xref: /titanic_51/usr/src/uts/sun4/os/startup.c (revision b2e8ece49d4c2e04af8e8e83caa60e23caa58061)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/machsystm.h>
30 #include <sys/archsystm.h>
31 #include <sys/vm.h>
32 #include <sys/cpu.h>
33 #include <sys/atomic.h>
34 #include <sys/reboot.h>
35 #include <sys/kdi.h>
36 #include <sys/bootconf.h>
37 #include <sys/memlist_plat.h>
38 #include <sys/memlist_impl.h>
39 #include <sys/prom_plat.h>
40 #include <sys/prom_isa.h>
41 #include <sys/autoconf.h>
42 #include <sys/intreg.h>
43 #include <sys/ivintr.h>
44 #include <sys/fpu/fpusystm.h>
45 #include <sys/iommutsb.h>
46 #include <vm/vm_dep.h>
47 #include <vm/seg_dev.h>
48 #include <vm/seg_kmem.h>
49 #include <vm/seg_kpm.h>
50 #include <vm/seg_map.h>
51 #include <vm/seg_kp.h>
52 #include <sys/sysconf.h>
53 #include <vm/hat_sfmmu.h>
54 #include <sys/kobj.h>
55 #include <sys/sun4asi.h>
56 #include <sys/clconf.h>
57 #include <sys/platform_module.h>
58 #include <sys/panic.h>
59 #include <sys/cpu_sgnblk_defs.h>
60 #include <sys/clock.h>
61 #include <sys/cmn_err.h>
62 #include <sys/promif.h>
63 #include <sys/prom_debug.h>
64 #include <sys/traptrace.h>
65 #include <sys/memnode.h>
66 #include <sys/mem_cage.h>
67 #include <sys/mmu.h>
68 
69 extern void setup_trap_table(void);
70 extern int cpu_intrq_setup(struct cpu *);
71 extern void cpu_intrq_register(struct cpu *);
72 extern void contig_mem_init(void);
73 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t);
74 extern void mach_dump_buffer_init(void);
75 extern void mach_descrip_init(void);
76 extern void mach_descrip_startup_fini(void);
77 extern void mach_memscrub(void);
78 extern void mach_fpras(void);
79 extern void mach_cpu_halt_idle(void);
80 extern void mach_hw_copy_limit(void);
81 extern void load_mach_drivers(void);
82 extern void load_tod_module(void);
83 #pragma weak load_tod_module
84 
85 extern int ndata_alloc_mmfsa(struct memlist *ndata);
86 #pragma weak ndata_alloc_mmfsa
87 
88 extern void cif_init(void);
89 #pragma weak cif_init
90 
91 extern void parse_idprom(void);
92 extern void add_vx_handler(char *, int, void (*)(cell_t *));
93 extern void mem_config_init(void);
94 extern void memseg_remap_init(void);
95 
96 extern void mach_kpm_init(void);
97 
98 /*
99  * External Data:
100  */
101 extern int vac_size;	/* cache size in bytes */
102 extern uint_t vac_mask;	/* VAC alignment consistency mask */
103 extern uint_t vac_colors;
104 
105 /*
106  * Global Data Definitions:
107  */
108 
109 /*
110  * XXX - Don't port this to new architectures
111  * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
112  * 'romp' has no use with a prom with an IEEE 1275 client interface.
113  * The driver doesn't use the value, but it depends on the symbol.
114  */
115 void *romp;		/* veritas driver won't load without romp 4154976 */
116 /*
117  * Declare these as initialized data so we can patch them.
118  */
119 pgcnt_t physmem = 0;	/* memory size in pages, patch if you want less */
120 pgcnt_t segkpsize =
121     btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
122 uint_t segmap_percent = 12; /* Size of segmap segment */
123 
124 int use_cache = 1;		/* cache not reliable (605 bugs) with MP */
125 int vac_copyback = 1;
126 char *cache_mode = NULL;
127 int use_mix = 1;
128 int prom_debug = 0;
129 
130 struct bootops *bootops = 0;	/* passed in from boot in %o2 */
131 caddr_t boot_tba;		/* %tba at boot - used by kmdb */
132 uint_t	tba_taken_over = 0;
133 
134 caddr_t s_text;			/* start of kernel text segment */
135 caddr_t e_text;			/* end of kernel text segment */
136 caddr_t s_data;			/* start of kernel data segment */
137 caddr_t e_data;			/* end of kernel data segment */
138 
139 caddr_t modtext;		/* beginning of module text */
140 size_t	modtext_sz;		/* size of module text */
141 caddr_t moddata;		/* beginning of module data reserve */
142 caddr_t e_moddata;		/* end of module data reserve */
143 
144 /*
145  * End of first block of contiguous kernel in 32-bit virtual address space
146  */
147 caddr_t		econtig32;	/* end of first blk of contiguous kernel */
148 
149 caddr_t		ncbase;		/* beginning of non-cached segment */
150 caddr_t		ncend;		/* end of non-cached segment */
151 caddr_t		sdata;		/* beginning of data segment */
152 
153 caddr_t		extra_etva;	/* beginning of unused nucleus text */
154 pgcnt_t		extra_etpg;	/* number of pages of unused nucleus text */
155 
156 size_t	ndata_remain_sz;	/* bytes from end of data to 4MB boundary */
157 caddr_t	nalloc_base;		/* beginning of nucleus allocation */
158 caddr_t nalloc_end;		/* end of nucleus allocatable memory */
159 caddr_t valloc_base;		/* beginning of kvalloc segment	*/
160 
161 caddr_t kmem64_base;		/* base of kernel mem segment in 64-bit space */
162 caddr_t kmem64_end;		/* end of kernel mem segment in 64-bit space */
163 caddr_t kmem64_aligned_end;	/* end of large page, overmaps 64-bit space */
164 int	kmem64_alignsize;	/* page size for mem segment in 64-bit space */
165 int	kmem64_szc;		/* page size code */
166 uint64_t kmem64_pabase = (uint64_t)-1;	/* physical address of kmem64_base */
167 
168 uintptr_t shm_alignment;	/* VAC address consistency modulus */
169 struct memlist *phys_install;	/* Total installed physical memory */
170 struct memlist *phys_avail;	/* Available (unreserved) physical memory */
171 struct memlist *virt_avail;	/* Available (unmapped?) virtual memory */
172 struct memlist ndata;		/* memlist of nucleus allocatable memory */
173 int memexp_flag;		/* memory expansion card flag */
174 uint64_t ecache_flushaddr;	/* physical address used for flushing E$ */
175 pgcnt_t obp_pages;		/* Physical pages used by OBP */
176 
177 /*
178  * VM data structures
179  */
180 long page_hashsz;		/* Size of page hash table (power of two) */
181 struct page *pp_base;		/* Base of system page struct array */
182 size_t pp_sz;			/* Size in bytes of page struct array */
183 struct page **page_hash;	/* Page hash table */
184 struct seg ktextseg;		/* Segment used for kernel executable image */
185 struct seg kvalloc;		/* Segment used for "valloc" mapping */
186 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
187 struct seg ktexthole;		/* Segment used for nucleus text hole */
188 struct seg kmapseg;		/* Segment used for generic kernel mappings */
189 struct seg kpmseg;		/* Segment used for physical mapping */
190 struct seg kdebugseg;		/* Segment used for the kernel debugger */
191 
192 uintptr_t kpm_pp_base;		/* Base of system kpm_page array */
193 size_t	kpm_pp_sz;		/* Size of system kpm_page array */
194 pgcnt_t	kpm_npages;		/* How many kpm pages are managed */
195 
196 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
197 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
198 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
199 
200 int segzio_fromheap = 0;	/* zio allocations occur from heap */
201 caddr_t segzio_base;		/* Base address of segzio */
202 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
203 
204 /*
205  * debugger pages (if allocated)
206  */
207 struct vnode kdebugvp;
208 
209 /*
210  * VA range available to the debugger
211  */
212 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
213 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
214 
215 /*
216  * Segment for relocated kernel structures in 64-bit large RAM kernels
217  */
218 struct seg kmem64;
219 
220 struct memseg *memseg_base;
221 size_t memseg_sz;		/* Used to translate a va to page */
222 struct vnode unused_pages_vp;
223 
224 /*
225  * VM data structures allocated early during boot.
226  */
227 size_t pagehash_sz;
228 uint64_t memlist_sz;
229 
230 char tbr_wr_addr_inited = 0;
231 
232 
233 /*
234  * Static Routines:
235  */
236 static void memlist_add(uint64_t, uint64_t, struct memlist **,
237 	struct memlist **);
238 static void kphysm_init(page_t *, struct memseg *, pgcnt_t, uintptr_t,
239 	pgcnt_t);
240 static void kvm_init(void);
241 
242 static void startup_init(void);
243 static void startup_memlist(void);
244 static void startup_modules(void);
245 static void startup_bop_gone(void);
246 static void startup_vm(void);
247 static void startup_end(void);
248 static void setup_cage_params(void);
249 static void startup_create_io_node(void);
250 
251 static pgcnt_t npages;
252 static struct memlist *memlist;
253 void *memlist_end;
254 
255 static pgcnt_t bop_alloc_pages;
256 static caddr_t hblk_base;
257 uint_t hblk_alloc_dynamic = 0;
258 uint_t hblk1_min = H1MIN;
259 
260 
261 /*
262  * Hooks for unsupported platforms and down-rev firmware
263  */
264 int iam_positron(void);
265 #pragma weak iam_positron
266 static void do_prom_version_check(void);
267 static void kpm_init(void);
268 static void kpm_npages_setup(int);
269 static void kpm_memseg_init(void);
270 
271 /*
272  * After receiving a thermal interrupt, this is the number of seconds
273  * to delay before shutting off the system, assuming
274  * shutdown fails.  Use /etc/system to change the delay if this isn't
275  * large enough.
276  */
277 int thermal_powerdown_delay = 1200;
278 
279 /*
280  * Used to hold off page relocations into the cage until OBP has completed
281  * its boot-time handoff of its resources to the kernel.
282  */
283 int page_relocate_ready = 0;
284 
285 /*
286  * Enable some debugging messages concerning memory usage...
287  */
288 #ifdef  DEBUGGING_MEM
289 static int debugging_mem;
290 static void
291 printmemlist(char *title, struct memlist *list)
292 {
293 	if (!debugging_mem)
294 		return;
295 
296 	printf("%s\n", title);
297 
298 	while (list) {
299 		prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
300 		    (uint32_t)(list->address >> 32), (uint32_t)list->address,
301 		    (uint32_t)(list->size >> 32), (uint32_t)(list->size));
302 		list = list->next;
303 	}
304 }
305 
306 void
307 printmemseg(struct memseg *memseg)
308 {
309 	if (!debugging_mem)
310 		return;
311 
312 	printf("memseg\n");
313 
314 	while (memseg) {
315 		prom_printf("\tpage = 0x%p, epage = 0x%p, "
316 		    "pfn = 0x%x, epfn = 0x%x\n",
317 		    memseg->pages, memseg->epages,
318 		    memseg->pages_base, memseg->pages_end);
319 		memseg = memseg->next;
320 	}
321 }
322 
323 #define	debug_pause(str)	halt((str))
324 #define	MPRINTF(str)		if (debugging_mem) prom_printf((str))
325 #define	MPRINTF1(str, a)	if (debugging_mem) prom_printf((str), (a))
326 #define	MPRINTF2(str, a, b)	if (debugging_mem) prom_printf((str), (a), (b))
327 #define	MPRINTF3(str, a, b, c) \
328 	if (debugging_mem) prom_printf((str), (a), (b), (c))
329 #else	/* DEBUGGING_MEM */
330 #define	MPRINTF(str)
331 #define	MPRINTF1(str, a)
332 #define	MPRINTF2(str, a, b)
333 #define	MPRINTF3(str, a, b, c)
334 #endif	/* DEBUGGING_MEM */
335 
336 /* Simple message to indicate that the bootops pointer has been zeroed */
337 #ifdef DEBUG
338 static int bootops_gone_on = 0;
339 #define	BOOTOPS_GONE() \
340 	if (bootops_gone_on) \
341 		prom_printf("The bootops vec is zeroed now!\n");
342 #else
343 #define	BOOTOPS_GONE()
344 #endif /* DEBUG */
345 
346 /*
347  * Monitor pages may not be where this says they are.
348  * and the debugger may not be there either.
349  *
350  * Note that 'pages' here are *physical* pages, which are 8k on sun4u.
351  *
352  *                        Physical memory layout
353  *                     (not necessarily contiguous)
354  *                       (THIS IS SOMEWHAT WRONG)
355  *                       /-----------------------\
356  *                       |       monitor pages   |
357  *             availmem -|-----------------------|
358  *                       |                       |
359  *                       |       page pool       |
360  *                       |                       |
361  *                       |-----------------------|
362  *                       |   configured tables   |
363  *                       |       buffers         |
364  *            firstaddr -|-----------------------|
365  *                       |   hat data structures |
366  *                       |-----------------------|
367  *                       |    kernel data, bss   |
368  *                       |-----------------------|
369  *                       |    interrupt stack    |
370  *                       |-----------------------|
371  *                       |    kernel text (RO)   |
372  *                       |-----------------------|
373  *                       |    trap table (4k)    |
374  *                       |-----------------------|
375  *               page 1  |      panicbuf         |
376  *                       |-----------------------|
377  *               page 0  |       reclaimed       |
378  *                       |_______________________|
379  *
380  *
381  *
382  *                    Kernel's Virtual Memory Layout.
383  *                       /-----------------------\
384  * 0xFFFFFFFF.FFFFFFFF  -|                       |-
385  *                       |   OBP's virtual page  |
386  *                       |        tables         |
387  * 0xFFFFFFFC.00000000  -|-----------------------|-
388  *                       :                       :
389  *                       :                       :
390  *                      -|-----------------------|-
391  *                       |       segzio          | (base and size vary)
392  * 0xFFFFFE00.00000000  -|-----------------------|-
393  *                       |                       |  Ultrasparc I/II support
394  *                       |    segkpm segment     |  up to 2TB of physical
395  *                       | (64-bit kernel ONLY)  |  memory, VAC has 2 colors
396  *                       |                       |
397  * 0xFFFFFA00.00000000  -|-----------------------|- 2TB segkpm alignment
398  *                       :                       :
399  *                       :                       :
400  * 0xFFFFF810.00000000  -|-----------------------|- hole_end
401  *                       |                       |      ^
402  *                       |  UltraSPARC I/II call |      |
403  *                       | bug requires an extra |      |
404  *                       | 4 GB of space between |      |
405  *                       |   hole and used RAM   |	|
406  *                       |                       |      |
407  * 0xFFFFF800.00000000  -|-----------------------|-     |
408  *                       |                       |      |
409  *                       | Virtual Address Hole  |   UltraSPARC
410  *                       |  on UltraSPARC I/II   |  I/II * ONLY *
411  *                       |                       |      |
412  * 0x00000800.00000000  -|-----------------------|-     |
413  *                       |                       |      |
414  *                       |  UltraSPARC I/II call |      |
415  *                       | bug requires an extra |      |
416  *                       | 4 GB of space between |      |
417  *                       |   hole and used RAM   |      |
418  *                       |                       |      v
419  * 0x000007FF.00000000  -|-----------------------|- hole_start -----
420  *                       :                       :		   ^
421  *                       :                       :		   |
422  * 0x00000XXX.XXX00000  -|-----------------------|- kmem64_	   |
423  *                       | overmapped area       |   alignend_end  |
424  *                       | (kmem64_alignsize     |		   |
425  *                       |  boundary)            |		   |
426  * 0x00000XXX.XXXXXXXX  -|-----------------------|- kmem64_end	   |
427  *                       |                       |		   |
428  *                       |   64-bit kernel ONLY  |		   |
429  *                       |                       |		   |
430  *                       |    kmem64 segment     |		   |
431  *                       |                       |		   |
432  *                       | (Relocated extra HME  |	     Approximately
433  *                       |   block allocations,  |	    1 TB of virtual
434  *                       |   memnode freelists,  |	     address space
435  *                       |    HME hash buckets,  |		   |
436  *                       | mml_table, kpmp_table,|		   |
437  *                       |  page_t array and     |		   |
438  *                       |  hashblock pool to    |		   |
439  *                       |   avoid hard-coded    |		   |
440  *                       |     32-bit vaddr      |		   |
441  *                       |     limitations)      |		   |
442  *                       |                       |		   v
443  * 0x00000700.00000000  -|-----------------------|- SYSLIMIT (kmem64_base)
444  *                       |                       |
445  *                       |  segkmem segment      | (SYSLIMIT - SYSBASE = 4TB)
446  *                       |                       |
447  * 0x00000300.00000000  -|-----------------------|- SYSBASE
448  *                       :                       :
449  *                       :                       :
450  *                      -|-----------------------|-
451  *                       |                       |
452  *                       |  segmap segment       |   SEGMAPSIZE (1/8th physmem,
453  *                       |                       |               256G MAX)
454  * 0x000002a7.50000000  -|-----------------------|- SEGMAPBASE
455  *                       :                       :
456  *                       :                       :
457  *                      -|-----------------------|-
458  *                       |                       |
459  *                       |       segkp           |    SEGKPSIZE (2GB)
460  *                       |                       |
461  *                       |                       |
462  * 0x000002a1.00000000  -|-----------------------|- SEGKPBASE
463  *                       |                       |
464  * 0x000002a0.00000000  -|-----------------------|- MEMSCRUBBASE
465  *                       |                       |       (SEGKPBASE - 0x400000)
466  * 0x0000029F.FFE00000  -|-----------------------|- ARGSBASE
467  *                       |                       |       (MEMSCRUBBASE - NCARGS)
468  * 0x0000029F.FFD80000  -|-----------------------|- PPMAPBASE
469  *                       |                       |       (ARGSBASE - PPMAPSIZE)
470  * 0x0000029F.FFD00000  -|-----------------------|- PPMAP_FAST_BASE
471  *                       |                       |
472  * 0x0000029F.FF980000  -|-----------------------|- PIOMAPBASE
473  *                       |                       |
474  * 0x0000029F.FF580000  -|-----------------------|- NARG_BASE
475  *                       :                       :
476  *                       :                       :
477  * 0x00000000.FFFFFFFF  -|-----------------------|- OFW_END_ADDR
478  *                       |                       |
479  *                       |         OBP           |
480  *                       |                       |
481  * 0x00000000.F0000000  -|-----------------------|- OFW_START_ADDR
482  *                       |         kmdb          |
483  * 0x00000000.EDD00000  -|-----------------------|- SEGDEBUGBASE
484  *                       :                       :
485  *                       :                       :
486  * 0x00000000.7c000000  -|-----------------------|- SYSLIMIT32
487  *                       |                       |
488  *                       |  segkmem32 segment    | (SYSLIMIT32 - SYSBASE32 =
489  *                       |                       |    ~64MB)
490  * 0x00000000.78002000  -|-----------------------|
491  *                       |     panicbuf          |
492  * 0x00000000.78000000  -|-----------------------|- SYSBASE32
493  *                       :                       :
494  *                       :                       :
495  *                       |                       |
496  *                       |-----------------------|- econtig32
497  *                       |    vm structures      |
498  * 0x00000000.01C00000   |-----------------------|- nalloc_end
499  *                       |         TSBs          |
500  *                       |-----------------------|- end/nalloc_base
501  *                       |   kernel data & bss   |
502  * 0x00000000.01800000  -|-----------------------|
503  *                       :   nucleus text hole   :
504  * 0x00000000.01400000  -|-----------------------|
505  *                       :                       :
506  *                       |-----------------------|
507  *                       |      module text      |
508  *                       |-----------------------|- e_text/modtext
509  *                       |      kernel text      |
510  *                       |-----------------------|
511  *                       |    trap table (48k)   |
512  * 0x00000000.01000000  -|-----------------------|- KERNELBASE
513  *                       | reserved for trapstat |} TSTAT_TOTAL_SIZE
514  *                       |-----------------------|
515  *                       |                       |
516  *                       |        invalid        |
517  *                       |                       |
518  * 0x00000000.00000000  _|_______________________|
519  *
520  *
521  *
522  *                   32-bit User Virtual Memory Layout.
523  *                       /-----------------------\
524  *                       |                       |
525  *                       |        invalid        |
526  *                       |                       |
527  *          0xFFC00000  -|-----------------------|- USERLIMIT
528  *                       |       user stack      |
529  *                       :                       :
530  *                       :                       :
531  *                       :                       :
532  *                       |       user data       |
533  *                      -|-----------------------|-
534  *                       |       user text       |
535  *          0x00002000  -|-----------------------|-
536  *                       |       invalid         |
537  *          0x00000000  _|_______________________|
538  *
539  *
540  *
541  *                   64-bit User Virtual Memory Layout.
542  *                       /-----------------------\
543  *                       |                       |
544  *                       |        invalid        |
545  *                       |                       |
546  *  0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
547  *                       |       user stack      |
548  *                       :                       :
549  *                       :                       :
550  *                       :                       :
551  *                       |       user data       |
552  *                      -|-----------------------|-
553  *                       |       user text       |
554  *  0x00000000.00100000 -|-----------------------|-
555  *                       |       invalid         |
556  *  0x00000000.00000000 _|_______________________|
557  */
558 
559 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
560 extern uint64_t ecache_flush_address(void);
561 
562 #pragma weak load_platform_modules
563 #pragma weak plat_startup_memlist
564 #pragma weak ecache_init_scrub_flush_area
565 #pragma weak ecache_flush_address
566 
567 
568 /*
569  * By default the DR Cage is enabled for maximum OS
570  * MPSS performance.  Users needing to disable the cage mechanism
571  * can set this variable to zero via /etc/system.
572  * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
573  * will result in loss of DR functionality.
574  * Platforms wishing to disable kernel Cage by default
575  * should do so in their set_platform_defaults() routine.
576  */
577 int	kernel_cage_enable = 1;
578 
579 static void
580 setup_cage_params(void)
581 {
582 	void (*func)(void);
583 
584 	func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
585 	if (func != NULL) {
586 		(*func)();
587 		return;
588 	}
589 
590 	if (kernel_cage_enable == 0) {
591 		return;
592 	}
593 	kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256);
594 
595 	if (kcage_on) {
596 		cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
597 	} else {
598 		cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
599 	}
600 
601 }
602 
603 /*
604  * Machine-dependent startup code
605  */
606 void
607 startup(void)
608 {
609 	startup_init();
610 	if (&startup_platform)
611 		startup_platform();
612 	startup_memlist();
613 	startup_modules();
614 	setup_cage_params();
615 	startup_bop_gone();
616 	startup_vm();
617 	startup_end();
618 }
619 
620 struct regs sync_reg_buf;
621 uint64_t sync_tt;
622 
623 void
624 sync_handler(void)
625 {
626 	struct  trap_info 	ti;
627 	int i;
628 
629 	/*
630 	 * Prevent trying to talk to the other CPUs since they are
631 	 * sitting in the prom and won't reply.
632 	 */
633 	for (i = 0; i < NCPU; i++) {
634 		if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
635 			cpu[i]->cpu_flags &= ~CPU_READY;
636 			cpu[i]->cpu_flags |= CPU_QUIESCED;
637 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
638 		}
639 	}
640 
641 	/*
642 	 * We've managed to get here without going through the
643 	 * normal panic code path. Try and save some useful
644 	 * information.
645 	 */
646 	if (!panicstr && (curthread->t_panic_trap == NULL)) {
647 		ti.trap_type = sync_tt;
648 		ti.trap_regs = &sync_reg_buf;
649 		ti.trap_addr = NULL;
650 		ti.trap_mmu_fsr = 0x0;
651 
652 		curthread->t_panic_trap = &ti;
653 	}
654 
655 	/*
656 	 * If we're re-entering the panic path, update the signature
657 	 * block so that the SC knows we're in the second part of panic.
658 	 */
659 	if (panicstr)
660 		CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
661 
662 	nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
663 	panic("sync initiated");
664 }
665 
666 
667 static void
668 startup_init(void)
669 {
670 	/*
671 	 * We want to save the registers while we're still in OBP
672 	 * so that we know they haven't been fiddled with since.
673 	 * (In principle, OBP can't change them just because it
674 	 * makes a callback, but we'd rather not depend on that
675 	 * behavior.)
676 	 */
677 	char		sync_str[] =
678 		"warning @ warning off : sync "
679 		"%%tl-c %%tstate h# %p x! "
680 		"%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
681 		"%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
682 		"%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
683 		"%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
684 		"%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
685 		"%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
686 		"%%y h# %p l! %%tl-c %%tt h# %p x! "
687 		"sync ; warning !";
688 
689 	/*
690 	 * 20 == num of %p substrings
691 	 * 16 == max num of chars %p will expand to.
692 	 */
693 	char 		bp[sizeof (sync_str) + 16 * 20];
694 
695 	(void) check_boot_version(BOP_GETVERSION(bootops));
696 
697 	/*
698 	 * Initialize ptl1 stack for the 1st CPU.
699 	 */
700 	ptl1_init_cpu(&cpu0);
701 
702 	/*
703 	 * Initialize the address map for cache consistent mappings
704 	 * to random pages; must be done after vac_size is set.
705 	 */
706 	ppmapinit();
707 
708 	/*
709 	 * Initialize the PROM callback handler.
710 	 */
711 	init_vx_handler();
712 
713 	/*
714 	 * have prom call sync_callback() to handle the sync and
715 	 * save some useful information which will be stored in the
716 	 * core file later.
717 	 */
718 	(void) sprintf((char *)bp, sync_str,
719 		(void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
720 		(void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
721 		(void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
722 		(void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
723 		(void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
724 		(void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
725 		(void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
726 		(void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
727 		(void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
728 		(void *)&sync_reg_buf.r_y, (void *)&sync_tt);
729 	prom_interpret(bp, 0, 0, 0, 0, 0);
730 	add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
731 }
732 
733 static u_longlong_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
734 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
735 
736 #define	IVSIZE	((MAXIVNUM * sizeof (intr_vec_t *)) + \
737 		(MAX_RSVD_IV * sizeof (intr_vec_t)) + \
738 		(MAX_RSVD_IVX * sizeof (intr_vecx_t)))
739 
740 #if !defined(C_OBP)
741 /*
742  * Install a temporary tte handler in OBP for kmem64 area.
743  *
744  * We map kmem64 area with large pages before the trap table is taken
745  * over. Since OBP makes 8K mappings, it can create 8K tlb entries in
746  * the same area. Duplicate tlb entries with different page sizes
747  * cause unpredicatble behavior.  To avoid this, we don't create
748  * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to
749  * OBP).  Instead, we manage translations with a temporary va>tte-data
750  * handler (kmem64-tte).  This handler is replaced by unix-tte when
751  * the trap table is taken over.
752  *
753  * The temporary handler knows the physical address of the kmem64
754  * area. It uses the prom's pgmap@ Forth word for other addresses.
755  *
756  * We have to use BOP_ALLOC() method for C-OBP platforms because
757  * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti
758  * sun4u platforms. On sun4u we flush tlb after trap table is taken
759  * over if we use large pages for kernel heap and kmem64. Since sun4u
760  * prom (unlike sun4v) calls va>tte-data first for client address
761  * translation prom's ttes for kmem64 can't get into TLB even if we
762  * later switch to prom's trap table again. C-OBP uses 4M pages for
763  * client mappings when possible so on all platforms we get the
764  * benefit from large mappings for kmem64 area immediately during
765  * boot.
766  *
767  * pseudo code:
768  * if (context != 0) {
769  * 	return false
770  * } else if (miss_va in range[kmem64_base, kmem64_end)) {
771  *	tte = tte_template +
772  *		(((miss_va & pagemask) - kmem64_base));
773  *	return tte, true
774  * } else {
775  *	return pgmap@ result
776  * }
777  */
778 char kmem64_obp_str[] =
779 	"h# %lx constant kmem64_base "
780 	"h# %lx constant kmem64_end "
781 	"h# %lx constant kmem64_pagemask "
782 	"h# %lx constant kmem64_template "
783 
784 	": kmem64-tte ( addr cnum -- false | tte-data true ) "
785 	"    if                                       ( addr ) "
786 	"       drop false exit then                  ( false ) "
787 	"    dup  kmem64_base kmem64_end  within  if  ( addr ) "
788 	"	kmem64_pagemask and                   ( addr' ) "
789 	"	kmem64_base -                         ( addr' ) "
790 	"	kmem64_template +                     ( tte ) "
791 	"	true                                  ( tte true ) "
792 	"    else                                     ( addr ) "
793 	"	pgmap@                                ( tte ) "
794 	"       dup 0< if true else drop false then   ( tte true  |  false ) "
795 	"    then                                     ( tte true  |  false ) "
796 	"; "
797 
798 	"' kmem64-tte is va>tte-data "
799 ;
800 
801 void
802 install_kmem64_tte()
803 {
804 	char b[sizeof (kmem64_obp_str) + (4 * 16)];
805 	tte_t tte;
806 
807 	PRM_DEBUG(kmem64_pabase);
808 	PRM_DEBUG(kmem64_szc);
809 	sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT,
810 	    PROC_DATA | HAT_NOSYNC, kmem64_szc);
811 	PRM_DEBUG(tte.ll);
812 	(void) sprintf(b, kmem64_obp_str,
813 	    kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll);
814 	ASSERT(strlen(b) < sizeof (b));
815 	prom_interpret(b, 0, 0, 0, 0, 0);
816 }
817 #endif	/* !C_OBP */
818 
819 /*
820  * As OBP takes up some RAM when the system boots, pages will already be "lost"
821  * to the system and reflected in npages by the time we see it.
822  *
823  * We only want to allocate kernel structures in the 64-bit virtual address
824  * space on systems with enough RAM to make the overhead of keeping track of
825  * an extra kernel memory segment worthwhile.
826  *
827  * Since OBP has already performed its memory allocations by this point, if we
828  * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
829  * memory in the 64-bit virtual address space; otherwise keep allocations
830  * contiguous with we've mapped so far in the 32-bit virtual address space.
831  */
832 #define	MINMOVE_RAM_MB	((size_t)1900)
833 #define	MB_TO_BYTES(mb)	((mb) * 1048576ul)
834 
835 pgcnt_t	tune_npages = (pgcnt_t)
836 	(MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
837 
838 #pragma weak page_set_colorequiv_arr_cpu
839 extern void page_set_colorequiv_arr_cpu(void);
840 
841 static void
842 startup_memlist(void)
843 {
844 	size_t alloc_sz;
845 	size_t ctrs_sz;
846 	caddr_t alloc_base;
847 	caddr_t ctrs_base, ctrs_end;
848 	caddr_t memspace;
849 	caddr_t va;
850 	int memblocks = 0;
851 	struct memlist *cur;
852 	size_t syslimit = (size_t)SYSLIMIT;
853 	size_t sysbase = (size_t)SYSBASE;
854 	int alloc_alignsize = ecache_alignsize;
855 	int i;
856 	extern void page_coloring_init(void);
857 	extern void page_set_colorequiv_arr(void);
858 
859 	/*
860 	 * Initialize enough of the system to allow kmem_alloc to work by
861 	 * calling boot to allocate its memory until the time that
862 	 * kvm_init is completed.  The page structs are allocated after
863 	 * rounding up end to the nearest page boundary; the memsegs are
864 	 * initialized and the space they use comes from the kernel heap.
865 	 * With appropriate initialization, they can be reallocated later
866 	 * to a size appropriate for the machine's configuration.
867 	 *
868 	 * At this point, memory is allocated for things that will never
869 	 * need to be freed, this used to be "valloced".  This allows a
870 	 * savings as the pages don't need page structures to describe
871 	 * them because them will not be managed by the vm system.
872 	 */
873 
874 	/*
875 	 * We're loaded by boot with the following configuration (as
876 	 * specified in the sun4u/conf/Mapfile):
877 	 *
878 	 * 	text:		4 MB chunk aligned on a 4MB boundary
879 	 * 	data & bss:	4 MB chunk aligned on a 4MB boundary
880 	 *
881 	 * These two chunks will eventually be mapped by 2 locked 4MB
882 	 * ttes and will represent the nucleus of the kernel.  This gives
883 	 * us some free space that is already allocated, some or all of
884 	 * which is made available to kernel module text.
885 	 *
886 	 * The free space in the data-bss chunk is used for nucleus
887 	 * allocatable data structures and we reserve it using the
888 	 * nalloc_base and nalloc_end variables.  This space is currently
889 	 * being used for hat data structures required for tlb miss
890 	 * handling operations.  We align nalloc_base to a l2 cache
891 	 * linesize because this is the line size the hardware uses to
892 	 * maintain cache coherency.
893 	 * 256K is carved out for module data.
894 	 */
895 
896 	nalloc_base = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
897 	moddata = nalloc_base;
898 	e_moddata = nalloc_base + MODDATA;
899 	nalloc_base = e_moddata;
900 
901 	nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
902 	valloc_base = nalloc_base;
903 
904 	/*
905 	 * Calculate the start of the data segment.
906 	 */
907 	sdata = (caddr_t)((uintptr_t)e_data & MMU_PAGEMASK4M);
908 
909 	PRM_DEBUG(moddata);
910 	PRM_DEBUG(nalloc_base);
911 	PRM_DEBUG(nalloc_end);
912 	PRM_DEBUG(sdata);
913 
914 	/*
915 	 * Remember any slop after e_text so we can give it to the modules.
916 	 */
917 	PRM_DEBUG(e_text);
918 	modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
919 	if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text)
920 		prom_panic("nucleus text overflow");
921 	modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
922 	    modtext;
923 	PRM_DEBUG(modtext);
924 	PRM_DEBUG(modtext_sz);
925 
926 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
927 	    &boot_physavail, &boot_physavail_len,
928 	    &boot_virtavail, &boot_virtavail_len);
929 	/*
930 	 * Remember what the physically available highest page is
931 	 * so that dumpsys works properly, and find out how much
932 	 * memory is installed.
933 	 */
934 	installed_top_size_memlist_array(boot_physinstalled,
935 	    boot_physinstalled_len, &physmax, &physinstalled);
936 	PRM_DEBUG(physinstalled);
937 	PRM_DEBUG(physmax);
938 
939 	/* Fill out memory nodes config structure */
940 	startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
941 
942 	/*
943 	 * Get the list of physically available memory to size
944 	 * the number of page structures needed.
945 	 */
946 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
947 	/*
948 	 * This first snap shot of npages can represent the pages used
949 	 * by OBP's text and data approximately. This is used in the
950 	 * the calculation of the kernel size
951 	 */
952 	obp_pages = physinstalled - npages;
953 
954 
955 	/*
956 	 * On small-memory systems (<MODTEXT_SM_SIZE MB, currently 256MB), the
957 	 * in-nucleus module text is capped to MODTEXT_SM_CAP bytes (currently
958 	 * 2MB) and any excess pages are put on physavail.  The assumption is
959 	 * that small-memory systems will need more pages more than they'll
960 	 * need efficiently-mapped module texts.
961 	 */
962 	if ((physinstalled < mmu_btop(MODTEXT_SM_SIZE << 20)) &&
963 	    modtext_sz > MODTEXT_SM_CAP) {
964 		extra_etpg = mmu_btop(modtext_sz - MODTEXT_SM_CAP);
965 		modtext_sz = MODTEXT_SM_CAP;
966 		extra_etva = modtext + modtext_sz;
967 	}
968 
969 	PRM_DEBUG(extra_etpg);
970 	PRM_DEBUG(modtext_sz);
971 	PRM_DEBUG(extra_etva);
972 
973 	/*
974 	 * Account for any pages after e_text and e_data.
975 	 */
976 	npages += extra_etpg;
977 	npages += mmu_btopr(nalloc_end - nalloc_base);
978 	PRM_DEBUG(npages);
979 
980 	/*
981 	 * npages is the maximum of available physical memory possible.
982 	 * (ie. it will never be more than this)
983 	 */
984 
985 	/*
986 	 * initialize the nucleus memory allocator.
987 	 */
988 	ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
989 
990 	/*
991 	 * Allocate mmu fault status area from the nucleus data area.
992 	 */
993 	if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
994 		cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
995 
996 	/*
997 	 * Allocate kernel TSBs from the nucleus data area.
998 	 */
999 	if (ndata_alloc_tsbs(&ndata, npages) != 0)
1000 		cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
1001 
1002 	/*
1003 	 * Allocate dmv dispatch table from the nucleus data area.
1004 	 */
1005 	if (ndata_alloc_dmv(&ndata) != 0)
1006 		cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
1007 
1008 
1009 	page_coloring_init();
1010 
1011 	/*
1012 	 * Allocate page_freelists bin headers for memnode 0 from the
1013 	 * nucleus data area.
1014 	 */
1015 	if (ndata_alloc_page_freelists(&ndata, 0) != 0)
1016 		cmn_err(CE_PANIC,
1017 		    "no more nucleus memory after page free lists alloc");
1018 
1019 	if (kpm_enable) {
1020 		kpm_init();
1021 		/*
1022 		 * kpm page space -- Update kpm_npages and make the
1023 		 * same assumption about fragmenting as it is done
1024 		 * for memseg_sz.
1025 		 */
1026 		kpm_npages_setup(memblocks + 4);
1027 	}
1028 
1029 	/*
1030 	 * Allocate hat related structs from the nucleus data area.
1031 	 */
1032 	if (ndata_alloc_hat(&ndata, npages, kpm_npages) != 0)
1033 		cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
1034 
1035 	/*
1036 	 * We want to do the BOP_ALLOCs before the real allocation of page
1037 	 * structs in order to not have to allocate page structs for this
1038 	 * memory.  We need to calculate a virtual address because we want
1039 	 * the page structs to come before other allocations in virtual address
1040 	 * space.  This is so some (if not all) of page structs can actually
1041 	 * live in the nucleus.
1042 	 */
1043 
1044 	/*
1045 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1046 	 *
1047 	 * There are comments all over the SFMMU code warning of dire
1048 	 * consequences if the TSBs are moved out of 32-bit space.  This
1049 	 * is largely because the asm code uses "sethi %hi(addr)"-type
1050 	 * instructions which will not provide the expected result if the
1051 	 * address is a 64-bit one.
1052 	 *
1053 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1054 	 */
1055 	alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
1056 	alloc_base = sfmmu_ktsb_alloc(alloc_base);
1057 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1058 	PRM_DEBUG(alloc_base);
1059 
1060 	/*
1061 	 * Allocate IOMMU TSB array.  We do this here so that the physical
1062 	 * memory gets deducted from the PROM's physical memory list.
1063 	 */
1064 	alloc_base = iommu_tsb_init(alloc_base);
1065 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1066 	    ecache_alignsize);
1067 	PRM_DEBUG(alloc_base);
1068 
1069 	/*
1070 	 * Platforms like Starcat and OPL need special structures assigned in
1071 	 * 32-bit virtual address space because their probing routines execute
1072 	 * FCode, and FCode can't handle 64-bit virtual addresses...
1073 	 */
1074 	if (&plat_startup_memlist) {
1075 		alloc_base = plat_startup_memlist(alloc_base);
1076 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1077 		    ecache_alignsize);
1078 		PRM_DEBUG(alloc_base);
1079 	}
1080 
1081 	/*
1082 	 * Save off where the contiguous allocations to date have ended
1083 	 * in econtig32.
1084 	 */
1085 	econtig32 = alloc_base;
1086 	PRM_DEBUG(econtig32);
1087 
1088 	if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1089 		cmn_err(CE_PANIC, "econtig32 too big");
1090 
1091 	/*
1092 	 * To avoid memory allocation collisions in the 32-bit virtual address
1093 	 * space, make allocations from this point forward in 64-bit virtual
1094 	 * address space starting at syslimit and working up.
1095 	 *
1096 	 * All this is needed because on large memory systems, the default
1097 	 * Solaris allocations will collide with SYSBASE32, which is hard
1098 	 * coded to be at the virtual address 0x78000000.  Therefore, on 64-bit
1099 	 * kernels, move the allocations to a location in the 64-bit virtual
1100 	 * address space space, allowing those structures to grow without
1101 	 * worry.
1102 	 *
1103 	 * On current CPUs we'll run out of physical memory address bits before
1104 	 * we need to worry about the allocations running into anything else in
1105 	 * VM or the virtual address holes on US-I and II, as there's currently
1106 	 * about 1 TB of addressable space before the US-I/II VA hole.
1107 	 */
1108 	kmem64_base = (caddr_t)syslimit;
1109 	PRM_DEBUG(kmem64_base);
1110 
1111 	/*
1112 	 * Allocate addresses, but not physical memory. None of these locations
1113 	 * can be touched until physical memory is allocated below.
1114 	 */
1115 	alloc_base = kmem64_base;
1116 
1117 	/*
1118 	 * If KHME and/or UHME hash buckets won't fit in the nucleus, allocate
1119 	 * them here.
1120 	 */
1121 	if (khme_hash == NULL || uhme_hash == NULL) {
1122 		/*
1123 		 * alloc_hme_buckets() will align alloc_base properly before
1124 		 * assigning the hash buckets, so we don't need to do it
1125 		 * before the call...
1126 		 */
1127 		alloc_base = alloc_hme_buckets(alloc_base, alloc_alignsize);
1128 
1129 		PRM_DEBUG(alloc_base);
1130 		PRM_DEBUG(khme_hash);
1131 		PRM_DEBUG(uhme_hash);
1132 	}
1133 
1134 	/*
1135 	 * Allow for an early allocation of physically contiguous memory.
1136 	 */
1137 	alloc_base = contig_mem_prealloc(alloc_base, npages);
1138 
1139 	/*
1140 	 * Allocate the remaining page freelists.  NUMA systems can
1141 	 * have lots of page freelists, one per node, which quickly
1142 	 * outgrow the amount of nucleus memory available.
1143 	 */
1144 	if (max_mem_nodes > 1) {
1145 		int mnode;
1146 
1147 		for (mnode = 1; mnode < max_mem_nodes; mnode++) {
1148 			alloc_base = alloc_page_freelists(mnode, alloc_base,
1149 				ecache_alignsize);
1150 		}
1151 		PRM_DEBUG(alloc_base);
1152 	}
1153 
1154 	if (!mml_table) {
1155 		size_t mmltable_sz;
1156 
1157 		/*
1158 		 * We need to allocate the mml_table here because there
1159 		 * was not enough space within the nucleus.
1160 		 */
1161 		mmltable_sz = sizeof (kmutex_t) * mml_table_sz;
1162 		alloc_sz = roundup(mmltable_sz, alloc_alignsize);
1163 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1164 		    alloc_alignsize);
1165 		mml_table = (kmutex_t *)alloc_base;
1166 		alloc_base += alloc_sz;
1167 		PRM_DEBUG(mml_table);
1168 		PRM_DEBUG(alloc_base);
1169 	}
1170 
1171 	if (kpm_enable && !(kpmp_table || kpmp_stable)) {
1172 		size_t kpmptable_sz;
1173 		caddr_t table;
1174 
1175 		/*
1176 		 * We need to allocate either kpmp_table or kpmp_stable here
1177 		 * because there was not enough space within the nucleus.
1178 		 */
1179 		kpmptable_sz = (kpm_smallpages == 0) ?
1180 				sizeof (kpm_hlk_t) * kpmp_table_sz :
1181 				sizeof (kpm_shlk_t) * kpmp_stable_sz;
1182 
1183 		alloc_sz = roundup(kpmptable_sz, alloc_alignsize);
1184 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1185 		    alloc_alignsize);
1186 
1187 		table = alloc_base;
1188 
1189 		if (kpm_smallpages == 0) {
1190 			kpmp_table = (kpm_hlk_t *)table;
1191 			PRM_DEBUG(kpmp_table);
1192 		} else {
1193 			kpmp_stable = (kpm_shlk_t *)table;
1194 			PRM_DEBUG(kpmp_stable);
1195 		}
1196 
1197 		alloc_base += alloc_sz;
1198 		PRM_DEBUG(alloc_base);
1199 	}
1200 
1201 	if (&ecache_init_scrub_flush_area) {
1202 		/*
1203 		 * Pass alloc_base directly, as the routine itself is
1204 		 * responsible for any special alignment requirements...
1205 		 */
1206 		alloc_base = ecache_init_scrub_flush_area(alloc_base);
1207 		PRM_DEBUG(alloc_base);
1208 	}
1209 
1210 	/*
1211 	 * Take the most current snapshot we can by calling mem-update.
1212 	 */
1213 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1214 	    &boot_physavail, &boot_physavail_len,
1215 	    &boot_virtavail, &boot_virtavail_len);
1216 
1217 	/*
1218 	 * Reset npages and memblocks based on boot_physavail list.
1219 	 */
1220 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
1221 	PRM_DEBUG(npages);
1222 
1223 	/*
1224 	 * Account for extra memory after e_text.
1225 	 */
1226 	npages += extra_etpg;
1227 
1228 	/*
1229 	 * Calculate the largest free memory chunk in the nucleus data area.
1230 	 * We need to figure out if page structs can fit in there or not.
1231 	 * We also make sure enough page structs get created for any physical
1232 	 * memory we might be returning to the system.
1233 	 */
1234 	ndata_remain_sz = ndata_maxsize(&ndata);
1235 	PRM_DEBUG(ndata_remain_sz);
1236 
1237 	pp_sz = sizeof (struct page) * npages;
1238 
1239 	/*
1240 	 * Here's a nice bit of code based on somewhat recursive logic:
1241 	 *
1242 	 * If the page array would fit within the nucleus, we want to
1243 	 * add npages to cover any extra memory we may be returning back
1244 	 * to the system.
1245 	 *
1246 	 * HOWEVER, the page array is sized by calculating the size of
1247 	 * (struct page * npages), as are the pagehash table, ctrs and
1248 	 * memseg_list, so the very act of performing the calculation below may
1249 	 * in fact make the array large enough that it no longer fits in the
1250 	 * nucleus, meaning there would now be a much larger area of the
1251 	 * nucleus free that should really be added to npages, which would
1252 	 * make the page array that much larger, and so on.
1253 	 *
1254 	 * This also ignores the memory possibly used in the nucleus for the
1255 	 * the page hash, ctrs and memseg list and the fact that whether they
1256 	 * fit there or not varies with the npages calculation below, but we
1257 	 * don't even factor them into the equation at this point; perhaps we
1258 	 * should or perhaps we should just take the approach that the few
1259 	 * extra pages we could add via this calculation REALLY aren't worth
1260 	 * the hassle...
1261 	 */
1262 	if (ndata_remain_sz > pp_sz) {
1263 		size_t spare = ndata_spare(&ndata, pp_sz, ecache_alignsize);
1264 
1265 		npages += mmu_btop(spare);
1266 
1267 		pp_sz = npages * sizeof (struct page);
1268 
1269 		pp_base = ndata_alloc(&ndata, pp_sz, ecache_alignsize);
1270 	}
1271 
1272 	/*
1273 	 * If physmem is patched to be non-zero, use it instead of
1274 	 * the monitor value unless physmem is larger than the total
1275 	 * amount of memory on hand.
1276 	 */
1277 	if (physmem == 0 || physmem > npages)
1278 		physmem = npages;
1279 
1280 	/*
1281 	 * If pp_base is NULL that means the routines above have determined
1282 	 * the page array will not fit in the nucleus; we'll have to
1283 	 * BOP_ALLOC() ourselves some space for them.
1284 	 */
1285 	if (pp_base == NULL) {
1286 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1287 		    alloc_alignsize);
1288 		alloc_sz = roundup(pp_sz, alloc_alignsize);
1289 
1290 		pp_base = (struct page *)alloc_base;
1291 
1292 		alloc_base += alloc_sz;
1293 	}
1294 
1295 	/*
1296 	 * The page structure hash table size is a power of 2
1297 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1298 	 */
1299 	page_hashsz = npages / PAGE_HASHAVELEN;
1300 	page_hashsz = 1 << highbit((ulong_t)page_hashsz);
1301 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1302 
1303 	/*
1304 	 * We want to TRY to fit the page structure hash table,
1305 	 * the page size free list counters, the memseg list and
1306 	 * and the kpm page space in the nucleus if possible.
1307 	 *
1308 	 * alloc_sz counts how much memory needs to be allocated by
1309 	 * BOP_ALLOC().
1310 	 */
1311 	page_hash = ndata_alloc(&ndata, pagehash_sz, ecache_alignsize);
1312 
1313 	alloc_sz = (page_hash == NULL ? pagehash_sz : 0);
1314 
1315 	/*
1316 	 * Size up per page size free list counters.
1317 	 */
1318 	ctrs_sz = page_ctrs_sz();
1319 	ctrs_base = ndata_alloc(&ndata, ctrs_sz, ecache_alignsize);
1320 
1321 	if (ctrs_base == NULL)
1322 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + ctrs_sz;
1323 
1324 	/*
1325 	 * The memseg list is for the chunks of physical memory that
1326 	 * will be managed by the vm system.  The number calculated is
1327 	 * a guess as boot may fragment it more when memory allocations
1328 	 * are made before kphysm_init().  Currently, there are two
1329 	 * allocations before then, so we assume each causes fragmen-
1330 	 * tation, and add a couple more for good measure.
1331 	 */
1332 	memseg_sz = sizeof (struct memseg) * (memblocks + 4);
1333 	memseg_base = ndata_alloc(&ndata, memseg_sz, ecache_alignsize);
1334 
1335 	if (memseg_base == NULL)
1336 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + memseg_sz;
1337 
1338 
1339 	if (kpm_enable) {
1340 		/*
1341 		 * kpm page space -- Update kpm_npages and make the
1342 		 * same assumption about fragmenting as it is done
1343 		 * for memseg_sz above.
1344 		 */
1345 		kpm_npages_setup(memblocks + 4);
1346 		kpm_pp_sz = (kpm_smallpages == 0) ?
1347 		    kpm_npages * sizeof (kpm_page_t):
1348 		    kpm_npages * sizeof (kpm_spage_t);
1349 
1350 		kpm_pp_base = (uintptr_t)ndata_alloc(&ndata, kpm_pp_sz,
1351 		    ecache_alignsize);
1352 
1353 		if (kpm_pp_base == NULL)
1354 			alloc_sz = roundup(alloc_sz, ecache_alignsize) +
1355 			    kpm_pp_sz;
1356 	}
1357 
1358 	if (alloc_sz > 0) {
1359 		uintptr_t bop_base;
1360 
1361 		/*
1362 		 * We need extra memory allocated through BOP_ALLOC.
1363 		 */
1364 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1365 		    alloc_alignsize);
1366 
1367 		alloc_sz = roundup(alloc_sz, alloc_alignsize);
1368 
1369 		bop_base = (uintptr_t)alloc_base;
1370 
1371 		alloc_base += alloc_sz;
1372 
1373 		if (page_hash == NULL) {
1374 			page_hash = (struct page **)bop_base;
1375 			bop_base = roundup(bop_base + pagehash_sz,
1376 			    ecache_alignsize);
1377 		}
1378 
1379 		if (ctrs_base == NULL) {
1380 			ctrs_base = (caddr_t)bop_base;
1381 			bop_base = roundup(bop_base + ctrs_sz,
1382 			    ecache_alignsize);
1383 		}
1384 
1385 		if (memseg_base == NULL) {
1386 			memseg_base = (struct memseg *)bop_base;
1387 			bop_base = roundup(bop_base + memseg_sz,
1388 			    ecache_alignsize);
1389 		}
1390 
1391 		if (kpm_enable && kpm_pp_base == NULL) {
1392 			kpm_pp_base = (uintptr_t)bop_base;
1393 			bop_base = roundup(bop_base + kpm_pp_sz,
1394 			    ecache_alignsize);
1395 		}
1396 
1397 		ASSERT(bop_base <= (uintptr_t)alloc_base);
1398 	}
1399 
1400 	PRM_DEBUG(page_hash);
1401 	PRM_DEBUG(memseg_base);
1402 	PRM_DEBUG(kpm_pp_base);
1403 	PRM_DEBUG(kpm_pp_sz);
1404 	PRM_DEBUG(pp_base);
1405 	PRM_DEBUG(pp_sz);
1406 	PRM_DEBUG(alloc_base);
1407 
1408 #ifdef	TRAPTRACE
1409 	alloc_base = trap_trace_alloc(alloc_base);
1410 	PRM_DEBUG(alloc_base);
1411 #endif	/* TRAPTRACE */
1412 
1413 	/*
1414 	 * In theory it's possible that kmem64 chunk is 0 sized
1415 	 * (on very small machines). Check for that.
1416 	 */
1417 	if (alloc_base == kmem64_base) {
1418 		kmem64_base = NULL;
1419 		kmem64_end = NULL;
1420 		kmem64_aligned_end = NULL;
1421 		goto kmem64_alloced;
1422 	}
1423 
1424 	/*
1425 	 * Allocate kmem64 memory.
1426 	 * Round up to end of large page and overmap.
1427 	 * kmem64_end..kmem64_aligned_end is added to memory list for reuse
1428 	 */
1429 	kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base,
1430 	    MMU_PAGESIZE);
1431 
1432 	/*
1433 	 * Make one large memory alloc after figuring out the 64-bit size. This
1434 	 * will enable use of the largest page size appropriate for the system
1435 	 * architecture.
1436 	 */
1437 	ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K));
1438 	ASSERT(IS_P2ALIGNED(kmem64_base, TTEBYTES(max_bootlp_tteszc)));
1439 	for (i = max_bootlp_tteszc; i >= TTE8K; i--) {
1440 		size_t asize;
1441 #if !defined(C_OBP)
1442 		unsigned long long pa;
1443 #endif	/* !C_OBP */
1444 
1445 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0)
1446 			continue;
1447 		kmem64_alignsize = TTEBYTES(i);
1448 		kmem64_szc = i;
1449 
1450 		/* limit page size for small memory */
1451 		if (mmu_btop(kmem64_alignsize) > (npages >> 2))
1452 			continue;
1453 
1454 		kmem64_aligned_end = (caddr_t)roundup((uintptr_t)kmem64_end,
1455 		    kmem64_alignsize);
1456 		asize = kmem64_aligned_end - kmem64_base;
1457 #if !defined(C_OBP)
1458 		if (prom_allocate_phys(asize, kmem64_alignsize, &pa) == 0) {
1459 			if (prom_claim_virt(asize, kmem64_base) !=
1460 			    (caddr_t)-1) {
1461 				kmem64_pabase = pa;
1462 				install_kmem64_tte();
1463 				break;
1464 			} else {
1465 				prom_free_phys(asize, pa);
1466 			}
1467 		}
1468 #else	/* !C_OBP */
1469 		if ((caddr_t)BOP_ALLOC(bootops, kmem64_base, asize,
1470 		    kmem64_alignsize) == kmem64_base) {
1471 			kmem64_pabase = va_to_pa(kmem64_base);
1472 			break;
1473 		}
1474 #endif	/* !C_OBP */
1475 		if (i == TTE8K) {
1476 			prom_panic("kmem64 allocation failure");
1477 		}
1478 	}
1479 
1480 	PRM_DEBUG(kmem64_base);
1481 	PRM_DEBUG(kmem64_end);
1482 	PRM_DEBUG(kmem64_aligned_end);
1483 	PRM_DEBUG(kmem64_alignsize);
1484 
1485 	/*
1486 	 * Now set pa using saved va from above.
1487 	 */
1488 	if (&ecache_init_scrub_flush_area) {
1489 		(void) ecache_init_scrub_flush_area(NULL);
1490 	}
1491 
1492 kmem64_alloced:
1493 
1494 	/*
1495 	 * Initialize per page size free list counters.
1496 	 */
1497 	ctrs_end = page_ctrs_alloc(ctrs_base);
1498 	ASSERT(ctrs_base + ctrs_sz >= ctrs_end);
1499 
1500 	/*
1501 	 * Allocate space for the interrupt vector table and also for the
1502 	 * reserved interrupt vector data structures.
1503 	 */
1504 	memspace = (caddr_t)BOP_ALLOC(bootops, (caddr_t)intr_vec_table,
1505 	    IVSIZE, MMU_PAGESIZE);
1506 	if (memspace != (caddr_t)intr_vec_table)
1507 		prom_panic("interrupt vector table allocation failure");
1508 
1509 	/*
1510 	 * The memory lists from boot are allocated from the heap arena
1511 	 * so that later they can be freed and/or reallocated.
1512 	 */
1513 	if (BOP_GETPROP(bootops, "extent", &memlist_sz) == -1)
1514 		prom_panic("could not retrieve property \"extent\"");
1515 
1516 	/*
1517 	 * Between now and when we finish copying in the memory lists,
1518 	 * allocations happen so the space gets fragmented and the
1519 	 * lists longer.  Leave enough space for lists twice as long
1520 	 * as what boot says it has now; roundup to a pagesize.
1521 	 * Also add space for the final phys-avail copy in the fixup
1522 	 * routine.
1523 	 */
1524 	va = (caddr_t)(sysbase + PAGESIZE + PANICBUFSIZE +
1525 	    roundup(IVSIZE, MMU_PAGESIZE));
1526 	memlist_sz *= 4;
1527 	memlist_sz = roundup(memlist_sz, MMU_PAGESIZE);
1528 	memspace = (caddr_t)BOP_ALLOC(bootops, va, memlist_sz, BO_NO_ALIGN);
1529 	if (memspace == NULL)
1530 		halt("Boot allocation failed.");
1531 
1532 	memlist = (struct memlist *)memspace;
1533 	memlist_end = (char *)memspace + memlist_sz;
1534 
1535 	PRM_DEBUG(memlist);
1536 	PRM_DEBUG(memlist_end);
1537 	PRM_DEBUG(sysbase);
1538 	PRM_DEBUG(syslimit);
1539 
1540 	kernelheap_init((void *)sysbase, (void *)syslimit,
1541 	    (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1542 
1543 	/*
1544 	 * Take the most current snapshot we can by calling mem-update.
1545 	 */
1546 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1547 	    &boot_physavail, &boot_physavail_len,
1548 	    &boot_virtavail, &boot_virtavail_len);
1549 
1550 	/*
1551 	 * Remove the space used by BOP_ALLOC from the kernel heap
1552 	 * plus the area actually used by the OBP (if any)
1553 	 * ignoring virtual addresses in virt_avail, above syslimit.
1554 	 */
1555 	virt_avail = memlist;
1556 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1557 
1558 	for (cur = virt_avail; cur->next; cur = cur->next) {
1559 		uint64_t range_base, range_size;
1560 
1561 		if ((range_base = cur->address + cur->size) < (uint64_t)sysbase)
1562 			continue;
1563 		if (range_base >= (uint64_t)syslimit)
1564 			break;
1565 		/*
1566 		 * Limit the range to end at syslimit.
1567 		 */
1568 		range_size = MIN(cur->next->address,
1569 		    (uint64_t)syslimit) - range_base;
1570 		(void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1571 		    0, 0, (void *)range_base, (void *)(range_base + range_size),
1572 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1573 	}
1574 
1575 	phys_avail = memlist;
1576 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1577 	    &memlist, 0, 0);
1578 
1579 	/*
1580 	 * Add any unused kmem64 memory from overmapped page
1581 	 * (Note: va_to_pa does not work for kmem64_end)
1582 	 */
1583 	if (kmem64_end < kmem64_aligned_end) {
1584 		uint64_t overlap_size = kmem64_aligned_end - kmem64_end;
1585 		uint64_t overlap_pa = kmem64_pabase +
1586 		    (kmem64_end - kmem64_base);
1587 
1588 		PRM_DEBUG(overlap_pa);
1589 		PRM_DEBUG(overlap_size);
1590 		memlist_add(overlap_pa, overlap_size, &memlist, &phys_avail);
1591 	}
1592 
1593 	/*
1594 	 * Add any extra memory after e_text to the phys_avail list, as long
1595 	 * as there's at least a page to add.
1596 	 */
1597 	if (extra_etpg)
1598 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1599 		    &memlist, &phys_avail);
1600 
1601 	/*
1602 	 * Add any extra memory at the end of the ndata region if there's at
1603 	 * least a page to add.  There might be a few more pages available in
1604 	 * the middle of the ndata region, but for now they are ignored.
1605 	 */
1606 	nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end);
1607 	if (nalloc_base == NULL)
1608 		nalloc_base = nalloc_end;
1609 	ndata_remain_sz = nalloc_end - nalloc_base;
1610 
1611 	if (ndata_remain_sz >= MMU_PAGESIZE)
1612 		memlist_add(va_to_pa(nalloc_base),
1613 		    (uint64_t)ndata_remain_sz, &memlist, &phys_avail);
1614 
1615 	PRM_DEBUG(memlist);
1616 	PRM_DEBUG(memlist_sz);
1617 	PRM_DEBUG(memspace);
1618 
1619 	if ((caddr_t)memlist > (memspace + memlist_sz))
1620 		prom_panic("memlist overflow");
1621 
1622 	PRM_DEBUG(pp_base);
1623 	PRM_DEBUG(memseg_base);
1624 	PRM_DEBUG(npages);
1625 
1626 	/*
1627 	 * Initialize the page structures from the memory lists.
1628 	 */
1629 	kphysm_init(pp_base, memseg_base, npages, kpm_pp_base, kpm_npages);
1630 
1631 	availrmem_initial = availrmem = freemem;
1632 	PRM_DEBUG(availrmem);
1633 
1634 	/*
1635 	 * Some of the locks depend on page_hashsz being set!
1636 	 * kmem_init() depends on this; so, keep it here.
1637 	 */
1638 	page_lock_init();
1639 
1640 	/*
1641 	 * Initialize kernel memory allocator.
1642 	 */
1643 	kmem_init();
1644 
1645 	/*
1646 	 * Factor in colorequiv to check additional 'equivalent' bins
1647 	 */
1648 	if (&page_set_colorequiv_arr_cpu != NULL)
1649 		page_set_colorequiv_arr_cpu();
1650 	else
1651 		page_set_colorequiv_arr();
1652 
1653 	/*
1654 	 * Initialize bp_mapin().
1655 	 */
1656 	bp_init(shm_alignment, HAT_STRICTORDER);
1657 
1658 	/*
1659 	 * Reserve space for panicbuf, intr_vec_table and reserved interrupt
1660 	 * vector data structures from the 32-bit heap.
1661 	 */
1662 	(void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
1663 	    panicbuf, panicbuf + PANICBUFSIZE,
1664 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1665 
1666 	(void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
1667 	    intr_vec_table, (caddr_t)intr_vec_table + IVSIZE,
1668 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1669 
1670 	mem_config_init();
1671 }
1672 
1673 static void
1674 startup_modules(void)
1675 {
1676 	int proplen, nhblk1, nhblk8;
1677 	size_t  nhblksz;
1678 	pgcnt_t pages_per_hblk;
1679 	size_t hme8blk_sz, hme1blk_sz;
1680 
1681 	/*
1682 	 * Log any optional messages from the boot program
1683 	 */
1684 	proplen = (size_t)BOP_GETPROPLEN(bootops, "boot-message");
1685 	if (proplen > 0) {
1686 		char *msg;
1687 		size_t len = (size_t)proplen;
1688 
1689 		msg = kmem_zalloc(len, KM_SLEEP);
1690 		(void) BOP_GETPROP(bootops, "boot-message", msg);
1691 		cmn_err(CE_CONT, "?%s\n", msg);
1692 		kmem_free(msg, len);
1693 	}
1694 
1695 	/*
1696 	 * Let the platforms have a chance to change default
1697 	 * values before reading system file.
1698 	 */
1699 	if (&set_platform_defaults)
1700 		set_platform_defaults();
1701 
1702 	/*
1703 	 * Calculate default settings of system parameters based upon
1704 	 * maxusers, yet allow to be overridden via the /etc/system file.
1705 	 */
1706 	param_calc(0);
1707 
1708 	mod_setup();
1709 
1710 	/*
1711 	 * If this is a positron, complain and halt.
1712 	 */
1713 	if (&iam_positron && iam_positron()) {
1714 		cmn_err(CE_WARN, "This hardware platform is not supported"
1715 		    " by this release of Solaris.\n");
1716 #ifdef DEBUG
1717 		prom_enter_mon();	/* Type 'go' to resume */
1718 		cmn_err(CE_WARN, "Booting an unsupported platform.\n");
1719 		cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
1720 
1721 #else /* DEBUG */
1722 		halt(0);
1723 #endif /* DEBUG */
1724 	}
1725 
1726 	/*
1727 	 * If we are running firmware that isn't 64-bit ready
1728 	 * then complain and halt.
1729 	 */
1730 	do_prom_version_check();
1731 
1732 	/*
1733 	 * Initialize system parameters
1734 	 */
1735 	param_init();
1736 
1737 	/*
1738 	 * maxmem is the amount of physical memory we're playing with.
1739 	 */
1740 	maxmem = physmem;
1741 
1742 	/* Set segkp limits. */
1743 	ncbase = kdi_segdebugbase;
1744 	ncend = kdi_segdebugbase;
1745 
1746 	/*
1747 	 * Initialize the hat layer.
1748 	 */
1749 	hat_init();
1750 
1751 	/*
1752 	 * Initialize segment management stuff.
1753 	 */
1754 	seg_init();
1755 
1756 	/*
1757 	 * Create the va>tte handler, so the prom can understand
1758 	 * kernel translations.  The handler is installed later, just
1759 	 * as we are about to take over the trap table from the prom.
1760 	 */
1761 	create_va_to_tte();
1762 
1763 	/*
1764 	 * Load the forthdebugger (optional)
1765 	 */
1766 	forthdebug_init();
1767 
1768 	/*
1769 	 * Create OBP node for console input callbacks
1770 	 * if it is needed.
1771 	 */
1772 	startup_create_io_node();
1773 
1774 	if (modloadonly("fs", "specfs") == -1)
1775 		halt("Can't load specfs");
1776 
1777 	if (modloadonly("fs", "devfs") == -1)
1778 		halt("Can't load devfs");
1779 
1780 	if (modloadonly("misc", "swapgeneric") == -1)
1781 		halt("Can't load swapgeneric");
1782 
1783 	(void) modloadonly("sys", "lbl_edition");
1784 
1785 	dispinit();
1786 
1787 	/*
1788 	 * Infer meanings to the members of the idprom buffer.
1789 	 */
1790 	parse_idprom();
1791 
1792 	/* Read cluster configuration data. */
1793 	clconf_init();
1794 
1795 	setup_ddi();
1796 
1797 	/*
1798 	 * Lets take this opportunity to load the root device.
1799 	 */
1800 	if (loadrootmodules() != 0)
1801 		debug_enter("Can't load the root filesystem");
1802 
1803 	/*
1804 	 * Load tod driver module for the tod part found on this system.
1805 	 * Recompute the cpu frequency/delays based on tod as tod part
1806 	 * tends to keep time more accurately.
1807 	 */
1808 	if (&load_tod_module)
1809 		load_tod_module();
1810 
1811 	/*
1812 	 * Allow platforms to load modules which might
1813 	 * be needed after bootops are gone.
1814 	 */
1815 	if (&load_platform_modules)
1816 		load_platform_modules();
1817 
1818 	setcpudelay();
1819 
1820 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1821 	    &boot_physavail, &boot_physavail_len,
1822 	    &boot_virtavail, &boot_virtavail_len);
1823 
1824 	/*
1825 	 * Calculation and allocation of hmeblks needed to remap
1826 	 * the memory allocated by PROM till now.
1827 	 * Overestimate the number of hblk1 elements by assuming
1828 	 * worst case of TTE64K mappings.
1829 	 * sfmmu_hblk_alloc will panic if this calculation is wrong.
1830 	 */
1831 	bop_alloc_pages = btopr(kmem64_end - kmem64_base);
1832 	pages_per_hblk = btop(HMEBLK_SPAN(TTE64K));
1833 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1834 	nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min;
1835 
1836 	bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1837 
1838 	/* sfmmu_init_nucleus_hblks expects properly aligned data structures */
1839 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1840 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1841 
1842 	bop_alloc_pages += btopr(nhblk1 * hme1blk_sz);
1843 
1844 	pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1845 	nhblk8 = 0;
1846 	while (bop_alloc_pages > 1) {
1847 		bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1848 		nhblk8 += bop_alloc_pages /= pages_per_hblk;
1849 		bop_alloc_pages *= hme8blk_sz;
1850 		bop_alloc_pages = btopr(bop_alloc_pages);
1851 	}
1852 	nhblk8 += 2;
1853 
1854 	/*
1855 	 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1856 	 * boundary, the number of hblk8's needed to map the entries in the
1857 	 * boot_virtavail list needs to be adjusted to take this into
1858 	 * consideration.  Thus, we need to add additional hblk8's since it
1859 	 * is possible that an hblk8 will not have all 8 slots used due to
1860 	 * alignment constraints.  Since there were boot_virtavail_len entries
1861 	 * in that list, we need to add that many hblk8's to the number
1862 	 * already calculated to make sure we don't underestimate.
1863 	 */
1864 	nhblk8 += boot_virtavail_len;
1865 	nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1866 
1867 	/* Allocate in pagesize chunks */
1868 	nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1869 	hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1870 	sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1871 }
1872 
1873 static void
1874 startup_bop_gone(void)
1875 {
1876 	extern int bop_io_quiesced;
1877 
1878 	/*
1879 	 * Destroy the MD initialized at startup
1880 	 * The startup initializes the MD framework
1881 	 * using prom and BOP alloc free it now.
1882 	 */
1883 	mach_descrip_startup_fini();
1884 
1885 	/*
1886 	 * Call back into boot and release boots resources.
1887 	 */
1888 	BOP_QUIESCE_IO(bootops);
1889 	bop_io_quiesced = 1;
1890 
1891 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1892 	    &boot_physavail, &boot_physavail_len,
1893 	    &boot_virtavail, &boot_virtavail_len);
1894 	/*
1895 	 * Copy physinstalled list into kernel space.
1896 	 */
1897 	phys_install = memlist;
1898 	copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1899 
1900 	/*
1901 	 * setup physically contiguous area twice as large as the ecache.
1902 	 * this is used while doing displacement flush of ecaches
1903 	 */
1904 	if (&ecache_flush_address) {
1905 		ecache_flushaddr = ecache_flush_address();
1906 		if (ecache_flushaddr == (uint64_t)-1) {
1907 			cmn_err(CE_PANIC,
1908 			    "startup: no memory to set ecache_flushaddr");
1909 		}
1910 	}
1911 
1912 	/*
1913 	 * Virtual available next.
1914 	 */
1915 	ASSERT(virt_avail != NULL);
1916 	memlist_free_list(virt_avail);
1917 	virt_avail = memlist;
1918 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1919 
1920 	/*
1921 	 * Last chance to ask our booter questions ..
1922 	 */
1923 }
1924 
1925 
1926 /*
1927  * startup_fixup_physavail - called from mach_sfmmu.c after the final
1928  * allocations have been performed.  We can't call it in startup_bop_gone
1929  * since later operations can cause obp to allocate more memory.
1930  */
1931 void
1932 startup_fixup_physavail(void)
1933 {
1934 	struct memlist *cur;
1935 	size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end;
1936 
1937 	PRM_DEBUG(kmem64_overmap_size);
1938 
1939 	/*
1940 	 * take the most current snapshot we can by calling mem-update
1941 	 */
1942 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1943 	    &boot_physavail, &boot_physavail_len,
1944 	    &boot_virtavail, &boot_virtavail_len);
1945 
1946 	/*
1947 	 * Copy phys_avail list, again.
1948 	 * Both the kernel/boot and the prom have been allocating
1949 	 * from the original list we copied earlier.
1950 	 */
1951 	cur = memlist;
1952 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1953 	    &memlist, 0, 0);
1954 
1955 	/*
1956 	 * Add any unused kmem64 memory from overmapped page
1957 	 * (Note: va_to_pa does not work for kmem64_end)
1958 	 */
1959 	if (kmem64_overmap_size) {
1960 		memlist_add(kmem64_pabase + (kmem64_end - kmem64_base),
1961 		    kmem64_overmap_size,
1962 		    &memlist, &cur);
1963 	}
1964 
1965 	/*
1966 	 * Add any extra memory after e_text we added to the phys_avail list
1967 	 * back to the old list.
1968 	 */
1969 	if (extra_etpg)
1970 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1971 		    &memlist, &cur);
1972 	if (ndata_remain_sz >= MMU_PAGESIZE)
1973 		memlist_add(va_to_pa(nalloc_base),
1974 		    (uint64_t)ndata_remain_sz, &memlist, &cur);
1975 
1976 	/*
1977 	 * There isn't any bounds checking on the memlist area
1978 	 * so ensure it hasn't overgrown.
1979 	 */
1980 	if ((caddr_t)memlist > (caddr_t)memlist_end)
1981 		cmn_err(CE_PANIC, "startup: memlist size exceeded");
1982 
1983 	/*
1984 	 * The kernel removes the pages that were allocated for it from
1985 	 * the freelist, but we now have to find any -extra- pages that
1986 	 * the prom has allocated for it's own book-keeping, and remove
1987 	 * them from the freelist too. sigh.
1988 	 */
1989 	fix_prom_pages(phys_avail, cur);
1990 
1991 	ASSERT(phys_avail != NULL);
1992 	memlist_free_list(phys_avail);
1993 	phys_avail = cur;
1994 
1995 	/*
1996 	 * We're done with boot.  Just after this point in time, boot
1997 	 * gets unmapped, so we can no longer rely on its services.
1998 	 * Zero the bootops to indicate this fact.
1999 	 */
2000 	bootops = (struct bootops *)NULL;
2001 	BOOTOPS_GONE();
2002 }
2003 
2004 static void
2005 startup_vm(void)
2006 {
2007 	size_t	i;
2008 	struct segmap_crargs a;
2009 	struct segkpm_crargs b;
2010 
2011 	uint64_t avmem;
2012 	caddr_t va;
2013 	pgcnt_t	max_phys_segkp;
2014 	int	mnode;
2015 
2016 	extern int use_brk_lpg, use_stk_lpg;
2017 
2018 	/*
2019 	 * get prom's mappings, create hments for them and switch
2020 	 * to the kernel context.
2021 	 */
2022 	hat_kern_setup();
2023 
2024 	/*
2025 	 * Take over trap table
2026 	 */
2027 	setup_trap_table();
2028 
2029 	/*
2030 	 * Install the va>tte handler, so that the prom can handle
2031 	 * misses and understand the kernel table layout in case
2032 	 * we need call into the prom.
2033 	 */
2034 	install_va_to_tte();
2035 
2036 	/*
2037 	 * Set a flag to indicate that the tba has been taken over.
2038 	 */
2039 	tba_taken_over = 1;
2040 
2041 	/* initialize MMU primary context register */
2042 	mmu_init_kcontext();
2043 
2044 	/*
2045 	 * The boot cpu can now take interrupts, x-calls, x-traps
2046 	 */
2047 	CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
2048 	CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
2049 
2050 	/*
2051 	 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
2052 	 */
2053 	tbr_wr_addr_inited = 1;
2054 
2055 	/*
2056 	 * Initialize VM system, and map kernel address space.
2057 	 */
2058 	kvm_init();
2059 
2060 	/*
2061 	 * XXX4U: previously, we initialized and turned on
2062 	 * the caches at this point. But of course we have
2063 	 * nothing to do, as the prom has already done this
2064 	 * for us -- main memory must be E$able at all times.
2065 	 */
2066 
2067 	/*
2068 	 * If the following is true, someone has patched
2069 	 * phsymem to be less than the number of pages that
2070 	 * the system actually has.  Remove pages until system
2071 	 * memory is limited to the requested amount.  Since we
2072 	 * have allocated page structures for all pages, we
2073 	 * correct the amount of memory we want to remove
2074 	 * by the size of the memory used to hold page structures
2075 	 * for the non-used pages.
2076 	 */
2077 	if (physmem < npages) {
2078 		pgcnt_t diff, off;
2079 		struct page *pp;
2080 		struct seg kseg;
2081 
2082 		cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
2083 
2084 		off = 0;
2085 		diff = npages - physmem;
2086 		diff -= mmu_btopr(diff * sizeof (struct page));
2087 		kseg.s_as = &kas;
2088 		while (diff--) {
2089 			pp = page_create_va(&unused_pages_vp, (offset_t)off,
2090 			    MMU_PAGESIZE, PG_WAIT | PG_EXCL,
2091 			    &kseg, (caddr_t)off);
2092 			if (pp == NULL)
2093 				cmn_err(CE_PANIC, "limited physmem too much!");
2094 			page_io_unlock(pp);
2095 			page_downgrade(pp);
2096 			availrmem--;
2097 			off += MMU_PAGESIZE;
2098 		}
2099 	}
2100 
2101 	/*
2102 	 * When printing memory, show the total as physmem less
2103 	 * that stolen by a debugger.
2104 	 */
2105 	cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
2106 	    (ulong_t)(physinstalled) << (PAGESHIFT - 10),
2107 	    (ulong_t)(physinstalled) << (PAGESHIFT - 12));
2108 
2109 	avmem = (uint64_t)freemem << PAGESHIFT;
2110 	cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
2111 
2112 	/*
2113 	 * For small memory systems disable automatic large pages.
2114 	 */
2115 	if (physmem < privm_lpg_min_physmem) {
2116 		use_brk_lpg = 0;
2117 		use_stk_lpg = 0;
2118 	}
2119 
2120 	/*
2121 	 * Perform platform specific freelist processing
2122 	 */
2123 	if (&plat_freelist_process) {
2124 		for (mnode = 0; mnode < max_mem_nodes; mnode++)
2125 			if (mem_node_config[mnode].exists)
2126 				plat_freelist_process(mnode);
2127 	}
2128 
2129 	/*
2130 	 * Initialize the segkp segment type.  We position it
2131 	 * after the configured tables and buffers (whose end
2132 	 * is given by econtig) and before V_WKBASE_ADDR.
2133 	 * Also in this area is segkmap (size SEGMAPSIZE).
2134 	 */
2135 
2136 	/* XXX - cache alignment? */
2137 	va = (caddr_t)SEGKPBASE;
2138 	ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
2139 
2140 	max_phys_segkp = (physmem * 2);
2141 
2142 	if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
2143 		segkpsize = btop(SEGKPDEFSIZE);
2144 		cmn_err(CE_WARN, "Illegal value for segkpsize. "
2145 		    "segkpsize has been reset to %ld pages", segkpsize);
2146 	}
2147 
2148 	i = ptob(MIN(segkpsize, max_phys_segkp));
2149 
2150 	rw_enter(&kas.a_lock, RW_WRITER);
2151 	if (seg_attach(&kas, va, i, segkp) < 0)
2152 		cmn_err(CE_PANIC, "startup: cannot attach segkp");
2153 	if (segkp_create(segkp) != 0)
2154 		cmn_err(CE_PANIC, "startup: segkp_create failed");
2155 	rw_exit(&kas.a_lock);
2156 
2157 	/*
2158 	 * kpm segment
2159 	 */
2160 	segmap_kpm = kpm_enable &&
2161 		segmap_kpm && PAGESIZE == MAXBSIZE;
2162 
2163 	if (kpm_enable) {
2164 		rw_enter(&kas.a_lock, RW_WRITER);
2165 
2166 		/*
2167 		 * The segkpm virtual range range is larger than the
2168 		 * actual physical memory size and also covers gaps in
2169 		 * the physical address range for the following reasons:
2170 		 * . keep conversion between segkpm and physical addresses
2171 		 *   simple, cheap and unambiguous.
2172 		 * . avoid extension/shrink of the the segkpm in case of DR.
2173 		 * . avoid complexity for handling of virtual addressed
2174 		 *   caches, segkpm and the regular mapping scheme must be
2175 		 *   kept in sync wrt. the virtual color of mapped pages.
2176 		 * Any accesses to virtual segkpm ranges not backed by
2177 		 * physical memory will fall through the memseg pfn hash
2178 		 * and will be handled in segkpm_fault.
2179 		 * Additional kpm_size spaces needed for vac alias prevention.
2180 		 */
2181 		if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
2182 		    segkpm) < 0)
2183 			cmn_err(CE_PANIC, "cannot attach segkpm");
2184 
2185 		b.prot = PROT_READ | PROT_WRITE;
2186 		b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
2187 
2188 		if (segkpm_create(segkpm, (caddr_t)&b) != 0)
2189 			panic("segkpm_create segkpm");
2190 
2191 		rw_exit(&kas.a_lock);
2192 
2193 		mach_kpm_init();
2194 	}
2195 
2196 	if (!segzio_fromheap) {
2197 		size_t size;
2198 		size_t physmem_b = mmu_ptob(physmem);
2199 
2200 		/* size is in bytes, segziosize is in pages */
2201 		if (segziosize == 0) {
2202 			size = physmem_b;
2203 		} else {
2204 			size = mmu_ptob(segziosize);
2205 		}
2206 
2207 		if (size < SEGZIOMINSIZE) {
2208 			size = SEGZIOMINSIZE;
2209 		} else if (size > SEGZIOMAXSIZE) {
2210 			size = SEGZIOMAXSIZE;
2211 			/*
2212 			 * On 64-bit x86, we only have 2TB of KVA.  This exists
2213 			 * for parity with x86.
2214 			 *
2215 			 * SEGZIOMAXSIZE is capped at 512gb so that segzio
2216 			 * doesn't consume all of KVA.  However, if we have a
2217 			 * system that has more thant 512gb of physical memory,
2218 			 * we can actually consume about half of the difference
2219 			 * between 512gb and the rest of the available physical
2220 			 * memory.
2221 			 */
2222 			if (physmem_b > SEGZIOMAXSIZE) {
2223 				size += (physmem_b - SEGZIOMAXSIZE) / 2;
2224 		}
2225 		}
2226 		segziosize = mmu_btop(roundup(size, MMU_PAGESIZE));
2227 		/* put the base of the ZIO segment after the kpm segment */
2228 		segzio_base = kpm_vbase + (kpm_size * vac_colors);
2229 		PRM_DEBUG(segziosize);
2230 		PRM_DEBUG(segzio_base);
2231 
2232 		/*
2233 		 * On some platforms, kvm_init is called after the kpm
2234 		 * sizes have been determined.  On SPARC, kvm_init is called
2235 		 * before, so we have to attach the kzioseg after kvm is
2236 		 * initialized, otherwise we'll try to allocate from the boot
2237 		 * area since the kernel heap hasn't yet been configured.
2238 		 */
2239 		rw_enter(&kas.a_lock, RW_WRITER);
2240 
2241 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2242 		    &kzioseg);
2243 		(void) segkmem_zio_create(&kzioseg);
2244 
2245 		/* create zio area covering new segment */
2246 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2247 
2248 		rw_exit(&kas.a_lock);
2249 	}
2250 
2251 
2252 	/*
2253 	 * Now create generic mapping segment.  This mapping
2254 	 * goes SEGMAPSIZE beyond SEGMAPBASE.  But if the total
2255 	 * virtual address is greater than the amount of free
2256 	 * memory that is available, then we trim back the
2257 	 * segment size to that amount
2258 	 */
2259 	va = (caddr_t)SEGMAPBASE;
2260 
2261 	/*
2262 	 * 1201049: segkmap base address must be MAXBSIZE aligned
2263 	 */
2264 	ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2265 
2266 	/*
2267 	 * Set size of segmap to percentage of freemem at boot,
2268 	 * but stay within the allowable range
2269 	 * Note we take percentage  before converting from pages
2270 	 * to bytes to avoid an overflow on 32-bit kernels.
2271 	 */
2272 	i = mmu_ptob((freemem * segmap_percent) / 100);
2273 
2274 	if (i < MINMAPSIZE)
2275 		i = MINMAPSIZE;
2276 
2277 	if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2278 		i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2279 
2280 	i &= MAXBMASK;	/* 1201049: segkmap size must be MAXBSIZE aligned */
2281 
2282 	rw_enter(&kas.a_lock, RW_WRITER);
2283 	if (seg_attach(&kas, va, i, segkmap) < 0)
2284 		cmn_err(CE_PANIC, "cannot attach segkmap");
2285 
2286 	a.prot = PROT_READ | PROT_WRITE;
2287 	a.shmsize = shm_alignment;
2288 	a.nfreelist = 0;	/* use segmap driver defaults */
2289 
2290 	if (segmap_create(segkmap, (caddr_t)&a) != 0)
2291 		panic("segmap_create segkmap");
2292 	rw_exit(&kas.a_lock);
2293 
2294 	segdev_init();
2295 }
2296 
2297 static void
2298 startup_end(void)
2299 {
2300 	if ((caddr_t)memlist > (caddr_t)memlist_end)
2301 		panic("memlist overflow 2");
2302 	memlist_free_block((caddr_t)memlist,
2303 	    ((caddr_t)memlist_end - (caddr_t)memlist));
2304 	memlist = NULL;
2305 
2306 	/* enable page_relocation since OBP is now done */
2307 	page_relocate_ready = 1;
2308 
2309 	/*
2310 	 * Perform tasks that get done after most of the VM
2311 	 * initialization has been done but before the clock
2312 	 * and other devices get started.
2313 	 */
2314 	kern_setup1();
2315 
2316 	/*
2317 	 * Intialize the VM arenas for allocating physically
2318 	 * contiguus memory chunk for interrupt queues snd
2319 	 * allocate/register boot cpu's queues, if any and
2320 	 * allocate dump buffer for sun4v systems to store
2321 	 * extra crash information during crash dump
2322 	 */
2323 	contig_mem_init();
2324 	mach_descrip_init();
2325 
2326 	if (cpu_intrq_setup(CPU)) {
2327 		cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id);
2328 	}
2329 	cpu_intrq_register(CPU);
2330 	mach_htraptrace_setup(CPU->cpu_id);
2331 	mach_htraptrace_configure(CPU->cpu_id);
2332 	mach_dump_buffer_init();
2333 
2334 	/*
2335 	 * Initialize interrupt related stuff
2336 	 */
2337 	cpu_intr_alloc(CPU, NINTR_THREADS);
2338 
2339 	(void) splzs();			/* allow hi clock ints but not zs */
2340 
2341 	/*
2342 	 * Initialize errors.
2343 	 */
2344 	error_init();
2345 
2346 	/*
2347 	 * Note that we may have already used kernel bcopy before this
2348 	 * point - but if you really care about this, adb the use_hw_*
2349 	 * variables to 0 before rebooting.
2350 	 */
2351 	mach_hw_copy_limit();
2352 
2353 	/*
2354 	 * Install the "real" preemption guards before DDI services
2355 	 * are available.
2356 	 */
2357 	(void) prom_set_preprom(kern_preprom);
2358 	(void) prom_set_postprom(kern_postprom);
2359 	CPU->cpu_m.mutex_ready = 1;
2360 
2361 	/*
2362 	 * Initialize segnf (kernel support for non-faulting loads).
2363 	 */
2364 	segnf_init();
2365 
2366 	/*
2367 	 * Configure the root devinfo node.
2368 	 */
2369 	configure();		/* set up devices */
2370 	mach_cpu_halt_idle();
2371 }
2372 
2373 
2374 void
2375 post_startup(void)
2376 {
2377 #ifdef	PTL1_PANIC_DEBUG
2378 	extern void init_ptl1_thread(void);
2379 #endif	/* PTL1_PANIC_DEBUG */
2380 	extern void abort_sequence_init(void);
2381 
2382 	/*
2383 	 * Set the system wide, processor-specific flags to be passed
2384 	 * to userland via the aux vector for performance hints and
2385 	 * instruction set extensions.
2386 	 */
2387 	bind_hwcap();
2388 
2389 	/*
2390 	 * Startup memory scrubber (if any)
2391 	 */
2392 	mach_memscrub();
2393 
2394 	/*
2395 	 * Allocate soft interrupt to handle abort sequence.
2396 	 */
2397 	abort_sequence_init();
2398 
2399 	/*
2400 	 * Configure the rest of the system.
2401 	 * Perform forceloading tasks for /etc/system.
2402 	 */
2403 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2404 	/*
2405 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2406 	 * ON4.0: This must be fixed or restated in /etc/systems.
2407 	 */
2408 	(void) modload("fs", "procfs");
2409 
2410 	/* load machine class specific drivers */
2411 	load_mach_drivers();
2412 
2413 	/* load platform specific drivers */
2414 	if (&load_platform_drivers)
2415 		load_platform_drivers();
2416 
2417 	/* load vis simulation module, if we are running w/fpu off */
2418 	if (!fpu_exists) {
2419 		if (modload("misc", "vis") == -1)
2420 			halt("Can't load vis");
2421 	}
2422 
2423 	mach_fpras();
2424 
2425 	maxmem = freemem;
2426 
2427 #ifdef	PTL1_PANIC_DEBUG
2428 	init_ptl1_thread();
2429 #endif	/* PTL1_PANIC_DEBUG */
2430 
2431 	if (&cif_init)
2432 		cif_init();
2433 }
2434 
2435 #ifdef	PTL1_PANIC_DEBUG
2436 int		ptl1_panic_test = 0;
2437 int		ptl1_panic_xc_one_test = 0;
2438 int		ptl1_panic_xc_all_test = 0;
2439 int		ptl1_panic_xt_one_test = 0;
2440 int		ptl1_panic_xt_all_test = 0;
2441 kthread_id_t	ptl1_thread_p = NULL;
2442 kcondvar_t	ptl1_cv;
2443 kmutex_t	ptl1_mutex;
2444 int		ptl1_recurse_count_threshold = 0x40;
2445 int		ptl1_recurse_trap_threshold = 0x3d;
2446 extern void	ptl1_recurse(int, int);
2447 extern void	ptl1_panic_xt(int, int);
2448 
2449 /*
2450  * Called once per second by timeout() to wake up
2451  * the ptl1_panic thread to see if it should cause
2452  * a trap to the ptl1_panic() code.
2453  */
2454 /* ARGSUSED */
2455 static void
2456 ptl1_wakeup(void *arg)
2457 {
2458 	mutex_enter(&ptl1_mutex);
2459 	cv_signal(&ptl1_cv);
2460 	mutex_exit(&ptl1_mutex);
2461 }
2462 
2463 /*
2464  * ptl1_panic cross call function:
2465  *     Needed because xc_one() and xc_some() can pass
2466  *	64 bit args but ptl1_recurse() expects ints.
2467  */
2468 static void
2469 ptl1_panic_xc(void)
2470 {
2471 	ptl1_recurse(ptl1_recurse_count_threshold,
2472 	    ptl1_recurse_trap_threshold);
2473 }
2474 
2475 /*
2476  * The ptl1 thread waits for a global flag to be set
2477  * and uses the recurse thresholds to set the stack depth
2478  * to cause a ptl1_panic() directly via a call to ptl1_recurse
2479  * or indirectly via the cross call and cross trap functions.
2480  *
2481  * This is useful testing stack overflows and normal
2482  * ptl1_panic() states with a know stack frame.
2483  *
2484  * ptl1_recurse() is an asm function in ptl1_panic.s that
2485  * sets the {In, Local, Out, and Global} registers to a
2486  * know state on the stack and just prior to causing a
2487  * test ptl1_panic trap.
2488  */
2489 static void
2490 ptl1_thread(void)
2491 {
2492 	mutex_enter(&ptl1_mutex);
2493 	while (ptl1_thread_p) {
2494 		cpuset_t	other_cpus;
2495 		int		cpu_id;
2496 		int		my_cpu_id;
2497 		int		target_cpu_id;
2498 		int		target_found;
2499 
2500 		if (ptl1_panic_test) {
2501 			ptl1_recurse(ptl1_recurse_count_threshold,
2502 			    ptl1_recurse_trap_threshold);
2503 		}
2504 
2505 		/*
2506 		 * Find potential targets for x-call and x-trap,
2507 		 * if any exist while preempt is disabled we
2508 		 * start a ptl1_panic if requested via a
2509 		 * globals.
2510 		 */
2511 		kpreempt_disable();
2512 		my_cpu_id = CPU->cpu_id;
2513 		other_cpus = cpu_ready_set;
2514 		CPUSET_DEL(other_cpus, CPU->cpu_id);
2515 		target_found = 0;
2516 		if (!CPUSET_ISNULL(other_cpus)) {
2517 			/*
2518 			 * Pick the first one
2519 			 */
2520 			for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2521 				if (cpu_id == my_cpu_id)
2522 					continue;
2523 
2524 				if (CPU_XCALL_READY(cpu_id)) {
2525 					target_cpu_id = cpu_id;
2526 					target_found = 1;
2527 					break;
2528 				}
2529 			}
2530 			ASSERT(target_found);
2531 
2532 			if (ptl1_panic_xc_one_test) {
2533 				xc_one(target_cpu_id,
2534 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2535 			}
2536 			if (ptl1_panic_xc_all_test) {
2537 				xc_some(other_cpus,
2538 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2539 			}
2540 			if (ptl1_panic_xt_one_test) {
2541 				xt_one(target_cpu_id,
2542 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2543 			}
2544 			if (ptl1_panic_xt_all_test) {
2545 				xt_some(other_cpus,
2546 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2547 			}
2548 		}
2549 		kpreempt_enable();
2550 		(void) timeout(ptl1_wakeup, NULL, hz);
2551 		(void) cv_wait(&ptl1_cv, &ptl1_mutex);
2552 	}
2553 	mutex_exit(&ptl1_mutex);
2554 }
2555 
2556 /*
2557  * Called during early startup to create the ptl1_thread
2558  */
2559 void
2560 init_ptl1_thread(void)
2561 {
2562 	ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2563 	    &p0, TS_RUN, 0);
2564 }
2565 #endif	/* PTL1_PANIC_DEBUG */
2566 
2567 
2568 /*
2569  * Add to a memory list.
2570  * start = start of new memory segment
2571  * len = length of new memory segment in bytes
2572  * memlistp = pointer to array of available memory segment structures
2573  * curmemlistp = memory list to which to add segment.
2574  */
2575 static void
2576 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2577 	struct memlist **curmemlistp)
2578 {
2579 	struct memlist *new;
2580 
2581 	new = *memlistp;
2582 	new->address = start;
2583 	new->size = len;
2584 	*memlistp = new + 1;
2585 
2586 	memlist_insert(new, curmemlistp);
2587 }
2588 
2589 /*
2590  * In the case of architectures that support dynamic addition of
2591  * memory at run-time there are two cases where memsegs need to
2592  * be initialized and added to the memseg list.
2593  * 1) memsegs that are constructed at startup.
2594  * 2) memsegs that are constructed at run-time on
2595  *    hot-plug capable architectures.
2596  * This code was originally part of the function kphysm_init().
2597  */
2598 
2599 static void
2600 memseg_list_add(struct memseg *memsegp)
2601 {
2602 	struct memseg **prev_memsegp;
2603 	pgcnt_t num;
2604 
2605 	/* insert in memseg list, decreasing number of pages order */
2606 
2607 	num = MSEG_NPAGES(memsegp);
2608 
2609 	for (prev_memsegp = &memsegs; *prev_memsegp;
2610 	    prev_memsegp = &((*prev_memsegp)->next)) {
2611 		if (num > MSEG_NPAGES(*prev_memsegp))
2612 			break;
2613 	}
2614 
2615 	memsegp->next = *prev_memsegp;
2616 	*prev_memsegp = memsegp;
2617 
2618 	if (kpm_enable) {
2619 		memsegp->nextpa = (memsegp->next) ?
2620 			va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2621 
2622 		if (prev_memsegp != &memsegs) {
2623 			struct memseg *msp;
2624 			msp = (struct memseg *)((caddr_t)prev_memsegp -
2625 				offsetof(struct memseg, next));
2626 			msp->nextpa = va_to_pa(memsegp);
2627 		} else {
2628 			memsegspa = va_to_pa(memsegs);
2629 		}
2630 	}
2631 }
2632 
2633 /*
2634  * PSM add_physmem_cb(). US-II and newer processors have some
2635  * flavor of the prefetch capability implemented. We exploit
2636  * this capability for optimum performance.
2637  */
2638 #define	PREFETCH_BYTES	64
2639 
2640 void
2641 add_physmem_cb(page_t *pp, pfn_t pnum)
2642 {
2643 	extern void	 prefetch_page_w(void *);
2644 
2645 	pp->p_pagenum = pnum;
2646 
2647 	/*
2648 	 * Prefetch one more page_t into E$. To prevent future
2649 	 * mishaps with the sizeof(page_t) changing on us, we
2650 	 * catch this on debug kernels if we can't bring in the
2651 	 * entire hpage with 2 PREFETCH_BYTES reads. See
2652 	 * also, sun4u/cpu/cpu_module.c
2653 	 */
2654 	/*LINTED*/
2655 	ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2656 	prefetch_page_w((char *)pp);
2657 }
2658 
2659 /*
2660  * kphysm_init() tackles the problem of initializing physical memory.
2661  * The old startup made some assumptions about the kernel living in
2662  * physically contiguous space which is no longer valid.
2663  */
2664 static void
2665 kphysm_init(page_t *pp, struct memseg *memsegp, pgcnt_t npages,
2666 	uintptr_t kpm_pp, pgcnt_t kpm_npages)
2667 {
2668 	struct memlist	*pmem;
2669 	struct memseg	*msp;
2670 	pfn_t		 base;
2671 	pgcnt_t		 num;
2672 	pfn_t		 lastseg_pages_end = 0;
2673 	pgcnt_t		 nelem_used = 0;
2674 
2675 	ASSERT(page_hash != NULL && page_hashsz != 0);
2676 
2677 	msp = memsegp;
2678 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2679 
2680 		/*
2681 		 * Build the memsegs entry
2682 		 */
2683 		num = btop(pmem->size);
2684 		if (num > npages)
2685 			num = npages;
2686 		npages -= num;
2687 		base = btop(pmem->address);
2688 
2689 		msp->pages = pp;
2690 		msp->epages = pp + num;
2691 		msp->pages_base = base;
2692 		msp->pages_end = base + num;
2693 
2694 		if (kpm_enable) {
2695 			pfn_t pbase_a;
2696 			pfn_t pend_a;
2697 			pfn_t prev_pend_a;
2698 			pgcnt_t	nelem;
2699 
2700 			msp->pagespa = va_to_pa(pp);
2701 			msp->epagespa = va_to_pa(pp + num);
2702 			pbase_a = kpmptop(ptokpmp(base));
2703 			pend_a = kpmptop(ptokpmp(base + num - 1)) + kpmpnpgs;
2704 			nelem = ptokpmp(pend_a - pbase_a);
2705 			msp->kpm_nkpmpgs = nelem;
2706 			msp->kpm_pbase = pbase_a;
2707 			if (lastseg_pages_end) {
2708 				/*
2709 				 * Assume phys_avail is in ascending order
2710 				 * of physical addresses.
2711 				 */
2712 				ASSERT(base + num > lastseg_pages_end);
2713 				prev_pend_a = kpmptop(
2714 				    ptokpmp(lastseg_pages_end - 1)) + kpmpnpgs;
2715 
2716 				if (prev_pend_a > pbase_a) {
2717 					/*
2718 					 * Overlap, more than one memseg may
2719 					 * point to the same kpm_page range.
2720 					 */
2721 					if (kpm_smallpages == 0) {
2722 						msp->kpm_pages =
2723 						    (kpm_page_t *)kpm_pp - 1;
2724 						kpm_pp = (uintptr_t)
2725 							((kpm_page_t *)kpm_pp
2726 							+ nelem - 1);
2727 					} else {
2728 						msp->kpm_spages =
2729 						    (kpm_spage_t *)kpm_pp - 1;
2730 						kpm_pp = (uintptr_t)
2731 							((kpm_spage_t *)kpm_pp
2732 							+ nelem - 1);
2733 					}
2734 					nelem_used += nelem - 1;
2735 
2736 				} else {
2737 					if (kpm_smallpages == 0) {
2738 						msp->kpm_pages =
2739 						    (kpm_page_t *)kpm_pp;
2740 						kpm_pp = (uintptr_t)
2741 							((kpm_page_t *)kpm_pp
2742 							+ nelem);
2743 					} else {
2744 						msp->kpm_spages =
2745 						    (kpm_spage_t *)kpm_pp;
2746 						kpm_pp = (uintptr_t)
2747 							((kpm_spage_t *)
2748 							kpm_pp + nelem);
2749 					}
2750 					nelem_used += nelem;
2751 				}
2752 
2753 			} else {
2754 				if (kpm_smallpages == 0) {
2755 					msp->kpm_pages = (kpm_page_t *)kpm_pp;
2756 					kpm_pp = (uintptr_t)
2757 						((kpm_page_t *)kpm_pp + nelem);
2758 				} else {
2759 					msp->kpm_spages = (kpm_spage_t *)kpm_pp;
2760 					kpm_pp = (uintptr_t)
2761 						((kpm_spage_t *)kpm_pp + nelem);
2762 				}
2763 				nelem_used = nelem;
2764 			}
2765 
2766 			if (nelem_used > kpm_npages)
2767 				panic("kphysm_init: kpm_pp overflow\n");
2768 
2769 			msp->kpm_pagespa = va_to_pa(msp->kpm_pages);
2770 			lastseg_pages_end = msp->pages_end;
2771 		}
2772 
2773 		memseg_list_add(msp);
2774 
2775 		/*
2776 		 * add_physmem() initializes the PSM part of the page
2777 		 * struct by calling the PSM back with add_physmem_cb().
2778 		 * In addition it coalesces pages into larger pages as
2779 		 * it initializes them.
2780 		 */
2781 		add_physmem(pp, num, base);
2782 		pp += num;
2783 		msp++;
2784 	}
2785 
2786 	build_pfn_hash();
2787 }
2788 
2789 /*
2790  * Kernel VM initialization.
2791  * Assumptions about kernel address space ordering:
2792  *	(1) gap (user space)
2793  *	(2) kernel text
2794  *	(3) kernel data/bss
2795  *	(4) gap
2796  *	(5) kernel data structures
2797  *	(6) gap
2798  *	(7) debugger (optional)
2799  *	(8) monitor
2800  *	(9) gap (possibly null)
2801  *	(10) dvma
2802  *	(11) devices
2803  */
2804 static void
2805 kvm_init(void)
2806 {
2807 	/*
2808 	 * Put the kernel segments in kernel address space.
2809 	 */
2810 	rw_enter(&kas.a_lock, RW_WRITER);
2811 	as_avlinit(&kas);
2812 
2813 	(void) seg_attach(&kas, (caddr_t)KERNELBASE,
2814 	    (size_t)(e_moddata - KERNELBASE), &ktextseg);
2815 	(void) segkmem_create(&ktextseg);
2816 
2817 	(void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2818 	    (size_t)(MMU_PAGESIZE4M), &ktexthole);
2819 	(void) segkmem_create(&ktexthole);
2820 
2821 	(void) seg_attach(&kas, (caddr_t)valloc_base,
2822 	    (size_t)(econtig32 - valloc_base), &kvalloc);
2823 	(void) segkmem_create(&kvalloc);
2824 
2825 	if (kmem64_base) {
2826 	    (void) seg_attach(&kas, (caddr_t)kmem64_base,
2827 		(size_t)(kmem64_end - kmem64_base), &kmem64);
2828 	    (void) segkmem_create(&kmem64);
2829 	}
2830 
2831 	/*
2832 	 * We're about to map out /boot.  This is the beginning of the
2833 	 * system resource management transition. We can no longer
2834 	 * call into /boot for I/O or memory allocations.
2835 	 */
2836 	(void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2837 	(void) segkmem_create(&kvseg);
2838 	hblk_alloc_dynamic = 1;
2839 
2840 	/*
2841 	 * we need to preallocate pages for DR operations before enabling large
2842 	 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2843 	 */
2844 	memseg_remap_init();
2845 
2846 	/* at this point we are ready to use large page heap */
2847 	segkmem_heap_lp_init();
2848 
2849 	(void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2850 	    &kvseg32);
2851 	(void) segkmem_create(&kvseg32);
2852 
2853 	/*
2854 	 * Create a segment for the debugger.
2855 	 */
2856 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2857 	(void) segkmem_create(&kdebugseg);
2858 
2859 	rw_exit(&kas.a_lock);
2860 }
2861 
2862 char obp_tte_str[] =
2863 	"h# %x constant MMU_PAGESHIFT "
2864 	"h# %x constant TTE8K "
2865 	"h# %x constant SFHME_SIZE "
2866 	"h# %x constant SFHME_TTE "
2867 	"h# %x constant HMEBLK_TAG "
2868 	"h# %x constant HMEBLK_NEXT "
2869 	"h# %x constant HMEBLK_MISC "
2870 	"h# %x constant HMEBLK_HME1 "
2871 	"h# %x constant NHMENTS "
2872 	"h# %x constant HBLK_SZMASK "
2873 	"h# %x constant HBLK_RANGE_SHIFT "
2874 	"h# %x constant HMEBP_HBLK "
2875 	"h# %x constant HMEBUCKET_SIZE "
2876 	"h# %x constant HTAG_SFMMUPSZ "
2877 	"h# %x constant HTAG_REHASHSZ "
2878 	"h# %x constant mmu_hashcnt "
2879 	"h# %p constant uhme_hash "
2880 	"h# %p constant khme_hash "
2881 	"h# %x constant UHMEHASH_SZ "
2882 	"h# %x constant KHMEHASH_SZ "
2883 	"h# %p constant KCONTEXT "
2884 	"h# %p constant KHATID "
2885 	"h# %x constant ASI_MEM "
2886 
2887 	": PHYS-X@ ( phys -- data ) "
2888 	"   ASI_MEM spacex@ "
2889 	"; "
2890 
2891 	": PHYS-W@ ( phys -- data ) "
2892 	"   ASI_MEM spacew@ "
2893 	"; "
2894 
2895 	": PHYS-L@ ( phys -- data ) "
2896 	"   ASI_MEM spaceL@ "
2897 	"; "
2898 
2899 	": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2900 	"   3 * MMU_PAGESHIFT + "
2901 	"; "
2902 
2903 	": TTE_IS_VALID ( ttep -- flag ) "
2904 	"   PHYS-X@ 0< "
2905 	"; "
2906 
2907 	": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2908 	"   dup TTE8K =  if "
2909 	"      drop HBLK_RANGE_SHIFT "
2910 	"   else "
2911 	"      TTE_PAGE_SHIFT "
2912 	"   then "
2913 	"; "
2914 
2915 	": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2916 	"   tuck >> swap MMU_PAGESHIFT - << "
2917 	"; "
2918 
2919 	": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2920 	"   >> over xor swap                    ( hash sfmmup ) "
2921 	"   KHATID <>  if                       ( hash ) "
2922 	"      UHMEHASH_SZ and                  ( bucket ) "
2923 	"      HMEBUCKET_SIZE * uhme_hash +     ( hmebp ) "
2924 	"   else                                ( hash ) "
2925 	"      KHMEHASH_SZ and                  ( bucket ) "
2926 	"      HMEBUCKET_SIZE * khme_hash +     ( hmebp ) "
2927 	"   then                                ( hmebp ) "
2928 	"; "
2929 
2930 	": HME_HASH_TABLE_SEARCH "
2931 	"       ( sfmmup hmebp hblktag --  sfmmup null | sfmmup hmeblkp ) "
2932 	"   >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2933 	"      dup if   		( sfmmup hmeblkp ) ( r: hblktag ) "
2934 	"         dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp )	  "
2935 	"	     dup hmeblk_tag + 8 + phys-x@ 2 pick = if		  "
2936 	"		  true 	( sfmmup hmeblkp true ) ( r: hblktag )	  "
2937 	"	     else						  "
2938 	"	     	  hmeblk_next + phys-x@ false 			  "
2939 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2940 	"	     then  						  "
2941 	"	  else							  "
2942 	"	     hmeblk_next + phys-x@ false 			  "
2943 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2944 	"	  then 							  "
2945 	"      else							  "
2946 	"         true 							  "
2947 	"      then  							  "
2948 	"   until r> drop 						  "
2949 	"; "
2950 
2951 	": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2952 	"   over HME_HASH_SHIFT HME_HASH_BSPAGE      ( sfmmup rehash bspage ) "
2953 	"   HTAG_REHASHSZ << or nip		     ( hblktag ) "
2954 	"; "
2955 
2956 	": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2957 	"   over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and  ( hmeblkp addr ttesz ) "
2958 	"   TTE8K =  if                            ( hmeblkp addr ) "
2959 	"      MMU_PAGESHIFT >> NHMENTS 1- and     ( hmeblkp hme-index ) "
2960 	"   else                                   ( hmeblkp addr ) "
2961 	"      drop 0                              ( hmeblkp 0 ) "
2962 	"   then                                   ( hmeblkp hme-index ) "
2963 	"   SFHME_SIZE * + HMEBLK_HME1 +           ( hmep ) "
2964 	"   SFHME_TTE +                            ( ttep ) "
2965 	"; "
2966 
2967 	": unix-tte ( addr cnum -- false | tte-data true ) "
2968 	"    KCONTEXT = if                   ( addr ) "
2969 	"	KHATID                       ( addr khatid ) "
2970 	"    else                            ( addr ) "
2971 	"       drop false exit              ( false ) "
2972 	"    then "
2973 	"      ( addr khatid ) "
2974 	"      mmu_hashcnt 1+ 1  do           ( addr sfmmup ) "
2975 	"         2dup swap i HME_HASH_SHIFT  "
2976 					"( addr sfmmup sfmmup addr hmeshift ) "
2977 	"         HME_HASH_FUNCTION           ( addr sfmmup hmebp ) "
2978 	"         over i 4 pick               "
2979 				"( addr sfmmup hmebp sfmmup rehash addr ) "
2980 	"         HME_HASH_TAG                ( addr sfmmup hmebp hblktag ) "
2981 	"         HME_HASH_TABLE_SEARCH       "
2982 					"( addr sfmmup { null | hmeblkp } ) "
2983 	"         ?dup  if                    ( addr sfmmup hmeblkp ) "
2984 	"            nip swap HBLK_TO_TTEP    ( ttep ) "
2985 	"            dup TTE_IS_VALID  if     ( valid-ttep ) "
2986 	"               PHYS-X@ true          ( tte-data true ) "
2987 	"            else                     ( invalid-tte ) "
2988 	"               drop false            ( false ) "
2989 	"            then                     ( false | tte-data true ) "
2990 	"            unloop exit              ( false | tte-data true ) "
2991 	"         then                        ( addr sfmmup ) "
2992 	"      loop                           ( addr sfmmup ) "
2993 	"      2drop false                    ( false ) "
2994 	"; "
2995 ;
2996 
2997 void
2998 create_va_to_tte(void)
2999 {
3000 	char *bp;
3001 	extern int khmehash_num, uhmehash_num;
3002 	extern struct hmehash_bucket *khme_hash, *uhme_hash;
3003 
3004 #define	OFFSET(type, field)	((uintptr_t)(&((type *)0)->field))
3005 
3006 	bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
3007 
3008 	/*
3009 	 * Teach obp how to parse our sw ttes.
3010 	 */
3011 	(void) sprintf(bp, obp_tte_str,
3012 	    MMU_PAGESHIFT,
3013 	    TTE8K,
3014 	    sizeof (struct sf_hment),
3015 	    OFFSET(struct sf_hment, hme_tte),
3016 	    OFFSET(struct hme_blk, hblk_tag),
3017 	    OFFSET(struct hme_blk, hblk_nextpa),
3018 	    OFFSET(struct hme_blk, hblk_misc),
3019 	    OFFSET(struct hme_blk, hblk_hme),
3020 	    NHMENTS,
3021 	    HBLK_SZMASK,
3022 	    HBLK_RANGE_SHIFT,
3023 	    OFFSET(struct hmehash_bucket, hmeh_nextpa),
3024 	    sizeof (struct hmehash_bucket),
3025 	    HTAG_SFMMUPSZ,
3026 	    HTAG_REHASHSZ,
3027 	    mmu_hashcnt,
3028 	    (caddr_t)va_to_pa((caddr_t)uhme_hash),
3029 	    (caddr_t)va_to_pa((caddr_t)khme_hash),
3030 	    UHMEHASH_SZ,
3031 	    KHMEHASH_SZ,
3032 	    KCONTEXT,
3033 	    KHATID,
3034 	    ASI_MEM);
3035 	prom_interpret(bp, 0, 0, 0, 0, 0);
3036 
3037 	kobj_free(bp, MMU_PAGESIZE);
3038 }
3039 
3040 void
3041 install_va_to_tte(void)
3042 {
3043 	/*
3044 	 * advise prom that he can use unix-tte
3045 	 */
3046 	prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
3047 }
3048 
3049 /*
3050  * Here we add "device-type=console" for /os-io node, for currently
3051  * our kernel console output only supports displaying text and
3052  * performing cursor-positioning operations (through kernel framebuffer
3053  * driver) and it doesn't support other functionalities required for a
3054  * standard "display" device as specified in 1275 spec. The main missing
3055  * interface defined by the 1275 spec is "draw-logo".
3056  * also see the comments above prom_stdout_is_framebuffer().
3057  */
3058 static char *create_node =
3059 	"\" /\" find-device "
3060 	"new-device "
3061 	"\" os-io\" device-name "
3062 	"\" "OBP_DISPLAY_CONSOLE"\" device-type "
3063 	": cb-r/w  ( adr,len method$ -- #read/#written ) "
3064 	"   2>r swap 2 2r> ['] $callback  catch  if "
3065 	"      2drop 3drop 0 "
3066 	"   then "
3067 	"; "
3068 	": read ( adr,len -- #read ) "
3069 	"       \" read\" ['] cb-r/w catch  if  2drop 2drop -2 exit then "
3070 	"       ( retN ... ret1 N ) "
3071 	"       ?dup  if "
3072 	"               swap >r 1-  0  ?do  drop  loop  r> "
3073 	"       else "
3074 	"               -2 "
3075 	"       then "
3076 	";    "
3077 	": write ( adr,len -- #written ) "
3078 	"       \" write\" ['] cb-r/w catch  if  2drop 2drop 0 exit  then "
3079 	"       ( retN ... ret1 N ) "
3080 	"       ?dup  if "
3081 	"               swap >r 1-  0  ?do  drop  loop  r> "
3082 	"        else "
3083 	"               0 "
3084 	"       then "
3085 	"; "
3086 	": poll-tty ( -- ) ; "
3087 	": install-abort  ( -- )  ['] poll-tty d# 10 alarm ; "
3088 	": remove-abort ( -- )  ['] poll-tty 0 alarm ; "
3089 	": cb-give/take ( $method -- ) "
3090 	"       0 -rot ['] $callback catch  ?dup  if "
3091 	"               >r 2drop 2drop r> throw "
3092 	"       else "
3093 	"               0  ?do  drop  loop "
3094 	"       then "
3095 	"; "
3096 	": give ( -- )  \" exit-input\" cb-give/take ; "
3097 	": take ( -- )  \" enter-input\" cb-give/take ; "
3098 	": open ( -- ok? )  true ; "
3099 	": close ( -- ) ; "
3100 	"finish-device "
3101 	"device-end ";
3102 
3103 /*
3104  * Create the OBP input/output node (FCode serial driver).
3105  * It is needed for both USB console keyboard and for
3106  * the kernel terminal emulator.  It is too early to check for a
3107  * kernel console compatible framebuffer now, so we create this
3108  * so that we're ready if we need to enable kernel terminal emulation.
3109  *
3110  * When the USB software takes over the input device at the time
3111  * consconfig runs, OBP's stdin is redirected to this node.
3112  * Whenever the FORTH user interface is used after this switch,
3113  * the node will call back into the kernel for console input.
3114  * If a serial device such as ttya or a UART with a Type 5 keyboard
3115  * attached is used, OBP takes over the serial device when the system
3116  * goes to the debugger after the system is booted.  This sharing
3117  * of the relatively simple serial device is difficult but possible.
3118  * Sharing the USB host controller is impossible due its complexity.
3119  *
3120  * Similarly to USB keyboard input redirection, after consconfig_dacf
3121  * configures a kernel console framebuffer as the standard output
3122  * device, OBP's stdout is switched to to vector through the
3123  * /os-io node into the kernel terminal emulator.
3124  */
3125 static void
3126 startup_create_io_node(void)
3127 {
3128 	prom_interpret(create_node, 0, 0, 0, 0, 0);
3129 }
3130 
3131 
3132 static void
3133 do_prom_version_check(void)
3134 {
3135 	int i;
3136 	pnode_t node;
3137 	char buf[64];
3138 	static char drev[] = "Down-rev firmware detected%s\n"
3139 		"\tPlease upgrade to the following minimum version:\n"
3140 		"\t\t%s\n";
3141 
3142 	i = prom_version_check(buf, sizeof (buf), &node);
3143 
3144 	if (i == PROM_VER64_OK)
3145 		return;
3146 
3147 	if (i == PROM_VER64_UPGRADE) {
3148 		cmn_err(CE_WARN, drev, "", buf);
3149 
3150 #ifdef	DEBUG
3151 		prom_enter_mon();	/* Type 'go' to continue */
3152 		cmn_err(CE_WARN, "Booting with down-rev firmware\n");
3153 		return;
3154 #else
3155 		halt(0);
3156 #endif
3157 	}
3158 
3159 	/*
3160 	 * The other possibility is that this is a server running
3161 	 * good firmware, but down-rev firmware was detected on at
3162 	 * least one other cpu board. We just complain if we see
3163 	 * that.
3164 	 */
3165 	cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
3166 }
3167 
3168 static void
3169 kpm_init()
3170 {
3171 	kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
3172 	kpm_pgsz = 1ull << kpm_pgshft;
3173 	kpm_pgoff = kpm_pgsz - 1;
3174 	kpmp2pshft = kpm_pgshft - PAGESHIFT;
3175 	kpmpnpgs = 1 << kpmp2pshft;
3176 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
3177 }
3178 
3179 void
3180 kpm_npages_setup(int memblocks)
3181 {
3182 	/*
3183 	 * npages can be scattered in a maximum of 'memblocks'
3184 	 */
3185 	kpm_npages = ptokpmpr(npages) + memblocks;
3186 }
3187 
3188 /*
3189  * Must be defined in platform dependent code.
3190  */
3191 extern caddr_t modtext;
3192 extern size_t modtext_sz;
3193 extern caddr_t moddata;
3194 
3195 #define	HEAPTEXT_ARENA(addr)	\
3196 	((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3197 	(((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3198 	(HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3199 
3200 #define	HEAPTEXT_OVERSIZED(addr)	\
3201 	((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3202 
3203 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3204 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3205 kmutex_t texthole_lock;
3206 
3207 char kern_bootargs[OBP_MAXPATHLEN];
3208 
3209 void
3210 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3211 {
3212 	uintptr_t addr, limit;
3213 
3214 	addr = HEAPTEXT_BASE;
3215 	limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3216 
3217 	/*
3218 	 * Before we initialize the text_arena, we want to punch holes in the
3219 	 * underlying heaptext_arena.  This guarantees that for any text
3220 	 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3221 	 */
3222 	for (; addr + HEAPTEXT_UNMAPPED <= limit;
3223 	    addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3224 		(void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3225 		    0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3226 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3227 	}
3228 
3229 	/*
3230 	 * Allocate one page at the oversize to break up the text region
3231 	 * from the oversized region.
3232 	 */
3233 	(void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3234 	    (void *)limit, (void *)(limit + PAGESIZE),
3235 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3236 
3237 	*text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL,
3238 	    modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3239 	    heaptext_arena, 0, VM_SLEEP);
3240 	*data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3241 	    segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3242 }
3243 
3244 caddr_t
3245 kobj_text_alloc(vmem_t *arena, size_t size)
3246 {
3247 	caddr_t rval, better;
3248 
3249 	/*
3250 	 * First, try a sleeping allocation.
3251 	 */
3252 	rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3253 
3254 	if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3255 		return (rval);
3256 
3257 	/*
3258 	 * We didn't get the area that we wanted.  We're going to try to do an
3259 	 * allocation with explicit constraints.
3260 	 */
3261 	better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3262 	    (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3263 	    VM_NOSLEEP | VM_BESTFIT);
3264 
3265 	if (better != NULL) {
3266 		/*
3267 		 * That worked.  Free our first attempt and return.
3268 		 */
3269 		vmem_free(arena, rval, size);
3270 		return (better);
3271 	}
3272 
3273 	/*
3274 	 * That didn't work; we'll have to return our first attempt.
3275 	 */
3276 	return (rval);
3277 }
3278 
3279 caddr_t
3280 kobj_texthole_alloc(caddr_t addr, size_t size)
3281 {
3282 	int arena = HEAPTEXT_ARENA(addr);
3283 	char c[30];
3284 	uintptr_t base;
3285 
3286 	if (HEAPTEXT_OVERSIZED(addr)) {
3287 		/*
3288 		 * If this is an oversized allocation, there is no text hole
3289 		 * available for it; return NULL.
3290 		 */
3291 		return (NULL);
3292 	}
3293 
3294 	mutex_enter(&texthole_lock);
3295 
3296 	if (texthole_arena[arena] == NULL) {
3297 		ASSERT(texthole_source[arena] == NULL);
3298 
3299 		if (arena == 0) {
3300 			texthole_source[0] = vmem_create("module_text_holesrc",
3301 			    (void *)(KERNELBASE + MMU_PAGESIZE4M),
3302 			    MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3303 			    0, VM_SLEEP);
3304 		} else {
3305 			base = HEAPTEXT_BASE +
3306 			    (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3307 
3308 			(void) snprintf(c, sizeof (c),
3309 			    "heaptext_holesrc_%d", arena);
3310 
3311 			texthole_source[arena] = vmem_create(c, (void *)base,
3312 			    HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3313 			    0, VM_SLEEP);
3314 		}
3315 
3316 		(void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3317 
3318 		texthole_arena[arena] = vmem_create(c, NULL, 0,
3319 		    sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3320 		    texthole_source[arena], 0, VM_SLEEP);
3321 	}
3322 
3323 	mutex_exit(&texthole_lock);
3324 
3325 	ASSERT(texthole_arena[arena] != NULL);
3326 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3327 	return (vmem_alloc(texthole_arena[arena], size,
3328 	    VM_BESTFIT | VM_NOSLEEP));
3329 }
3330 
3331 void
3332 kobj_texthole_free(caddr_t addr, size_t size)
3333 {
3334 	int arena = HEAPTEXT_ARENA(addr);
3335 
3336 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3337 	ASSERT(texthole_arena[arena] != NULL);
3338 	vmem_free(texthole_arena[arena], addr, size);
3339 }
3340