xref: /titanic_51/usr/src/uts/sun4u/lw8/os/lw8_platmod.c (revision cd37da7426f0c49c14ad9a8a07638ca971477566)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/time.h>
30 #include <sys/cpuvar.h>
31 #include <sys/dditypes.h>
32 #include <sys/ddipropdefs.h>
33 #include <sys/ddi_impldefs.h>
34 #include <sys/sunddi.h>
35 #include <sys/esunddi.h>
36 #include <sys/sunndi.h>
37 #include <sys/platform_module.h>
38 #include <sys/errno.h>
39 #include <sys/conf.h>
40 #include <sys/modctl.h>
41 #include <sys/promif.h>
42 #include <sys/promimpl.h>
43 #include <sys/prom_plat.h>
44 #include <sys/cmn_err.h>
45 #include <sys/sysmacros.h>
46 #include <sys/mem_cage.h>
47 #include <sys/kobj.h>
48 #include <sys/utsname.h>
49 #include <sys/cpu_sgnblk_defs.h>
50 #include <sys/atomic.h>
51 #include <sys/kdi_impl.h>
52 
53 #include <sys/sgsbbc.h>
54 #include <sys/sgsbbc_iosram.h>
55 #include <sys/sgsbbc_iosram_priv.h>
56 #include <sys/sgsbbc_mailbox.h>
57 #include <sys/sgsgn.h>
58 #include <sys/serengeti.h>
59 #include <sys/sgfrutypes.h>
60 #include <sys/machsystm.h>
61 #include <sys/sbd_ioctl.h>
62 #include <sys/sbd.h>
63 #include <sys/sbdp_mem.h>
64 #include <sys/sgcn.h>
65 
66 #include <sys/memnode.h>
67 #include <vm/vm_dep.h>
68 #include <vm/page.h>
69 
70 #include <sys/cheetahregs.h>
71 #include <sys/plat_ecc_unum.h>
72 #include <sys/plat_ecc_dimm.h>
73 
74 #include <sys/lgrp.h>
75 
76 static int sg_debug = 0;
77 
78 #ifdef DEBUG
79 #define	DCMNERR if (sg_debug) cmn_err
80 #else
81 #define	DCMNERR
82 #endif
83 
84 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
85 
86 /* local functions */
87 static void cpu_sgn_update(ushort_t sgn, uchar_t state,
88     uchar_t sub_state, int cpuid);
89 
90 
91 /*
92  * Local data.
93  *
94  * iosram_write_ptr is a pointer to iosram_write().  Because of
95  * kernel dynamic linking, we can't get to the function by name,
96  * but we can look up its address, and store it in this variable
97  * instead.
98  *
99  * We include the extern for iosram_write() here not because we call
100  * it, but to force compilation errors if its prototype doesn't
101  * match the prototype of iosram_write_ptr.
102  *
103  * The same issues apply to iosram_read() and iosram_read_ptr.
104  */
105 /*CSTYLED*/
106 extern int   iosram_write     (int, uint32_t, caddr_t, uint32_t);
107 static int (*iosram_write_ptr)(int, uint32_t, caddr_t, uint32_t) = NULL;
108 /*CSTYLED*/
109 extern int   iosram_read     (int, uint32_t, caddr_t, uint32_t);
110 static int (*iosram_read_ptr)(int, uint32_t, caddr_t, uint32_t) = NULL;
111 
112 
113 /*
114  * Variable to indicate if the date should be obtained from the SC or not.
115  */
116 int todsg_use_sc = FALSE;	/* set the false at the beginning */
117 
118 /*
119  * Preallocation of spare tsb's for DR
120  *
121  * We don't allocate spares for Wildcat since TSBs should come
122  * out of memory local to the node.
123  */
124 #define	IOMMU_PER_SCHIZO	2
125 int serengeti_tsb_spares = (SG_MAX_IO_BDS * SG_SCHIZO_PER_IO_BD *
126 	IOMMU_PER_SCHIZO);
127 
128 /*
129  * sg_max_ncpus is the maximum number of CPUs supported on lw8.
130  * sg_max_ncpus is set to be smaller than NCPU to reduce the amount of
131  * memory the logs take up until we have a dynamic log memory allocation
132  * solution.
133  */
134 int sg_max_ncpus = (12 * 2);    /* (max # of processors * # of cores/proc) */
135 
136 /*
137  * variables to control mailbox message timeouts.
138  * These can be patched via /etc/system or mdb.
139  */
140 int	sbbc_mbox_default_timeout = MBOX_DEFAULT_TIMEOUT;
141 int	sbbc_mbox_min_timeout = MBOX_MIN_TIMEOUT;
142 
143 /* cached 'chosen' node_id */
144 pnode_t chosen_nodeid = (pnode_t)0;
145 
146 /*
147  * Table that maps memory slices to a specific memnode.
148  */
149 int slice_to_memnode[SG_MAX_SLICE];
150 
151 /*
152  * We define and use LW8_MAX_CPU_BDS here instead of SG_MAX_CPU_BDS
153  * since a LW8 machine will never have a CPU/Mem board #5 (SB5).
154  * A LW8 machine can only have a maximum of three CPU/Mem boards, but
155  * the board numbers assigned are 0, 2, and 4.  LW8_MAX_CPU_BDS is
156  * defined to be 5 since the entries in the domain_dimm_sids array
157  * are keyed by board number.  Not perfect but some wasted space
158  * is avoided.
159  */
160 #define	LW8_MAX_CPU_BDS		5
161 
162 plat_dimm_sid_board_t	domain_dimm_sids[LW8_MAX_CPU_BDS];
163 
164 int
165 set_platform_tsb_spares()
166 {
167 	return (MIN(serengeti_tsb_spares, MAX_UPA));
168 }
169 
170 #pragma weak mmu_init_large_pages
171 
172 void
173 set_platform_defaults(void)
174 {
175 	extern int watchdog_enable;
176 	extern uint64_t xc_tick_limit_scale;
177 	extern void mmu_init_large_pages(size_t);
178 
179 #ifdef DEBUG
180 	char *todsg_name = "todsg";
181 	ce_verbose_memory = 2;
182 	ce_verbose_other = 2;
183 #endif /* DEBUG */
184 
185 	watchdog_enable = TRUE;
186 	watchdog_available = TRUE;
187 
188 	cpu_sgn_func = cpu_sgn_update;
189 
190 #ifdef DEBUG
191 	/* tod_module_name should be set to "todsg" from OBP property */
192 	if (tod_module_name && (strcmp(tod_module_name, todsg_name) == 0))
193 		prom_printf("Using todsg driver\n");
194 	else {
195 		prom_printf("Force using todsg driver\n");
196 		tod_module_name = todsg_name;
197 	}
198 #endif /* DEBUG */
199 
200 	/* lw8 does not support forthdebug */
201 	forthdebug_supported = 0;
202 
203 
204 	/*
205 	 * Some DR operations require the system to be sync paused.
206 	 * Sync pause on Serengeti could potentially take up to 4
207 	 * seconds to complete depending on the load on the SC.  To
208 	 * avoid send_mond panics during such operations, we need to
209 	 * increase xc_tick_limit to a larger value on Serengeti by
210 	 * setting xc_tick_limit_scale to 5.
211 	 */
212 	xc_tick_limit_scale = 5;
213 
214 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
215 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
216 		if (&mmu_init_large_pages)
217 			mmu_init_large_pages(mmu_ism_pagesize);
218 	}
219 }
220 
221 void
222 load_platform_modules(void)
223 {
224 	if (modload("misc", "pcihp") < 0) {
225 		cmn_err(CE_NOTE, "pcihp driver failed to load");
226 	}
227 }
228 
229 /*ARGSUSED*/
230 int
231 plat_cpu_poweron(struct cpu *cp)
232 {
233 	int (*serengeti_cpu_poweron)(struct cpu *) = NULL;
234 
235 	serengeti_cpu_poweron =
236 	    (int (*)(struct cpu *))modgetsymvalue("sbdp_cpu_poweron", 0);
237 
238 	if (serengeti_cpu_poweron == NULL)
239 		return (ENOTSUP);
240 	else
241 		return ((serengeti_cpu_poweron)(cp));
242 }
243 
244 /*ARGSUSED*/
245 int
246 plat_cpu_poweroff(struct cpu *cp)
247 {
248 	int (*serengeti_cpu_poweroff)(struct cpu *) = NULL;
249 
250 	serengeti_cpu_poweroff =
251 	    (int (*)(struct cpu *))modgetsymvalue("sbdp_cpu_poweroff", 0);
252 
253 	if (serengeti_cpu_poweroff == NULL)
254 		return (ENOTSUP);
255 	else
256 		return ((serengeti_cpu_poweroff)(cp));
257 }
258 
259 #ifdef DEBUG
260 pgcnt_t serengeti_cage_size_limit;
261 #endif
262 
263 /* Preferred minimum cage size (expressed in pages)... for DR */
264 pgcnt_t serengeti_minimum_cage_size = 0;
265 
266 void
267 set_platform_cage_params(void)
268 {
269 	extern pgcnt_t total_pages;
270 	extern struct memlist *phys_avail;
271 
272 	if (kernel_cage_enable) {
273 		pgcnt_t preferred_cage_size;
274 
275 		preferred_cage_size =
276 		    MAX(serengeti_minimum_cage_size, total_pages / 256);
277 #ifdef DEBUG
278 		if (serengeti_cage_size_limit)
279 			preferred_cage_size = serengeti_cage_size_limit;
280 #endif
281 		/*
282 		 * Post copies obp into the lowest slice.  This requires the
283 		 * cage to grow upwards
284 		 */
285 		kcage_range_init(phys_avail, KCAGE_UP, preferred_cage_size);
286 	}
287 
288 	/* Only note when the cage is off since it should always be on. */
289 	if (!kcage_on)
290 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
291 }
292 
293 #define	ALIGN(x, a)	((a) == 0 ? (uint64_t)(x) : \
294 	(((uint64_t)(x) + (uint64_t)(a) - 1l) & ~((uint64_t)(a) - 1l)))
295 
296 void
297 update_mem_bounds(int brd, uint64_t base, uint64_t sz)
298 {
299 	uint64_t	end;
300 	int		mnode;
301 
302 	end = base + sz - 1;
303 
304 	/*
305 	 * First see if this board already has a memnode associated
306 	 * with it.  If not, see if this slice has a memnode.  This
307 	 * covers the cases where a single slice covers multiple
308 	 * boards (cross-board interleaving) and where a single
309 	 * board has multiple slices (1+GB DIMMs).
310 	 */
311 	if ((mnode = plat_lgrphand_to_mem_node(brd)) == -1) {
312 		if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1)
313 			mnode = mem_node_alloc();
314 		plat_assign_lgrphand_to_mem_node(brd, mnode);
315 	}
316 
317 	/*
318 	 * Align base at 16GB boundary
319 	 */
320 	base = ALIGN(base, (1ul << PA_SLICE_SHIFT));
321 
322 	while (base < end) {
323 		slice_to_memnode[PA_2_SLICE(base)] = mnode;
324 		base += (1ul << PA_SLICE_SHIFT);
325 	}
326 }
327 
328 /*
329  * Dynamically detect memory slices in the system by decoding
330  * the cpu memory decoder registers at boot time.
331  */
332 void
333 plat_fill_mc(pnode_t nodeid)
334 {
335 	uint64_t	mc_addr, mask;
336 	uint64_t	mc_decode[SG_MAX_BANKS_PER_MC];
337 	uint64_t	base, size;
338 	uint32_t	regs[4];
339 	int		len;
340 	int		local_mc;
341 	int		portid;
342 	int		boardid;
343 	int		i;
344 
345 	if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
346 	    (portid == -1))
347 		return;
348 
349 	/*
350 	 * Decode the board number from the MC portid
351 	 */
352 	boardid = SG_PORTID_TO_BOARD_NUM(portid);
353 
354 	/*
355 	 * The "reg" property returns 4 32-bit values. The first two are
356 	 * combined to form a 64-bit address.  The second two are for a
357 	 * 64-bit size, but we don't actually need to look at that value.
358 	 */
359 	len = prom_getproplen(nodeid, "reg");
360 	if (len != (sizeof (uint32_t) * 4)) {
361 		prom_printf("Warning: malformed 'reg' property\n");
362 		return;
363 	}
364 	if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
365 		return;
366 	mc_addr = ((uint64_t)regs[0]) << 32;
367 	mc_addr |= (uint64_t)regs[1];
368 
369 	/*
370 	 * Figure out whether the memory controller we are examining
371 	 * belongs to this CPU or a different one.
372 	 */
373 	if (portid == cpunodes[CPU->cpu_id].portid)
374 		local_mc = 1;
375 	else
376 		local_mc = 0;
377 
378 	for (i = 0; i < SG_MAX_BANKS_PER_MC; i++) {
379 		mask = SG_REG_2_OFFSET(i);
380 
381 		/*
382 		 * If the memory controller is local to this CPU, we use
383 		 * the special ASI to read the decode registers.
384 		 * Otherwise, we load the values from a magic address in
385 		 * I/O space.
386 		 */
387 		if (local_mc)
388 			mc_decode[i] = lddmcdecode(mask & MC_OFFSET_MASK);
389 		else
390 			mc_decode[i] = lddphysio((mc_addr | mask));
391 
392 		if (mc_decode[i] >> MC_VALID_SHIFT) {
393 			/*
394 			 * The memory decode register is a bitmask field,
395 			 * so we can decode that into both a base and
396 			 * a span.
397 			 */
398 			base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
399 			size = MC_UK2SPAN(mc_decode[i]);
400 			update_mem_bounds(boardid, base, size);
401 		}
402 	}
403 }
404 
405 /*
406  * This routine is run midway through the boot process.  By the time we get
407  * here, we know about all the active CPU boards in the system, and we have
408  * extracted information about each board's memory from the memory
409  * controllers.  We have also figured out which ranges of memory will be
410  * assigned to which memnodes, so we walk the slice table to build the table
411  * of memnodes.
412  */
413 /* ARGSUSED */
414 void
415 plat_build_mem_nodes(prom_memlist_t *list, size_t  nelems)
416 {
417 	int	slice;
418 	pfn_t	basepfn;
419 	pgcnt_t	npgs;
420 
421 	mem_node_pfn_shift = PFN_SLICE_SHIFT;
422 	mem_node_physalign = (1ull << PA_SLICE_SHIFT);
423 
424 	for (slice = 0; slice < SG_MAX_SLICE; slice++) {
425 		if (slice_to_memnode[slice] == -1)
426 			continue;
427 		basepfn = (uint64_t)slice << PFN_SLICE_SHIFT;
428 		npgs = 1ull << PFN_SLICE_SHIFT;
429 		mem_node_add_slice(basepfn, basepfn + npgs - 1);
430 	}
431 }
432 
433 int
434 plat_pfn_to_mem_node(pfn_t pfn)
435 {
436 	int node;
437 
438 	node = slice_to_memnode[PFN_2_SLICE(pfn)];
439 
440 	return (node);
441 }
442 
443 /*
444  * Serengeti support for lgroups.
445  *
446  * On Serengeti, an lgroup platform handle == board number.
447  *
448  * Mappings between lgroup handles and memnodes are managed
449  * in addition to mappings between memory slices and memnodes
450  * to support cross-board interleaving as well as multiple
451  * slices per board (e.g. >1GB DIMMs). The initial mapping
452  * of memnodes to lgroup handles is determined at boot time.
453  * A DR addition of memory adds a new mapping. A DR copy-rename
454  * swaps mappings.
455  */
456 
457 /*
458  * Macro for extracting the board number from the CPU id
459  */
460 #define	CPUID_TO_BOARD(id)	(((id) >> 2) & 0x7)
461 
462 /*
463  * Return the platform handle for the lgroup containing the given CPU
464  *
465  * For Serengeti, lgroup platform handle == board number
466  */
467 lgrp_handle_t
468 plat_lgrp_cpu_to_hand(processorid_t id)
469 {
470 	return (CPUID_TO_BOARD(id));
471 }
472 
473 /*
474  * Platform specific lgroup initialization
475  */
476 void
477 plat_lgrp_init(void)
478 {
479 	int i;
480 	extern uint32_t lgrp_expand_proc_thresh;
481 	extern uint32_t lgrp_expand_proc_diff;
482 
483 	/*
484 	 * Initialize lookup tables to invalid values so we catch
485 	 * any illegal use of them.
486 	 */
487 	for (i = 0; i < SG_MAX_SLICE; i++) {
488 		slice_to_memnode[i] = -1;
489 	}
490 
491 	/*
492 	 * Set tuneables for Serengeti architecture
493 	 *
494 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
495 	 * this process is currently running on before considering
496 	 * expanding threads to another lgroup.
497 	 *
498 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
499 	 * must be loaded before expanding to it.
500 	 *
501 	 * Bandwidth is maximized on Serengeti by spreading load across
502 	 * the machine. The impact to inter-thread communication isn't
503 	 * too costly since remote latencies are relatively low.  These
504 	 * values equate to one CPU's load and so attempt to spread the
505 	 * load out across as many lgroups as possible one CPU at a time.
506 	 */
507 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX;
508 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
509 }
510 
511 /*
512  * Platform notification of lgroup (re)configuration changes
513  */
514 /*ARGSUSED*/
515 void
516 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
517 {
518 	update_membounds_t	*umb;
519 	lgrp_config_mem_rename_t lmr;
520 	lgrp_handle_t		shand, thand;
521 	int			snode, tnode;
522 
523 	switch (evt) {
524 
525 	case LGRP_CONFIG_MEM_ADD:
526 		umb = (update_membounds_t *)arg;
527 		update_mem_bounds(umb->u_board, umb->u_base, umb->u_len);
528 
529 		break;
530 
531 	case LGRP_CONFIG_MEM_DEL:
532 		/* We don't have to do anything */
533 
534 		break;
535 
536 	case LGRP_CONFIG_MEM_RENAME:
537 		/*
538 		 * During a DR copy-rename operation, all of the memory
539 		 * on one board is moved to another board -- but the
540 		 * addresses/pfns and memnodes don't change. This means
541 		 * the memory has changed locations without changing identity.
542 		 *
543 		 * Source is where we are copying from and target is where we
544 		 * are copying to.  After source memnode is copied to target
545 		 * memnode, the physical addresses of the target memnode are
546 		 * renamed to match what the source memnode had.  Then target
547 		 * memnode can be removed and source memnode can take its
548 		 * place.
549 		 *
550 		 * To do this, swap the lgroup handle to memnode mappings for
551 		 * the boards, so target lgroup will have source memnode and
552 		 * source lgroup will have empty target memnode which is where
553 		 * its memory will go (if any is added to it later).
554 		 *
555 		 * Then source memnode needs to be removed from its lgroup
556 		 * and added to the target lgroup where the memory was living
557 		 * but under a different name/memnode.  The memory was in the
558 		 * target memnode and now lives in the source memnode with
559 		 * different physical addresses even though it is the same
560 		 * memory.
561 		 */
562 		shand = arg & 0xffff;
563 		thand = (arg & 0xffff0000) >> 16;
564 		snode = plat_lgrphand_to_mem_node(shand);
565 		tnode = plat_lgrphand_to_mem_node(thand);
566 
567 		plat_assign_lgrphand_to_mem_node(thand, snode);
568 		plat_assign_lgrphand_to_mem_node(shand, tnode);
569 
570 		/*
571 		 * Remove source memnode of copy rename from its lgroup
572 		 * and add it to its new target lgroup
573 		 */
574 		lmr.lmem_rename_from = shand;
575 		lmr.lmem_rename_to = thand;
576 
577 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
578 		    (uintptr_t)&lmr);
579 
580 		break;
581 
582 	default:
583 		break;
584 	}
585 }
586 
587 /*
588  * Return latency between "from" and "to" lgroups
589  *
590  * This latency number can only be used for relative comparison
591  * between lgroups on the running system, cannot be used across platforms,
592  * and may not reflect the actual latency.  It is platform and implementation
593  * specific, so platform gets to decide its value.  It would be nice if the
594  * number was at least proportional to make comparisons more meaningful though.
595  * NOTE: The numbers below are supposed to be load latencies for uncached
596  * memory divided by 10.
597  */
598 int
599 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
600 {
601 	/*
602 	 * Return min remote latency when there are more than two lgroups
603 	 * (root and child) and getting latency between two different lgroups
604 	 * or root is involved
605 	 */
606 	if (lgrp_optimizations() && (from != to ||
607 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
608 		return (28);
609 	else
610 		return (23);
611 }
612 
613 /* ARGSUSED */
614 void
615 plat_freelist_process(int mnode)
616 {
617 }
618 
619 /*
620  * Find dip for chosen IOSRAM
621  */
622 dev_info_t *
623 find_chosen_dip(void)
624 {
625 	dev_info_t	*dip;
626 	char		master_sbbc[MAXNAMELEN];
627 	int		nodeid;
628 	uint_t		tunnel;
629 
630 	/*
631 	 * find the /chosen SBBC node, prom interface will handle errors
632 	 */
633 	nodeid = prom_chosennode();
634 	/*
635 	 * get the 'iosram' property from the /chosen node
636 	 */
637 	if (prom_getprop(nodeid, IOSRAM_CHOSEN_PROP, (caddr_t)&tunnel) <= 0) {
638 		SBBC_ERR(CE_PANIC, "No iosram property found! \n");
639 	}
640 
641 	if (prom_phandle_to_path((phandle_t)tunnel, master_sbbc,
642 	    sizeof (master_sbbc)) < 0) {
643 		SBBC_ERR1(CE_PANIC, "prom_phandle_to_path(%d) failed\n",
644 		    tunnel);
645 	}
646 
647 	chosen_nodeid = nodeid;
648 
649 	/*
650 	 * load and attach the sgsbbc driver.
651 	 * This will also attach all the sgsbbc driver instances
652 	 */
653 	if (i_ddi_attach_hw_nodes("sgsbbc") != DDI_SUCCESS) {
654 		cmn_err(CE_WARN, "sgsbbc failed to load\n");
655 	}
656 	/* translate a path name to a dev_info_t */
657 	dip = e_ddi_hold_devi_by_path(master_sbbc, 0);
658 	if ((dip == NULL) || (ddi_get_nodeid(dip) != tunnel)) {
659 		cmn_err(CE_PANIC,
660 		    "e_ddi_hold_devi_by_path(%x) failed for SBBC\n", tunnel);
661 	}
662 
663 	/* make sure devi_ref is ZERO */
664 	ndi_rele_devi(dip);
665 	DCMNERR(CE_CONT, "Chosen IOSRAM is at %s \n", master_sbbc);
666 
667 	return (dip);
668 }
669 
670 void
671 load_platform_drivers(void)
672 {
673 	int ret;
674 
675 	/*
676 	 * Load the mc-us3 memory driver.
677 	 */
678 	if (i_ddi_attach_hw_nodes("mc-us3") != DDI_SUCCESS)
679 		cmn_err(CE_WARN, "mc-us3 failed to load");
680 	else
681 		(void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
682 
683 	/*
684 	 * Initialize the chosen IOSRAM before its clients
685 	 * are loaded.
686 	 */
687 	(void) find_chosen_dip();
688 
689 	/*
690 	 * Load the environmentals driver (sgenv)
691 	 *
692 	 * We need this driver to handle events from the SC when state
693 	 * changes occur in the environmental data.
694 	 */
695 	if (i_ddi_attach_hw_nodes("sgenv") != DDI_SUCCESS)
696 		cmn_err(CE_WARN, "sgenv failed to load");
697 
698 	/*
699 	 * Ideally, we'd do this in set_platform_defaults(), but
700 	 * at that point it's too early to look up symbols.
701 	 */
702 	iosram_write_ptr = (int (*)(int, uint32_t, caddr_t, uint32_t))
703 	    modgetsymvalue("iosram_write", 0);
704 
705 	if (iosram_write_ptr == NULL) {
706 		DCMNERR(CE_WARN, "load_platform_defaults: iosram_write()"
707 		    " not found; signatures will not be updated\n");
708 	} else {
709 		/*
710 		 * The iosram read ptr is only needed if we can actually
711 		 * write CPU signatures, so only bother setting it if we
712 		 * set a valid write pointer, above.
713 		 */
714 		iosram_read_ptr = (int (*)(int, uint32_t, caddr_t, uint32_t))
715 		    modgetsymvalue("iosram_read", 0);
716 
717 		if (iosram_read_ptr == NULL)
718 			DCMNERR(CE_WARN, "load_platform_defaults: iosram_read()"
719 			    " not found\n");
720 	}
721 
722 	/*
723 	 * Set todsg_use_sc to TRUE so that we will be getting date
724 	 * from the SC.
725 	 */
726 	todsg_use_sc = TRUE;
727 
728 	/*
729 	 * Now is a good time to activate hardware watchdog (if one exists).
730 	 */
731 	mutex_enter(&tod_lock);
732 	if (watchdog_enable)
733 		ret = tod_ops.tod_set_watchdog_timer(watchdog_timeout_seconds);
734 	mutex_exit(&tod_lock);
735 	if (ret != 0)
736 		printf("Hardware watchdog enabled\n");
737 
738 	plat_ecc_init();
739 }
740 
741 /*
742  * No platform drivers on this platform
743  */
744 char *platform_module_list[] = {
745 	(char *)0
746 };
747 
748 /*ARGSUSED*/
749 void
750 plat_tod_fault(enum tod_fault_type tod_bad)
751 {
752 }
753 int
754 plat_max_boards()
755 {
756 	return (SG_MAX_BDS);
757 }
758 int
759 plat_max_io_units_per_board()
760 {
761 	return (SG_MAX_IO_PER_BD);
762 }
763 int
764 plat_max_cmp_units_per_board()
765 {
766 	return (SG_MAX_CMPS_PER_BD);
767 }
768 int
769 plat_max_cpu_units_per_board()
770 {
771 	return (SG_MAX_CPUS_PER_BD);
772 }
773 
774 int
775 plat_max_mc_units_per_board()
776 {
777 	return (SG_MAX_CMPS_PER_BD); /* each CPU die has a memory controller */
778 }
779 
780 int
781 plat_max_mem_units_per_board()
782 {
783 	return (SG_MAX_MEM_PER_BD);
784 }
785 
786 int
787 plat_max_cpumem_boards(void)
788 {
789 	return (LW8_MAX_CPU_BDS);
790 }
791 
792 int
793 set_platform_max_ncpus(void)
794 {
795 	return (sg_max_ncpus);
796 }
797 
798 void
799 plat_dmv_params(uint_t *hwint, uint_t *swint)
800 {
801 	*hwint = MAX_UPA;
802 	*swint = 0;
803 }
804 
805 static int (*sg_mbox)(sbbc_msg_t *, sbbc_msg_t *, time_t) = NULL;
806 
807 /*
808  * Our nodename has been set, pass it along to the SC.
809  */
810 void
811 plat_nodename_set(void)
812 {
813 	sbbc_msg_t	req;	/* request */
814 	sbbc_msg_t	resp;	/* response */
815 	int		rv;	/* return value from call to mbox */
816 	struct nodename_info {
817 		int32_t	namelen;
818 		char	nodename[_SYS_NMLN];
819 	} nni;
820 
821 	/*
822 	 * find the symbol for the mailbox routine
823 	 */
824 	if (sg_mbox == NULL)
825 		sg_mbox = (int (*)(sbbc_msg_t *, sbbc_msg_t *, time_t))
826 		    modgetsymvalue("sbbc_mbox_request_response", 0);
827 
828 	if (sg_mbox == NULL) {
829 		cmn_err(CE_NOTE, "!plat_nodename_set: sg_mbox not found\n");
830 		return;
831 	}
832 
833 	/*
834 	 * construct the message telling the SC our nodename
835 	 */
836 	(void) strcpy(nni.nodename, utsname.nodename);
837 	nni.namelen = (int32_t)strlen(nni.nodename);
838 
839 	req.msg_type.type = INFO_MBOX;
840 	req.msg_type.sub_type = INFO_MBOX_NODENAME;
841 	req.msg_status = 0;
842 	req.msg_len = (int)(nni.namelen + sizeof (nni.namelen));
843 	req.msg_bytes = 0;
844 	req.msg_buf = (caddr_t)&nni;
845 	req.msg_data[0] = 0;
846 	req.msg_data[1] = 0;
847 
848 	/*
849 	 * initialize the response back from the SC
850 	 */
851 	resp.msg_type.type = INFO_MBOX;
852 	resp.msg_type.sub_type = INFO_MBOX_NODENAME;
853 	resp.msg_status = 0;
854 	resp.msg_len = 0;
855 	resp.msg_bytes = 0;
856 	resp.msg_buf = (caddr_t)0;
857 	resp.msg_data[0] = 0;
858 	resp.msg_data[1] = 0;
859 
860 	/*
861 	 * ship it and check for success
862 	 */
863 	rv = (sg_mbox)(&req, &resp, sbbc_mbox_default_timeout);
864 
865 	if (rv != 0) {
866 		cmn_err(CE_NOTE, "!plat_nodename_set: sg_mbox retval %d\n", rv);
867 	} else if (resp.msg_status != 0) {
868 		cmn_err(CE_NOTE, "!plat_nodename_set: msg_status %d\n",
869 		    resp.msg_status);
870 	} else {
871 		DCMNERR(CE_NOTE, "!plat_nodename_set was successful\n");
872 
873 		/*
874 		 * It is necessary to exchange capability the bitmap
875 		 * with SC before sending any ecc error information and
876 		 * indictment. We are calling the plat_ecc_capability_send()
877 		 * here just after sending the nodename successfully.
878 		 */
879 		rv = plat_ecc_capability_send();
880 		if (rv == 0) {
881 			DCMNERR(CE_NOTE, "!plat_ecc_capability_send was"
882 			    "successful\n");
883 		}
884 	}
885 }
886 
887 /*
888  * flag to allow users switch between using OBP's
889  * prom_get_unum() and mc-us3 driver's p2get_mem_unum()
890  * (for main memory errors only).
891  */
892 int sg_use_prom_get_unum = 0;
893 
894 /*
895  * Debugging flag: set to 1 to call into obp for get_unum, or set it to 0
896  * to call into the unum cache system.  This is the E$ equivalent of
897  * sg_use_prom_get_unum.
898  */
899 int sg_use_prom_ecache_unum = 0;
900 
901 /* used for logging ECC errors to the SC */
902 #define	SG_MEMORY_ECC	1
903 #define	SG_ECACHE_ECC	2
904 #define	SG_UNKNOWN_ECC	(-1)
905 
906 /*
907  * plat_get_mem_unum() generates a string identifying either the
908  * memory or E$ DIMM(s) during error logging. Depending on whether
909  * the error is E$ or memory related, the appropriate support
910  * routine is called to assist in the string generation.
911  *
912  * - For main memory errors we can use the mc-us3 drivers p2getunum()
913  *   (or prom_get_unum() for debugging purposes).
914  *
915  * - For E$ errors we call sg_get_ecacheunum() to generate the unum (or
916  *   prom_serengeti_get_ecacheunum() for debugging purposes).
917  */
918 
919 static int
920 sg_prom_get_unum(int synd_code, uint64_t paddr, char *buf, int buflen,
921     int *lenp)
922 {
923 	if ((prom_get_unum(synd_code, (unsigned long long)paddr,
924 	    buf, buflen, lenp)) != 0)
925 		return (EIO);
926 	else if (*lenp <= 1)
927 		return (EINVAL);
928 	else
929 		return (0);
930 }
931 
932 /*ARGSUSED*/
933 int
934 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
935     int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
936 {
937 	/*
938 	 * unum_func will either point to the memory drivers p2get_mem_unum()
939 	 * or to prom_get_unum() for memory errors.
940 	 */
941 	int (*unum_func)(int synd_code, uint64_t paddr, char *buf,
942 	    int buflen, int *lenp) = p2get_mem_unum;
943 
944 	/*
945 	 * check if it's a Memory or an Ecache error.
946 	 */
947 	if (flt_in_memory) {
948 		/*
949 		 * It's a main memory error.
950 		 *
951 		 * For debugging we allow the user to switch between
952 		 * using OBP's get_unum and the memory driver's get_unum
953 		 * so we create a pointer to the functions and switch
954 		 * depending on the sg_use_prom_get_unum flag.
955 		 */
956 		if (sg_use_prom_get_unum) {
957 			DCMNERR(CE_NOTE, "Using prom_get_unum from OBP");
958 			return (sg_prom_get_unum(synd_code,
959 			    P2ALIGN(flt_addr, 8), buf, buflen, lenp));
960 		} else if (unum_func != NULL) {
961 			return (unum_func(synd_code, P2ALIGN(flt_addr, 8),
962 			    buf, buflen, lenp));
963 		} else {
964 			return (ENOTSUP);
965 		}
966 	} else if (flt_status & ECC_ECACHE) {
967 		/*
968 		 * It's an E$ error.
969 		 */
970 		if (sg_use_prom_ecache_unum) {
971 			/*
972 			 * We call to OBP to handle this.
973 			 */
974 			DCMNERR(CE_NOTE,
975 			    "Using prom_serengeti_get_ecacheunum from OBP");
976 			if (prom_serengeti_get_ecacheunum(flt_bus_id,
977 			    P2ALIGN(flt_addr, 8), buf, buflen, lenp) != 0) {
978 				return (EIO);
979 			}
980 		} else {
981 			return (sg_get_ecacheunum(flt_bus_id, flt_addr,
982 			    buf, buflen, lenp));
983 		}
984 	} else {
985 		return (ENOTSUP);
986 	}
987 
988 	return (0);
989 }
990 
991 /*
992  * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
993  * driver giving each platform the opportunity to add platform
994  * specific label information to the unum for ECC error logging purposes.
995  */
996 void
997 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
998 {
999 	char	new_unum[UNUM_NAMLEN] = "";
1000 	int	node = SG_PORTID_TO_NODEID(mcid);
1001 	int	board = SG_CPU_BD_PORTID_TO_BD_NUM(mcid);
1002 	int	position = SG_PORTID_TO_CPU_POSN(mcid);
1003 
1004 	/*
1005 	 * The mc-us3 driver deals with logical banks but for unum
1006 	 * purposes we need to use physical banks so that the correct
1007 	 * dimm can be physically located. Logical banks 0 and 2
1008 	 * make up physical bank 0. Logical banks 1 and 3 make up
1009 	 * physical bank 1. Here we do the necessary conversion.
1010 	 */
1011 	bank = (bank % 2);
1012 
1013 	if (dimm == -1) {
1014 		SG_SET_FRU_NAME_NODE(new_unum, node);
1015 		SG_SET_FRU_NAME_CPU_BOARD(new_unum, board);
1016 		SG_SET_FRU_NAME_MODULE(new_unum, position);
1017 		SG_SET_FRU_NAME_BANK(new_unum, bank);
1018 
1019 	} else {
1020 		SG_SET_FRU_NAME_NODE(new_unum, node);
1021 		SG_SET_FRU_NAME_CPU_BOARD(new_unum, board);
1022 		SG_SET_FRU_NAME_MODULE(new_unum, position);
1023 		SG_SET_FRU_NAME_BANK(new_unum, bank);
1024 		SG_SET_FRU_NAME_DIMM(new_unum, dimm);
1025 
1026 		strcat(new_unum, " ");
1027 		strcat(new_unum, unum);
1028 	}
1029 
1030 	strcpy(unum, new_unum);
1031 }
1032 
1033 int
1034 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
1035 {
1036 	int	node = SG_PORTID_TO_NODEID(cpuid);
1037 	int	board = SG_CPU_BD_PORTID_TO_BD_NUM(cpuid);
1038 
1039 	if (snprintf(buf, buflen, "/N%d/%s%d", node,
1040 	    SG_HPU_TYPE_CPU_BOARD_ID, board) >= buflen) {
1041 		return (ENOSPC);
1042 	} else {
1043 		*lenp = strlen(buf);
1044 		return (0);
1045 	}
1046 }
1047 
1048 static void (*sg_ecc_taskq_func)(sbbc_ecc_mbox_t *) = NULL;
1049 static int (*sg_ecc_mbox_func)(sbbc_ecc_mbox_t *) = NULL;
1050 
1051 /*
1052  * We log all ECC errors to the SC so we send a mailbox
1053  * message to the SC passing it the relevant data.
1054  * ECC mailbox messages are sent via a taskq mechanism to
1055  * prevent impaired system performance during ECC floods.
1056  * Indictments have already passed through a taskq, so they
1057  * are not queued here.
1058  */
1059 int
1060 plat_send_ecc_mailbox_msg(plat_ecc_message_type_t msg_type, void *datap)
1061 {
1062 	sbbc_ecc_mbox_t	*msgp;
1063 	uint16_t	msg_subtype;
1064 	int		sleep_flag, log_error;
1065 	size_t		msg_size;
1066 
1067 	if (sg_ecc_taskq_func == NULL) {
1068 		sg_ecc_taskq_func = (void (*)(sbbc_ecc_mbox_t *))
1069 		    modgetsymvalue("sbbc_mbox_queue_ecc_event", 0);
1070 		if (sg_ecc_taskq_func == NULL) {
1071 			cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1072 			    "sbbc_mbox_queue_ecc_event not found");
1073 			return (ENODEV);
1074 		}
1075 	}
1076 	if (sg_ecc_mbox_func == NULL) {
1077 		sg_ecc_mbox_func = (int (*)(sbbc_ecc_mbox_t *))
1078 		    modgetsymvalue("sbbc_mbox_ecc_output", 0);
1079 		if (sg_ecc_mbox_func == NULL) {
1080 			cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1081 			    "sbbc_mbox_ecc_output not found");
1082 			return (ENODEV);
1083 		}
1084 	}
1085 
1086 	/*
1087 	 * Initialize the request and response structures
1088 	 */
1089 	switch (msg_type) {
1090 	case PLAT_ECC_ERROR_MESSAGE:
1091 		msg_subtype = INFO_MBOX_ERROR_ECC;
1092 		msg_size = sizeof (plat_ecc_error_data_t);
1093 		sleep_flag = KM_NOSLEEP;
1094 		log_error = 1;
1095 		break;
1096 	case PLAT_ECC_ERROR2_MESSAGE:
1097 		msg_subtype = INFO_MBOX_ECC;
1098 		msg_size = sizeof (plat_ecc_error2_data_t);
1099 		sleep_flag = KM_NOSLEEP;
1100 		log_error = 1;
1101 		break;
1102 	case PLAT_ECC_INDICTMENT_MESSAGE:
1103 		msg_subtype = INFO_MBOX_ERROR_INDICT;
1104 		msg_size = sizeof (plat_ecc_indictment_data_t);
1105 		sleep_flag = KM_SLEEP;
1106 		log_error = 0;
1107 		break;
1108 	case PLAT_ECC_INDICTMENT2_MESSAGE:
1109 		msg_subtype = INFO_MBOX_ECC;
1110 		msg_size = sizeof (plat_ecc_indictment2_data_t);
1111 		sleep_flag = KM_SLEEP;
1112 		log_error = 0;
1113 		break;
1114 	case PLAT_ECC_CAPABILITY_MESSAGE:
1115 		msg_subtype = INFO_MBOX_ECC_CAP;
1116 		msg_size = sizeof (plat_capability_data_t) +
1117 		    strlen(utsname.release) + strlen(utsname.version) + 2;
1118 		sleep_flag = KM_SLEEP;
1119 		log_error = 0;
1120 		break;
1121 	case PLAT_ECC_DIMM_SID_MESSAGE:
1122 		msg_subtype = INFO_MBOX_ECC;
1123 		msg_size = sizeof (plat_dimm_sid_request_data_t);
1124 		sleep_flag = KM_SLEEP;
1125 		log_error = 0;
1126 		break;
1127 	default:
1128 		return (EINVAL);
1129 	}
1130 
1131 	msgp = (sbbc_ecc_mbox_t *)kmem_zalloc(sizeof (sbbc_ecc_mbox_t),
1132 	    sleep_flag);
1133 	if (msgp == NULL) {
1134 		cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1135 		    "unable to allocate sbbc_ecc_mbox");
1136 		return (ENOMEM);
1137 	}
1138 
1139 	msgp->ecc_log_error = log_error;
1140 
1141 	msgp->ecc_req.msg_type.type = INFO_MBOX;
1142 	msgp->ecc_req.msg_type.sub_type = msg_subtype;
1143 	msgp->ecc_req.msg_status = 0;
1144 	msgp->ecc_req.msg_len = (int)msg_size;
1145 	msgp->ecc_req.msg_bytes = 0;
1146 	msgp->ecc_req.msg_buf = (caddr_t)kmem_zalloc(msg_size, sleep_flag);
1147 	msgp->ecc_req.msg_data[0] = 0;
1148 	msgp->ecc_req.msg_data[1] = 0;
1149 
1150 	if (msgp->ecc_req.msg_buf == NULL) {
1151 		cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1152 		    "unable to allocate request msg_buf");
1153 		kmem_free((void *)msgp, sizeof (sbbc_ecc_mbox_t));
1154 		return (ENOMEM);
1155 	}
1156 
1157 	bcopy(datap, (void *)msgp->ecc_req.msg_buf, msg_size);
1158 
1159 	/*
1160 	 * initialize the response back from the SC
1161 	 */
1162 	msgp->ecc_resp.msg_type.type = INFO_MBOX;
1163 	msgp->ecc_resp.msg_type.sub_type = msg_subtype;
1164 	msgp->ecc_resp.msg_status = 0;
1165 	msgp->ecc_resp.msg_len = 0;
1166 	msgp->ecc_resp.msg_bytes = 0;
1167 	msgp->ecc_resp.msg_buf = NULL;
1168 	msgp->ecc_resp.msg_data[0] = 0;
1169 	msgp->ecc_resp.msg_data[1] = 0;
1170 
1171 	switch (msg_type) {
1172 	case PLAT_ECC_ERROR_MESSAGE:
1173 	case PLAT_ECC_ERROR2_MESSAGE:
1174 		/*
1175 		 * For Error Messages, we go through a taskq.
1176 		 * Queue up message for processing
1177 		 */
1178 		(*sg_ecc_taskq_func)(msgp);
1179 		return (0);
1180 
1181 	case PLAT_ECC_CAPABILITY_MESSAGE:
1182 		/*
1183 		 * For indictment and capability messages, we've already gone
1184 		 * through the taskq, so we can call the mailbox routine
1185 		 * directly.  Find the symbol for the routine that sends
1186 		 * the mailbox msg
1187 		 */
1188 		msgp->ecc_resp.msg_len = (int)msg_size;
1189 		msgp->ecc_resp.msg_buf = (caddr_t)kmem_zalloc(msg_size,
1190 		    sleep_flag);
1191 		/* FALLTHRU */
1192 
1193 	case PLAT_ECC_INDICTMENT_MESSAGE:
1194 	case PLAT_ECC_INDICTMENT2_MESSAGE:
1195 		return ((*sg_ecc_mbox_func)(msgp));
1196 
1197 	case PLAT_ECC_DIMM_SID_MESSAGE:
1198 		msgp->ecc_resp.msg_len = sizeof (plat_dimm_sid_board_data_t);
1199 		msgp->ecc_resp.msg_buf = (caddr_t)kmem_zalloc(
1200 		    sizeof (plat_dimm_sid_board_data_t), sleep_flag);
1201 
1202 		return ((*sg_ecc_mbox_func)(msgp));
1203 
1204 	default:
1205 		ASSERT(0);
1206 		return (EINVAL);
1207 	}
1208 }
1209 
1210 /*
1211  * m is redundant on serengeti as the multiplyer is always 4
1212  */
1213 /*ARGSUSED*/
1214 int
1215 plat_make_fru_cpuid(int sb, int m, int proc)
1216 {
1217 	return (MAKE_CPUID(sb, proc));
1218 }
1219 
1220 /*
1221  * board number for a given proc
1222  */
1223 int
1224 plat_make_fru_boardnum(int proc)
1225 {
1226 	return (SG_PORTID_TO_BOARD_NUM(proc));
1227 }
1228 
1229 static
1230 void
1231 cpu_sgn_update(ushort_t sig, uchar_t state, uchar_t sub_state, int cpuid)
1232 {
1233 	uint32_t signature = CPU_SIG_BLD(sig, state, sub_state);
1234 	sig_state_t current_sgn;
1235 	int i;
1236 
1237 	if (iosram_write_ptr == NULL) {
1238 		/*
1239 		 * If the IOSRAM write pointer isn't set, we won't be able
1240 		 * to write signatures to ANYTHING, so we may as well just
1241 		 * write out an error message (if desired) and exit this
1242 		 * routine now...
1243 		 */
1244 		DCMNERR(CE_WARN,
1245 		    "cpu_sgn_update: iosram_write() not found;"
1246 		    " cannot write signature 0x%x for CPU(s) or domain\n",
1247 		    signature);
1248 		return;
1249 	}
1250 
1251 
1252 	/*
1253 	 * Differentiate a panic reboot from a non-panic reboot in the
1254 	 * setting of the substate of the signature.
1255 	 *
1256 	 * If the new substate is REBOOT and we're rebooting due to a panic,
1257 	 * then set the new substate to a special value indicating a panic
1258 	 * reboot, SIGSUBST_PANIC_REBOOT.
1259 	 *
1260 	 * A panic reboot is detected by a current (previous) domain signature
1261 	 * state of SIGST_EXIT, and a new signature substate of SIGSUBST_REBOOT.
1262 	 * The domain signature state SIGST_EXIT is used as the panic flow
1263 	 * progresses.
1264 	 *
1265 	 * At the end of the panic flow, the reboot occurs but we should now
1266 	 * one that was involuntary, something that may be quite useful to know
1267 	 * at OBP level.
1268 	 */
1269 	if (sub_state == SIGSUBST_REBOOT) {
1270 		if (iosram_read_ptr == NULL) {
1271 			DCMNERR(CE_WARN,
1272 			    "cpu_sgn_update: iosram_read() not found;"
1273 			    " could not check current domain signature\n");
1274 		} else {
1275 			(void) (*iosram_read_ptr)(SBBC_SIGBLCK_KEY,
1276 			    SG_SGNBLK_DOMAINSIG_OFFSET,
1277 			    (char *)&current_sgn, sizeof (current_sgn));
1278 			if (current_sgn.state_t.state == SIGST_EXIT)
1279 				signature = CPU_SIG_BLD(sig, state,
1280 				    SIGSUBST_PANIC_REBOOT);
1281 		}
1282 	}
1283 
1284 	/*
1285 	 * cpuid == -1 indicates that the operation applies to all cpus.
1286 	 */
1287 	if (cpuid >= 0) {
1288 		(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1289 		    SG_SGNBLK_CPUSIG_OFFSET(cpuid), (char *)&signature,
1290 		    sizeof (signature));
1291 	} else {
1292 		for (i = 0; i < NCPU; i++) {
1293 			if (cpu[i] == NULL || !(cpu[i]->cpu_flags &
1294 			    (CPU_EXISTS|CPU_QUIESCED))) {
1295 				continue;
1296 			}
1297 			(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1298 			    SG_SGNBLK_CPUSIG_OFFSET(i), (char *)&signature,
1299 			    sizeof (signature));
1300 		}
1301 	}
1302 
1303 	if (state == SIGST_OFFLINE || state == SIGST_DETACHED) {
1304 		return;
1305 	}
1306 
1307 	(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1308 	    SG_SGNBLK_DOMAINSIG_OFFSET, (char *)&signature,
1309 	    sizeof (signature));
1310 }
1311 
1312 void
1313 startup_platform(void)
1314 {
1315 }
1316 
1317 /*
1318  * A routine to convert a number (represented as a string) to
1319  * the integer value it represents.
1320  */
1321 
1322 static int
1323 isdigit(int ch)
1324 {
1325 	return (ch >= '0' && ch <= '9');
1326 }
1327 
1328 #define	isspace(c)	((c) == ' ' || (c) == '\t' || (c) == '\n')
1329 
1330 static int
1331 strtoi(char *p, char **pos)
1332 {
1333 	int n;
1334 	int c, neg = 0;
1335 
1336 	if (!isdigit(c = *p)) {
1337 		while (isspace(c))
1338 			c = *++p;
1339 		switch (c) {
1340 			case '-':
1341 				neg++;
1342 				/* FALLTHROUGH */
1343 			case '+':
1344 			c = *++p;
1345 		}
1346 		if (!isdigit(c)) {
1347 			if (pos != NULL)
1348 				*pos = p;
1349 			return (0);
1350 		}
1351 	}
1352 	for (n = '0' - c; isdigit(c = *++p); ) {
1353 		n *= 10; /* two steps to avoid unnecessary overflow */
1354 		n += '0' - c; /* accum neg to avoid surprises at MAX */
1355 	}
1356 	if (pos != NULL)
1357 		*pos = p;
1358 	return (neg ? n : -n);
1359 }
1360 
1361 /*
1362  * Get the three parts of the Serengeti PROM version.
1363  * Used for feature readiness tests.
1364  *
1365  * Return 0 if version extracted successfully, -1 otherwise.
1366  */
1367 
1368 int
1369 sg_get_prom_version(int *sysp, int *intfp, int *bldp)
1370 {
1371 	int plen;
1372 	char vers[512];
1373 	static pnode_t node;
1374 	static char version[] = "version";
1375 	char *verp, *ep;
1376 
1377 	node = prom_finddevice("/openprom");
1378 	if (node == OBP_BADNODE)
1379 		return (-1);
1380 
1381 	plen = prom_getproplen(node, version);
1382 	if (plen <= 0 || plen >= sizeof (vers))
1383 		return (-1);
1384 	(void) prom_getprop(node, version, vers);
1385 	vers[plen] = '\0';
1386 
1387 	/* Make sure it's an OBP flashprom */
1388 	if (vers[0] != 'O' && vers[1] != 'B' && vers[2] != 'P') {
1389 		cmn_err(CE_WARN, "sg_get_prom_version: "
1390 		    "unknown <version> string in </openprom>\n");
1391 		return (-1);
1392 	}
1393 	verp = &vers[4];
1394 
1395 	*sysp = strtoi(verp, &ep);
1396 	if (ep == verp || *ep != '.')
1397 		return (-1);
1398 	verp = ep + 1;
1399 
1400 	*intfp = strtoi(verp, &ep);
1401 	if (ep == verp || *ep != '.')
1402 		return (-1);
1403 	verp = ep + 1;
1404 
1405 	*bldp = strtoi(verp, &ep);
1406 	if (ep == verp || (*ep != '\0' && !isspace(*ep)))
1407 		return (-1);
1408 	return (0);
1409 }
1410 
1411 /*
1412  * Return 0 if system board Dynamic Reconfiguration
1413  * is supported by the firmware, -1 otherwise.
1414  */
1415 int
1416 sg_prom_sb_dr_check(void)
1417 {
1418 	static int prom_res = 1;
1419 
1420 	if (prom_res == 1) {
1421 		int sys, intf, bld;
1422 		int rv;
1423 
1424 		rv = sg_get_prom_version(&sys, &intf, &bld);
1425 		if (rv == 0 && sys == 5 &&
1426 		    (intf >= 12 || (intf == 11 && bld >= 200))) {
1427 			prom_res = 0;
1428 		} else {
1429 			prom_res = -1;
1430 		}
1431 	}
1432 	return (prom_res);
1433 }
1434 
1435 /*
1436  * Return 0 if cPCI Dynamic Reconfiguration
1437  * is supported by the firmware, -1 otherwise.
1438  */
1439 int
1440 sg_prom_cpci_dr_check(void)
1441 {
1442 	/*
1443 	 * The version check is currently the same as for
1444 	 * system boards. Since the two DR sub-systems are
1445 	 * independent, this could change.
1446 	 */
1447 	return (sg_prom_sb_dr_check());
1448 }
1449 
1450 /*
1451  * Our implementation of this KDI op updates the CPU signature in the system
1452  * controller.  Note that we set the signature to OBP_SIG, rather than DBG_SIG.
1453  * The Forth words we execute will, among other things, transform our OBP_SIG
1454  * into DBG_SIG.  They won't function properly if we try to use DBG_SIG.
1455  */
1456 static void
1457 sg_system_claim(void)
1458 {
1459 	prom_interpret("sigb-sig! my-sigb-sig!", OBP_SIG, OBP_SIG, 0, 0, 0);
1460 }
1461 
1462 static void
1463 sg_system_release(void)
1464 {
1465 	prom_interpret("sigb-sig! my-sigb-sig!", OS_SIG, OS_SIG, 0, 0, 0);
1466 }
1467 
1468 static void
1469 sg_console_claim(void)
1470 {
1471 	prom_serengeti_set_console_input(SGCN_OBP_STR);
1472 }
1473 
1474 static void
1475 sg_console_release(void)
1476 {
1477 	prom_serengeti_set_console_input(SGCN_CLNT_STR);
1478 }
1479 
1480 void
1481 plat_kdi_init(kdi_t *kdi)
1482 {
1483 	kdi->pkdi_system_claim = sg_system_claim;
1484 	kdi->pkdi_system_release = sg_system_release;
1485 	kdi->pkdi_console_claim = sg_console_claim;
1486 	kdi->pkdi_console_release = sg_console_release;
1487 }
1488