8051 err += efunc(i, "%d changed variable type size\n", id); 8052 break; 8053 } 8054 } 8055 8056 return (err); 8057 } 8058 8059 /* 8060 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8061 * are much more constrained than normal DIFOs. Specifically, they may 8062 * not: 8063 * 8064 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8065 * miscellaneous string routines 8066 * 2. Access DTrace variables other than the args[] array, and the 8067 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8068 * 3. Have thread-local variables. 8069 * 4. Have dynamic variables. 8070 */ 8071 static int 8072 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8073 { 8074 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8075 int err = 0; 8076 uint_t pc; 8077 8078 for (pc = 0; pc < dp->dtdo_len; pc++) { 8079 dif_instr_t instr = dp->dtdo_buf[pc]; 8080 8081 uint_t v = DIF_INSTR_VAR(instr); 8082 uint_t subr = DIF_INSTR_SUBR(instr); 8083 uint_t op = DIF_INSTR_OP(instr); 8084 8085 switch (op) { 8086 case DIF_OP_OR: 8087 case DIF_OP_XOR: 8088 case DIF_OP_AND: 8089 case DIF_OP_SLL: 8090 case DIF_OP_SRL: 8091 case DIF_OP_SRA: 8092 case DIF_OP_SUB: 8093 case DIF_OP_ADD: 8094 case DIF_OP_MUL: 8095 case DIF_OP_SDIV: 8096 case DIF_OP_UDIV: 8097 case DIF_OP_SREM: 8098 case DIF_OP_UREM: 8099 case DIF_OP_COPYS: 8100 case DIF_OP_NOT: 8101 case DIF_OP_MOV: 8102 case DIF_OP_RLDSB: 8103 case DIF_OP_RLDSH: 8104 case DIF_OP_RLDSW: 8105 case DIF_OP_RLDUB: 8106 case DIF_OP_RLDUH: 8107 case DIF_OP_RLDUW: 8108 case DIF_OP_RLDX: 8109 case DIF_OP_ULDSB: 8110 case DIF_OP_ULDSH: 8111 case DIF_OP_ULDSW: 8112 case DIF_OP_ULDUB: 8113 case DIF_OP_ULDUH: 8114 case DIF_OP_ULDUW: 8115 case DIF_OP_ULDX: 8116 case DIF_OP_STB: 8117 case DIF_OP_STH: 8118 case DIF_OP_STW: 8119 case DIF_OP_STX: 8120 case DIF_OP_ALLOCS: 8121 case DIF_OP_CMP: 8122 case DIF_OP_SCMP: 8123 case DIF_OP_TST: 8124 case DIF_OP_BA: 8125 case DIF_OP_BE: 8126 case DIF_OP_BNE: 8127 case DIF_OP_BG: 8128 case DIF_OP_BGU: 8129 case DIF_OP_BGE: 8130 case DIF_OP_BGEU: 8131 case DIF_OP_BL: 8132 case DIF_OP_BLU: 8133 case DIF_OP_BLE: 8134 case DIF_OP_BLEU: 8135 case DIF_OP_RET: 8136 case DIF_OP_NOP: 8137 case DIF_OP_POPTS: 8138 case DIF_OP_FLUSHTS: 8139 case DIF_OP_SETX: 8140 case DIF_OP_SETS: 8141 case DIF_OP_LDGA: 8142 case DIF_OP_LDLS: 8143 case DIF_OP_STGS: 8144 case DIF_OP_STLS: 8145 case DIF_OP_PUSHTR: 8146 case DIF_OP_PUSHTV: 8147 break; 8148 8149 case DIF_OP_LDGS: 8150 if (v >= DIF_VAR_OTHER_UBASE) 8151 break; 8152 8153 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8154 break; 8155 8156 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8157 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8158 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8159 v == DIF_VAR_UID || v == DIF_VAR_GID) 8160 break; 8161 8162 err += efunc(pc, "illegal variable %u\n", v); 8163 break; 8164 8165 case DIF_OP_LDTA: 8166 case DIF_OP_LDTS: 8167 case DIF_OP_LDGAA: 8168 case DIF_OP_LDTAA: 8169 err += efunc(pc, "illegal dynamic variable load\n"); 8170 break; 8171 8172 case DIF_OP_STTS: 8173 case DIF_OP_STGAA: 8174 case DIF_OP_STTAA: 8175 err += efunc(pc, "illegal dynamic variable store\n"); 8176 break; 8177 8178 case DIF_OP_CALL: 8179 if (subr == DIF_SUBR_ALLOCA || 8180 subr == DIF_SUBR_BCOPY || 8181 subr == DIF_SUBR_COPYIN || 8182 subr == DIF_SUBR_COPYINTO || 8183 subr == DIF_SUBR_COPYINSTR || 8184 subr == DIF_SUBR_INDEX || 8185 subr == DIF_SUBR_INET_NTOA || 8186 subr == DIF_SUBR_INET_NTOA6 || 8187 subr == DIF_SUBR_INET_NTOP || 8188 subr == DIF_SUBR_LLTOSTR || 8189 subr == DIF_SUBR_RINDEX || 8190 subr == DIF_SUBR_STRCHR || 8191 subr == DIF_SUBR_STRJOIN || 8192 subr == DIF_SUBR_STRRCHR || 8193 subr == DIF_SUBR_STRSTR || 8194 subr == DIF_SUBR_HTONS || 8195 subr == DIF_SUBR_HTONL || 8196 subr == DIF_SUBR_HTONLL || 8197 subr == DIF_SUBR_NTOHS || 8198 subr == DIF_SUBR_NTOHL || 8199 subr == DIF_SUBR_NTOHLL) 8200 break; 8201 8202 err += efunc(pc, "invalid subr %u\n", subr); 8203 break; 8204 8205 default: 8206 err += efunc(pc, "invalid opcode %u\n", 8207 DIF_INSTR_OP(instr)); 8208 } 8209 } 8210 8211 return (err); 8212 } 8213 8214 /* 8215 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8216 * basis; 0 if not. 8217 */ 8218 static int 8219 dtrace_difo_cacheable(dtrace_difo_t *dp) 8220 { 8221 int i; 8222 8223 if (dp == NULL) 8224 return (0); 8225 8226 for (i = 0; i < dp->dtdo_varlen; i++) { 8227 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8228 8229 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8230 continue; 8231 8232 switch (v->dtdv_id) { 8233 case DIF_VAR_CURTHREAD: 8234 case DIF_VAR_PID: 8235 case DIF_VAR_TID: 8236 case DIF_VAR_EXECNAME: 8237 case DIF_VAR_ZONENAME: 8238 break; 8239 8240 default: 8241 return (0); 8242 } 8243 } 8244 8245 /* 8246 * This DIF object may be cacheable. Now we need to look for any 8247 * array loading instructions, any memory loading instructions, or 8248 * any stores to thread-local variables. 8249 */ 8250 for (i = 0; i < dp->dtdo_len; i++) { 8251 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8252 8253 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8254 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8255 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8256 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8257 return (0); 8258 } 8259 8260 return (1); 8261 } 8262 8263 static void 8264 dtrace_difo_hold(dtrace_difo_t *dp) 8265 { 8266 int i; 8267 8268 ASSERT(MUTEX_HELD(&dtrace_lock)); 8269 8270 dp->dtdo_refcnt++; 8271 ASSERT(dp->dtdo_refcnt != 0); 8272 8273 /* 8274 * We need to check this DIF object for references to the variable 8275 * DIF_VAR_VTIMESTAMP. 8276 */ 8277 for (i = 0; i < dp->dtdo_varlen; i++) { 8278 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8279 8280 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8281 continue; 8282 8283 if (dtrace_vtime_references++ == 0) 8284 dtrace_vtime_enable(); 8285 } 8286 } 8287 8288 /* 8289 * This routine calculates the dynamic variable chunksize for a given DIF 8290 * object. The calculation is not fool-proof, and can probably be tricked by 8291 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8292 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8293 * if a dynamic variable size exceeds the chunksize. 8294 */ 8295 static void 8296 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8297 { 8298 uint64_t sval; 8299 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8300 const dif_instr_t *text = dp->dtdo_buf; 8301 uint_t pc, srd = 0; 8302 uint_t ttop = 0; 8303 size_t size, ksize; 8304 uint_t id, i; 8305 8306 for (pc = 0; pc < dp->dtdo_len; pc++) { 8307 dif_instr_t instr = text[pc]; 8308 uint_t op = DIF_INSTR_OP(instr); 8309 uint_t rd = DIF_INSTR_RD(instr); 8310 uint_t r1 = DIF_INSTR_R1(instr); 8311 uint_t nkeys = 0; 8312 uchar_t scope; 8313 8314 dtrace_key_t *key = tupregs; 8315 8316 switch (op) { 8317 case DIF_OP_SETX: 8318 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8319 srd = rd; 8320 continue; 8321 8322 case DIF_OP_STTS: 8323 key = &tupregs[DIF_DTR_NREGS]; 8324 key[0].dttk_size = 0; 8325 key[1].dttk_size = 0; 8326 nkeys = 2; 8327 scope = DIFV_SCOPE_THREAD; 8328 break; 8329 8330 case DIF_OP_STGAA: 8331 case DIF_OP_STTAA: 8332 nkeys = ttop; 8333 8334 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 8335 key[nkeys++].dttk_size = 0; 8336 8337 key[nkeys++].dttk_size = 0; 8338 8339 if (op == DIF_OP_STTAA) { 8340 scope = DIFV_SCOPE_THREAD; 8341 } else { 8342 scope = DIFV_SCOPE_GLOBAL; 8343 } 8344 8345 break; 8346 8347 case DIF_OP_PUSHTR: 8348 if (ttop == DIF_DTR_NREGS) 8349 return; 8350 8351 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 8352 /* 8353 * If the register for the size of the "pushtr" 8354 * is %r0 (or the value is 0) and the type is 8355 * a string, we'll use the system-wide default 8356 * string size. 8357 */ 8358 tupregs[ttop++].dttk_size = 8359 dtrace_strsize_default; 8360 } else { 8361 if (srd == 0) 8362 return; 8363 8364 tupregs[ttop++].dttk_size = sval; 8365 } 8366 8367 break; 8368 8369 case DIF_OP_PUSHTV: 8370 if (ttop == DIF_DTR_NREGS) 8371 return; 8372 8373 tupregs[ttop++].dttk_size = 0; 8374 break; 8375 8376 case DIF_OP_FLUSHTS: 8377 ttop = 0; 8378 break; 8379 8380 case DIF_OP_POPTS: 8381 if (ttop != 0) 8382 ttop--; 8383 break; 8384 } 8385 8386 sval = 0; 8387 srd = 0; 8388 8389 if (nkeys == 0) 8390 continue; 8391 8392 /* 8393 * We have a dynamic variable allocation; calculate its size. 8394 */ 8395 for (ksize = 0, i = 0; i < nkeys; i++) 8396 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 8397 8398 size = sizeof (dtrace_dynvar_t); 8399 size += sizeof (dtrace_key_t) * (nkeys - 1); 8400 size += ksize; 8401 8402 /* 8403 * Now we need to determine the size of the stored data. 8404 */ 8405 id = DIF_INSTR_VAR(instr); 8406 8407 for (i = 0; i < dp->dtdo_varlen; i++) { 8408 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8409 8410 if (v->dtdv_id == id && v->dtdv_scope == scope) { 8411 size += v->dtdv_type.dtdt_size; 8412 break; 8413 } 8414 } 8415 8416 if (i == dp->dtdo_varlen) 8417 return; 8418 8419 /* 8420 * We have the size. If this is larger than the chunk size 8421 * for our dynamic variable state, reset the chunk size. 8422 */ 8423 size = P2ROUNDUP(size, sizeof (uint64_t)); 8424 8425 if (size > vstate->dtvs_dynvars.dtds_chunksize) 8426 vstate->dtvs_dynvars.dtds_chunksize = size; 8427 } 8428 } 8429 8430 static void 8431 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8432 { 8433 int i, oldsvars, osz, nsz, otlocals, ntlocals; 8434 uint_t id; 8435 8436 ASSERT(MUTEX_HELD(&dtrace_lock)); 8437 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 8438 8439 for (i = 0; i < dp->dtdo_varlen; i++) { 8440 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8441 dtrace_statvar_t *svar, ***svarp; 8442 size_t dsize = 0; 8443 uint8_t scope = v->dtdv_scope; 8444 int *np; 8445 8446 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8447 continue; 8448 8449 id -= DIF_VAR_OTHER_UBASE; 8450 8451 switch (scope) { 8452 case DIFV_SCOPE_THREAD: 8453 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 8454 dtrace_difv_t *tlocals; 8455 8456 if ((ntlocals = (otlocals << 1)) == 0) 8457 ntlocals = 1; 8458 8459 osz = otlocals * sizeof (dtrace_difv_t); 8460 nsz = ntlocals * sizeof (dtrace_difv_t); 8461 8462 tlocals = kmem_zalloc(nsz, KM_SLEEP); 8463 8464 if (osz != 0) { 8465 bcopy(vstate->dtvs_tlocals, 8466 tlocals, osz); 8467 kmem_free(vstate->dtvs_tlocals, osz); 8468 } 8469 8470 vstate->dtvs_tlocals = tlocals; 8471 vstate->dtvs_ntlocals = ntlocals; 8472 } 8473 8474 vstate->dtvs_tlocals[id] = *v; 8475 continue; 8476 8477 case DIFV_SCOPE_LOCAL: 8478 np = &vstate->dtvs_nlocals; 8479 svarp = &vstate->dtvs_locals; 8480 8481 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8482 dsize = NCPU * (v->dtdv_type.dtdt_size + 8483 sizeof (uint64_t)); 8484 else 8485 dsize = NCPU * sizeof (uint64_t); 8486 8487 break; 8488 8489 case DIFV_SCOPE_GLOBAL: 8490 np = &vstate->dtvs_nglobals; 8491 svarp = &vstate->dtvs_globals; 8492 8493 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8494 dsize = v->dtdv_type.dtdt_size + 8495 sizeof (uint64_t); 8496 8497 break; 8498 8499 default: 8500 ASSERT(0); 8501 } 8502 8503 while (id >= (oldsvars = *np)) { 8504 dtrace_statvar_t **statics; 8505 int newsvars, oldsize, newsize; 8506 8507 if ((newsvars = (oldsvars << 1)) == 0) 8508 newsvars = 1; 8509 8510 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 8511 newsize = newsvars * sizeof (dtrace_statvar_t *); 8512 8513 statics = kmem_zalloc(newsize, KM_SLEEP); 8514 8515 if (oldsize != 0) { 8516 bcopy(*svarp, statics, oldsize); 8517 kmem_free(*svarp, oldsize); 8518 } 8519 8520 *svarp = statics; 8521 *np = newsvars; 8522 } 8523 8524 if ((svar = (*svarp)[id]) == NULL) { 8525 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 8526 svar->dtsv_var = *v; 8527 8528 if ((svar->dtsv_size = dsize) != 0) { 8529 svar->dtsv_data = (uint64_t)(uintptr_t) 8530 kmem_zalloc(dsize, KM_SLEEP); 8531 } 8532 8533 (*svarp)[id] = svar; 8534 } 8535 8536 svar->dtsv_refcnt++; 8537 } 8538 8539 dtrace_difo_chunksize(dp, vstate); 8540 dtrace_difo_hold(dp); 8541 } 8542 8543 static dtrace_difo_t * 8544 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8545 { 8546 dtrace_difo_t *new; 8547 size_t sz; 8548 8549 ASSERT(dp->dtdo_buf != NULL); 8550 ASSERT(dp->dtdo_refcnt != 0); 8551 8552 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 8553 8554 ASSERT(dp->dtdo_buf != NULL); 8555 sz = dp->dtdo_len * sizeof (dif_instr_t); 8556 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 8557 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 8558 new->dtdo_len = dp->dtdo_len; 8559 8560 if (dp->dtdo_strtab != NULL) { 8561 ASSERT(dp->dtdo_strlen != 0); 8562 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 8563 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 8564 new->dtdo_strlen = dp->dtdo_strlen; 8565 } 8566 8567 if (dp->dtdo_inttab != NULL) { 8568 ASSERT(dp->dtdo_intlen != 0); 8569 sz = dp->dtdo_intlen * sizeof (uint64_t); 8570 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 8571 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 8572 new->dtdo_intlen = dp->dtdo_intlen; 8573 } 8574 8575 if (dp->dtdo_vartab != NULL) { 8576 ASSERT(dp->dtdo_varlen != 0); 8577 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 8578 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 8579 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 8580 new->dtdo_varlen = dp->dtdo_varlen; 8581 } 8582 8583 dtrace_difo_init(new, vstate); 8584 return (new); 8585 } 8586 8587 static void 8588 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8589 { 8590 int i; 8591 8592 ASSERT(dp->dtdo_refcnt == 0); 8593 8594 for (i = 0; i < dp->dtdo_varlen; i++) { 8595 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8596 dtrace_statvar_t *svar, **svarp; 8597 uint_t id; 8598 uint8_t scope = v->dtdv_scope; 8599 int *np; 8600 8601 switch (scope) { 8602 case DIFV_SCOPE_THREAD: 8603 continue; 8604 8605 case DIFV_SCOPE_LOCAL: 8606 np = &vstate->dtvs_nlocals; 8607 svarp = vstate->dtvs_locals; 8608 break; 8609 8610 case DIFV_SCOPE_GLOBAL: 8611 np = &vstate->dtvs_nglobals; 8612 svarp = vstate->dtvs_globals; 8613 break; 8614 8615 default: 8616 ASSERT(0); 8617 } 8618 8619 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8620 continue; 8621 8622 id -= DIF_VAR_OTHER_UBASE; 8623 ASSERT(id < *np); 8624 8625 svar = svarp[id]; 8626 ASSERT(svar != NULL); 8627 ASSERT(svar->dtsv_refcnt > 0); 8628 8629 if (--svar->dtsv_refcnt > 0) 8630 continue; 8631 8632 if (svar->dtsv_size != 0) { 8633 ASSERT(svar->dtsv_data != NULL); 8634 kmem_free((void *)(uintptr_t)svar->dtsv_data, 8635 svar->dtsv_size); 8636 } 8637 8638 kmem_free(svar, sizeof (dtrace_statvar_t)); 8639 svarp[id] = NULL; 8640 } 8641 8642 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 8643 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 8644 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 8645 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 8646 8647 kmem_free(dp, sizeof (dtrace_difo_t)); 8648 } 8649 8650 static void 8651 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8652 { 8653 int i; 8654 8655 ASSERT(MUTEX_HELD(&dtrace_lock)); 8656 ASSERT(dp->dtdo_refcnt != 0); 8657 8658 for (i = 0; i < dp->dtdo_varlen; i++) { 8659 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8660 8661 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8662 continue; 8663 8664 ASSERT(dtrace_vtime_references > 0); 8665 if (--dtrace_vtime_references == 0) 8666 dtrace_vtime_disable(); 8667 } 8668 8669 if (--dp->dtdo_refcnt == 0) 8670 dtrace_difo_destroy(dp, vstate); 8671 } 8672 8673 /* 8674 * DTrace Format Functions 8675 */ 8676 static uint16_t 8677 dtrace_format_add(dtrace_state_t *state, char *str) 8678 { 8679 char *fmt, **new; 8680 uint16_t ndx, len = strlen(str) + 1; 8681 8682 fmt = kmem_zalloc(len, KM_SLEEP); 8683 bcopy(str, fmt, len); 8684 8685 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 8686 if (state->dts_formats[ndx] == NULL) { 8687 state->dts_formats[ndx] = fmt; 8688 return (ndx + 1); 8689 } 8690 } 8691 8692 if (state->dts_nformats == USHRT_MAX) { 8693 /* 8694 * This is only likely if a denial-of-service attack is being 8695 * attempted. As such, it's okay to fail silently here. 8696 */ 8697 kmem_free(fmt, len); 8698 return (0); 8699 } 8700 8701 /* 8702 * For simplicity, we always resize the formats array to be exactly the 8703 * number of formats. 8704 */ 8705 ndx = state->dts_nformats++; 8706 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 8707 8708 if (state->dts_formats != NULL) { 8709 ASSERT(ndx != 0); 8710 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 8711 kmem_free(state->dts_formats, ndx * sizeof (char *)); 8712 } 8713 8714 state->dts_formats = new; 8715 state->dts_formats[ndx] = fmt; 8716 8717 return (ndx + 1); 8718 } 8719 8720 static void 8721 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 8722 { 8723 char *fmt; 8724 8725 ASSERT(state->dts_formats != NULL); 8726 ASSERT(format <= state->dts_nformats); 8727 ASSERT(state->dts_formats[format - 1] != NULL); 8728 8729 fmt = state->dts_formats[format - 1]; 8730 kmem_free(fmt, strlen(fmt) + 1); 8731 state->dts_formats[format - 1] = NULL; 8732 } 8733 8734 static void 8735 dtrace_format_destroy(dtrace_state_t *state) 8736 { 8737 int i; 8738 8739 if (state->dts_nformats == 0) { 8740 ASSERT(state->dts_formats == NULL); 8741 return; 8742 } 8743 8744 ASSERT(state->dts_formats != NULL); 8745 8746 for (i = 0; i < state->dts_nformats; i++) { 8747 char *fmt = state->dts_formats[i]; 8748 8749 if (fmt == NULL) 8750 continue; 8751 8752 kmem_free(fmt, strlen(fmt) + 1); 8753 } 8754 8755 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 8756 state->dts_nformats = 0; 8757 state->dts_formats = NULL; 8758 } 8759 8760 /* 8761 * DTrace Predicate Functions 8762 */ 8763 static dtrace_predicate_t * 8764 dtrace_predicate_create(dtrace_difo_t *dp) 8765 { 8766 dtrace_predicate_t *pred; 8767 8768 ASSERT(MUTEX_HELD(&dtrace_lock)); 8769 ASSERT(dp->dtdo_refcnt != 0); 8770 8771 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 8772 pred->dtp_difo = dp; 8773 pred->dtp_refcnt = 1; 8774 8775 if (!dtrace_difo_cacheable(dp)) 8776 return (pred); 8777 8778 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 8779 /* 8780 * This is only theoretically possible -- we have had 2^32 8781 * cacheable predicates on this machine. We cannot allow any 8782 * more predicates to become cacheable: as unlikely as it is, 8783 * there may be a thread caching a (now stale) predicate cache 8784 * ID. (N.B.: the temptation is being successfully resisted to 8785 * have this cmn_err() "Holy shit -- we executed this code!") 8786 */ 8787 return (pred); 8788 } 8789 8790 pred->dtp_cacheid = dtrace_predcache_id++; 8791 8792 return (pred); 8793 } 8794 8795 static void 8796 dtrace_predicate_hold(dtrace_predicate_t *pred) 8797 { 8798 ASSERT(MUTEX_HELD(&dtrace_lock)); 8799 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 8800 ASSERT(pred->dtp_refcnt > 0); 8801 8802 pred->dtp_refcnt++; 8803 } 8804 8805 static void 8806 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 8807 { 8808 dtrace_difo_t *dp = pred->dtp_difo; 8809 8810 ASSERT(MUTEX_HELD(&dtrace_lock)); 8811 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 8812 ASSERT(pred->dtp_refcnt > 0); 8813 8814 if (--pred->dtp_refcnt == 0) { 8815 dtrace_difo_release(pred->dtp_difo, vstate); 8816 kmem_free(pred, sizeof (dtrace_predicate_t)); 8817 } 8818 } 8819 8820 /* 8821 * DTrace Action Description Functions 8822 */ 8823 static dtrace_actdesc_t * 8824 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 8825 uint64_t uarg, uint64_t arg) 8826 { 8827 dtrace_actdesc_t *act; 8828 8829 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 8830 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 8831 8832 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 8833 act->dtad_kind = kind; 8834 act->dtad_ntuple = ntuple; 8835 act->dtad_uarg = uarg; 8836 act->dtad_arg = arg; 8837 act->dtad_refcnt = 1; 8838 8839 return (act); 8840 } 8841 8842 static void 8843 dtrace_actdesc_hold(dtrace_actdesc_t *act) 8844 { 8845 ASSERT(act->dtad_refcnt >= 1); 8846 act->dtad_refcnt++; 8847 } 8848 8849 static void 8850 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 8851 { 8852 dtrace_actkind_t kind = act->dtad_kind; 8853 dtrace_difo_t *dp; 8854 8855 ASSERT(act->dtad_refcnt >= 1); 8856 8857 if (--act->dtad_refcnt != 0) 8858 return; 8859 8860 if ((dp = act->dtad_difo) != NULL) 8861 dtrace_difo_release(dp, vstate); 8862 8863 if (DTRACEACT_ISPRINTFLIKE(kind)) { 8864 char *str = (char *)(uintptr_t)act->dtad_arg; 8865 8866 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 8867 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 8868 8869 if (str != NULL) 8870 kmem_free(str, strlen(str) + 1); 8871 } 8872 8873 kmem_free(act, sizeof (dtrace_actdesc_t)); 8874 } 8875 8876 /* 8877 * DTrace ECB Functions 8878 */ 8879 static dtrace_ecb_t * 8880 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 8881 { 8882 dtrace_ecb_t *ecb; 8883 dtrace_epid_t epid; 8884 8885 ASSERT(MUTEX_HELD(&dtrace_lock)); 8886 8887 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 8888 ecb->dte_predicate = NULL; 8889 ecb->dte_probe = probe; 8890 8891 /* 8892 * The default size is the size of the default action: recording 8893 * the epid. 8894 */ 8895 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 8896 ecb->dte_alignment = sizeof (dtrace_epid_t); 8897 8898 epid = state->dts_epid++; 8899 8900 if (epid - 1 >= state->dts_necbs) { 8901 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 8902 int necbs = state->dts_necbs << 1; 8903 8904 ASSERT(epid == state->dts_necbs + 1); 8905 8906 if (necbs == 0) { 8907 ASSERT(oecbs == NULL); 8908 necbs = 1; 8909 } 8910 8911 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 8912 8913 if (oecbs != NULL) 8914 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 8915 8916 dtrace_membar_producer(); 8917 state->dts_ecbs = ecbs; 8918 8919 if (oecbs != NULL) { 8920 /* 8921 * If this state is active, we must dtrace_sync() 8922 * before we can free the old dts_ecbs array: we're 8923 * coming in hot, and there may be active ring 8924 * buffer processing (which indexes into the dts_ecbs 8925 * array) on another CPU. 8926 */ 8927 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 8928 dtrace_sync(); 8929 8930 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 8931 } 8932 8933 dtrace_membar_producer(); 8934 state->dts_necbs = necbs; 8935 } 8936 8937 ecb->dte_state = state; 8938 8939 ASSERT(state->dts_ecbs[epid - 1] == NULL); 8940 dtrace_membar_producer(); 8941 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 8942 8943 return (ecb); 8944 } 8945 8946 static void 8947 dtrace_ecb_enable(dtrace_ecb_t *ecb) 8948 { 8949 dtrace_probe_t *probe = ecb->dte_probe; 8950 8951 ASSERT(MUTEX_HELD(&cpu_lock)); 8952 ASSERT(MUTEX_HELD(&dtrace_lock)); 8953 ASSERT(ecb->dte_next == NULL); 8954 8955 if (probe == NULL) { 8956 /* 8957 * This is the NULL probe -- there's nothing to do. 8958 */ 8959 return; 8960 } 8961 8962 if (probe->dtpr_ecb == NULL) { 8963 dtrace_provider_t *prov = probe->dtpr_provider; 8964 8965 /* 8966 * We're the first ECB on this probe. 8967 */ 8968 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 8969 8970 if (ecb->dte_predicate != NULL) 8971 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 8972 8973 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 8974 probe->dtpr_id, probe->dtpr_arg); 8975 } else { 8976 /* 8977 * This probe is already active. Swing the last pointer to 8978 * point to the new ECB, and issue a dtrace_sync() to assure 8979 * that all CPUs have seen the change. 8980 */ 8981 ASSERT(probe->dtpr_ecb_last != NULL); 8982 probe->dtpr_ecb_last->dte_next = ecb; 8983 probe->dtpr_ecb_last = ecb; 8984 probe->dtpr_predcache = 0; 8985 8986 dtrace_sync(); 8987 } 8988 } 8989 8990 static void 8991 dtrace_ecb_resize(dtrace_ecb_t *ecb) 8992 { 8993 uint32_t maxalign = sizeof (dtrace_epid_t); 8994 uint32_t align = sizeof (uint8_t), offs, diff; 8995 dtrace_action_t *act; 8996 int wastuple = 0; 8997 uint32_t aggbase = UINT32_MAX; 8998 dtrace_state_t *state = ecb->dte_state; 8999 9000 /* 9001 * If we record anything, we always record the epid. (And we always 9002 * record it first.) 9003 */ 9004 offs = sizeof (dtrace_epid_t); 9005 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9006 9007 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9008 dtrace_recdesc_t *rec = &act->dta_rec; 9009 9010 if ((align = rec->dtrd_alignment) > maxalign) 9011 maxalign = align; 9012 9013 if (!wastuple && act->dta_intuple) { 9014 /* 9015 * This is the first record in a tuple. Align the 9016 * offset to be at offset 4 in an 8-byte aligned 9017 * block. 9018 */ 9019 diff = offs + sizeof (dtrace_aggid_t); 9020 9021 if (diff = (diff & (sizeof (uint64_t) - 1))) 9022 offs += sizeof (uint64_t) - diff; 9023 9024 aggbase = offs - sizeof (dtrace_aggid_t); 9025 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 9026 } 9027 9028 /*LINTED*/ 9029 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 9030 /* 9031 * The current offset is not properly aligned; align it. 9032 */ 9033 offs += align - diff; 9034 } 9035 9036 rec->dtrd_offset = offs; 9037 9038 if (offs + rec->dtrd_size > ecb->dte_needed) { 9039 ecb->dte_needed = offs + rec->dtrd_size; 9040 9041 if (ecb->dte_needed > state->dts_needed) 9042 state->dts_needed = ecb->dte_needed; 9043 } 9044 9045 if (DTRACEACT_ISAGG(act->dta_kind)) { 9046 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9047 dtrace_action_t *first = agg->dtag_first, *prev; 9048 9049 ASSERT(rec->dtrd_size != 0 && first != NULL); 9050 ASSERT(wastuple); 9051 ASSERT(aggbase != UINT32_MAX); 9052 9053 agg->dtag_base = aggbase; 9054 9055 while ((prev = first->dta_prev) != NULL && 9056 DTRACEACT_ISAGG(prev->dta_kind)) { 9057 agg = (dtrace_aggregation_t *)prev; 9058 first = agg->dtag_first; 9059 } 9060 9061 if (prev != NULL) { 9062 offs = prev->dta_rec.dtrd_offset + 9063 prev->dta_rec.dtrd_size; 9064 } else { 9065 offs = sizeof (dtrace_epid_t); 9066 } 9067 wastuple = 0; 9068 } else { 9069 if (!act->dta_intuple) 9070 ecb->dte_size = offs + rec->dtrd_size; 9071 9072 offs += rec->dtrd_size; 9073 } 9074 9075 wastuple = act->dta_intuple; 9076 } 9077 9078 if ((act = ecb->dte_action) != NULL && 9079 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9080 ecb->dte_size == sizeof (dtrace_epid_t)) { 9081 /* 9082 * If the size is still sizeof (dtrace_epid_t), then all 9083 * actions store no data; set the size to 0. 9084 */ 9085 ecb->dte_alignment = maxalign; 9086 ecb->dte_size = 0; 9087 9088 /* 9089 * If the needed space is still sizeof (dtrace_epid_t), then 9090 * all actions need no additional space; set the needed 9091 * size to 0. 9092 */ 9093 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 9094 ecb->dte_needed = 0; 9095 9096 return; 9097 } 9098 9099 /* 9100 * Set our alignment, and make sure that the dte_size and dte_needed 9101 * are aligned to the size of an EPID. 9102 */ 9103 ecb->dte_alignment = maxalign; 9104 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 9105 ~(sizeof (dtrace_epid_t) - 1); 9106 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 9107 ~(sizeof (dtrace_epid_t) - 1); 9108 ASSERT(ecb->dte_size <= ecb->dte_needed); 9109 } 9110 9111 static dtrace_action_t * 9112 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9113 { 9114 dtrace_aggregation_t *agg; 9115 size_t size = sizeof (uint64_t); 9116 int ntuple = desc->dtad_ntuple; 9117 dtrace_action_t *act; 9118 dtrace_recdesc_t *frec; 9119 dtrace_aggid_t aggid; 9120 dtrace_state_t *state = ecb->dte_state; 9121 9122 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9123 agg->dtag_ecb = ecb; 9124 9125 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9126 9127 switch (desc->dtad_kind) { 9128 case DTRACEAGG_MIN: 9129 agg->dtag_initial = UINT64_MAX; 9130 agg->dtag_aggregate = dtrace_aggregate_min; 9131 break; 9132 9133 case DTRACEAGG_MAX: 9134 agg->dtag_aggregate = dtrace_aggregate_max; 9135 break; 9136 9137 case DTRACEAGG_COUNT: 9138 agg->dtag_aggregate = dtrace_aggregate_count; 9139 break; 9140 9141 case DTRACEAGG_QUANTIZE: 9142 agg->dtag_aggregate = dtrace_aggregate_quantize; 9143 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9144 sizeof (uint64_t); 9145 break; 9146 9147 case DTRACEAGG_LQUANTIZE: { 9148 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9149 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9150 9151 agg->dtag_initial = desc->dtad_arg; 9152 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9153 9154 if (step == 0 || levels == 0) 9155 goto err; 9156 9157 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9158 break; 9159 } 9160 9161 case DTRACEAGG_AVG: 9162 agg->dtag_aggregate = dtrace_aggregate_avg; 9163 size = sizeof (uint64_t) * 2; 9164 break; 9165 9166 case DTRACEAGG_SUM: 9167 agg->dtag_aggregate = dtrace_aggregate_sum; 9168 break; 9169 9170 default: 9171 goto err; 9172 } 9173 9174 agg->dtag_action.dta_rec.dtrd_size = size; 9175 9176 if (ntuple == 0) 9177 goto err; 9178 9179 /* 9180 * We must make sure that we have enough actions for the n-tuple. 9181 */ 9182 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9183 if (DTRACEACT_ISAGG(act->dta_kind)) 9184 break; 9185 9186 if (--ntuple == 0) { 9187 /* 9188 * This is the action with which our n-tuple begins. 9189 */ 9190 agg->dtag_first = act; 9191 goto success; 9192 } 9193 } 9194 9195 /* 9196 * This n-tuple is short by ntuple elements. Return failure. 9197 */ 9198 ASSERT(ntuple != 0); 9199 err: 9200 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9201 return (NULL); 9202 9203 success: 9204 /* 9205 * If the last action in the tuple has a size of zero, it's actually 9206 * an expression argument for the aggregating action. 9207 */ 9208 ASSERT(ecb->dte_action_last != NULL); 9209 act = ecb->dte_action_last; 9210 9211 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9212 ASSERT(act->dta_difo != NULL); 9213 9214 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9215 agg->dtag_hasarg = 1; 9216 } 9217 9218 /* 9219 * We need to allocate an id for this aggregation. 9220 */ 9221 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9222 VM_BESTFIT | VM_SLEEP); 9223 9224 if (aggid - 1 >= state->dts_naggregations) { 9225 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9226 dtrace_aggregation_t **aggs; 9227 int naggs = state->dts_naggregations << 1; 9228 int onaggs = state->dts_naggregations; 9229 9230 ASSERT(aggid == state->dts_naggregations + 1); 9231 9232 if (naggs == 0) { 9233 ASSERT(oaggs == NULL); 9234 naggs = 1; 9235 } 9236 9237 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9238 9239 if (oaggs != NULL) { 9240 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9241 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9242 } 9243 9244 state->dts_aggregations = aggs; 9245 state->dts_naggregations = naggs; 9246 } 9247 9248 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9249 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9250 9251 frec = &agg->dtag_first->dta_rec; 9252 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9253 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9254 9255 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9256 ASSERT(!act->dta_intuple); 9257 act->dta_intuple = 1; 9258 } 9259 9260 return (&agg->dtag_action); 9261 } 9262 9263 static void 9264 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9265 { 9266 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9267 dtrace_state_t *state = ecb->dte_state; 9268 dtrace_aggid_t aggid = agg->dtag_id; 9269 9270 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9271 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9272 9273 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9274 state->dts_aggregations[aggid - 1] = NULL; 9275 9276 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9277 } 9278 9279 static int 9280 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9281 { 9282 dtrace_action_t *action, *last; 9283 dtrace_difo_t *dp = desc->dtad_difo; 9284 uint32_t size = 0, align = sizeof (uint8_t), mask; 9285 uint16_t format = 0; 9286 dtrace_recdesc_t *rec; 9287 dtrace_state_t *state = ecb->dte_state; 9288 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9289 uint64_t arg = desc->dtad_arg; 9290 9291 ASSERT(MUTEX_HELD(&dtrace_lock)); 9292 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9293 9294 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9295 /* 9296 * If this is an aggregating action, there must be neither 9297 * a speculate nor a commit on the action chain. 9298 */ 9299 dtrace_action_t *act; 9300 9301 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9302 if (act->dta_kind == DTRACEACT_COMMIT) 9303 return (EINVAL); 9304 9305 if (act->dta_kind == DTRACEACT_SPECULATE) 9306 return (EINVAL); 9307 } 9308 9309 action = dtrace_ecb_aggregation_create(ecb, desc); 9310 9311 if (action == NULL) 9312 return (EINVAL); 9313 } else { 9314 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9315 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9316 dp != NULL && dp->dtdo_destructive)) { 9317 state->dts_destructive = 1; 9318 } 9319 9320 switch (desc->dtad_kind) { 9321 case DTRACEACT_PRINTF: 9322 case DTRACEACT_PRINTA: 9323 case DTRACEACT_SYSTEM: 9324 case DTRACEACT_FREOPEN: 9325 /* 9326 * We know that our arg is a string -- turn it into a 9327 * format. 9328 */ 9329 if (arg == NULL) { 9330 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); 9331 format = 0; 9332 } else { 9333 ASSERT(arg != NULL); 9334 ASSERT(arg > KERNELBASE); 9335 format = dtrace_format_add(state, 9336 (char *)(uintptr_t)arg); 9337 } 9338 9339 /*FALLTHROUGH*/ 9340 case DTRACEACT_LIBACT: 9341 case DTRACEACT_DIFEXPR: 9342 if (dp == NULL) 9343 return (EINVAL); 9344 9345 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 9346 break; 9347 9348 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 9349 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9350 return (EINVAL); 9351 9352 size = opt[DTRACEOPT_STRSIZE]; 9353 } 9354 9355 break; 9356 9357 case DTRACEACT_STACK: 9358 if ((nframes = arg) == 0) { 9359 nframes = opt[DTRACEOPT_STACKFRAMES]; 9360 ASSERT(nframes > 0); 9361 arg = nframes; 9362 } 9363 9364 size = nframes * sizeof (pc_t); 9365 break; 9366 9367 case DTRACEACT_JSTACK: 9368 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 9369 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 9370 9371 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 9372 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 9373 9374 arg = DTRACE_USTACK_ARG(nframes, strsize); 9375 9376 /*FALLTHROUGH*/ 9377 case DTRACEACT_USTACK: 9378 if (desc->dtad_kind != DTRACEACT_JSTACK && 9379 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 9380 strsize = DTRACE_USTACK_STRSIZE(arg); 9381 nframes = opt[DTRACEOPT_USTACKFRAMES]; 9382 ASSERT(nframes > 0); 9383 arg = DTRACE_USTACK_ARG(nframes, strsize); 9384 } 9385 9386 /* 9387 * Save a slot for the pid. 9388 */ 9389 size = (nframes + 1) * sizeof (uint64_t); 9390 size += DTRACE_USTACK_STRSIZE(arg); 9391 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 9392 9393 break; 9394 9395 case DTRACEACT_SYM: 9396 case DTRACEACT_MOD: 9397 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 9398 sizeof (uint64_t)) || 9399 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9400 return (EINVAL); 9401 break; 9402 9403 case DTRACEACT_USYM: 9404 case DTRACEACT_UMOD: 9405 case DTRACEACT_UADDR: 9406 if (dp == NULL || 9407 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 9408 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9409 return (EINVAL); 9410 9411 /* 9412 * We have a slot for the pid, plus a slot for the 9413 * argument. To keep things simple (aligned with 9414 * bitness-neutral sizing), we store each as a 64-bit 9415 * quantity. 9416 */ 9417 size = 2 * sizeof (uint64_t); 9418 break; 9419 9420 case DTRACEACT_STOP: 9421 case DTRACEACT_BREAKPOINT: 9422 case DTRACEACT_PANIC: 9423 break; 9424 9425 case DTRACEACT_CHILL: 9426 case DTRACEACT_DISCARD: 9427 case DTRACEACT_RAISE: 9428 if (dp == NULL) 9429 return (EINVAL); 9430 break; 9431 9432 case DTRACEACT_EXIT: 9433 if (dp == NULL || 9434 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 9435 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9436 return (EINVAL); 9437 break; 9438 9439 case DTRACEACT_SPECULATE: 9440 if (ecb->dte_size > sizeof (dtrace_epid_t)) 9441 return (EINVAL); 9442 9443 if (dp == NULL) 9444 return (EINVAL); 9445 9446 state->dts_speculates = 1; 9447 break; 9448 9449 case DTRACEACT_COMMIT: { 9450 dtrace_action_t *act = ecb->dte_action; 9451 9452 for (; act != NULL; act = act->dta_next) { 9453 if (act->dta_kind == DTRACEACT_COMMIT) 9454 return (EINVAL); 9455 } 9456 9457 if (dp == NULL) 9458 return (EINVAL); 9459 break; 9460 } 9461 9462 default: 9463 return (EINVAL); 9464 } 9465 9466 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 9467 /* 9468 * If this is a data-storing action or a speculate, 9469 * we must be sure that there isn't a commit on the 9470 * action chain. 9471 */ 9472 dtrace_action_t *act = ecb->dte_action; 9473 9474 for (; act != NULL; act = act->dta_next) { 9475 if (act->dta_kind == DTRACEACT_COMMIT) 9476 return (EINVAL); 9477 } 9478 } 9479 9480 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 9481 action->dta_rec.dtrd_size = size; 9482 } 9483 9484 action->dta_refcnt = 1; 9485 rec = &action->dta_rec; 9486 size = rec->dtrd_size; 9487 9488 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 9489 if (!(size & mask)) { 9490 align = mask + 1; 9491 break; 9492 } 9493 } 9494 9495 action->dta_kind = desc->dtad_kind; 9496 9497 if ((action->dta_difo = dp) != NULL) 9498 dtrace_difo_hold(dp); 9499 9500 rec->dtrd_action = action->dta_kind; 9501 rec->dtrd_arg = arg; 9502 rec->dtrd_uarg = desc->dtad_uarg; 9503 rec->dtrd_alignment = (uint16_t)align; 9504 rec->dtrd_format = format; 9505 9506 if ((last = ecb->dte_action_last) != NULL) { 9507 ASSERT(ecb->dte_action != NULL); 9508 action->dta_prev = last; 9509 last->dta_next = action; 9510 } else { 9511 ASSERT(ecb->dte_action == NULL); 9512 ecb->dte_action = action; 9513 } 9514 9515 ecb->dte_action_last = action; 9516 9517 return (0); 9518 } 9519 9520 static void 9521 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 9522 { 9523 dtrace_action_t *act = ecb->dte_action, *next; 9524 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 9525 dtrace_difo_t *dp; 9526 uint16_t format; 9527 9528 if (act != NULL && act->dta_refcnt > 1) { 9529 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 9530 act->dta_refcnt--; 9531 } else { 9532 for (; act != NULL; act = next) { 9533 next = act->dta_next; 9534 ASSERT(next != NULL || act == ecb->dte_action_last); 9535 ASSERT(act->dta_refcnt == 1); 9536 9537 if ((format = act->dta_rec.dtrd_format) != 0) 9538 dtrace_format_remove(ecb->dte_state, format); 9539 9540 if ((dp = act->dta_difo) != NULL) 9541 dtrace_difo_release(dp, vstate); 9542 9543 if (DTRACEACT_ISAGG(act->dta_kind)) { 9544 dtrace_ecb_aggregation_destroy(ecb, act); 9545 } else { 9546 kmem_free(act, sizeof (dtrace_action_t)); 9547 } 9548 } 9549 } 9550 9551 ecb->dte_action = NULL; 9552 ecb->dte_action_last = NULL; 9553 ecb->dte_size = sizeof (dtrace_epid_t); 9554 } 9555 9556 static void 9557 dtrace_ecb_disable(dtrace_ecb_t *ecb) 9558 { 9559 /* 9560 * We disable the ECB by removing it from its probe. 9561 */ 9562 dtrace_ecb_t *pecb, *prev = NULL; 9563 dtrace_probe_t *probe = ecb->dte_probe; 9564 9565 ASSERT(MUTEX_HELD(&dtrace_lock)); 9566 9567 if (probe == NULL) { 9568 /* 9569 * This is the NULL probe; there is nothing to disable. 9570 */ 9571 return; 9572 } 9573 9574 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 9575 if (pecb == ecb) 9576 break; 9577 prev = pecb; 9578 } 9579 9580 ASSERT(pecb != NULL); 9581 9582 if (prev == NULL) { 9583 probe->dtpr_ecb = ecb->dte_next; 9584 } else { 9585 prev->dte_next = ecb->dte_next; 9586 } 9587 9588 if (ecb == probe->dtpr_ecb_last) { 9589 ASSERT(ecb->dte_next == NULL); 9590 probe->dtpr_ecb_last = prev; 9591 } 9592 9593 /* 9594 * The ECB has been disconnected from the probe; now sync to assure 9595 * that all CPUs have seen the change before returning. 9596 */ 9597 dtrace_sync(); 9598 9599 if (probe->dtpr_ecb == NULL) { 9600 /* 9601 * That was the last ECB on the probe; clear the predicate 9602 * cache ID for the probe, disable it and sync one more time 9603 * to assure that we'll never hit it again. 9604 */ 9605 dtrace_provider_t *prov = probe->dtpr_provider; 9606 9607 ASSERT(ecb->dte_next == NULL); 9608 ASSERT(probe->dtpr_ecb_last == NULL); 9609 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 9610 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 9611 probe->dtpr_id, probe->dtpr_arg); 9612 dtrace_sync(); 9613 } else { 9614 /* 9615 * There is at least one ECB remaining on the probe. If there 9616 * is _exactly_ one, set the probe's predicate cache ID to be 9617 * the predicate cache ID of the remaining ECB. 9618 */ 9619 ASSERT(probe->dtpr_ecb_last != NULL); 9620 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 9621 9622 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 9623 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 9624 9625 ASSERT(probe->dtpr_ecb->dte_next == NULL); 9626 9627 if (p != NULL) 9628 probe->dtpr_predcache = p->dtp_cacheid; 9629 } 9630 9631 ecb->dte_next = NULL; 9632 } 9633 } 9634 9635 static void 9636 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 9637 { 9638 dtrace_state_t *state = ecb->dte_state; 9639 dtrace_vstate_t *vstate = &state->dts_vstate; 9640 dtrace_predicate_t *pred; 9641 dtrace_epid_t epid = ecb->dte_epid; 9642 9643 ASSERT(MUTEX_HELD(&dtrace_lock)); 9644 ASSERT(ecb->dte_next == NULL); 9645 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 9646 9647 if ((pred = ecb->dte_predicate) != NULL) 9648 dtrace_predicate_release(pred, vstate); 9649 9650 dtrace_ecb_action_remove(ecb); 9651 9652 ASSERT(state->dts_ecbs[epid - 1] == ecb); 9653 state->dts_ecbs[epid - 1] = NULL; 9654 9655 kmem_free(ecb, sizeof (dtrace_ecb_t)); 9656 } 9657 9658 static dtrace_ecb_t * 9659 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 9660 dtrace_enabling_t *enab) 9661 { 9662 dtrace_ecb_t *ecb; 9663 dtrace_predicate_t *pred; 9664 dtrace_actdesc_t *act; 9665 dtrace_provider_t *prov; 9666 dtrace_ecbdesc_t *desc = enab->dten_current; 9667 9668 ASSERT(MUTEX_HELD(&dtrace_lock)); 9669 ASSERT(state != NULL); 9670 9671 ecb = dtrace_ecb_add(state, probe); 9672 ecb->dte_uarg = desc->dted_uarg; 9673 9674 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 9675 dtrace_predicate_hold(pred); 9676 ecb->dte_predicate = pred; 9677 } 9678 9679 if (probe != NULL) { 9680 /* 9681 * If the provider shows more leg than the consumer is old 9682 * enough to see, we need to enable the appropriate implicit 9683 * predicate bits to prevent the ecb from activating at 9684 * revealing times. 9685 * 9686 * Providers specifying DTRACE_PRIV_USER at register time 9687 * are stating that they need the /proc-style privilege 9688 * model to be enforced, and this is what DTRACE_COND_OWNER 9689 * and DTRACE_COND_ZONEOWNER will then do at probe time. 9690 */ 9691 prov = probe->dtpr_provider; 9692 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 9693 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9694 ecb->dte_cond |= DTRACE_COND_OWNER; 9695 9696 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 9697 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9698 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 9699 9700 /* 9701 * If the provider shows us kernel innards and the user 9702 * is lacking sufficient privilege, enable the 9703 * DTRACE_COND_USERMODE implicit predicate. 9704 */ 9705 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 9706 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 9707 ecb->dte_cond |= DTRACE_COND_USERMODE; 9708 } 9709 9710 if (dtrace_ecb_create_cache != NULL) { 9711 /* 9712 * If we have a cached ecb, we'll use its action list instead 9713 * of creating our own (saving both time and space). 9714 */ 9715 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 9716 dtrace_action_t *act = cached->dte_action; 9717 9718 if (act != NULL) { 9719 ASSERT(act->dta_refcnt > 0); 9720 act->dta_refcnt++; 9721 ecb->dte_action = act; 9722 ecb->dte_action_last = cached->dte_action_last; 9723 ecb->dte_needed = cached->dte_needed; 9724 ecb->dte_size = cached->dte_size; 9725 ecb->dte_alignment = cached->dte_alignment; 9726 } 9727 9728 return (ecb); 9729 } 9730 9731 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 9732 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 9733 dtrace_ecb_destroy(ecb); 9734 return (NULL); 9735 } 9736 } 9737 9738 dtrace_ecb_resize(ecb); 9739 9740 return (dtrace_ecb_create_cache = ecb); 9741 } 9742 9743 static int 9744 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 9745 { 9746 dtrace_ecb_t *ecb; 9747 dtrace_enabling_t *enab = arg; 9748 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 9749 9750 ASSERT(state != NULL); 9751 9752 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 9753 /* 9754 * This probe was created in a generation for which this 9755 * enabling has previously created ECBs; we don't want to 9756 * enable it again, so just kick out. 9757 */ 9758 return (DTRACE_MATCH_NEXT); 9759 } 9760 9761 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 9762 return (DTRACE_MATCH_DONE); 9763 9764 dtrace_ecb_enable(ecb); 9765 return (DTRACE_MATCH_NEXT); 9766 } 9767 9768 static dtrace_ecb_t * 9769 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 9770 { 9771 dtrace_ecb_t *ecb; 9772 9773 ASSERT(MUTEX_HELD(&dtrace_lock)); 9774 9775 if (id == 0 || id > state->dts_necbs) 9776 return (NULL); 9777 9778 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 9779 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 9780 9781 return (state->dts_ecbs[id - 1]); 9782 } 9783 9784 static dtrace_aggregation_t * 9785 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 9786 { 9787 dtrace_aggregation_t *agg; 9788 9789 ASSERT(MUTEX_HELD(&dtrace_lock)); 9790 9791 if (id == 0 || id > state->dts_naggregations) 9792 return (NULL); 9793 9794 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 9795 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 9796 agg->dtag_id == id); 9797 9798 return (state->dts_aggregations[id - 1]); 9799 } 9800 9801 /* 9802 * DTrace Buffer Functions 9803 * 9804 * The following functions manipulate DTrace buffers. Most of these functions 9805 * are called in the context of establishing or processing consumer state; 9806 * exceptions are explicitly noted. 9807 */ 9808 9809 /* 9810 * Note: called from cross call context. This function switches the two 9811 * buffers on a given CPU. The atomicity of this operation is assured by 9812 * disabling interrupts while the actual switch takes place; the disabling of 9813 * interrupts serializes the execution with any execution of dtrace_probe() on 9814 * the same CPU. 9815 */ 9816 static void 9817 dtrace_buffer_switch(dtrace_buffer_t *buf) 9818 { 9819 caddr_t tomax = buf->dtb_tomax; 9820 caddr_t xamot = buf->dtb_xamot; 9821 dtrace_icookie_t cookie; 9822 9823 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 9824 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 9825 9826 cookie = dtrace_interrupt_disable(); 9827 buf->dtb_tomax = xamot; 9828 buf->dtb_xamot = tomax; 9829 buf->dtb_xamot_drops = buf->dtb_drops; 9830 buf->dtb_xamot_offset = buf->dtb_offset; 9831 buf->dtb_xamot_errors = buf->dtb_errors; 9832 buf->dtb_xamot_flags = buf->dtb_flags; 9833 buf->dtb_offset = 0; 9834 buf->dtb_drops = 0; 9835 buf->dtb_errors = 0; 9836 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 9837 dtrace_interrupt_enable(cookie); 9838 } 9839 9840 /* 9841 * Note: called from cross call context. This function activates a buffer 9842 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 9843 * is guaranteed by the disabling of interrupts. 9844 */ 9845 static void 9846 dtrace_buffer_activate(dtrace_state_t *state) 9847 { 9848 dtrace_buffer_t *buf; 9849 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 9850 9851 buf = &state->dts_buffer[CPU->cpu_id]; 9852 9853 if (buf->dtb_tomax != NULL) { 9854 /* 9855 * We might like to assert that the buffer is marked inactive, 9856 * but this isn't necessarily true: the buffer for the CPU 9857 * that processes the BEGIN probe has its buffer activated 9858 * manually. In this case, we take the (harmless) action 9859 * re-clearing the bit INACTIVE bit. 9860 */ 9861 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 9862 } 9863 9864 dtrace_interrupt_enable(cookie); 9865 } 9866 9867 static int 9868 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 9869 processorid_t cpu) 9870 { 9871 cpu_t *cp; 9872 dtrace_buffer_t *buf; 9873 9874 ASSERT(MUTEX_HELD(&cpu_lock)); 9875 ASSERT(MUTEX_HELD(&dtrace_lock)); 9876 9877 if (size > dtrace_nonroot_maxsize && 9878 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 9879 return (EFBIG); 9880 9881 cp = cpu_list; 9882 9883 do { 9884 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 9885 continue; 9886 9887 buf = &bufs[cp->cpu_id]; 9888 9889 /* 9890 * If there is already a buffer allocated for this CPU, it 9891 * is only possible that this is a DR event. In this case, 9892 * the buffer size must match our specified size. 9893 */ 9894 if (buf->dtb_tomax != NULL) { 9895 ASSERT(buf->dtb_size == size); 9896 continue; 9897 } 9898 9899 ASSERT(buf->dtb_xamot == NULL); 9900 9901 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 9902 goto err; 9903 9904 buf->dtb_size = size; 9905 buf->dtb_flags = flags; 9906 buf->dtb_offset = 0; 9907 buf->dtb_drops = 0; 9908 9909 if (flags & DTRACEBUF_NOSWITCH) 9910 continue; 9911 9912 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 9913 goto err; 9914 } while ((cp = cp->cpu_next) != cpu_list); 9915 9916 return (0); 9917 9918 err: 9919 cp = cpu_list; 9920 9921 do { 9922 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 9923 continue; 9924 9925 buf = &bufs[cp->cpu_id]; 9926 9927 if (buf->dtb_xamot != NULL) { 9928 ASSERT(buf->dtb_tomax != NULL); 9929 ASSERT(buf->dtb_size == size); 9930 kmem_free(buf->dtb_xamot, size); 9931 } 9932 9933 if (buf->dtb_tomax != NULL) { 9934 ASSERT(buf->dtb_size == size); 9935 kmem_free(buf->dtb_tomax, size); 9936 } 9937 9938 buf->dtb_tomax = NULL; 9939 buf->dtb_xamot = NULL; 9940 buf->dtb_size = 0; 9941 } while ((cp = cp->cpu_next) != cpu_list); 9942 9943 return (ENOMEM); 9944 } 9945 9946 /* 9947 * Note: called from probe context. This function just increments the drop 9948 * count on a buffer. It has been made a function to allow for the 9949 * possibility of understanding the source of mysterious drop counts. (A 9950 * problem for which one may be particularly disappointed that DTrace cannot 9951 * be used to understand DTrace.) 9952 */ 9953 static void 9954 dtrace_buffer_drop(dtrace_buffer_t *buf) 9955 { 9956 buf->dtb_drops++; 9957 } 9958 9959 /* 9960 * Note: called from probe context. This function is called to reserve space 9961 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 9962 * mstate. Returns the new offset in the buffer, or a negative value if an 9963 * error has occurred. 9964 */ 9965 static intptr_t 9966 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 9967 dtrace_state_t *state, dtrace_mstate_t *mstate) 9968 { 9969 intptr_t offs = buf->dtb_offset, soffs; 9970 intptr_t woffs; 9971 caddr_t tomax; 9972 size_t total; 9973 9974 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 9975 return (-1); 9976 9977 if ((tomax = buf->dtb_tomax) == NULL) { 9978 dtrace_buffer_drop(buf); 9979 return (-1); 9980 } 9981 9982 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 9983 while (offs & (align - 1)) { 9984 /* 9985 * Assert that our alignment is off by a number which 9986 * is itself sizeof (uint32_t) aligned. 9987 */ 9988 ASSERT(!((align - (offs & (align - 1))) & 9989 (sizeof (uint32_t) - 1))); 9990 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 9991 offs += sizeof (uint32_t); 9992 } 9993 9994 if ((soffs = offs + needed) > buf->dtb_size) { 9995 dtrace_buffer_drop(buf); 9996 return (-1); 9997 } 9998 9999 if (mstate == NULL) 10000 return (offs); 10001 10002 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10003 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10004 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10005 10006 return (offs); 10007 } 10008 10009 if (buf->dtb_flags & DTRACEBUF_FILL) { 10010 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10011 (buf->dtb_flags & DTRACEBUF_FULL)) 10012 return (-1); 10013 goto out; 10014 } 10015 10016 total = needed + (offs & (align - 1)); 10017 10018 /* 10019 * For a ring buffer, life is quite a bit more complicated. Before 10020 * we can store any padding, we need to adjust our wrapping offset. 10021 * (If we've never before wrapped or we're not about to, no adjustment 10022 * is required.) 10023 */ 10024 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10025 offs + total > buf->dtb_size) { 10026 woffs = buf->dtb_xamot_offset; 10027 10028 if (offs + total > buf->dtb_size) { 10029 /* 10030 * We can't fit in the end of the buffer. First, a 10031 * sanity check that we can fit in the buffer at all. 10032 */ 10033 if (total > buf->dtb_size) { 10034 dtrace_buffer_drop(buf); 10035 return (-1); 10036 } 10037 10038 /* 10039 * We're going to be storing at the top of the buffer, 10040 * so now we need to deal with the wrapped offset. We 10041 * only reset our wrapped offset to 0 if it is 10042 * currently greater than the current offset. If it 10043 * is less than the current offset, it is because a 10044 * previous allocation induced a wrap -- but the 10045 * allocation didn't subsequently take the space due 10046 * to an error or false predicate evaluation. In this 10047 * case, we'll just leave the wrapped offset alone: if 10048 * the wrapped offset hasn't been advanced far enough 10049 * for this allocation, it will be adjusted in the 10050 * lower loop. 10051 */ 10052 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10053 if (woffs >= offs) 10054 woffs = 0; 10055 } else { 10056 woffs = 0; 10057 } 10058 10059 /* 10060 * Now we know that we're going to be storing to the 10061 * top of the buffer and that there is room for us 10062 * there. We need to clear the buffer from the current 10063 * offset to the end (there may be old gunk there). 10064 */ 10065 while (offs < buf->dtb_size) 10066 tomax[offs++] = 0; 10067 10068 /* 10069 * We need to set our offset to zero. And because we 10070 * are wrapping, we need to set the bit indicating as 10071 * much. We can also adjust our needed space back 10072 * down to the space required by the ECB -- we know 10073 * that the top of the buffer is aligned. 10074 */ 10075 offs = 0; 10076 total = needed; 10077 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10078 } else { 10079 /* 10080 * There is room for us in the buffer, so we simply 10081 * need to check the wrapped offset. 10082 */ 10083 if (woffs < offs) { 10084 /* 10085 * The wrapped offset is less than the offset. 10086 * This can happen if we allocated buffer space 10087 * that induced a wrap, but then we didn't 10088 * subsequently take the space due to an error 10089 * or false predicate evaluation. This is 10090 * okay; we know that _this_ allocation isn't 10091 * going to induce a wrap. We still can't 10092 * reset the wrapped offset to be zero, 10093 * however: the space may have been trashed in 10094 * the previous failed probe attempt. But at 10095 * least the wrapped offset doesn't need to 10096 * be adjusted at all... 10097 */ 10098 goto out; 10099 } 10100 } 10101 10102 while (offs + total > woffs) { 10103 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10104 size_t size; 10105 10106 if (epid == DTRACE_EPIDNONE) { 10107 size = sizeof (uint32_t); 10108 } else { 10109 ASSERT(epid <= state->dts_necbs); 10110 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10111 10112 size = state->dts_ecbs[epid - 1]->dte_size; 10113 } 10114 10115 ASSERT(woffs + size <= buf->dtb_size); 10116 ASSERT(size != 0); 10117 10118 if (woffs + size == buf->dtb_size) { 10119 /* 10120 * We've reached the end of the buffer; we want 10121 * to set the wrapped offset to 0 and break 10122 * out. However, if the offs is 0, then we're 10123 * in a strange edge-condition: the amount of 10124 * space that we want to reserve plus the size 10125 * of the record that we're overwriting is 10126 * greater than the size of the buffer. This 10127 * is problematic because if we reserve the 10128 * space but subsequently don't consume it (due 10129 * to a failed predicate or error) the wrapped 10130 * offset will be 0 -- yet the EPID at offset 0 10131 * will not be committed. This situation is 10132 * relatively easy to deal with: if we're in 10133 * this case, the buffer is indistinguishable 10134 * from one that hasn't wrapped; we need only 10135 * finish the job by clearing the wrapped bit, 10136 * explicitly setting the offset to be 0, and 10137 * zero'ing out the old data in the buffer. 10138 */ 10139 if (offs == 0) { 10140 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10141 buf->dtb_offset = 0; 10142 woffs = total; 10143 10144 while (woffs < buf->dtb_size) 10145 tomax[woffs++] = 0; 10146 } 10147 10148 woffs = 0; 10149 break; 10150 } 10151 10152 woffs += size; 10153 } 10154 10155 /* 10156 * We have a wrapped offset. It may be that the wrapped offset 10157 * has become zero -- that's okay. 10158 */ 10159 buf->dtb_xamot_offset = woffs; 10160 } 10161 10162 out: 10163 /* 10164 * Now we can plow the buffer with any necessary padding. 10165 */ 10166 while (offs & (align - 1)) { 10167 /* 10168 * Assert that our alignment is off by a number which 10169 * is itself sizeof (uint32_t) aligned. 10170 */ 10171 ASSERT(!((align - (offs & (align - 1))) & 10172 (sizeof (uint32_t) - 1))); 10173 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10174 offs += sizeof (uint32_t); 10175 } 10176 10177 if (buf->dtb_flags & DTRACEBUF_FILL) { 10178 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10179 buf->dtb_flags |= DTRACEBUF_FULL; 10180 return (-1); 10181 } 10182 } 10183 10184 if (mstate == NULL) 10185 return (offs); 10186 10187 /* 10188 * For ring buffers and fill buffers, the scratch space is always 10189 * the inactive buffer. 10190 */ 10191 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10192 mstate->dtms_scratch_size = buf->dtb_size; 10193 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10194 10195 return (offs); 10196 } 10197 10198 static void 10199 dtrace_buffer_polish(dtrace_buffer_t *buf) 10200 { 10201 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10202 ASSERT(MUTEX_HELD(&dtrace_lock)); 10203 10204 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10205 return; 10206 10207 /* 10208 * We need to polish the ring buffer. There are three cases: 10209 * 10210 * - The first (and presumably most common) is that there is no gap 10211 * between the buffer offset and the wrapped offset. In this case, 10212 * there is nothing in the buffer that isn't valid data; we can 10213 * mark the buffer as polished and return. 10214 * 10215 * - The second (less common than the first but still more common 10216 * than the third) is that there is a gap between the buffer offset 10217 * and the wrapped offset, and the wrapped offset is larger than the 10218 * buffer offset. This can happen because of an alignment issue, or 10219 * can happen because of a call to dtrace_buffer_reserve() that 10220 * didn't subsequently consume the buffer space. In this case, 10221 * we need to zero the data from the buffer offset to the wrapped 10222 * offset. 10223 * 10224 * - The third (and least common) is that there is a gap between the 10225 * buffer offset and the wrapped offset, but the wrapped offset is 10226 * _less_ than the buffer offset. This can only happen because a 10227 * call to dtrace_buffer_reserve() induced a wrap, but the space 10228 * was not subsequently consumed. In this case, we need to zero the 10229 * space from the offset to the end of the buffer _and_ from the 10230 * top of the buffer to the wrapped offset. 10231 */ 10232 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10233 bzero(buf->dtb_tomax + buf->dtb_offset, 10234 buf->dtb_xamot_offset - buf->dtb_offset); 10235 } 10236 10237 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10238 bzero(buf->dtb_tomax + buf->dtb_offset, 10239 buf->dtb_size - buf->dtb_offset); 10240 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10241 } 10242 } 10243 10244 static void 10245 dtrace_buffer_free(dtrace_buffer_t *bufs) 10246 { 10247 int i; 10248 10249 for (i = 0; i < NCPU; i++) { 10250 dtrace_buffer_t *buf = &bufs[i]; 10251 10252 if (buf->dtb_tomax == NULL) { 10253 ASSERT(buf->dtb_xamot == NULL); 10254 ASSERT(buf->dtb_size == 0); 10255 continue; 10256 } 10257 10258 if (buf->dtb_xamot != NULL) { 10259 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10260 kmem_free(buf->dtb_xamot, buf->dtb_size); 10261 } 10262 10263 kmem_free(buf->dtb_tomax, buf->dtb_size); 10264 buf->dtb_size = 0; 10265 buf->dtb_tomax = NULL; 10266 buf->dtb_xamot = NULL; 10267 } 10268 } 10269 10270 /* 10271 * DTrace Enabling Functions 10272 */ 10273 static dtrace_enabling_t * 10274 dtrace_enabling_create(dtrace_vstate_t *vstate) 10275 { 10276 dtrace_enabling_t *enab; 10277 10278 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 10279 enab->dten_vstate = vstate; 10280 10281 return (enab); 10282 } 10283 10284 static void 10285 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 10286 { 10287 dtrace_ecbdesc_t **ndesc; 10288 size_t osize, nsize; 10289 10290 /* 10291 * We can't add to enablings after we've enabled them, or after we've 10292 * retained them. 10293 */ 10294 ASSERT(enab->dten_probegen == 0); 10295 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10296 10297 if (enab->dten_ndesc < enab->dten_maxdesc) { 10298 enab->dten_desc[enab->dten_ndesc++] = ecb; 10299 return; 10300 } 10301 10302 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10303 10304 if (enab->dten_maxdesc == 0) { 10305 enab->dten_maxdesc = 1; 10306 } else { 10307 enab->dten_maxdesc <<= 1; 10308 } 10309 10310 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 10311 10312 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10313 ndesc = kmem_zalloc(nsize, KM_SLEEP); 10314 bcopy(enab->dten_desc, ndesc, osize); 10315 kmem_free(enab->dten_desc, osize); 10316 10317 enab->dten_desc = ndesc; 10318 enab->dten_desc[enab->dten_ndesc++] = ecb; 10319 } 10320 10321 static void 10322 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 10323 dtrace_probedesc_t *pd) 10324 { 10325 dtrace_ecbdesc_t *new; 10326 dtrace_predicate_t *pred; 10327 dtrace_actdesc_t *act; 10328 10329 /* 10330 * We're going to create a new ECB description that matches the 10331 * specified ECB in every way, but has the specified probe description. 10332 */ 10333 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10334 10335 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 10336 dtrace_predicate_hold(pred); 10337 10338 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 10339 dtrace_actdesc_hold(act); 10340 10341 new->dted_action = ecb->dted_action; 10342 new->dted_pred = ecb->dted_pred; 10343 new->dted_probe = *pd; 10344 new->dted_uarg = ecb->dted_uarg; 10345 10346 dtrace_enabling_add(enab, new); 10347 } 10348 10349 static void 10350 dtrace_enabling_dump(dtrace_enabling_t *enab) 10351 { 10352 int i; 10353 10354 for (i = 0; i < enab->dten_ndesc; i++) { 10355 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 10356 10357 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 10358 desc->dtpd_provider, desc->dtpd_mod, 10359 desc->dtpd_func, desc->dtpd_name); 10360 } 10361 } 10362 10363 static void 10364 dtrace_enabling_destroy(dtrace_enabling_t *enab) 10365 { 10366 int i; 10367 dtrace_ecbdesc_t *ep; 10368 dtrace_vstate_t *vstate = enab->dten_vstate; 10369 10370 ASSERT(MUTEX_HELD(&dtrace_lock)); 10371 10372 for (i = 0; i < enab->dten_ndesc; i++) { 10373 dtrace_actdesc_t *act, *next; 10374 dtrace_predicate_t *pred; 10375 10376 ep = enab->dten_desc[i]; 10377 10378 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 10379 dtrace_predicate_release(pred, vstate); 10380 10381 for (act = ep->dted_action; act != NULL; act = next) { 10382 next = act->dtad_next; 10383 dtrace_actdesc_release(act, vstate); 10384 } 10385 10386 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10387 } 10388 10389 kmem_free(enab->dten_desc, 10390 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 10391 10392 /* 10393 * If this was a retained enabling, decrement the dts_nretained count 10394 * and take it off of the dtrace_retained list. 10395 */ 10396 if (enab->dten_prev != NULL || enab->dten_next != NULL || 10397 dtrace_retained == enab) { 10398 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10399 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 10400 enab->dten_vstate->dtvs_state->dts_nretained--; 10401 } 10402 10403 if (enab->dten_prev == NULL) { 10404 if (dtrace_retained == enab) { 10405 dtrace_retained = enab->dten_next; 10406 10407 if (dtrace_retained != NULL) 10408 dtrace_retained->dten_prev = NULL; 10409 } 10410 } else { 10411 ASSERT(enab != dtrace_retained); 10412 ASSERT(dtrace_retained != NULL); 10413 enab->dten_prev->dten_next = enab->dten_next; 10414 } 10415 10416 if (enab->dten_next != NULL) { 10417 ASSERT(dtrace_retained != NULL); 10418 enab->dten_next->dten_prev = enab->dten_prev; 10419 } 10420 10421 kmem_free(enab, sizeof (dtrace_enabling_t)); 10422 } 10423 10424 static int 10425 dtrace_enabling_retain(dtrace_enabling_t *enab) 10426 { 10427 dtrace_state_t *state; 10428 10429 ASSERT(MUTEX_HELD(&dtrace_lock)); 10430 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10431 ASSERT(enab->dten_vstate != NULL); 10432 10433 state = enab->dten_vstate->dtvs_state; 10434 ASSERT(state != NULL); 10435 10436 /* 10437 * We only allow each state to retain dtrace_retain_max enablings. 10438 */ 10439 if (state->dts_nretained >= dtrace_retain_max) 10440 return (ENOSPC); 10441 10442 state->dts_nretained++; 10443 10444 if (dtrace_retained == NULL) { 10445 dtrace_retained = enab; 10446 return (0); 10447 } 10448 10449 enab->dten_next = dtrace_retained; 10450 dtrace_retained->dten_prev = enab; 10451 dtrace_retained = enab; 10452 10453 return (0); 10454 } 10455 10456 static int 10457 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 10458 dtrace_probedesc_t *create) 10459 { 10460 dtrace_enabling_t *new, *enab; 10461 int found = 0, err = ENOENT; 10462 10463 ASSERT(MUTEX_HELD(&dtrace_lock)); 10464 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 10465 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 10466 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 10467 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 10468 10469 new = dtrace_enabling_create(&state->dts_vstate); 10470 10471 /* 10472 * Iterate over all retained enablings, looking for enablings that 10473 * match the specified state. 10474 */ 10475 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10476 int i; 10477 10478 /* 10479 * dtvs_state can only be NULL for helper enablings -- and 10480 * helper enablings can't be retained. 10481 */ 10482 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10483 10484 if (enab->dten_vstate->dtvs_state != state) 10485 continue; 10486 10487 /* 10488 * Now iterate over each probe description; we're looking for 10489 * an exact match to the specified probe description. 10490 */ 10491 for (i = 0; i < enab->dten_ndesc; i++) { 10492 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10493 dtrace_probedesc_t *pd = &ep->dted_probe; 10494 10495 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 10496 continue; 10497 10498 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 10499 continue; 10500 10501 if (strcmp(pd->dtpd_func, match->dtpd_func)) 10502 continue; 10503 10504 if (strcmp(pd->dtpd_name, match->dtpd_name)) 10505 continue; 10506 10507 /* 10508 * We have a winning probe! Add it to our growing 10509 * enabling. 10510 */ 10511 found = 1; 10512 dtrace_enabling_addlike(new, ep, create); 10513 } 10514 } 10515 10516 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 10517 dtrace_enabling_destroy(new); 10518 return (err); 10519 } 10520 10521 return (0); 10522 } 10523 10524 static void 10525 dtrace_enabling_retract(dtrace_state_t *state) 10526 { 10527 dtrace_enabling_t *enab, *next; 10528 10529 ASSERT(MUTEX_HELD(&dtrace_lock)); 10530 10531 /* 10532 * Iterate over all retained enablings, destroy the enablings retained 10533 * for the specified state. 10534 */ 10535 for (enab = dtrace_retained; enab != NULL; enab = next) { 10536 next = enab->dten_next; 10537 10538 /* 10539 * dtvs_state can only be NULL for helper enablings -- and 10540 * helper enablings can't be retained. 10541 */ 10542 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10543 10544 if (enab->dten_vstate->dtvs_state == state) { 10545 ASSERT(state->dts_nretained > 0); 10546 dtrace_enabling_destroy(enab); 10547 } 10548 } 10549 10550 ASSERT(state->dts_nretained == 0); 10551 } 10552 10553 static int 10554 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 10555 { 10556 int i = 0; 10557 int matched = 0; 10558 10559 ASSERT(MUTEX_HELD(&cpu_lock)); 10560 ASSERT(MUTEX_HELD(&dtrace_lock)); 10561 10562 for (i = 0; i < enab->dten_ndesc; i++) { 10563 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10564 10565 enab->dten_current = ep; 10566 enab->dten_error = 0; 10567 10568 matched += dtrace_probe_enable(&ep->dted_probe, enab); 10569 10570 if (enab->dten_error != 0) { 10571 /* 10572 * If we get an error half-way through enabling the 10573 * probes, we kick out -- perhaps with some number of 10574 * them enabled. Leaving enabled probes enabled may 10575 * be slightly confusing for user-level, but we expect 10576 * that no one will attempt to actually drive on in 10577 * the face of such errors. If this is an anonymous 10578 * enabling (indicated with a NULL nmatched pointer), 10579 * we cmn_err() a message. We aren't expecting to 10580 * get such an error -- such as it can exist at all, 10581 * it would be a result of corrupted DOF in the driver 10582 * properties. 10583 */ 10584 if (nmatched == NULL) { 10585 cmn_err(CE_WARN, "dtrace_enabling_match() " 10586 "error on %p: %d", (void *)ep, 10587 enab->dten_error); 10588 } 10589 10590 return (enab->dten_error); 10591 } 10592 } 10593 10594 enab->dten_probegen = dtrace_probegen; 10595 if (nmatched != NULL) 10596 *nmatched = matched; 10597 10598 return (0); 10599 } 10600 10601 static void 10602 dtrace_enabling_matchall(void) 10603 { 10604 dtrace_enabling_t *enab; 10605 10606 mutex_enter(&cpu_lock); 10607 mutex_enter(&dtrace_lock); 10608 10609 /* 10610 * Because we can be called after dtrace_detach() has been called, we 10611 * cannot assert that there are retained enablings. We can safely 10612 * load from dtrace_retained, however: the taskq_destroy() at the 10613 * end of dtrace_detach() will block pending our completion. 10614 */ 10615 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) 10616 (void) dtrace_enabling_match(enab, NULL); 10617 10618 mutex_exit(&dtrace_lock); 10619 mutex_exit(&cpu_lock); 10620 } 10621 10622 static int 10623 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched) 10624 { 10625 dtrace_enabling_t *enab; 10626 int matched, total = 0, err; 10627 10628 ASSERT(MUTEX_HELD(&cpu_lock)); 10629 ASSERT(MUTEX_HELD(&dtrace_lock)); 10630 10631 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10632 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10633 10634 if (enab->dten_vstate->dtvs_state != state) 10635 continue; 10636 10637 if ((err = dtrace_enabling_match(enab, &matched)) != 0) 10638 return (err); 10639 10640 total += matched; 10641 } 10642 10643 if (nmatched != NULL) 10644 *nmatched = total; 10645 10646 return (0); 10647 } 10648 10649 /* 10650 * If an enabling is to be enabled without having matched probes (that is, if 10651 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 10652 * enabling must be _primed_ by creating an ECB for every ECB description. 10653 * This must be done to assure that we know the number of speculations, the 10654 * number of aggregations, the minimum buffer size needed, etc. before we 10655 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 10656 * enabling any probes, we create ECBs for every ECB decription, but with a 10657 * NULL probe -- which is exactly what this function does. 10658 */ 10659 static void 10660 dtrace_enabling_prime(dtrace_state_t *state) 10661 { 10662 dtrace_enabling_t *enab; 10663 int i; 10664 10665 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10666 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10667 10668 if (enab->dten_vstate->dtvs_state != state) 10669 continue; 10670 10671 /* 10672 * We don't want to prime an enabling more than once, lest 10673 * we allow a malicious user to induce resource exhaustion. 10674 * (The ECBs that result from priming an enabling aren't 10675 * leaked -- but they also aren't deallocated until the 10676 * consumer state is destroyed.) 10677 */ 10678 if (enab->dten_primed) 10679 continue; 10680 10681 for (i = 0; i < enab->dten_ndesc; i++) { 10682 enab->dten_current = enab->dten_desc[i]; 10683 (void) dtrace_probe_enable(NULL, enab); 10684 } 10685 10686 enab->dten_primed = 1; 10687 } 10688 } 10689 10690 /* 10691 * Called to indicate that probes should be provided due to retained 10692 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 10693 * must take an initial lap through the enabling calling the dtps_provide() 10694 * entry point explicitly to allow for autocreated probes. 10695 */ 10696 static void 10697 dtrace_enabling_provide(dtrace_provider_t *prv) 10698 { 10699 int i, all = 0; 10700 dtrace_probedesc_t desc; 10701 10702 ASSERT(MUTEX_HELD(&dtrace_lock)); 10703 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 10704 10705 if (prv == NULL) { 10706 all = 1; 10707 prv = dtrace_provider; 10708 } 10709 10710 do { 10711 dtrace_enabling_t *enab = dtrace_retained; 10712 void *parg = prv->dtpv_arg; 10713 10714 for (; enab != NULL; enab = enab->dten_next) { 10715 for (i = 0; i < enab->dten_ndesc; i++) { 10716 desc = enab->dten_desc[i]->dted_probe; 10717 mutex_exit(&dtrace_lock); 10718 prv->dtpv_pops.dtps_provide(parg, &desc); 10719 mutex_enter(&dtrace_lock); 10720 } 10721 } 10722 } while (all && (prv = prv->dtpv_next) != NULL); 10723 10724 mutex_exit(&dtrace_lock); 10725 dtrace_probe_provide(NULL, all ? NULL : prv); 10726 mutex_enter(&dtrace_lock); 10727 } 10728 10729 /* 10730 * DTrace DOF Functions 10731 */ 10732 /*ARGSUSED*/ 10733 static void 10734 dtrace_dof_error(dof_hdr_t *dof, const char *str) 10735 { 10736 if (dtrace_err_verbose) 10737 cmn_err(CE_WARN, "failed to process DOF: %s", str); 10738 10739 #ifdef DTRACE_ERRDEBUG 10740 dtrace_errdebug(str); 10741 #endif 10742 } 10743 10744 /* 10745 * Create DOF out of a currently enabled state. Right now, we only create 10746 * DOF containing the run-time options -- but this could be expanded to create 10747 * complete DOF representing the enabled state. 10748 */ 10749 static dof_hdr_t * 10750 dtrace_dof_create(dtrace_state_t *state) 10751 { 10752 dof_hdr_t *dof; 10753 dof_sec_t *sec; 10754 dof_optdesc_t *opt; 10755 int i, len = sizeof (dof_hdr_t) + 10756 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 10757 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10758 10759 ASSERT(MUTEX_HELD(&dtrace_lock)); 10760 10761 dof = kmem_zalloc(len, KM_SLEEP); 10762 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 10763 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 10764 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 10765 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 10766 10767 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 10768 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 10769 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 10770 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 10771 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 10772 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 10773 10774 dof->dofh_flags = 0; 10775 dof->dofh_hdrsize = sizeof (dof_hdr_t); 10776 dof->dofh_secsize = sizeof (dof_sec_t); 10777 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 10778 dof->dofh_secoff = sizeof (dof_hdr_t); 10779 dof->dofh_loadsz = len; 10780 dof->dofh_filesz = len; 10781 dof->dofh_pad = 0; 10782 10783 /* 10784 * Fill in the option section header... 10785 */ 10786 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 10787 sec->dofs_type = DOF_SECT_OPTDESC; 10788 sec->dofs_align = sizeof (uint64_t); 10789 sec->dofs_flags = DOF_SECF_LOAD; 10790 sec->dofs_entsize = sizeof (dof_optdesc_t); 10791 10792 opt = (dof_optdesc_t *)((uintptr_t)sec + 10793 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 10794 10795 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 10796 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10797 10798 for (i = 0; i < DTRACEOPT_MAX; i++) { 10799 opt[i].dofo_option = i; 10800 opt[i].dofo_strtab = DOF_SECIDX_NONE; 10801 opt[i].dofo_value = state->dts_options[i]; 10802 } 10803 10804 return (dof); 10805 } 10806 10807 static dof_hdr_t * 10808 dtrace_dof_copyin(uintptr_t uarg, int *errp) 10809 { 10810 dof_hdr_t hdr, *dof; 10811 10812 ASSERT(!MUTEX_HELD(&dtrace_lock)); 10813 10814 /* 10815 * First, we're going to copyin() the sizeof (dof_hdr_t). 10816 */ 10817 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 10818 dtrace_dof_error(NULL, "failed to copyin DOF header"); 10819 *errp = EFAULT; 10820 return (NULL); 10821 } 10822 10823 /* 10824 * Now we'll allocate the entire DOF and copy it in -- provided 10825 * that the length isn't outrageous. 10826 */ 10827 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 10828 dtrace_dof_error(&hdr, "load size exceeds maximum"); 10829 *errp = E2BIG; 10830 return (NULL); 10831 } 10832 10833 if (hdr.dofh_loadsz < sizeof (hdr)) { 10834 dtrace_dof_error(&hdr, "invalid load size"); 10835 *errp = EINVAL; 10836 return (NULL); 10837 } 10838 10839 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 10840 10841 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) { 10842 kmem_free(dof, hdr.dofh_loadsz); 10843 *errp = EFAULT; 10844 return (NULL); 10845 } 10846 10847 return (dof); 10848 } 10849 10850 static dof_hdr_t * 10851 dtrace_dof_property(const char *name) 10852 { 10853 uchar_t *buf; 10854 uint64_t loadsz; 10855 unsigned int len, i; 10856 dof_hdr_t *dof; 10857 10858 /* 10859 * Unfortunately, array of values in .conf files are always (and 10860 * only) interpreted to be integer arrays. We must read our DOF 10861 * as an integer array, and then squeeze it into a byte array. 10862 */ 10863 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 10864 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 10865 return (NULL); 10866 10867 for (i = 0; i < len; i++) 10868 buf[i] = (uchar_t)(((int *)buf)[i]); 10869 10870 if (len < sizeof (dof_hdr_t)) { 10871 ddi_prop_free(buf); 10872 dtrace_dof_error(NULL, "truncated header"); 10873 return (NULL); 10874 } 10875 10876 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 10877 ddi_prop_free(buf); 10878 dtrace_dof_error(NULL, "truncated DOF"); 10879 return (NULL); 10880 } 10881 10882 if (loadsz >= dtrace_dof_maxsize) { 10883 ddi_prop_free(buf); 10884 dtrace_dof_error(NULL, "oversized DOF"); 10885 return (NULL); 10886 } 10887 10888 dof = kmem_alloc(loadsz, KM_SLEEP); 10889 bcopy(buf, dof, loadsz); 10890 ddi_prop_free(buf); 10891 10892 return (dof); 10893 } 10894 10895 static void 10896 dtrace_dof_destroy(dof_hdr_t *dof) 10897 { 10898 kmem_free(dof, dof->dofh_loadsz); 10899 } 10900 10901 /* 10902 * Return the dof_sec_t pointer corresponding to a given section index. If the 10903 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 10904 * a type other than DOF_SECT_NONE is specified, the header is checked against 10905 * this type and NULL is returned if the types do not match. 10906 */ 10907 static dof_sec_t * 10908 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 10909 { 10910 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 10911 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 10912 10913 if (i >= dof->dofh_secnum) { 10914 dtrace_dof_error(dof, "referenced section index is invalid"); 10915 return (NULL); 10916 } 10917 10918 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 10919 dtrace_dof_error(dof, "referenced section is not loadable"); 10920 return (NULL); 10921 } 10922 10923 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 10924 dtrace_dof_error(dof, "referenced section is the wrong type"); 10925 return (NULL); 10926 } 10927 10928 return (sec); 10929 } 10930 10931 static dtrace_probedesc_t * 10932 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 10933 { 10934 dof_probedesc_t *probe; 10935 dof_sec_t *strtab; 10936 uintptr_t daddr = (uintptr_t)dof; 10937 uintptr_t str; 10938 size_t size; 10939 10940 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 10941 dtrace_dof_error(dof, "invalid probe section"); 10942 return (NULL); 10943 } 10944 10945 if (sec->dofs_align != sizeof (dof_secidx_t)) { 10946 dtrace_dof_error(dof, "bad alignment in probe description"); 10947 return (NULL); 10948 } 10949 10950 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 10951 dtrace_dof_error(dof, "truncated probe description"); 10952 return (NULL); 10953 } 10954 10955 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 10956 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 10957 10958 if (strtab == NULL) 10959 return (NULL); 10960 10961 str = daddr + strtab->dofs_offset; 10962 size = strtab->dofs_size; 10963 10964 if (probe->dofp_provider >= strtab->dofs_size) { 10965 dtrace_dof_error(dof, "corrupt probe provider"); 10966 return (NULL); 10967 } 10968 10969 (void) strncpy(desc->dtpd_provider, 10970 (char *)(str + probe->dofp_provider), 10971 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 10972 10973 if (probe->dofp_mod >= strtab->dofs_size) { 10974 dtrace_dof_error(dof, "corrupt probe module"); 10975 return (NULL); 10976 } 10977 10978 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 10979 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 10980 10981 if (probe->dofp_func >= strtab->dofs_size) { 10982 dtrace_dof_error(dof, "corrupt probe function"); 10983 return (NULL); 10984 } 10985 10986 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 10987 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 10988 10989 if (probe->dofp_name >= strtab->dofs_size) { 10990 dtrace_dof_error(dof, "corrupt probe name"); 10991 return (NULL); 10992 } 10993 10994 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 10995 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 10996 10997 return (desc); 10998 } 10999 11000 static dtrace_difo_t * 11001 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11002 cred_t *cr) 11003 { 11004 dtrace_difo_t *dp; 11005 size_t ttl = 0; 11006 dof_difohdr_t *dofd; 11007 uintptr_t daddr = (uintptr_t)dof; 11008 size_t max = dtrace_difo_maxsize; 11009 int i, l, n; 11010 11011 static const struct { 11012 int section; 11013 int bufoffs; 11014 int lenoffs; 11015 int entsize; 11016 int align; 11017 const char *msg; 11018 } difo[] = { 11019 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11020 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11021 sizeof (dif_instr_t), "multiple DIF sections" }, 11022 11023 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11024 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11025 sizeof (uint64_t), "multiple integer tables" }, 11026 11027 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11028 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11029 sizeof (char), "multiple string tables" }, 11030 11031 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11032 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11033 sizeof (uint_t), "multiple variable tables" }, 11034 11035 { DOF_SECT_NONE, 0, 0, 0, NULL } 11036 }; 11037 11038 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11039 dtrace_dof_error(dof, "invalid DIFO header section"); 11040 return (NULL); 11041 } 11042 11043 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11044 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11045 return (NULL); 11046 } 11047 11048 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11049 sec->dofs_size % sizeof (dof_secidx_t)) { 11050 dtrace_dof_error(dof, "bad size in DIFO header"); 11051 return (NULL); 11052 } 11053 11054 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11055 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11056 11057 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11058 dp->dtdo_rtype = dofd->dofd_rtype; 11059 11060 for (l = 0; l < n; l++) { 11061 dof_sec_t *subsec; 11062 void **bufp; 11063 uint32_t *lenp; 11064 11065 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11066 dofd->dofd_links[l])) == NULL) 11067 goto err; /* invalid section link */ 11068 11069 if (ttl + subsec->dofs_size > max) { 11070 dtrace_dof_error(dof, "exceeds maximum size"); 11071 goto err; 11072 } 11073 11074 ttl += subsec->dofs_size; 11075 11076 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11077 if (subsec->dofs_type != difo[i].section) 11078 continue; 11079 11080 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11081 dtrace_dof_error(dof, "section not loaded"); 11082 goto err; 11083 } 11084 11085 if (subsec->dofs_align != difo[i].align) { 11086 dtrace_dof_error(dof, "bad alignment"); 11087 goto err; 11088 } 11089 11090 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11091 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11092 11093 if (*bufp != NULL) { 11094 dtrace_dof_error(dof, difo[i].msg); 11095 goto err; 11096 } 11097 11098 if (difo[i].entsize != subsec->dofs_entsize) { 11099 dtrace_dof_error(dof, "entry size mismatch"); 11100 goto err; 11101 } 11102 11103 if (subsec->dofs_entsize != 0 && 11104 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11105 dtrace_dof_error(dof, "corrupt entry size"); 11106 goto err; 11107 } 11108 11109 *lenp = subsec->dofs_size; 11110 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11111 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11112 *bufp, subsec->dofs_size); 11113 11114 if (subsec->dofs_entsize != 0) 11115 *lenp /= subsec->dofs_entsize; 11116 11117 break; 11118 } 11119 11120 /* 11121 * If we encounter a loadable DIFO sub-section that is not 11122 * known to us, assume this is a broken program and fail. 11123 */ 11124 if (difo[i].section == DOF_SECT_NONE && 11125 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11126 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11127 goto err; 11128 } 11129 } 11130 11131 if (dp->dtdo_buf == NULL) { 11132 /* 11133 * We can't have a DIF object without DIF text. 11134 */ 11135 dtrace_dof_error(dof, "missing DIF text"); 11136 goto err; 11137 } 11138 11139 /* 11140 * Before we validate the DIF object, run through the variable table 11141 * looking for the strings -- if any of their size are under, we'll set 11142 * their size to be the system-wide default string size. Note that 11143 * this should _not_ happen if the "strsize" option has been set -- 11144 * in this case, the compiler should have set the size to reflect the 11145 * setting of the option. 11146 */ 11147 for (i = 0; i < dp->dtdo_varlen; i++) { 11148 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11149 dtrace_diftype_t *t = &v->dtdv_type; 11150 11151 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 11152 continue; 11153 11154 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 11155 t->dtdt_size = dtrace_strsize_default; 11156 } 11157 11158 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 11159 goto err; 11160 11161 dtrace_difo_init(dp, vstate); 11162 return (dp); 11163 11164 err: 11165 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11166 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11167 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11168 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11169 11170 kmem_free(dp, sizeof (dtrace_difo_t)); 11171 return (NULL); 11172 } 11173 11174 static dtrace_predicate_t * 11175 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11176 cred_t *cr) 11177 { 11178 dtrace_difo_t *dp; 11179 11180 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 11181 return (NULL); 11182 11183 return (dtrace_predicate_create(dp)); 11184 } 11185 11186 static dtrace_actdesc_t * 11187 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11188 cred_t *cr) 11189 { 11190 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 11191 dof_actdesc_t *desc; 11192 dof_sec_t *difosec; 11193 size_t offs; 11194 uintptr_t daddr = (uintptr_t)dof; 11195 uint64_t arg; 11196 dtrace_actkind_t kind; 11197 11198 if (sec->dofs_type != DOF_SECT_ACTDESC) { 11199 dtrace_dof_error(dof, "invalid action section"); 11200 return (NULL); 11201 } 11202 11203 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 11204 dtrace_dof_error(dof, "truncated action description"); 11205 return (NULL); 11206 } 11207 11208 if (sec->dofs_align != sizeof (uint64_t)) { 11209 dtrace_dof_error(dof, "bad alignment in action description"); 11210 return (NULL); 11211 } 11212 11213 if (sec->dofs_size < sec->dofs_entsize) { 11214 dtrace_dof_error(dof, "section entry size exceeds total size"); 11215 return (NULL); 11216 } 11217 11218 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 11219 dtrace_dof_error(dof, "bad entry size in action description"); 11220 return (NULL); 11221 } 11222 11223 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 11224 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 11225 return (NULL); 11226 } 11227 11228 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 11229 desc = (dof_actdesc_t *)(daddr + 11230 (uintptr_t)sec->dofs_offset + offs); 11231 kind = (dtrace_actkind_t)desc->dofa_kind; 11232 11233 if (DTRACEACT_ISPRINTFLIKE(kind) && 11234 (kind != DTRACEACT_PRINTA || 11235 desc->dofa_strtab != DOF_SECIDX_NONE)) { 11236 dof_sec_t *strtab; 11237 char *str, *fmt; 11238 uint64_t i; 11239 11240 /* 11241 * printf()-like actions must have a format string. 11242 */ 11243 if ((strtab = dtrace_dof_sect(dof, 11244 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 11245 goto err; 11246 11247 str = (char *)((uintptr_t)dof + 11248 (uintptr_t)strtab->dofs_offset); 11249 11250 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 11251 if (str[i] == '\0') 11252 break; 11253 } 11254 11255 if (i >= strtab->dofs_size) { 11256 dtrace_dof_error(dof, "bogus format string"); 11257 goto err; 11258 } 11259 11260 if (i == desc->dofa_arg) { 11261 dtrace_dof_error(dof, "empty format string"); 11262 goto err; 11263 } 11264 11265 i -= desc->dofa_arg; 11266 fmt = kmem_alloc(i + 1, KM_SLEEP); 11267 bcopy(&str[desc->dofa_arg], fmt, i + 1); 11268 arg = (uint64_t)(uintptr_t)fmt; 11269 } else { 11270 if (kind == DTRACEACT_PRINTA) { 11271 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 11272 arg = 0; 11273 } else { 11274 arg = desc->dofa_arg; 11275 } 11276 } 11277 11278 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 11279 desc->dofa_uarg, arg); 11280 11281 if (last != NULL) { 11282 last->dtad_next = act; 11283 } else { 11284 first = act; 11285 } 11286 11287 last = act; 11288 11289 if (desc->dofa_difo == DOF_SECIDX_NONE) 11290 continue; 11291 11292 if ((difosec = dtrace_dof_sect(dof, 11293 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 11294 goto err; 11295 11296 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 11297 11298 if (act->dtad_difo == NULL) 11299 goto err; 11300 } 11301 11302 ASSERT(first != NULL); 11303 return (first); 11304 11305 err: 11306 for (act = first; act != NULL; act = next) { 11307 next = act->dtad_next; 11308 dtrace_actdesc_release(act, vstate); 11309 } 11310 11311 return (NULL); 11312 } 11313 11314 static dtrace_ecbdesc_t * 11315 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11316 cred_t *cr) 11317 { 11318 dtrace_ecbdesc_t *ep; 11319 dof_ecbdesc_t *ecb; 11320 dtrace_probedesc_t *desc; 11321 dtrace_predicate_t *pred = NULL; 11322 11323 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 11324 dtrace_dof_error(dof, "truncated ECB description"); 11325 return (NULL); 11326 } 11327 11328 if (sec->dofs_align != sizeof (uint64_t)) { 11329 dtrace_dof_error(dof, "bad alignment in ECB description"); 11330 return (NULL); 11331 } 11332 11333 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 11334 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 11335 11336 if (sec == NULL) 11337 return (NULL); 11338 11339 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11340 ep->dted_uarg = ecb->dofe_uarg; 11341 desc = &ep->dted_probe; 11342 11343 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 11344 goto err; 11345 11346 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 11347 if ((sec = dtrace_dof_sect(dof, 11348 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 11349 goto err; 11350 11351 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 11352 goto err; 11353 11354 ep->dted_pred.dtpdd_predicate = pred; 11355 } 11356 11357 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 11358 if ((sec = dtrace_dof_sect(dof, 11359 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 11360 goto err; 11361 11362 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 11363 11364 if (ep->dted_action == NULL) 11365 goto err; 11366 } 11367 11368 return (ep); 11369 11370 err: 11371 if (pred != NULL) 11372 dtrace_predicate_release(pred, vstate); 11373 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11374 return (NULL); 11375 } 11376 11377 /* 11378 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 11379 * specified DOF. At present, this amounts to simply adding 'ubase' to the 11380 * site of any user SETX relocations to account for load object base address. 11381 * In the future, if we need other relocations, this function can be extended. 11382 */ 11383 static int 11384 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 11385 { 11386 uintptr_t daddr = (uintptr_t)dof; 11387 dof_relohdr_t *dofr = 11388 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11389 dof_sec_t *ss, *rs, *ts; 11390 dof_relodesc_t *r; 11391 uint_t i, n; 11392 11393 if (sec->dofs_size < sizeof (dof_relohdr_t) || 11394 sec->dofs_align != sizeof (dof_secidx_t)) { 11395 dtrace_dof_error(dof, "invalid relocation header"); 11396 return (-1); 11397 } 11398 11399 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 11400 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 11401 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 11402 11403 if (ss == NULL || rs == NULL || ts == NULL) 11404 return (-1); /* dtrace_dof_error() has been called already */ 11405 11406 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 11407 rs->dofs_align != sizeof (uint64_t)) { 11408 dtrace_dof_error(dof, "invalid relocation section"); 11409 return (-1); 11410 } 11411 11412 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 11413 n = rs->dofs_size / rs->dofs_entsize; 11414 11415 for (i = 0; i < n; i++) { 11416 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 11417 11418 switch (r->dofr_type) { 11419 case DOF_RELO_NONE: 11420 break; 11421 case DOF_RELO_SETX: 11422 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 11423 sizeof (uint64_t) > ts->dofs_size) { 11424 dtrace_dof_error(dof, "bad relocation offset"); 11425 return (-1); 11426 } 11427 11428 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 11429 dtrace_dof_error(dof, "misaligned setx relo"); 11430 return (-1); 11431 } 11432 11433 *(uint64_t *)taddr += ubase; 11434 break; 11435 default: 11436 dtrace_dof_error(dof, "invalid relocation type"); 11437 return (-1); 11438 } 11439 11440 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 11441 } 11442 11443 return (0); 11444 } 11445 11446 /* 11447 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 11448 * header: it should be at the front of a memory region that is at least 11449 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 11450 * size. It need not be validated in any other way. 11451 */ 11452 static int 11453 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 11454 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 11455 { 11456 uint64_t len = dof->dofh_loadsz, seclen; 11457 uintptr_t daddr = (uintptr_t)dof; 11458 dtrace_ecbdesc_t *ep; 11459 dtrace_enabling_t *enab; 11460 uint_t i; 11461 11462 ASSERT(MUTEX_HELD(&dtrace_lock)); 11463 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 11464 11465 /* 11466 * Check the DOF header identification bytes. In addition to checking 11467 * valid settings, we also verify that unused bits/bytes are zeroed so 11468 * we can use them later without fear of regressing existing binaries. 11469 */ 11470 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 11471 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 11472 dtrace_dof_error(dof, "DOF magic string mismatch"); 11473 return (-1); 11474 } 11475 11476 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 11477 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 11478 dtrace_dof_error(dof, "DOF has invalid data model"); 11479 return (-1); 11480 } 11481 11482 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 11483 dtrace_dof_error(dof, "DOF encoding mismatch"); 11484 return (-1); 11485 } 11486 11487 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 11488 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 11489 dtrace_dof_error(dof, "DOF version mismatch"); 11490 return (-1); 11491 } 11492 11493 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 11494 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 11495 return (-1); 11496 } 11497 11498 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 11499 dtrace_dof_error(dof, "DOF uses too many integer registers"); 11500 return (-1); 11501 } 11502 11503 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 11504 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 11505 return (-1); 11506 } 11507 11508 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 11509 if (dof->dofh_ident[i] != 0) { 11510 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 11511 return (-1); 11512 } 11513 } 11514 11515 if (dof->dofh_flags & ~DOF_FL_VALID) { 11516 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 11517 return (-1); 11518 } 11519 11520 if (dof->dofh_secsize == 0) { 11521 dtrace_dof_error(dof, "zero section header size"); 11522 return (-1); 11523 } 11524 11525 /* 11526 * Check that the section headers don't exceed the amount of DOF 11527 * data. Note that we cast the section size and number of sections 11528 * to uint64_t's to prevent possible overflow in the multiplication. 11529 */ 11530 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 11531 11532 if (dof->dofh_secoff > len || seclen > len || 11533 dof->dofh_secoff + seclen > len) { 11534 dtrace_dof_error(dof, "truncated section headers"); 11535 return (-1); 11536 } 11537 11538 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 11539 dtrace_dof_error(dof, "misaligned section headers"); 11540 return (-1); 11541 } 11542 11543 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 11544 dtrace_dof_error(dof, "misaligned section size"); 11545 return (-1); 11546 } 11547 11548 /* 11549 * Take an initial pass through the section headers to be sure that 11550 * the headers don't have stray offsets. If the 'noprobes' flag is 11551 * set, do not permit sections relating to providers, probes, or args. 11552 */ 11553 for (i = 0; i < dof->dofh_secnum; i++) { 11554 dof_sec_t *sec = (dof_sec_t *)(daddr + 11555 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11556 11557 if (noprobes) { 11558 switch (sec->dofs_type) { 11559 case DOF_SECT_PROVIDER: 11560 case DOF_SECT_PROBES: 11561 case DOF_SECT_PRARGS: 11562 case DOF_SECT_PROFFS: 11563 dtrace_dof_error(dof, "illegal sections " 11564 "for enabling"); 11565 return (-1); 11566 } 11567 } 11568 11569 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11570 continue; /* just ignore non-loadable sections */ 11571 11572 if (sec->dofs_align & (sec->dofs_align - 1)) { 11573 dtrace_dof_error(dof, "bad section alignment"); 11574 return (-1); 11575 } 11576 11577 if (sec->dofs_offset & (sec->dofs_align - 1)) { 11578 dtrace_dof_error(dof, "misaligned section"); 11579 return (-1); 11580 } 11581 11582 if (sec->dofs_offset > len || sec->dofs_size > len || 11583 sec->dofs_offset + sec->dofs_size > len) { 11584 dtrace_dof_error(dof, "corrupt section header"); 11585 return (-1); 11586 } 11587 11588 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 11589 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 11590 dtrace_dof_error(dof, "non-terminating string table"); 11591 return (-1); 11592 } 11593 } 11594 11595 /* 11596 * Take a second pass through the sections and locate and perform any 11597 * relocations that are present. We do this after the first pass to 11598 * be sure that all sections have had their headers validated. 11599 */ 11600 for (i = 0; i < dof->dofh_secnum; i++) { 11601 dof_sec_t *sec = (dof_sec_t *)(daddr + 11602 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11603 11604 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11605 continue; /* skip sections that are not loadable */ 11606 11607 switch (sec->dofs_type) { 11608 case DOF_SECT_URELHDR: 11609 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 11610 return (-1); 11611 break; 11612 } 11613 } 11614 11615 if ((enab = *enabp) == NULL) 11616 enab = *enabp = dtrace_enabling_create(vstate); 11617 11618 for (i = 0; i < dof->dofh_secnum; i++) { 11619 dof_sec_t *sec = (dof_sec_t *)(daddr + 11620 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11621 11622 if (sec->dofs_type != DOF_SECT_ECBDESC) 11623 continue; 11624 11625 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 11626 dtrace_enabling_destroy(enab); 11627 *enabp = NULL; 11628 return (-1); 11629 } 11630 11631 dtrace_enabling_add(enab, ep); 11632 } 11633 11634 return (0); 11635 } 11636 11637 /* 11638 * Process DOF for any options. This routine assumes that the DOF has been 11639 * at least processed by dtrace_dof_slurp(). 11640 */ 11641 static int 11642 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 11643 { 11644 int i, rval; 11645 uint32_t entsize; 11646 size_t offs; 11647 dof_optdesc_t *desc; 11648 11649 for (i = 0; i < dof->dofh_secnum; i++) { 11650 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 11651 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11652 11653 if (sec->dofs_type != DOF_SECT_OPTDESC) 11654 continue; 11655 11656 if (sec->dofs_align != sizeof (uint64_t)) { 11657 dtrace_dof_error(dof, "bad alignment in " 11658 "option description"); 11659 return (EINVAL); 11660 } 11661 11662 if ((entsize = sec->dofs_entsize) == 0) { 11663 dtrace_dof_error(dof, "zeroed option entry size"); 11664 return (EINVAL); 11665 } 11666 11667 if (entsize < sizeof (dof_optdesc_t)) { 11668 dtrace_dof_error(dof, "bad option entry size"); 11669 return (EINVAL); 11670 } 11671 11672 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 11673 desc = (dof_optdesc_t *)((uintptr_t)dof + 11674 (uintptr_t)sec->dofs_offset + offs); 11675 11676 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 11677 dtrace_dof_error(dof, "non-zero option string"); 11678 return (EINVAL); 11679 } 11680 11681 if (desc->dofo_value == DTRACEOPT_UNSET) { 11682 dtrace_dof_error(dof, "unset option"); 11683 return (EINVAL); 11684 } 11685 11686 if ((rval = dtrace_state_option(state, 11687 desc->dofo_option, desc->dofo_value)) != 0) { 11688 dtrace_dof_error(dof, "rejected option"); 11689 return (rval); 11690 } 11691 } 11692 } 11693 11694 return (0); 11695 } 11696 11697 /* 11698 * DTrace Consumer State Functions 11699 */ 11700 int 11701 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 11702 { 11703 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 11704 void *base; 11705 uintptr_t limit; 11706 dtrace_dynvar_t *dvar, *next, *start; 11707 int i; 11708 11709 ASSERT(MUTEX_HELD(&dtrace_lock)); 11710 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 11711 11712 bzero(dstate, sizeof (dtrace_dstate_t)); 11713 11714 if ((dstate->dtds_chunksize = chunksize) == 0) 11715 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 11716 11717 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 11718 size = min; 11719 11720 if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 11721 return (ENOMEM); 11722 11723 dstate->dtds_size = size; 11724 dstate->dtds_base = base; 11725 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 11726 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 11727 11728 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 11729 11730 if (hashsize != 1 && (hashsize & 1)) 11731 hashsize--; 11732 11733 dstate->dtds_hashsize = hashsize; 11734 dstate->dtds_hash = dstate->dtds_base; 11735 11736 /* 11737 * Set all of our hash buckets to point to the single sink, and (if 11738 * it hasn't already been set), set the sink's hash value to be the 11739 * sink sentinel value. The sink is needed for dynamic variable 11740 * lookups to know that they have iterated over an entire, valid hash 11741 * chain. 11742 */ 11743 for (i = 0; i < hashsize; i++) 11744 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 11745 11746 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 11747 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 11748 11749 /* 11750 * Determine number of active CPUs. Divide free list evenly among 11751 * active CPUs. 11752 */ 11753 start = (dtrace_dynvar_t *) 11754 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 11755 limit = (uintptr_t)base + size; 11756 11757 maxper = (limit - (uintptr_t)start) / NCPU; 11758 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 11759 11760 for (i = 0; i < NCPU; i++) { 11761 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 11762 11763 /* 11764 * If we don't even have enough chunks to make it once through 11765 * NCPUs, we're just going to allocate everything to the first 11766 * CPU. And if we're on the last CPU, we're going to allocate 11767 * whatever is left over. In either case, we set the limit to 11768 * be the limit of the dynamic variable space. 11769 */ 11770 if (maxper == 0 || i == NCPU - 1) { 11771 limit = (uintptr_t)base + size; 11772 start = NULL; 11773 } else { 11774 limit = (uintptr_t)start + maxper; 11775 start = (dtrace_dynvar_t *)limit; 11776 } 11777 11778 ASSERT(limit <= (uintptr_t)base + size); 11779 11780 for (;;) { 11781 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 11782 dstate->dtds_chunksize); 11783 11784 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 11785 break; 11786 11787 dvar->dtdv_next = next; 11788 dvar = next; 11789 } 11790 11791 if (maxper == 0) 11792 break; 11793 } 11794 11795 return (0); 11796 } 11797 11798 void 11799 dtrace_dstate_fini(dtrace_dstate_t *dstate) 11800 { 11801 ASSERT(MUTEX_HELD(&cpu_lock)); 11802 11803 if (dstate->dtds_base == NULL) 11804 return; 11805 11806 kmem_free(dstate->dtds_base, dstate->dtds_size); 11807 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 11808 } 11809 11810 static void 11811 dtrace_vstate_fini(dtrace_vstate_t *vstate) 11812 { 11813 /* 11814 * Logical XOR, where are you? 11815 */ 11816 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 11817 11818 if (vstate->dtvs_nglobals > 0) { 11819 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 11820 sizeof (dtrace_statvar_t *)); 11821 } 11822 11823 if (vstate->dtvs_ntlocals > 0) { 11824 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 11825 sizeof (dtrace_difv_t)); 11826 } 11827 11828 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 11829 11830 if (vstate->dtvs_nlocals > 0) { 11831 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 11832 sizeof (dtrace_statvar_t *)); 11833 } 11834 } 11835 11836 static void 11837 dtrace_state_clean(dtrace_state_t *state) 11838 { 11839 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 11840 return; 11841 11842 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 11843 dtrace_speculation_clean(state); 11844 } 11845 11846 static void 11847 dtrace_state_deadman(dtrace_state_t *state) 11848 { 11849 hrtime_t now; 11850 11851 dtrace_sync(); 11852 11853 now = dtrace_gethrtime(); 11854 11855 if (state != dtrace_anon.dta_state && 11856 now - state->dts_laststatus >= dtrace_deadman_user) 11857 return; 11858 11859 /* 11860 * We must be sure that dts_alive never appears to be less than the 11861 * value upon entry to dtrace_state_deadman(), and because we lack a 11862 * dtrace_cas64(), we cannot store to it atomically. We thus instead 11863 * store INT64_MAX to it, followed by a memory barrier, followed by 11864 * the new value. This assures that dts_alive never appears to be 11865 * less than its true value, regardless of the order in which the 11866 * stores to the underlying storage are issued. 11867 */ 11868 state->dts_alive = INT64_MAX; 11869 dtrace_membar_producer(); 11870 state->dts_alive = now; 11871 } 11872 11873 dtrace_state_t * 11874 dtrace_state_create(dev_t *devp, cred_t *cr) 11875 { 11876 minor_t minor; 11877 major_t major; 11878 char c[30]; 11879 dtrace_state_t *state; 11880 dtrace_optval_t *opt; 11881 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 11882 11883 ASSERT(MUTEX_HELD(&dtrace_lock)); 11884 ASSERT(MUTEX_HELD(&cpu_lock)); 11885 11886 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 11887 VM_BESTFIT | VM_SLEEP); 11888 11889 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 11890 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 11891 return (NULL); 11892 } 11893 11894 state = ddi_get_soft_state(dtrace_softstate, minor); 11895 state->dts_epid = DTRACE_EPIDNONE + 1; 11896 11897 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 11898 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 11899 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 11900 11901 if (devp != NULL) { 11902 major = getemajor(*devp); 11903 } else { 11904 major = ddi_driver_major(dtrace_devi); 11905 } 11906 11907 state->dts_dev = makedevice(major, minor); 11908 11909 if (devp != NULL) 11910 *devp = state->dts_dev; 11911 11912 /* 11913 * We allocate NCPU buffers. On the one hand, this can be quite 11914 * a bit of memory per instance (nearly 36K on a Starcat). On the 11915 * other hand, it saves an additional memory reference in the probe 11916 * path. 11917 */ 11918 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 11919 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 11920 state->dts_cleaner = CYCLIC_NONE; 11921 state->dts_deadman = CYCLIC_NONE; 11922 state->dts_vstate.dtvs_state = state; 11923 11924 for (i = 0; i < DTRACEOPT_MAX; i++) 11925 state->dts_options[i] = DTRACEOPT_UNSET; 11926 11927 /* 11928 * Set the default options. 11929 */ 11930 opt = state->dts_options; 11931 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 11932 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 11933 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 11934 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 11935 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 11936 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 11937 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 11938 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 11939 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 11940 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 11941 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 11942 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 11943 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 11944 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 11945 11946 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 11947 11948 /* 11949 * Depending on the user credentials, we set flag bits which alter probe 11950 * visibility or the amount of destructiveness allowed. In the case of 11951 * actual anonymous tracing, or the possession of all privileges, all of 11952 * the normal checks are bypassed. 11953 */ 11954 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 11955 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 11956 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 11957 } else { 11958 /* 11959 * Set up the credentials for this instantiation. We take a 11960 * hold on the credential to prevent it from disappearing on 11961 * us; this in turn prevents the zone_t referenced by this 11962 * credential from disappearing. This means that we can 11963 * examine the credential and the zone from probe context. 11964 */ 11965 crhold(cr); 11966 state->dts_cred.dcr_cred = cr; 11967 11968 /* 11969 * CRA_PROC means "we have *some* privilege for dtrace" and 11970 * unlocks the use of variables like pid, zonename, etc. 11971 */ 11972 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 11973 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 11974 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 11975 } 11976 11977 /* 11978 * dtrace_user allows use of syscall and profile providers. 11979 * If the user also has proc_owner and/or proc_zone, we 11980 * extend the scope to include additional visibility and 11981 * destructive power. 11982 */ 11983 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 11984 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 11985 state->dts_cred.dcr_visible |= 11986 DTRACE_CRV_ALLPROC; 11987 11988 state->dts_cred.dcr_action |= 11989 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 11990 } 11991 11992 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 11993 state->dts_cred.dcr_visible |= 11994 DTRACE_CRV_ALLZONE; 11995 11996 state->dts_cred.dcr_action |= 11997 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 11998 } 11999 12000 /* 12001 * If we have all privs in whatever zone this is, 12002 * we can do destructive things to processes which 12003 * have altered credentials. 12004 */ 12005 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12006 cr->cr_zone->zone_privset)) { 12007 state->dts_cred.dcr_action |= 12008 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12009 } 12010 } 12011 12012 /* 12013 * Holding the dtrace_kernel privilege also implies that 12014 * the user has the dtrace_user privilege from a visibility 12015 * perspective. But without further privileges, some 12016 * destructive actions are not available. 12017 */ 12018 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12019 /* 12020 * Make all probes in all zones visible. However, 12021 * this doesn't mean that all actions become available 12022 * to all zones. 12023 */ 12024 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12025 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12026 12027 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12028 DTRACE_CRA_PROC; 12029 /* 12030 * Holding proc_owner means that destructive actions 12031 * for *this* zone are allowed. 12032 */ 12033 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12034 state->dts_cred.dcr_action |= 12035 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12036 12037 /* 12038 * Holding proc_zone means that destructive actions 12039 * for this user/group ID in all zones is allowed. 12040 */ 12041 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12042 state->dts_cred.dcr_action |= 12043 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12044 12045 /* 12046 * If we have all privs in whatever zone this is, 12047 * we can do destructive things to processes which 12048 * have altered credentials. 12049 */ 12050 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12051 cr->cr_zone->zone_privset)) { 12052 state->dts_cred.dcr_action |= 12053 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12054 } 12055 } 12056 12057 /* 12058 * Holding the dtrace_proc privilege gives control over fasttrap 12059 * and pid providers. We need to grant wider destructive 12060 * privileges in the event that the user has proc_owner and/or 12061 * proc_zone. 12062 */ 12063 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12064 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12065 state->dts_cred.dcr_action |= 12066 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12067 12068 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12069 state->dts_cred.dcr_action |= 12070 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12071 } 12072 } 12073 12074 return (state); 12075 } 12076 12077 static int 12078 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 12079 { 12080 dtrace_optval_t *opt = state->dts_options, size; 12081 processorid_t cpu; 12082 int flags = 0, rval; 12083 12084 ASSERT(MUTEX_HELD(&dtrace_lock)); 12085 ASSERT(MUTEX_HELD(&cpu_lock)); 12086 ASSERT(which < DTRACEOPT_MAX); 12087 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 12088 (state == dtrace_anon.dta_state && 12089 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 12090 12091 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 12092 return (0); 12093 12094 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 12095 cpu = opt[DTRACEOPT_CPU]; 12096 12097 if (which == DTRACEOPT_SPECSIZE) 12098 flags |= DTRACEBUF_NOSWITCH; 12099 12100 if (which == DTRACEOPT_BUFSIZE) { 12101 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 12102 flags |= DTRACEBUF_RING; 12103 12104 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 12105 flags |= DTRACEBUF_FILL; 12106 12107 if (state != dtrace_anon.dta_state || 12108 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 12109 flags |= DTRACEBUF_INACTIVE; 12110 } 12111 12112 for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) { 12113 /* 12114 * The size must be 8-byte aligned. If the size is not 8-byte 12115 * aligned, drop it down by the difference. 12116 */ 12117 if (size & (sizeof (uint64_t) - 1)) 12118 size -= size & (sizeof (uint64_t) - 1); 12119 12120 if (size < state->dts_reserve) { 12121 /* 12122 * Buffers always must be large enough to accommodate 12123 * their prereserved space. We return E2BIG instead 12124 * of ENOMEM in this case to allow for user-level 12125 * software to differentiate the cases. 12126 */ 12127 return (E2BIG); 12128 } 12129 12130 rval = dtrace_buffer_alloc(buf, size, flags, cpu); 12131 12132 if (rval != ENOMEM) { 12133 opt[which] = size; 12134 return (rval); 12135 } 12136 12137 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12138 return (rval); 12139 } 12140 12141 return (ENOMEM); 12142 } 12143 12144 static int 12145 dtrace_state_buffers(dtrace_state_t *state) 12146 { 12147 dtrace_speculation_t *spec = state->dts_speculations; 12148 int rval, i; 12149 12150 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 12151 DTRACEOPT_BUFSIZE)) != 0) 12152 return (rval); 12153 12154 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 12155 DTRACEOPT_AGGSIZE)) != 0) 12156 return (rval); 12157 12158 for (i = 0; i < state->dts_nspeculations; i++) { 12159 if ((rval = dtrace_state_buffer(state, 12160 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 12161 return (rval); 12162 } 12163 12164 return (0); 12165 } 12166 12167 static void 12168 dtrace_state_prereserve(dtrace_state_t *state) 12169 { 12170 dtrace_ecb_t *ecb; 12171 dtrace_probe_t *probe; 12172 12173 state->dts_reserve = 0; 12174 12175 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 12176 return; 12177 12178 /* 12179 * If our buffer policy is a "fill" buffer policy, we need to set the 12180 * prereserved space to be the space required by the END probes. 12181 */ 12182 probe = dtrace_probes[dtrace_probeid_end - 1]; 12183 ASSERT(probe != NULL); 12184 12185 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 12186 if (ecb->dte_state != state) 12187 continue; 12188 12189 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 12190 } 12191 } 12192 12193 static int 12194 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 12195 { 12196 dtrace_optval_t *opt = state->dts_options, sz, nspec; 12197 dtrace_speculation_t *spec; 12198 dtrace_buffer_t *buf; 12199 cyc_handler_t hdlr; 12200 cyc_time_t when; 12201 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12202 dtrace_icookie_t cookie; 12203 12204 mutex_enter(&cpu_lock); 12205 mutex_enter(&dtrace_lock); 12206 12207 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 12208 rval = EBUSY; 12209 goto out; 12210 } 12211 12212 /* 12213 * Before we can perform any checks, we must prime all of the 12214 * retained enablings that correspond to this state. 12215 */ 12216 dtrace_enabling_prime(state); 12217 12218 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 12219 rval = EACCES; 12220 goto out; 12221 } 12222 12223 dtrace_state_prereserve(state); 12224 12225 /* 12226 * Now we want to do is try to allocate our speculations. 12227 * We do not automatically resize the number of speculations; if 12228 * this fails, we will fail the operation. 12229 */ 12230 nspec = opt[DTRACEOPT_NSPEC]; 12231 ASSERT(nspec != DTRACEOPT_UNSET); 12232 12233 if (nspec > INT_MAX) { 12234 rval = ENOMEM; 12235 goto out; 12236 } 12237 12238 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); 12239 12240 if (spec == NULL) { 12241 rval = ENOMEM; 12242 goto out; 12243 } 12244 12245 state->dts_speculations = spec; 12246 state->dts_nspeculations = (int)nspec; 12247 12248 for (i = 0; i < nspec; i++) { 12249 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { 12250 rval = ENOMEM; 12251 goto err; 12252 } 12253 12254 spec[i].dtsp_buffer = buf; 12255 } 12256 12257 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 12258 if (dtrace_anon.dta_state == NULL) { 12259 rval = ENOENT; 12260 goto out; 12261 } 12262 12263 if (state->dts_necbs != 0) { 12264 rval = EALREADY; 12265 goto out; 12266 } 12267 12268 state->dts_anon = dtrace_anon_grab(); 12269 ASSERT(state->dts_anon != NULL); 12270 state = state->dts_anon; 12271 12272 /* 12273 * We want "grabanon" to be set in the grabbed state, so we'll 12274 * copy that option value from the grabbing state into the 12275 * grabbed state. 12276 */ 12277 state->dts_options[DTRACEOPT_GRABANON] = 12278 opt[DTRACEOPT_GRABANON]; 12279 12280 *cpu = dtrace_anon.dta_beganon; 12281 12282 /* 12283 * If the anonymous state is active (as it almost certainly 12284 * is if the anonymous enabling ultimately matched anything), 12285 * we don't allow any further option processing -- but we 12286 * don't return failure. 12287 */ 12288 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12289 goto out; 12290 } 12291 12292 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 12293 opt[DTRACEOPT_AGGSIZE] != 0) { 12294 if (state->dts_aggregations == NULL) { 12295 /* 12296 * We're not going to create an aggregation buffer 12297 * because we don't have any ECBs that contain 12298 * aggregations -- set this option to 0. 12299 */ 12300 opt[DTRACEOPT_AGGSIZE] = 0; 12301 } else { 12302 /* 12303 * If we have an aggregation buffer, we must also have 12304 * a buffer to use as scratch. 12305 */ 12306 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 12307 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 12308 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 12309 } 12310 } 12311 } 12312 12313 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 12314 opt[DTRACEOPT_SPECSIZE] != 0) { 12315 if (!state->dts_speculates) { 12316 /* 12317 * We're not going to create speculation buffers 12318 * because we don't have any ECBs that actually 12319 * speculate -- set the speculation size to 0. 12320 */ 12321 opt[DTRACEOPT_SPECSIZE] = 0; 12322 } 12323 } 12324 12325 /* 12326 * The bare minimum size for any buffer that we're actually going to 12327 * do anything to is sizeof (uint64_t). 12328 */ 12329 sz = sizeof (uint64_t); 12330 12331 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 12332 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 12333 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 12334 /* 12335 * A buffer size has been explicitly set to 0 (or to a size 12336 * that will be adjusted to 0) and we need the space -- we 12337 * need to return failure. We return ENOSPC to differentiate 12338 * it from failing to allocate a buffer due to failure to meet 12339 * the reserve (for which we return E2BIG). 12340 */ 12341 rval = ENOSPC; 12342 goto out; 12343 } 12344 12345 if ((rval = dtrace_state_buffers(state)) != 0) 12346 goto err; 12347 12348 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 12349 sz = dtrace_dstate_defsize; 12350 12351 do { 12352 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 12353 12354 if (rval == 0) 12355 break; 12356 12357 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12358 goto err; 12359 } while (sz >>= 1); 12360 12361 opt[DTRACEOPT_DYNVARSIZE] = sz; 12362 12363 if (rval != 0) 12364 goto err; 12365 12366 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 12367 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 12368 12369 if (opt[DTRACEOPT_CLEANRATE] == 0) 12370 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12371 12372 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 12373 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 12374 12375 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 12376 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12377 12378 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 12379 hdlr.cyh_arg = state; 12380 hdlr.cyh_level = CY_LOW_LEVEL; 12381 12382 when.cyt_when = 0; 12383 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 12384 12385 state->dts_cleaner = cyclic_add(&hdlr, &when); 12386 12387 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 12388 hdlr.cyh_arg = state; 12389 hdlr.cyh_level = CY_LOW_LEVEL; 12390 12391 when.cyt_when = 0; 12392 when.cyt_interval = dtrace_deadman_interval; 12393 12394 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 12395 state->dts_deadman = cyclic_add(&hdlr, &when); 12396 12397 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 12398 12399 /* 12400 * Now it's time to actually fire the BEGIN probe. We need to disable 12401 * interrupts here both to record the CPU on which we fired the BEGIN 12402 * probe (the data from this CPU will be processed first at user 12403 * level) and to manually activate the buffer for this CPU. 12404 */ 12405 cookie = dtrace_interrupt_disable(); 12406 *cpu = CPU->cpu_id; 12407 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 12408 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12409 12410 dtrace_probe(dtrace_probeid_begin, 12411 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12412 dtrace_interrupt_enable(cookie); 12413 /* 12414 * We may have had an exit action from a BEGIN probe; only change our 12415 * state to ACTIVE if we're still in WARMUP. 12416 */ 12417 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 12418 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 12419 12420 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 12421 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 12422 12423 /* 12424 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 12425 * want each CPU to transition its principal buffer out of the 12426 * INACTIVE state. Doing this assures that no CPU will suddenly begin 12427 * processing an ECB halfway down a probe's ECB chain; all CPUs will 12428 * atomically transition from processing none of a state's ECBs to 12429 * processing all of them. 12430 */ 12431 dtrace_xcall(DTRACE_CPUALL, 12432 (dtrace_xcall_t)dtrace_buffer_activate, state); 12433 goto out; 12434 12435 err: 12436 dtrace_buffer_free(state->dts_buffer); 12437 dtrace_buffer_free(state->dts_aggbuffer); 12438 12439 if ((nspec = state->dts_nspeculations) == 0) { 12440 ASSERT(state->dts_speculations == NULL); 12441 goto out; 12442 } 12443 12444 spec = state->dts_speculations; 12445 ASSERT(spec != NULL); 12446 12447 for (i = 0; i < state->dts_nspeculations; i++) { 12448 if ((buf = spec[i].dtsp_buffer) == NULL) 12449 break; 12450 12451 dtrace_buffer_free(buf); 12452 kmem_free(buf, bufsize); 12453 } 12454 12455 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12456 state->dts_nspeculations = 0; 12457 state->dts_speculations = NULL; 12458 12459 out: 12460 mutex_exit(&dtrace_lock); 12461 mutex_exit(&cpu_lock); 12462 12463 return (rval); 12464 } 12465 12466 static int 12467 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 12468 { 12469 dtrace_icookie_t cookie; 12470 12471 ASSERT(MUTEX_HELD(&dtrace_lock)); 12472 12473 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 12474 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 12475 return (EINVAL); 12476 12477 /* 12478 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 12479 * to be sure that every CPU has seen it. See below for the details 12480 * on why this is done. 12481 */ 12482 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 12483 dtrace_sync(); 12484 12485 /* 12486 * By this point, it is impossible for any CPU to be still processing 12487 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 12488 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 12489 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 12490 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 12491 * iff we're in the END probe. 12492 */ 12493 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 12494 dtrace_sync(); 12495 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 12496 12497 /* 12498 * Finally, we can release the reserve and call the END probe. We 12499 * disable interrupts across calling the END probe to allow us to 12500 * return the CPU on which we actually called the END probe. This 12501 * allows user-land to be sure that this CPU's principal buffer is 12502 * processed last. 12503 */ 12504 state->dts_reserve = 0; 12505 12506 cookie = dtrace_interrupt_disable(); 12507 *cpu = CPU->cpu_id; 12508 dtrace_probe(dtrace_probeid_end, 12509 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12510 dtrace_interrupt_enable(cookie); 12511 12512 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 12513 dtrace_sync(); 12514 12515 return (0); 12516 } 12517 12518 static int 12519 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 12520 dtrace_optval_t val) 12521 { 12522 ASSERT(MUTEX_HELD(&dtrace_lock)); 12523 12524 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12525 return (EBUSY); 12526 12527 if (option >= DTRACEOPT_MAX) 12528 return (EINVAL); 12529 12530 if (option != DTRACEOPT_CPU && val < 0) 12531 return (EINVAL); 12532 12533 switch (option) { 12534 case DTRACEOPT_DESTRUCTIVE: 12535 if (dtrace_destructive_disallow) 12536 return (EACCES); 12537 12538 state->dts_cred.dcr_destructive = 1; 12539 break; 12540 12541 case DTRACEOPT_BUFSIZE: 12542 case DTRACEOPT_DYNVARSIZE: 12543 case DTRACEOPT_AGGSIZE: 12544 case DTRACEOPT_SPECSIZE: 12545 case DTRACEOPT_STRSIZE: 12546 if (val < 0) 12547 return (EINVAL); 12548 12549 if (val >= LONG_MAX) { 12550 /* 12551 * If this is an otherwise negative value, set it to 12552 * the highest multiple of 128m less than LONG_MAX. 12553 * Technically, we're adjusting the size without 12554 * regard to the buffer resizing policy, but in fact, 12555 * this has no effect -- if we set the buffer size to 12556 * ~LONG_MAX and the buffer policy is ultimately set to 12557 * be "manual", the buffer allocation is guaranteed to 12558 * fail, if only because the allocation requires two 12559 * buffers. (We set the the size to the highest 12560 * multiple of 128m because it ensures that the size 12561 * will remain a multiple of a megabyte when 12562 * repeatedly halved -- all the way down to 15m.) 12563 */ 12564 val = LONG_MAX - (1 << 27) + 1; 12565 } 12566 } 12567 12568 state->dts_options[option] = val; 12569 12570 return (0); 12571 } 12572 12573 static void 12574 dtrace_state_destroy(dtrace_state_t *state) 12575 { 12576 dtrace_ecb_t *ecb; 12577 dtrace_vstate_t *vstate = &state->dts_vstate; 12578 minor_t minor = getminor(state->dts_dev); 12579 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12580 dtrace_speculation_t *spec = state->dts_speculations; 12581 int nspec = state->dts_nspeculations; 12582 uint32_t match; 12583 12584 ASSERT(MUTEX_HELD(&dtrace_lock)); 12585 ASSERT(MUTEX_HELD(&cpu_lock)); 12586 12587 /* 12588 * First, retract any retained enablings for this state. 12589 */ 12590 dtrace_enabling_retract(state); 12591 ASSERT(state->dts_nretained == 0); 12592 12593 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 12594 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 12595 /* 12596 * We have managed to come into dtrace_state_destroy() on a 12597 * hot enabling -- almost certainly because of a disorderly 12598 * shutdown of a consumer. (That is, a consumer that is 12599 * exiting without having called dtrace_stop().) In this case, 12600 * we're going to set our activity to be KILLED, and then 12601 * issue a sync to be sure that everyone is out of probe 12602 * context before we start blowing away ECBs. 12603 */ 12604 state->dts_activity = DTRACE_ACTIVITY_KILLED; 12605 dtrace_sync(); 12606 } 12607 12608 /* 12609 * Release the credential hold we took in dtrace_state_create(). 12610 */ 12611 if (state->dts_cred.dcr_cred != NULL) 12612 crfree(state->dts_cred.dcr_cred); 12613 12614 /* 12615 * Now we can safely disable and destroy any enabled probes. Because 12616 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 12617 * (especially if they're all enabled), we take two passes through the 12618 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 12619 * in the second we disable whatever is left over. 12620 */ 12621 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 12622 for (i = 0; i < state->dts_necbs; i++) { 12623 if ((ecb = state->dts_ecbs[i]) == NULL) 12624 continue; 12625 12626 if (match && ecb->dte_probe != NULL) { 12627 dtrace_probe_t *probe = ecb->dte_probe; 12628 dtrace_provider_t *prov = probe->dtpr_provider; 12629 12630 if (!(prov->dtpv_priv.dtpp_flags & match)) 12631 continue; 12632 } 12633 12634 dtrace_ecb_disable(ecb); 12635 dtrace_ecb_destroy(ecb); 12636 } 12637 12638 if (!match) 12639 break; 12640 } 12641 12642 /* 12643 * Before we free the buffers, perform one more sync to assure that 12644 * every CPU is out of probe context. 12645 */ 12646 dtrace_sync(); 12647 12648 dtrace_buffer_free(state->dts_buffer); 12649 dtrace_buffer_free(state->dts_aggbuffer); 12650 12651 for (i = 0; i < nspec; i++) 12652 dtrace_buffer_free(spec[i].dtsp_buffer); 12653 12654 if (state->dts_cleaner != CYCLIC_NONE) 12655 cyclic_remove(state->dts_cleaner); 12656 12657 if (state->dts_deadman != CYCLIC_NONE) 12658 cyclic_remove(state->dts_deadman); 12659 12660 dtrace_dstate_fini(&vstate->dtvs_dynvars); 12661 dtrace_vstate_fini(vstate); 12662 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 12663 12664 if (state->dts_aggregations != NULL) { 12665 #ifdef DEBUG 12666 for (i = 0; i < state->dts_naggregations; i++) 12667 ASSERT(state->dts_aggregations[i] == NULL); 12668 #endif 12669 ASSERT(state->dts_naggregations > 0); 12670 kmem_free(state->dts_aggregations, 12671 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 12672 } 12673 12674 kmem_free(state->dts_buffer, bufsize); 12675 kmem_free(state->dts_aggbuffer, bufsize); 12676 12677 for (i = 0; i < nspec; i++) 12678 kmem_free(spec[i].dtsp_buffer, bufsize); 12679 12680 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12681 12682 dtrace_format_destroy(state); 12683 12684 vmem_destroy(state->dts_aggid_arena); 12685 ddi_soft_state_free(dtrace_softstate, minor); 12686 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12687 } 12688 12689 /* 12690 * DTrace Anonymous Enabling Functions 12691 */ 12692 static dtrace_state_t * 12693 dtrace_anon_grab(void) 12694 { 12695 dtrace_state_t *state; 12696 12697 ASSERT(MUTEX_HELD(&dtrace_lock)); 12698 12699 if ((state = dtrace_anon.dta_state) == NULL) { 12700 ASSERT(dtrace_anon.dta_enabling == NULL); 12701 return (NULL); 12702 } 12703 12704 ASSERT(dtrace_anon.dta_enabling != NULL); 12705 ASSERT(dtrace_retained != NULL); 12706 12707 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 12708 dtrace_anon.dta_enabling = NULL; 12709 dtrace_anon.dta_state = NULL; 12710 12711 return (state); 12712 } 12713 12714 static void 12715 dtrace_anon_property(void) 12716 { 12717 int i, rv; 12718 dtrace_state_t *state; 12719 dof_hdr_t *dof; 12720 char c[32]; /* enough for "dof-data-" + digits */ 12721 12722 ASSERT(MUTEX_HELD(&dtrace_lock)); 12723 ASSERT(MUTEX_HELD(&cpu_lock)); 12724 12725 for (i = 0; ; i++) { 12726 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 12727 12728 dtrace_err_verbose = 1; 12729 12730 if ((dof = dtrace_dof_property(c)) == NULL) { 12731 dtrace_err_verbose = 0; 12732 break; 12733 } 12734 12735 /* 12736 * We want to create anonymous state, so we need to transition 12737 * the kernel debugger to indicate that DTrace is active. If 12738 * this fails (e.g. because the debugger has modified text in 12739 * some way), we won't continue with the processing. 12740 */ 12741 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 12742 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 12743 "enabling ignored."); 12744 dtrace_dof_destroy(dof); 12745 break; 12746 } 12747 12748 /* 12749 * If we haven't allocated an anonymous state, we'll do so now. 12750 */ 12751 if ((state = dtrace_anon.dta_state) == NULL) { 12752 state = dtrace_state_create(NULL, NULL); 12753 dtrace_anon.dta_state = state; 12754 12755 if (state == NULL) { 12756 /* 12757 * This basically shouldn't happen: the only 12758 * failure mode from dtrace_state_create() is a 12759 * failure of ddi_soft_state_zalloc() that 12760 * itself should never happen. Still, the 12761 * interface allows for a failure mode, and 12762 * we want to fail as gracefully as possible: 12763 * we'll emit an error message and cease 12764 * processing anonymous state in this case. 12765 */ 12766 cmn_err(CE_WARN, "failed to create " 12767 "anonymous state"); 12768 dtrace_dof_destroy(dof); 12769 break; 12770 } 12771 } 12772 12773 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 12774 &dtrace_anon.dta_enabling, 0, B_TRUE); 12775 12776 if (rv == 0) 12777 rv = dtrace_dof_options(dof, state); 12778 12779 dtrace_err_verbose = 0; 12780 dtrace_dof_destroy(dof); 12781 12782 if (rv != 0) { 12783 /* 12784 * This is malformed DOF; chuck any anonymous state 12785 * that we created. 12786 */ 12787 ASSERT(dtrace_anon.dta_enabling == NULL); 12788 dtrace_state_destroy(state); 12789 dtrace_anon.dta_state = NULL; 12790 break; 12791 } 12792 12793 ASSERT(dtrace_anon.dta_enabling != NULL); 12794 } 12795 12796 if (dtrace_anon.dta_enabling != NULL) { 12797 int rval; 12798 12799 /* 12800 * dtrace_enabling_retain() can only fail because we are 12801 * trying to retain more enablings than are allowed -- but 12802 * we only have one anonymous enabling, and we are guaranteed 12803 * to be allowed at least one retained enabling; we assert 12804 * that dtrace_enabling_retain() returns success. 12805 */ 12806 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 12807 ASSERT(rval == 0); 12808 12809 dtrace_enabling_dump(dtrace_anon.dta_enabling); 12810 } 12811 } 12812 12813 /* 12814 * DTrace Helper Functions 12815 */ 12816 static void 12817 dtrace_helper_trace(dtrace_helper_action_t *helper, 12818 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 12819 { 12820 uint32_t size, next, nnext, i; 12821 dtrace_helptrace_t *ent; 12822 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12823 12824 if (!dtrace_helptrace_enabled) 12825 return; 12826 12827 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 12828 12829 /* 12830 * What would a tracing framework be without its own tracing 12831 * framework? (Well, a hell of a lot simpler, for starters...) 12832 */ 12833 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 12834 sizeof (uint64_t) - sizeof (uint64_t); 12835 12836 /* 12837 * Iterate until we can allocate a slot in the trace buffer. 12838 */ 12839 do { 12840 next = dtrace_helptrace_next; 12841 12842 if (next + size < dtrace_helptrace_bufsize) { 12843 nnext = next + size; 12844 } else { 12845 nnext = size; 12846 } 12847 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 12848 12849 /* 12850 * We have our slot; fill it in. 12851 */ 12852 if (nnext == size) 12853 next = 0; 12854 12855 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 12856 ent->dtht_helper = helper; 12857 ent->dtht_where = where; 12858 ent->dtht_nlocals = vstate->dtvs_nlocals; 12859 12860 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 12861 mstate->dtms_fltoffs : -1; 12862 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 12863 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 12864 12865 for (i = 0; i < vstate->dtvs_nlocals; i++) { 12866 dtrace_statvar_t *svar; 12867 12868 if ((svar = vstate->dtvs_locals[i]) == NULL) 12869 continue; 12870 12871 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 12872 ent->dtht_locals[i] = 12873 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 12874 } 12875 } 12876 12877 static uint64_t 12878 dtrace_helper(int which, dtrace_mstate_t *mstate, 12879 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 12880 { 12881 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12882 uint64_t sarg0 = mstate->dtms_arg[0]; 12883 uint64_t sarg1 = mstate->dtms_arg[1]; 12884 uint64_t rval; 12885 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 12886 dtrace_helper_action_t *helper; 12887 dtrace_vstate_t *vstate; 12888 dtrace_difo_t *pred; 12889 int i, trace = dtrace_helptrace_enabled; 12890 12891 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 12892 12893 if (helpers == NULL) 12894 return (0); 12895 12896 if ((helper = helpers->dthps_actions[which]) == NULL) 12897 return (0); 12898 12899 vstate = &helpers->dthps_vstate; 12900 mstate->dtms_arg[0] = arg0; 12901 mstate->dtms_arg[1] = arg1; 12902 12903 /* 12904 * Now iterate over each helper. If its predicate evaluates to 'true', 12905 * we'll call the corresponding actions. Note that the below calls 12906 * to dtrace_dif_emulate() may set faults in machine state. This is 12907 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 12908 * the stored DIF offset with its own (which is the desired behavior). 12909 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 12910 * from machine state; this is okay, too. 12911 */ 12912 for (; helper != NULL; helper = helper->dtha_next) { 12913 if ((pred = helper->dtha_predicate) != NULL) { 12914 if (trace) 12915 dtrace_helper_trace(helper, mstate, vstate, 0); 12916 12917 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 12918 goto next; 12919 12920 if (*flags & CPU_DTRACE_FAULT) 12921 goto err; 12922 } 12923 12924 for (i = 0; i < helper->dtha_nactions; i++) { 12925 if (trace) 12926 dtrace_helper_trace(helper, 12927 mstate, vstate, i + 1); 12928 12929 rval = dtrace_dif_emulate(helper->dtha_actions[i], 12930 mstate, vstate, state); 12931 12932 if (*flags & CPU_DTRACE_FAULT) 12933 goto err; 12934 } 12935 12936 next: 12937 if (trace) 12938 dtrace_helper_trace(helper, mstate, vstate, 12939 DTRACE_HELPTRACE_NEXT); 12940 } 12941 12942 if (trace) 12943 dtrace_helper_trace(helper, mstate, vstate, 12944 DTRACE_HELPTRACE_DONE); 12945 12946 /* 12947 * Restore the arg0 that we saved upon entry. 12948 */ 12949 mstate->dtms_arg[0] = sarg0; 12950 mstate->dtms_arg[1] = sarg1; 12951 12952 return (rval); 12953 12954 err: 12955 if (trace) 12956 dtrace_helper_trace(helper, mstate, vstate, 12957 DTRACE_HELPTRACE_ERR); 12958 12959 /* 12960 * Restore the arg0 that we saved upon entry. 12961 */ 12962 mstate->dtms_arg[0] = sarg0; 12963 mstate->dtms_arg[1] = sarg1; 12964 12965 return (NULL); 12966 } 12967 12968 static void 12969 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 12970 dtrace_vstate_t *vstate) 12971 { 12972 int i; 12973 12974 if (helper->dtha_predicate != NULL) 12975 dtrace_difo_release(helper->dtha_predicate, vstate); 12976 12977 for (i = 0; i < helper->dtha_nactions; i++) { 12978 ASSERT(helper->dtha_actions[i] != NULL); 12979 dtrace_difo_release(helper->dtha_actions[i], vstate); 12980 } 12981 12982 kmem_free(helper->dtha_actions, 12983 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 12984 kmem_free(helper, sizeof (dtrace_helper_action_t)); 12985 } 12986 12987 static int 12988 dtrace_helper_destroygen(int gen) 12989 { 12990 proc_t *p = curproc; 12991 dtrace_helpers_t *help = p->p_dtrace_helpers; 12992 dtrace_vstate_t *vstate; 12993 int i; 12994 12995 ASSERT(MUTEX_HELD(&dtrace_lock)); 12996 12997 if (help == NULL || gen > help->dthps_generation) 12998 return (EINVAL); 12999 13000 vstate = &help->dthps_vstate; 13001 13002 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13003 dtrace_helper_action_t *last = NULL, *h, *next; 13004 13005 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13006 next = h->dtha_next; 13007 13008 if (h->dtha_generation == gen) { 13009 if (last != NULL) { 13010 last->dtha_next = next; 13011 } else { 13012 help->dthps_actions[i] = next; 13013 } 13014 13015 dtrace_helper_action_destroy(h, vstate); 13016 } else { 13017 last = h; 13018 } 13019 } 13020 } 13021 13022 /* 13023 * Interate until we've cleared out all helper providers with the 13024 * given generation number. 13025 */ 13026 for (;;) { 13027 dtrace_helper_provider_t *prov; 13028 13029 /* 13030 * Look for a helper provider with the right generation. We 13031 * have to start back at the beginning of the list each time 13032 * because we drop dtrace_lock. It's unlikely that we'll make 13033 * more than two passes. 13034 */ 13035 for (i = 0; i < help->dthps_nprovs; i++) { 13036 prov = help->dthps_provs[i]; 13037 13038 if (prov->dthp_generation == gen) 13039 break; 13040 } 13041 13042 /* 13043 * If there were no matches, we're done. 13044 */ 13045 if (i == help->dthps_nprovs) 13046 break; 13047 13048 /* 13049 * Move the last helper provider into this slot. 13050 */ 13051 help->dthps_nprovs--; 13052 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 13053 help->dthps_provs[help->dthps_nprovs] = NULL; 13054 13055 mutex_exit(&dtrace_lock); 13056 13057 /* 13058 * If we have a meta provider, remove this helper provider. 13059 */ 13060 mutex_enter(&dtrace_meta_lock); 13061 if (dtrace_meta_pid != NULL) { 13062 ASSERT(dtrace_deferred_pid == NULL); 13063 dtrace_helper_provider_remove(&prov->dthp_prov, 13064 p->p_pid); 13065 } 13066 mutex_exit(&dtrace_meta_lock); 13067 13068 dtrace_helper_provider_destroy(prov); 13069 13070 mutex_enter(&dtrace_lock); 13071 } 13072 13073 return (0); 13074 } 13075 13076 static int 13077 dtrace_helper_validate(dtrace_helper_action_t *helper) 13078 { 13079 int err = 0, i; 13080 dtrace_difo_t *dp; 13081 13082 if ((dp = helper->dtha_predicate) != NULL) 13083 err += dtrace_difo_validate_helper(dp); 13084 13085 for (i = 0; i < helper->dtha_nactions; i++) 13086 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 13087 13088 return (err == 0); 13089 } 13090 13091 static int 13092 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 13093 { 13094 dtrace_helpers_t *help; 13095 dtrace_helper_action_t *helper, *last; 13096 dtrace_actdesc_t *act; 13097 dtrace_vstate_t *vstate; 13098 dtrace_predicate_t *pred; 13099 int count = 0, nactions = 0, i; 13100 13101 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 13102 return (EINVAL); 13103 13104 help = curproc->p_dtrace_helpers; 13105 last = help->dthps_actions[which]; 13106 vstate = &help->dthps_vstate; 13107 13108 for (count = 0; last != NULL; last = last->dtha_next) { 13109 count++; 13110 if (last->dtha_next == NULL) 13111 break; 13112 } 13113 13114 /* 13115 * If we already have dtrace_helper_actions_max helper actions for this 13116 * helper action type, we'll refuse to add a new one. 13117 */ 13118 if (count >= dtrace_helper_actions_max) 13119 return (ENOSPC); 13120 13121 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 13122 helper->dtha_generation = help->dthps_generation; 13123 13124 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 13125 ASSERT(pred->dtp_difo != NULL); 13126 dtrace_difo_hold(pred->dtp_difo); 13127 helper->dtha_predicate = pred->dtp_difo; 13128 } 13129 13130 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 13131 if (act->dtad_kind != DTRACEACT_DIFEXPR) 13132 goto err; 13133 13134 if (act->dtad_difo == NULL) 13135 goto err; 13136 13137 nactions++; 13138 } 13139 13140 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 13141 (helper->dtha_nactions = nactions), KM_SLEEP); 13142 13143 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 13144 dtrace_difo_hold(act->dtad_difo); 13145 helper->dtha_actions[i++] = act->dtad_difo; 13146 } 13147 13148 if (!dtrace_helper_validate(helper)) 13149 goto err; 13150 13151 if (last == NULL) { 13152 help->dthps_actions[which] = helper; 13153 } else { 13154 last->dtha_next = helper; 13155 } 13156 13157 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 13158 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 13159 dtrace_helptrace_next = 0; 13160 } 13161 13162 return (0); 13163 err: 13164 dtrace_helper_action_destroy(helper, vstate); 13165 return (EINVAL); 13166 } 13167 13168 static void 13169 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 13170 dof_helper_t *dofhp) 13171 { 13172 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 13173 13174 mutex_enter(&dtrace_meta_lock); 13175 mutex_enter(&dtrace_lock); 13176 13177 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 13178 /* 13179 * If the dtrace module is loaded but not attached, or if 13180 * there aren't isn't a meta provider registered to deal with 13181 * these provider descriptions, we need to postpone creating 13182 * the actual providers until later. 13183 */ 13184 13185 if (help->dthps_next == NULL && help->dthps_prev == NULL && 13186 dtrace_deferred_pid != help) { 13187 help->dthps_deferred = 1; 13188 help->dthps_pid = p->p_pid; 13189 help->dthps_next = dtrace_deferred_pid; 13190 help->dthps_prev = NULL; 13191 if (dtrace_deferred_pid != NULL) 13192 dtrace_deferred_pid->dthps_prev = help; 13193 dtrace_deferred_pid = help; 13194 } 13195 13196 mutex_exit(&dtrace_lock); 13197 13198 } else if (dofhp != NULL) { 13199 /* 13200 * If the dtrace module is loaded and we have a particular 13201 * helper provider description, pass that off to the 13202 * meta provider. 13203 */ 13204 13205 mutex_exit(&dtrace_lock); 13206 13207 dtrace_helper_provide(dofhp, p->p_pid); 13208 13209 } else { 13210 /* 13211 * Otherwise, just pass all the helper provider descriptions 13212 * off to the meta provider. 13213 */ 13214 13215 int i; 13216 mutex_exit(&dtrace_lock); 13217 13218 for (i = 0; i < help->dthps_nprovs; i++) { 13219 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 13220 p->p_pid); 13221 } 13222 } 13223 13224 mutex_exit(&dtrace_meta_lock); 13225 } 13226 13227 static int 13228 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 13229 { 13230 dtrace_helpers_t *help; 13231 dtrace_helper_provider_t *hprov, **tmp_provs; 13232 uint_t tmp_maxprovs, i; 13233 13234 ASSERT(MUTEX_HELD(&dtrace_lock)); 13235 13236 help = curproc->p_dtrace_helpers; 13237 ASSERT(help != NULL); 13238 13239 /* 13240 * If we already have dtrace_helper_providers_max helper providers, 13241 * we're refuse to add a new one. 13242 */ 13243 if (help->dthps_nprovs >= dtrace_helper_providers_max) 13244 return (ENOSPC); 13245 13246 /* 13247 * Check to make sure this isn't a duplicate. 13248 */ 13249 for (i = 0; i < help->dthps_nprovs; i++) { 13250 if (dofhp->dofhp_addr == 13251 help->dthps_provs[i]->dthp_prov.dofhp_addr) 13252 return (EALREADY); 13253 } 13254 13255 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 13256 hprov->dthp_prov = *dofhp; 13257 hprov->dthp_ref = 1; 13258 hprov->dthp_generation = gen; 13259 13260 /* 13261 * Allocate a bigger table for helper providers if it's already full. 13262 */ 13263 if (help->dthps_maxprovs == help->dthps_nprovs) { 13264 tmp_maxprovs = help->dthps_maxprovs; 13265 tmp_provs = help->dthps_provs; 13266 13267 if (help->dthps_maxprovs == 0) 13268 help->dthps_maxprovs = 2; 13269 else 13270 help->dthps_maxprovs *= 2; 13271 if (help->dthps_maxprovs > dtrace_helper_providers_max) 13272 help->dthps_maxprovs = dtrace_helper_providers_max; 13273 13274 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 13275 13276 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 13277 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13278 13279 if (tmp_provs != NULL) { 13280 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 13281 sizeof (dtrace_helper_provider_t *)); 13282 kmem_free(tmp_provs, tmp_maxprovs * 13283 sizeof (dtrace_helper_provider_t *)); 13284 } 13285 } 13286 13287 help->dthps_provs[help->dthps_nprovs] = hprov; 13288 help->dthps_nprovs++; 13289 13290 return (0); 13291 } 13292 13293 static void 13294 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 13295 { 13296 mutex_enter(&dtrace_lock); 13297 13298 if (--hprov->dthp_ref == 0) { 13299 dof_hdr_t *dof; 13300 mutex_exit(&dtrace_lock); 13301 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 13302 dtrace_dof_destroy(dof); 13303 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 13304 } else { 13305 mutex_exit(&dtrace_lock); 13306 } 13307 } 13308 13309 static int 13310 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 13311 { 13312 uintptr_t daddr = (uintptr_t)dof; 13313 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 13314 dof_provider_t *provider; 13315 dof_probe_t *probe; 13316 uint8_t *arg; 13317 char *strtab, *typestr; 13318 dof_stridx_t typeidx; 13319 size_t typesz; 13320 uint_t nprobes, j, k; 13321 13322 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 13323 13324 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 13325 dtrace_dof_error(dof, "misaligned section offset"); 13326 return (-1); 13327 } 13328 13329 /* 13330 * The section needs to be large enough to contain the DOF provider 13331 * structure appropriate for the given version. 13332 */ 13333 if (sec->dofs_size < 13334 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 13335 offsetof(dof_provider_t, dofpv_prenoffs) : 13336 sizeof (dof_provider_t))) { 13337 dtrace_dof_error(dof, "provider section too small"); 13338 return (-1); 13339 } 13340 13341 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 13342 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 13343 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 13344 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 13345 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 13346 13347 if (str_sec == NULL || prb_sec == NULL || 13348 arg_sec == NULL || off_sec == NULL) 13349 return (-1); 13350 13351 enoff_sec = NULL; 13352 13353 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13354 provider->dofpv_prenoffs != DOF_SECT_NONE && 13355 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 13356 provider->dofpv_prenoffs)) == NULL) 13357 return (-1); 13358 13359 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 13360 13361 if (provider->dofpv_name >= str_sec->dofs_size || 13362 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 13363 dtrace_dof_error(dof, "invalid provider name"); 13364 return (-1); 13365 } 13366 13367 if (prb_sec->dofs_entsize == 0 || 13368 prb_sec->dofs_entsize > prb_sec->dofs_size) { 13369 dtrace_dof_error(dof, "invalid entry size"); 13370 return (-1); 13371 } 13372 13373 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 13374 dtrace_dof_error(dof, "misaligned entry size"); 13375 return (-1); 13376 } 13377 13378 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 13379 dtrace_dof_error(dof, "invalid entry size"); 13380 return (-1); 13381 } 13382 13383 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 13384 dtrace_dof_error(dof, "misaligned section offset"); 13385 return (-1); 13386 } 13387 13388 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 13389 dtrace_dof_error(dof, "invalid entry size"); 13390 return (-1); 13391 } 13392 13393 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 13394 13395 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 13396 13397 /* 13398 * Take a pass through the probes to check for errors. 13399 */ 13400 for (j = 0; j < nprobes; j++) { 13401 probe = (dof_probe_t *)(uintptr_t)(daddr + 13402 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 13403 13404 if (probe->dofpr_func >= str_sec->dofs_size) { 13405 dtrace_dof_error(dof, "invalid function name"); 13406 return (-1); 13407 } 13408 13409 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 13410 dtrace_dof_error(dof, "function name too long"); 13411 return (-1); 13412 } 13413 13414 if (probe->dofpr_name >= str_sec->dofs_size || 13415 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 13416 dtrace_dof_error(dof, "invalid probe name"); 13417 return (-1); 13418 } 13419 13420 /* 13421 * The offset count must not wrap the index, and the offsets 13422 * must also not overflow the section's data. 13423 */ 13424 if (probe->dofpr_offidx + probe->dofpr_noffs < 13425 probe->dofpr_offidx || 13426 (probe->dofpr_offidx + probe->dofpr_noffs) * 13427 off_sec->dofs_entsize > off_sec->dofs_size) { 13428 dtrace_dof_error(dof, "invalid probe offset"); 13429 return (-1); 13430 } 13431 13432 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 13433 /* 13434 * If there's no is-enabled offset section, make sure 13435 * there aren't any is-enabled offsets. Otherwise 13436 * perform the same checks as for probe offsets 13437 * (immediately above). 13438 */ 13439 if (enoff_sec == NULL) { 13440 if (probe->dofpr_enoffidx != 0 || 13441 probe->dofpr_nenoffs != 0) { 13442 dtrace_dof_error(dof, "is-enabled " 13443 "offsets with null section"); 13444 return (-1); 13445 } 13446 } else if (probe->dofpr_enoffidx + 13447 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 13448 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 13449 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 13450 dtrace_dof_error(dof, "invalid is-enabled " 13451 "offset"); 13452 return (-1); 13453 } 13454 13455 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 13456 dtrace_dof_error(dof, "zero probe and " 13457 "is-enabled offsets"); 13458 return (-1); 13459 } 13460 } else if (probe->dofpr_noffs == 0) { 13461 dtrace_dof_error(dof, "zero probe offsets"); 13462 return (-1); 13463 } 13464 13465 if (probe->dofpr_argidx + probe->dofpr_xargc < 13466 probe->dofpr_argidx || 13467 (probe->dofpr_argidx + probe->dofpr_xargc) * 13468 arg_sec->dofs_entsize > arg_sec->dofs_size) { 13469 dtrace_dof_error(dof, "invalid args"); 13470 return (-1); 13471 } 13472 13473 typeidx = probe->dofpr_nargv; 13474 typestr = strtab + probe->dofpr_nargv; 13475 for (k = 0; k < probe->dofpr_nargc; k++) { 13476 if (typeidx >= str_sec->dofs_size) { 13477 dtrace_dof_error(dof, "bad " 13478 "native argument type"); 13479 return (-1); 13480 } 13481 13482 typesz = strlen(typestr) + 1; 13483 if (typesz > DTRACE_ARGTYPELEN) { 13484 dtrace_dof_error(dof, "native " 13485 "argument type too long"); 13486 return (-1); 13487 } 13488 typeidx += typesz; 13489 typestr += typesz; 13490 } 13491 13492 typeidx = probe->dofpr_xargv; 13493 typestr = strtab + probe->dofpr_xargv; 13494 for (k = 0; k < probe->dofpr_xargc; k++) { 13495 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 13496 dtrace_dof_error(dof, "bad " 13497 "native argument index"); 13498 return (-1); 13499 } 13500 13501 if (typeidx >= str_sec->dofs_size) { 13502 dtrace_dof_error(dof, "bad " 13503 "translated argument type"); 13504 return (-1); 13505 } 13506 13507 typesz = strlen(typestr) + 1; 13508 if (typesz > DTRACE_ARGTYPELEN) { 13509 dtrace_dof_error(dof, "translated argument " 13510 "type too long"); 13511 return (-1); 13512 } 13513 13514 typeidx += typesz; 13515 typestr += typesz; 13516 } 13517 } 13518 13519 return (0); 13520 } 13521 13522 static int 13523 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 13524 { 13525 dtrace_helpers_t *help; 13526 dtrace_vstate_t *vstate; 13527 dtrace_enabling_t *enab = NULL; 13528 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 13529 uintptr_t daddr = (uintptr_t)dof; 13530 13531 ASSERT(MUTEX_HELD(&dtrace_lock)); 13532 13533 if ((help = curproc->p_dtrace_helpers) == NULL) 13534 help = dtrace_helpers_create(curproc); 13535 13536 vstate = &help->dthps_vstate; 13537 13538 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 13539 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 13540 dtrace_dof_destroy(dof); 13541 return (rv); 13542 } 13543 13544 /* 13545 * Look for helper providers and validate their descriptions. 13546 */ 13547 if (dhp != NULL) { 13548 for (i = 0; i < dof->dofh_secnum; i++) { 13549 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 13550 dof->dofh_secoff + i * dof->dofh_secsize); 13551 13552 if (sec->dofs_type != DOF_SECT_PROVIDER) 13553 continue; 13554 13555 if (dtrace_helper_provider_validate(dof, sec) != 0) { 13556 dtrace_enabling_destroy(enab); 13557 dtrace_dof_destroy(dof); 13558 return (-1); 13559 } 13560 13561 nprovs++; 13562 } 13563 } 13564 13565 /* 13566 * Now we need to walk through the ECB descriptions in the enabling. 13567 */ 13568 for (i = 0; i < enab->dten_ndesc; i++) { 13569 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 13570 dtrace_probedesc_t *desc = &ep->dted_probe; 13571 13572 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 13573 continue; 13574 13575 if (strcmp(desc->dtpd_mod, "helper") != 0) 13576 continue; 13577 13578 if (strcmp(desc->dtpd_func, "ustack") != 0) 13579 continue; 13580 13581 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 13582 ep)) != 0) { 13583 /* 13584 * Adding this helper action failed -- we are now going 13585 * to rip out the entire generation and return failure. 13586 */ 13587 (void) dtrace_helper_destroygen(help->dthps_generation); 13588 dtrace_enabling_destroy(enab); 13589 dtrace_dof_destroy(dof); 13590 return (-1); 13591 } 13592 13593 nhelpers++; 13594 } 13595 13596 if (nhelpers < enab->dten_ndesc) 13597 dtrace_dof_error(dof, "unmatched helpers"); 13598 13599 gen = help->dthps_generation++; 13600 dtrace_enabling_destroy(enab); 13601 13602 if (dhp != NULL && nprovs > 0) { 13603 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 13604 if (dtrace_helper_provider_add(dhp, gen) == 0) { 13605 mutex_exit(&dtrace_lock); 13606 dtrace_helper_provider_register(curproc, help, dhp); 13607 mutex_enter(&dtrace_lock); 13608 13609 destroy = 0; 13610 } 13611 } 13612 13613 if (destroy) 13614 dtrace_dof_destroy(dof); 13615 13616 return (gen); 13617 } 13618 13619 static dtrace_helpers_t * 13620 dtrace_helpers_create(proc_t *p) 13621 { 13622 dtrace_helpers_t *help; 13623 13624 ASSERT(MUTEX_HELD(&dtrace_lock)); 13625 ASSERT(p->p_dtrace_helpers == NULL); 13626 13627 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 13628 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 13629 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 13630 13631 p->p_dtrace_helpers = help; 13632 dtrace_helpers++; 13633 13634 return (help); 13635 } 13636 13637 static void 13638 dtrace_helpers_destroy(void) 13639 { 13640 dtrace_helpers_t *help; 13641 dtrace_vstate_t *vstate; 13642 proc_t *p = curproc; 13643 int i; 13644 13645 mutex_enter(&dtrace_lock); 13646 13647 ASSERT(p->p_dtrace_helpers != NULL); 13648 ASSERT(dtrace_helpers > 0); 13649 13650 help = p->p_dtrace_helpers; 13651 vstate = &help->dthps_vstate; 13652 13653 /* 13654 * We're now going to lose the help from this process. 13655 */ 13656 p->p_dtrace_helpers = NULL; 13657 dtrace_sync(); 13658 13659 /* 13660 * Destory the helper actions. 13661 */ 13662 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13663 dtrace_helper_action_t *h, *next; 13664 13665 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13666 next = h->dtha_next; 13667 dtrace_helper_action_destroy(h, vstate); 13668 h = next; 13669 } 13670 } 13671 13672 mutex_exit(&dtrace_lock); 13673 13674 /* 13675 * Destroy the helper providers. 13676 */ 13677 if (help->dthps_maxprovs > 0) { 13678 mutex_enter(&dtrace_meta_lock); 13679 if (dtrace_meta_pid != NULL) { 13680 ASSERT(dtrace_deferred_pid == NULL); 13681 13682 for (i = 0; i < help->dthps_nprovs; i++) { 13683 dtrace_helper_provider_remove( 13684 &help->dthps_provs[i]->dthp_prov, p->p_pid); 13685 } 13686 } else { 13687 mutex_enter(&dtrace_lock); 13688 ASSERT(help->dthps_deferred == 0 || 13689 help->dthps_next != NULL || 13690 help->dthps_prev != NULL || 13691 help == dtrace_deferred_pid); 13692 13693 /* 13694 * Remove the helper from the deferred list. 13695 */ 13696 if (help->dthps_next != NULL) 13697 help->dthps_next->dthps_prev = help->dthps_prev; 13698 if (help->dthps_prev != NULL) 13699 help->dthps_prev->dthps_next = help->dthps_next; 13700 if (dtrace_deferred_pid == help) { 13701 dtrace_deferred_pid = help->dthps_next; 13702 ASSERT(help->dthps_prev == NULL); 13703 } 13704 13705 mutex_exit(&dtrace_lock); 13706 } 13707 13708 mutex_exit(&dtrace_meta_lock); 13709 13710 for (i = 0; i < help->dthps_nprovs; i++) { 13711 dtrace_helper_provider_destroy(help->dthps_provs[i]); 13712 } 13713 13714 kmem_free(help->dthps_provs, help->dthps_maxprovs * 13715 sizeof (dtrace_helper_provider_t *)); 13716 } 13717 13718 mutex_enter(&dtrace_lock); 13719 13720 dtrace_vstate_fini(&help->dthps_vstate); 13721 kmem_free(help->dthps_actions, 13722 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 13723 kmem_free(help, sizeof (dtrace_helpers_t)); 13724 13725 --dtrace_helpers; 13726 mutex_exit(&dtrace_lock); 13727 } 13728 13729 static void 13730 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 13731 { 13732 dtrace_helpers_t *help, *newhelp; 13733 dtrace_helper_action_t *helper, *new, *last; 13734 dtrace_difo_t *dp; 13735 dtrace_vstate_t *vstate; 13736 int i, j, sz, hasprovs = 0; 13737 13738 mutex_enter(&dtrace_lock); 13739 ASSERT(from->p_dtrace_helpers != NULL); 13740 ASSERT(dtrace_helpers > 0); 13741 13742 help = from->p_dtrace_helpers; 13743 newhelp = dtrace_helpers_create(to); 13744 ASSERT(to->p_dtrace_helpers != NULL); 13745 13746 newhelp->dthps_generation = help->dthps_generation; 13747 vstate = &newhelp->dthps_vstate; 13748 13749 /* 13750 * Duplicate the helper actions. 13751 */ 13752 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13753 if ((helper = help->dthps_actions[i]) == NULL) 13754 continue; 13755 13756 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 13757 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 13758 KM_SLEEP); 13759 new->dtha_generation = helper->dtha_generation; 13760 13761 if ((dp = helper->dtha_predicate) != NULL) { 13762 dp = dtrace_difo_duplicate(dp, vstate); 13763 new->dtha_predicate = dp; 13764 } 13765 13766 new->dtha_nactions = helper->dtha_nactions; 13767 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 13768 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 13769 13770 for (j = 0; j < new->dtha_nactions; j++) { 13771 dtrace_difo_t *dp = helper->dtha_actions[j]; 13772 13773 ASSERT(dp != NULL); 13774 dp = dtrace_difo_duplicate(dp, vstate); 13775 new->dtha_actions[j] = dp; 13776 } 13777 13778 if (last != NULL) { 13779 last->dtha_next = new; 13780 } else { 13781 newhelp->dthps_actions[i] = new; 13782 } 13783 13784 last = new; 13785 } 13786 } 13787 13788 /* 13789 * Duplicate the helper providers and register them with the 13790 * DTrace framework. 13791 */ 13792 if (help->dthps_nprovs > 0) { 13793 newhelp->dthps_nprovs = help->dthps_nprovs; 13794 newhelp->dthps_maxprovs = help->dthps_nprovs; 13795 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 13796 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13797 for (i = 0; i < newhelp->dthps_nprovs; i++) { 13798 newhelp->dthps_provs[i] = help->dthps_provs[i]; 13799 newhelp->dthps_provs[i]->dthp_ref++; 13800 } 13801 13802 hasprovs = 1; 13803 } 13804 13805 mutex_exit(&dtrace_lock); 13806 13807 if (hasprovs) 13808 dtrace_helper_provider_register(to, newhelp, NULL); 13809 } 13810 13811 /* 13812 * DTrace Hook Functions 13813 */ 13814 static void 13815 dtrace_module_loaded(struct modctl *ctl) 13816 { 13817 dtrace_provider_t *prv; 13818 13819 mutex_enter(&dtrace_provider_lock); 13820 mutex_enter(&mod_lock); 13821 13822 ASSERT(ctl->mod_busy); 13823 13824 /* 13825 * We're going to call each providers per-module provide operation 13826 * specifying only this module. 13827 */ 13828 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 13829 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 13830 13831 mutex_exit(&mod_lock); 13832 mutex_exit(&dtrace_provider_lock); 13833 13834 /* 13835 * If we have any retained enablings, we need to match against them. 13836 * Enabling probes requires that cpu_lock be held, and we cannot hold 13837 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 13838 * module. (In particular, this happens when loading scheduling 13839 * classes.) So if we have any retained enablings, we need to dispatch 13840 * our task queue to do the match for us. 13841 */ 13842 mutex_enter(&dtrace_lock); 13843 13844 if (dtrace_retained == NULL) { 13845 mutex_exit(&dtrace_lock); 13846 return; 13847 } 13848 13849 (void) taskq_dispatch(dtrace_taskq, 13850 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 13851 13852 mutex_exit(&dtrace_lock); 13853 13854 /* 13855 * And now, for a little heuristic sleaze: in general, we want to 13856 * match modules as soon as they load. However, we cannot guarantee 13857 * this, because it would lead us to the lock ordering violation 13858 * outlined above. The common case, of course, is that cpu_lock is 13859 * _not_ held -- so we delay here for a clock tick, hoping that that's 13860 * long enough for the task queue to do its work. If it's not, it's 13861 * not a serious problem -- it just means that the module that we 13862 * just loaded may not be immediately instrumentable. 13863 */ 13864 delay(1); 13865 } 13866 13867 static void 13868 dtrace_module_unloaded(struct modctl *ctl) 13869 { 13870 dtrace_probe_t template, *probe, *first, *next; 13871 dtrace_provider_t *prov; 13872 13873 template.dtpr_mod = ctl->mod_modname; 13874 13875 mutex_enter(&dtrace_provider_lock); 13876 mutex_enter(&mod_lock); 13877 mutex_enter(&dtrace_lock); 13878 13879 if (dtrace_bymod == NULL) { 13880 /* 13881 * The DTrace module is loaded (obviously) but not attached; 13882 * we don't have any work to do. 13883 */ 13884 mutex_exit(&dtrace_provider_lock); 13885 mutex_exit(&mod_lock); 13886 mutex_exit(&dtrace_lock); 13887 return; 13888 } 13889 13890 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 13891 probe != NULL; probe = probe->dtpr_nextmod) { 13892 if (probe->dtpr_ecb != NULL) { 13893 mutex_exit(&dtrace_provider_lock); 13894 mutex_exit(&mod_lock); 13895 mutex_exit(&dtrace_lock); 13896 13897 /* 13898 * This shouldn't _actually_ be possible -- we're 13899 * unloading a module that has an enabled probe in it. 13900 * (It's normally up to the provider to make sure that 13901 * this can't happen.) However, because dtps_enable() 13902 * doesn't have a failure mode, there can be an 13903 * enable/unload race. Upshot: we don't want to 13904 * assert, but we're not going to disable the 13905 * probe, either. 13906 */ 13907 if (dtrace_err_verbose) { 13908 cmn_err(CE_WARN, "unloaded module '%s' had " 13909 "enabled probes", ctl->mod_modname); 13910 } 13911 13912 return; 13913 } 13914 } 13915 13916 probe = first; 13917 13918 for (first = NULL; probe != NULL; probe = next) { 13919 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 13920 13921 dtrace_probes[probe->dtpr_id - 1] = NULL; 13922 13923 next = probe->dtpr_nextmod; 13924 dtrace_hash_remove(dtrace_bymod, probe); 13925 dtrace_hash_remove(dtrace_byfunc, probe); 13926 dtrace_hash_remove(dtrace_byname, probe); 13927 13928 if (first == NULL) { 13929 first = probe; 13930 probe->dtpr_nextmod = NULL; 13931 } else { 13932 probe->dtpr_nextmod = first; 13933 first = probe; 13934 } 13935 } 13936 13937 /* 13938 * We've removed all of the module's probes from the hash chains and 13939 * from the probe array. Now issue a dtrace_sync() to be sure that 13940 * everyone has cleared out from any probe array processing. 13941 */ 13942 dtrace_sync(); 13943 13944 for (probe = first; probe != NULL; probe = first) { 13945 first = probe->dtpr_nextmod; 13946 prov = probe->dtpr_provider; 13947 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 13948 probe->dtpr_arg); 13949 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 13950 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 13951 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 13952 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 13953 kmem_free(probe, sizeof (dtrace_probe_t)); 13954 } 13955 13956 mutex_exit(&dtrace_lock); 13957 mutex_exit(&mod_lock); 13958 mutex_exit(&dtrace_provider_lock); 13959 } 13960 13961 void 13962 dtrace_suspend(void) 13963 { 13964 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 13965 } 13966 13967 void 13968 dtrace_resume(void) 13969 { 13970 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 13971 } 13972 13973 static int 13974 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 13975 { 13976 ASSERT(MUTEX_HELD(&cpu_lock)); 13977 mutex_enter(&dtrace_lock); 13978 13979 switch (what) { 13980 case CPU_CONFIG: { 13981 dtrace_state_t *state; 13982 dtrace_optval_t *opt, rs, c; 13983 13984 /* 13985 * For now, we only allocate a new buffer for anonymous state. 13986 */ 13987 if ((state = dtrace_anon.dta_state) == NULL) 13988 break; 13989 13990 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13991 break; 13992 13993 opt = state->dts_options; 13994 c = opt[DTRACEOPT_CPU]; 13995 13996 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 13997 break; 13998 13999 /* 14000 * Regardless of what the actual policy is, we're going to 14001 * temporarily set our resize policy to be manual. We're 14002 * also going to temporarily set our CPU option to denote 14003 * the newly configured CPU. 14004 */ 14005 rs = opt[DTRACEOPT_BUFRESIZE]; 14006 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14007 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14008 14009 (void) dtrace_state_buffers(state); 14010 14011 opt[DTRACEOPT_BUFRESIZE] = rs; 14012 opt[DTRACEOPT_CPU] = c; 14013 14014 break; 14015 } 14016 14017 case CPU_UNCONFIG: 14018 /* 14019 * We don't free the buffer in the CPU_UNCONFIG case. (The 14020 * buffer will be freed when the consumer exits.) 14021 */ 14022 break; 14023 14024 default: 14025 break; 14026 } 14027 14028 mutex_exit(&dtrace_lock); 14029 return (0); 14030 } 14031 14032 static void 14033 dtrace_cpu_setup_initial(processorid_t cpu) 14034 { 14035 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 14036 } 14037 14038 static void 14039 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 14040 { 14041 if (dtrace_toxranges >= dtrace_toxranges_max) { 14042 int osize, nsize; 14043 dtrace_toxrange_t *range; 14044 14045 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14046 14047 if (osize == 0) { 14048 ASSERT(dtrace_toxrange == NULL); 14049 ASSERT(dtrace_toxranges_max == 0); 14050 dtrace_toxranges_max = 1; 14051 } else { 14052 dtrace_toxranges_max <<= 1; 14053 } 14054 14055 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14056 range = kmem_zalloc(nsize, KM_SLEEP); 14057 14058 if (dtrace_toxrange != NULL) { 14059 ASSERT(osize != 0); 14060 bcopy(dtrace_toxrange, range, osize); 14061 kmem_free(dtrace_toxrange, osize); 14062 } 14063 14064 dtrace_toxrange = range; 14065 } 14066 14067 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 14068 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 14069 14070 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 14071 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 14072 dtrace_toxranges++; 14073 } 14074 14075 /* 14076 * DTrace Driver Cookbook Functions 14077 */ 14078 /*ARGSUSED*/ 14079 static int 14080 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 14081 { 14082 dtrace_provider_id_t id; 14083 dtrace_state_t *state = NULL; 14084 dtrace_enabling_t *enab; 14085 14086 mutex_enter(&cpu_lock); 14087 mutex_enter(&dtrace_provider_lock); 14088 mutex_enter(&dtrace_lock); 14089 14090 if (ddi_soft_state_init(&dtrace_softstate, 14091 sizeof (dtrace_state_t), 0) != 0) { 14092 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 14093 mutex_exit(&cpu_lock); 14094 mutex_exit(&dtrace_provider_lock); 14095 mutex_exit(&dtrace_lock); 14096 return (DDI_FAILURE); 14097 } 14098 14099 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 14100 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 14101 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 14102 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 14103 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 14104 ddi_remove_minor_node(devi, NULL); 14105 ddi_soft_state_fini(&dtrace_softstate); 14106 mutex_exit(&cpu_lock); 14107 mutex_exit(&dtrace_provider_lock); 14108 mutex_exit(&dtrace_lock); 14109 return (DDI_FAILURE); 14110 } 14111 14112 ddi_report_dev(devi); 14113 dtrace_devi = devi; 14114 14115 dtrace_modload = dtrace_module_loaded; 14116 dtrace_modunload = dtrace_module_unloaded; 14117 dtrace_cpu_init = dtrace_cpu_setup_initial; 14118 dtrace_helpers_cleanup = dtrace_helpers_destroy; 14119 dtrace_helpers_fork = dtrace_helpers_duplicate; 14120 dtrace_cpustart_init = dtrace_suspend; 14121 dtrace_cpustart_fini = dtrace_resume; 14122 dtrace_debugger_init = dtrace_suspend; 14123 dtrace_debugger_fini = dtrace_resume; 14124 dtrace_kreloc_init = dtrace_suspend; 14125 dtrace_kreloc_fini = dtrace_resume; 14126 14127 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14128 14129 ASSERT(MUTEX_HELD(&cpu_lock)); 14130 14131 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 14132 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14133 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 14134 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 14135 VM_SLEEP | VMC_IDENTIFIER); 14136 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 14137 1, INT_MAX, 0); 14138 14139 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 14140 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 14141 NULL, NULL, NULL, NULL, NULL, 0); 14142 14143 ASSERT(MUTEX_HELD(&cpu_lock)); 14144 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 14145 offsetof(dtrace_probe_t, dtpr_nextmod), 14146 offsetof(dtrace_probe_t, dtpr_prevmod)); 14147 14148 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 14149 offsetof(dtrace_probe_t, dtpr_nextfunc), 14150 offsetof(dtrace_probe_t, dtpr_prevfunc)); 14151 14152 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 14153 offsetof(dtrace_probe_t, dtpr_nextname), 14154 offsetof(dtrace_probe_t, dtpr_prevname)); 14155 14156 if (dtrace_retain_max < 1) { 14157 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 14158 "setting to 1", dtrace_retain_max); 14159 dtrace_retain_max = 1; 14160 } 14161 14162 /* 14163 * Now discover our toxic ranges. 14164 */ 14165 dtrace_toxic_ranges(dtrace_toxrange_add); 14166 14167 /* 14168 * Before we register ourselves as a provider to our own framework, 14169 * we would like to assert that dtrace_provider is NULL -- but that's 14170 * not true if we were loaded as a dependency of a DTrace provider. 14171 * Once we've registered, we can assert that dtrace_provider is our 14172 * pseudo provider. 14173 */ 14174 (void) dtrace_register("dtrace", &dtrace_provider_attr, 14175 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 14176 14177 ASSERT(dtrace_provider != NULL); 14178 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 14179 14180 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 14181 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 14182 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 14183 dtrace_provider, NULL, NULL, "END", 0, NULL); 14184 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 14185 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 14186 14187 dtrace_anon_property(); 14188 mutex_exit(&cpu_lock); 14189 14190 /* 14191 * If DTrace helper tracing is enabled, we need to allocate the 14192 * trace buffer and initialize the values. 14193 */ 14194 if (dtrace_helptrace_enabled) { 14195 ASSERT(dtrace_helptrace_buffer == NULL); 14196 dtrace_helptrace_buffer = 14197 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 14198 dtrace_helptrace_next = 0; 14199 } 14200 14201 /* 14202 * If there are already providers, we must ask them to provide their 14203 * probes, and then match any anonymous enabling against them. Note 14204 * that there should be no other retained enablings at this time: 14205 * the only retained enablings at this time should be the anonymous 14206 * enabling. 14207 */ 14208 if (dtrace_anon.dta_enabling != NULL) { 14209 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 14210 14211 dtrace_enabling_provide(NULL); 14212 state = dtrace_anon.dta_state; 14213 14214 /* 14215 * We couldn't hold cpu_lock across the above call to 14216 * dtrace_enabling_provide(), but we must hold it to actually 14217 * enable the probes. We have to drop all of our locks, pick 14218 * up cpu_lock, and regain our locks before matching the 14219 * retained anonymous enabling. 14220 */ 14221 mutex_exit(&dtrace_lock); 14222 mutex_exit(&dtrace_provider_lock); 14223 14224 mutex_enter(&cpu_lock); 14225 mutex_enter(&dtrace_provider_lock); 14226 mutex_enter(&dtrace_lock); 14227 14228 if ((enab = dtrace_anon.dta_enabling) != NULL) 14229 (void) dtrace_enabling_match(enab, NULL); 14230 14231 mutex_exit(&cpu_lock); 14232 } 14233 14234 mutex_exit(&dtrace_lock); 14235 mutex_exit(&dtrace_provider_lock); 14236 14237 if (state != NULL) { 14238 /* 14239 * If we created any anonymous state, set it going now. 14240 */ 14241 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 14242 } 14243 14244 return (DDI_SUCCESS); 14245 } 14246 14247 /*ARGSUSED*/ 14248 static int 14249 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 14250 { 14251 dtrace_state_t *state; 14252 uint32_t priv; 14253 uid_t uid; 14254 zoneid_t zoneid; 14255 14256 if (getminor(*devp) == DTRACEMNRN_HELPER) 14257 return (0); 14258 14259 /* 14260 * If this wasn't an open with the "helper" minor, then it must be 14261 * the "dtrace" minor. 14262 */ 14263 ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE); 14264 14265 /* 14266 * If no DTRACE_PRIV_* bits are set in the credential, then the 14267 * caller lacks sufficient permission to do anything with DTrace. 14268 */ 14269 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 14270 if (priv == DTRACE_PRIV_NONE) 14271 return (EACCES); 14272 14273 /* 14274 * Ask all providers to provide all their probes. 14275 */ 14276 mutex_enter(&dtrace_provider_lock); 14277 dtrace_probe_provide(NULL, NULL); 14278 mutex_exit(&dtrace_provider_lock); 14279 14280 mutex_enter(&cpu_lock); 14281 mutex_enter(&dtrace_lock); 14282 dtrace_opens++; 14283 dtrace_membar_producer(); 14284 14285 /* 14286 * If the kernel debugger is active (that is, if the kernel debugger 14287 * modified text in some way), we won't allow the open. 14288 */ 14289 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14290 dtrace_opens--; 14291 mutex_exit(&cpu_lock); 14292 mutex_exit(&dtrace_lock); 14293 return (EBUSY); 14294 } 14295 14296 state = dtrace_state_create(devp, cred_p); 14297 mutex_exit(&cpu_lock); 14298 14299 if (state == NULL) { 14300 if (--dtrace_opens == 0) 14301 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14302 mutex_exit(&dtrace_lock); 14303 return (EAGAIN); 14304 } 14305 14306 mutex_exit(&dtrace_lock); 14307 14308 return (0); 14309 } 14310 14311 /*ARGSUSED*/ 14312 static int 14313 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 14314 { 14315 minor_t minor = getminor(dev); 14316 dtrace_state_t *state; 14317 14318 if (minor == DTRACEMNRN_HELPER) 14319 return (0); 14320 14321 state = ddi_get_soft_state(dtrace_softstate, minor); 14322 14323 mutex_enter(&cpu_lock); 14324 mutex_enter(&dtrace_lock); 14325 14326 if (state->dts_anon) { 14327 /* 14328 * There is anonymous state. Destroy that first. 14329 */ 14330 ASSERT(dtrace_anon.dta_state == NULL); 14331 dtrace_state_destroy(state->dts_anon); 14332 } 14333 14334 dtrace_state_destroy(state); 14335 ASSERT(dtrace_opens > 0); 14336 if (--dtrace_opens == 0) 14337 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14338 14339 mutex_exit(&dtrace_lock); 14340 mutex_exit(&cpu_lock); 14341 14342 return (0); 14343 } 14344 14345 /*ARGSUSED*/ 14346 static int 14347 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 14348 { 14349 int rval; 14350 dof_helper_t help, *dhp = NULL; 14351 14352 switch (cmd) { 14353 case DTRACEHIOC_ADDDOF: 14354 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 14355 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 14356 return (EFAULT); 14357 } 14358 14359 dhp = &help; 14360 arg = (intptr_t)help.dofhp_dof; 14361 /*FALLTHROUGH*/ 14362 14363 case DTRACEHIOC_ADD: { 14364 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 14365 14366 if (dof == NULL) 14367 return (rval); 14368 14369 mutex_enter(&dtrace_lock); 14370 14371 /* 14372 * dtrace_helper_slurp() takes responsibility for the dof -- 14373 * it may free it now or it may save it and free it later. 14374 */ 14375 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 14376 *rv = rval; 14377 rval = 0; 14378 } else { 14379 rval = EINVAL; 14380 } 14381 14382 mutex_exit(&dtrace_lock); 14383 return (rval); 14384 } 14385 14386 case DTRACEHIOC_REMOVE: { 14387 mutex_enter(&dtrace_lock); 14388 rval = dtrace_helper_destroygen(arg); 14389 mutex_exit(&dtrace_lock); 14390 14391 return (rval); 14392 } 14393 14394 default: 14395 break; 14396 } 14397 14398 return (ENOTTY); 14399 } 14400 14401 /*ARGSUSED*/ 14402 static int 14403 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 14404 { 14405 minor_t minor = getminor(dev); 14406 dtrace_state_t *state; 14407 int rval; 14408 14409 if (minor == DTRACEMNRN_HELPER) 14410 return (dtrace_ioctl_helper(cmd, arg, rv)); 14411 14412 state = ddi_get_soft_state(dtrace_softstate, minor); 14413 14414 if (state->dts_anon) { 14415 ASSERT(dtrace_anon.dta_state == NULL); 14416 state = state->dts_anon; 14417 } 14418 14419 switch (cmd) { 14420 case DTRACEIOC_PROVIDER: { 14421 dtrace_providerdesc_t pvd; 14422 dtrace_provider_t *pvp; 14423 14424 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 14425 return (EFAULT); 14426 14427 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 14428 mutex_enter(&dtrace_provider_lock); 14429 14430 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 14431 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 14432 break; 14433 } 14434 14435 mutex_exit(&dtrace_provider_lock); 14436 14437 if (pvp == NULL) 14438 return (ESRCH); 14439 14440 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 14441 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 14442 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 14443 return (EFAULT); 14444 14445 return (0); 14446 } 14447 14448 case DTRACEIOC_EPROBE: { 14449 dtrace_eprobedesc_t epdesc; 14450 dtrace_ecb_t *ecb; 14451 dtrace_action_t *act; 14452 void *buf; 14453 size_t size; 14454 uintptr_t dest; 14455 int nrecs; 14456 14457 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 14458 return (EFAULT); 14459 14460 mutex_enter(&dtrace_lock); 14461 14462 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 14463 mutex_exit(&dtrace_lock); 14464 return (EINVAL); 14465 } 14466 14467 if (ecb->dte_probe == NULL) { 14468 mutex_exit(&dtrace_lock); 14469 return (EINVAL); 14470 } 14471 14472 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 14473 epdesc.dtepd_uarg = ecb->dte_uarg; 14474 epdesc.dtepd_size = ecb->dte_size; 14475 14476 nrecs = epdesc.dtepd_nrecs; 14477 epdesc.dtepd_nrecs = 0; 14478 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14479 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14480 continue; 14481 14482 epdesc.dtepd_nrecs++; 14483 } 14484 14485 /* 14486 * Now that we have the size, we need to allocate a temporary 14487 * buffer in which to store the complete description. We need 14488 * the temporary buffer to be able to drop dtrace_lock() 14489 * across the copyout(), below. 14490 */ 14491 size = sizeof (dtrace_eprobedesc_t) + 14492 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 14493 14494 buf = kmem_alloc(size, KM_SLEEP); 14495 dest = (uintptr_t)buf; 14496 14497 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 14498 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 14499 14500 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14501 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14502 continue; 14503 14504 if (nrecs-- == 0) 14505 break; 14506 14507 bcopy(&act->dta_rec, (void *)dest, 14508 sizeof (dtrace_recdesc_t)); 14509 dest += sizeof (dtrace_recdesc_t); 14510 } 14511 14512 mutex_exit(&dtrace_lock); 14513 14514 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14515 kmem_free(buf, size); 14516 return (EFAULT); 14517 } 14518 14519 kmem_free(buf, size); 14520 return (0); 14521 } 14522 14523 case DTRACEIOC_AGGDESC: { 14524 dtrace_aggdesc_t aggdesc; 14525 dtrace_action_t *act; 14526 dtrace_aggregation_t *agg; 14527 int nrecs; 14528 uint32_t offs; 14529 dtrace_recdesc_t *lrec; 14530 void *buf; 14531 size_t size; 14532 uintptr_t dest; 14533 14534 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 14535 return (EFAULT); 14536 14537 mutex_enter(&dtrace_lock); 14538 14539 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 14540 mutex_exit(&dtrace_lock); 14541 return (EINVAL); 14542 } 14543 14544 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 14545 14546 nrecs = aggdesc.dtagd_nrecs; 14547 aggdesc.dtagd_nrecs = 0; 14548 14549 offs = agg->dtag_base; 14550 lrec = &agg->dtag_action.dta_rec; 14551 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 14552 14553 for (act = agg->dtag_first; ; act = act->dta_next) { 14554 ASSERT(act->dta_intuple || 14555 DTRACEACT_ISAGG(act->dta_kind)); 14556 14557 /* 14558 * If this action has a record size of zero, it 14559 * denotes an argument to the aggregating action. 14560 * Because the presence of this record doesn't (or 14561 * shouldn't) affect the way the data is interpreted, 14562 * we don't copy it out to save user-level the 14563 * confusion of dealing with a zero-length record. 14564 */ 14565 if (act->dta_rec.dtrd_size == 0) { 14566 ASSERT(agg->dtag_hasarg); 14567 continue; 14568 } 14569 14570 aggdesc.dtagd_nrecs++; 14571 14572 if (act == &agg->dtag_action) 14573 break; 14574 } 14575 14576 /* 14577 * Now that we have the size, we need to allocate a temporary 14578 * buffer in which to store the complete description. We need 14579 * the temporary buffer to be able to drop dtrace_lock() 14580 * across the copyout(), below. 14581 */ 14582 size = sizeof (dtrace_aggdesc_t) + 14583 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 14584 14585 buf = kmem_alloc(size, KM_SLEEP); 14586 dest = (uintptr_t)buf; 14587 14588 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 14589 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 14590 14591 for (act = agg->dtag_first; ; act = act->dta_next) { 14592 dtrace_recdesc_t rec = act->dta_rec; 14593 14594 /* 14595 * See the comment in the above loop for why we pass 14596 * over zero-length records. 14597 */ 14598 if (rec.dtrd_size == 0) { 14599 ASSERT(agg->dtag_hasarg); 14600 continue; 14601 } 14602 14603 if (nrecs-- == 0) 14604 break; 14605 14606 rec.dtrd_offset -= offs; 14607 bcopy(&rec, (void *)dest, sizeof (rec)); 14608 dest += sizeof (dtrace_recdesc_t); 14609 14610 if (act == &agg->dtag_action) 14611 break; 14612 } 14613 14614 mutex_exit(&dtrace_lock); 14615 14616 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14617 kmem_free(buf, size); 14618 return (EFAULT); 14619 } 14620 14621 kmem_free(buf, size); 14622 return (0); 14623 } 14624 14625 case DTRACEIOC_ENABLE: { 14626 dof_hdr_t *dof; 14627 dtrace_enabling_t *enab = NULL; 14628 dtrace_vstate_t *vstate; 14629 int err = 0; 14630 14631 *rv = 0; 14632 14633 /* 14634 * If a NULL argument has been passed, we take this as our 14635 * cue to reevaluate our enablings. 14636 */ 14637 if (arg == NULL) { 14638 mutex_enter(&cpu_lock); 14639 mutex_enter(&dtrace_lock); 14640 err = dtrace_enabling_matchstate(state, rv); 14641 mutex_exit(&dtrace_lock); 14642 mutex_exit(&cpu_lock); 14643 14644 return (err); 14645 } 14646 14647 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 14648 return (rval); 14649 14650 mutex_enter(&cpu_lock); 14651 mutex_enter(&dtrace_lock); 14652 vstate = &state->dts_vstate; 14653 14654 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14655 mutex_exit(&dtrace_lock); 14656 mutex_exit(&cpu_lock); 14657 dtrace_dof_destroy(dof); 14658 return (EBUSY); 14659 } 14660 14661 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 14662 mutex_exit(&dtrace_lock); 14663 mutex_exit(&cpu_lock); 14664 dtrace_dof_destroy(dof); 14665 return (EINVAL); 14666 } 14667 14668 if ((rval = dtrace_dof_options(dof, state)) != 0) { 14669 dtrace_enabling_destroy(enab); 14670 mutex_exit(&dtrace_lock); 14671 mutex_exit(&cpu_lock); 14672 dtrace_dof_destroy(dof); 14673 return (rval); 14674 } 14675 14676 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 14677 err = dtrace_enabling_retain(enab); 14678 } else { 14679 dtrace_enabling_destroy(enab); 14680 } 14681 14682 mutex_exit(&cpu_lock); 14683 mutex_exit(&dtrace_lock); 14684 dtrace_dof_destroy(dof); 14685 14686 return (err); 14687 } 14688 14689 case DTRACEIOC_REPLICATE: { 14690 dtrace_repldesc_t desc; 14691 dtrace_probedesc_t *match = &desc.dtrpd_match; 14692 dtrace_probedesc_t *create = &desc.dtrpd_create; 14693 int err; 14694 14695 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14696 return (EFAULT); 14697 14698 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14699 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14700 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14701 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14702 14703 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14704 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14705 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14706 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14707 14708 mutex_enter(&dtrace_lock); 14709 err = dtrace_enabling_replicate(state, match, create); 14710 mutex_exit(&dtrace_lock); 14711 14712 return (err); 14713 } 14714 14715 case DTRACEIOC_PROBEMATCH: 14716 case DTRACEIOC_PROBES: { 14717 dtrace_probe_t *probe = NULL; 14718 dtrace_probedesc_t desc; 14719 dtrace_probekey_t pkey; 14720 dtrace_id_t i; 14721 int m = 0; 14722 uint32_t priv; 14723 uid_t uid; 14724 zoneid_t zoneid; 14725 14726 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14727 return (EFAULT); 14728 14729 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14730 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14731 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14732 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14733 14734 /* 14735 * Before we attempt to match this probe, we want to give 14736 * all providers the opportunity to provide it. 14737 */ 14738 if (desc.dtpd_id == DTRACE_IDNONE) { 14739 mutex_enter(&dtrace_provider_lock); 14740 dtrace_probe_provide(&desc, NULL); 14741 mutex_exit(&dtrace_provider_lock); 14742 desc.dtpd_id++; 14743 } 14744 14745 if (cmd == DTRACEIOC_PROBEMATCH) { 14746 dtrace_probekey(&desc, &pkey); 14747 pkey.dtpk_id = DTRACE_IDNONE; 14748 } 14749 14750 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 14751 14752 mutex_enter(&dtrace_lock); 14753 14754 if (cmd == DTRACEIOC_PROBEMATCH) { 14755 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14756 if ((probe = dtrace_probes[i - 1]) != NULL && 14757 (m = dtrace_match_probe(probe, &pkey, 14758 priv, uid, zoneid)) != 0) 14759 break; 14760 } 14761 14762 if (m < 0) { 14763 mutex_exit(&dtrace_lock); 14764 return (EINVAL); 14765 } 14766 14767 } else { 14768 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14769 if ((probe = dtrace_probes[i - 1]) != NULL && 14770 dtrace_match_priv(probe, priv, uid, zoneid)) 14771 break; 14772 } 14773 } 14774 14775 if (probe == NULL) { 14776 mutex_exit(&dtrace_lock); 14777 return (ESRCH); 14778 } 14779 14780 dtrace_probe_description(probe, &desc); 14781 mutex_exit(&dtrace_lock); 14782 14783 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14784 return (EFAULT); 14785 14786 return (0); 14787 } 14788 14789 case DTRACEIOC_PROBEARG: { 14790 dtrace_argdesc_t desc; 14791 dtrace_probe_t *probe; 14792 dtrace_provider_t *prov; 14793 14794 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14795 return (EFAULT); 14796 14797 if (desc.dtargd_id == DTRACE_IDNONE) 14798 return (EINVAL); 14799 14800 if (desc.dtargd_ndx == DTRACE_ARGNONE) 14801 return (EINVAL); 14802 14803 mutex_enter(&dtrace_provider_lock); 14804 mutex_enter(&mod_lock); 14805 mutex_enter(&dtrace_lock); 14806 14807 if (desc.dtargd_id > dtrace_nprobes) { 14808 mutex_exit(&dtrace_lock); 14809 mutex_exit(&mod_lock); 14810 mutex_exit(&dtrace_provider_lock); 14811 return (EINVAL); 14812 } 14813 14814 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 14815 mutex_exit(&dtrace_lock); 14816 mutex_exit(&mod_lock); 14817 mutex_exit(&dtrace_provider_lock); 14818 return (EINVAL); 14819 } 14820 14821 mutex_exit(&dtrace_lock); 14822 14823 prov = probe->dtpr_provider; 14824 14825 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 14826 /* 14827 * There isn't any typed information for this probe. 14828 * Set the argument number to DTRACE_ARGNONE. 14829 */ 14830 desc.dtargd_ndx = DTRACE_ARGNONE; 14831 } else { 14832 desc.dtargd_native[0] = '\0'; 14833 desc.dtargd_xlate[0] = '\0'; 14834 desc.dtargd_mapping = desc.dtargd_ndx; 14835 14836 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 14837 probe->dtpr_id, probe->dtpr_arg, &desc); 14838 } 14839 14840 mutex_exit(&mod_lock); 14841 mutex_exit(&dtrace_provider_lock); 14842 14843 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14844 return (EFAULT); 14845 14846 return (0); 14847 } 14848 14849 case DTRACEIOC_GO: { 14850 processorid_t cpuid; 14851 rval = dtrace_state_go(state, &cpuid); 14852 14853 if (rval != 0) 14854 return (rval); 14855 14856 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 14857 return (EFAULT); 14858 14859 return (0); 14860 } 14861 14862 case DTRACEIOC_STOP: { 14863 processorid_t cpuid; 14864 14865 mutex_enter(&dtrace_lock); 14866 rval = dtrace_state_stop(state, &cpuid); 14867 mutex_exit(&dtrace_lock); 14868 14869 if (rval != 0) 14870 return (rval); 14871 14872 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 14873 return (EFAULT); 14874 14875 return (0); 14876 } 14877 14878 case DTRACEIOC_DOFGET: { 14879 dof_hdr_t hdr, *dof; 14880 uint64_t len; 14881 14882 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 14883 return (EFAULT); 14884 14885 mutex_enter(&dtrace_lock); 14886 dof = dtrace_dof_create(state); 14887 mutex_exit(&dtrace_lock); 14888 14889 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 14890 rval = copyout(dof, (void *)arg, len); 14891 dtrace_dof_destroy(dof); 14892 14893 return (rval == 0 ? 0 : EFAULT); 14894 } 14895 14896 case DTRACEIOC_AGGSNAP: 14897 case DTRACEIOC_BUFSNAP: { 14898 dtrace_bufdesc_t desc; 14899 caddr_t cached; 14900 dtrace_buffer_t *buf; 14901 14902 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14903 return (EFAULT); 14904 14905 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 14906 return (EINVAL); 14907 14908 mutex_enter(&dtrace_lock); 14909 14910 if (cmd == DTRACEIOC_BUFSNAP) { 14911 buf = &state->dts_buffer[desc.dtbd_cpu]; 14912 } else { 14913 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 14914 } 14915 14916 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 14917 size_t sz = buf->dtb_offset; 14918 14919 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 14920 mutex_exit(&dtrace_lock); 14921 return (EBUSY); 14922 } 14923 14924 /* 14925 * If this buffer has already been consumed, we're 14926 * going to indicate that there's nothing left here 14927 * to consume. 14928 */ 14929 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 14930 mutex_exit(&dtrace_lock); 14931 14932 desc.dtbd_size = 0; 14933 desc.dtbd_drops = 0; 14934 desc.dtbd_errors = 0; 14935 desc.dtbd_oldest = 0; 14936 sz = sizeof (desc); 14937 14938 if (copyout(&desc, (void *)arg, sz) != 0) 14939 return (EFAULT); 14940 14941 return (0); 14942 } 14943 14944 /* 14945 * If this is a ring buffer that has wrapped, we want 14946 * to copy the whole thing out. 14947 */ 14948 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 14949 dtrace_buffer_polish(buf); 14950 sz = buf->dtb_size; 14951 } 14952 14953 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 14954 mutex_exit(&dtrace_lock); 14955 return (EFAULT); 14956 } 14957 14958 desc.dtbd_size = sz; 14959 desc.dtbd_drops = buf->dtb_drops; 14960 desc.dtbd_errors = buf->dtb_errors; 14961 desc.dtbd_oldest = buf->dtb_xamot_offset; 14962 14963 mutex_exit(&dtrace_lock); 14964 14965 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14966 return (EFAULT); 14967 14968 buf->dtb_flags |= DTRACEBUF_CONSUMED; 14969 14970 return (0); 14971 } 14972 14973 if (buf->dtb_tomax == NULL) { 14974 ASSERT(buf->dtb_xamot == NULL); 14975 mutex_exit(&dtrace_lock); 14976 return (ENOENT); 14977 } 14978 14979 cached = buf->dtb_tomax; 14980 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 14981 14982 dtrace_xcall(desc.dtbd_cpu, 14983 (dtrace_xcall_t)dtrace_buffer_switch, buf); 14984 14985 state->dts_errors += buf->dtb_xamot_errors; 14986 14987 /* 14988 * If the buffers did not actually switch, then the cross call 14989 * did not take place -- presumably because the given CPU is 14990 * not in the ready set. If this is the case, we'll return 14991 * ENOENT. 14992 */ 14993 if (buf->dtb_tomax == cached) { 14994 ASSERT(buf->dtb_xamot != cached); 14995 mutex_exit(&dtrace_lock); 14996 return (ENOENT); 14997 } 14998 14999 ASSERT(cached == buf->dtb_xamot); 15000 15001 /* 15002 * We have our snapshot; now copy it out. 15003 */ 15004 if (copyout(buf->dtb_xamot, desc.dtbd_data, 15005 buf->dtb_xamot_offset) != 0) { 15006 mutex_exit(&dtrace_lock); 15007 return (EFAULT); 15008 } 15009 15010 desc.dtbd_size = buf->dtb_xamot_offset; 15011 desc.dtbd_drops = buf->dtb_xamot_drops; 15012 desc.dtbd_errors = buf->dtb_xamot_errors; 15013 desc.dtbd_oldest = 0; 15014 15015 mutex_exit(&dtrace_lock); 15016 15017 /* 15018 * Finally, copy out the buffer description. 15019 */ 15020 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15021 return (EFAULT); 15022 15023 return (0); 15024 } 15025 15026 case DTRACEIOC_CONF: { 15027 dtrace_conf_t conf; 15028 15029 bzero(&conf, sizeof (conf)); 15030 conf.dtc_difversion = DIF_VERSION; 15031 conf.dtc_difintregs = DIF_DIR_NREGS; 15032 conf.dtc_diftupregs = DIF_DTR_NREGS; 15033 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 15034 15035 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15036 return (EFAULT); 15037 15038 return (0); 15039 } 15040 15041 case DTRACEIOC_STATUS: { 15042 dtrace_status_t stat; 15043 dtrace_dstate_t *dstate; 15044 int i, j; 15045 uint64_t nerrs; 15046 15047 /* 15048 * See the comment in dtrace_state_deadman() for the reason 15049 * for setting dts_laststatus to INT64_MAX before setting 15050 * it to the correct value. 15051 */ 15052 state->dts_laststatus = INT64_MAX; 15053 dtrace_membar_producer(); 15054 state->dts_laststatus = dtrace_gethrtime(); 15055 15056 bzero(&stat, sizeof (stat)); 15057 15058 mutex_enter(&dtrace_lock); 15059 15060 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 15061 mutex_exit(&dtrace_lock); 15062 return (ENOENT); 15063 } 15064 15065 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 15066 stat.dtst_exiting = 1; 15067 15068 nerrs = state->dts_errors; 15069 dstate = &state->dts_vstate.dtvs_dynvars; 15070 15071 for (i = 0; i < NCPU; i++) { 15072 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 15073 15074 stat.dtst_dyndrops += dcpu->dtdsc_drops; 15075 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 15076 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 15077 15078 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 15079 stat.dtst_filled++; 15080 15081 nerrs += state->dts_buffer[i].dtb_errors; 15082 15083 for (j = 0; j < state->dts_nspeculations; j++) { 15084 dtrace_speculation_t *spec; 15085 dtrace_buffer_t *buf; 15086 15087 spec = &state->dts_speculations[j]; 15088 buf = &spec->dtsp_buffer[i]; 15089 stat.dtst_specdrops += buf->dtb_xamot_drops; 15090 } 15091 } 15092 15093 stat.dtst_specdrops_busy = state->dts_speculations_busy; 15094 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 15095 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 15096 stat.dtst_dblerrors = state->dts_dblerrors; 15097 stat.dtst_killed = 15098 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 15099 stat.dtst_errors = nerrs; 15100 15101 mutex_exit(&dtrace_lock); 15102 15103 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 15104 return (EFAULT); 15105 15106 return (0); 15107 } 15108 15109 case DTRACEIOC_FORMAT: { 15110 dtrace_fmtdesc_t fmt; 15111 char *str; 15112 int len; 15113 15114 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 15115 return (EFAULT); 15116 15117 mutex_enter(&dtrace_lock); 15118 15119 if (fmt.dtfd_format == 0 || 15120 fmt.dtfd_format > state->dts_nformats) { 15121 mutex_exit(&dtrace_lock); 15122 return (EINVAL); 15123 } 15124 15125 /* 15126 * Format strings are allocated contiguously and they are 15127 * never freed; if a format index is less than the number 15128 * of formats, we can assert that the format map is non-NULL 15129 * and that the format for the specified index is non-NULL. 15130 */ 15131 ASSERT(state->dts_formats != NULL); 15132 str = state->dts_formats[fmt.dtfd_format - 1]; 15133 ASSERT(str != NULL); 15134 15135 len = strlen(str) + 1; 15136 15137 if (len > fmt.dtfd_length) { 15138 fmt.dtfd_length = len; 15139 15140 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 15141 mutex_exit(&dtrace_lock); 15142 return (EINVAL); 15143 } 15144 } else { 15145 if (copyout(str, fmt.dtfd_string, len) != 0) { 15146 mutex_exit(&dtrace_lock); 15147 return (EINVAL); 15148 } 15149 } 15150 15151 mutex_exit(&dtrace_lock); 15152 return (0); 15153 } 15154 15155 default: 15156 break; 15157 } 15158 15159 return (ENOTTY); 15160 } 15161 15162 /*ARGSUSED*/ 15163 static int 15164 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 15165 { 15166 dtrace_state_t *state; 15167 15168 switch (cmd) { 15169 case DDI_DETACH: 15170 break; 15171 15172 case DDI_SUSPEND: 15173 return (DDI_SUCCESS); 15174 15175 default: 15176 return (DDI_FAILURE); 15177 } 15178 15179 mutex_enter(&cpu_lock); 15180 mutex_enter(&dtrace_provider_lock); 15181 mutex_enter(&dtrace_lock); 15182 15183 ASSERT(dtrace_opens == 0); 15184 15185 if (dtrace_helpers > 0) { 15186 mutex_exit(&dtrace_provider_lock); 15187 mutex_exit(&dtrace_lock); 15188 mutex_exit(&cpu_lock); 15189 return (DDI_FAILURE); 15190 } 15191 15192 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 15193 mutex_exit(&dtrace_provider_lock); 15194 mutex_exit(&dtrace_lock); 15195 mutex_exit(&cpu_lock); 15196 return (DDI_FAILURE); 15197 } 15198 15199 dtrace_provider = NULL; 15200 15201 if ((state = dtrace_anon_grab()) != NULL) { 15202 /* 15203 * If there were ECBs on this state, the provider should 15204 * have not been allowed to detach; assert that there is 15205 * none. 15206 */ 15207 ASSERT(state->dts_necbs == 0); 15208 dtrace_state_destroy(state); 15209 15210 /* 15211 * If we're being detached with anonymous state, we need to 15212 * indicate to the kernel debugger that DTrace is now inactive. 15213 */ 15214 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15215 } 15216 15217 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 15218 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15219 dtrace_cpu_init = NULL; 15220 dtrace_helpers_cleanup = NULL; 15221 dtrace_helpers_fork = NULL; 15222 dtrace_cpustart_init = NULL; 15223 dtrace_cpustart_fini = NULL; 15224 dtrace_debugger_init = NULL; 15225 dtrace_debugger_fini = NULL; 15226 dtrace_kreloc_init = NULL; 15227 dtrace_kreloc_fini = NULL; 15228 dtrace_modload = NULL; 15229 dtrace_modunload = NULL; 15230 15231 mutex_exit(&cpu_lock); 15232 15233 if (dtrace_helptrace_enabled) { 15234 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 15235 dtrace_helptrace_buffer = NULL; 15236 } 15237 15238 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 15239 dtrace_probes = NULL; 15240 dtrace_nprobes = 0; 15241 15242 dtrace_hash_destroy(dtrace_bymod); 15243 dtrace_hash_destroy(dtrace_byfunc); 15244 dtrace_hash_destroy(dtrace_byname); 15245 dtrace_bymod = NULL; 15246 dtrace_byfunc = NULL; 15247 dtrace_byname = NULL; 15248 15249 kmem_cache_destroy(dtrace_state_cache); 15250 vmem_destroy(dtrace_minor); 15251 vmem_destroy(dtrace_arena); 15252 15253 if (dtrace_toxrange != NULL) { 15254 kmem_free(dtrace_toxrange, 15255 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 15256 dtrace_toxrange = NULL; 15257 dtrace_toxranges = 0; 15258 dtrace_toxranges_max = 0; 15259 } 15260 15261 ddi_remove_minor_node(dtrace_devi, NULL); 15262 dtrace_devi = NULL; 15263 15264 ddi_soft_state_fini(&dtrace_softstate); 15265 15266 ASSERT(dtrace_vtime_references == 0); 15267 ASSERT(dtrace_opens == 0); 15268 ASSERT(dtrace_retained == NULL); 15269 15270 mutex_exit(&dtrace_lock); 15271 mutex_exit(&dtrace_provider_lock); 15272 15273 /* 15274 * We don't destroy the task queue until after we have dropped our 15275 * locks (taskq_destroy() may block on running tasks). To prevent 15276 * attempting to do work after we have effectively detached but before 15277 * the task queue has been destroyed, all tasks dispatched via the 15278 * task queue must check that DTrace is still attached before 15279 * performing any operation. 15280 */ 15281 taskq_destroy(dtrace_taskq); 15282 dtrace_taskq = NULL; 15283 15284 return (DDI_SUCCESS); 15285 } 15286 15287 /*ARGSUSED*/ 15288 static int 15289 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 15290 { 15291 int error; 15292 15293 switch (infocmd) { 15294 case DDI_INFO_DEVT2DEVINFO: 15295 *result = (void *)dtrace_devi; 15296 error = DDI_SUCCESS; 15297 break; 15298 case DDI_INFO_DEVT2INSTANCE: 15299 *result = (void *)0; 15300 error = DDI_SUCCESS; 15301 break; 15302 default: 15303 error = DDI_FAILURE; 15304 } 15305 return (error); 15306 } 15307 15308 static struct cb_ops dtrace_cb_ops = { 15309 dtrace_open, /* open */ 15310 dtrace_close, /* close */ 15311 nulldev, /* strategy */ 15312 nulldev, /* print */ 15313 nodev, /* dump */ 15314 nodev, /* read */ 15315 nodev, /* write */ 15316 dtrace_ioctl, /* ioctl */ 15317 nodev, /* devmap */ 15318 nodev, /* mmap */ 15319 nodev, /* segmap */ 15320 nochpoll, /* poll */ 15321 ddi_prop_op, /* cb_prop_op */ 15322 0, /* streamtab */ 15323 D_NEW | D_MP /* Driver compatibility flag */ 15324 }; 15325 15326 static struct dev_ops dtrace_ops = { 15327 DEVO_REV, /* devo_rev */ 15328 0, /* refcnt */ 15329 dtrace_info, /* get_dev_info */ 15330 nulldev, /* identify */ 15331 nulldev, /* probe */ 15332 dtrace_attach, /* attach */ 15333 dtrace_detach, /* detach */ 15334 nodev, /* reset */ 15335 &dtrace_cb_ops, /* driver operations */ 15336 NULL, /* bus operations */ 15337 nodev /* dev power */ 15338 }; 15339 15340 static struct modldrv modldrv = { 15341 &mod_driverops, /* module type (this is a pseudo driver) */ 15342 "Dynamic Tracing", /* name of module */ 15343 &dtrace_ops, /* driver ops */ 15344 }; 15345 15346 static struct modlinkage modlinkage = { 15347 MODREV_1, 15348 (void *)&modldrv, 15349 NULL 15350 }; 15351 15352 int 15353 _init(void) 15354 { 15355 return (mod_install(&modlinkage)); 15356 } 15357 15358 int 15359 _info(struct modinfo *modinfop) 15360 { 15361 return (mod_info(&modlinkage, modinfop)); 15362 } 15363 15364 int 15365 _fini(void) 15366 { 15367 return (mod_remove(&modlinkage)); 15368 } 15369