xref: /titanic_51/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision 7544909da5f7d5b467625910225a72e142c4b6b7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * VM - Hardware Address Translation management for Spitfire MMU.
30  *
31  * This file implements the machine specific hardware translation
32  * needed by the VM system.  The machine independent interface is
33  * described in <vm/hat.h> while the machine dependent interface
34  * and data structures are described in <vm/hat_sfmmu.h>.
35  *
36  * The hat layer manages the address translation hardware as a cache
37  * driven by calls from the higher levels in the VM system.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/kstat.h>
42 #include <vm/hat.h>
43 #include <vm/hat_sfmmu.h>
44 #include <vm/page.h>
45 #include <sys/pte.h>
46 #include <sys/systm.h>
47 #include <sys/mman.h>
48 #include <sys/sysmacros.h>
49 #include <sys/machparam.h>
50 #include <sys/vtrace.h>
51 #include <sys/kmem.h>
52 #include <sys/mmu.h>
53 #include <sys/cmn_err.h>
54 #include <sys/cpu.h>
55 #include <sys/cpuvar.h>
56 #include <sys/debug.h>
57 #include <sys/lgrp.h>
58 #include <sys/archsystm.h>
59 #include <sys/machsystm.h>
60 #include <sys/vmsystm.h>
61 #include <vm/as.h>
62 #include <vm/seg.h>
63 #include <vm/seg_kp.h>
64 #include <vm/seg_kmem.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/rm.h>
67 #include <sys/t_lock.h>
68 #include <sys/obpdefs.h>
69 #include <sys/vm_machparam.h>
70 #include <sys/var.h>
71 #include <sys/trap.h>
72 #include <sys/machtrap.h>
73 #include <sys/scb.h>
74 #include <sys/bitmap.h>
75 #include <sys/machlock.h>
76 #include <sys/membar.h>
77 #include <sys/atomic.h>
78 #include <sys/cpu_module.h>
79 #include <sys/prom_debug.h>
80 #include <sys/ksynch.h>
81 #include <sys/mem_config.h>
82 #include <sys/mem_cage.h>
83 #include <sys/dtrace.h>
84 #include <vm/vm_dep.h>
85 #include <vm/xhat_sfmmu.h>
86 #include <sys/fpu/fpusystm.h>
87 #include <vm/mach_kpm.h>
88 
89 #if defined(SF_ERRATA_57)
90 extern caddr_t errata57_limit;
91 #endif
92 
93 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
94 				(sizeof (int64_t)))
95 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
96 
97 #define	HBLK_RESERVE_CNT	128
98 #define	HBLK_RESERVE_MIN	20
99 
100 static struct hme_blk		*freehblkp;
101 static kmutex_t			freehblkp_lock;
102 static int			freehblkcnt;
103 
104 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
105 static kmutex_t			hblk_reserve_lock;
106 static kthread_t		*hblk_reserve_thread;
107 
108 static nucleus_hblk8_info_t	nucleus_hblk8;
109 static nucleus_hblk1_info_t	nucleus_hblk1;
110 
111 /*
112  * SFMMU specific hat functions
113  */
114 void	hat_pagecachectl(struct page *, int);
115 
116 /* flags for hat_pagecachectl */
117 #define	HAT_CACHE	0x1
118 #define	HAT_UNCACHE	0x2
119 #define	HAT_TMPNC	0x4
120 
121 /*
122  * Flag to allow the creation of non-cacheable translations
123  * to system memory. It is off by default. At the moment this
124  * flag is used by the ecache error injector. The error injector
125  * will turn it on when creating such a translation then shut it
126  * off when it's finished.
127  */
128 
129 int	sfmmu_allow_nc_trans = 0;
130 
131 /*
132  * Flag to disable large page support.
133  * 	value of 1 => disable all large pages.
134  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
135  *
136  * For example, use the value 0x4 to disable 512K pages.
137  *
138  */
139 #define	LARGE_PAGES_OFF		0x1
140 
141 /*
142  * The disable_large_pages and disable_ism_large_pages variables control
143  * hat_memload_array and the page sizes to be used by ISM and the kernel.
144  *
145  * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
146  * are only used to control which OOB pages to use at upper VM segment creation
147  * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
148  * Their values may come from platform or CPU specific code to disable page
149  * sizes that should not be used.
150  *
151  * WARNING: 512K pages are currently not supported for ISM/DISM.
152  */
153 uint_t	disable_large_pages = 0;
154 uint_t	disable_ism_large_pages = (1 << TTE512K);
155 uint_t	disable_auto_data_large_pages = 0;
156 uint_t	disable_auto_text_large_pages = 0;
157 
158 /*
159  * Private sfmmu data structures for hat management
160  */
161 static struct kmem_cache *sfmmuid_cache;
162 static struct kmem_cache *mmuctxdom_cache;
163 
164 /*
165  * Private sfmmu data structures for tsb management
166  */
167 static struct kmem_cache *sfmmu_tsbinfo_cache;
168 static struct kmem_cache *sfmmu_tsb8k_cache;
169 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
170 static vmem_t *kmem_tsb_arena;
171 
172 /*
173  * sfmmu static variables for hmeblk resource management.
174  */
175 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
176 static struct kmem_cache *sfmmu8_cache;
177 static struct kmem_cache *sfmmu1_cache;
178 static struct kmem_cache *pa_hment_cache;
179 
180 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
181 /*
182  * private data for ism
183  */
184 static struct kmem_cache *ism_blk_cache;
185 static struct kmem_cache *ism_ment_cache;
186 #define	ISMID_STARTADDR	NULL
187 
188 /*
189  * Whether to delay TLB flushes and use Cheetah's flush-all support
190  * when removing contexts from the dirty list.
191  */
192 int delay_tlb_flush;
193 int disable_delay_tlb_flush;
194 
195 /*
196  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
197  * HAT flags, synchronizing TLB/TSB coherency, and context management.
198  * The lock is hashed on the sfmmup since the case where we need to lock
199  * all processes is rare but does occur (e.g. we need to unload a shared
200  * mapping from all processes using the mapping).  We have a lot of buckets,
201  * and each slab of sfmmu_t's can use about a quarter of them, giving us
202  * a fairly good distribution without wasting too much space and overhead
203  * when we have to grab them all.
204  */
205 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
206 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
207 
208 /*
209  * Hash algorithm optimized for a small number of slabs.
210  *  7 is (highbit((sizeof sfmmu_t)) - 1)
211  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
212  * kmem_cache, and thus they will be sequential within that cache.  In
213  * addition, each new slab will have a different "color" up to cache_maxcolor
214  * which will skew the hashing for each successive slab which is allocated.
215  * If the size of sfmmu_t changed to a larger size, this algorithm may need
216  * to be revisited.
217  */
218 #define	TSB_HASH_SHIFT_BITS (7)
219 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
220 
221 #ifdef DEBUG
222 int tsb_hash_debug = 0;
223 #define	TSB_HASH(sfmmup)	\
224 	(tsb_hash_debug ? &hat_lock[0] : \
225 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
226 #else	/* DEBUG */
227 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
228 #endif	/* DEBUG */
229 
230 
231 /* sfmmu_replace_tsb() return codes. */
232 typedef enum tsb_replace_rc {
233 	TSB_SUCCESS,
234 	TSB_ALLOCFAIL,
235 	TSB_LOSTRACE,
236 	TSB_ALREADY_SWAPPED,
237 	TSB_CANTGROW
238 } tsb_replace_rc_t;
239 
240 /*
241  * Flags for TSB allocation routines.
242  */
243 #define	TSB_ALLOC	0x01
244 #define	TSB_FORCEALLOC	0x02
245 #define	TSB_GROW	0x04
246 #define	TSB_SHRINK	0x08
247 #define	TSB_SWAPIN	0x10
248 
249 /*
250  * Support for HAT callbacks.
251  */
252 #define	SFMMU_MAX_RELOC_CALLBACKS	10
253 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
254 static id_t sfmmu_cb_nextid = 0;
255 static id_t sfmmu_tsb_cb_id;
256 struct sfmmu_callback *sfmmu_cb_table;
257 
258 /*
259  * Kernel page relocation is enabled by default for non-caged
260  * kernel pages.  This has little effect unless segkmem_reloc is
261  * set, since by default kernel memory comes from inside the
262  * kernel cage.
263  */
264 int hat_kpr_enabled = 1;
265 
266 kmutex_t	kpr_mutex;
267 kmutex_t	kpr_suspendlock;
268 kthread_t	*kreloc_thread;
269 
270 /*
271  * Enable VA->PA translation sanity checking on DEBUG kernels.
272  * Disabled by default.  This is incompatible with some
273  * drivers (error injector, RSM) so if it breaks you get
274  * to keep both pieces.
275  */
276 int hat_check_vtop = 0;
277 
278 /*
279  * Private sfmmu routines (prototypes)
280  */
281 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
282 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
283 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t);
284 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
285 			caddr_t, demap_range_t *, uint_t);
286 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
287 			caddr_t, int);
288 static void	sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
289 			uint64_t, struct hme_blk **);
290 static void	sfmmu_hblks_list_purge(struct hme_blk **);
291 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
292 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
293 static struct hme_blk *sfmmu_hblk_steal(int);
294 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
295 			struct hme_blk *, uint64_t, uint64_t,
296 			struct hme_blk *);
297 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
298 
299 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
300 		    uint_t, uint_t, pgcnt_t);
301 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
302 			uint_t);
303 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
304 			uint_t);
305 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
306 					caddr_t, int);
307 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
308 			struct hmehash_bucket *, caddr_t, uint_t, uint_t);
309 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
310 			caddr_t, page_t **, uint_t);
311 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
312 
313 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
314 pfn_t		sfmmu_uvatopfn(caddr_t, sfmmu_t *);
315 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
316 #ifdef VAC
317 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
318 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
319 int	tst_tnc(page_t *pp, pgcnt_t);
320 void	conv_tnc(page_t *pp, int);
321 #endif
322 
323 static void	sfmmu_get_ctx(sfmmu_t *);
324 static void	sfmmu_free_sfmmu(sfmmu_t *);
325 
326 static void	sfmmu_gettte(struct hat *, caddr_t, tte_t *);
327 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
328 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
329 
330 cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
331 static void	hat_pagereload(struct page *, struct page *);
332 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
333 #ifdef VAC
334 void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
335 static void	sfmmu_page_cache(page_t *, int, int, int);
336 #endif
337 
338 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
339 			pfn_t, int, int, int, int);
340 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
341 			pfn_t, int);
342 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
343 static void	sfmmu_tlb_range_demap(demap_range_t *);
344 static void	sfmmu_invalidate_ctx(sfmmu_t *);
345 static void	sfmmu_sync_mmustate(sfmmu_t *);
346 
347 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
348 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
349 			sfmmu_t *);
350 static void	sfmmu_tsb_free(struct tsb_info *);
351 static void	sfmmu_tsbinfo_free(struct tsb_info *);
352 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
353 			sfmmu_t *);
354 
355 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
356 static int	sfmmu_select_tsb_szc(pgcnt_t);
357 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
358 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
359 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
360 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
361 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
362 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
363 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
364     hatlock_t *, uint_t);
365 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
366 
367 #ifdef VAC
368 void	sfmmu_cache_flush(pfn_t, int);
369 void	sfmmu_cache_flushcolor(int, pfn_t);
370 #endif
371 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
372 			caddr_t, demap_range_t *, uint_t, int);
373 
374 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
375 static uint_t	sfmmu_ptov_attr(tte_t *);
376 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
377 			caddr_t, demap_range_t *, uint_t);
378 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
379 static int	sfmmu_idcache_constructor(void *, void *, int);
380 static void	sfmmu_idcache_destructor(void *, void *);
381 static int	sfmmu_hblkcache_constructor(void *, void *, int);
382 static void	sfmmu_hblkcache_destructor(void *, void *);
383 static void	sfmmu_hblkcache_reclaim(void *);
384 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
385 			struct hmehash_bucket *);
386 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
387 static void	sfmmu_rm_large_mappings(page_t *, int);
388 
389 static void	hat_lock_init(void);
390 static void	hat_kstat_init(void);
391 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
392 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
393 int	fnd_mapping_sz(page_t *);
394 static void	iment_add(struct ism_ment *,  struct hat *);
395 static void	iment_sub(struct ism_ment *, struct hat *);
396 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
397 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
398 #ifdef sun4v
399 extern void	sfmmu_invalidate_tsbinfo(sfmmu_t *);
400 #endif	/* sun4v */
401 extern void	sfmmu_clear_utsbinfo(void);
402 
403 static void	sfmmu_ctx_wrap_around(mmu_ctx_t *);
404 
405 /* kpm globals */
406 #ifdef	DEBUG
407 /*
408  * Enable trap level tsbmiss handling
409  */
410 int	kpm_tsbmtl = 1;
411 
412 /*
413  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
414  * required TLB shootdowns in this case, so handle w/ care. Off by default.
415  */
416 int	kpm_tlb_flush;
417 #endif	/* DEBUG */
418 
419 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
420 
421 #ifdef DEBUG
422 static void	sfmmu_check_hblk_flist();
423 #endif
424 
425 /*
426  * Semi-private sfmmu data structures.  Some of them are initialize in
427  * startup or in hat_init. Some of them are private but accessed by
428  * assembly code or mach_sfmmu.c
429  */
430 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
431 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
432 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
433 uint64_t	khme_hash_pa;		/* PA of khme_hash */
434 int 		uhmehash_num;		/* # of buckets in user hash table */
435 int 		khmehash_num;		/* # of buckets in kernel hash table */
436 
437 uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
438 mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
439 uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
440 
441 #define	DEFAULT_NUM_CTXS_PER_MMU 8192
442 static uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
443 
444 int		cache;			/* describes system cache */
445 
446 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
447 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
448 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
449 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
450 
451 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
452 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
453 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
454 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
455 
456 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
457 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
458 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
459 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
460 
461 #ifndef sun4v
462 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
463 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
464 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
465 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
466 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
467 #endif /* sun4v */
468 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
469 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
470 
471 /*
472  * Size to use for TSB slabs.  Future platforms that support page sizes
473  * larger than 4M may wish to change these values, and provide their own
474  * assembly macros for building and decoding the TSB base register contents.
475  * Note disable_large_pages will override the value set here.
476  */
477 uint_t	tsb_slab_ttesz = TTE4M;
478 uint_t	tsb_slab_size;
479 uint_t	tsb_slab_shift;
480 uint_t	tsb_slab_mask;	/* PFN mask for TTE */
481 
482 /* largest TSB size to grow to, will be smaller on smaller memory systems */
483 int	tsb_max_growsize = UTSB_MAX_SZCODE;
484 
485 /*
486  * Tunable parameters dealing with TSB policies.
487  */
488 
489 /*
490  * This undocumented tunable forces all 8K TSBs to be allocated from
491  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
492  */
493 #ifdef	DEBUG
494 int	tsb_forceheap = 0;
495 #endif	/* DEBUG */
496 
497 /*
498  * Decide whether to use per-lgroup arenas, or one global set of
499  * TSB arenas.  The default is not to break up per-lgroup, since
500  * most platforms don't recognize any tangible benefit from it.
501  */
502 int	tsb_lgrp_affinity = 0;
503 
504 /*
505  * Used for growing the TSB based on the process RSS.
506  * tsb_rss_factor is based on the smallest TSB, and is
507  * shifted by the TSB size to determine if we need to grow.
508  * The default will grow the TSB if the number of TTEs for
509  * this page size exceeds 75% of the number of TSB entries,
510  * which should _almost_ eliminate all conflict misses
511  * (at the expense of using up lots and lots of memory).
512  */
513 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
514 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
515 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
516 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
517 	default_tsb_size)
518 #define	TSB_OK_SHRINK()	\
519 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
520 #define	TSB_OK_GROW()	\
521 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
522 
523 int	enable_tsb_rss_sizing = 1;
524 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
525 
526 /* which TSB size code to use for new address spaces or if rss sizing off */
527 int default_tsb_size = TSB_8K_SZCODE;
528 
529 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
530 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
531 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
532 
533 #ifdef DEBUG
534 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
535 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
536 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
537 static int tsb_alloc_fail_mtbf = 0;
538 static int tsb_alloc_count = 0;
539 #endif /* DEBUG */
540 
541 /* if set to 1, will remap valid TTEs when growing TSB. */
542 int tsb_remap_ttes = 1;
543 
544 /*
545  * If we have more than this many mappings, allocate a second TSB.
546  * This default is chosen because the I/D fully associative TLBs are
547  * assumed to have at least 8 available entries. Platforms with a
548  * larger fully-associative TLB could probably override the default.
549  */
550 int tsb_sectsb_threshold = 8;
551 
552 /*
553  * kstat data
554  */
555 struct sfmmu_global_stat sfmmu_global_stat;
556 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
557 
558 /*
559  * Global data
560  */
561 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
562 
563 #ifdef DEBUG
564 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
565 #endif
566 
567 /* sfmmu locking operations */
568 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
569 static int	sfmmu_mlspl_held(struct page *, int);
570 
571 kmutex_t *sfmmu_page_enter(page_t *);
572 void	sfmmu_page_exit(kmutex_t *);
573 int	sfmmu_page_spl_held(struct page *);
574 
575 /* sfmmu internal locking operations - accessed directly */
576 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
577 				kmutex_t **, kmutex_t **);
578 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
579 static hatlock_t *
580 		sfmmu_hat_enter(sfmmu_t *);
581 static hatlock_t *
582 		sfmmu_hat_tryenter(sfmmu_t *);
583 static void	sfmmu_hat_exit(hatlock_t *);
584 static void	sfmmu_hat_lock_all(void);
585 static void	sfmmu_hat_unlock_all(void);
586 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
587 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
588 
589 /*
590  * Array of mutexes protecting a page's mapping list and p_nrm field.
591  *
592  * The hash function looks complicated, but is made up so that:
593  *
594  * "pp" not shifted, so adjacent pp values will hash to different cache lines
595  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
596  *
597  * "pp" >> mml_shift, incorporates more source bits into the hash result
598  *
599  *  "& (mml_table_size - 1), should be faster than using remainder "%"
600  *
601  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
602  * cacheline, since they get declared next to each other below. We'll trust
603  * ld not to do something random.
604  */
605 #ifdef	DEBUG
606 int mlist_hash_debug = 0;
607 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
608 	&mml_table[((uintptr_t)(pp) + \
609 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
610 #else	/* !DEBUG */
611 #define	MLIST_HASH(pp)   &mml_table[ \
612 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
613 #endif	/* !DEBUG */
614 
615 kmutex_t		*mml_table;
616 uint_t			mml_table_sz;	/* must be a power of 2 */
617 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
618 
619 kpm_hlk_t	*kpmp_table;
620 uint_t		kpmp_table_sz;	/* must be a power of 2 */
621 uchar_t		kpmp_shift;
622 
623 kpm_shlk_t	*kpmp_stable;
624 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
625 
626 /*
627  * SPL_HASH was improved to avoid false cache line sharing
628  */
629 #define	SPL_TABLE_SIZE	128
630 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
631 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
632 
633 #define	SPL_INDEX(pp) \
634 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
635 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
636 	(SPL_TABLE_SIZE - 1))
637 
638 #define	SPL_HASH(pp)    \
639 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
640 
641 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
642 
643 
644 /*
645  * hat_unload_callback() will group together callbacks in order
646  * to avoid xt_sync() calls.  This is the maximum size of the group.
647  */
648 #define	MAX_CB_ADDR	32
649 
650 tte_t	hw_tte;
651 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
652 
653 static char	*mmu_ctx_kstat_names[] = {
654 	"mmu_ctx_tsb_exceptions",
655 	"mmu_ctx_tsb_raise_exception",
656 	"mmu_ctx_wrap_around",
657 };
658 
659 /*
660  * Wrapper for vmem_xalloc since vmem_create only allows limited
661  * parameters for vm_source_alloc functions.  This function allows us
662  * to specify alignment consistent with the size of the object being
663  * allocated.
664  */
665 static void *
666 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
667 {
668 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
669 }
670 
671 /* Common code for setting tsb_alloc_hiwater. */
672 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
673 		ptob(pages) / tsb_alloc_hiwater_factor
674 
675 /*
676  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
677  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
678  * TTEs to represent all those physical pages.  We round this up by using
679  * 1<<highbit().  To figure out which size code to use, remember that the size
680  * code is just an amount to shift the smallest TSB size to get the size of
681  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
682  * highbit() - 1) to get the size code for the smallest TSB that can represent
683  * all of physical memory, while erring on the side of too much.
684  *
685  * If the computed size code is less than the current tsb_max_growsize, we set
686  * tsb_max_growsize to the computed size code.  In the case where the computed
687  * size code is greater than tsb_max_growsize, we have these restrictions that
688  * apply to increasing tsb_max_growsize:
689  *	1) TSBs can't grow larger than the TSB slab size
690  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
691  */
692 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
693 	int	i, szc;							\
694 									\
695 	i = highbit(pages);						\
696 	if ((1 << (i - 1)) == (pages))					\
697 		i--;		/* 2^n case, round down */		\
698 	szc = i - TSB_START_SIZE;					\
699 	if (szc < tsb_max_growsize)					\
700 		tsb_max_growsize = szc;					\
701 	else if ((szc > tsb_max_growsize) &&				\
702 	    (szc <= tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT))) \
703 		tsb_max_growsize = MIN(szc, UTSB_MAX_SZCODE);		\
704 }
705 
706 /*
707  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
708  * tsb_info which handles that TTE size.
709  */
710 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc)			\
711 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
712 	ASSERT(sfmmu_hat_lock_held(sfmmup));				\
713 	if ((tte_szc) >= TTE4M)						\
714 		(tsbinfop) = (tsbinfop)->tsb_next;
715 
716 /*
717  * Return the number of mappings present in the HAT
718  * for a particular process and page size.
719  */
720 #define	SFMMU_TTE_CNT(sfmmup, szc)					\
721 	(sfmmup)->sfmmu_iblk?						\
722 	    (sfmmup)->sfmmu_ismttecnt[(szc)] +				\
723 	    (sfmmup)->sfmmu_ttecnt[(szc)] :				\
724 	    (sfmmup)->sfmmu_ttecnt[(szc)];
725 
726 /*
727  * Macro to use to unload entries from the TSB.
728  * It has knowledge of which page sizes get replicated in the TSB
729  * and will call the appropriate unload routine for the appropriate size.
730  */
731 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp)				\
732 {									\
733 	int ttesz = get_hblk_ttesz(hmeblkp);				\
734 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
735 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
736 	} else {							\
737 		caddr_t sva = (caddr_t)get_hblk_base(hmeblkp);		\
738 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
739 		ASSERT(addr >= sva && addr < eva);			\
740 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
741 	}								\
742 }
743 
744 
745 /* Update tsb_alloc_hiwater after memory is configured. */
746 /*ARGSUSED*/
747 static void
748 sfmmu_update_tsb_post_add(void *arg, pgcnt_t delta_pages)
749 {
750 	/* Assumes physmem has already been updated. */
751 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
752 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
753 }
754 
755 /*
756  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
757  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
758  * deleted.
759  */
760 /*ARGSUSED*/
761 static int
762 sfmmu_update_tsb_pre_del(void *arg, pgcnt_t delta_pages)
763 {
764 	return (0);
765 }
766 
767 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
768 /*ARGSUSED*/
769 static void
770 sfmmu_update_tsb_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
771 {
772 	/*
773 	 * Whether the delete was cancelled or not, just go ahead and update
774 	 * tsb_alloc_hiwater and tsb_max_growsize.
775 	 */
776 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
777 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
778 }
779 
780 static kphysm_setup_vector_t sfmmu_update_tsb_vec = {
781 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
782 	sfmmu_update_tsb_post_add,	/* post_add */
783 	sfmmu_update_tsb_pre_del,	/* pre_del */
784 	sfmmu_update_tsb_post_del	/* post_del */
785 };
786 
787 
788 /*
789  * HME_BLK HASH PRIMITIVES
790  */
791 
792 /*
793  * Enter a hme on the mapping list for page pp.
794  * When large pages are more prevalent in the system we might want to
795  * keep the mapping list in ascending order by the hment size. For now,
796  * small pages are more frequent, so don't slow it down.
797  */
798 #define	HME_ADD(hme, pp)					\
799 {								\
800 	ASSERT(sfmmu_mlist_held(pp));				\
801 								\
802 	hme->hme_prev = NULL;					\
803 	hme->hme_next = pp->p_mapping;				\
804 	hme->hme_page = pp;					\
805 	if (pp->p_mapping) {					\
806 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
807 		ASSERT(pp->p_share > 0);			\
808 	} else  {						\
809 		/* EMPTY */					\
810 		ASSERT(pp->p_share == 0);			\
811 	}							\
812 	pp->p_mapping = hme;					\
813 	pp->p_share++;						\
814 }
815 
816 /*
817  * Enter a hme on the mapping list for page pp.
818  * If we are unmapping a large translation, we need to make sure that the
819  * change is reflect in the corresponding bit of the p_index field.
820  */
821 #define	HME_SUB(hme, pp)					\
822 {								\
823 	ASSERT(sfmmu_mlist_held(pp));				\
824 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
825 								\
826 	if (pp->p_mapping == NULL) {				\
827 		panic("hme_remove - no mappings");		\
828 	}							\
829 								\
830 	membar_stst();	/* ensure previous stores finish */	\
831 								\
832 	ASSERT(pp->p_share > 0);				\
833 	pp->p_share--;						\
834 								\
835 	if (hme->hme_prev) {					\
836 		ASSERT(pp->p_mapping != hme);			\
837 		ASSERT(hme->hme_prev->hme_page == pp ||		\
838 			IS_PAHME(hme->hme_prev));		\
839 		hme->hme_prev->hme_next = hme->hme_next;	\
840 	} else {						\
841 		ASSERT(pp->p_mapping == hme);			\
842 		pp->p_mapping = hme->hme_next;			\
843 		ASSERT((pp->p_mapping == NULL) ?		\
844 			(pp->p_share == 0) : 1);		\
845 	}							\
846 								\
847 	if (hme->hme_next) {					\
848 		ASSERT(hme->hme_next->hme_page == pp ||		\
849 			IS_PAHME(hme->hme_next));		\
850 		hme->hme_next->hme_prev = hme->hme_prev;	\
851 	}							\
852 								\
853 	/* zero out the entry */				\
854 	hme->hme_next = NULL;					\
855 	hme->hme_prev = NULL;					\
856 	hme->hme_page = NULL;					\
857 								\
858 	if (hme_size(hme) > TTE8K) {				\
859 		/* remove mappings for remainder of large pg */	\
860 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
861 	}							\
862 }
863 
864 /*
865  * This function returns the hment given the hme_blk and a vaddr.
866  * It assumes addr has already been checked to belong to hme_blk's
867  * range.
868  */
869 #define	HBLKTOHME(hment, hmeblkp, addr)					\
870 {									\
871 	int index;							\
872 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
873 }
874 
875 /*
876  * Version of HBLKTOHME that also returns the index in hmeblkp
877  * of the hment.
878  */
879 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
880 {									\
881 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
882 									\
883 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
884 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
885 	} else								\
886 		idx = 0;						\
887 									\
888 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
889 }
890 
891 /*
892  * Disable any page sizes not supported by the CPU
893  */
894 void
895 hat_init_pagesizes()
896 {
897 	int 		i;
898 
899 	mmu_exported_page_sizes = 0;
900 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
901 
902 		szc_2_userszc[i] = (uint_t)-1;
903 		userszc_2_szc[i] = (uint_t)-1;
904 
905 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
906 			disable_large_pages |= (1 << i);
907 		} else {
908 			szc_2_userszc[i] = mmu_exported_page_sizes;
909 			userszc_2_szc[mmu_exported_page_sizes] = i;
910 			mmu_exported_page_sizes++;
911 		}
912 	}
913 
914 	disable_ism_large_pages |= disable_large_pages;
915 	disable_auto_data_large_pages = disable_large_pages;
916 	disable_auto_text_large_pages = disable_large_pages;
917 
918 	/*
919 	 * Initialize mmu-specific large page sizes.
920 	 */
921 	if (&mmu_large_pages_disabled) {
922 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
923 		disable_ism_large_pages |=
924 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
925 		disable_auto_data_large_pages |=
926 		    mmu_large_pages_disabled(HAT_AUTO_DATA);
927 		disable_auto_text_large_pages |=
928 		    mmu_large_pages_disabled(HAT_AUTO_TEXT);
929 	}
930 }
931 
932 /*
933  * Initialize the hardware address translation structures.
934  */
935 void
936 hat_init(void)
937 {
938 	int 		i;
939 	uint_t		sz;
940 	uint_t		maxtsb;
941 	size_t		size;
942 
943 	hat_lock_init();
944 	hat_kstat_init();
945 
946 	/*
947 	 * Hardware-only bits in a TTE
948 	 */
949 	MAKE_TTE_MASK(&hw_tte);
950 
951 	hat_init_pagesizes();
952 
953 	/* Initialize the hash locks */
954 	for (i = 0; i < khmehash_num; i++) {
955 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
956 		    MUTEX_DEFAULT, NULL);
957 	}
958 	for (i = 0; i < uhmehash_num; i++) {
959 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
960 		    MUTEX_DEFAULT, NULL);
961 	}
962 	khmehash_num--;		/* make sure counter starts from 0 */
963 	uhmehash_num--;		/* make sure counter starts from 0 */
964 
965 	/*
966 	 * Allocate context domain structures.
967 	 *
968 	 * A platform may choose to modify max_mmu_ctxdoms in
969 	 * set_platform_defaults(). If a platform does not define
970 	 * a set_platform_defaults() or does not choose to modify
971 	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
972 	 *
973 	 * For sun4v, there will be one global context domain, this is to
974 	 * avoid the ldom cpu substitution problem.
975 	 *
976 	 * For all platforms that have CPUs sharing MMUs, this
977 	 * value must be defined.
978 	 */
979 	if (max_mmu_ctxdoms == 0) {
980 #ifndef sun4v
981 		max_mmu_ctxdoms = max_ncpus;
982 #else /* sun4v */
983 		max_mmu_ctxdoms = 1;
984 #endif /* sun4v */
985 	}
986 
987 	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
988 	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
989 
990 	/* mmu_ctx_t is 64 bytes aligned */
991 	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
992 	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
993 	/*
994 	 * MMU context domain initialization for the Boot CPU.
995 	 * This needs the context domains array allocated above.
996 	 */
997 	mutex_enter(&cpu_lock);
998 	sfmmu_cpu_init(CPU);
999 	mutex_exit(&cpu_lock);
1000 
1001 	/*
1002 	 * Intialize ism mapping list lock.
1003 	 */
1004 
1005 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1006 
1007 	/*
1008 	 * Each sfmmu structure carries an array of MMU context info
1009 	 * structures, one per context domain. The size of this array depends
1010 	 * on the maximum number of context domains. So, the size of the
1011 	 * sfmmu structure varies per platform.
1012 	 *
1013 	 * sfmmu is allocated from static arena, because trap
1014 	 * handler at TL > 0 is not allowed to touch kernel relocatable
1015 	 * memory. sfmmu's alignment is changed to 64 bytes from
1016 	 * default 8 bytes, as the lower 6 bits will be used to pass
1017 	 * pgcnt to vtag_flush_pgcnt_tl1.
1018 	 */
1019 	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1020 
1021 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1022 	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1023 	    NULL, NULL, static_arena, 0);
1024 
1025 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1026 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1027 
1028 	/*
1029 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1030 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1031 	 * specified, don't use magazines to cache them--we want to return
1032 	 * them to the system as quickly as possible.
1033 	 */
1034 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1035 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1036 	    static_arena, KMC_NOMAGAZINE);
1037 
1038 	/*
1039 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1040 	 * memory, which corresponds to the old static reserve for TSBs.
1041 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1042 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1043 	 * allocations will be taken from the kernel heap (via
1044 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1045 	 * consumer.
1046 	 */
1047 	if (tsb_alloc_hiwater_factor == 0) {
1048 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1049 	}
1050 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1051 
1052 	/* Set tsb_max_growsize. */
1053 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1054 
1055 	/*
1056 	 * On smaller memory systems, allocate TSB memory in smaller chunks
1057 	 * than the default 4M slab size. We also honor disable_large_pages
1058 	 * here.
1059 	 *
1060 	 * The trap handlers need to be patched with the final slab shift,
1061 	 * since they need to be able to construct the TSB pointer at runtime.
1062 	 */
1063 	if (tsb_max_growsize <= TSB_512K_SZCODE)
1064 		tsb_slab_ttesz = TTE512K;
1065 
1066 	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1067 		if (!(disable_large_pages & (1 << sz)))
1068 			break;
1069 	}
1070 
1071 	tsb_slab_ttesz = sz;
1072 	tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1073 	tsb_slab_size = 1 << tsb_slab_shift;
1074 	tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1075 
1076 	maxtsb = tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT);
1077 	if (tsb_max_growsize > maxtsb)
1078 		tsb_max_growsize = maxtsb;
1079 
1080 	/*
1081 	 * Set up memory callback to update tsb_alloc_hiwater and
1082 	 * tsb_max_growsize.
1083 	 */
1084 	i = kphysm_setup_func_register(&sfmmu_update_tsb_vec, (void *) 0);
1085 	ASSERT(i == 0);
1086 
1087 	/*
1088 	 * kmem_tsb_arena is the source from which large TSB slabs are
1089 	 * drawn.  The quantum of this arena corresponds to the largest
1090 	 * TSB size we can dynamically allocate for user processes.
1091 	 * Currently it must also be a supported page size since we
1092 	 * use exactly one translation entry to map each slab page.
1093 	 *
1094 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1095 	 * which most TSBs are allocated.  Since most TSB allocations are
1096 	 * typically 8K we have a kmem cache we stack on top of each
1097 	 * kmem_tsb_default_arena to speed up those allocations.
1098 	 *
1099 	 * Note the two-level scheme of arenas is required only
1100 	 * because vmem_create doesn't allow us to specify alignment
1101 	 * requirements.  If this ever changes the code could be
1102 	 * simplified to use only one level of arenas.
1103 	 */
1104 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1105 	    sfmmu_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena,
1106 	    0, VM_SLEEP);
1107 
1108 	if (tsb_lgrp_affinity) {
1109 		char s[50];
1110 		for (i = 0; i < NLGRPS_MAX; i++) {
1111 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1112 			kmem_tsb_default_arena[i] =
1113 			    vmem_create(s, NULL, 0, PAGESIZE,
1114 			    sfmmu_tsb_segkmem_alloc, sfmmu_tsb_segkmem_free,
1115 			    kmem_tsb_arena, 0, VM_SLEEP | VM_BESTFIT);
1116 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1117 			sfmmu_tsb_cache[i] = kmem_cache_create(s, PAGESIZE,
1118 			    PAGESIZE, NULL, NULL, NULL, NULL,
1119 			    kmem_tsb_default_arena[i], 0);
1120 		}
1121 	} else {
1122 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1123 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1124 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1125 		    VM_SLEEP | VM_BESTFIT);
1126 
1127 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1128 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1129 		    kmem_tsb_default_arena[0], 0);
1130 	}
1131 
1132 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1133 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1134 		sfmmu_hblkcache_destructor,
1135 		sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1136 		hat_memload_arena, KMC_NOHASH);
1137 
1138 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1139 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1140 
1141 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1142 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1143 		sfmmu_hblkcache_destructor,
1144 		NULL, (void *)HME1BLK_SZ,
1145 		hat_memload1_arena, KMC_NOHASH);
1146 
1147 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1148 		0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1149 
1150 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1151 		sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1152 		NULL, NULL, static_arena, KMC_NOHASH);
1153 
1154 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1155 		sizeof (ism_ment_t), 0, NULL, NULL,
1156 		NULL, NULL, NULL, 0);
1157 
1158 	/*
1159 	 * We grab the first hat for the kernel,
1160 	 */
1161 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1162 	kas.a_hat = hat_alloc(&kas);
1163 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1164 
1165 	/*
1166 	 * Initialize hblk_reserve.
1167 	 */
1168 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1169 				va_to_pa((caddr_t)hblk_reserve);
1170 
1171 #ifndef UTSB_PHYS
1172 	/*
1173 	 * Reserve some kernel virtual address space for the locked TTEs
1174 	 * that allow us to probe the TSB from TL>0.
1175 	 */
1176 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1177 		0, 0, NULL, NULL, VM_SLEEP);
1178 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1179 		0, 0, NULL, NULL, VM_SLEEP);
1180 #endif
1181 
1182 #ifdef VAC
1183 	/*
1184 	 * The big page VAC handling code assumes VAC
1185 	 * will not be bigger than the smallest big
1186 	 * page- which is 64K.
1187 	 */
1188 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1189 		cmn_err(CE_PANIC, "VAC too big!");
1190 	}
1191 #endif
1192 
1193 	(void) xhat_init();
1194 
1195 	uhme_hash_pa = va_to_pa(uhme_hash);
1196 	khme_hash_pa = va_to_pa(khme_hash);
1197 
1198 	/*
1199 	 * Initialize relocation locks. kpr_suspendlock is held
1200 	 * at PIL_MAX to prevent interrupts from pinning the holder
1201 	 * of a suspended TTE which may access it leading to a
1202 	 * deadlock condition.
1203 	 */
1204 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1205 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1206 }
1207 
1208 /*
1209  * Initialize locking for the hat layer, called early during boot.
1210  */
1211 static void
1212 hat_lock_init()
1213 {
1214 	int i;
1215 
1216 	/*
1217 	 * initialize the array of mutexes protecting a page's mapping
1218 	 * list and p_nrm field.
1219 	 */
1220 	for (i = 0; i < mml_table_sz; i++)
1221 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1222 
1223 	if (kpm_enable) {
1224 		for (i = 0; i < kpmp_table_sz; i++) {
1225 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1226 			    MUTEX_DEFAULT, NULL);
1227 		}
1228 	}
1229 
1230 	/*
1231 	 * Initialize array of mutex locks that protects sfmmu fields and
1232 	 * TSB lists.
1233 	 */
1234 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1235 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1236 		    NULL);
1237 }
1238 
1239 extern caddr_t kmem64_base, kmem64_end;
1240 
1241 #define	SFMMU_KERNEL_MAXVA \
1242 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1243 
1244 /*
1245  * Allocate a hat structure.
1246  * Called when an address space first uses a hat.
1247  */
1248 struct hat *
1249 hat_alloc(struct as *as)
1250 {
1251 	sfmmu_t *sfmmup;
1252 	int i;
1253 	uint64_t cnum;
1254 	extern uint_t get_color_start(struct as *);
1255 
1256 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1257 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1258 	sfmmup->sfmmu_as = as;
1259 	sfmmup->sfmmu_flags = 0;
1260 	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1261 
1262 	if (as == &kas) {
1263 		ksfmmup = sfmmup;
1264 		sfmmup->sfmmu_cext = 0;
1265 		cnum = KCONTEXT;
1266 
1267 		sfmmup->sfmmu_clrstart = 0;
1268 		sfmmup->sfmmu_tsb = NULL;
1269 		/*
1270 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1271 		 * to setup tsb_info for ksfmmup.
1272 		 */
1273 	} else {
1274 
1275 		/*
1276 		 * Just set to invalid ctx. When it faults, it will
1277 		 * get a valid ctx. This would avoid the situation
1278 		 * where we get a ctx, but it gets stolen and then
1279 		 * we fault when we try to run and so have to get
1280 		 * another ctx.
1281 		 */
1282 		sfmmup->sfmmu_cext = 0;
1283 		cnum = INVALID_CONTEXT;
1284 
1285 		/* initialize original physical page coloring bin */
1286 		sfmmup->sfmmu_clrstart = get_color_start(as);
1287 #ifdef DEBUG
1288 		if (tsb_random_size) {
1289 			uint32_t randval = (uint32_t)gettick() >> 4;
1290 			int size = randval % (tsb_max_growsize + 1);
1291 
1292 			/* chose a random tsb size for stress testing */
1293 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1294 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1295 		} else
1296 #endif /* DEBUG */
1297 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1298 			    default_tsb_size,
1299 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1300 		sfmmup->sfmmu_flags = HAT_SWAPPED;
1301 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1302 	}
1303 
1304 	ASSERT(max_mmu_ctxdoms > 0);
1305 	for (i = 0; i < max_mmu_ctxdoms; i++) {
1306 		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1307 		sfmmup->sfmmu_ctxs[i].gnum = 0;
1308 	}
1309 
1310 	sfmmu_setup_tsbinfo(sfmmup);
1311 	for (i = 0; i < max_mmu_page_sizes; i++) {
1312 		sfmmup->sfmmu_ttecnt[i] = 0;
1313 		sfmmup->sfmmu_ismttecnt[i] = 0;
1314 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1315 	}
1316 
1317 	sfmmup->sfmmu_iblk = NULL;
1318 	sfmmup->sfmmu_ismhat = 0;
1319 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1320 	if (sfmmup == ksfmmup) {
1321 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1322 	} else {
1323 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1324 	}
1325 	sfmmup->sfmmu_free = 0;
1326 	sfmmup->sfmmu_rmstat = 0;
1327 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1328 	sfmmup->sfmmu_xhat_provider = NULL;
1329 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1330 	return (sfmmup);
1331 }
1332 
1333 /*
1334  * Create per-MMU context domain kstats for a given MMU ctx.
1335  */
1336 static void
1337 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1338 {
1339 	mmu_ctx_stat_t	stat;
1340 	kstat_t		*mmu_kstat;
1341 
1342 	ASSERT(MUTEX_HELD(&cpu_lock));
1343 	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1344 
1345 	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1346 	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1347 
1348 	if (mmu_kstat == NULL) {
1349 		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1350 		    mmu_ctxp->mmu_idx);
1351 	} else {
1352 		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1353 		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1354 			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1355 			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1356 		mmu_ctxp->mmu_kstat = mmu_kstat;
1357 		kstat_install(mmu_kstat);
1358 	}
1359 }
1360 
1361 /*
1362  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1363  * context domain information for a given CPU. If a platform does not
1364  * specify that interface, then the function below is used instead to return
1365  * default information. The defaults are as follows:
1366  *
1367  *	- For sun4u systems there's one MMU context domain per CPU.
1368  *	  This default is used by all sun4u systems except OPL. OPL systems
1369  *	  provide platform specific interface to map CPU ids to MMU ids
1370  *	  because on OPL more than 1 CPU shares a single MMU.
1371  *        Note that on sun4v, there is one global context domain for
1372  *	  the entire system. This is to avoid running into potential problem
1373  *	  with ldom physical cpu substitution feature.
1374  *	- The number of MMU context IDs supported on any CPU in the
1375  *	  system is 8K.
1376  */
1377 /*ARGSUSED*/
1378 static void
1379 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1380 {
1381 	infop->mmu_nctxs = nctxs;
1382 #ifndef sun4v
1383 	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1384 #else /* sun4v */
1385 	infop->mmu_idx = 0;
1386 #endif /* sun4v */
1387 }
1388 
1389 /*
1390  * Called during CPU initialization to set the MMU context-related information
1391  * for a CPU.
1392  *
1393  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1394  */
1395 void
1396 sfmmu_cpu_init(cpu_t *cp)
1397 {
1398 	mmu_ctx_info_t	info;
1399 	mmu_ctx_t	*mmu_ctxp;
1400 
1401 	ASSERT(MUTEX_HELD(&cpu_lock));
1402 
1403 	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1404 		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1405 	else
1406 		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1407 
1408 	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1409 
1410 	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1411 		/* Each mmu_ctx is cacheline aligned. */
1412 		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1413 		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1414 
1415 		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1416 		    (void *)ipltospl(DISP_LEVEL));
1417 		mmu_ctxp->mmu_idx = info.mmu_idx;
1418 		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1419 		/*
1420 		 * Globally for lifetime of a system,
1421 		 * gnum must always increase.
1422 		 * mmu_saved_gnum is protected by the cpu_lock.
1423 		 */
1424 		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1425 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1426 
1427 		sfmmu_mmu_kstat_create(mmu_ctxp);
1428 
1429 		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1430 	} else {
1431 		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1432 	}
1433 
1434 	/*
1435 	 * The mmu_lock is acquired here to prevent races with
1436 	 * the wrap-around code.
1437 	 */
1438 	mutex_enter(&mmu_ctxp->mmu_lock);
1439 
1440 
1441 	mmu_ctxp->mmu_ncpus++;
1442 	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1443 	CPU_MMU_IDX(cp) = info.mmu_idx;
1444 	CPU_MMU_CTXP(cp) = mmu_ctxp;
1445 
1446 	mutex_exit(&mmu_ctxp->mmu_lock);
1447 }
1448 
1449 /*
1450  * Called to perform MMU context-related cleanup for a CPU.
1451  */
1452 void
1453 sfmmu_cpu_cleanup(cpu_t *cp)
1454 {
1455 	mmu_ctx_t	*mmu_ctxp;
1456 
1457 	ASSERT(MUTEX_HELD(&cpu_lock));
1458 
1459 	mmu_ctxp = CPU_MMU_CTXP(cp);
1460 	ASSERT(mmu_ctxp != NULL);
1461 
1462 	/*
1463 	 * The mmu_lock is acquired here to prevent races with
1464 	 * the wrap-around code.
1465 	 */
1466 	mutex_enter(&mmu_ctxp->mmu_lock);
1467 
1468 	CPU_MMU_CTXP(cp) = NULL;
1469 
1470 	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1471 	if (--mmu_ctxp->mmu_ncpus == 0) {
1472 		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1473 		mutex_exit(&mmu_ctxp->mmu_lock);
1474 		mutex_destroy(&mmu_ctxp->mmu_lock);
1475 
1476 		if (mmu_ctxp->mmu_kstat)
1477 			kstat_delete(mmu_ctxp->mmu_kstat);
1478 
1479 		/* mmu_saved_gnum is protected by the cpu_lock. */
1480 		if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1481 			mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1482 
1483 		kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1484 
1485 		return;
1486 	}
1487 
1488 	mutex_exit(&mmu_ctxp->mmu_lock);
1489 }
1490 
1491 /*
1492  * Hat_setup, makes an address space context the current active one.
1493  * In sfmmu this translates to setting the secondary context with the
1494  * corresponding context.
1495  */
1496 void
1497 hat_setup(struct hat *sfmmup, int allocflag)
1498 {
1499 	hatlock_t *hatlockp;
1500 
1501 	/* Init needs some special treatment. */
1502 	if (allocflag == HAT_INIT) {
1503 		/*
1504 		 * Make sure that we have
1505 		 * 1. a TSB
1506 		 * 2. a valid ctx that doesn't get stolen after this point.
1507 		 */
1508 		hatlockp = sfmmu_hat_enter(sfmmup);
1509 
1510 		/*
1511 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1512 		 * TSBs, but we need one for init, since the kernel does some
1513 		 * special things to set up its stack and needs the TSB to
1514 		 * resolve page faults.
1515 		 */
1516 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1517 
1518 		sfmmu_get_ctx(sfmmup);
1519 
1520 		sfmmu_hat_exit(hatlockp);
1521 	} else {
1522 		ASSERT(allocflag == HAT_ALLOC);
1523 
1524 		hatlockp = sfmmu_hat_enter(sfmmup);
1525 		kpreempt_disable();
1526 
1527 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1528 
1529 		/*
1530 		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1531 		 * pagesize bits don't matter in this case since we are passing
1532 		 * INVALID_CONTEXT to it.
1533 		 */
1534 		sfmmu_setctx_sec(INVALID_CONTEXT);
1535 		sfmmu_clear_utsbinfo();
1536 
1537 		kpreempt_enable();
1538 		sfmmu_hat_exit(hatlockp);
1539 	}
1540 }
1541 
1542 /*
1543  * Free all the translation resources for the specified address space.
1544  * Called from as_free when an address space is being destroyed.
1545  */
1546 void
1547 hat_free_start(struct hat *sfmmup)
1548 {
1549 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1550 	ASSERT(sfmmup != ksfmmup);
1551 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1552 
1553 	sfmmup->sfmmu_free = 1;
1554 }
1555 
1556 void
1557 hat_free_end(struct hat *sfmmup)
1558 {
1559 	int i;
1560 
1561 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1562 	if (sfmmup->sfmmu_ismhat) {
1563 		for (i = 0; i < mmu_page_sizes; i++) {
1564 			sfmmup->sfmmu_ttecnt[i] = 0;
1565 			sfmmup->sfmmu_ismttecnt[i] = 0;
1566 		}
1567 	} else {
1568 		/* EMPTY */
1569 		ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1570 		ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1571 		ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1572 		ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1573 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1574 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1575 	}
1576 
1577 	if (sfmmup->sfmmu_rmstat) {
1578 		hat_freestat(sfmmup->sfmmu_as, NULL);
1579 	}
1580 
1581 	while (sfmmup->sfmmu_tsb != NULL) {
1582 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1583 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1584 		sfmmup->sfmmu_tsb = next;
1585 	}
1586 	sfmmu_free_sfmmu(sfmmup);
1587 
1588 	kmem_cache_free(sfmmuid_cache, sfmmup);
1589 }
1590 
1591 /*
1592  * Set up any translation structures, for the specified address space,
1593  * that are needed or preferred when the process is being swapped in.
1594  */
1595 /* ARGSUSED */
1596 void
1597 hat_swapin(struct hat *hat)
1598 {
1599 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1600 }
1601 
1602 /*
1603  * Free all of the translation resources, for the specified address space,
1604  * that can be freed while the process is swapped out. Called from as_swapout.
1605  * Also, free up the ctx that this process was using.
1606  */
1607 void
1608 hat_swapout(struct hat *sfmmup)
1609 {
1610 	struct hmehash_bucket *hmebp;
1611 	struct hme_blk *hmeblkp;
1612 	struct hme_blk *pr_hblk = NULL;
1613 	struct hme_blk *nx_hblk;
1614 	int i;
1615 	uint64_t hblkpa, prevpa, nx_pa;
1616 	struct hme_blk *list = NULL;
1617 	hatlock_t *hatlockp;
1618 	struct tsb_info *tsbinfop;
1619 	struct free_tsb {
1620 		struct free_tsb *next;
1621 		struct tsb_info *tsbinfop;
1622 	};			/* free list of TSBs */
1623 	struct free_tsb *freelist, *last, *next;
1624 
1625 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1626 	SFMMU_STAT(sf_swapout);
1627 
1628 	/*
1629 	 * There is no way to go from an as to all its translations in sfmmu.
1630 	 * Here is one of the times when we take the big hit and traverse
1631 	 * the hash looking for hme_blks to free up.  Not only do we free up
1632 	 * this as hme_blks but all those that are free.  We are obviously
1633 	 * swapping because we need memory so let's free up as much
1634 	 * as we can.
1635 	 *
1636 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1637 	 * because:
1638 	 *  1) we free the ctx we're using and throw away the TSB(s);
1639 	 *  2) processes aren't runnable while being swapped out.
1640 	 */
1641 	ASSERT(sfmmup != KHATID);
1642 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1643 		hmebp = &uhme_hash[i];
1644 		SFMMU_HASH_LOCK(hmebp);
1645 		hmeblkp = hmebp->hmeblkp;
1646 		hblkpa = hmebp->hmeh_nextpa;
1647 		prevpa = 0;
1648 		pr_hblk = NULL;
1649 		while (hmeblkp) {
1650 
1651 			ASSERT(!hmeblkp->hblk_xhat_bit);
1652 
1653 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1654 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1655 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1656 					(caddr_t)get_hblk_base(hmeblkp),
1657 					get_hblk_endaddr(hmeblkp),
1658 					NULL, HAT_UNLOAD);
1659 			}
1660 			nx_hblk = hmeblkp->hblk_next;
1661 			nx_pa = hmeblkp->hblk_nextpa;
1662 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1663 				ASSERT(!hmeblkp->hblk_lckcnt);
1664 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
1665 					prevpa, pr_hblk);
1666 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
1667 			} else {
1668 				pr_hblk = hmeblkp;
1669 				prevpa = hblkpa;
1670 			}
1671 			hmeblkp = nx_hblk;
1672 			hblkpa = nx_pa;
1673 		}
1674 		SFMMU_HASH_UNLOCK(hmebp);
1675 	}
1676 
1677 	sfmmu_hblks_list_purge(&list);
1678 
1679 	/*
1680 	 * Now free up the ctx so that others can reuse it.
1681 	 */
1682 	hatlockp = sfmmu_hat_enter(sfmmup);
1683 
1684 	sfmmu_invalidate_ctx(sfmmup);
1685 
1686 	/*
1687 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1688 	 * If TSBs were never swapped in, just return.
1689 	 * This implies that we don't support partial swapping
1690 	 * of TSBs -- either all are swapped out, or none are.
1691 	 *
1692 	 * We must hold the HAT lock here to prevent racing with another
1693 	 * thread trying to unmap TTEs from the TSB or running the post-
1694 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1695 	 * can't free memory while holding the HAT lock or we could
1696 	 * deadlock, so we build a list of TSBs to be freed after marking
1697 	 * the tsbinfos as swapped out and free them after dropping the
1698 	 * lock.
1699 	 */
1700 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1701 		sfmmu_hat_exit(hatlockp);
1702 		return;
1703 	}
1704 
1705 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1706 	last = freelist = NULL;
1707 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1708 	    tsbinfop = tsbinfop->tsb_next) {
1709 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1710 
1711 		/*
1712 		 * Cast the TSB into a struct free_tsb and put it on the free
1713 		 * list.
1714 		 */
1715 		if (freelist == NULL) {
1716 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1717 		} else {
1718 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
1719 			last = last->next;
1720 		}
1721 		last->next = NULL;
1722 		last->tsbinfop = tsbinfop;
1723 		tsbinfop->tsb_flags |= TSB_SWAPPED;
1724 		/*
1725 		 * Zero out the TTE to clear the valid bit.
1726 		 * Note we can't use a value like 0xbad because we want to
1727 		 * ensure diagnostic bits are NEVER set on TTEs that might
1728 		 * be loaded.  The intent is to catch any invalid access
1729 		 * to the swapped TSB, such as a thread running with a valid
1730 		 * context without first calling sfmmu_tsb_swapin() to
1731 		 * allocate TSB memory.
1732 		 */
1733 		tsbinfop->tsb_tte.ll = 0;
1734 	}
1735 
1736 #ifdef sun4v
1737 	if (freelist)
1738 		sfmmu_invalidate_tsbinfo(sfmmup);
1739 #endif	/* sun4v */
1740 
1741 	/* Now we can drop the lock and free the TSB memory. */
1742 	sfmmu_hat_exit(hatlockp);
1743 	for (; freelist != NULL; freelist = next) {
1744 		next = freelist->next;
1745 		sfmmu_tsb_free(freelist->tsbinfop);
1746 	}
1747 }
1748 
1749 /*
1750  * Duplicate the translations of an as into another newas
1751  */
1752 /* ARGSUSED */
1753 int
1754 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1755 	uint_t flag)
1756 {
1757 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1758 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW));
1759 
1760 	if (flag == HAT_DUP_COW) {
1761 		panic("hat_dup: HAT_DUP_COW not supported");
1762 	}
1763 	return (0);
1764 }
1765 
1766 /*
1767  * Set up addr to map to page pp with protection prot.
1768  * As an optimization we also load the TSB with the
1769  * corresponding tte but it is no big deal if  the tte gets kicked out.
1770  */
1771 void
1772 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
1773 	uint_t attr, uint_t flags)
1774 {
1775 	tte_t tte;
1776 
1777 
1778 	ASSERT(hat != NULL);
1779 	ASSERT(PAGE_LOCKED(pp));
1780 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1781 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1782 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1783 
1784 	if (PP_ISFREE(pp)) {
1785 		panic("hat_memload: loading a mapping to free page %p",
1786 		    (void *)pp);
1787 	}
1788 
1789 	if (hat->sfmmu_xhat_provider) {
1790 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
1791 		return;
1792 	}
1793 
1794 	ASSERT((hat == ksfmmup) ||
1795 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1796 
1797 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1798 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
1799 		    flags & ~SFMMU_LOAD_ALLFLAG);
1800 
1801 	if (hat->sfmmu_rmstat)
1802 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
1803 
1804 #if defined(SF_ERRATA_57)
1805 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1806 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1807 	    !(flags & HAT_LOAD_SHARE)) {
1808 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
1809 		    " page executable");
1810 		attr &= ~PROT_EXEC;
1811 	}
1812 #endif
1813 
1814 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
1815 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags);
1816 
1817 	/*
1818 	 * Check TSB and TLB page sizes.
1819 	 */
1820 	if ((flags & HAT_LOAD_SHARE) == 0) {
1821 		sfmmu_check_page_sizes(hat, 1);
1822 	}
1823 }
1824 
1825 /*
1826  * hat_devload can be called to map real memory (e.g.
1827  * /dev/kmem) and even though hat_devload will determine pf is
1828  * for memory, it will be unable to get a shared lock on the
1829  * page (because someone else has it exclusively) and will
1830  * pass dp = NULL.  If tteload doesn't get a non-NULL
1831  * page pointer it can't cache memory.
1832  */
1833 void
1834 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
1835 	uint_t attr, int flags)
1836 {
1837 	tte_t tte;
1838 	struct page *pp = NULL;
1839 	int use_lgpg = 0;
1840 
1841 	ASSERT(hat != NULL);
1842 
1843 	if (hat->sfmmu_xhat_provider) {
1844 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
1845 		return;
1846 	}
1847 
1848 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1849 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1850 	ASSERT((hat == ksfmmup) ||
1851 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1852 	if (len == 0)
1853 		panic("hat_devload: zero len");
1854 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1855 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
1856 		    flags & ~SFMMU_LOAD_ALLFLAG);
1857 
1858 #if defined(SF_ERRATA_57)
1859 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1860 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1861 	    !(flags & HAT_LOAD_SHARE)) {
1862 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
1863 		    " page executable");
1864 		attr &= ~PROT_EXEC;
1865 	}
1866 #endif
1867 
1868 	/*
1869 	 * If it's a memory page find its pp
1870 	 */
1871 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
1872 		pp = page_numtopp_nolock(pfn);
1873 		if (pp == NULL) {
1874 			flags |= HAT_LOAD_NOCONSIST;
1875 		} else {
1876 			if (PP_ISFREE(pp)) {
1877 				panic("hat_memload: loading "
1878 				    "a mapping to free page %p",
1879 				    (void *)pp);
1880 			}
1881 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1882 				panic("hat_memload: loading a mapping "
1883 				    "to unlocked relocatable page %p",
1884 				    (void *)pp);
1885 			}
1886 			ASSERT(len == MMU_PAGESIZE);
1887 		}
1888 	}
1889 
1890 	if (hat->sfmmu_rmstat)
1891 		hat_resvstat(len, hat->sfmmu_as, addr);
1892 
1893 	if (flags & HAT_LOAD_NOCONSIST) {
1894 		attr |= SFMMU_UNCACHEVTTE;
1895 		use_lgpg = 1;
1896 	}
1897 	if (!pf_is_memory(pfn)) {
1898 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
1899 		use_lgpg = 1;
1900 		switch (attr & HAT_ORDER_MASK) {
1901 			case HAT_STRICTORDER:
1902 			case HAT_UNORDERED_OK:
1903 				/*
1904 				 * we set the side effect bit for all non
1905 				 * memory mappings unless merging is ok
1906 				 */
1907 				attr |= SFMMU_SIDEFFECT;
1908 				break;
1909 			case HAT_MERGING_OK:
1910 			case HAT_LOADCACHING_OK:
1911 			case HAT_STORECACHING_OK:
1912 				break;
1913 			default:
1914 				panic("hat_devload: bad attr");
1915 				break;
1916 		}
1917 	}
1918 	while (len) {
1919 		if (!use_lgpg) {
1920 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1921 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1922 			    flags);
1923 			len -= MMU_PAGESIZE;
1924 			addr += MMU_PAGESIZE;
1925 			pfn++;
1926 			continue;
1927 		}
1928 		/*
1929 		 *  try to use large pages, check va/pa alignments
1930 		 *  Note that 32M/256M page sizes are not (yet) supported.
1931 		 */
1932 		if ((len >= MMU_PAGESIZE4M) &&
1933 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
1934 		    !(disable_large_pages & (1 << TTE4M)) &&
1935 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
1936 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
1937 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1938 			    flags);
1939 			len -= MMU_PAGESIZE4M;
1940 			addr += MMU_PAGESIZE4M;
1941 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
1942 		} else if ((len >= MMU_PAGESIZE512K) &&
1943 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
1944 		    !(disable_large_pages & (1 << TTE512K)) &&
1945 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
1946 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
1947 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1948 			    flags);
1949 			len -= MMU_PAGESIZE512K;
1950 			addr += MMU_PAGESIZE512K;
1951 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
1952 		} else if ((len >= MMU_PAGESIZE64K) &&
1953 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
1954 		    !(disable_large_pages & (1 << TTE64K)) &&
1955 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
1956 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
1957 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1958 			    flags);
1959 			len -= MMU_PAGESIZE64K;
1960 			addr += MMU_PAGESIZE64K;
1961 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
1962 		} else {
1963 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1964 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1965 			    flags);
1966 			len -= MMU_PAGESIZE;
1967 			addr += MMU_PAGESIZE;
1968 			pfn++;
1969 		}
1970 	}
1971 
1972 	/*
1973 	 * Check TSB and TLB page sizes.
1974 	 */
1975 	if ((flags & HAT_LOAD_SHARE) == 0) {
1976 		sfmmu_check_page_sizes(hat, 1);
1977 	}
1978 }
1979 
1980 /*
1981  * Map the largest extend possible out of the page array. The array may NOT
1982  * be in order.  The largest possible mapping a page can have
1983  * is specified in the p_szc field.  The p_szc field
1984  * cannot change as long as there any mappings (large or small)
1985  * to any of the pages that make up the large page. (ie. any
1986  * promotion/demotion of page size is not up to the hat but up to
1987  * the page free list manager).  The array
1988  * should consist of properly aligned contigous pages that are
1989  * part of a big page for a large mapping to be created.
1990  */
1991 void
1992 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
1993 	struct page **pps, uint_t attr, uint_t flags)
1994 {
1995 	int  ttesz;
1996 	size_t mapsz;
1997 	pgcnt_t	numpg, npgs;
1998 	tte_t tte;
1999 	page_t *pp;
2000 	uint_t large_pages_disable;
2001 
2002 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2003 
2004 	if (hat->sfmmu_xhat_provider) {
2005 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
2006 		return;
2007 	}
2008 
2009 	if (hat->sfmmu_rmstat)
2010 		hat_resvstat(len, hat->sfmmu_as, addr);
2011 
2012 #if defined(SF_ERRATA_57)
2013 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2014 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2015 	    !(flags & HAT_LOAD_SHARE)) {
2016 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2017 		    "user page executable");
2018 		attr &= ~PROT_EXEC;
2019 	}
2020 #endif
2021 
2022 	/* Get number of pages */
2023 	npgs = len >> MMU_PAGESHIFT;
2024 
2025 	if (flags & HAT_LOAD_SHARE) {
2026 		large_pages_disable = disable_ism_large_pages;
2027 	} else {
2028 		large_pages_disable = disable_large_pages;
2029 	}
2030 
2031 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2032 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2033 		return;
2034 	}
2035 
2036 	while (npgs >= NHMENTS) {
2037 		pp = *pps;
2038 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2039 			/*
2040 			 * Check if this page size is disabled.
2041 			 */
2042 			if (large_pages_disable & (1 << ttesz))
2043 				continue;
2044 
2045 			numpg = TTEPAGES(ttesz);
2046 			mapsz = numpg << MMU_PAGESHIFT;
2047 			if ((npgs >= numpg) &&
2048 			    IS_P2ALIGNED(addr, mapsz) &&
2049 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2050 				/*
2051 				 * At this point we have enough pages and
2052 				 * we know the virtual address and the pfn
2053 				 * are properly aligned.  We still need
2054 				 * to check for physical contiguity but since
2055 				 * it is very likely that this is the case
2056 				 * we will assume they are so and undo
2057 				 * the request if necessary.  It would
2058 				 * be great if we could get a hint flag
2059 				 * like HAT_CONTIG which would tell us
2060 				 * the pages are contigous for sure.
2061 				 */
2062 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2063 					attr, ttesz);
2064 				if (!sfmmu_tteload_array(hat, &tte, addr,
2065 				    pps, flags)) {
2066 					break;
2067 				}
2068 			}
2069 		}
2070 		if (ttesz == TTE8K) {
2071 			/*
2072 			 * We were not able to map array using a large page
2073 			 * batch a hmeblk or fraction at a time.
2074 			 */
2075 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2076 				& (NHMENTS-1);
2077 			numpg = NHMENTS - numpg;
2078 			ASSERT(numpg <= npgs);
2079 			mapsz = numpg * MMU_PAGESIZE;
2080 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2081 							numpg);
2082 		}
2083 		addr += mapsz;
2084 		npgs -= numpg;
2085 		pps += numpg;
2086 	}
2087 
2088 	if (npgs) {
2089 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2090 	}
2091 
2092 	/*
2093 	 * Check TSB and TLB page sizes.
2094 	 */
2095 	if ((flags & HAT_LOAD_SHARE) == 0) {
2096 		sfmmu_check_page_sizes(hat, 1);
2097 	}
2098 }
2099 
2100 /*
2101  * Function tries to batch 8K pages into the same hme blk.
2102  */
2103 static void
2104 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2105 		    uint_t attr, uint_t flags, pgcnt_t npgs)
2106 {
2107 	tte_t	tte;
2108 	page_t *pp;
2109 	struct hmehash_bucket *hmebp;
2110 	struct hme_blk *hmeblkp;
2111 	int	index;
2112 
2113 	while (npgs) {
2114 		/*
2115 		 * Acquire the hash bucket.
2116 		 */
2117 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K);
2118 		ASSERT(hmebp);
2119 
2120 		/*
2121 		 * Find the hment block.
2122 		 */
2123 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2124 				TTE8K, flags);
2125 		ASSERT(hmeblkp);
2126 
2127 		do {
2128 			/*
2129 			 * Make the tte.
2130 			 */
2131 			pp = *pps;
2132 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2133 
2134 			/*
2135 			 * Add the translation.
2136 			 */
2137 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2138 					vaddr, pps, flags);
2139 
2140 			/*
2141 			 * Goto next page.
2142 			 */
2143 			pps++;
2144 			npgs--;
2145 
2146 			/*
2147 			 * Goto next address.
2148 			 */
2149 			vaddr += MMU_PAGESIZE;
2150 
2151 			/*
2152 			 * Don't crossover into a different hmentblk.
2153 			 */
2154 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2155 			    (NHMENTS-1));
2156 
2157 		} while (index != 0 && npgs != 0);
2158 
2159 		/*
2160 		 * Release the hash bucket.
2161 		 */
2162 
2163 		sfmmu_tteload_release_hashbucket(hmebp);
2164 	}
2165 }
2166 
2167 /*
2168  * Construct a tte for a page:
2169  *
2170  * tte_valid = 1
2171  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2172  * tte_size = size
2173  * tte_nfo = attr & HAT_NOFAULT
2174  * tte_ie = attr & HAT_STRUCTURE_LE
2175  * tte_hmenum = hmenum
2176  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2177  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2178  * tte_ref = 1 (optimization)
2179  * tte_wr_perm = attr & PROT_WRITE;
2180  * tte_no_sync = attr & HAT_NOSYNC
2181  * tte_lock = attr & SFMMU_LOCKTTE
2182  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2183  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2184  * tte_e = attr & SFMMU_SIDEFFECT
2185  * tte_priv = !(attr & PROT_USER)
2186  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2187  * tte_glb = 0
2188  */
2189 void
2190 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2191 {
2192 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2193 
2194 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2195 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2196 
2197 	if (TTE_IS_NOSYNC(ttep)) {
2198 		TTE_SET_REF(ttep);
2199 		if (TTE_IS_WRITABLE(ttep)) {
2200 			TTE_SET_MOD(ttep);
2201 		}
2202 	}
2203 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2204 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2205 	}
2206 }
2207 
2208 /*
2209  * This function will add a translation to the hme_blk and allocate the
2210  * hme_blk if one does not exist.
2211  * If a page structure is specified then it will add the
2212  * corresponding hment to the mapping list.
2213  * It will also update the hmenum field for the tte.
2214  */
2215 void
2216 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2217 	uint_t flags)
2218 {
2219 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags);
2220 }
2221 
2222 /*
2223  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2224  * Assumes that a particular page size may only be resident in one TSB.
2225  */
2226 static void
2227 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2228 {
2229 	struct tsb_info *tsbinfop = NULL;
2230 	uint64_t tag;
2231 	struct tsbe *tsbe_addr;
2232 	uint64_t tsb_base;
2233 	uint_t tsb_size;
2234 	int vpshift = MMU_PAGESHIFT;
2235 	int phys = 0;
2236 
2237 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2238 		phys = ktsb_phys;
2239 		if (ttesz >= TTE4M) {
2240 #ifndef sun4v
2241 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2242 #endif
2243 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2244 			tsb_size = ktsb4m_szcode;
2245 		} else {
2246 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2247 			tsb_size = ktsb_szcode;
2248 		}
2249 	} else {
2250 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2251 
2252 		/*
2253 		 * If there isn't a TSB for this page size, or the TSB is
2254 		 * swapped out, there is nothing to do.  Note that the latter
2255 		 * case seems impossible but can occur if hat_pageunload()
2256 		 * is called on an ISM mapping while the process is swapped
2257 		 * out.
2258 		 */
2259 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2260 			return;
2261 
2262 		/*
2263 		 * If another thread is in the middle of relocating a TSB
2264 		 * we can't unload the entry so set a flag so that the
2265 		 * TSB will be flushed before it can be accessed by the
2266 		 * process.
2267 		 */
2268 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2269 			if (ttep == NULL)
2270 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2271 			return;
2272 		}
2273 #if defined(UTSB_PHYS)
2274 		phys = 1;
2275 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2276 #else
2277 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2278 #endif
2279 		tsb_size = tsbinfop->tsb_szc;
2280 	}
2281 	if (ttesz >= TTE4M)
2282 		vpshift = MMU_PAGESHIFT4M;
2283 
2284 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2285 	tag = sfmmu_make_tsbtag(vaddr);
2286 
2287 	if (ttep == NULL) {
2288 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2289 	} else {
2290 		if (ttesz >= TTE4M) {
2291 			SFMMU_STAT(sf_tsb_load4m);
2292 		} else {
2293 			SFMMU_STAT(sf_tsb_load8k);
2294 		}
2295 
2296 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2297 	}
2298 }
2299 
2300 /*
2301  * Unmap all entries from [start, end) matching the given page size.
2302  *
2303  * This function is used primarily to unmap replicated 64K or 512K entries
2304  * from the TSB that are inserted using the base page size TSB pointer, but
2305  * it may also be called to unmap a range of addresses from the TSB.
2306  */
2307 void
2308 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2309 {
2310 	struct tsb_info *tsbinfop;
2311 	uint64_t tag;
2312 	struct tsbe *tsbe_addr;
2313 	caddr_t vaddr;
2314 	uint64_t tsb_base;
2315 	int vpshift, vpgsz;
2316 	uint_t tsb_size;
2317 	int phys = 0;
2318 
2319 	/*
2320 	 * Assumptions:
2321 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2322 	 *  at a time shooting down any valid entries we encounter.
2323 	 *
2324 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2325 	 *  down any valid mappings we find.
2326 	 */
2327 	if (sfmmup == ksfmmup) {
2328 		phys = ktsb_phys;
2329 		if (ttesz >= TTE4M) {
2330 #ifndef sun4v
2331 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2332 #endif
2333 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2334 			tsb_size = ktsb4m_szcode;
2335 		} else {
2336 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2337 			tsb_size = ktsb_szcode;
2338 		}
2339 	} else {
2340 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2341 
2342 		/*
2343 		 * If there isn't a TSB for this page size, or the TSB is
2344 		 * swapped out, there is nothing to do.  Note that the latter
2345 		 * case seems impossible but can occur if hat_pageunload()
2346 		 * is called on an ISM mapping while the process is swapped
2347 		 * out.
2348 		 */
2349 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2350 			return;
2351 
2352 		/*
2353 		 * If another thread is in the middle of relocating a TSB
2354 		 * we can't unload the entry so set a flag so that the
2355 		 * TSB will be flushed before it can be accessed by the
2356 		 * process.
2357 		 */
2358 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2359 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2360 			return;
2361 		}
2362 #if defined(UTSB_PHYS)
2363 		phys = 1;
2364 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2365 #else
2366 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2367 #endif
2368 		tsb_size = tsbinfop->tsb_szc;
2369 	}
2370 	if (ttesz >= TTE4M) {
2371 		vpshift = MMU_PAGESHIFT4M;
2372 		vpgsz = MMU_PAGESIZE4M;
2373 	} else {
2374 		vpshift = MMU_PAGESHIFT;
2375 		vpgsz = MMU_PAGESIZE;
2376 	}
2377 
2378 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2379 		tag = sfmmu_make_tsbtag(vaddr);
2380 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2381 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2382 	}
2383 }
2384 
2385 /*
2386  * Select the optimum TSB size given the number of mappings
2387  * that need to be cached.
2388  */
2389 static int
2390 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2391 {
2392 	int szc = 0;
2393 
2394 #ifdef DEBUG
2395 	if (tsb_grow_stress) {
2396 		uint32_t randval = (uint32_t)gettick() >> 4;
2397 		return (randval % (tsb_max_growsize + 1));
2398 	}
2399 #endif	/* DEBUG */
2400 
2401 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2402 		szc++;
2403 	return (szc);
2404 }
2405 
2406 /*
2407  * This function will add a translation to the hme_blk and allocate the
2408  * hme_blk if one does not exist.
2409  * If a page structure is specified then it will add the
2410  * corresponding hment to the mapping list.
2411  * It will also update the hmenum field for the tte.
2412  * Furthermore, it attempts to create a large page translation
2413  * for <addr,hat> at page array pps.  It assumes addr and first
2414  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2415  */
2416 static int
2417 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2418 	page_t **pps, uint_t flags)
2419 {
2420 	struct hmehash_bucket *hmebp;
2421 	struct hme_blk *hmeblkp;
2422 	int 	ret;
2423 	uint_t	size;
2424 
2425 	/*
2426 	 * Get mapping size.
2427 	 */
2428 	size = TTE_CSZ(ttep);
2429 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2430 
2431 	/*
2432 	 * Acquire the hash bucket.
2433 	 */
2434 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size);
2435 	ASSERT(hmebp);
2436 
2437 	/*
2438 	 * Find the hment block.
2439 	 */
2440 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags);
2441 	ASSERT(hmeblkp);
2442 
2443 	/*
2444 	 * Add the translation.
2445 	 */
2446 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags);
2447 
2448 	/*
2449 	 * Release the hash bucket.
2450 	 */
2451 	sfmmu_tteload_release_hashbucket(hmebp);
2452 
2453 	return (ret);
2454 }
2455 
2456 /*
2457  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2458  */
2459 static struct hmehash_bucket *
2460 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size)
2461 {
2462 	struct hmehash_bucket *hmebp;
2463 	int hmeshift;
2464 
2465 	hmeshift = HME_HASH_SHIFT(size);
2466 
2467 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
2468 
2469 	SFMMU_HASH_LOCK(hmebp);
2470 
2471 	return (hmebp);
2472 }
2473 
2474 /*
2475  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2476  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2477  * allocated.
2478  */
2479 static struct hme_blk *
2480 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2481 	caddr_t vaddr, uint_t size, uint_t flags)
2482 {
2483 	hmeblk_tag hblktag;
2484 	int hmeshift;
2485 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2486 	uint64_t hblkpa, prevpa;
2487 	struct kmem_cache *sfmmu_cache;
2488 	uint_t forcefree;
2489 
2490 	hblktag.htag_id = sfmmup;
2491 	hmeshift = HME_HASH_SHIFT(size);
2492 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2493 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2494 
2495 ttearray_realloc:
2496 
2497 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
2498 	    pr_hblk, prevpa, &list);
2499 
2500 	/*
2501 	 * We block until hblk_reserve_lock is released; it's held by
2502 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2503 	 * replaced by a hblk from sfmmu8_cache.
2504 	 */
2505 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2506 	    hblk_reserve_thread != curthread) {
2507 		SFMMU_HASH_UNLOCK(hmebp);
2508 		mutex_enter(&hblk_reserve_lock);
2509 		mutex_exit(&hblk_reserve_lock);
2510 		SFMMU_STAT(sf_hblk_reserve_hit);
2511 		SFMMU_HASH_LOCK(hmebp);
2512 		goto ttearray_realloc;
2513 	}
2514 
2515 	if (hmeblkp == NULL) {
2516 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2517 		    hblktag, flags);
2518 	} else {
2519 		/*
2520 		 * It is possible for 8k and 64k hblks to collide since they
2521 		 * have the same rehash value. This is because we
2522 		 * lazily free hblks and 8K/64K blks could be lingering.
2523 		 * If we find size mismatch we free the block and & try again.
2524 		 */
2525 		if (get_hblk_ttesz(hmeblkp) != size) {
2526 			ASSERT(!hmeblkp->hblk_vcnt);
2527 			ASSERT(!hmeblkp->hblk_hmecnt);
2528 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
2529 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
2530 			goto ttearray_realloc;
2531 		}
2532 		if (hmeblkp->hblk_shw_bit) {
2533 			/*
2534 			 * if the hblk was previously used as a shadow hblk then
2535 			 * we will change it to a normal hblk
2536 			 */
2537 			if (hmeblkp->hblk_shw_mask) {
2538 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2539 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2540 				goto ttearray_realloc;
2541 			} else {
2542 				hmeblkp->hblk_shw_bit = 0;
2543 			}
2544 		}
2545 		SFMMU_STAT(sf_hblk_hit);
2546 	}
2547 
2548 	/*
2549 	 * hat_memload() should never call kmem_cache_free(); see block
2550 	 * comment showing the stacktrace in sfmmu_hblk_alloc();
2551 	 * enqueue each hblk in the list to reserve list if it's created
2552 	 * from sfmmu8_cache *and* sfmmup == KHATID.
2553 	 */
2554 	forcefree = (sfmmup == KHATID) ? 1 : 0;
2555 	while ((pr_hblk = list) != NULL) {
2556 		list = pr_hblk->hblk_next;
2557 		sfmmu_cache = get_hblk_cache(pr_hblk);
2558 		if ((sfmmu_cache == sfmmu8_cache) &&
2559 		    sfmmu_put_free_hblk(pr_hblk, forcefree))
2560 			continue;
2561 
2562 		ASSERT(sfmmup != KHATID);
2563 		kmem_cache_free(sfmmu_cache, pr_hblk);
2564 	}
2565 
2566 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2567 	ASSERT(!hmeblkp->hblk_shw_bit);
2568 
2569 	return (hmeblkp);
2570 }
2571 
2572 /*
2573  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2574  * otherwise.
2575  */
2576 static int
2577 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2578 	caddr_t vaddr, page_t **pps, uint_t flags)
2579 {
2580 	page_t *pp = *pps;
2581 	int hmenum, size, remap;
2582 	tte_t tteold, flush_tte;
2583 #ifdef DEBUG
2584 	tte_t orig_old;
2585 #endif /* DEBUG */
2586 	struct sf_hment *sfhme;
2587 	kmutex_t *pml, *pmtx;
2588 	hatlock_t *hatlockp;
2589 
2590 	/*
2591 	 * remove this panic when we decide to let user virtual address
2592 	 * space be >= USERLIMIT.
2593 	 */
2594 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2595 		panic("user addr %p in kernel space", vaddr);
2596 #if defined(TTE_IS_GLOBAL)
2597 	if (TTE_IS_GLOBAL(ttep))
2598 		panic("sfmmu_tteload: creating global tte");
2599 #endif
2600 
2601 #ifdef DEBUG
2602 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2603 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2604 		panic("sfmmu_tteload: non cacheable memory tte");
2605 #endif /* DEBUG */
2606 
2607 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2608 	    !TTE_IS_MOD(ttep)) {
2609 		/*
2610 		 * Don't load TSB for dummy as in ISM.  Also don't preload
2611 		 * the TSB if the TTE isn't writable since we're likely to
2612 		 * fault on it again -- preloading can be fairly expensive.
2613 		 */
2614 		flags |= SFMMU_NO_TSBLOAD;
2615 	}
2616 
2617 	size = TTE_CSZ(ttep);
2618 	switch (size) {
2619 	case TTE8K:
2620 		SFMMU_STAT(sf_tteload8k);
2621 		break;
2622 	case TTE64K:
2623 		SFMMU_STAT(sf_tteload64k);
2624 		break;
2625 	case TTE512K:
2626 		SFMMU_STAT(sf_tteload512k);
2627 		break;
2628 	case TTE4M:
2629 		SFMMU_STAT(sf_tteload4m);
2630 		break;
2631 	case (TTE32M):
2632 		SFMMU_STAT(sf_tteload32m);
2633 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2634 		break;
2635 	case (TTE256M):
2636 		SFMMU_STAT(sf_tteload256m);
2637 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2638 		break;
2639 	}
2640 
2641 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2642 
2643 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
2644 
2645 	/*
2646 	 * Need to grab mlist lock here so that pageunload
2647 	 * will not change tte behind us.
2648 	 */
2649 	if (pp) {
2650 		pml = sfmmu_mlist_enter(pp);
2651 	}
2652 
2653 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
2654 	/*
2655 	 * Look for corresponding hment and if valid verify
2656 	 * pfns are equal.
2657 	 */
2658 	remap = TTE_IS_VALID(&tteold);
2659 	if (remap) {
2660 		pfn_t	new_pfn, old_pfn;
2661 
2662 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
2663 		new_pfn = TTE_TO_PFN(vaddr, ttep);
2664 
2665 		if (flags & HAT_LOAD_REMAP) {
2666 			/* make sure we are remapping same type of pages */
2667 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
2668 				panic("sfmmu_tteload - tte remap io<->memory");
2669 			}
2670 			if (old_pfn != new_pfn &&
2671 			    (pp != NULL || sfhme->hme_page != NULL)) {
2672 				panic("sfmmu_tteload - tte remap pp != NULL");
2673 			}
2674 		} else if (old_pfn != new_pfn) {
2675 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
2676 			    (void *)hmeblkp);
2677 		}
2678 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
2679 	}
2680 
2681 	if (pp) {
2682 		if (size == TTE8K) {
2683 #ifdef VAC
2684 			/*
2685 			 * Handle VAC consistency
2686 			 */
2687 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
2688 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
2689 			}
2690 #endif
2691 
2692 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2693 				pmtx = sfmmu_page_enter(pp);
2694 				PP_CLRRO(pp);
2695 				sfmmu_page_exit(pmtx);
2696 			} else if (!PP_ISMAPPED(pp) &&
2697 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
2698 				pmtx = sfmmu_page_enter(pp);
2699 				if (!(PP_ISMOD(pp))) {
2700 					PP_SETRO(pp);
2701 				}
2702 				sfmmu_page_exit(pmtx);
2703 			}
2704 
2705 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
2706 			/*
2707 			 * sfmmu_pagearray_setup failed so return
2708 			 */
2709 			sfmmu_mlist_exit(pml);
2710 			return (1);
2711 		}
2712 	}
2713 
2714 	/*
2715 	 * Make sure hment is not on a mapping list.
2716 	 */
2717 	ASSERT(remap || (sfhme->hme_page == NULL));
2718 
2719 	/* if it is not a remap then hme->next better be NULL */
2720 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
2721 
2722 	if (flags & HAT_LOAD_LOCK) {
2723 		if (((int)hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
2724 			panic("too high lckcnt-hmeblk %p",
2725 			    (void *)hmeblkp);
2726 		}
2727 		atomic_add_16(&hmeblkp->hblk_lckcnt, 1);
2728 
2729 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
2730 	}
2731 
2732 #ifdef VAC
2733 	if (pp && PP_ISNC(pp)) {
2734 		/*
2735 		 * If the physical page is marked to be uncacheable, like
2736 		 * by a vac conflict, make sure the new mapping is also
2737 		 * uncacheable.
2738 		 */
2739 		TTE_CLR_VCACHEABLE(ttep);
2740 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
2741 	}
2742 #endif
2743 	ttep->tte_hmenum = hmenum;
2744 
2745 #ifdef DEBUG
2746 	orig_old = tteold;
2747 #endif /* DEBUG */
2748 
2749 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
2750 		if ((sfmmup == KHATID) &&
2751 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
2752 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
2753 		}
2754 #ifdef DEBUG
2755 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
2756 #endif /* DEBUG */
2757 	}
2758 
2759 	if (!TTE_IS_VALID(&tteold)) {
2760 
2761 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
2762 		atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
2763 
2764 		/*
2765 		 * HAT_RELOAD_SHARE has been deprecated with lpg DISM.
2766 		 */
2767 
2768 		if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
2769 		    sfmmup != ksfmmup) {
2770 			/*
2771 			 * If this is the first large mapping for the process
2772 			 * we must force any CPUs running this process to TL=0
2773 			 * where they will reload the HAT flags from the
2774 			 * tsbmiss area.  This is necessary to make the large
2775 			 * mappings we are about to load visible to those CPUs;
2776 			 * otherwise they'll loop forever calling pagefault()
2777 			 * since we don't search large hash chains by default.
2778 			 */
2779 			hatlockp = sfmmu_hat_enter(sfmmup);
2780 			if (size == TTE512K &&
2781 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_512K_FLAG)) {
2782 				SFMMU_FLAGS_SET(sfmmup, HAT_512K_FLAG);
2783 				sfmmu_sync_mmustate(sfmmup);
2784 			} else if (size == TTE4M &&
2785 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
2786 				SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
2787 				sfmmu_sync_mmustate(sfmmup);
2788 			} else if (size == TTE64K &&
2789 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) {
2790 				SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
2791 				/* no sync mmustate; 64K shares 8K hashes */
2792 			} else if (mmu_page_sizes == max_mmu_page_sizes) {
2793 			    if (size == TTE32M &&
2794 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
2795 				SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
2796 				sfmmu_sync_mmustate(sfmmup);
2797 			    } else if (size == TTE256M &&
2798 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
2799 				SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
2800 				sfmmu_sync_mmustate(sfmmup);
2801 			    }
2802 			}
2803 			if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
2804 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
2805 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
2806 			}
2807 			sfmmu_hat_exit(hatlockp);
2808 		}
2809 	}
2810 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
2811 
2812 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
2813 	    hw_tte.tte_intlo;
2814 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
2815 	    hw_tte.tte_inthi;
2816 
2817 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
2818 		/*
2819 		 * If remap and new tte differs from old tte we need
2820 		 * to sync the mod bit and flush TLB/TSB.  We don't
2821 		 * need to sync ref bit because we currently always set
2822 		 * ref bit in tteload.
2823 		 */
2824 		ASSERT(TTE_IS_REF(ttep));
2825 		if (TTE_IS_MOD(&tteold)) {
2826 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
2827 		}
2828 		sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
2829 		xt_sync(sfmmup->sfmmu_cpusran);
2830 	}
2831 
2832 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
2833 		/*
2834 		 * We only preload 8K and 4M mappings into the TSB, since
2835 		 * 64K and 512K mappings are replicated and hence don't
2836 		 * have a single, unique TSB entry. Ditto for 32M/256M.
2837 		 */
2838 		if (size == TTE8K || size == TTE4M) {
2839 			hatlockp = sfmmu_hat_enter(sfmmup);
2840 			sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, size);
2841 			sfmmu_hat_exit(hatlockp);
2842 		}
2843 	}
2844 	if (pp) {
2845 		if (!remap) {
2846 			HME_ADD(sfhme, pp);
2847 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
2848 			ASSERT(hmeblkp->hblk_hmecnt > 0);
2849 
2850 			/*
2851 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
2852 			 * see pageunload() for comment.
2853 			 */
2854 		}
2855 		sfmmu_mlist_exit(pml);
2856 	}
2857 
2858 	return (0);
2859 }
2860 /*
2861  * Function unlocks hash bucket.
2862  */
2863 static void
2864 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
2865 {
2866 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2867 	SFMMU_HASH_UNLOCK(hmebp);
2868 }
2869 
2870 /*
2871  * function which checks and sets up page array for a large
2872  * translation.  Will set p_vcolor, p_index, p_ro fields.
2873  * Assumes addr and pfnum of first page are properly aligned.
2874  * Will check for physical contiguity. If check fails it return
2875  * non null.
2876  */
2877 static int
2878 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
2879 {
2880 	int 	i, index, ttesz;
2881 	pfn_t	pfnum;
2882 	pgcnt_t	npgs;
2883 	page_t *pp, *pp1;
2884 	kmutex_t *pmtx;
2885 #ifdef VAC
2886 	int osz;
2887 	int cflags = 0;
2888 	int vac_err = 0;
2889 #endif
2890 	int newidx = 0;
2891 
2892 	ttesz = TTE_CSZ(ttep);
2893 
2894 	ASSERT(ttesz > TTE8K);
2895 
2896 	npgs = TTEPAGES(ttesz);
2897 	index = PAGESZ_TO_INDEX(ttesz);
2898 
2899 	pfnum = (*pps)->p_pagenum;
2900 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
2901 
2902 	/*
2903 	 * Save the first pp so we can do HAT_TMPNC at the end.
2904 	 */
2905 	pp1 = *pps;
2906 #ifdef VAC
2907 	osz = fnd_mapping_sz(pp1);
2908 #endif
2909 
2910 	for (i = 0; i < npgs; i++, pps++) {
2911 		pp = *pps;
2912 		ASSERT(PAGE_LOCKED(pp));
2913 		ASSERT(pp->p_szc >= ttesz);
2914 		ASSERT(pp->p_szc == pp1->p_szc);
2915 		ASSERT(sfmmu_mlist_held(pp));
2916 
2917 		/*
2918 		 * XXX is it possible to maintain P_RO on the root only?
2919 		 */
2920 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2921 			pmtx = sfmmu_page_enter(pp);
2922 			PP_CLRRO(pp);
2923 			sfmmu_page_exit(pmtx);
2924 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
2925 		    !PP_ISMOD(pp)) {
2926 			pmtx = sfmmu_page_enter(pp);
2927 			if (!(PP_ISMOD(pp))) {
2928 				PP_SETRO(pp);
2929 			}
2930 			sfmmu_page_exit(pmtx);
2931 		}
2932 
2933 		/*
2934 		 * If this is a remap we skip vac & contiguity checks.
2935 		 */
2936 		if (remap)
2937 			continue;
2938 
2939 		/*
2940 		 * set p_vcolor and detect any vac conflicts.
2941 		 */
2942 #ifdef VAC
2943 		if (vac_err == 0) {
2944 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
2945 
2946 		}
2947 #endif
2948 
2949 		/*
2950 		 * Save current index in case we need to undo it.
2951 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
2952 		 *	"SFMMU_INDEX_SHIFT	6"
2953 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
2954 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
2955 		 *
2956 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
2957 		 *	if ttesz == 1 then index = 0x2
2958 		 *		    2 then index = 0x4
2959 		 *		    3 then index = 0x8
2960 		 *		    4 then index = 0x10
2961 		 *		    5 then index = 0x20
2962 		 * The code below checks if it's a new pagesize (ie, newidx)
2963 		 * in case we need to take it back out of p_index,
2964 		 * and then or's the new index into the existing index.
2965 		 */
2966 		if ((PP_MAPINDEX(pp) & index) == 0)
2967 			newidx = 1;
2968 		pp->p_index = (PP_MAPINDEX(pp) | index);
2969 
2970 		/*
2971 		 * contiguity check
2972 		 */
2973 		if (pp->p_pagenum != pfnum) {
2974 			/*
2975 			 * If we fail the contiguity test then
2976 			 * the only thing we need to fix is the p_index field.
2977 			 * We might get a few extra flushes but since this
2978 			 * path is rare that is ok.  The p_ro field will
2979 			 * get automatically fixed on the next tteload to
2980 			 * the page.  NO TNC bit is set yet.
2981 			 */
2982 			while (i >= 0) {
2983 				pp = *pps;
2984 				if (newidx)
2985 					pp->p_index = (PP_MAPINDEX(pp) &
2986 					    ~index);
2987 				pps--;
2988 				i--;
2989 			}
2990 			return (1);
2991 		}
2992 		pfnum++;
2993 		addr += MMU_PAGESIZE;
2994 	}
2995 
2996 #ifdef VAC
2997 	if (vac_err) {
2998 		if (ttesz > osz) {
2999 			/*
3000 			 * There are some smaller mappings that causes vac
3001 			 * conflicts. Convert all existing small mappings to
3002 			 * TNC.
3003 			 */
3004 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3005 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3006 				npgs);
3007 		} else {
3008 			/* EMPTY */
3009 			/*
3010 			 * If there exists an big page mapping,
3011 			 * that means the whole existing big page
3012 			 * has TNC setting already. No need to covert to
3013 			 * TNC again.
3014 			 */
3015 			ASSERT(PP_ISTNC(pp1));
3016 		}
3017 	}
3018 #endif	/* VAC */
3019 
3020 	return (0);
3021 }
3022 
3023 #ifdef VAC
3024 /*
3025  * Routine that detects vac consistency for a large page. It also
3026  * sets virtual color for all pp's for this big mapping.
3027  */
3028 static int
3029 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3030 {
3031 	int vcolor, ocolor;
3032 
3033 	ASSERT(sfmmu_mlist_held(pp));
3034 
3035 	if (PP_ISNC(pp)) {
3036 		return (HAT_TMPNC);
3037 	}
3038 
3039 	vcolor = addr_to_vcolor(addr);
3040 	if (PP_NEWPAGE(pp)) {
3041 		PP_SET_VCOLOR(pp, vcolor);
3042 		return (0);
3043 	}
3044 
3045 	ocolor = PP_GET_VCOLOR(pp);
3046 	if (ocolor == vcolor) {
3047 		return (0);
3048 	}
3049 
3050 	if (!PP_ISMAPPED(pp)) {
3051 		/*
3052 		 * Previous user of page had a differnet color
3053 		 * but since there are no current users
3054 		 * we just flush the cache and change the color.
3055 		 * As an optimization for large pages we flush the
3056 		 * entire cache of that color and set a flag.
3057 		 */
3058 		SFMMU_STAT(sf_pgcolor_conflict);
3059 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3060 			CacheColor_SetFlushed(*cflags, ocolor);
3061 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3062 		}
3063 		PP_SET_VCOLOR(pp, vcolor);
3064 		return (0);
3065 	}
3066 
3067 	/*
3068 	 * We got a real conflict with a current mapping.
3069 	 * set flags to start unencaching all mappings
3070 	 * and return failure so we restart looping
3071 	 * the pp array from the beginning.
3072 	 */
3073 	return (HAT_TMPNC);
3074 }
3075 #endif	/* VAC */
3076 
3077 /*
3078  * creates a large page shadow hmeblk for a tte.
3079  * The purpose of this routine is to allow us to do quick unloads because
3080  * the vm layer can easily pass a very large but sparsely populated range.
3081  */
3082 static struct hme_blk *
3083 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3084 {
3085 	struct hmehash_bucket *hmebp;
3086 	hmeblk_tag hblktag;
3087 	int hmeshift, size, vshift;
3088 	uint_t shw_mask, newshw_mask;
3089 	struct hme_blk *hmeblkp;
3090 
3091 	ASSERT(sfmmup != KHATID);
3092 	if (mmu_page_sizes == max_mmu_page_sizes) {
3093 		ASSERT(ttesz < TTE256M);
3094 	} else {
3095 		ASSERT(ttesz < TTE4M);
3096 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3097 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3098 	}
3099 
3100 	if (ttesz == TTE8K) {
3101 		size = TTE512K;
3102 	} else {
3103 		size = ++ttesz;
3104 	}
3105 
3106 	hblktag.htag_id = sfmmup;
3107 	hmeshift = HME_HASH_SHIFT(size);
3108 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3109 	hblktag.htag_rehash = HME_HASH_REHASH(size);
3110 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3111 
3112 	SFMMU_HASH_LOCK(hmebp);
3113 
3114 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3115 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3116 	if (hmeblkp == NULL) {
3117 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3118 			hblktag, flags);
3119 	}
3120 	ASSERT(hmeblkp);
3121 	if (!hmeblkp->hblk_shw_mask) {
3122 		/*
3123 		 * if this is a unused hblk it was just allocated or could
3124 		 * potentially be a previous large page hblk so we need to
3125 		 * set the shadow bit.
3126 		 */
3127 		hmeblkp->hblk_shw_bit = 1;
3128 	}
3129 	ASSERT(hmeblkp->hblk_shw_bit == 1);
3130 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3131 	ASSERT(vshift < 8);
3132 	/*
3133 	 * Atomically set shw mask bit
3134 	 */
3135 	do {
3136 		shw_mask = hmeblkp->hblk_shw_mask;
3137 		newshw_mask = shw_mask | (1 << vshift);
3138 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3139 		    newshw_mask);
3140 	} while (newshw_mask != shw_mask);
3141 
3142 	SFMMU_HASH_UNLOCK(hmebp);
3143 
3144 	return (hmeblkp);
3145 }
3146 
3147 /*
3148  * This routine cleanup a previous shadow hmeblk and changes it to
3149  * a regular hblk.  This happens rarely but it is possible
3150  * when a process wants to use large pages and there are hblks still
3151  * lying around from the previous as that used these hmeblks.
3152  * The alternative was to cleanup the shadow hblks at unload time
3153  * but since so few user processes actually use large pages, it is
3154  * better to be lazy and cleanup at this time.
3155  */
3156 static void
3157 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3158 	struct hmehash_bucket *hmebp)
3159 {
3160 	caddr_t addr, endaddr;
3161 	int hashno, size;
3162 
3163 	ASSERT(hmeblkp->hblk_shw_bit);
3164 
3165 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3166 
3167 	if (!hmeblkp->hblk_shw_mask) {
3168 		hmeblkp->hblk_shw_bit = 0;
3169 		return;
3170 	}
3171 	addr = (caddr_t)get_hblk_base(hmeblkp);
3172 	endaddr = get_hblk_endaddr(hmeblkp);
3173 	size = get_hblk_ttesz(hmeblkp);
3174 	hashno = size - 1;
3175 	ASSERT(hashno > 0);
3176 	SFMMU_HASH_UNLOCK(hmebp);
3177 
3178 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3179 
3180 	SFMMU_HASH_LOCK(hmebp);
3181 }
3182 
3183 static void
3184 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3185 	int hashno)
3186 {
3187 	int hmeshift, shadow = 0;
3188 	hmeblk_tag hblktag;
3189 	struct hmehash_bucket *hmebp;
3190 	struct hme_blk *hmeblkp;
3191 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3192 	uint64_t hblkpa, prevpa, nx_pa;
3193 
3194 	ASSERT(hashno > 0);
3195 	hblktag.htag_id = sfmmup;
3196 	hblktag.htag_rehash = hashno;
3197 
3198 	hmeshift = HME_HASH_SHIFT(hashno);
3199 
3200 	while (addr < endaddr) {
3201 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3202 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3203 		SFMMU_HASH_LOCK(hmebp);
3204 		/* inline HME_HASH_SEARCH */
3205 		hmeblkp = hmebp->hmeblkp;
3206 		hblkpa = hmebp->hmeh_nextpa;
3207 		prevpa = 0;
3208 		pr_hblk = NULL;
3209 		while (hmeblkp) {
3210 			ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
3211 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3212 				/* found hme_blk */
3213 				if (hmeblkp->hblk_shw_bit) {
3214 					if (hmeblkp->hblk_shw_mask) {
3215 						shadow = 1;
3216 						sfmmu_shadow_hcleanup(sfmmup,
3217 						    hmeblkp, hmebp);
3218 						break;
3219 					} else {
3220 						hmeblkp->hblk_shw_bit = 0;
3221 					}
3222 				}
3223 
3224 				/*
3225 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3226 				 * since hblk_unload() does not gurantee that.
3227 				 *
3228 				 * XXX - this could cause tteload() to spin
3229 				 * where sfmmu_shadow_hcleanup() is called.
3230 				 */
3231 			}
3232 
3233 			nx_hblk = hmeblkp->hblk_next;
3234 			nx_pa = hmeblkp->hblk_nextpa;
3235 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3236 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
3237 					pr_hblk);
3238 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3239 			} else {
3240 				pr_hblk = hmeblkp;
3241 				prevpa = hblkpa;
3242 			}
3243 			hmeblkp = nx_hblk;
3244 			hblkpa = nx_pa;
3245 		}
3246 
3247 		SFMMU_HASH_UNLOCK(hmebp);
3248 
3249 		if (shadow) {
3250 			/*
3251 			 * We found another shadow hblk so cleaned its
3252 			 * children.  We need to go back and cleanup
3253 			 * the original hblk so we don't change the
3254 			 * addr.
3255 			 */
3256 			shadow = 0;
3257 		} else {
3258 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3259 				(1 << hmeshift));
3260 		}
3261 	}
3262 	sfmmu_hblks_list_purge(&list);
3263 }
3264 
3265 /*
3266  * Release one hardware address translation lock on the given address range.
3267  */
3268 void
3269 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3270 {
3271 	struct hmehash_bucket *hmebp;
3272 	hmeblk_tag hblktag;
3273 	int hmeshift, hashno = 1;
3274 	struct hme_blk *hmeblkp, *list = NULL;
3275 	caddr_t endaddr;
3276 
3277 	ASSERT(sfmmup != NULL);
3278 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3279 
3280 	ASSERT((sfmmup == ksfmmup) ||
3281 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3282 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3283 	endaddr = addr + len;
3284 	hblktag.htag_id = sfmmup;
3285 
3286 	/*
3287 	 * Spitfire supports 4 page sizes.
3288 	 * Most pages are expected to be of the smallest page size (8K) and
3289 	 * these will not need to be rehashed. 64K pages also don't need to be
3290 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3291 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3292 	 */
3293 	while (addr < endaddr) {
3294 		hmeshift = HME_HASH_SHIFT(hashno);
3295 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3296 		hblktag.htag_rehash = hashno;
3297 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3298 
3299 		SFMMU_HASH_LOCK(hmebp);
3300 
3301 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3302 		if (hmeblkp != NULL) {
3303 			/*
3304 			 * If we encounter a shadow hmeblk then
3305 			 * we know there are no valid hmeblks mapping
3306 			 * this address at this size or larger.
3307 			 * Just increment address by the smallest
3308 			 * page size.
3309 			 */
3310 			if (hmeblkp->hblk_shw_bit) {
3311 				addr += MMU_PAGESIZE;
3312 			} else {
3313 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3314 				    endaddr);
3315 			}
3316 			SFMMU_HASH_UNLOCK(hmebp);
3317 			hashno = 1;
3318 			continue;
3319 		}
3320 		SFMMU_HASH_UNLOCK(hmebp);
3321 
3322 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3323 			/*
3324 			 * We have traversed the whole list and rehashed
3325 			 * if necessary without finding the address to unlock
3326 			 * which should never happen.
3327 			 */
3328 			panic("sfmmu_unlock: addr not found. "
3329 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3330 		} else {
3331 			hashno++;
3332 		}
3333 	}
3334 
3335 	sfmmu_hblks_list_purge(&list);
3336 }
3337 
3338 /*
3339  * Function to unlock a range of addresses in an hmeblk.  It returns the
3340  * next address that needs to be unlocked.
3341  * Should be called with the hash lock held.
3342  */
3343 static caddr_t
3344 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
3345 {
3346 	struct sf_hment *sfhme;
3347 	tte_t tteold, ttemod;
3348 	int ttesz, ret;
3349 
3350 	ASSERT(in_hblk_range(hmeblkp, addr));
3351 	ASSERT(hmeblkp->hblk_shw_bit == 0);
3352 
3353 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
3354 	ttesz = get_hblk_ttesz(hmeblkp);
3355 
3356 	HBLKTOHME(sfhme, hmeblkp, addr);
3357 	while (addr < endaddr) {
3358 readtte:
3359 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
3360 		if (TTE_IS_VALID(&tteold)) {
3361 
3362 			ttemod = tteold;
3363 
3364 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
3365 			    &sfhme->hme_tte);
3366 
3367 			if (ret < 0)
3368 				goto readtte;
3369 
3370 			if (hmeblkp->hblk_lckcnt == 0)
3371 				panic("zero hblk lckcnt");
3372 
3373 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
3374 			    (uintptr_t)endaddr)
3375 				panic("can't unlock large tte");
3376 
3377 			ASSERT(hmeblkp->hblk_lckcnt > 0);
3378 			atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
3379 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
3380 		} else {
3381 			panic("sfmmu_hblk_unlock: invalid tte");
3382 		}
3383 		addr += TTEBYTES(ttesz);
3384 		sfhme++;
3385 	}
3386 	return (addr);
3387 }
3388 
3389 /*
3390  * Physical Address Mapping Framework
3391  *
3392  * General rules:
3393  *
3394  * (1) Applies only to seg_kmem memory pages. To make things easier,
3395  *     seg_kpm addresses are also accepted by the routines, but nothing
3396  *     is done with them since by definition their PA mappings are static.
3397  * (2) hat_add_callback() may only be called while holding the page lock
3398  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
3399  *     or passing HAC_PAGELOCK flag.
3400  * (3) prehandler() and posthandler() may not call hat_add_callback() or
3401  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
3402  *     callbacks may not sleep or acquire adaptive mutex locks.
3403  * (4) Either prehandler() or posthandler() (but not both) may be specified
3404  *     as being NULL.  Specifying an errhandler() is optional.
3405  *
3406  * Details of using the framework:
3407  *
3408  * registering a callback (hat_register_callback())
3409  *
3410  *	Pass prehandler, posthandler, errhandler addresses
3411  *	as described below. If capture_cpus argument is nonzero,
3412  *	suspend callback to the prehandler will occur with CPUs
3413  *	captured and executing xc_loop() and CPUs will remain
3414  *	captured until after the posthandler suspend callback
3415  *	occurs.
3416  *
3417  * adding a callback (hat_add_callback())
3418  *
3419  *      as_pagelock();
3420  *	hat_add_callback();
3421  *      save returned pfn in private data structures or program registers;
3422  *      as_pageunlock();
3423  *
3424  * prehandler()
3425  *
3426  *	Stop all accesses by physical address to this memory page.
3427  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
3428  *	adaptive locks. The second, SUSPEND, is called at high PIL with
3429  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
3430  *	locks must be XCALL_PIL or higher locks).
3431  *
3432  *	May return the following errors:
3433  *		EIO:	A fatal error has occurred. This will result in panic.
3434  *		EAGAIN:	The page cannot be suspended. This will fail the
3435  *			relocation.
3436  *		0:	Success.
3437  *
3438  * posthandler()
3439  *
3440  *      Save new pfn in private data structures or program registers;
3441  *	not allowed to fail (non-zero return values will result in panic).
3442  *
3443  * errhandler()
3444  *
3445  *	called when an error occurs related to the callback.  Currently
3446  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
3447  *	a page is being freed, but there are still outstanding callback(s)
3448  *	registered on the page.
3449  *
3450  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
3451  *
3452  *	stop using physical address
3453  *	hat_delete_callback();
3454  *
3455  */
3456 
3457 /*
3458  * Register a callback class.  Each subsystem should do this once and
3459  * cache the id_t returned for use in setting up and tearing down callbacks.
3460  *
3461  * There is no facility for removing callback IDs once they are created;
3462  * the "key" should be unique for each module, so in case a module is unloaded
3463  * and subsequently re-loaded, we can recycle the module's previous entry.
3464  */
3465 id_t
3466 hat_register_callback(int key,
3467 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
3468 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
3469 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
3470 	int capture_cpus)
3471 {
3472 	id_t id;
3473 
3474 	/*
3475 	 * Search the table for a pre-existing callback associated with
3476 	 * the identifier "key".  If one exists, we re-use that entry in
3477 	 * the table for this instance, otherwise we assign the next
3478 	 * available table slot.
3479 	 */
3480 	for (id = 0; id < sfmmu_max_cb_id; id++) {
3481 		if (sfmmu_cb_table[id].key == key)
3482 			break;
3483 	}
3484 
3485 	if (id == sfmmu_max_cb_id) {
3486 		id = sfmmu_cb_nextid++;
3487 		if (id >= sfmmu_max_cb_id)
3488 			panic("hat_register_callback: out of callback IDs");
3489 	}
3490 
3491 	ASSERT(prehandler != NULL || posthandler != NULL);
3492 
3493 	sfmmu_cb_table[id].key = key;
3494 	sfmmu_cb_table[id].prehandler = prehandler;
3495 	sfmmu_cb_table[id].posthandler = posthandler;
3496 	sfmmu_cb_table[id].errhandler = errhandler;
3497 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
3498 
3499 	return (id);
3500 }
3501 
3502 #define	HAC_COOKIE_NONE	(void *)-1
3503 
3504 /*
3505  * Add relocation callbacks to the specified addr/len which will be called
3506  * when relocating the associated page. See the description of pre and
3507  * posthandler above for more details.
3508  *
3509  * If HAC_PAGELOCK is included in flags, the underlying memory page is
3510  * locked internally so the caller must be able to deal with the callback
3511  * running even before this function has returned.  If HAC_PAGELOCK is not
3512  * set, it is assumed that the underlying memory pages are locked.
3513  *
3514  * Since the caller must track the individual page boundaries anyway,
3515  * we only allow a callback to be added to a single page (large
3516  * or small).  Thus [addr, addr + len) MUST be contained within a single
3517  * page.
3518  *
3519  * Registering multiple callbacks on the same [addr, addr+len) is supported,
3520  * _provided_that_ a unique parameter is specified for each callback.
3521  * If multiple callbacks are registered on the same range the callback will
3522  * be invoked with each unique parameter. Registering the same callback with
3523  * the same argument more than once will result in corrupted kernel state.
3524  *
3525  * Returns the pfn of the underlying kernel page in *rpfn
3526  * on success, or PFN_INVALID on failure.
3527  *
3528  * cookiep (if passed) provides storage space for an opaque cookie
3529  * to return later to hat_delete_callback(). This cookie makes the callback
3530  * deletion significantly quicker by avoiding a potentially lengthy hash
3531  * search.
3532  *
3533  * Returns values:
3534  *    0:      success
3535  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
3536  *    EINVAL: callback ID is not valid
3537  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
3538  *            space
3539  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
3540  */
3541 int
3542 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
3543 	void *pvt, pfn_t *rpfn, void **cookiep)
3544 {
3545 	struct 		hmehash_bucket *hmebp;
3546 	hmeblk_tag 	hblktag;
3547 	struct hme_blk	*hmeblkp;
3548 	int 		hmeshift, hashno;
3549 	caddr_t 	saddr, eaddr, baseaddr;
3550 	struct pa_hment *pahmep;
3551 	struct sf_hment *sfhmep, *osfhmep;
3552 	kmutex_t	*pml;
3553 	tte_t   	tte;
3554 	page_t		*pp;
3555 	vnode_t		*vp;
3556 	u_offset_t	off;
3557 	pfn_t		pfn;
3558 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
3559 	int		locked = 0;
3560 
3561 	/*
3562 	 * For KPM mappings, just return the physical address since we
3563 	 * don't need to register any callbacks.
3564 	 */
3565 	if (IS_KPM_ADDR(vaddr)) {
3566 		uint64_t paddr;
3567 		SFMMU_KPM_VTOP(vaddr, paddr);
3568 		*rpfn = btop(paddr);
3569 		if (cookiep != NULL)
3570 			*cookiep = HAC_COOKIE_NONE;
3571 		return (0);
3572 	}
3573 
3574 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
3575 		*rpfn = PFN_INVALID;
3576 		return (EINVAL);
3577 	}
3578 
3579 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
3580 		*rpfn = PFN_INVALID;
3581 		return (ENOMEM);
3582 	}
3583 
3584 	sfhmep = &pahmep->sfment;
3585 
3586 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3587 	eaddr = saddr + len;
3588 
3589 rehash:
3590 	/* Find the mapping(s) for this page */
3591 	for (hashno = TTE64K, hmeblkp = NULL;
3592 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3593 	    hashno++) {
3594 		hmeshift = HME_HASH_SHIFT(hashno);
3595 		hblktag.htag_id = ksfmmup;
3596 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3597 		hblktag.htag_rehash = hashno;
3598 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3599 
3600 		SFMMU_HASH_LOCK(hmebp);
3601 
3602 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3603 
3604 		if (hmeblkp == NULL)
3605 			SFMMU_HASH_UNLOCK(hmebp);
3606 	}
3607 
3608 	if (hmeblkp == NULL) {
3609 		kmem_cache_free(pa_hment_cache, pahmep);
3610 		*rpfn = PFN_INVALID;
3611 		return (ENXIO);
3612 	}
3613 
3614 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3615 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3616 
3617 	if (!TTE_IS_VALID(&tte)) {
3618 		SFMMU_HASH_UNLOCK(hmebp);
3619 		kmem_cache_free(pa_hment_cache, pahmep);
3620 		*rpfn = PFN_INVALID;
3621 		return (ENXIO);
3622 	}
3623 
3624 	/*
3625 	 * Make sure the boundaries for the callback fall within this
3626 	 * single mapping.
3627 	 */
3628 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
3629 	ASSERT(saddr >= baseaddr);
3630 	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
3631 		SFMMU_HASH_UNLOCK(hmebp);
3632 		kmem_cache_free(pa_hment_cache, pahmep);
3633 		*rpfn = PFN_INVALID;
3634 		return (ERANGE);
3635 	}
3636 
3637 	pfn = sfmmu_ttetopfn(&tte, vaddr);
3638 
3639 	/*
3640 	 * The pfn may not have a page_t underneath in which case we
3641 	 * just return it. This can happen if we are doing I/O to a
3642 	 * static portion of the kernel's address space, for instance.
3643 	 */
3644 	pp = osfhmep->hme_page;
3645 	if (pp == NULL) {
3646 		SFMMU_HASH_UNLOCK(hmebp);
3647 		kmem_cache_free(pa_hment_cache, pahmep);
3648 		*rpfn = pfn;
3649 		if (cookiep)
3650 			*cookiep = HAC_COOKIE_NONE;
3651 		return (0);
3652 	}
3653 	ASSERT(pp == PP_PAGEROOT(pp));
3654 
3655 	vp = pp->p_vnode;
3656 	off = pp->p_offset;
3657 
3658 	pml = sfmmu_mlist_enter(pp);
3659 
3660 	if (flags & HAC_PAGELOCK) {
3661 		if (!page_trylock(pp, SE_SHARED)) {
3662 			/*
3663 			 * Somebody is holding SE_EXCL lock. Might
3664 			 * even be hat_page_relocate(). Drop all
3665 			 * our locks, lookup the page in &kvp, and
3666 			 * retry. If it doesn't exist in &kvp, then
3667 			 * we must be dealing with a kernel mapped
3668 			 * page which doesn't actually belong to
3669 			 * segkmem so we punt.
3670 			 */
3671 			sfmmu_mlist_exit(pml);
3672 			SFMMU_HASH_UNLOCK(hmebp);
3673 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3674 			if (pp == NULL) {
3675 				kmem_cache_free(pa_hment_cache, pahmep);
3676 				*rpfn = pfn;
3677 				if (cookiep)
3678 					*cookiep = HAC_COOKIE_NONE;
3679 				return (0);
3680 			}
3681 			page_unlock(pp);
3682 			goto rehash;
3683 		}
3684 		locked = 1;
3685 	}
3686 
3687 	if (!PAGE_LOCKED(pp) && !panicstr)
3688 		panic("hat_add_callback: page 0x%p not locked", pp);
3689 
3690 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3691 	    pp->p_offset != off) {
3692 		/*
3693 		 * The page moved before we got our hands on it.  Drop
3694 		 * all the locks and try again.
3695 		 */
3696 		ASSERT((flags & HAC_PAGELOCK) != 0);
3697 		sfmmu_mlist_exit(pml);
3698 		SFMMU_HASH_UNLOCK(hmebp);
3699 		page_unlock(pp);
3700 		locked = 0;
3701 		goto rehash;
3702 	}
3703 
3704 	if (vp != &kvp) {
3705 		/*
3706 		 * This is not a segkmem page but another page which
3707 		 * has been kernel mapped. It had better have at least
3708 		 * a share lock on it. Return the pfn.
3709 		 */
3710 		sfmmu_mlist_exit(pml);
3711 		SFMMU_HASH_UNLOCK(hmebp);
3712 		if (locked)
3713 			page_unlock(pp);
3714 		kmem_cache_free(pa_hment_cache, pahmep);
3715 		ASSERT(PAGE_LOCKED(pp));
3716 		*rpfn = pfn;
3717 		if (cookiep)
3718 			*cookiep = HAC_COOKIE_NONE;
3719 		return (0);
3720 	}
3721 
3722 	/*
3723 	 * Setup this pa_hment and link its embedded dummy sf_hment into
3724 	 * the mapping list.
3725 	 */
3726 	pp->p_share++;
3727 	pahmep->cb_id = callback_id;
3728 	pahmep->addr = vaddr;
3729 	pahmep->len = len;
3730 	pahmep->refcnt = 1;
3731 	pahmep->flags = 0;
3732 	pahmep->pvt = pvt;
3733 
3734 	sfhmep->hme_tte.ll = 0;
3735 	sfhmep->hme_data = pahmep;
3736 	sfhmep->hme_prev = osfhmep;
3737 	sfhmep->hme_next = osfhmep->hme_next;
3738 
3739 	if (osfhmep->hme_next)
3740 		osfhmep->hme_next->hme_prev = sfhmep;
3741 
3742 	osfhmep->hme_next = sfhmep;
3743 
3744 	sfmmu_mlist_exit(pml);
3745 	SFMMU_HASH_UNLOCK(hmebp);
3746 
3747 	if (locked)
3748 		page_unlock(pp);
3749 
3750 	*rpfn = pfn;
3751 	if (cookiep)
3752 		*cookiep = (void *)pahmep;
3753 
3754 	return (0);
3755 }
3756 
3757 /*
3758  * Remove the relocation callbacks from the specified addr/len.
3759  */
3760 void
3761 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
3762 	void *cookie)
3763 {
3764 	struct		hmehash_bucket *hmebp;
3765 	hmeblk_tag	hblktag;
3766 	struct hme_blk	*hmeblkp;
3767 	int		hmeshift, hashno;
3768 	caddr_t		saddr;
3769 	struct pa_hment	*pahmep;
3770 	struct sf_hment	*sfhmep, *osfhmep;
3771 	kmutex_t	*pml;
3772 	tte_t		tte;
3773 	page_t		*pp;
3774 	vnode_t		*vp;
3775 	u_offset_t	off;
3776 	int		locked = 0;
3777 
3778 	/*
3779 	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
3780 	 * remove so just return.
3781 	 */
3782 	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
3783 		return;
3784 
3785 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3786 
3787 rehash:
3788 	/* Find the mapping(s) for this page */
3789 	for (hashno = TTE64K, hmeblkp = NULL;
3790 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3791 	    hashno++) {
3792 		hmeshift = HME_HASH_SHIFT(hashno);
3793 		hblktag.htag_id = ksfmmup;
3794 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3795 		hblktag.htag_rehash = hashno;
3796 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3797 
3798 		SFMMU_HASH_LOCK(hmebp);
3799 
3800 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3801 
3802 		if (hmeblkp == NULL)
3803 			SFMMU_HASH_UNLOCK(hmebp);
3804 	}
3805 
3806 	if (hmeblkp == NULL)
3807 		return;
3808 
3809 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3810 
3811 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3812 	if (!TTE_IS_VALID(&tte)) {
3813 		SFMMU_HASH_UNLOCK(hmebp);
3814 		return;
3815 	}
3816 
3817 	pp = osfhmep->hme_page;
3818 	if (pp == NULL) {
3819 		SFMMU_HASH_UNLOCK(hmebp);
3820 		ASSERT(cookie == NULL);
3821 		return;
3822 	}
3823 
3824 	vp = pp->p_vnode;
3825 	off = pp->p_offset;
3826 
3827 	pml = sfmmu_mlist_enter(pp);
3828 
3829 	if (flags & HAC_PAGELOCK) {
3830 		if (!page_trylock(pp, SE_SHARED)) {
3831 			/*
3832 			 * Somebody is holding SE_EXCL lock. Might
3833 			 * even be hat_page_relocate(). Drop all
3834 			 * our locks, lookup the page in &kvp, and
3835 			 * retry. If it doesn't exist in &kvp, then
3836 			 * we must be dealing with a kernel mapped
3837 			 * page which doesn't actually belong to
3838 			 * segkmem so we punt.
3839 			 */
3840 			sfmmu_mlist_exit(pml);
3841 			SFMMU_HASH_UNLOCK(hmebp);
3842 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3843 			if (pp == NULL) {
3844 				ASSERT(cookie == NULL);
3845 				return;
3846 			}
3847 			page_unlock(pp);
3848 			goto rehash;
3849 		}
3850 		locked = 1;
3851 	}
3852 
3853 	ASSERT(PAGE_LOCKED(pp));
3854 
3855 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3856 	    pp->p_offset != off) {
3857 		/*
3858 		 * The page moved before we got our hands on it.  Drop
3859 		 * all the locks and try again.
3860 		 */
3861 		ASSERT((flags & HAC_PAGELOCK) != 0);
3862 		sfmmu_mlist_exit(pml);
3863 		SFMMU_HASH_UNLOCK(hmebp);
3864 		page_unlock(pp);
3865 		locked = 0;
3866 		goto rehash;
3867 	}
3868 
3869 	if (vp != &kvp) {
3870 		/*
3871 		 * This is not a segkmem page but another page which
3872 		 * has been kernel mapped.
3873 		 */
3874 		sfmmu_mlist_exit(pml);
3875 		SFMMU_HASH_UNLOCK(hmebp);
3876 		if (locked)
3877 			page_unlock(pp);
3878 		ASSERT(cookie == NULL);
3879 		return;
3880 	}
3881 
3882 	if (cookie != NULL) {
3883 		pahmep = (struct pa_hment *)cookie;
3884 		sfhmep = &pahmep->sfment;
3885 	} else {
3886 		for (sfhmep = pp->p_mapping; sfhmep != NULL;
3887 		    sfhmep = sfhmep->hme_next) {
3888 
3889 			/*
3890 			 * skip va<->pa mappings
3891 			 */
3892 			if (!IS_PAHME(sfhmep))
3893 				continue;
3894 
3895 			pahmep = sfhmep->hme_data;
3896 			ASSERT(pahmep != NULL);
3897 
3898 			/*
3899 			 * if pa_hment matches, remove it
3900 			 */
3901 			if ((pahmep->pvt == pvt) &&
3902 			    (pahmep->addr == vaddr) &&
3903 			    (pahmep->len == len)) {
3904 				break;
3905 			}
3906 		}
3907 	}
3908 
3909 	if (sfhmep == NULL) {
3910 		if (!panicstr) {
3911 			panic("hat_delete_callback: pa_hment not found, pp %p",
3912 			    (void *)pp);
3913 		}
3914 		return;
3915 	}
3916 
3917 	/*
3918 	 * Note: at this point a valid kernel mapping must still be
3919 	 * present on this page.
3920 	 */
3921 	pp->p_share--;
3922 	if (pp->p_share <= 0)
3923 		panic("hat_delete_callback: zero p_share");
3924 
3925 	if (--pahmep->refcnt == 0) {
3926 		if (pahmep->flags != 0)
3927 			panic("hat_delete_callback: pa_hment is busy");
3928 
3929 		/*
3930 		 * Remove sfhmep from the mapping list for the page.
3931 		 */
3932 		if (sfhmep->hme_prev) {
3933 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
3934 		} else {
3935 			pp->p_mapping = sfhmep->hme_next;
3936 		}
3937 
3938 		if (sfhmep->hme_next)
3939 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
3940 
3941 		sfmmu_mlist_exit(pml);
3942 		SFMMU_HASH_UNLOCK(hmebp);
3943 
3944 		if (locked)
3945 			page_unlock(pp);
3946 
3947 		kmem_cache_free(pa_hment_cache, pahmep);
3948 		return;
3949 	}
3950 
3951 	sfmmu_mlist_exit(pml);
3952 	SFMMU_HASH_UNLOCK(hmebp);
3953 	if (locked)
3954 		page_unlock(pp);
3955 }
3956 
3957 /*
3958  * hat_probe returns 1 if the translation for the address 'addr' is
3959  * loaded, zero otherwise.
3960  *
3961  * hat_probe should be used only for advisorary purposes because it may
3962  * occasionally return the wrong value. The implementation must guarantee that
3963  * returning the wrong value is a very rare event. hat_probe is used
3964  * to implement optimizations in the segment drivers.
3965  *
3966  */
3967 int
3968 hat_probe(struct hat *sfmmup, caddr_t addr)
3969 {
3970 	pfn_t pfn;
3971 	tte_t tte;
3972 
3973 	ASSERT(sfmmup != NULL);
3974 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3975 
3976 	ASSERT((sfmmup == ksfmmup) ||
3977 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3978 
3979 	if (sfmmup == ksfmmup) {
3980 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
3981 		    == PFN_SUSPENDED) {
3982 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
3983 		}
3984 	} else {
3985 		pfn = sfmmu_uvatopfn(addr, sfmmup);
3986 	}
3987 
3988 	if (pfn != PFN_INVALID)
3989 		return (1);
3990 	else
3991 		return (0);
3992 }
3993 
3994 ssize_t
3995 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
3996 {
3997 	tte_t tte;
3998 
3999 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4000 
4001 	sfmmu_gettte(sfmmup, addr, &tte);
4002 	if (TTE_IS_VALID(&tte)) {
4003 		return (TTEBYTES(TTE_CSZ(&tte)));
4004 	}
4005 	return (-1);
4006 }
4007 
4008 static void
4009 sfmmu_gettte(struct hat *sfmmup, caddr_t addr, tte_t *ttep)
4010 {
4011 	struct hmehash_bucket *hmebp;
4012 	hmeblk_tag hblktag;
4013 	int hmeshift, hashno = 1;
4014 	struct hme_blk *hmeblkp, *list = NULL;
4015 	struct sf_hment *sfhmep;
4016 
4017 	/* support for ISM */
4018 	ism_map_t	*ism_map;
4019 	ism_blk_t	*ism_blkp;
4020 	int		i;
4021 	sfmmu_t		*ism_hatid = NULL;
4022 	sfmmu_t		*locked_hatid = NULL;
4023 
4024 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4025 
4026 	ism_blkp = sfmmup->sfmmu_iblk;
4027 	if (ism_blkp) {
4028 		sfmmu_ismhat_enter(sfmmup, 0);
4029 		locked_hatid = sfmmup;
4030 	}
4031 	while (ism_blkp && ism_hatid == NULL) {
4032 		ism_map = ism_blkp->iblk_maps;
4033 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
4034 			if (addr >= ism_start(ism_map[i]) &&
4035 			    addr < ism_end(ism_map[i])) {
4036 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
4037 				addr = (caddr_t)(addr -
4038 					ism_start(ism_map[i]));
4039 				break;
4040 			}
4041 		}
4042 		ism_blkp = ism_blkp->iblk_next;
4043 	}
4044 	if (locked_hatid) {
4045 		sfmmu_ismhat_exit(locked_hatid, 0);
4046 	}
4047 
4048 	hblktag.htag_id = sfmmup;
4049 	ttep->ll = 0;
4050 
4051 	do {
4052 		hmeshift = HME_HASH_SHIFT(hashno);
4053 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4054 		hblktag.htag_rehash = hashno;
4055 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4056 
4057 		SFMMU_HASH_LOCK(hmebp);
4058 
4059 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4060 		if (hmeblkp != NULL) {
4061 			HBLKTOHME(sfhmep, hmeblkp, addr);
4062 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
4063 			SFMMU_HASH_UNLOCK(hmebp);
4064 			break;
4065 		}
4066 		SFMMU_HASH_UNLOCK(hmebp);
4067 		hashno++;
4068 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
4069 
4070 	sfmmu_hblks_list_purge(&list);
4071 }
4072 
4073 uint_t
4074 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4075 {
4076 	tte_t tte;
4077 
4078 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4079 
4080 	sfmmu_gettte(sfmmup, addr, &tte);
4081 	if (TTE_IS_VALID(&tte)) {
4082 		*attr = sfmmu_ptov_attr(&tte);
4083 		return (0);
4084 	}
4085 	*attr = 0;
4086 	return ((uint_t)0xffffffff);
4087 }
4088 
4089 /*
4090  * Enables more attributes on specified address range (ie. logical OR)
4091  */
4092 void
4093 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4094 {
4095 	if (hat->sfmmu_xhat_provider) {
4096 		XHAT_SETATTR(hat, addr, len, attr);
4097 		return;
4098 	} else {
4099 		/*
4100 		 * This must be a CPU HAT. If the address space has
4101 		 * XHATs attached, change attributes for all of them,
4102 		 * just in case
4103 		 */
4104 		ASSERT(hat->sfmmu_as != NULL);
4105 		if (hat->sfmmu_as->a_xhat != NULL)
4106 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4107 	}
4108 
4109 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4110 }
4111 
4112 /*
4113  * Assigns attributes to the specified address range.  All the attributes
4114  * are specified.
4115  */
4116 void
4117 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4118 {
4119 	if (hat->sfmmu_xhat_provider) {
4120 		XHAT_CHGATTR(hat, addr, len, attr);
4121 		return;
4122 	} else {
4123 		/*
4124 		 * This must be a CPU HAT. If the address space has
4125 		 * XHATs attached, change attributes for all of them,
4126 		 * just in case
4127 		 */
4128 		ASSERT(hat->sfmmu_as != NULL);
4129 		if (hat->sfmmu_as->a_xhat != NULL)
4130 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4131 	}
4132 
4133 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4134 }
4135 
4136 /*
4137  * Remove attributes on the specified address range (ie. loginal NAND)
4138  */
4139 void
4140 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4141 {
4142 	if (hat->sfmmu_xhat_provider) {
4143 		XHAT_CLRATTR(hat, addr, len, attr);
4144 		return;
4145 	} else {
4146 		/*
4147 		 * This must be a CPU HAT. If the address space has
4148 		 * XHATs attached, change attributes for all of them,
4149 		 * just in case
4150 		 */
4151 		ASSERT(hat->sfmmu_as != NULL);
4152 		if (hat->sfmmu_as->a_xhat != NULL)
4153 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4154 	}
4155 
4156 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4157 }
4158 
4159 /*
4160  * Change attributes on an address range to that specified by attr and mode.
4161  */
4162 static void
4163 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4164 	int mode)
4165 {
4166 	struct hmehash_bucket *hmebp;
4167 	hmeblk_tag hblktag;
4168 	int hmeshift, hashno = 1;
4169 	struct hme_blk *hmeblkp, *list = NULL;
4170 	caddr_t endaddr;
4171 	cpuset_t cpuset;
4172 	demap_range_t dmr;
4173 
4174 	CPUSET_ZERO(cpuset);
4175 
4176 	ASSERT((sfmmup == ksfmmup) ||
4177 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4178 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4179 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4180 
4181 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4182 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4183 		panic("user addr %p in kernel space",
4184 		    (void *)addr);
4185 	}
4186 
4187 	endaddr = addr + len;
4188 	hblktag.htag_id = sfmmup;
4189 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4190 
4191 	while (addr < endaddr) {
4192 		hmeshift = HME_HASH_SHIFT(hashno);
4193 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4194 		hblktag.htag_rehash = hashno;
4195 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4196 
4197 		SFMMU_HASH_LOCK(hmebp);
4198 
4199 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4200 		if (hmeblkp != NULL) {
4201 			/*
4202 			 * We've encountered a shadow hmeblk so skip the range
4203 			 * of the next smaller mapping size.
4204 			 */
4205 			if (hmeblkp->hblk_shw_bit) {
4206 				ASSERT(sfmmup != ksfmmup);
4207 				ASSERT(hashno > 1);
4208 				addr = (caddr_t)P2END((uintptr_t)addr,
4209 					    TTEBYTES(hashno - 1));
4210 			} else {
4211 				addr = sfmmu_hblk_chgattr(sfmmup,
4212 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4213 			}
4214 			SFMMU_HASH_UNLOCK(hmebp);
4215 			hashno = 1;
4216 			continue;
4217 		}
4218 		SFMMU_HASH_UNLOCK(hmebp);
4219 
4220 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4221 			/*
4222 			 * We have traversed the whole list and rehashed
4223 			 * if necessary without finding the address to chgattr.
4224 			 * This is ok, so we increment the address by the
4225 			 * smallest hmeblk range for kernel mappings or for
4226 			 * user mappings with no large pages, and the largest
4227 			 * hmeblk range, to account for shadow hmeblks, for
4228 			 * user mappings with large pages and continue.
4229 			 */
4230 			if (sfmmup == ksfmmup)
4231 				addr = (caddr_t)P2END((uintptr_t)addr,
4232 					    TTEBYTES(1));
4233 			else
4234 				addr = (caddr_t)P2END((uintptr_t)addr,
4235 					    TTEBYTES(hashno));
4236 			hashno = 1;
4237 		} else {
4238 			hashno++;
4239 		}
4240 	}
4241 
4242 	sfmmu_hblks_list_purge(&list);
4243 	DEMAP_RANGE_FLUSH(&dmr);
4244 	cpuset = sfmmup->sfmmu_cpusran;
4245 	xt_sync(cpuset);
4246 }
4247 
4248 /*
4249  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4250  * next addres that needs to be chgattr.
4251  * It should be called with the hash lock held.
4252  * XXX It should be possible to optimize chgattr by not flushing every time but
4253  * on the other hand:
4254  * 1. do one flush crosscall.
4255  * 2. only flush if we are increasing permissions (make sure this will work)
4256  */
4257 static caddr_t
4258 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4259 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4260 {
4261 	tte_t tte, tteattr, tteflags, ttemod;
4262 	struct sf_hment *sfhmep;
4263 	int ttesz;
4264 	struct page *pp = NULL;
4265 	kmutex_t *pml, *pmtx;
4266 	int ret;
4267 	int use_demap_range;
4268 #if defined(SF_ERRATA_57)
4269 	int check_exec;
4270 #endif
4271 
4272 	ASSERT(in_hblk_range(hmeblkp, addr));
4273 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4274 
4275 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4276 	ttesz = get_hblk_ttesz(hmeblkp);
4277 
4278 	/*
4279 	 * Flush the current demap region if addresses have been
4280 	 * skipped or the page size doesn't match.
4281 	 */
4282 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4283 	if (use_demap_range) {
4284 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4285 	} else {
4286 		DEMAP_RANGE_FLUSH(dmrp);
4287 	}
4288 
4289 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4290 #if defined(SF_ERRATA_57)
4291 	check_exec = (sfmmup != ksfmmup) &&
4292 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4293 	    TTE_IS_EXECUTABLE(&tteattr);
4294 #endif
4295 	HBLKTOHME(sfhmep, hmeblkp, addr);
4296 	while (addr < endaddr) {
4297 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4298 		if (TTE_IS_VALID(&tte)) {
4299 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4300 				/*
4301 				 * if the new attr is the same as old
4302 				 * continue
4303 				 */
4304 				goto next_addr;
4305 			}
4306 			if (!TTE_IS_WRITABLE(&tteattr)) {
4307 				/*
4308 				 * make sure we clear hw modify bit if we
4309 				 * removing write protections
4310 				 */
4311 				tteflags.tte_intlo |= TTE_HWWR_INT;
4312 			}
4313 
4314 			pml = NULL;
4315 			pp = sfhmep->hme_page;
4316 			if (pp) {
4317 				pml = sfmmu_mlist_enter(pp);
4318 			}
4319 
4320 			if (pp != sfhmep->hme_page) {
4321 				/*
4322 				 * tte must have been unloaded.
4323 				 */
4324 				ASSERT(pml);
4325 				sfmmu_mlist_exit(pml);
4326 				continue;
4327 			}
4328 
4329 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4330 
4331 			ttemod = tte;
4332 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
4333 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
4334 
4335 #if defined(SF_ERRATA_57)
4336 			if (check_exec && addr < errata57_limit)
4337 				ttemod.tte_exec_perm = 0;
4338 #endif
4339 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4340 			    &sfhmep->hme_tte);
4341 
4342 			if (ret < 0) {
4343 				/* tte changed underneath us */
4344 				if (pml) {
4345 					sfmmu_mlist_exit(pml);
4346 				}
4347 				continue;
4348 			}
4349 
4350 			if (tteflags.tte_intlo & TTE_HWWR_INT) {
4351 				/*
4352 				 * need to sync if we are clearing modify bit.
4353 				 */
4354 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4355 			}
4356 
4357 			if (pp && PP_ISRO(pp)) {
4358 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
4359 					pmtx = sfmmu_page_enter(pp);
4360 					PP_CLRRO(pp);
4361 					sfmmu_page_exit(pmtx);
4362 				}
4363 			}
4364 
4365 			if (ret > 0 && use_demap_range) {
4366 				DEMAP_RANGE_MARKPG(dmrp, addr);
4367 			} else if (ret > 0) {
4368 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4369 			}
4370 
4371 			if (pml) {
4372 				sfmmu_mlist_exit(pml);
4373 			}
4374 		}
4375 next_addr:
4376 		addr += TTEBYTES(ttesz);
4377 		sfhmep++;
4378 		DEMAP_RANGE_NEXTPG(dmrp);
4379 	}
4380 	return (addr);
4381 }
4382 
4383 /*
4384  * This routine converts virtual attributes to physical ones.  It will
4385  * update the tteflags field with the tte mask corresponding to the attributes
4386  * affected and it returns the new attributes.  It will also clear the modify
4387  * bit if we are taking away write permission.  This is necessary since the
4388  * modify bit is the hardware permission bit and we need to clear it in order
4389  * to detect write faults.
4390  */
4391 static uint64_t
4392 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
4393 {
4394 	tte_t ttevalue;
4395 
4396 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
4397 
4398 	switch (mode) {
4399 	case SFMMU_CHGATTR:
4400 		/* all attributes specified */
4401 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
4402 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
4403 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
4404 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
4405 		break;
4406 	case SFMMU_SETATTR:
4407 		ASSERT(!(attr & ~HAT_PROT_MASK));
4408 		ttemaskp->ll = 0;
4409 		ttevalue.ll = 0;
4410 		/*
4411 		 * a valid tte implies exec and read for sfmmu
4412 		 * so no need to do anything about them.
4413 		 * since priviledged access implies user access
4414 		 * PROT_USER doesn't make sense either.
4415 		 */
4416 		if (attr & PROT_WRITE) {
4417 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
4418 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
4419 		}
4420 		break;
4421 	case SFMMU_CLRATTR:
4422 		/* attributes will be nand with current ones */
4423 		if (attr & ~(PROT_WRITE | PROT_USER)) {
4424 			panic("sfmmu: attr %x not supported", attr);
4425 		}
4426 		ttemaskp->ll = 0;
4427 		ttevalue.ll = 0;
4428 		if (attr & PROT_WRITE) {
4429 			/* clear both writable and modify bit */
4430 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
4431 		}
4432 		if (attr & PROT_USER) {
4433 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
4434 			ttevalue.tte_intlo |= TTE_PRIV_INT;
4435 		}
4436 		break;
4437 	default:
4438 		panic("sfmmu_vtop_attr: bad mode %x", mode);
4439 	}
4440 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
4441 	return (ttevalue.ll);
4442 }
4443 
4444 static uint_t
4445 sfmmu_ptov_attr(tte_t *ttep)
4446 {
4447 	uint_t attr;
4448 
4449 	ASSERT(TTE_IS_VALID(ttep));
4450 
4451 	attr = PROT_READ;
4452 
4453 	if (TTE_IS_WRITABLE(ttep)) {
4454 		attr |= PROT_WRITE;
4455 	}
4456 	if (TTE_IS_EXECUTABLE(ttep)) {
4457 		attr |= PROT_EXEC;
4458 	}
4459 	if (!TTE_IS_PRIVILEGED(ttep)) {
4460 		attr |= PROT_USER;
4461 	}
4462 	if (TTE_IS_NFO(ttep)) {
4463 		attr |= HAT_NOFAULT;
4464 	}
4465 	if (TTE_IS_NOSYNC(ttep)) {
4466 		attr |= HAT_NOSYNC;
4467 	}
4468 	if (TTE_IS_SIDEFFECT(ttep)) {
4469 		attr |= SFMMU_SIDEFFECT;
4470 	}
4471 	if (!TTE_IS_VCACHEABLE(ttep)) {
4472 		attr |= SFMMU_UNCACHEVTTE;
4473 	}
4474 	if (!TTE_IS_PCACHEABLE(ttep)) {
4475 		attr |= SFMMU_UNCACHEPTTE;
4476 	}
4477 	return (attr);
4478 }
4479 
4480 /*
4481  * hat_chgprot is a deprecated hat call.  New segment drivers
4482  * should store all attributes and use hat_*attr calls.
4483  *
4484  * Change the protections in the virtual address range
4485  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
4486  * then remove write permission, leaving the other
4487  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
4488  *
4489  */
4490 void
4491 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
4492 {
4493 	struct hmehash_bucket *hmebp;
4494 	hmeblk_tag hblktag;
4495 	int hmeshift, hashno = 1;
4496 	struct hme_blk *hmeblkp, *list = NULL;
4497 	caddr_t endaddr;
4498 	cpuset_t cpuset;
4499 	demap_range_t dmr;
4500 
4501 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4502 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4503 
4504 	if (sfmmup->sfmmu_xhat_provider) {
4505 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
4506 		return;
4507 	} else {
4508 		/*
4509 		 * This must be a CPU HAT. If the address space has
4510 		 * XHATs attached, change attributes for all of them,
4511 		 * just in case
4512 		 */
4513 		ASSERT(sfmmup->sfmmu_as != NULL);
4514 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4515 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
4516 	}
4517 
4518 	CPUSET_ZERO(cpuset);
4519 
4520 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
4521 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4522 		panic("user addr %p vprot %x in kernel space",
4523 		    (void *)addr, vprot);
4524 	}
4525 	endaddr = addr + len;
4526 	hblktag.htag_id = sfmmup;
4527 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4528 
4529 	while (addr < endaddr) {
4530 		hmeshift = HME_HASH_SHIFT(hashno);
4531 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4532 		hblktag.htag_rehash = hashno;
4533 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4534 
4535 		SFMMU_HASH_LOCK(hmebp);
4536 
4537 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4538 		if (hmeblkp != NULL) {
4539 			/*
4540 			 * We've encountered a shadow hmeblk so skip the range
4541 			 * of the next smaller mapping size.
4542 			 */
4543 			if (hmeblkp->hblk_shw_bit) {
4544 				ASSERT(sfmmup != ksfmmup);
4545 				ASSERT(hashno > 1);
4546 				addr = (caddr_t)P2END((uintptr_t)addr,
4547 					    TTEBYTES(hashno - 1));
4548 			} else {
4549 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
4550 					addr, endaddr, &dmr, vprot);
4551 			}
4552 			SFMMU_HASH_UNLOCK(hmebp);
4553 			hashno = 1;
4554 			continue;
4555 		}
4556 		SFMMU_HASH_UNLOCK(hmebp);
4557 
4558 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4559 			/*
4560 			 * We have traversed the whole list and rehashed
4561 			 * if necessary without finding the address to chgprot.
4562 			 * This is ok so we increment the address by the
4563 			 * smallest hmeblk range for kernel mappings and the
4564 			 * largest hmeblk range, to account for shadow hmeblks,
4565 			 * for user mappings and continue.
4566 			 */
4567 			if (sfmmup == ksfmmup)
4568 				addr = (caddr_t)P2END((uintptr_t)addr,
4569 					    TTEBYTES(1));
4570 			else
4571 				addr = (caddr_t)P2END((uintptr_t)addr,
4572 					    TTEBYTES(hashno));
4573 			hashno = 1;
4574 		} else {
4575 			hashno++;
4576 		}
4577 	}
4578 
4579 	sfmmu_hblks_list_purge(&list);
4580 	DEMAP_RANGE_FLUSH(&dmr);
4581 	cpuset = sfmmup->sfmmu_cpusran;
4582 	xt_sync(cpuset);
4583 }
4584 
4585 /*
4586  * This function chgprots a range of addresses in an hmeblk.  It returns the
4587  * next addres that needs to be chgprot.
4588  * It should be called with the hash lock held.
4589  * XXX It shold be possible to optimize chgprot by not flushing every time but
4590  * on the other hand:
4591  * 1. do one flush crosscall.
4592  * 2. only flush if we are increasing permissions (make sure this will work)
4593  */
4594 static caddr_t
4595 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4596 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
4597 {
4598 	uint_t pprot;
4599 	tte_t tte, ttemod;
4600 	struct sf_hment *sfhmep;
4601 	uint_t tteflags;
4602 	int ttesz;
4603 	struct page *pp = NULL;
4604 	kmutex_t *pml, *pmtx;
4605 	int ret;
4606 	int use_demap_range;
4607 #if defined(SF_ERRATA_57)
4608 	int check_exec;
4609 #endif
4610 
4611 	ASSERT(in_hblk_range(hmeblkp, addr));
4612 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4613 
4614 #ifdef DEBUG
4615 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
4616 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
4617 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
4618 	}
4619 #endif /* DEBUG */
4620 
4621 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4622 	ttesz = get_hblk_ttesz(hmeblkp);
4623 
4624 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
4625 #if defined(SF_ERRATA_57)
4626 	check_exec = (sfmmup != ksfmmup) &&
4627 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4628 	    ((vprot & PROT_EXEC) == PROT_EXEC);
4629 #endif
4630 	HBLKTOHME(sfhmep, hmeblkp, addr);
4631 
4632 	/*
4633 	 * Flush the current demap region if addresses have been
4634 	 * skipped or the page size doesn't match.
4635 	 */
4636 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
4637 	if (use_demap_range) {
4638 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4639 	} else {
4640 		DEMAP_RANGE_FLUSH(dmrp);
4641 	}
4642 
4643 	while (addr < endaddr) {
4644 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4645 		if (TTE_IS_VALID(&tte)) {
4646 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
4647 				/*
4648 				 * if the new protection is the same as old
4649 				 * continue
4650 				 */
4651 				goto next_addr;
4652 			}
4653 			pml = NULL;
4654 			pp = sfhmep->hme_page;
4655 			if (pp) {
4656 				pml = sfmmu_mlist_enter(pp);
4657 			}
4658 			if (pp != sfhmep->hme_page) {
4659 				/*
4660 				 * tte most have been unloaded
4661 				 * underneath us.  Recheck
4662 				 */
4663 				ASSERT(pml);
4664 				sfmmu_mlist_exit(pml);
4665 				continue;
4666 			}
4667 
4668 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4669 
4670 			ttemod = tte;
4671 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
4672 #if defined(SF_ERRATA_57)
4673 			if (check_exec && addr < errata57_limit)
4674 				ttemod.tte_exec_perm = 0;
4675 #endif
4676 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4677 			    &sfhmep->hme_tte);
4678 
4679 			if (ret < 0) {
4680 				/* tte changed underneath us */
4681 				if (pml) {
4682 					sfmmu_mlist_exit(pml);
4683 				}
4684 				continue;
4685 			}
4686 
4687 			if (tteflags & TTE_HWWR_INT) {
4688 				/*
4689 				 * need to sync if we are clearing modify bit.
4690 				 */
4691 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4692 			}
4693 
4694 			if (pp && PP_ISRO(pp)) {
4695 				if (pprot & TTE_WRPRM_INT) {
4696 					pmtx = sfmmu_page_enter(pp);
4697 					PP_CLRRO(pp);
4698 					sfmmu_page_exit(pmtx);
4699 				}
4700 			}
4701 
4702 			if (ret > 0 && use_demap_range) {
4703 				DEMAP_RANGE_MARKPG(dmrp, addr);
4704 			} else if (ret > 0) {
4705 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4706 			}
4707 
4708 			if (pml) {
4709 				sfmmu_mlist_exit(pml);
4710 			}
4711 		}
4712 next_addr:
4713 		addr += TTEBYTES(ttesz);
4714 		sfhmep++;
4715 		DEMAP_RANGE_NEXTPG(dmrp);
4716 	}
4717 	return (addr);
4718 }
4719 
4720 /*
4721  * This routine is deprecated and should only be used by hat_chgprot.
4722  * The correct routine is sfmmu_vtop_attr.
4723  * This routine converts virtual page protections to physical ones.  It will
4724  * update the tteflags field with the tte mask corresponding to the protections
4725  * affected and it returns the new protections.  It will also clear the modify
4726  * bit if we are taking away write permission.  This is necessary since the
4727  * modify bit is the hardware permission bit and we need to clear it in order
4728  * to detect write faults.
4729  * It accepts the following special protections:
4730  * ~PROT_WRITE = remove write permissions.
4731  * ~PROT_USER = remove user permissions.
4732  */
4733 static uint_t
4734 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
4735 {
4736 	if (vprot == (uint_t)~PROT_WRITE) {
4737 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
4738 		return (0);		/* will cause wrprm to be cleared */
4739 	}
4740 	if (vprot == (uint_t)~PROT_USER) {
4741 		*tteflagsp = TTE_PRIV_INT;
4742 		return (0);		/* will cause privprm to be cleared */
4743 	}
4744 	if ((vprot == 0) || (vprot == PROT_USER) ||
4745 		((vprot & PROT_ALL) != vprot)) {
4746 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4747 	}
4748 
4749 	switch (vprot) {
4750 	case (PROT_READ):
4751 	case (PROT_EXEC):
4752 	case (PROT_EXEC | PROT_READ):
4753 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4754 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
4755 	case (PROT_WRITE):
4756 	case (PROT_WRITE | PROT_READ):
4757 	case (PROT_EXEC | PROT_WRITE):
4758 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
4759 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4760 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
4761 	case (PROT_USER | PROT_READ):
4762 	case (PROT_USER | PROT_EXEC):
4763 	case (PROT_USER | PROT_EXEC | PROT_READ):
4764 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4765 		return (0); 			/* clr prv and wrt */
4766 	case (PROT_USER | PROT_WRITE):
4767 	case (PROT_USER | PROT_WRITE | PROT_READ):
4768 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
4769 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
4770 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4771 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
4772 	default:
4773 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4774 	}
4775 	return (0);
4776 }
4777 
4778 /*
4779  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
4780  * the normal algorithm would take too long for a very large VA range with
4781  * few real mappings. This routine just walks thru all HMEs in the global
4782  * hash table to find and remove mappings.
4783  */
4784 static void
4785 hat_unload_large_virtual(
4786 	struct hat		*sfmmup,
4787 	caddr_t			startaddr,
4788 	size_t			len,
4789 	uint_t			flags,
4790 	hat_callback_t		*callback)
4791 {
4792 	struct hmehash_bucket *hmebp;
4793 	struct hme_blk *hmeblkp;
4794 	struct hme_blk *pr_hblk = NULL;
4795 	struct hme_blk *nx_hblk;
4796 	struct hme_blk *list = NULL;
4797 	int i;
4798 	uint64_t hblkpa, prevpa, nx_pa;
4799 	demap_range_t dmr, *dmrp;
4800 	cpuset_t cpuset;
4801 	caddr_t	endaddr = startaddr + len;
4802 	caddr_t	sa;
4803 	caddr_t	ea;
4804 	caddr_t	cb_sa[MAX_CB_ADDR];
4805 	caddr_t	cb_ea[MAX_CB_ADDR];
4806 	int	addr_cnt = 0;
4807 	int	a = 0;
4808 
4809 	if (sfmmup->sfmmu_free) {
4810 		dmrp = NULL;
4811 	} else {
4812 		dmrp = &dmr;
4813 		DEMAP_RANGE_INIT(sfmmup, dmrp);
4814 	}
4815 
4816 	/*
4817 	 * Loop through all the hash buckets of HME blocks looking for matches.
4818 	 */
4819 	for (i = 0; i <= UHMEHASH_SZ; i++) {
4820 		hmebp = &uhme_hash[i];
4821 		SFMMU_HASH_LOCK(hmebp);
4822 		hmeblkp = hmebp->hmeblkp;
4823 		hblkpa = hmebp->hmeh_nextpa;
4824 		prevpa = 0;
4825 		pr_hblk = NULL;
4826 		while (hmeblkp) {
4827 			nx_hblk = hmeblkp->hblk_next;
4828 			nx_pa = hmeblkp->hblk_nextpa;
4829 
4830 			/*
4831 			 * skip if not this context, if a shadow block or
4832 			 * if the mapping is not in the requested range
4833 			 */
4834 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
4835 			    hmeblkp->hblk_shw_bit ||
4836 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
4837 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
4838 				pr_hblk = hmeblkp;
4839 				prevpa = hblkpa;
4840 				goto next_block;
4841 			}
4842 
4843 			/*
4844 			 * unload if there are any current valid mappings
4845 			 */
4846 			if (hmeblkp->hblk_vcnt != 0 ||
4847 			    hmeblkp->hblk_hmecnt != 0)
4848 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
4849 				    sa, ea, dmrp, flags);
4850 
4851 			/*
4852 			 * on unmap we also release the HME block itself, once
4853 			 * all mappings are gone.
4854 			 */
4855 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
4856 			    !hmeblkp->hblk_vcnt &&
4857 			    !hmeblkp->hblk_hmecnt) {
4858 				ASSERT(!hmeblkp->hblk_lckcnt);
4859 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
4860 					prevpa, pr_hblk);
4861 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
4862 			} else {
4863 				pr_hblk = hmeblkp;
4864 				prevpa = hblkpa;
4865 			}
4866 
4867 			if (callback == NULL)
4868 				goto next_block;
4869 
4870 			/*
4871 			 * HME blocks may span more than one page, but we may be
4872 			 * unmapping only one page, so check for a smaller range
4873 			 * for the callback
4874 			 */
4875 			if (sa < startaddr)
4876 				sa = startaddr;
4877 			if (--ea > endaddr)
4878 				ea = endaddr - 1;
4879 
4880 			cb_sa[addr_cnt] = sa;
4881 			cb_ea[addr_cnt] = ea;
4882 			if (++addr_cnt == MAX_CB_ADDR) {
4883 				if (dmrp != NULL) {
4884 					DEMAP_RANGE_FLUSH(dmrp);
4885 					cpuset = sfmmup->sfmmu_cpusran;
4886 					xt_sync(cpuset);
4887 				}
4888 
4889 				for (a = 0; a < MAX_CB_ADDR; ++a) {
4890 					callback->hcb_start_addr = cb_sa[a];
4891 					callback->hcb_end_addr = cb_ea[a];
4892 					callback->hcb_function(callback);
4893 				}
4894 				addr_cnt = 0;
4895 			}
4896 
4897 next_block:
4898 			hmeblkp = nx_hblk;
4899 			hblkpa = nx_pa;
4900 		}
4901 		SFMMU_HASH_UNLOCK(hmebp);
4902 	}
4903 
4904 	sfmmu_hblks_list_purge(&list);
4905 	if (dmrp != NULL) {
4906 		DEMAP_RANGE_FLUSH(dmrp);
4907 		cpuset = sfmmup->sfmmu_cpusran;
4908 		xt_sync(cpuset);
4909 	}
4910 
4911 	for (a = 0; a < addr_cnt; ++a) {
4912 		callback->hcb_start_addr = cb_sa[a];
4913 		callback->hcb_end_addr = cb_ea[a];
4914 		callback->hcb_function(callback);
4915 	}
4916 
4917 	/*
4918 	 * Check TSB and TLB page sizes if the process isn't exiting.
4919 	 */
4920 	if (!sfmmup->sfmmu_free)
4921 		sfmmu_check_page_sizes(sfmmup, 0);
4922 }
4923 
4924 /*
4925  * Unload all the mappings in the range [addr..addr+len). addr and len must
4926  * be MMU_PAGESIZE aligned.
4927  */
4928 
4929 extern struct seg *segkmap;
4930 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
4931 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
4932 
4933 
4934 void
4935 hat_unload_callback(
4936 	struct hat *sfmmup,
4937 	caddr_t addr,
4938 	size_t len,
4939 	uint_t flags,
4940 	hat_callback_t *callback)
4941 {
4942 	struct hmehash_bucket *hmebp;
4943 	hmeblk_tag hblktag;
4944 	int hmeshift, hashno, iskernel;
4945 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
4946 	caddr_t endaddr;
4947 	cpuset_t cpuset;
4948 	uint64_t hblkpa, prevpa;
4949 	int addr_count = 0;
4950 	int a;
4951 	caddr_t cb_start_addr[MAX_CB_ADDR];
4952 	caddr_t cb_end_addr[MAX_CB_ADDR];
4953 	int issegkmap = ISSEGKMAP(sfmmup, addr);
4954 	demap_range_t dmr, *dmrp;
4955 
4956 	if (sfmmup->sfmmu_xhat_provider) {
4957 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
4958 		return;
4959 	} else {
4960 		/*
4961 		 * This must be a CPU HAT. If the address space has
4962 		 * XHATs attached, unload the mappings for all of them,
4963 		 * just in case
4964 		 */
4965 		ASSERT(sfmmup->sfmmu_as != NULL);
4966 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4967 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
4968 			    len, flags, callback);
4969 	}
4970 
4971 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
4972 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4973 
4974 	ASSERT(sfmmup != NULL);
4975 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4976 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4977 
4978 	/*
4979 	 * Probing through a large VA range (say 63 bits) will be slow, even
4980 	 * at 4 Meg steps between the probes. So, when the virtual address range
4981 	 * is very large, search the HME entries for what to unload.
4982 	 *
4983 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
4984 	 *
4985 	 *	UHMEHASH_SZ is number of hash buckets to examine
4986 	 *
4987 	 */
4988 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
4989 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
4990 		return;
4991 	}
4992 
4993 	CPUSET_ZERO(cpuset);
4994 
4995 	/*
4996 	 * If the process is exiting, we can save a lot of fuss since
4997 	 * we'll flush the TLB when we free the ctx anyway.
4998 	 */
4999 	if (sfmmup->sfmmu_free)
5000 		dmrp = NULL;
5001 	else
5002 		dmrp = &dmr;
5003 
5004 	DEMAP_RANGE_INIT(sfmmup, dmrp);
5005 	endaddr = addr + len;
5006 	hblktag.htag_id = sfmmup;
5007 
5008 	/*
5009 	 * It is likely for the vm to call unload over a wide range of
5010 	 * addresses that are actually very sparsely populated by
5011 	 * translations.  In order to speed this up the sfmmu hat supports
5012 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
5013 	 * correspond to actual small translations are allocated at tteload
5014 	 * time and are referred to as shadow hmeblks.  Now, during unload
5015 	 * time, we first check if we have a shadow hmeblk for that
5016 	 * translation.  The absence of one means the corresponding address
5017 	 * range is empty and can be skipped.
5018 	 *
5019 	 * The kernel is an exception to above statement and that is why
5020 	 * we don't use shadow hmeblks and hash starting from the smallest
5021 	 * page size.
5022 	 */
5023 	if (sfmmup == KHATID) {
5024 		iskernel = 1;
5025 		hashno = TTE64K;
5026 	} else {
5027 		iskernel = 0;
5028 		if (mmu_page_sizes == max_mmu_page_sizes) {
5029 			hashno = TTE256M;
5030 		} else {
5031 			hashno = TTE4M;
5032 		}
5033 	}
5034 	while (addr < endaddr) {
5035 		hmeshift = HME_HASH_SHIFT(hashno);
5036 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5037 		hblktag.htag_rehash = hashno;
5038 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5039 
5040 		SFMMU_HASH_LOCK(hmebp);
5041 
5042 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
5043 			prevpa, &list);
5044 		if (hmeblkp == NULL) {
5045 			/*
5046 			 * didn't find an hmeblk. skip the appropiate
5047 			 * address range.
5048 			 */
5049 			SFMMU_HASH_UNLOCK(hmebp);
5050 			if (iskernel) {
5051 				if (hashno < mmu_hashcnt) {
5052 					hashno++;
5053 					continue;
5054 				} else {
5055 					hashno = TTE64K;
5056 					addr = (caddr_t)roundup((uintptr_t)addr
5057 						+ 1, MMU_PAGESIZE64K);
5058 					continue;
5059 				}
5060 			}
5061 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5062 				(1 << hmeshift));
5063 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5064 				ASSERT(hashno == TTE64K);
5065 				continue;
5066 			}
5067 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5068 				hashno = TTE512K;
5069 				continue;
5070 			}
5071 			if (mmu_page_sizes == max_mmu_page_sizes) {
5072 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5073 					hashno = TTE4M;
5074 					continue;
5075 				}
5076 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5077 					hashno = TTE32M;
5078 					continue;
5079 				}
5080 				hashno = TTE256M;
5081 				continue;
5082 			} else {
5083 				hashno = TTE4M;
5084 				continue;
5085 			}
5086 		}
5087 		ASSERT(hmeblkp);
5088 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5089 			/*
5090 			 * If the valid count is zero we can skip the range
5091 			 * mapped by this hmeblk.
5092 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5093 			 * is used by segment drivers as a hint
5094 			 * that the mapping resource won't be used any longer.
5095 			 * The best example of this is during exit().
5096 			 */
5097 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5098 				get_hblk_span(hmeblkp));
5099 			if ((flags & HAT_UNLOAD_UNMAP) ||
5100 			    (iskernel && !issegkmap)) {
5101 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5102 				    pr_hblk);
5103 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5104 			}
5105 			SFMMU_HASH_UNLOCK(hmebp);
5106 
5107 			if (iskernel) {
5108 				hashno = TTE64K;
5109 				continue;
5110 			}
5111 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5112 				ASSERT(hashno == TTE64K);
5113 				continue;
5114 			}
5115 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5116 				hashno = TTE512K;
5117 				continue;
5118 			}
5119 			if (mmu_page_sizes == max_mmu_page_sizes) {
5120 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5121 					hashno = TTE4M;
5122 					continue;
5123 				}
5124 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5125 					hashno = TTE32M;
5126 					continue;
5127 				}
5128 				hashno = TTE256M;
5129 				continue;
5130 			} else {
5131 				hashno = TTE4M;
5132 				continue;
5133 			}
5134 		}
5135 		if (hmeblkp->hblk_shw_bit) {
5136 			/*
5137 			 * If we encounter a shadow hmeblk we know there is
5138 			 * smaller sized hmeblks mapping the same address space.
5139 			 * Decrement the hash size and rehash.
5140 			 */
5141 			ASSERT(sfmmup != KHATID);
5142 			hashno--;
5143 			SFMMU_HASH_UNLOCK(hmebp);
5144 			continue;
5145 		}
5146 
5147 		/*
5148 		 * track callback address ranges.
5149 		 * only start a new range when it's not contiguous
5150 		 */
5151 		if (callback != NULL) {
5152 			if (addr_count > 0 &&
5153 			    addr == cb_end_addr[addr_count - 1])
5154 				--addr_count;
5155 			else
5156 				cb_start_addr[addr_count] = addr;
5157 		}
5158 
5159 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5160 				dmrp, flags);
5161 
5162 		if (callback != NULL)
5163 			cb_end_addr[addr_count++] = addr;
5164 
5165 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5166 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5167 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5168 			    pr_hblk);
5169 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5170 		}
5171 		SFMMU_HASH_UNLOCK(hmebp);
5172 
5173 		/*
5174 		 * Notify our caller as to exactly which pages
5175 		 * have been unloaded. We do these in clumps,
5176 		 * to minimize the number of xt_sync()s that need to occur.
5177 		 */
5178 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5179 			DEMAP_RANGE_FLUSH(dmrp);
5180 			if (dmrp != NULL) {
5181 				cpuset = sfmmup->sfmmu_cpusran;
5182 				xt_sync(cpuset);
5183 			}
5184 
5185 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5186 				callback->hcb_start_addr = cb_start_addr[a];
5187 				callback->hcb_end_addr = cb_end_addr[a];
5188 				callback->hcb_function(callback);
5189 			}
5190 			addr_count = 0;
5191 		}
5192 		if (iskernel) {
5193 			hashno = TTE64K;
5194 			continue;
5195 		}
5196 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5197 			ASSERT(hashno == TTE64K);
5198 			continue;
5199 		}
5200 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5201 			hashno = TTE512K;
5202 			continue;
5203 		}
5204 		if (mmu_page_sizes == max_mmu_page_sizes) {
5205 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5206 				hashno = TTE4M;
5207 				continue;
5208 			}
5209 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5210 				hashno = TTE32M;
5211 				continue;
5212 			}
5213 			hashno = TTE256M;
5214 		} else {
5215 			hashno = TTE4M;
5216 		}
5217 	}
5218 
5219 	sfmmu_hblks_list_purge(&list);
5220 	DEMAP_RANGE_FLUSH(dmrp);
5221 	if (dmrp != NULL) {
5222 		cpuset = sfmmup->sfmmu_cpusran;
5223 		xt_sync(cpuset);
5224 	}
5225 	if (callback && addr_count != 0) {
5226 		for (a = 0; a < addr_count; ++a) {
5227 			callback->hcb_start_addr = cb_start_addr[a];
5228 			callback->hcb_end_addr = cb_end_addr[a];
5229 			callback->hcb_function(callback);
5230 		}
5231 	}
5232 
5233 	/*
5234 	 * Check TSB and TLB page sizes if the process isn't exiting.
5235 	 */
5236 	if (!sfmmup->sfmmu_free)
5237 		sfmmu_check_page_sizes(sfmmup, 0);
5238 }
5239 
5240 /*
5241  * Unload all the mappings in the range [addr..addr+len). addr and len must
5242  * be MMU_PAGESIZE aligned.
5243  */
5244 void
5245 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5246 {
5247 	if (sfmmup->sfmmu_xhat_provider) {
5248 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5249 		return;
5250 	}
5251 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5252 }
5253 
5254 
5255 /*
5256  * Find the largest mapping size for this page.
5257  */
5258 int
5259 fnd_mapping_sz(page_t *pp)
5260 {
5261 	int sz;
5262 	int p_index;
5263 
5264 	p_index = PP_MAPINDEX(pp);
5265 
5266 	sz = 0;
5267 	p_index >>= 1;	/* don't care about 8K bit */
5268 	for (; p_index; p_index >>= 1) {
5269 		sz++;
5270 	}
5271 
5272 	return (sz);
5273 }
5274 
5275 /*
5276  * This function unloads a range of addresses for an hmeblk.
5277  * It returns the next address to be unloaded.
5278  * It should be called with the hash lock held.
5279  */
5280 static caddr_t
5281 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5282 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5283 {
5284 	tte_t	tte, ttemod;
5285 	struct	sf_hment *sfhmep;
5286 	int	ttesz;
5287 	long	ttecnt;
5288 	page_t *pp;
5289 	kmutex_t *pml;
5290 	int ret;
5291 	int use_demap_range;
5292 
5293 	ASSERT(in_hblk_range(hmeblkp, addr));
5294 	ASSERT(!hmeblkp->hblk_shw_bit);
5295 #ifdef DEBUG
5296 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5297 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5298 		panic("sfmmu_hblk_unload: partial unload of large page");
5299 	}
5300 #endif /* DEBUG */
5301 
5302 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5303 	ttesz = get_hblk_ttesz(hmeblkp);
5304 
5305 	use_demap_range = (do_virtual_coloring &&
5306 	    ((dmrp == NULL) || TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5307 	if (use_demap_range) {
5308 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5309 	} else {
5310 		DEMAP_RANGE_FLUSH(dmrp);
5311 	}
5312 	ttecnt = 0;
5313 	HBLKTOHME(sfhmep, hmeblkp, addr);
5314 
5315 	while (addr < endaddr) {
5316 		pml = NULL;
5317 again:
5318 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5319 		if (TTE_IS_VALID(&tte)) {
5320 			pp = sfhmep->hme_page;
5321 			if (pp && pml == NULL) {
5322 				pml = sfmmu_mlist_enter(pp);
5323 			}
5324 
5325 			/*
5326 			 * Verify if hme still points to 'pp' now that
5327 			 * we have p_mapping lock.
5328 			 */
5329 			if (sfhmep->hme_page != pp) {
5330 				if (pp != NULL && sfhmep->hme_page != NULL) {
5331 					if (pml) {
5332 						sfmmu_mlist_exit(pml);
5333 					}
5334 					/* Re-start this iteration. */
5335 					continue;
5336 				}
5337 				ASSERT((pp != NULL) &&
5338 				    (sfhmep->hme_page == NULL));
5339 				goto tte_unloaded;
5340 			}
5341 
5342 			/*
5343 			 * This point on we have both HASH and p_mapping
5344 			 * lock.
5345 			 */
5346 			ASSERT(pp == sfhmep->hme_page);
5347 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5348 
5349 			/*
5350 			 * We need to loop on modify tte because it is
5351 			 * possible for pagesync to come along and
5352 			 * change the software bits beneath us.
5353 			 *
5354 			 * Page_unload can also invalidate the tte after
5355 			 * we read tte outside of p_mapping lock.
5356 			 */
5357 			ttemod = tte;
5358 
5359 			TTE_SET_INVALID(&ttemod);
5360 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5361 			    &sfhmep->hme_tte);
5362 
5363 			if (ret <= 0) {
5364 				if (TTE_IS_VALID(&tte)) {
5365 					goto again;
5366 				} else {
5367 					/*
5368 					 * We read in a valid pte, but it
5369 					 * is unloaded by page_unload.
5370 					 * hme_page has become NULL and
5371 					 * we hold no p_mapping lock.
5372 					 */
5373 					ASSERT(pp == NULL && pml == NULL);
5374 					goto tte_unloaded;
5375 				}
5376 			}
5377 
5378 			if (!(flags & HAT_UNLOAD_NOSYNC)) {
5379 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5380 			}
5381 
5382 			/*
5383 			 * Ok- we invalidated the tte. Do the rest of the job.
5384 			 */
5385 			ttecnt++;
5386 
5387 			if (flags & HAT_UNLOAD_UNLOCK) {
5388 				ASSERT(hmeblkp->hblk_lckcnt > 0);
5389 				atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
5390 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
5391 			}
5392 
5393 			/*
5394 			 * Normally we would need to flush the page
5395 			 * from the virtual cache at this point in
5396 			 * order to prevent a potential cache alias
5397 			 * inconsistency.
5398 			 * The particular scenario we need to worry
5399 			 * about is:
5400 			 * Given:  va1 and va2 are two virtual address
5401 			 * that alias and map the same physical
5402 			 * address.
5403 			 * 1.	mapping exists from va1 to pa and data
5404 			 * has been read into the cache.
5405 			 * 2.	unload va1.
5406 			 * 3.	load va2 and modify data using va2.
5407 			 * 4	unload va2.
5408 			 * 5.	load va1 and reference data.  Unless we
5409 			 * flush the data cache when we unload we will
5410 			 * get stale data.
5411 			 * Fortunately, page coloring eliminates the
5412 			 * above scenario by remembering the color a
5413 			 * physical page was last or is currently
5414 			 * mapped to.  Now, we delay the flush until
5415 			 * the loading of translations.  Only when the
5416 			 * new translation is of a different color
5417 			 * are we forced to flush.
5418 			 */
5419 			if (use_demap_range) {
5420 				/*
5421 				 * Mark this page as needing a demap.
5422 				 */
5423 				DEMAP_RANGE_MARKPG(dmrp, addr);
5424 			} else {
5425 				if (do_virtual_coloring) {
5426 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
5427 					    sfmmup->sfmmu_free, 0);
5428 				} else {
5429 					pfn_t pfnum;
5430 
5431 					pfnum = TTE_TO_PFN(addr, &tte);
5432 					sfmmu_tlbcache_demap(addr, sfmmup,
5433 					    hmeblkp, pfnum, sfmmup->sfmmu_free,
5434 					    FLUSH_NECESSARY_CPUS,
5435 					    CACHE_FLUSH, 0);
5436 				}
5437 			}
5438 
5439 			if (pp) {
5440 				/*
5441 				 * Remove the hment from the mapping list
5442 				 */
5443 				ASSERT(hmeblkp->hblk_hmecnt > 0);
5444 
5445 				/*
5446 				 * Again, we cannot
5447 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
5448 				 */
5449 				HME_SUB(sfhmep, pp);
5450 				membar_stst();
5451 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
5452 			}
5453 
5454 			ASSERT(hmeblkp->hblk_vcnt > 0);
5455 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
5456 
5457 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
5458 			    !hmeblkp->hblk_lckcnt);
5459 
5460 #ifdef VAC
5461 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
5462 				if (PP_ISTNC(pp)) {
5463 					/*
5464 					 * If page was temporary
5465 					 * uncached, try to recache
5466 					 * it. Note that HME_SUB() was
5467 					 * called above so p_index and
5468 					 * mlist had been updated.
5469 					 */
5470 					conv_tnc(pp, ttesz);
5471 				} else if (pp->p_mapping == NULL) {
5472 					ASSERT(kpm_enable);
5473 					/*
5474 					 * Page is marked to be in VAC conflict
5475 					 * to an existing kpm mapping and/or is
5476 					 * kpm mapped using only the regular
5477 					 * pagesize.
5478 					 */
5479 					sfmmu_kpm_hme_unload(pp);
5480 				}
5481 			}
5482 #endif	/* VAC */
5483 		} else if ((pp = sfhmep->hme_page) != NULL) {
5484 				/*
5485 				 * TTE is invalid but the hme
5486 				 * still exists. let pageunload
5487 				 * complete its job.
5488 				 */
5489 				ASSERT(pml == NULL);
5490 				pml = sfmmu_mlist_enter(pp);
5491 				if (sfhmep->hme_page != NULL) {
5492 					sfmmu_mlist_exit(pml);
5493 					pml = NULL;
5494 					goto again;
5495 				}
5496 				ASSERT(sfhmep->hme_page == NULL);
5497 		} else if (hmeblkp->hblk_hmecnt != 0) {
5498 			/*
5499 			 * pageunload may have not finished decrementing
5500 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
5501 			 * wait for pageunload to finish. Rely on pageunload
5502 			 * to decrement hblk_hmecnt after hblk_vcnt.
5503 			 */
5504 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
5505 			ASSERT(pml == NULL);
5506 			if (pf_is_memory(pfn)) {
5507 				pp = page_numtopp_nolock(pfn);
5508 				if (pp != NULL) {
5509 					pml = sfmmu_mlist_enter(pp);
5510 					sfmmu_mlist_exit(pml);
5511 					pml = NULL;
5512 				}
5513 			}
5514 		}
5515 
5516 tte_unloaded:
5517 		/*
5518 		 * At this point, the tte we are looking at
5519 		 * should be unloaded, and hme has been unlinked
5520 		 * from page too. This is important because in
5521 		 * pageunload, it does ttesync() then HME_SUB.
5522 		 * We need to make sure HME_SUB has been completed
5523 		 * so we know ttesync() has been completed. Otherwise,
5524 		 * at exit time, after return from hat layer, VM will
5525 		 * release as structure which hat_setstat() (called
5526 		 * by ttesync()) needs.
5527 		 */
5528 #ifdef DEBUG
5529 		{
5530 			tte_t	dtte;
5531 
5532 			ASSERT(sfhmep->hme_page == NULL);
5533 
5534 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
5535 			ASSERT(!TTE_IS_VALID(&dtte));
5536 		}
5537 #endif
5538 
5539 		if (pml) {
5540 			sfmmu_mlist_exit(pml);
5541 		}
5542 
5543 		addr += TTEBYTES(ttesz);
5544 		sfhmep++;
5545 		DEMAP_RANGE_NEXTPG(dmrp);
5546 	}
5547 	if (ttecnt > 0)
5548 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
5549 	return (addr);
5550 }
5551 
5552 /*
5553  * Synchronize all the mappings in the range [addr..addr+len).
5554  * Can be called with clearflag having two states:
5555  * HAT_SYNC_DONTZERO means just return the rm stats
5556  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
5557  */
5558 void
5559 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
5560 {
5561 	struct hmehash_bucket *hmebp;
5562 	hmeblk_tag hblktag;
5563 	int hmeshift, hashno = 1;
5564 	struct hme_blk *hmeblkp, *list = NULL;
5565 	caddr_t endaddr;
5566 	cpuset_t cpuset;
5567 
5568 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
5569 	ASSERT((sfmmup == ksfmmup) ||
5570 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5571 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5572 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
5573 		(clearflag == HAT_SYNC_ZERORM));
5574 
5575 	CPUSET_ZERO(cpuset);
5576 
5577 	endaddr = addr + len;
5578 	hblktag.htag_id = sfmmup;
5579 	/*
5580 	 * Spitfire supports 4 page sizes.
5581 	 * Most pages are expected to be of the smallest page
5582 	 * size (8K) and these will not need to be rehashed. 64K
5583 	 * pages also don't need to be rehashed because the an hmeblk
5584 	 * spans 64K of address space. 512K pages might need 1 rehash and
5585 	 * and 4M pages 2 rehashes.
5586 	 */
5587 	while (addr < endaddr) {
5588 		hmeshift = HME_HASH_SHIFT(hashno);
5589 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5590 		hblktag.htag_rehash = hashno;
5591 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5592 
5593 		SFMMU_HASH_LOCK(hmebp);
5594 
5595 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5596 		if (hmeblkp != NULL) {
5597 			/*
5598 			 * We've encountered a shadow hmeblk so skip the range
5599 			 * of the next smaller mapping size.
5600 			 */
5601 			if (hmeblkp->hblk_shw_bit) {
5602 				ASSERT(sfmmup != ksfmmup);
5603 				ASSERT(hashno > 1);
5604 				addr = (caddr_t)P2END((uintptr_t)addr,
5605 					    TTEBYTES(hashno - 1));
5606 			} else {
5607 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
5608 				    addr, endaddr, clearflag);
5609 			}
5610 			SFMMU_HASH_UNLOCK(hmebp);
5611 			hashno = 1;
5612 			continue;
5613 		}
5614 		SFMMU_HASH_UNLOCK(hmebp);
5615 
5616 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5617 			/*
5618 			 * We have traversed the whole list and rehashed
5619 			 * if necessary without finding the address to sync.
5620 			 * This is ok so we increment the address by the
5621 			 * smallest hmeblk range for kernel mappings and the
5622 			 * largest hmeblk range, to account for shadow hmeblks,
5623 			 * for user mappings and continue.
5624 			 */
5625 			if (sfmmup == ksfmmup)
5626 				addr = (caddr_t)P2END((uintptr_t)addr,
5627 					    TTEBYTES(1));
5628 			else
5629 				addr = (caddr_t)P2END((uintptr_t)addr,
5630 					    TTEBYTES(hashno));
5631 			hashno = 1;
5632 		} else {
5633 			hashno++;
5634 		}
5635 	}
5636 	sfmmu_hblks_list_purge(&list);
5637 	cpuset = sfmmup->sfmmu_cpusran;
5638 	xt_sync(cpuset);
5639 }
5640 
5641 static caddr_t
5642 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5643 	caddr_t endaddr, int clearflag)
5644 {
5645 	tte_t	tte, ttemod;
5646 	struct sf_hment *sfhmep;
5647 	int ttesz;
5648 	struct page *pp;
5649 	kmutex_t *pml;
5650 	int ret;
5651 
5652 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5653 
5654 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5655 
5656 	ttesz = get_hblk_ttesz(hmeblkp);
5657 	HBLKTOHME(sfhmep, hmeblkp, addr);
5658 
5659 	while (addr < endaddr) {
5660 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5661 		if (TTE_IS_VALID(&tte)) {
5662 			pml = NULL;
5663 			pp = sfhmep->hme_page;
5664 			if (pp) {
5665 				pml = sfmmu_mlist_enter(pp);
5666 			}
5667 			if (pp != sfhmep->hme_page) {
5668 				/*
5669 				 * tte most have been unloaded
5670 				 * underneath us.  Recheck
5671 				 */
5672 				ASSERT(pml);
5673 				sfmmu_mlist_exit(pml);
5674 				continue;
5675 			}
5676 
5677 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5678 
5679 			if (clearflag == HAT_SYNC_ZERORM) {
5680 				ttemod = tte;
5681 				TTE_CLR_RM(&ttemod);
5682 				ret = sfmmu_modifytte_try(&tte, &ttemod,
5683 				    &sfhmep->hme_tte);
5684 				if (ret < 0) {
5685 					if (pml) {
5686 						sfmmu_mlist_exit(pml);
5687 					}
5688 					continue;
5689 				}
5690 
5691 				if (ret > 0) {
5692 					sfmmu_tlb_demap(addr, sfmmup,
5693 						hmeblkp, 0, 0);
5694 				}
5695 			}
5696 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
5697 			if (pml) {
5698 				sfmmu_mlist_exit(pml);
5699 			}
5700 		}
5701 		addr += TTEBYTES(ttesz);
5702 		sfhmep++;
5703 	}
5704 	return (addr);
5705 }
5706 
5707 /*
5708  * This function will sync a tte to the page struct and it will
5709  * update the hat stats. Currently it allows us to pass a NULL pp
5710  * and we will simply update the stats.  We may want to change this
5711  * so we only keep stats for pages backed by pp's.
5712  */
5713 static void
5714 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
5715 {
5716 	uint_t rm = 0;
5717 	int   	sz;
5718 	pgcnt_t	npgs;
5719 
5720 	ASSERT(TTE_IS_VALID(ttep));
5721 
5722 	if (TTE_IS_NOSYNC(ttep)) {
5723 		return;
5724 	}
5725 
5726 	if (TTE_IS_REF(ttep))  {
5727 		rm = P_REF;
5728 	}
5729 	if (TTE_IS_MOD(ttep))  {
5730 		rm |= P_MOD;
5731 	}
5732 
5733 	if (rm == 0) {
5734 		return;
5735 	}
5736 
5737 	sz = TTE_CSZ(ttep);
5738 	if (sfmmup->sfmmu_rmstat) {
5739 		int i;
5740 		caddr_t	vaddr = addr;
5741 
5742 		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
5743 			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
5744 		}
5745 
5746 	}
5747 
5748 	/*
5749 	 * XXX I want to use cas to update nrm bits but they
5750 	 * currently belong in common/vm and not in hat where
5751 	 * they should be.
5752 	 * The nrm bits are protected by the same mutex as
5753 	 * the one that protects the page's mapping list.
5754 	 */
5755 	if (!pp)
5756 		return;
5757 	ASSERT(sfmmu_mlist_held(pp));
5758 	/*
5759 	 * If the tte is for a large page, we need to sync all the
5760 	 * pages covered by the tte.
5761 	 */
5762 	if (sz != TTE8K) {
5763 		ASSERT(pp->p_szc != 0);
5764 		pp = PP_GROUPLEADER(pp, sz);
5765 		ASSERT(sfmmu_mlist_held(pp));
5766 	}
5767 
5768 	/* Get number of pages from tte size. */
5769 	npgs = TTEPAGES(sz);
5770 
5771 	do {
5772 		ASSERT(pp);
5773 		ASSERT(sfmmu_mlist_held(pp));
5774 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
5775 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
5776 			hat_page_setattr(pp, rm);
5777 
5778 		/*
5779 		 * Are we done? If not, we must have a large mapping.
5780 		 * For large mappings we need to sync the rest of the pages
5781 		 * covered by this tte; goto the next page.
5782 		 */
5783 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
5784 }
5785 
5786 /*
5787  * Execute pre-callback handler of each pa_hment linked to pp
5788  *
5789  * Inputs:
5790  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
5791  *   capture_cpus: pointer to return value (below)
5792  *
5793  * Returns:
5794  *   Propagates the subsystem callback return values back to the caller;
5795  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
5796  *   is zero if all of the pa_hments are of a type that do not require
5797  *   capturing CPUs prior to suspending the mapping, else it is 1.
5798  */
5799 static int
5800 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
5801 {
5802 	struct sf_hment	*sfhmep;
5803 	struct pa_hment *pahmep;
5804 	int (*f)(caddr_t, uint_t, uint_t, void *);
5805 	int		ret;
5806 	id_t		id;
5807 	int		locked = 0;
5808 	kmutex_t	*pml;
5809 
5810 	ASSERT(PAGE_EXCL(pp));
5811 	if (!sfmmu_mlist_held(pp)) {
5812 		pml = sfmmu_mlist_enter(pp);
5813 		locked = 1;
5814 	}
5815 
5816 	if (capture_cpus)
5817 		*capture_cpus = 0;
5818 
5819 top:
5820 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5821 		/*
5822 		 * skip sf_hments corresponding to VA<->PA mappings;
5823 		 * for pa_hment's, hme_tte.ll is zero
5824 		 */
5825 		if (!IS_PAHME(sfhmep))
5826 			continue;
5827 
5828 		pahmep = sfhmep->hme_data;
5829 		ASSERT(pahmep != NULL);
5830 
5831 		/*
5832 		 * skip if pre-handler has been called earlier in this loop
5833 		 */
5834 		if (pahmep->flags & flag)
5835 			continue;
5836 
5837 		id = pahmep->cb_id;
5838 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5839 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
5840 			*capture_cpus = 1;
5841 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
5842 			pahmep->flags |= flag;
5843 			continue;
5844 		}
5845 
5846 		/*
5847 		 * Drop the mapping list lock to avoid locking order issues.
5848 		 */
5849 		if (locked)
5850 			sfmmu_mlist_exit(pml);
5851 
5852 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
5853 		if (ret != 0)
5854 			return (ret);	/* caller must do the cleanup */
5855 
5856 		if (locked) {
5857 			pml = sfmmu_mlist_enter(pp);
5858 			pahmep->flags |= flag;
5859 			goto top;
5860 		}
5861 
5862 		pahmep->flags |= flag;
5863 	}
5864 
5865 	if (locked)
5866 		sfmmu_mlist_exit(pml);
5867 
5868 	return (0);
5869 }
5870 
5871 /*
5872  * Execute post-callback handler of each pa_hment linked to pp
5873  *
5874  * Same overall assumptions and restrictions apply as for
5875  * hat_pageprocess_precallbacks().
5876  */
5877 static void
5878 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
5879 {
5880 	pfn_t pgpfn = pp->p_pagenum;
5881 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
5882 	pfn_t newpfn;
5883 	struct sf_hment *sfhmep;
5884 	struct pa_hment *pahmep;
5885 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
5886 	id_t	id;
5887 	int	locked = 0;
5888 	kmutex_t *pml;
5889 
5890 	ASSERT(PAGE_EXCL(pp));
5891 	if (!sfmmu_mlist_held(pp)) {
5892 		pml = sfmmu_mlist_enter(pp);
5893 		locked = 1;
5894 	}
5895 
5896 top:
5897 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5898 		/*
5899 		 * skip sf_hments corresponding to VA<->PA mappings;
5900 		 * for pa_hment's, hme_tte.ll is zero
5901 		 */
5902 		if (!IS_PAHME(sfhmep))
5903 			continue;
5904 
5905 		pahmep = sfhmep->hme_data;
5906 		ASSERT(pahmep != NULL);
5907 
5908 		if ((pahmep->flags & flag) == 0)
5909 			continue;
5910 
5911 		pahmep->flags &= ~flag;
5912 
5913 		id = pahmep->cb_id;
5914 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5915 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
5916 			continue;
5917 
5918 		/*
5919 		 * Convert the base page PFN into the constituent PFN
5920 		 * which is needed by the callback handler.
5921 		 */
5922 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
5923 
5924 		/*
5925 		 * Drop the mapping list lock to avoid locking order issues.
5926 		 */
5927 		if (locked)
5928 			sfmmu_mlist_exit(pml);
5929 
5930 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
5931 		    != 0)
5932 			panic("sfmmu: posthandler failed");
5933 
5934 		if (locked) {
5935 			pml = sfmmu_mlist_enter(pp);
5936 			goto top;
5937 		}
5938 	}
5939 
5940 	if (locked)
5941 		sfmmu_mlist_exit(pml);
5942 }
5943 
5944 /*
5945  * Suspend locked kernel mapping
5946  */
5947 void
5948 hat_pagesuspend(struct page *pp)
5949 {
5950 	struct sf_hment *sfhmep;
5951 	sfmmu_t *sfmmup;
5952 	tte_t tte, ttemod;
5953 	struct hme_blk *hmeblkp;
5954 	caddr_t addr;
5955 	int index, cons;
5956 	cpuset_t cpuset;
5957 
5958 	ASSERT(PAGE_EXCL(pp));
5959 	ASSERT(sfmmu_mlist_held(pp));
5960 
5961 	mutex_enter(&kpr_suspendlock);
5962 
5963 	/*
5964 	 * Call into dtrace to tell it we're about to suspend a
5965 	 * kernel mapping. This prevents us from running into issues
5966 	 * with probe context trying to touch a suspended page
5967 	 * in the relocation codepath itself.
5968 	 */
5969 	if (dtrace_kreloc_init)
5970 		(*dtrace_kreloc_init)();
5971 
5972 	index = PP_MAPINDEX(pp);
5973 	cons = TTE8K;
5974 
5975 retry:
5976 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5977 
5978 		if (IS_PAHME(sfhmep))
5979 			continue;
5980 
5981 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
5982 			continue;
5983 
5984 		/*
5985 		 * Loop until we successfully set the suspend bit in
5986 		 * the TTE.
5987 		 */
5988 again:
5989 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5990 		ASSERT(TTE_IS_VALID(&tte));
5991 
5992 		ttemod = tte;
5993 		TTE_SET_SUSPEND(&ttemod);
5994 		if (sfmmu_modifytte_try(&tte, &ttemod,
5995 		    &sfhmep->hme_tte) < 0)
5996 			goto again;
5997 
5998 		/*
5999 		 * Invalidate TSB entry
6000 		 */
6001 		hmeblkp = sfmmu_hmetohblk(sfhmep);
6002 
6003 		sfmmup = hblktosfmmu(hmeblkp);
6004 		ASSERT(sfmmup == ksfmmup);
6005 
6006 		addr = tte_to_vaddr(hmeblkp, tte);
6007 
6008 		/*
6009 		 * No need to make sure that the TSB for this sfmmu is
6010 		 * not being relocated since it is ksfmmup and thus it
6011 		 * will never be relocated.
6012 		 */
6013 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
6014 
6015 		/*
6016 		 * Update xcall stats
6017 		 */
6018 		cpuset = cpu_ready_set;
6019 		CPUSET_DEL(cpuset, CPU->cpu_id);
6020 
6021 		/* LINTED: constant in conditional context */
6022 		SFMMU_XCALL_STATS(ksfmmup);
6023 
6024 		/*
6025 		 * Flush TLB entry on remote CPU's
6026 		 */
6027 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6028 		    (uint64_t)ksfmmup);
6029 		xt_sync(cpuset);
6030 
6031 		/*
6032 		 * Flush TLB entry on local CPU
6033 		 */
6034 		vtag_flushpage(addr, (uint64_t)ksfmmup);
6035 	}
6036 
6037 	while (index != 0) {
6038 		index = index >> 1;
6039 		if (index != 0)
6040 			cons++;
6041 		if (index & 0x1) {
6042 			pp = PP_GROUPLEADER(pp, cons);
6043 			goto retry;
6044 		}
6045 	}
6046 }
6047 
6048 #ifdef	DEBUG
6049 
6050 #define	N_PRLE	1024
6051 struct prle {
6052 	page_t *targ;
6053 	page_t *repl;
6054 	int status;
6055 	int pausecpus;
6056 	hrtime_t whence;
6057 };
6058 
6059 static struct prle page_relocate_log[N_PRLE];
6060 static int prl_entry;
6061 static kmutex_t prl_mutex;
6062 
6063 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6064 	mutex_enter(&prl_mutex);					\
6065 	page_relocate_log[prl_entry].targ = *(t);			\
6066 	page_relocate_log[prl_entry].repl = *(r);			\
6067 	page_relocate_log[prl_entry].status = (s);			\
6068 	page_relocate_log[prl_entry].pausecpus = (p);			\
6069 	page_relocate_log[prl_entry].whence = gethrtime();		\
6070 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6071 	mutex_exit(&prl_mutex);
6072 
6073 #else	/* !DEBUG */
6074 #define	PAGE_RELOCATE_LOG(t, r, s, p)
6075 #endif
6076 
6077 /*
6078  * Core Kernel Page Relocation Algorithm
6079  *
6080  * Input:
6081  *
6082  * target : 	constituent pages are SE_EXCL locked.
6083  * replacement:	constituent pages are SE_EXCL locked.
6084  *
6085  * Output:
6086  *
6087  * nrelocp:	number of pages relocated
6088  */
6089 int
6090 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6091 {
6092 	page_t		*targ, *repl;
6093 	page_t		*tpp, *rpp;
6094 	kmutex_t	*low, *high;
6095 	spgcnt_t	npages, i;
6096 	page_t		*pl = NULL;
6097 	int		old_pil;
6098 	cpuset_t	cpuset;
6099 	int		cap_cpus;
6100 	int		ret;
6101 
6102 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
6103 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6104 		return (EAGAIN);
6105 	}
6106 
6107 	mutex_enter(&kpr_mutex);
6108 	kreloc_thread = curthread;
6109 
6110 	targ = *target;
6111 	repl = *replacement;
6112 	ASSERT(repl != NULL);
6113 	ASSERT(targ->p_szc == repl->p_szc);
6114 
6115 	npages = page_get_pagecnt(targ->p_szc);
6116 
6117 	/*
6118 	 * unload VA<->PA mappings that are not locked
6119 	 */
6120 	tpp = targ;
6121 	for (i = 0; i < npages; i++) {
6122 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6123 		tpp++;
6124 	}
6125 
6126 	/*
6127 	 * Do "presuspend" callbacks, in a context from which we can still
6128 	 * block as needed. Note that we don't hold the mapping list lock
6129 	 * of "targ" at this point due to potential locking order issues;
6130 	 * we assume that between the hat_pageunload() above and holding
6131 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6132 	 * point.
6133 	 */
6134 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6135 	if (ret != 0) {
6136 		/*
6137 		 * EIO translates to fatal error, for all others cleanup
6138 		 * and return EAGAIN.
6139 		 */
6140 		ASSERT(ret != EIO);
6141 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6142 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6143 		kreloc_thread = NULL;
6144 		mutex_exit(&kpr_mutex);
6145 		return (EAGAIN);
6146 	}
6147 
6148 	/*
6149 	 * acquire p_mapping list lock for both the target and replacement
6150 	 * root pages.
6151 	 *
6152 	 * low and high refer to the need to grab the mlist locks in a
6153 	 * specific order in order to prevent race conditions.  Thus the
6154 	 * lower lock must be grabbed before the higher lock.
6155 	 *
6156 	 * This will block hat_unload's accessing p_mapping list.  Since
6157 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6158 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6159 	 * while we suspend and reload the locked mapping below.
6160 	 */
6161 	tpp = targ;
6162 	rpp = repl;
6163 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6164 
6165 	kpreempt_disable();
6166 
6167 #ifdef VAC
6168 	/*
6169 	 * If the replacement page is of a different virtual color
6170 	 * than the page it is replacing, we need to handle the VAC
6171 	 * consistency for it just as we would if we were setting up
6172 	 * a new mapping to a page.
6173 	 */
6174 	if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) {
6175 		if (tpp->p_vcolor != rpp->p_vcolor) {
6176 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6177 			    rpp->p_pagenum);
6178 		}
6179 	}
6180 #endif
6181 
6182 	/*
6183 	 * We raise our PIL to 13 so that we don't get captured by
6184 	 * another CPU or pinned by an interrupt thread.  We can't go to
6185 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6186 	 * that level in the case of IOMMU pseudo mappings.
6187 	 */
6188 	cpuset = cpu_ready_set;
6189 	CPUSET_DEL(cpuset, CPU->cpu_id);
6190 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6191 		old_pil = splr(XCALL_PIL);
6192 	} else {
6193 		old_pil = -1;
6194 		xc_attention(cpuset);
6195 	}
6196 	ASSERT(getpil() == XCALL_PIL);
6197 
6198 	/*
6199 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6200 	 * this will suspend all DMA activity to the page while it is
6201 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6202 	 * may be captured at this point we should have acquired any needed
6203 	 * locks in the presuspend callback.
6204 	 */
6205 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6206 	if (ret != 0) {
6207 		repl = targ;
6208 		goto suspend_fail;
6209 	}
6210 
6211 	/*
6212 	 * Raise the PIL yet again, this time to block all high-level
6213 	 * interrupts on this CPU. This is necessary to prevent an
6214 	 * interrupt routine from pinning the thread which holds the
6215 	 * mapping suspended and then touching the suspended page.
6216 	 *
6217 	 * Once the page is suspended we also need to be careful to
6218 	 * avoid calling any functions which touch any seg_kmem memory
6219 	 * since that memory may be backed by the very page we are
6220 	 * relocating in here!
6221 	 */
6222 	hat_pagesuspend(targ);
6223 
6224 	/*
6225 	 * Now that we are confident everybody has stopped using this page,
6226 	 * copy the page contents.  Note we use a physical copy to prevent
6227 	 * locking issues and to avoid fpRAS because we can't handle it in
6228 	 * this context.
6229 	 */
6230 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6231 		/*
6232 		 * Copy the contents of the page.
6233 		 */
6234 		ppcopy_kernel(tpp, rpp);
6235 	}
6236 
6237 	tpp = targ;
6238 	rpp = repl;
6239 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6240 		/*
6241 		 * Copy attributes.  VAC consistency was handled above,
6242 		 * if required.
6243 		 */
6244 		rpp->p_nrm = tpp->p_nrm;
6245 		tpp->p_nrm = 0;
6246 		rpp->p_index = tpp->p_index;
6247 		tpp->p_index = 0;
6248 #ifdef VAC
6249 		rpp->p_vcolor = tpp->p_vcolor;
6250 #endif
6251 	}
6252 
6253 	/*
6254 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6255 	 * the mapping list from the target page to the replacement page.
6256 	 * Next process postcallbacks; since pa_hment's are linked only to the
6257 	 * p_mapping list of root page, we don't iterate over the constituent
6258 	 * pages.
6259 	 */
6260 	hat_pagereload(targ, repl);
6261 
6262 suspend_fail:
6263 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6264 
6265 	/*
6266 	 * Now lower our PIL and release any captured CPUs since we
6267 	 * are out of the "danger zone".  After this it will again be
6268 	 * safe to acquire adaptive mutex locks, or to drop them...
6269 	 */
6270 	if (old_pil != -1) {
6271 		splx(old_pil);
6272 	} else {
6273 		xc_dismissed(cpuset);
6274 	}
6275 
6276 	kpreempt_enable();
6277 
6278 	sfmmu_mlist_reloc_exit(low, high);
6279 
6280 	/*
6281 	 * Postsuspend callbacks should drop any locks held across
6282 	 * the suspend callbacks.  As before, we don't hold the mapping
6283 	 * list lock at this point.. our assumption is that the mapping
6284 	 * list still can't change due to our holding SE_EXCL lock and
6285 	 * there being no unlocked mappings left. Hence the restriction
6286 	 * on calling context to hat_delete_callback()
6287 	 */
6288 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6289 	if (ret != 0) {
6290 		/*
6291 		 * The second presuspend call failed: we got here through
6292 		 * the suspend_fail label above.
6293 		 */
6294 		ASSERT(ret != EIO);
6295 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6296 		kreloc_thread = NULL;
6297 		mutex_exit(&kpr_mutex);
6298 		return (EAGAIN);
6299 	}
6300 
6301 	/*
6302 	 * Now that we're out of the performance critical section we can
6303 	 * take care of updating the hash table, since we still
6304 	 * hold all the pages locked SE_EXCL at this point we
6305 	 * needn't worry about things changing out from under us.
6306 	 */
6307 	tpp = targ;
6308 	rpp = repl;
6309 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6310 
6311 		/*
6312 		 * replace targ with replacement in page_hash table
6313 		 */
6314 		targ = tpp;
6315 		page_relocate_hash(rpp, targ);
6316 
6317 		/*
6318 		 * concatenate target; caller of platform_page_relocate()
6319 		 * expects target to be concatenated after returning.
6320 		 */
6321 		ASSERT(targ->p_next == targ);
6322 		ASSERT(targ->p_prev == targ);
6323 		page_list_concat(&pl, &targ);
6324 	}
6325 
6326 	ASSERT(*target == pl);
6327 	*nrelocp = npages;
6328 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6329 	kreloc_thread = NULL;
6330 	mutex_exit(&kpr_mutex);
6331 	return (0);
6332 }
6333 
6334 /*
6335  * Called when stray pa_hments are found attached to a page which is
6336  * being freed.  Notify the subsystem which attached the pa_hment of
6337  * the error if it registered a suitable handler, else panic.
6338  */
6339 static void
6340 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6341 {
6342 	id_t cb_id = pahmep->cb_id;
6343 
6344 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6345 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6346 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
6347 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
6348 			return;		/* non-fatal */
6349 	}
6350 	panic("pa_hment leaked: 0x%p", pahmep);
6351 }
6352 
6353 /*
6354  * Remove all mappings to page 'pp'.
6355  */
6356 int
6357 hat_pageunload(struct page *pp, uint_t forceflag)
6358 {
6359 	struct page *origpp = pp;
6360 	struct sf_hment *sfhme, *tmphme;
6361 	struct hme_blk *hmeblkp;
6362 	kmutex_t *pml;
6363 #ifdef VAC
6364 	kmutex_t *pmtx;
6365 #endif
6366 	cpuset_t cpuset, tset;
6367 	int index, cons;
6368 	int xhme_blks;
6369 	int pa_hments;
6370 
6371 	ASSERT(PAGE_EXCL(pp));
6372 
6373 retry_xhat:
6374 	tmphme = NULL;
6375 	xhme_blks = 0;
6376 	pa_hments = 0;
6377 	CPUSET_ZERO(cpuset);
6378 
6379 	pml = sfmmu_mlist_enter(pp);
6380 
6381 #ifdef VAC
6382 	if (pp->p_kpmref)
6383 		sfmmu_kpm_pageunload(pp);
6384 	ASSERT(!PP_ISMAPPED_KPM(pp));
6385 #endif
6386 
6387 	index = PP_MAPINDEX(pp);
6388 	cons = TTE8K;
6389 retry:
6390 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6391 		tmphme = sfhme->hme_next;
6392 
6393 		if (IS_PAHME(sfhme)) {
6394 			ASSERT(sfhme->hme_data != NULL);
6395 			pa_hments++;
6396 			continue;
6397 		}
6398 
6399 		hmeblkp = sfmmu_hmetohblk(sfhme);
6400 		if (hmeblkp->hblk_xhat_bit) {
6401 			struct xhat_hme_blk *xblk =
6402 			    (struct xhat_hme_blk *)hmeblkp;
6403 
6404 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
6405 			    pp, forceflag, XBLK2PROVBLK(xblk));
6406 
6407 			xhme_blks = 1;
6408 			continue;
6409 		}
6410 
6411 		/*
6412 		 * If there are kernel mappings don't unload them, they will
6413 		 * be suspended.
6414 		 */
6415 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
6416 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
6417 			continue;
6418 
6419 		tset = sfmmu_pageunload(pp, sfhme, cons);
6420 		CPUSET_OR(cpuset, tset);
6421 	}
6422 
6423 	while (index != 0) {
6424 		index = index >> 1;
6425 		if (index != 0)
6426 			cons++;
6427 		if (index & 0x1) {
6428 			/* Go to leading page */
6429 			pp = PP_GROUPLEADER(pp, cons);
6430 			ASSERT(sfmmu_mlist_held(pp));
6431 			goto retry;
6432 		}
6433 	}
6434 
6435 	/*
6436 	 * cpuset may be empty if the page was only mapped by segkpm,
6437 	 * in which case we won't actually cross-trap.
6438 	 */
6439 	xt_sync(cpuset);
6440 
6441 	/*
6442 	 * The page should have no mappings at this point, unless
6443 	 * we were called from hat_page_relocate() in which case we
6444 	 * leave the locked mappings which will be suspended later.
6445 	 */
6446 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
6447 	    (forceflag == SFMMU_KERNEL_RELOC));
6448 
6449 #ifdef VAC
6450 	if (PP_ISTNC(pp)) {
6451 		if (cons == TTE8K) {
6452 			pmtx = sfmmu_page_enter(pp);
6453 			PP_CLRTNC(pp);
6454 			sfmmu_page_exit(pmtx);
6455 		} else {
6456 			conv_tnc(pp, cons);
6457 		}
6458 	}
6459 #endif	/* VAC */
6460 
6461 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
6462 		/*
6463 		 * Unlink any pa_hments and free them, calling back
6464 		 * the responsible subsystem to notify it of the error.
6465 		 * This can occur in situations such as drivers leaking
6466 		 * DMA handles: naughty, but common enough that we'd like
6467 		 * to keep the system running rather than bringing it
6468 		 * down with an obscure error like "pa_hment leaked"
6469 		 * which doesn't aid the user in debugging their driver.
6470 		 */
6471 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6472 			tmphme = sfhme->hme_next;
6473 			if (IS_PAHME(sfhme)) {
6474 				struct pa_hment *pahmep = sfhme->hme_data;
6475 				sfmmu_pahment_leaked(pahmep);
6476 				HME_SUB(sfhme, pp);
6477 				kmem_cache_free(pa_hment_cache, pahmep);
6478 			}
6479 		}
6480 
6481 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
6482 	}
6483 
6484 	sfmmu_mlist_exit(pml);
6485 
6486 	/*
6487 	 * XHAT may not have finished unloading pages
6488 	 * because some other thread was waiting for
6489 	 * mlist lock and XHAT_PAGEUNLOAD let it do
6490 	 * the job.
6491 	 */
6492 	if (xhme_blks) {
6493 		pp = origpp;
6494 		goto retry_xhat;
6495 	}
6496 
6497 	return (0);
6498 }
6499 
6500 cpuset_t
6501 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
6502 {
6503 	struct hme_blk *hmeblkp;
6504 	sfmmu_t *sfmmup;
6505 	tte_t tte, ttemod;
6506 #ifdef DEBUG
6507 	tte_t orig_old;
6508 #endif /* DEBUG */
6509 	caddr_t addr;
6510 	int ttesz;
6511 	int ret;
6512 	cpuset_t cpuset;
6513 
6514 	ASSERT(pp != NULL);
6515 	ASSERT(sfmmu_mlist_held(pp));
6516 	ASSERT(pp->p_vnode != &kvp);
6517 
6518 	CPUSET_ZERO(cpuset);
6519 
6520 	hmeblkp = sfmmu_hmetohblk(sfhme);
6521 
6522 readtte:
6523 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6524 	if (TTE_IS_VALID(&tte)) {
6525 		sfmmup = hblktosfmmu(hmeblkp);
6526 		ttesz = get_hblk_ttesz(hmeblkp);
6527 		/*
6528 		 * Only unload mappings of 'cons' size.
6529 		 */
6530 		if (ttesz != cons)
6531 			return (cpuset);
6532 
6533 		/*
6534 		 * Note that we have p_mapping lock, but no hash lock here.
6535 		 * hblk_unload() has to have both hash lock AND p_mapping
6536 		 * lock before it tries to modify tte. So, the tte could
6537 		 * not become invalid in the sfmmu_modifytte_try() below.
6538 		 */
6539 		ttemod = tte;
6540 #ifdef DEBUG
6541 		orig_old = tte;
6542 #endif /* DEBUG */
6543 
6544 		TTE_SET_INVALID(&ttemod);
6545 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6546 		if (ret < 0) {
6547 #ifdef DEBUG
6548 			/* only R/M bits can change. */
6549 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
6550 #endif /* DEBUG */
6551 			goto readtte;
6552 		}
6553 
6554 		if (ret == 0) {
6555 			panic("pageunload: cas failed?");
6556 		}
6557 
6558 		addr = tte_to_vaddr(hmeblkp, tte);
6559 
6560 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6561 
6562 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
6563 
6564 		/*
6565 		 * We need to flush the page from the virtual cache
6566 		 * in order to prevent a virtual cache alias
6567 		 * inconsistency. The particular scenario we need
6568 		 * to worry about is:
6569 		 * Given:  va1 and va2 are two virtual address that
6570 		 * alias and will map the same physical address.
6571 		 * 1.	mapping exists from va1 to pa and data has
6572 		 *	been read into the cache.
6573 		 * 2.	unload va1.
6574 		 * 3.	load va2 and modify data using va2.
6575 		 * 4	unload va2.
6576 		 * 5.	load va1 and reference data.  Unless we flush
6577 		 *	the data cache when we unload we will get
6578 		 *	stale data.
6579 		 * This scenario is taken care of by using virtual
6580 		 * page coloring.
6581 		 */
6582 		if (sfmmup->sfmmu_ismhat) {
6583 			/*
6584 			 * Flush TSBs, TLBs and caches
6585 			 * of every process
6586 			 * sharing this ism segment.
6587 			 */
6588 			sfmmu_hat_lock_all();
6589 			mutex_enter(&ism_mlist_lock);
6590 			kpreempt_disable();
6591 			if (do_virtual_coloring)
6592 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6593 					pp->p_pagenum, CACHE_NO_FLUSH);
6594 			else
6595 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6596 					pp->p_pagenum, CACHE_FLUSH);
6597 			kpreempt_enable();
6598 			mutex_exit(&ism_mlist_lock);
6599 			sfmmu_hat_unlock_all();
6600 			cpuset = cpu_ready_set;
6601 		} else if (do_virtual_coloring) {
6602 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6603 			cpuset = sfmmup->sfmmu_cpusran;
6604 		} else {
6605 			sfmmu_tlbcache_demap(addr, sfmmup, hmeblkp,
6606 				pp->p_pagenum, 0, FLUSH_NECESSARY_CPUS,
6607 				CACHE_FLUSH, 0);
6608 			cpuset = sfmmup->sfmmu_cpusran;
6609 		}
6610 
6611 		/*
6612 		 * Hme_sub has to run after ttesync() and a_rss update.
6613 		 * See hblk_unload().
6614 		 */
6615 		HME_SUB(sfhme, pp);
6616 		membar_stst();
6617 
6618 		/*
6619 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
6620 		 * since pteload may have done a HME_ADD() right after
6621 		 * we did the HME_SUB() above. Hmecnt is now maintained
6622 		 * by cas only. no lock guranteed its value. The only
6623 		 * gurantee we have is the hmecnt should not be less than
6624 		 * what it should be so the hblk will not be taken away.
6625 		 * It's also important that we decremented the hmecnt after
6626 		 * we are done with hmeblkp so that this hmeblk won't be
6627 		 * stolen.
6628 		 */
6629 		ASSERT(hmeblkp->hblk_hmecnt > 0);
6630 		ASSERT(hmeblkp->hblk_vcnt > 0);
6631 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6632 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6633 		/*
6634 		 * This is bug 4063182.
6635 		 * XXX: fixme
6636 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6637 		 *	!hmeblkp->hblk_lckcnt);
6638 		 */
6639 	} else {
6640 		panic("invalid tte? pp %p &tte %p",
6641 		    (void *)pp, (void *)&tte);
6642 	}
6643 
6644 	return (cpuset);
6645 }
6646 
6647 /*
6648  * While relocating a kernel page, this function will move the mappings
6649  * from tpp to dpp and modify any associated data with these mappings.
6650  * It also unsuspends the suspended kernel mapping.
6651  */
6652 static void
6653 hat_pagereload(struct page *tpp, struct page *dpp)
6654 {
6655 	struct sf_hment *sfhme;
6656 	tte_t tte, ttemod;
6657 	int index, cons;
6658 
6659 	ASSERT(getpil() == PIL_MAX);
6660 	ASSERT(sfmmu_mlist_held(tpp));
6661 	ASSERT(sfmmu_mlist_held(dpp));
6662 
6663 	index = PP_MAPINDEX(tpp);
6664 	cons = TTE8K;
6665 
6666 	/* Update real mappings to the page */
6667 retry:
6668 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
6669 		if (IS_PAHME(sfhme))
6670 			continue;
6671 		sfmmu_copytte(&sfhme->hme_tte, &tte);
6672 		ttemod = tte;
6673 
6674 		/*
6675 		 * replace old pfn with new pfn in TTE
6676 		 */
6677 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
6678 
6679 		/*
6680 		 * clear suspend bit
6681 		 */
6682 		ASSERT(TTE_IS_SUSPEND(&ttemod));
6683 		TTE_CLR_SUSPEND(&ttemod);
6684 
6685 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
6686 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
6687 
6688 		/*
6689 		 * set hme_page point to new page
6690 		 */
6691 		sfhme->hme_page = dpp;
6692 	}
6693 
6694 	/*
6695 	 * move p_mapping list from old page to new page
6696 	 */
6697 	dpp->p_mapping = tpp->p_mapping;
6698 	tpp->p_mapping = NULL;
6699 	dpp->p_share = tpp->p_share;
6700 	tpp->p_share = 0;
6701 
6702 	while (index != 0) {
6703 		index = index >> 1;
6704 		if (index != 0)
6705 			cons++;
6706 		if (index & 0x1) {
6707 			tpp = PP_GROUPLEADER(tpp, cons);
6708 			dpp = PP_GROUPLEADER(dpp, cons);
6709 			goto retry;
6710 		}
6711 	}
6712 
6713 	if (dtrace_kreloc_fini)
6714 		(*dtrace_kreloc_fini)();
6715 	mutex_exit(&kpr_suspendlock);
6716 }
6717 
6718 uint_t
6719 hat_pagesync(struct page *pp, uint_t clearflag)
6720 {
6721 	struct sf_hment *sfhme, *tmphme = NULL;
6722 	struct hme_blk *hmeblkp;
6723 	kmutex_t *pml;
6724 	cpuset_t cpuset, tset;
6725 	int	index, cons;
6726 	extern	ulong_t po_share;
6727 	page_t	*save_pp = pp;
6728 
6729 	CPUSET_ZERO(cpuset);
6730 
6731 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
6732 		return (PP_GENERIC_ATTR(pp));
6733 	}
6734 
6735 	if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) &&
6736 	    PP_ISREF(pp)) {
6737 		return (PP_GENERIC_ATTR(pp));
6738 	}
6739 
6740 	if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) &&
6741 	    PP_ISMOD(pp)) {
6742 		return (PP_GENERIC_ATTR(pp));
6743 	}
6744 
6745 	if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 &&
6746 	    (pp->p_share > po_share) &&
6747 	    !(clearflag & HAT_SYNC_ZERORM)) {
6748 		if (PP_ISRO(pp))
6749 			hat_page_setattr(pp, P_REF);
6750 		return (PP_GENERIC_ATTR(pp));
6751 	}
6752 
6753 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
6754 	pml = sfmmu_mlist_enter(pp);
6755 	index = PP_MAPINDEX(pp);
6756 	cons = TTE8K;
6757 retry:
6758 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6759 		/*
6760 		 * We need to save the next hment on the list since
6761 		 * it is possible for pagesync to remove an invalid hment
6762 		 * from the list.
6763 		 */
6764 		tmphme = sfhme->hme_next;
6765 		/*
6766 		 * If we are looking for large mappings and this hme doesn't
6767 		 * reach the range we are seeking, just ignore its.
6768 		 */
6769 		hmeblkp = sfmmu_hmetohblk(sfhme);
6770 		if (hmeblkp->hblk_xhat_bit)
6771 			continue;
6772 
6773 		if (hme_size(sfhme) < cons)
6774 			continue;
6775 		tset = sfmmu_pagesync(pp, sfhme,
6776 			clearflag & ~HAT_SYNC_STOPON_RM);
6777 		CPUSET_OR(cpuset, tset);
6778 		/*
6779 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
6780 		 * as the "ref" or "mod" is set.
6781 		 */
6782 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
6783 		    ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
6784 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) {
6785 			index = 0;
6786 			break;
6787 		}
6788 	}
6789 
6790 	while (index) {
6791 		index = index >> 1;
6792 		cons++;
6793 		if (index & 0x1) {
6794 			/* Go to leading page */
6795 			pp = PP_GROUPLEADER(pp, cons);
6796 			goto retry;
6797 		}
6798 	}
6799 
6800 	xt_sync(cpuset);
6801 	sfmmu_mlist_exit(pml);
6802 	return (PP_GENERIC_ATTR(save_pp));
6803 }
6804 
6805 /*
6806  * Get all the hardware dependent attributes for a page struct
6807  */
6808 static cpuset_t
6809 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
6810 	uint_t clearflag)
6811 {
6812 	caddr_t addr;
6813 	tte_t tte, ttemod;
6814 	struct hme_blk *hmeblkp;
6815 	int ret;
6816 	sfmmu_t *sfmmup;
6817 	cpuset_t cpuset;
6818 
6819 	ASSERT(pp != NULL);
6820 	ASSERT(sfmmu_mlist_held(pp));
6821 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6822 		(clearflag == HAT_SYNC_ZERORM));
6823 
6824 	SFMMU_STAT(sf_pagesync);
6825 
6826 	CPUSET_ZERO(cpuset);
6827 
6828 sfmmu_pagesync_retry:
6829 
6830 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6831 	if (TTE_IS_VALID(&tte)) {
6832 		hmeblkp = sfmmu_hmetohblk(sfhme);
6833 		sfmmup = hblktosfmmu(hmeblkp);
6834 		addr = tte_to_vaddr(hmeblkp, tte);
6835 		if (clearflag == HAT_SYNC_ZERORM) {
6836 			ttemod = tte;
6837 			TTE_CLR_RM(&ttemod);
6838 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6839 				&sfhme->hme_tte);
6840 			if (ret < 0) {
6841 				/*
6842 				 * cas failed and the new value is not what
6843 				 * we want.
6844 				 */
6845 				goto sfmmu_pagesync_retry;
6846 			}
6847 
6848 			if (ret > 0) {
6849 				/* we win the cas */
6850 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6851 				cpuset = sfmmup->sfmmu_cpusran;
6852 			}
6853 		}
6854 
6855 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6856 	}
6857 	return (cpuset);
6858 }
6859 
6860 /*
6861  * Remove write permission from a mappings to a page, so that
6862  * we can detect the next modification of it. This requires modifying
6863  * the TTE then invalidating (demap) any TLB entry using that TTE.
6864  * This code is similar to sfmmu_pagesync().
6865  */
6866 static cpuset_t
6867 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
6868 {
6869 	caddr_t addr;
6870 	tte_t tte;
6871 	tte_t ttemod;
6872 	struct hme_blk *hmeblkp;
6873 	int ret;
6874 	sfmmu_t *sfmmup;
6875 	cpuset_t cpuset;
6876 
6877 	ASSERT(pp != NULL);
6878 	ASSERT(sfmmu_mlist_held(pp));
6879 
6880 	CPUSET_ZERO(cpuset);
6881 	SFMMU_STAT(sf_clrwrt);
6882 
6883 retry:
6884 
6885 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6886 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
6887 		hmeblkp = sfmmu_hmetohblk(sfhme);
6888 
6889 		/*
6890 		 * xhat mappings should never be to a VMODSORT page.
6891 		 */
6892 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
6893 
6894 		sfmmup = hblktosfmmu(hmeblkp);
6895 		addr = tte_to_vaddr(hmeblkp, tte);
6896 
6897 		ttemod = tte;
6898 		TTE_CLR_WRT(&ttemod);
6899 		TTE_CLR_MOD(&ttemod);
6900 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6901 
6902 		/*
6903 		 * if cas failed and the new value is not what
6904 		 * we want retry
6905 		 */
6906 		if (ret < 0)
6907 			goto retry;
6908 
6909 		/* we win the cas */
6910 		if (ret > 0) {
6911 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6912 			cpuset = sfmmup->sfmmu_cpusran;
6913 		}
6914 	}
6915 
6916 	return (cpuset);
6917 }
6918 
6919 /*
6920  * Walk all mappings of a page, removing write permission and clearing the
6921  * ref/mod bits. This code is similar to hat_pagesync()
6922  */
6923 static void
6924 hat_page_clrwrt(page_t *pp)
6925 {
6926 	struct sf_hment *sfhme;
6927 	struct sf_hment *tmphme = NULL;
6928 	kmutex_t *pml;
6929 	cpuset_t cpuset;
6930 	cpuset_t tset;
6931 	int	index;
6932 	int	 cons;
6933 
6934 	CPUSET_ZERO(cpuset);
6935 
6936 	pml = sfmmu_mlist_enter(pp);
6937 	index = PP_MAPINDEX(pp);
6938 	cons = TTE8K;
6939 retry:
6940 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6941 		tmphme = sfhme->hme_next;
6942 
6943 		/*
6944 		 * If we are looking for large mappings and this hme doesn't
6945 		 * reach the range we are seeking, just ignore its.
6946 		 */
6947 
6948 		if (hme_size(sfhme) < cons)
6949 			continue;
6950 
6951 		tset = sfmmu_pageclrwrt(pp, sfhme);
6952 		CPUSET_OR(cpuset, tset);
6953 	}
6954 
6955 	while (index) {
6956 		index = index >> 1;
6957 		cons++;
6958 		if (index & 0x1) {
6959 			/* Go to leading page */
6960 			pp = PP_GROUPLEADER(pp, cons);
6961 			goto retry;
6962 		}
6963 	}
6964 
6965 	xt_sync(cpuset);
6966 	sfmmu_mlist_exit(pml);
6967 }
6968 
6969 /*
6970  * Set the given REF/MOD/RO bits for the given page.
6971  * For a vnode with a sorted v_pages list, we need to change
6972  * the attributes and the v_pages list together under page_vnode_mutex.
6973  */
6974 void
6975 hat_page_setattr(page_t *pp, uint_t flag)
6976 {
6977 	vnode_t		*vp = pp->p_vnode;
6978 	page_t		**listp;
6979 	kmutex_t	*pmtx;
6980 	kmutex_t	*vphm = NULL;
6981 
6982 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
6983 
6984 	/*
6985 	 * nothing to do if attribute already set
6986 	 */
6987 	if ((pp->p_nrm & flag) == flag)
6988 		return;
6989 
6990 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
6991 		vphm = page_vnode_mutex(vp);
6992 		mutex_enter(vphm);
6993 	}
6994 
6995 	pmtx = sfmmu_page_enter(pp);
6996 	pp->p_nrm |= flag;
6997 	sfmmu_page_exit(pmtx);
6998 
6999 	if (vphm != NULL) {
7000 		/*
7001 		 * Some File Systems examine v_pages for NULL w/o
7002 		 * grabbing the vphm mutex. Must not let it become NULL when
7003 		 * pp is the only page on the list.
7004 		 */
7005 		if (pp->p_vpnext != pp) {
7006 			page_vpsub(&vp->v_pages, pp);
7007 			if (vp->v_pages != NULL)
7008 				listp = &vp->v_pages->p_vpprev->p_vpnext;
7009 			else
7010 				listp = &vp->v_pages;
7011 			page_vpadd(listp, pp);
7012 		}
7013 		mutex_exit(vphm);
7014 	}
7015 }
7016 
7017 void
7018 hat_page_clrattr(page_t *pp, uint_t flag)
7019 {
7020 	vnode_t		*vp = pp->p_vnode;
7021 	kmutex_t	*pmtx;
7022 
7023 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7024 
7025 	pmtx = sfmmu_page_enter(pp);
7026 
7027 	/*
7028 	 * Caller is expected to hold page's io lock for VMODSORT to work
7029 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7030 	 * bit is cleared.
7031 	 * We don't have assert to avoid tripping some existing third party
7032 	 * code. The dirty page is moved back to top of the v_page list
7033 	 * after IO is done in pvn_write_done().
7034 	 */
7035 	pp->p_nrm &= ~flag;
7036 	sfmmu_page_exit(pmtx);
7037 
7038 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7039 
7040 		/*
7041 		 * VMODSORT works by removing write permissions and getting
7042 		 * a fault when a page is made dirty. At this point
7043 		 * we need to remove write permission from all mappings
7044 		 * to this page.
7045 		 */
7046 		hat_page_clrwrt(pp);
7047 	}
7048 }
7049 
7050 uint_t
7051 hat_page_getattr(page_t *pp, uint_t flag)
7052 {
7053 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7054 	return ((uint_t)(pp->p_nrm & flag));
7055 }
7056 
7057 /*
7058  * DEBUG kernels: verify that a kernel va<->pa translation
7059  * is safe by checking the underlying page_t is in a page
7060  * relocation-safe state.
7061  */
7062 #ifdef	DEBUG
7063 void
7064 sfmmu_check_kpfn(pfn_t pfn)
7065 {
7066 	page_t *pp;
7067 	int index, cons;
7068 
7069 	if (hat_check_vtop == 0)
7070 		return;
7071 
7072 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
7073 		return;
7074 
7075 	pp = page_numtopp_nolock(pfn);
7076 	if (!pp)
7077 		return;
7078 
7079 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7080 		return;
7081 
7082 	/*
7083 	 * Handed a large kernel page, we dig up the root page since we
7084 	 * know the root page might have the lock also.
7085 	 */
7086 	if (pp->p_szc != 0) {
7087 		index = PP_MAPINDEX(pp);
7088 		cons = TTE8K;
7089 again:
7090 		while (index != 0) {
7091 			index >>= 1;
7092 			if (index != 0)
7093 				cons++;
7094 			if (index & 0x1) {
7095 				pp = PP_GROUPLEADER(pp, cons);
7096 				goto again;
7097 			}
7098 		}
7099 	}
7100 
7101 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7102 		return;
7103 
7104 	/*
7105 	 * Pages need to be locked or allocated "permanent" (either from
7106 	 * static_arena arena or explicitly setting PG_NORELOC when calling
7107 	 * page_create_va()) for VA->PA translations to be valid.
7108 	 */
7109 	if (!PP_ISNORELOC(pp))
7110 		panic("Illegal VA->PA translation, pp 0x%p not permanent", pp);
7111 	else
7112 		panic("Illegal VA->PA translation, pp 0x%p not locked", pp);
7113 }
7114 #endif	/* DEBUG */
7115 
7116 /*
7117  * Returns a page frame number for a given virtual address.
7118  * Returns PFN_INVALID to indicate an invalid mapping
7119  */
7120 pfn_t
7121 hat_getpfnum(struct hat *hat, caddr_t addr)
7122 {
7123 	pfn_t pfn;
7124 	tte_t tte;
7125 
7126 	/*
7127 	 * We would like to
7128 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7129 	 * but we can't because the iommu driver will call this
7130 	 * routine at interrupt time and it can't grab the as lock
7131 	 * or it will deadlock: A thread could have the as lock
7132 	 * and be waiting for io.  The io can't complete
7133 	 * because the interrupt thread is blocked trying to grab
7134 	 * the as lock.
7135 	 */
7136 
7137 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7138 
7139 	if (hat == ksfmmup) {
7140 		if (segkpm && IS_KPM_ADDR(addr))
7141 			return (sfmmu_kpm_vatopfn(addr));
7142 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7143 		    == PFN_SUSPENDED) {
7144 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7145 		}
7146 		sfmmu_check_kpfn(pfn);
7147 		return (pfn);
7148 	} else {
7149 		return (sfmmu_uvatopfn(addr, hat));
7150 	}
7151 }
7152 
7153 /*
7154  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7155  * Use hat_getpfnum(kas.a_hat, ...) instead.
7156  *
7157  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7158  * but can't right now due to the fact that some software has grown to use
7159  * this interface incorrectly. So for now when the interface is misused,
7160  * return a warning to the user that in the future it won't work in the
7161  * way they're abusing it, and carry on (after disabling page relocation).
7162  */
7163 pfn_t
7164 hat_getkpfnum(caddr_t addr)
7165 {
7166 	pfn_t pfn;
7167 	tte_t tte;
7168 	int badcaller = 0;
7169 	extern int segkmem_reloc;
7170 
7171 	if (segkpm && IS_KPM_ADDR(addr)) {
7172 		badcaller = 1;
7173 		pfn = sfmmu_kpm_vatopfn(addr);
7174 	} else {
7175 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7176 		    == PFN_SUSPENDED) {
7177 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7178 		}
7179 		badcaller = pf_is_memory(pfn);
7180 	}
7181 
7182 	if (badcaller) {
7183 		/*
7184 		 * We can't return PFN_INVALID or the caller may panic
7185 		 * or corrupt the system.  The only alternative is to
7186 		 * disable page relocation at this point for all kernel
7187 		 * memory.  This will impact any callers of page_relocate()
7188 		 * such as FMA or DR.
7189 		 *
7190 		 * RFE: Add junk here to spit out an ereport so the sysadmin
7191 		 * can be advised that he should upgrade his device driver
7192 		 * so that this doesn't happen.
7193 		 */
7194 		hat_getkpfnum_badcall(caller());
7195 		if (hat_kpr_enabled && segkmem_reloc) {
7196 			hat_kpr_enabled = 0;
7197 			segkmem_reloc = 0;
7198 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
7199 		}
7200 	}
7201 	return (pfn);
7202 }
7203 
7204 pfn_t
7205 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup)
7206 {
7207 	struct hmehash_bucket *hmebp;
7208 	hmeblk_tag hblktag;
7209 	int hmeshift, hashno = 1;
7210 	struct hme_blk *hmeblkp = NULL;
7211 
7212 	struct sf_hment *sfhmep;
7213 	tte_t tte;
7214 	pfn_t pfn;
7215 
7216 	/* support for ISM */
7217 	ism_map_t	*ism_map;
7218 	ism_blk_t	*ism_blkp;
7219 	int		i;
7220 	sfmmu_t *ism_hatid = NULL;
7221 	sfmmu_t *locked_hatid = NULL;
7222 
7223 
7224 	ASSERT(sfmmup != ksfmmup);
7225 	SFMMU_STAT(sf_user_vtop);
7226 	/*
7227 	 * Set ism_hatid if vaddr falls in a ISM segment.
7228 	 */
7229 	ism_blkp = sfmmup->sfmmu_iblk;
7230 	if (ism_blkp) {
7231 		sfmmu_ismhat_enter(sfmmup, 0);
7232 		locked_hatid = sfmmup;
7233 	}
7234 	while (ism_blkp && ism_hatid == NULL) {
7235 		ism_map = ism_blkp->iblk_maps;
7236 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7237 			if (vaddr >= ism_start(ism_map[i]) &&
7238 			    vaddr < ism_end(ism_map[i])) {
7239 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7240 				vaddr = (caddr_t)(vaddr -
7241 					ism_start(ism_map[i]));
7242 				break;
7243 			}
7244 		}
7245 		ism_blkp = ism_blkp->iblk_next;
7246 	}
7247 	if (locked_hatid) {
7248 		sfmmu_ismhat_exit(locked_hatid, 0);
7249 	}
7250 
7251 	hblktag.htag_id = sfmmup;
7252 	do {
7253 		hmeshift = HME_HASH_SHIFT(hashno);
7254 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7255 		hblktag.htag_rehash = hashno;
7256 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7257 
7258 		SFMMU_HASH_LOCK(hmebp);
7259 
7260 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7261 		if (hmeblkp != NULL) {
7262 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7263 			sfmmu_copytte(&sfhmep->hme_tte, &tte);
7264 			if (TTE_IS_VALID(&tte)) {
7265 				pfn = TTE_TO_PFN(vaddr, &tte);
7266 			} else {
7267 				pfn = PFN_INVALID;
7268 			}
7269 			SFMMU_HASH_UNLOCK(hmebp);
7270 			return (pfn);
7271 		}
7272 		SFMMU_HASH_UNLOCK(hmebp);
7273 		hashno++;
7274 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7275 	return (PFN_INVALID);
7276 }
7277 
7278 
7279 /*
7280  * For compatability with AT&T and later optimizations
7281  */
7282 /* ARGSUSED */
7283 void
7284 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
7285 {
7286 	ASSERT(hat != NULL);
7287 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7288 }
7289 
7290 /*
7291  * Return the number of mappings to a particular page.
7292  * This number is an approximation of the number of
7293  * number of people sharing the page.
7294  */
7295 ulong_t
7296 hat_page_getshare(page_t *pp)
7297 {
7298 	page_t *spp = pp;	/* start page */
7299 	kmutex_t *pml;
7300 	ulong_t	cnt;
7301 	int index, sz = TTE64K;
7302 
7303 	/*
7304 	 * We need to grab the mlist lock to make sure any outstanding
7305 	 * load/unloads complete.  Otherwise we could return zero
7306 	 * even though the unload(s) hasn't finished yet.
7307 	 */
7308 	pml = sfmmu_mlist_enter(spp);
7309 	cnt = spp->p_share;
7310 
7311 #ifdef VAC
7312 	if (kpm_enable)
7313 		cnt += spp->p_kpmref;
7314 #endif
7315 
7316 	/*
7317 	 * If we have any large mappings, we count the number of
7318 	 * mappings that this large page is part of.
7319 	 */
7320 	index = PP_MAPINDEX(spp);
7321 	index >>= 1;
7322 	while (index) {
7323 		pp = PP_GROUPLEADER(spp, sz);
7324 		if ((index & 0x1) && pp != spp) {
7325 			cnt += pp->p_share;
7326 			spp = pp;
7327 		}
7328 		index >>= 1;
7329 		sz++;
7330 	}
7331 	sfmmu_mlist_exit(pml);
7332 	return (cnt);
7333 }
7334 
7335 /*
7336  * Unload all large mappings to the pp and reset the p_szc field of every
7337  * constituent page according to the remaining mappings.
7338  *
7339  * pp must be locked SE_EXCL. Even though no other constituent pages are
7340  * locked it's legal to unload the large mappings to the pp because all
7341  * constituent pages of large locked mappings have to be locked SE_SHARED.
7342  * This means if we have SE_EXCL lock on one of constituent pages none of the
7343  * large mappings to pp are locked.
7344  *
7345  * Decrease p_szc field starting from the last constituent page and ending
7346  * with the root page. This method is used because other threads rely on the
7347  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
7348  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
7349  * ensures that p_szc changes of the constituent pages appears atomic for all
7350  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
7351  *
7352  * This mechanism is only used for file system pages where it's not always
7353  * possible to get SE_EXCL locks on all constituent pages to demote the size
7354  * code (as is done for anonymous or kernel large pages).
7355  *
7356  * See more comments in front of sfmmu_mlspl_enter().
7357  */
7358 void
7359 hat_page_demote(page_t *pp)
7360 {
7361 	int index;
7362 	int sz;
7363 	cpuset_t cpuset;
7364 	int sync = 0;
7365 	page_t *rootpp;
7366 	struct sf_hment *sfhme;
7367 	struct sf_hment *tmphme = NULL;
7368 	struct hme_blk *hmeblkp;
7369 	uint_t pszc;
7370 	page_t *lastpp;
7371 	cpuset_t tset;
7372 	pgcnt_t npgs;
7373 	kmutex_t *pml;
7374 	kmutex_t *pmtx = NULL;
7375 
7376 	ASSERT(PAGE_EXCL(pp));
7377 	ASSERT(!PP_ISFREE(pp));
7378 	ASSERT(page_szc_lock_assert(pp));
7379 	pml = sfmmu_mlist_enter(pp);
7380 
7381 	pszc = pp->p_szc;
7382 	if (pszc == 0) {
7383 		goto out;
7384 	}
7385 
7386 	index = PP_MAPINDEX(pp) >> 1;
7387 
7388 	if (index) {
7389 		CPUSET_ZERO(cpuset);
7390 		sz = TTE64K;
7391 		sync = 1;
7392 	}
7393 
7394 	while (index) {
7395 		if (!(index & 0x1)) {
7396 			index >>= 1;
7397 			sz++;
7398 			continue;
7399 		}
7400 		ASSERT(sz <= pszc);
7401 		rootpp = PP_GROUPLEADER(pp, sz);
7402 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
7403 			tmphme = sfhme->hme_next;
7404 			hmeblkp = sfmmu_hmetohblk(sfhme);
7405 			if (hme_size(sfhme) != sz) {
7406 				continue;
7407 			}
7408 			if (hmeblkp->hblk_xhat_bit) {
7409 				cmn_err(CE_PANIC,
7410 				    "hat_page_demote: xhat hmeblk");
7411 			}
7412 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
7413 			CPUSET_OR(cpuset, tset);
7414 		}
7415 		if (index >>= 1) {
7416 			sz++;
7417 		}
7418 	}
7419 
7420 	ASSERT(!PP_ISMAPPED_LARGE(pp));
7421 
7422 	if (sync) {
7423 		xt_sync(cpuset);
7424 #ifdef VAC
7425 		if (PP_ISTNC(pp)) {
7426 			conv_tnc(rootpp, sz);
7427 		}
7428 #endif	/* VAC */
7429 	}
7430 
7431 	pmtx = sfmmu_page_enter(pp);
7432 
7433 	ASSERT(pp->p_szc == pszc);
7434 	rootpp = PP_PAGEROOT(pp);
7435 	ASSERT(rootpp->p_szc == pszc);
7436 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
7437 
7438 	while (lastpp != rootpp) {
7439 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
7440 		ASSERT(sz < pszc);
7441 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
7442 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
7443 		while (--npgs > 0) {
7444 			lastpp->p_szc = (uchar_t)sz;
7445 			lastpp = PP_PAGEPREV(lastpp);
7446 		}
7447 		if (sz) {
7448 			/*
7449 			 * make sure before current root's pszc
7450 			 * is updated all updates to constituent pages pszc
7451 			 * fields are globally visible.
7452 			 */
7453 			membar_producer();
7454 		}
7455 		lastpp->p_szc = sz;
7456 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
7457 		if (lastpp != rootpp) {
7458 			lastpp = PP_PAGEPREV(lastpp);
7459 		}
7460 	}
7461 	if (sz == 0) {
7462 		/* the loop above doesn't cover this case */
7463 		rootpp->p_szc = 0;
7464 	}
7465 out:
7466 	ASSERT(pp->p_szc == 0);
7467 	if (pmtx != NULL) {
7468 		sfmmu_page_exit(pmtx);
7469 	}
7470 	sfmmu_mlist_exit(pml);
7471 }
7472 
7473 /*
7474  * Refresh the HAT ismttecnt[] element for size szc.
7475  * Caller must have set ISM busy flag to prevent mapping
7476  * lists from changing while we're traversing them.
7477  */
7478 pgcnt_t
7479 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
7480 {
7481 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
7482 	ism_map_t	*ism_map;
7483 	pgcnt_t		npgs = 0;
7484 	int		j;
7485 
7486 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
7487 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
7488 		ism_map = ism_blkp->iblk_maps;
7489 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++)
7490 			npgs += ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
7491 	}
7492 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
7493 	return (npgs);
7494 }
7495 
7496 /*
7497  * Yield the memory claim requirement for an address space.
7498  *
7499  * This is currently implemented as the number of bytes that have active
7500  * hardware translations that have page structures.  Therefore, it can
7501  * underestimate the traditional resident set size, eg, if the
7502  * physical page is present and the hardware translation is missing;
7503  * and it can overestimate the rss, eg, if there are active
7504  * translations to a frame buffer with page structs.
7505  * Also, it does not take sharing into account.
7506  *
7507  * Note that we don't acquire locks here since this function is most often
7508  * called from the clock thread.
7509  */
7510 size_t
7511 hat_get_mapped_size(struct hat *hat)
7512 {
7513 	size_t		assize = 0;
7514 	int 		i;
7515 
7516 	if (hat == NULL)
7517 		return (0);
7518 
7519 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7520 
7521 	for (i = 0; i < mmu_page_sizes; i++)
7522 		assize += (pgcnt_t)hat->sfmmu_ttecnt[i] * TTEBYTES(i);
7523 
7524 	if (hat->sfmmu_iblk == NULL)
7525 		return (assize);
7526 
7527 	for (i = 0; i < mmu_page_sizes; i++)
7528 		assize += (pgcnt_t)hat->sfmmu_ismttecnt[i] * TTEBYTES(i);
7529 
7530 	return (assize);
7531 }
7532 
7533 int
7534 hat_stats_enable(struct hat *hat)
7535 {
7536 	hatlock_t	*hatlockp;
7537 
7538 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7539 
7540 	hatlockp = sfmmu_hat_enter(hat);
7541 	hat->sfmmu_rmstat++;
7542 	sfmmu_hat_exit(hatlockp);
7543 	return (1);
7544 }
7545 
7546 void
7547 hat_stats_disable(struct hat *hat)
7548 {
7549 	hatlock_t	*hatlockp;
7550 
7551 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7552 
7553 	hatlockp = sfmmu_hat_enter(hat);
7554 	hat->sfmmu_rmstat--;
7555 	sfmmu_hat_exit(hatlockp);
7556 }
7557 
7558 /*
7559  * Routines for entering or removing  ourselves from the
7560  * ism_hat's mapping list.
7561  */
7562 static void
7563 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
7564 {
7565 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7566 
7567 	iment->iment_prev = NULL;
7568 	iment->iment_next = ism_hat->sfmmu_iment;
7569 	if (ism_hat->sfmmu_iment) {
7570 		ism_hat->sfmmu_iment->iment_prev = iment;
7571 	}
7572 	ism_hat->sfmmu_iment = iment;
7573 }
7574 
7575 static void
7576 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
7577 {
7578 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7579 
7580 	if (ism_hat->sfmmu_iment == NULL) {
7581 		panic("ism map entry remove - no entries");
7582 	}
7583 
7584 	if (iment->iment_prev) {
7585 		ASSERT(ism_hat->sfmmu_iment != iment);
7586 		iment->iment_prev->iment_next = iment->iment_next;
7587 	} else {
7588 		ASSERT(ism_hat->sfmmu_iment == iment);
7589 		ism_hat->sfmmu_iment = iment->iment_next;
7590 	}
7591 
7592 	if (iment->iment_next) {
7593 		iment->iment_next->iment_prev = iment->iment_prev;
7594 	}
7595 
7596 	/*
7597 	 * zero out the entry
7598 	 */
7599 	iment->iment_next = NULL;
7600 	iment->iment_prev = NULL;
7601 	iment->iment_hat =  NULL;
7602 }
7603 
7604 /*
7605  * Hat_share()/unshare() return an (non-zero) error
7606  * when saddr and daddr are not properly aligned.
7607  *
7608  * The top level mapping element determines the alignment
7609  * requirement for saddr and daddr, depending on different
7610  * architectures.
7611  *
7612  * When hat_share()/unshare() are not supported,
7613  * HATOP_SHARE()/UNSHARE() return 0
7614  */
7615 int
7616 hat_share(struct hat *sfmmup, caddr_t addr,
7617 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
7618 {
7619 	ism_blk_t	*ism_blkp;
7620 	ism_blk_t	*new_iblk;
7621 	ism_map_t 	*ism_map;
7622 	ism_ment_t	*ism_ment;
7623 	int		i, added;
7624 	hatlock_t	*hatlockp;
7625 	int		reload_mmu = 0;
7626 	uint_t		ismshift = page_get_shift(ismszc);
7627 	size_t		ismpgsz = page_get_pagesize(ismszc);
7628 	uint_t		ismmask = (uint_t)ismpgsz - 1;
7629 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7630 	ushort_t	ismhatflag;
7631 
7632 #ifdef DEBUG
7633 	caddr_t		eaddr = addr + len;
7634 #endif /* DEBUG */
7635 
7636 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
7637 	ASSERT(sptaddr == ISMID_STARTADDR);
7638 	/*
7639 	 * Check the alignment.
7640 	 */
7641 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
7642 		return (EINVAL);
7643 
7644 	/*
7645 	 * Check size alignment.
7646 	 */
7647 	if (!ISM_ALIGNED(ismshift, len))
7648 		return (EINVAL);
7649 
7650 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
7651 
7652 	/*
7653 	 * Allocate ism_ment for the ism_hat's mapping list, and an
7654 	 * ism map blk in case we need one.  We must do our
7655 	 * allocations before acquiring locks to prevent a deadlock
7656 	 * in the kmem allocator on the mapping list lock.
7657 	 */
7658 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
7659 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
7660 
7661 	/*
7662 	 * Serialize ISM mappings with the ISM busy flag, and also the
7663 	 * trap handlers.
7664 	 */
7665 	sfmmu_ismhat_enter(sfmmup, 0);
7666 
7667 	/*
7668 	 * Allocate an ism map blk if necessary.
7669 	 */
7670 	if (sfmmup->sfmmu_iblk == NULL) {
7671 		sfmmup->sfmmu_iblk = new_iblk;
7672 		bzero(new_iblk, sizeof (*new_iblk));
7673 		new_iblk->iblk_nextpa = (uint64_t)-1;
7674 		membar_stst();	/* make sure next ptr visible to all CPUs */
7675 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
7676 		reload_mmu = 1;
7677 		new_iblk = NULL;
7678 	}
7679 
7680 #ifdef DEBUG
7681 	/*
7682 	 * Make sure mapping does not already exist.
7683 	 */
7684 	ism_blkp = sfmmup->sfmmu_iblk;
7685 	while (ism_blkp) {
7686 		ism_map = ism_blkp->iblk_maps;
7687 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
7688 			if ((addr >= ism_start(ism_map[i]) &&
7689 			    addr < ism_end(ism_map[i])) ||
7690 			    eaddr > ism_start(ism_map[i]) &&
7691 			    eaddr <= ism_end(ism_map[i])) {
7692 				panic("sfmmu_share: Already mapped!");
7693 			}
7694 		}
7695 		ism_blkp = ism_blkp->iblk_next;
7696 	}
7697 #endif /* DEBUG */
7698 
7699 	ASSERT(ismszc >= TTE4M);
7700 	if (ismszc == TTE4M) {
7701 		ismhatflag = HAT_4M_FLAG;
7702 	} else if (ismszc == TTE32M) {
7703 		ismhatflag = HAT_32M_FLAG;
7704 	} else if (ismszc == TTE256M) {
7705 		ismhatflag = HAT_256M_FLAG;
7706 	}
7707 	/*
7708 	 * Add mapping to first available mapping slot.
7709 	 */
7710 	ism_blkp = sfmmup->sfmmu_iblk;
7711 	added = 0;
7712 	while (!added) {
7713 		ism_map = ism_blkp->iblk_maps;
7714 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
7715 			if (ism_map[i].imap_ismhat == NULL) {
7716 
7717 				ism_map[i].imap_ismhat = ism_hatid;
7718 				ism_map[i].imap_vb_shift = (ushort_t)ismshift;
7719 				ism_map[i].imap_hatflags = ismhatflag;
7720 				ism_map[i].imap_sz_mask = ismmask;
7721 				/*
7722 				 * imap_seg is checked in ISM_CHECK to see if
7723 				 * non-NULL, then other info assumed valid.
7724 				 */
7725 				membar_stst();
7726 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
7727 				ism_map[i].imap_ment = ism_ment;
7728 
7729 				/*
7730 				 * Now add ourselves to the ism_hat's
7731 				 * mapping list.
7732 				 */
7733 				ism_ment->iment_hat = sfmmup;
7734 				ism_ment->iment_base_va = addr;
7735 				ism_hatid->sfmmu_ismhat = 1;
7736 				ism_hatid->sfmmu_flags = 0;
7737 				mutex_enter(&ism_mlist_lock);
7738 				iment_add(ism_ment, ism_hatid);
7739 				mutex_exit(&ism_mlist_lock);
7740 				added = 1;
7741 				break;
7742 			}
7743 		}
7744 		if (!added && ism_blkp->iblk_next == NULL) {
7745 			ism_blkp->iblk_next = new_iblk;
7746 			new_iblk = NULL;
7747 			bzero(ism_blkp->iblk_next,
7748 			    sizeof (*ism_blkp->iblk_next));
7749 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
7750 			membar_stst();
7751 			ism_blkp->iblk_nextpa =
7752 				va_to_pa((caddr_t)ism_blkp->iblk_next);
7753 		}
7754 		ism_blkp = ism_blkp->iblk_next;
7755 	}
7756 
7757 	/*
7758 	 * Update our counters for this sfmmup's ism mappings.
7759 	 */
7760 	for (i = 0; i <= ismszc; i++) {
7761 		if (!(disable_ism_large_pages & (1 << i)))
7762 			(void) ism_tsb_entries(sfmmup, i);
7763 	}
7764 
7765 	hatlockp = sfmmu_hat_enter(sfmmup);
7766 
7767 	/*
7768 	 * For ISM and DISM we do not support 512K pages, so we only
7769 	 * only search the 4M and 8K/64K hashes for 4 pagesize cpus, and search
7770 	 * the 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
7771 	 */
7772 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
7773 
7774 	if (ismszc > TTE4M && !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG))
7775 		SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7776 
7777 	if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG))
7778 		SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
7779 
7780 	/*
7781 	 * If we updated the ismblkpa for this HAT or we need
7782 	 * to start searching the 256M or 32M or 4M hash, we must
7783 	 * make sure all CPUs running this process reload their
7784 	 * tsbmiss area.  Otherwise they will fail to load the mappings
7785 	 * in the tsbmiss handler and will loop calling pagefault().
7786 	 */
7787 	switch (ismszc) {
7788 	case TTE256M:
7789 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
7790 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
7791 			sfmmu_sync_mmustate(sfmmup);
7792 		}
7793 		break;
7794 	case TTE32M:
7795 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
7796 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
7797 			sfmmu_sync_mmustate(sfmmup);
7798 		}
7799 		break;
7800 	case TTE4M:
7801 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
7802 			SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7803 			sfmmu_sync_mmustate(sfmmup);
7804 		}
7805 		break;
7806 	default:
7807 		break;
7808 	}
7809 
7810 	/*
7811 	 * Now we can drop the locks.
7812 	 */
7813 	sfmmu_ismhat_exit(sfmmup, 1);
7814 	sfmmu_hat_exit(hatlockp);
7815 
7816 	/*
7817 	 * Free up ismblk if we didn't use it.
7818 	 */
7819 	if (new_iblk != NULL)
7820 		kmem_cache_free(ism_blk_cache, new_iblk);
7821 
7822 	/*
7823 	 * Check TSB and TLB page sizes.
7824 	 */
7825 	sfmmu_check_page_sizes(sfmmup, 1);
7826 
7827 	return (0);
7828 }
7829 
7830 /*
7831  * hat_unshare removes exactly one ism_map from
7832  * this process's as.  It expects multiple calls
7833  * to hat_unshare for multiple shm segments.
7834  */
7835 void
7836 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
7837 {
7838 	ism_map_t 	*ism_map;
7839 	ism_ment_t	*free_ment = NULL;
7840 	ism_blk_t	*ism_blkp;
7841 	struct hat	*ism_hatid;
7842 	int 		found, i;
7843 	hatlock_t	*hatlockp;
7844 	struct tsb_info	*tsbinfo;
7845 	uint_t		ismshift = page_get_shift(ismszc);
7846 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7847 
7848 	ASSERT(ISM_ALIGNED(ismshift, addr));
7849 	ASSERT(ISM_ALIGNED(ismshift, len));
7850 	ASSERT(sfmmup != NULL);
7851 	ASSERT(sfmmup != ksfmmup);
7852 
7853 	if (sfmmup->sfmmu_xhat_provider) {
7854 		XHAT_UNSHARE(sfmmup, addr, len);
7855 		return;
7856 	} else {
7857 		/*
7858 		 * This must be a CPU HAT. If the address space has
7859 		 * XHATs attached, inform all XHATs that ISM segment
7860 		 * is going away
7861 		 */
7862 		ASSERT(sfmmup->sfmmu_as != NULL);
7863 		if (sfmmup->sfmmu_as->a_xhat != NULL)
7864 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
7865 	}
7866 
7867 	/*
7868 	 * Make sure that during the entire time ISM mappings are removed,
7869 	 * the trap handlers serialize behind us, and that no one else
7870 	 * can be mucking with ISM mappings.  This also lets us get away
7871 	 * with not doing expensive cross calls to flush the TLB -- we
7872 	 * just discard the context, flush the entire TSB, and call it
7873 	 * a day.
7874 	 */
7875 	sfmmu_ismhat_enter(sfmmup, 0);
7876 
7877 	/*
7878 	 * Remove the mapping.
7879 	 *
7880 	 * We can't have any holes in the ism map.
7881 	 * The tsb miss code while searching the ism map will
7882 	 * stop on an empty map slot.  So we must move
7883 	 * everyone past the hole up 1 if any.
7884 	 *
7885 	 * Also empty ism map blks are not freed until the
7886 	 * process exits. This is to prevent a MT race condition
7887 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
7888 	 */
7889 	found = 0;
7890 	ism_blkp = sfmmup->sfmmu_iblk;
7891 	while (!found && ism_blkp) {
7892 		ism_map = ism_blkp->iblk_maps;
7893 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
7894 			if (addr == ism_start(ism_map[i]) &&
7895 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
7896 				found = 1;
7897 				break;
7898 			}
7899 		}
7900 		if (!found)
7901 			ism_blkp = ism_blkp->iblk_next;
7902 	}
7903 
7904 	if (found) {
7905 		ism_hatid = ism_map[i].imap_ismhat;
7906 		ASSERT(ism_hatid != NULL);
7907 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
7908 
7909 		/*
7910 		 * First remove ourselves from the ism mapping list.
7911 		 */
7912 		mutex_enter(&ism_mlist_lock);
7913 		iment_sub(ism_map[i].imap_ment, ism_hatid);
7914 		mutex_exit(&ism_mlist_lock);
7915 		free_ment = ism_map[i].imap_ment;
7916 
7917 		/*
7918 		 * Now gurantee that any other cpu
7919 		 * that tries to process an ISM miss
7920 		 * will go to tl=0.
7921 		 */
7922 		hatlockp = sfmmu_hat_enter(sfmmup);
7923 
7924 		sfmmu_invalidate_ctx(sfmmup);
7925 
7926 		sfmmu_hat_exit(hatlockp);
7927 
7928 		/*
7929 		 * We delete the ism map by copying
7930 		 * the next map over the current one.
7931 		 * We will take the next one in the maps
7932 		 * array or from the next ism_blk.
7933 		 */
7934 		while (ism_blkp) {
7935 			ism_map = ism_blkp->iblk_maps;
7936 			while (i < (ISM_MAP_SLOTS - 1)) {
7937 				ism_map[i] = ism_map[i + 1];
7938 				i++;
7939 			}
7940 			/* i == (ISM_MAP_SLOTS - 1) */
7941 			ism_blkp = ism_blkp->iblk_next;
7942 			if (ism_blkp) {
7943 				ism_map[i] = ism_blkp->iblk_maps[0];
7944 				i = 0;
7945 			} else {
7946 				ism_map[i].imap_seg = 0;
7947 				ism_map[i].imap_vb_shift = 0;
7948 				ism_map[i].imap_hatflags = 0;
7949 				ism_map[i].imap_sz_mask = 0;
7950 				ism_map[i].imap_ismhat = NULL;
7951 				ism_map[i].imap_ment = NULL;
7952 			}
7953 		}
7954 
7955 		/*
7956 		 * Now flush entire TSB for the process, since
7957 		 * demapping page by page can be too expensive.
7958 		 * We don't have to flush the TLB here anymore
7959 		 * since we switch to a new TLB ctx instead.
7960 		 * Also, there is no need to flush if the process
7961 		 * is exiting since the TSB will be freed later.
7962 		 */
7963 		if (!sfmmup->sfmmu_free) {
7964 			hatlockp = sfmmu_hat_enter(sfmmup);
7965 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
7966 			    tsbinfo = tsbinfo->tsb_next) {
7967 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
7968 					continue;
7969 				sfmmu_inv_tsb(tsbinfo->tsb_va,
7970 				    TSB_BYTES(tsbinfo->tsb_szc));
7971 			}
7972 			sfmmu_hat_exit(hatlockp);
7973 		}
7974 	}
7975 
7976 	/*
7977 	 * Update our counters for this sfmmup's ism mappings.
7978 	 */
7979 	for (i = 0; i <= ismszc; i++) {
7980 		if (!(disable_ism_large_pages & (1 << i)))
7981 			(void) ism_tsb_entries(sfmmup, i);
7982 	}
7983 
7984 	sfmmu_ismhat_exit(sfmmup, 0);
7985 
7986 	/*
7987 	 * We must do our freeing here after dropping locks
7988 	 * to prevent a deadlock in the kmem allocator on the
7989 	 * mapping list lock.
7990 	 */
7991 	if (free_ment != NULL)
7992 		kmem_cache_free(ism_ment_cache, free_ment);
7993 
7994 	/*
7995 	 * Check TSB and TLB page sizes if the process isn't exiting.
7996 	 */
7997 	if (!sfmmup->sfmmu_free)
7998 		sfmmu_check_page_sizes(sfmmup, 0);
7999 }
8000 
8001 /* ARGSUSED */
8002 static int
8003 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8004 {
8005 	/* void *buf is sfmmu_t pointer */
8006 	return (0);
8007 }
8008 
8009 /* ARGSUSED */
8010 static void
8011 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8012 {
8013 	/* void *buf is sfmmu_t pointer */
8014 }
8015 
8016 /*
8017  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8018  * field to be the pa of this hmeblk
8019  */
8020 /* ARGSUSED */
8021 static int
8022 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8023 {
8024 	struct hme_blk *hmeblkp;
8025 
8026 	bzero(buf, (size_t)cdrarg);
8027 	hmeblkp = (struct hme_blk *)buf;
8028 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8029 
8030 #ifdef	HBLK_TRACE
8031 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8032 #endif	/* HBLK_TRACE */
8033 
8034 	return (0);
8035 }
8036 
8037 /* ARGSUSED */
8038 static void
8039 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8040 {
8041 
8042 #ifdef	HBLK_TRACE
8043 
8044 	struct hme_blk *hmeblkp;
8045 
8046 	hmeblkp = (struct hme_blk *)buf;
8047 	mutex_destroy(&hmeblkp->hblk_audit_lock);
8048 
8049 #endif	/* HBLK_TRACE */
8050 }
8051 
8052 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8053 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8054 /*
8055  * The kmem allocator will callback into our reclaim routine when the system
8056  * is running low in memory.  We traverse the hash and free up all unused but
8057  * still cached hme_blks.  We also traverse the free list and free them up
8058  * as well.
8059  */
8060 /*ARGSUSED*/
8061 static void
8062 sfmmu_hblkcache_reclaim(void *cdrarg)
8063 {
8064 	int i;
8065 	uint64_t hblkpa, prevpa, nx_pa;
8066 	struct hmehash_bucket *hmebp;
8067 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
8068 	static struct hmehash_bucket *uhmehash_reclaim_hand;
8069 	static struct hmehash_bucket *khmehash_reclaim_hand;
8070 	struct hme_blk *list = NULL;
8071 
8072 	hmebp = uhmehash_reclaim_hand;
8073 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
8074 		uhmehash_reclaim_hand = hmebp = uhme_hash;
8075 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8076 
8077 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8078 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8079 			hmeblkp = hmebp->hmeblkp;
8080 			hblkpa = hmebp->hmeh_nextpa;
8081 			prevpa = 0;
8082 			pr_hblk = NULL;
8083 			while (hmeblkp) {
8084 				nx_hblk = hmeblkp->hblk_next;
8085 				nx_pa = hmeblkp->hblk_nextpa;
8086 				if (!hmeblkp->hblk_vcnt &&
8087 				    !hmeblkp->hblk_hmecnt) {
8088 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8089 						prevpa, pr_hblk);
8090 					sfmmu_hblk_free(hmebp, hmeblkp,
8091 					    hblkpa, &list);
8092 				} else {
8093 					pr_hblk = hmeblkp;
8094 					prevpa = hblkpa;
8095 				}
8096 				hmeblkp = nx_hblk;
8097 				hblkpa = nx_pa;
8098 			}
8099 			SFMMU_HASH_UNLOCK(hmebp);
8100 		}
8101 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
8102 			hmebp = uhme_hash;
8103 	}
8104 
8105 	hmebp = khmehash_reclaim_hand;
8106 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
8107 		khmehash_reclaim_hand = hmebp = khme_hash;
8108 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8109 
8110 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8111 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8112 			hmeblkp = hmebp->hmeblkp;
8113 			hblkpa = hmebp->hmeh_nextpa;
8114 			prevpa = 0;
8115 			pr_hblk = NULL;
8116 			while (hmeblkp) {
8117 				nx_hblk = hmeblkp->hblk_next;
8118 				nx_pa = hmeblkp->hblk_nextpa;
8119 				if (!hmeblkp->hblk_vcnt &&
8120 				    !hmeblkp->hblk_hmecnt) {
8121 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8122 						prevpa, pr_hblk);
8123 					sfmmu_hblk_free(hmebp, hmeblkp,
8124 					    hblkpa, &list);
8125 				} else {
8126 					pr_hblk = hmeblkp;
8127 					prevpa = hblkpa;
8128 				}
8129 				hmeblkp = nx_hblk;
8130 				hblkpa = nx_pa;
8131 			}
8132 			SFMMU_HASH_UNLOCK(hmebp);
8133 		}
8134 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
8135 			hmebp = khme_hash;
8136 	}
8137 	sfmmu_hblks_list_purge(&list);
8138 }
8139 
8140 /*
8141  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
8142  * same goes for sfmmu_get_addrvcolor().
8143  *
8144  * This function will return the virtual color for the specified page. The
8145  * virtual color corresponds to this page current mapping or its last mapping.
8146  * It is used by memory allocators to choose addresses with the correct
8147  * alignment so vac consistency is automatically maintained.  If the page
8148  * has no color it returns -1.
8149  */
8150 /*ARGSUSED*/
8151 int
8152 sfmmu_get_ppvcolor(struct page *pp)
8153 {
8154 #ifdef VAC
8155 	int color;
8156 
8157 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
8158 		return (-1);
8159 	}
8160 	color = PP_GET_VCOLOR(pp);
8161 	ASSERT(color < mmu_btop(shm_alignment));
8162 	return (color);
8163 #else
8164 	return (-1);
8165 #endif	/* VAC */
8166 }
8167 
8168 /*
8169  * This function will return the desired alignment for vac consistency
8170  * (vac color) given a virtual address.  If no vac is present it returns -1.
8171  */
8172 /*ARGSUSED*/
8173 int
8174 sfmmu_get_addrvcolor(caddr_t vaddr)
8175 {
8176 #ifdef VAC
8177 	if (cache & CACHE_VAC) {
8178 		return (addr_to_vcolor(vaddr));
8179 	} else {
8180 		return (-1);
8181 	}
8182 #else
8183 	return (-1);
8184 #endif	/* VAC */
8185 }
8186 
8187 #ifdef VAC
8188 /*
8189  * Check for conflicts.
8190  * A conflict exists if the new and existent mappings do not match in
8191  * their "shm_alignment fields. If conflicts exist, the existant mappings
8192  * are flushed unless one of them is locked. If one of them is locked, then
8193  * the mappings are flushed and converted to non-cacheable mappings.
8194  */
8195 static void
8196 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
8197 {
8198 	struct hat *tmphat;
8199 	struct sf_hment *sfhmep, *tmphme = NULL;
8200 	struct hme_blk *hmeblkp;
8201 	int vcolor;
8202 	tte_t tte;
8203 
8204 	ASSERT(sfmmu_mlist_held(pp));
8205 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
8206 
8207 	vcolor = addr_to_vcolor(addr);
8208 	if (PP_NEWPAGE(pp)) {
8209 		PP_SET_VCOLOR(pp, vcolor);
8210 		return;
8211 	}
8212 
8213 	if (PP_GET_VCOLOR(pp) == vcolor) {
8214 		return;
8215 	}
8216 
8217 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
8218 		/*
8219 		 * Previous user of page had a different color
8220 		 * but since there are no current users
8221 		 * we just flush the cache and change the color.
8222 		 */
8223 		SFMMU_STAT(sf_pgcolor_conflict);
8224 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8225 		PP_SET_VCOLOR(pp, vcolor);
8226 		return;
8227 	}
8228 
8229 	/*
8230 	 * If we get here we have a vac conflict with a current
8231 	 * mapping.  VAC conflict policy is as follows.
8232 	 * - The default is to unload the other mappings unless:
8233 	 * - If we have a large mapping we uncache the page.
8234 	 * We need to uncache the rest of the large page too.
8235 	 * - If any of the mappings are locked we uncache the page.
8236 	 * - If the requested mapping is inconsistent
8237 	 * with another mapping and that mapping
8238 	 * is in the same address space we have to
8239 	 * make it non-cached.  The default thing
8240 	 * to do is unload the inconsistent mapping
8241 	 * but if they are in the same address space
8242 	 * we run the risk of unmapping the pc or the
8243 	 * stack which we will use as we return to the user,
8244 	 * in which case we can then fault on the thing
8245 	 * we just unloaded and get into an infinite loop.
8246 	 */
8247 	if (PP_ISMAPPED_LARGE(pp)) {
8248 		int sz;
8249 
8250 		/*
8251 		 * Existing mapping is for big pages. We don't unload
8252 		 * existing big mappings to satisfy new mappings.
8253 		 * Always convert all mappings to TNC.
8254 		 */
8255 		sz = fnd_mapping_sz(pp);
8256 		pp = PP_GROUPLEADER(pp, sz);
8257 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
8258 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
8259 			TTEPAGES(sz));
8260 
8261 		return;
8262 	}
8263 
8264 	/*
8265 	 * check if any mapping is in same as or if it is locked
8266 	 * since in that case we need to uncache.
8267 	 */
8268 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8269 		tmphme = sfhmep->hme_next;
8270 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8271 		if (hmeblkp->hblk_xhat_bit)
8272 			continue;
8273 		tmphat = hblktosfmmu(hmeblkp);
8274 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
8275 		ASSERT(TTE_IS_VALID(&tte));
8276 		if ((tmphat == hat) || hmeblkp->hblk_lckcnt) {
8277 			/*
8278 			 * We have an uncache conflict
8279 			 */
8280 			SFMMU_STAT(sf_uncache_conflict);
8281 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
8282 			return;
8283 		}
8284 	}
8285 
8286 	/*
8287 	 * We have an unload conflict
8288 	 * We have already checked for LARGE mappings, therefore
8289 	 * the remaining mapping(s) must be TTE8K.
8290 	 */
8291 	SFMMU_STAT(sf_unload_conflict);
8292 
8293 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8294 		tmphme = sfhmep->hme_next;
8295 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8296 		if (hmeblkp->hblk_xhat_bit)
8297 			continue;
8298 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
8299 	}
8300 
8301 	if (PP_ISMAPPED_KPM(pp))
8302 		sfmmu_kpm_vac_unload(pp, addr);
8303 
8304 	/*
8305 	 * Unloads only do TLB flushes so we need to flush the
8306 	 * cache here.
8307 	 */
8308 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8309 	PP_SET_VCOLOR(pp, vcolor);
8310 }
8311 
8312 /*
8313  * Whenever a mapping is unloaded and the page is in TNC state,
8314  * we see if the page can be made cacheable again. 'pp' is
8315  * the page that we just unloaded a mapping from, the size
8316  * of mapping that was unloaded is 'ottesz'.
8317  * Remark:
8318  * The recache policy for mpss pages can leave a performance problem
8319  * under the following circumstances:
8320  * . A large page in uncached mode has just been unmapped.
8321  * . All constituent pages are TNC due to a conflicting small mapping.
8322  * . There are many other, non conflicting, small mappings around for
8323  *   a lot of the constituent pages.
8324  * . We're called w/ the "old" groupleader page and the old ottesz,
8325  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
8326  *   we end up w/ TTE8K or npages == 1.
8327  * . We call tst_tnc w/ the old groupleader only, and if there is no
8328  *   conflict, we re-cache only this page.
8329  * . All other small mappings are not checked and will be left in TNC mode.
8330  * The problem is not very serious because:
8331  * . mpss is actually only defined for heap and stack, so the probability
8332  *   is not very high that a large page mapping exists in parallel to a small
8333  *   one (this is possible, but seems to be bad programming style in the
8334  *   appl).
8335  * . The problem gets a little bit more serious, when those TNC pages
8336  *   have to be mapped into kernel space, e.g. for networking.
8337  * . When VAC alias conflicts occur in applications, this is regarded
8338  *   as an application bug. So if kstat's show them, the appl should
8339  *   be changed anyway.
8340  */
8341 void
8342 conv_tnc(page_t *pp, int ottesz)
8343 {
8344 	int cursz, dosz;
8345 	pgcnt_t curnpgs, dopgs;
8346 	pgcnt_t pg64k;
8347 	page_t *pp2;
8348 
8349 	/*
8350 	 * Determine how big a range we check for TNC and find
8351 	 * leader page. cursz is the size of the biggest
8352 	 * mapping that still exist on 'pp'.
8353 	 */
8354 	if (PP_ISMAPPED_LARGE(pp)) {
8355 		cursz = fnd_mapping_sz(pp);
8356 	} else {
8357 		cursz = TTE8K;
8358 	}
8359 
8360 	if (ottesz >= cursz) {
8361 		dosz = ottesz;
8362 		pp2 = pp;
8363 	} else {
8364 		dosz = cursz;
8365 		pp2 = PP_GROUPLEADER(pp, dosz);
8366 	}
8367 
8368 	pg64k = TTEPAGES(TTE64K);
8369 	dopgs = TTEPAGES(dosz);
8370 
8371 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
8372 
8373 	while (dopgs != 0) {
8374 		curnpgs = TTEPAGES(cursz);
8375 		if (tst_tnc(pp2, curnpgs)) {
8376 			SFMMU_STAT_ADD(sf_recache, curnpgs);
8377 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
8378 				curnpgs);
8379 		}
8380 
8381 		ASSERT(dopgs >= curnpgs);
8382 		dopgs -= curnpgs;
8383 
8384 		if (dopgs == 0) {
8385 			break;
8386 		}
8387 
8388 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
8389 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
8390 			cursz = fnd_mapping_sz(pp2);
8391 		} else {
8392 			cursz = TTE8K;
8393 		}
8394 	}
8395 }
8396 
8397 /*
8398  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
8399  * returns 0 otherwise. Note that oaddr argument is valid for only
8400  * 8k pages.
8401  */
8402 int
8403 tst_tnc(page_t *pp, pgcnt_t npages)
8404 {
8405 	struct	sf_hment *sfhme;
8406 	struct	hme_blk *hmeblkp;
8407 	tte_t	tte;
8408 	caddr_t	vaddr;
8409 	int	clr_valid = 0;
8410 	int 	color, color1, bcolor;
8411 	int	i, ncolors;
8412 
8413 	ASSERT(pp != NULL);
8414 	ASSERT(!(cache & CACHE_WRITEBACK));
8415 
8416 	if (npages > 1) {
8417 		ncolors = CACHE_NUM_COLOR;
8418 	}
8419 
8420 	for (i = 0; i < npages; i++) {
8421 		ASSERT(sfmmu_mlist_held(pp));
8422 		ASSERT(PP_ISTNC(pp));
8423 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
8424 
8425 		if (PP_ISPNC(pp)) {
8426 			return (0);
8427 		}
8428 
8429 		clr_valid = 0;
8430 		if (PP_ISMAPPED_KPM(pp)) {
8431 			caddr_t kpmvaddr;
8432 
8433 			ASSERT(kpm_enable);
8434 			kpmvaddr = hat_kpm_page2va(pp, 1);
8435 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
8436 			color1 = addr_to_vcolor(kpmvaddr);
8437 			clr_valid = 1;
8438 		}
8439 
8440 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8441 			hmeblkp = sfmmu_hmetohblk(sfhme);
8442 			if (hmeblkp->hblk_xhat_bit)
8443 				continue;
8444 
8445 			sfmmu_copytte(&sfhme->hme_tte, &tte);
8446 			ASSERT(TTE_IS_VALID(&tte));
8447 
8448 			vaddr = tte_to_vaddr(hmeblkp, tte);
8449 			color = addr_to_vcolor(vaddr);
8450 
8451 			if (npages > 1) {
8452 				/*
8453 				 * If there is a big mapping, make sure
8454 				 * 8K mapping is consistent with the big
8455 				 * mapping.
8456 				 */
8457 				bcolor = i % ncolors;
8458 				if (color != bcolor) {
8459 					return (0);
8460 				}
8461 			}
8462 			if (!clr_valid) {
8463 				clr_valid = 1;
8464 				color1 = color;
8465 			}
8466 
8467 			if (color1 != color) {
8468 				return (0);
8469 			}
8470 		}
8471 
8472 		pp = PP_PAGENEXT(pp);
8473 	}
8474 
8475 	return (1);
8476 }
8477 
8478 void
8479 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
8480 	pgcnt_t npages)
8481 {
8482 	kmutex_t *pmtx;
8483 	int i, ncolors, bcolor;
8484 	kpm_hlk_t *kpmp;
8485 	cpuset_t cpuset;
8486 
8487 	ASSERT(pp != NULL);
8488 	ASSERT(!(cache & CACHE_WRITEBACK));
8489 
8490 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
8491 	pmtx = sfmmu_page_enter(pp);
8492 
8493 	/*
8494 	 * Fast path caching single unmapped page
8495 	 */
8496 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
8497 	    flags == HAT_CACHE) {
8498 		PP_CLRTNC(pp);
8499 		PP_CLRPNC(pp);
8500 		sfmmu_page_exit(pmtx);
8501 		sfmmu_kpm_kpmp_exit(kpmp);
8502 		return;
8503 	}
8504 
8505 	/*
8506 	 * We need to capture all cpus in order to change cacheability
8507 	 * because we can't allow one cpu to access the same physical
8508 	 * page using a cacheable and a non-cachebale mapping at the same
8509 	 * time. Since we may end up walking the ism mapping list
8510 	 * have to grab it's lock now since we can't after all the
8511 	 * cpus have been captured.
8512 	 */
8513 	sfmmu_hat_lock_all();
8514 	mutex_enter(&ism_mlist_lock);
8515 	kpreempt_disable();
8516 	cpuset = cpu_ready_set;
8517 	xc_attention(cpuset);
8518 
8519 	if (npages > 1) {
8520 		/*
8521 		 * Make sure all colors are flushed since the
8522 		 * sfmmu_page_cache() only flushes one color-
8523 		 * it does not know big pages.
8524 		 */
8525 		ncolors = CACHE_NUM_COLOR;
8526 		if (flags & HAT_TMPNC) {
8527 			for (i = 0; i < ncolors; i++) {
8528 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
8529 			}
8530 			cache_flush_flag = CACHE_NO_FLUSH;
8531 		}
8532 	}
8533 
8534 	for (i = 0; i < npages; i++) {
8535 
8536 		ASSERT(sfmmu_mlist_held(pp));
8537 
8538 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
8539 
8540 			if (npages > 1) {
8541 				bcolor = i % ncolors;
8542 			} else {
8543 				bcolor = NO_VCOLOR;
8544 			}
8545 
8546 			sfmmu_page_cache(pp, flags, cache_flush_flag,
8547 			    bcolor);
8548 		}
8549 
8550 		pp = PP_PAGENEXT(pp);
8551 	}
8552 
8553 	xt_sync(cpuset);
8554 	xc_dismissed(cpuset);
8555 	mutex_exit(&ism_mlist_lock);
8556 	sfmmu_hat_unlock_all();
8557 	sfmmu_page_exit(pmtx);
8558 	sfmmu_kpm_kpmp_exit(kpmp);
8559 	kpreempt_enable();
8560 }
8561 
8562 /*
8563  * This function changes the virtual cacheability of all mappings to a
8564  * particular page.  When changing from uncache to cacheable the mappings will
8565  * only be changed if all of them have the same virtual color.
8566  * We need to flush the cache in all cpus.  It is possible that
8567  * a process referenced a page as cacheable but has sinced exited
8568  * and cleared the mapping list.  We still to flush it but have no
8569  * state so all cpus is the only alternative.
8570  */
8571 static void
8572 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
8573 {
8574 	struct	sf_hment *sfhme;
8575 	struct	hme_blk *hmeblkp;
8576 	sfmmu_t *sfmmup;
8577 	tte_t	tte, ttemod;
8578 	caddr_t	vaddr;
8579 	int	ret, color;
8580 	pfn_t	pfn;
8581 
8582 	color = bcolor;
8583 	pfn = pp->p_pagenum;
8584 
8585 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8586 
8587 		hmeblkp = sfmmu_hmetohblk(sfhme);
8588 
8589 		if (hmeblkp->hblk_xhat_bit)
8590 			continue;
8591 
8592 		sfmmu_copytte(&sfhme->hme_tte, &tte);
8593 		ASSERT(TTE_IS_VALID(&tte));
8594 		vaddr = tte_to_vaddr(hmeblkp, tte);
8595 		color = addr_to_vcolor(vaddr);
8596 
8597 #ifdef DEBUG
8598 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
8599 			ASSERT(color == bcolor);
8600 		}
8601 #endif
8602 
8603 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
8604 
8605 		ttemod = tte;
8606 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
8607 			TTE_CLR_VCACHEABLE(&ttemod);
8608 		} else {	/* flags & HAT_CACHE */
8609 			TTE_SET_VCACHEABLE(&ttemod);
8610 		}
8611 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
8612 		if (ret < 0) {
8613 			/*
8614 			 * Since all cpus are captured modifytte should not
8615 			 * fail.
8616 			 */
8617 			panic("sfmmu_page_cache: write to tte failed");
8618 		}
8619 
8620 		sfmmup = hblktosfmmu(hmeblkp);
8621 		if (cache_flush_flag == CACHE_FLUSH) {
8622 			/*
8623 			 * Flush TSBs, TLBs and caches
8624 			 */
8625 			if (sfmmup->sfmmu_ismhat) {
8626 				if (flags & HAT_CACHE) {
8627 					SFMMU_STAT(sf_ism_recache);
8628 				} else {
8629 					SFMMU_STAT(sf_ism_uncache);
8630 				}
8631 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8632 				    pfn, CACHE_FLUSH);
8633 			} else {
8634 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
8635 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
8636 			}
8637 
8638 			/*
8639 			 * all cache entries belonging to this pfn are
8640 			 * now flushed.
8641 			 */
8642 			cache_flush_flag = CACHE_NO_FLUSH;
8643 		} else {
8644 
8645 			/*
8646 			 * Flush only TSBs and TLBs.
8647 			 */
8648 			if (sfmmup->sfmmu_ismhat) {
8649 				if (flags & HAT_CACHE) {
8650 					SFMMU_STAT(sf_ism_recache);
8651 				} else {
8652 					SFMMU_STAT(sf_ism_uncache);
8653 				}
8654 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8655 				    pfn, CACHE_NO_FLUSH);
8656 			} else {
8657 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
8658 			}
8659 		}
8660 	}
8661 
8662 	if (PP_ISMAPPED_KPM(pp))
8663 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
8664 
8665 	switch (flags) {
8666 
8667 		default:
8668 			panic("sfmmu_pagecache: unknown flags");
8669 			break;
8670 
8671 		case HAT_CACHE:
8672 			PP_CLRTNC(pp);
8673 			PP_CLRPNC(pp);
8674 			PP_SET_VCOLOR(pp, color);
8675 			break;
8676 
8677 		case HAT_TMPNC:
8678 			PP_SETTNC(pp);
8679 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8680 			break;
8681 
8682 		case HAT_UNCACHE:
8683 			PP_SETPNC(pp);
8684 			PP_CLRTNC(pp);
8685 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8686 			break;
8687 	}
8688 }
8689 #endif	/* VAC */
8690 
8691 
8692 /*
8693  * Wrapper routine used to return a context.
8694  *
8695  * It's the responsibility of the caller to guarantee that the
8696  * process serializes on calls here by taking the HAT lock for
8697  * the hat.
8698  *
8699  */
8700 static void
8701 sfmmu_get_ctx(sfmmu_t *sfmmup)
8702 {
8703 	mmu_ctx_t *mmu_ctxp;
8704 	uint_t pstate_save;
8705 
8706 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8707 	ASSERT(sfmmup != ksfmmup);
8708 
8709 	kpreempt_disable();
8710 
8711 	mmu_ctxp = CPU_MMU_CTXP(CPU);
8712 	ASSERT(mmu_ctxp);
8713 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
8714 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
8715 
8716 	/*
8717 	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
8718 	 */
8719 	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
8720 		sfmmu_ctx_wrap_around(mmu_ctxp);
8721 
8722 	/*
8723 	 * Let the MMU set up the page sizes to use for
8724 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
8725 	 */
8726 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
8727 		mmu_set_ctx_page_sizes(sfmmup);
8728 	}
8729 
8730 	/*
8731 	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
8732 	 * interrupts disabled to prevent race condition with wrap-around
8733 	 * ctx invalidatation. In sun4v, ctx invalidation also involves
8734 	 * a HV call to set the number of TSBs to 0. If interrupts are not
8735 	 * disabled until after sfmmu_load_mmustate is complete TSBs may
8736 	 * become assigned to INVALID_CONTEXT. This is not allowed.
8737 	 */
8738 	pstate_save = sfmmu_disable_intrs();
8739 
8740 	sfmmu_alloc_ctx(sfmmup, 1, CPU);
8741 	sfmmu_load_mmustate(sfmmup);
8742 
8743 	sfmmu_enable_intrs(pstate_save);
8744 
8745 	kpreempt_enable();
8746 }
8747 
8748 /*
8749  * When all cnums are used up in a MMU, cnum will wrap around to the
8750  * next generation and start from 2.
8751  */
8752 static void
8753 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp)
8754 {
8755 
8756 	/* caller must have disabled the preemption */
8757 	ASSERT(curthread->t_preempt >= 1);
8758 	ASSERT(mmu_ctxp != NULL);
8759 
8760 	/* acquire Per-MMU (PM) spin lock */
8761 	mutex_enter(&mmu_ctxp->mmu_lock);
8762 
8763 	/* re-check to see if wrap-around is needed */
8764 	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
8765 		goto done;
8766 
8767 	SFMMU_MMU_STAT(mmu_wrap_around);
8768 
8769 	/* update gnum */
8770 	ASSERT(mmu_ctxp->mmu_gnum != 0);
8771 	mmu_ctxp->mmu_gnum++;
8772 	if (mmu_ctxp->mmu_gnum == 0 ||
8773 	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
8774 		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
8775 		    (void *)mmu_ctxp);
8776 	}
8777 
8778 	if (mmu_ctxp->mmu_ncpus > 1) {
8779 		cpuset_t cpuset;
8780 
8781 		membar_enter(); /* make sure updated gnum visible */
8782 
8783 		SFMMU_XCALL_STATS(NULL);
8784 
8785 		/* xcall to others on the same MMU to invalidate ctx */
8786 		cpuset = mmu_ctxp->mmu_cpuset;
8787 		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id));
8788 		CPUSET_DEL(cpuset, CPU->cpu_id);
8789 		CPUSET_AND(cpuset, cpu_ready_set);
8790 
8791 		/*
8792 		 * Pass in INVALID_CONTEXT as the first parameter to
8793 		 * sfmmu_raise_tsb_exception, which invalidates the context
8794 		 * of any process running on the CPUs in the MMU.
8795 		 */
8796 		xt_some(cpuset, sfmmu_raise_tsb_exception,
8797 		    INVALID_CONTEXT, INVALID_CONTEXT);
8798 		xt_sync(cpuset);
8799 
8800 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
8801 	}
8802 
8803 	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
8804 		sfmmu_setctx_sec(INVALID_CONTEXT);
8805 		sfmmu_clear_utsbinfo();
8806 	}
8807 
8808 	/*
8809 	 * No xcall is needed here. For sun4u systems all CPUs in context
8810 	 * domain share a single physical MMU therefore it's enough to flush
8811 	 * TLB on local CPU. On sun4v systems we use 1 global context
8812 	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
8813 	 * handler. Note that vtag_flushall_uctxs() is called
8814 	 * for Ultra II machine, where the equivalent flushall functionality
8815 	 * is implemented in SW, and only user ctx TLB entries are flushed.
8816 	 */
8817 	if (&vtag_flushall_uctxs != NULL) {
8818 		vtag_flushall_uctxs();
8819 	} else {
8820 		vtag_flushall();
8821 	}
8822 
8823 	/* reset mmu cnum, skips cnum 0 and 1 */
8824 	mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
8825 
8826 done:
8827 	mutex_exit(&mmu_ctxp->mmu_lock);
8828 }
8829 
8830 
8831 /*
8832  * For multi-threaded process, set the process context to INVALID_CONTEXT
8833  * so that it faults and reloads the MMU state from TL=0. For single-threaded
8834  * process, we can just load the MMU state directly without having to
8835  * set context invalid. Caller must hold the hat lock since we don't
8836  * acquire it here.
8837  */
8838 static void
8839 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
8840 {
8841 	uint_t cnum;
8842 	uint_t pstate_save;
8843 
8844 	ASSERT(sfmmup != ksfmmup);
8845 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8846 
8847 	kpreempt_disable();
8848 
8849 	/*
8850 	 * We check whether the pass'ed-in sfmmup is the same as the
8851 	 * current running proc. This is to makes sure the current proc
8852 	 * stays single-threaded if it already is.
8853 	 */
8854 	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
8855 	    (curthread->t_procp->p_lwpcnt == 1)) {
8856 		/* single-thread */
8857 		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
8858 		if (cnum != INVALID_CONTEXT) {
8859 			uint_t curcnum;
8860 			/*
8861 			 * Disable interrupts to prevent race condition
8862 			 * with sfmmu_ctx_wrap_around ctx invalidation.
8863 			 * In sun4v, ctx invalidation involves setting
8864 			 * TSB to NULL, hence, interrupts should be disabled
8865 			 * untill after sfmmu_load_mmustate is completed.
8866 			 */
8867 			pstate_save = sfmmu_disable_intrs();
8868 			curcnum = sfmmu_getctx_sec();
8869 			if (curcnum == cnum)
8870 				sfmmu_load_mmustate(sfmmup);
8871 			sfmmu_enable_intrs(pstate_save);
8872 			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
8873 		}
8874 	} else {
8875 		/*
8876 		 * multi-thread
8877 		 * or when sfmmup is not the same as the curproc.
8878 		 */
8879 		sfmmu_invalidate_ctx(sfmmup);
8880 	}
8881 
8882 	kpreempt_enable();
8883 }
8884 
8885 
8886 /*
8887  * Replace the specified TSB with a new TSB.  This function gets called when
8888  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
8889  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
8890  * (8K).
8891  *
8892  * Caller must hold the HAT lock, but should assume any tsb_info
8893  * pointers it has are no longer valid after calling this function.
8894  *
8895  * Return values:
8896  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
8897  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
8898  *			something to this tsbinfo/TSB
8899  *	TSB_SUCCESS	Operation succeeded
8900  */
8901 static tsb_replace_rc_t
8902 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
8903     hatlock_t *hatlockp, uint_t flags)
8904 {
8905 	struct tsb_info *new_tsbinfo = NULL;
8906 	struct tsb_info *curtsb, *prevtsb;
8907 	uint_t tte_sz_mask;
8908 	int i;
8909 
8910 	ASSERT(sfmmup != ksfmmup);
8911 	ASSERT(sfmmup->sfmmu_ismhat == 0);
8912 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8913 	ASSERT(szc <= tsb_max_growsize);
8914 
8915 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
8916 		return (TSB_LOSTRACE);
8917 
8918 	/*
8919 	 * Find the tsb_info ahead of this one in the list, and
8920 	 * also make sure that the tsb_info passed in really
8921 	 * exists!
8922 	 */
8923 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8924 	    curtsb != old_tsbinfo && curtsb != NULL;
8925 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8926 	ASSERT(curtsb != NULL);
8927 
8928 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8929 		/*
8930 		 * The process is swapped out, so just set the new size
8931 		 * code.  When it swaps back in, we'll allocate a new one
8932 		 * of the new chosen size.
8933 		 */
8934 		curtsb->tsb_szc = szc;
8935 		return (TSB_SUCCESS);
8936 	}
8937 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
8938 
8939 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
8940 
8941 	/*
8942 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
8943 	 * If we fail to allocate a TSB, exit.
8944 	 */
8945 	sfmmu_hat_exit(hatlockp);
8946 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, tte_sz_mask,
8947 	    flags, sfmmup)) {
8948 		(void) sfmmu_hat_enter(sfmmup);
8949 		if (!(flags & TSB_SWAPIN))
8950 			SFMMU_STAT(sf_tsb_resize_failures);
8951 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8952 		return (TSB_ALLOCFAIL);
8953 	}
8954 	(void) sfmmu_hat_enter(sfmmup);
8955 
8956 	/*
8957 	 * Re-check to make sure somebody else didn't muck with us while we
8958 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
8959 	 * exit; this can happen if we try to shrink the TSB from the context
8960 	 * of another process (such as on an ISM unmap), though it is rare.
8961 	 */
8962 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8963 		SFMMU_STAT(sf_tsb_resize_failures);
8964 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8965 		sfmmu_hat_exit(hatlockp);
8966 		sfmmu_tsbinfo_free(new_tsbinfo);
8967 		(void) sfmmu_hat_enter(sfmmup);
8968 		return (TSB_LOSTRACE);
8969 	}
8970 
8971 #ifdef	DEBUG
8972 	/* Reverify that the tsb_info still exists.. for debugging only */
8973 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8974 	    curtsb != old_tsbinfo && curtsb != NULL;
8975 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8976 	ASSERT(curtsb != NULL);
8977 #endif	/* DEBUG */
8978 
8979 	/*
8980 	 * Quiesce any CPUs running this process on their next TLB miss
8981 	 * so they atomically see the new tsb_info.  We temporarily set the
8982 	 * context to invalid context so new threads that come on processor
8983 	 * after we do the xcall to cpusran will also serialize behind the
8984 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
8985 	 * race with a new thread coming on processor is relatively rare,
8986 	 * this synchronization mechanism should be cheaper than always
8987 	 * pausing all CPUs for the duration of the setup, which is what
8988 	 * the old implementation did.  This is particuarly true if we are
8989 	 * copying a huge chunk of memory around during that window.
8990 	 *
8991 	 * The memory barriers are to make sure things stay consistent
8992 	 * with resume() since it does not hold the HAT lock while
8993 	 * walking the list of tsb_info structures.
8994 	 */
8995 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
8996 		/* The TSB is either growing or shrinking. */
8997 		sfmmu_invalidate_ctx(sfmmup);
8998 	} else {
8999 		/*
9000 		 * It is illegal to swap in TSBs from a process other
9001 		 * than a process being swapped in.  This in turn
9002 		 * implies we do not have a valid MMU context here
9003 		 * since a process needs one to resolve translation
9004 		 * misses.
9005 		 */
9006 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
9007 	}
9008 
9009 #ifdef DEBUG
9010 	ASSERT(max_mmu_ctxdoms > 0);
9011 
9012 	/*
9013 	 * Process should have INVALID_CONTEXT on all MMUs
9014 	 */
9015 	for (i = 0; i < max_mmu_ctxdoms; i++) {
9016 
9017 		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
9018 	}
9019 #endif
9020 
9021 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
9022 	membar_stst();	/* strict ordering required */
9023 	if (prevtsb)
9024 		prevtsb->tsb_next = new_tsbinfo;
9025 	else
9026 		sfmmup->sfmmu_tsb = new_tsbinfo;
9027 	membar_enter();	/* make sure new TSB globally visible */
9028 	sfmmu_setup_tsbinfo(sfmmup);
9029 
9030 	/*
9031 	 * We need to migrate TSB entries from the old TSB to the new TSB
9032 	 * if tsb_remap_ttes is set and the TSB is growing.
9033 	 */
9034 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9035 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9036 
9037 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9038 
9039 	/*
9040 	 * Drop the HAT lock to free our old tsb_info.
9041 	 */
9042 	sfmmu_hat_exit(hatlockp);
9043 
9044 	if ((flags & TSB_GROW) == TSB_GROW) {
9045 		SFMMU_STAT(sf_tsb_grow);
9046 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9047 		SFMMU_STAT(sf_tsb_shrink);
9048 	}
9049 
9050 	sfmmu_tsbinfo_free(old_tsbinfo);
9051 
9052 	(void) sfmmu_hat_enter(sfmmup);
9053 	return (TSB_SUCCESS);
9054 }
9055 
9056 /*
9057  * This function will re-program hat pgsz array, and invalidate the
9058  * process' context, forcing the process to switch to another
9059  * context on the next TLB miss, and therefore start using the
9060  * TLB that is reprogrammed for the new page sizes.
9061  */
9062 void
9063 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9064 {
9065 	int i;
9066 	hatlock_t *hatlockp = NULL;
9067 
9068 	hatlockp = sfmmu_hat_enter(sfmmup);
9069 	/* USIII+-IV+ optimization, requires hat lock */
9070 	if (tmp_pgsz) {
9071 		for (i = 0; i < mmu_page_sizes; i++)
9072 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
9073 	}
9074 	SFMMU_STAT(sf_tlb_reprog_pgsz);
9075 
9076 	sfmmu_invalidate_ctx(sfmmup);
9077 
9078 	sfmmu_hat_exit(hatlockp);
9079 }
9080 
9081 /*
9082  * This function assumes that there are either four or six supported page
9083  * sizes and at most two programmable TLBs, so we need to decide which
9084  * page sizes are most important and then tell the MMU layer so it
9085  * can adjust the TLB page sizes accordingly (if supported).
9086  *
9087  * If these assumptions change, this function will need to be
9088  * updated to support whatever the new limits are.
9089  *
9090  * The growing flag is nonzero if we are growing the address space,
9091  * and zero if it is shrinking.  This allows us to decide whether
9092  * to grow or shrink our TSB, depending upon available memory
9093  * conditions.
9094  */
9095 static void
9096 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
9097 {
9098 	uint64_t ttecnt[MMU_PAGE_SIZES];
9099 	uint64_t tte8k_cnt, tte4m_cnt;
9100 	uint8_t i;
9101 	int sectsb_thresh;
9102 
9103 	/*
9104 	 * Kernel threads, processes with small address spaces not using
9105 	 * large pages, and dummy ISM HATs need not apply.
9106 	 */
9107 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
9108 		return;
9109 
9110 	if ((sfmmup->sfmmu_flags & HAT_LGPG_FLAGS) == 0 &&
9111 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
9112 		return;
9113 
9114 	for (i = 0; i < mmu_page_sizes; i++) {
9115 		ttecnt[i] = SFMMU_TTE_CNT(sfmmup, i);
9116 	}
9117 
9118 	/* Check pagesizes in use, and possibly reprogram DTLB. */
9119 	if (&mmu_check_page_sizes)
9120 		mmu_check_page_sizes(sfmmup, ttecnt);
9121 
9122 	/*
9123 	 * Calculate the number of 8k ttes to represent the span of these
9124 	 * pages.
9125 	 */
9126 	tte8k_cnt = ttecnt[TTE8K] +
9127 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
9128 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
9129 	if (mmu_page_sizes == max_mmu_page_sizes) {
9130 		tte4m_cnt = ttecnt[TTE4M] +
9131 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
9132 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
9133 	} else {
9134 		tte4m_cnt = ttecnt[TTE4M];
9135 	}
9136 
9137 	/*
9138 	 * Inflate TSB sizes by a factor of 2 if this process
9139 	 * uses 4M text pages to minimize extra conflict misses
9140 	 * in the first TSB since without counting text pages
9141 	 * 8K TSB may become too small.
9142 	 *
9143 	 * Also double the size of the second TSB to minimize
9144 	 * extra conflict misses due to competition between 4M text pages
9145 	 * and data pages.
9146 	 *
9147 	 * We need to adjust the second TSB allocation threshold by the
9148 	 * inflation factor, since there is no point in creating a second
9149 	 * TSB when we know all the mappings can fit in the I/D TLBs.
9150 	 */
9151 	sectsb_thresh = tsb_sectsb_threshold;
9152 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
9153 		tte8k_cnt <<= 1;
9154 		tte4m_cnt <<= 1;
9155 		sectsb_thresh <<= 1;
9156 	}
9157 
9158 	/*
9159 	 * Check to see if our TSB is the right size; we may need to
9160 	 * grow or shrink it.  If the process is small, our work is
9161 	 * finished at this point.
9162 	 */
9163 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
9164 		return;
9165 	}
9166 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
9167 }
9168 
9169 static void
9170 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
9171 	uint64_t tte4m_cnt, int sectsb_thresh)
9172 {
9173 	int tsb_bits;
9174 	uint_t tsb_szc;
9175 	struct tsb_info *tsbinfop;
9176 	hatlock_t *hatlockp = NULL;
9177 
9178 	hatlockp = sfmmu_hat_enter(sfmmup);
9179 	ASSERT(hatlockp != NULL);
9180 	tsbinfop = sfmmup->sfmmu_tsb;
9181 	ASSERT(tsbinfop != NULL);
9182 
9183 	/*
9184 	 * If we're growing, select the size based on RSS.  If we're
9185 	 * shrinking, leave some room so we don't have to turn around and
9186 	 * grow again immediately.
9187 	 */
9188 	if (growing)
9189 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
9190 	else
9191 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
9192 
9193 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9194 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9195 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9196 		    hatlockp, TSB_SHRINK);
9197 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
9198 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9199 		    hatlockp, TSB_GROW);
9200 	}
9201 	tsbinfop = sfmmup->sfmmu_tsb;
9202 
9203 	/*
9204 	 * With the TLB and first TSB out of the way, we need to see if
9205 	 * we need a second TSB for 4M pages.  If we managed to reprogram
9206 	 * the TLB page sizes above, the process will start using this new
9207 	 * TSB right away; otherwise, it will start using it on the next
9208 	 * context switch.  Either way, it's no big deal so there's no
9209 	 * synchronization with the trap handlers here unless we grow the
9210 	 * TSB (in which case it's required to prevent using the old one
9211 	 * after it's freed). Note: second tsb is required for 32M/256M
9212 	 * page sizes.
9213 	 */
9214 	if (tte4m_cnt > sectsb_thresh) {
9215 		/*
9216 		 * If we're growing, select the size based on RSS.  If we're
9217 		 * shrinking, leave some room so we don't have to turn
9218 		 * around and grow again immediately.
9219 		 */
9220 		if (growing)
9221 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
9222 		else
9223 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
9224 		if (tsbinfop->tsb_next == NULL) {
9225 			struct tsb_info *newtsb;
9226 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
9227 			    0 : TSB_ALLOC;
9228 
9229 			sfmmu_hat_exit(hatlockp);
9230 
9231 			/*
9232 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
9233 			 * can't get the size we want, retry w/a minimum sized
9234 			 * TSB.  If that still didn't work, give up; we can
9235 			 * still run without one.
9236 			 */
9237 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
9238 			    TSB4M|TSB32M|TSB256M:TSB4M;
9239 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
9240 			    allocflags, sfmmup) != 0) &&
9241 			    (sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
9242 			    tsb_bits, allocflags, sfmmup) != 0)) {
9243 				return;
9244 			}
9245 
9246 			hatlockp = sfmmu_hat_enter(sfmmup);
9247 
9248 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
9249 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
9250 				SFMMU_STAT(sf_tsb_sectsb_create);
9251 				sfmmu_setup_tsbinfo(sfmmup);
9252 				sfmmu_hat_exit(hatlockp);
9253 				return;
9254 			} else {
9255 				/*
9256 				 * It's annoying, but possible for us
9257 				 * to get here.. we dropped the HAT lock
9258 				 * because of locking order in the kmem
9259 				 * allocator, and while we were off getting
9260 				 * our memory, some other thread decided to
9261 				 * do us a favor and won the race to get a
9262 				 * second TSB for this process.  Sigh.
9263 				 */
9264 				sfmmu_hat_exit(hatlockp);
9265 				sfmmu_tsbinfo_free(newtsb);
9266 				return;
9267 			}
9268 		}
9269 
9270 		/*
9271 		 * We have a second TSB, see if it's big enough.
9272 		 */
9273 		tsbinfop = tsbinfop->tsb_next;
9274 
9275 		/*
9276 		 * Check to see if our second TSB is the right size;
9277 		 * we may need to grow or shrink it.
9278 		 * To prevent thrashing (e.g. growing the TSB on a
9279 		 * subsequent map operation), only try to shrink if
9280 		 * the TSB reach exceeds twice the virtual address
9281 		 * space size.
9282 		 */
9283 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9284 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9285 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9286 			    tsb_szc, hatlockp, TSB_SHRINK);
9287 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
9288 		    TSB_OK_GROW()) {
9289 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9290 			    tsb_szc, hatlockp, TSB_GROW);
9291 		}
9292 	}
9293 
9294 	sfmmu_hat_exit(hatlockp);
9295 }
9296 
9297 /*
9298  * Free up a sfmmu
9299  * Since the sfmmu is currently embedded in the hat struct we simply zero
9300  * out our fields and free up the ism map blk list if any.
9301  */
9302 static void
9303 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
9304 {
9305 	ism_blk_t	*blkp, *nx_blkp;
9306 #ifdef	DEBUG
9307 	ism_map_t	*map;
9308 	int 		i;
9309 #endif
9310 
9311 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
9312 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
9313 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
9314 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
9315 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
9316 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
9317 
9318 	sfmmup->sfmmu_free = 0;
9319 	sfmmup->sfmmu_ismhat = 0;
9320 
9321 	blkp = sfmmup->sfmmu_iblk;
9322 	sfmmup->sfmmu_iblk = NULL;
9323 
9324 	while (blkp) {
9325 #ifdef	DEBUG
9326 		map = blkp->iblk_maps;
9327 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
9328 			ASSERT(map[i].imap_seg == 0);
9329 			ASSERT(map[i].imap_ismhat == NULL);
9330 			ASSERT(map[i].imap_ment == NULL);
9331 		}
9332 #endif
9333 		nx_blkp = blkp->iblk_next;
9334 		blkp->iblk_next = NULL;
9335 		blkp->iblk_nextpa = (uint64_t)-1;
9336 		kmem_cache_free(ism_blk_cache, blkp);
9337 		blkp = nx_blkp;
9338 	}
9339 }
9340 
9341 /*
9342  * Locking primitves accessed by HATLOCK macros
9343  */
9344 
9345 #define	SFMMU_SPL_MTX	(0x0)
9346 #define	SFMMU_ML_MTX	(0x1)
9347 
9348 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
9349 					    SPL_HASH(pg) : MLIST_HASH(pg))
9350 
9351 kmutex_t *
9352 sfmmu_page_enter(struct page *pp)
9353 {
9354 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
9355 }
9356 
9357 void
9358 sfmmu_page_exit(kmutex_t *spl)
9359 {
9360 	mutex_exit(spl);
9361 }
9362 
9363 int
9364 sfmmu_page_spl_held(struct page *pp)
9365 {
9366 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
9367 }
9368 
9369 kmutex_t *
9370 sfmmu_mlist_enter(struct page *pp)
9371 {
9372 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
9373 }
9374 
9375 void
9376 sfmmu_mlist_exit(kmutex_t *mml)
9377 {
9378 	mutex_exit(mml);
9379 }
9380 
9381 int
9382 sfmmu_mlist_held(struct page *pp)
9383 {
9384 
9385 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
9386 }
9387 
9388 /*
9389  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
9390  * sfmmu_mlist_enter() case mml_table lock array is used and for
9391  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
9392  *
9393  * The lock is taken on a root page so that it protects an operation on all
9394  * constituent pages of a large page pp belongs to.
9395  *
9396  * The routine takes a lock from the appropriate array. The lock is determined
9397  * by hashing the root page. After taking the lock this routine checks if the
9398  * root page has the same size code that was used to determine the root (i.e
9399  * that root hasn't changed).  If root page has the expected p_szc field we
9400  * have the right lock and it's returned to the caller. If root's p_szc
9401  * decreased we release the lock and retry from the beginning.  This case can
9402  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
9403  * value and taking the lock. The number of retries due to p_szc decrease is
9404  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
9405  * determined by hashing pp itself.
9406  *
9407  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
9408  * possible that p_szc can increase. To increase p_szc a thread has to lock
9409  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
9410  * callers that don't hold a page locked recheck if hmeblk through which pp
9411  * was found still maps this pp.  If it doesn't map it anymore returned lock
9412  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
9413  * p_szc increase after taking the lock it returns this lock without further
9414  * retries because in this case the caller doesn't care about which lock was
9415  * taken. The caller will drop it right away.
9416  *
9417  * After the routine returns it's guaranteed that hat_page_demote() can't
9418  * change p_szc field of any of constituent pages of a large page pp belongs
9419  * to as long as pp was either locked at least SHARED prior to this call or
9420  * the caller finds that hment that pointed to this pp still references this
9421  * pp (this also assumes that the caller holds hme hash bucket lock so that
9422  * the same pp can't be remapped into the same hmeblk after it was unmapped by
9423  * hat_pageunload()).
9424  */
9425 static kmutex_t *
9426 sfmmu_mlspl_enter(struct page *pp, int type)
9427 {
9428 	kmutex_t	*mtx;
9429 	uint_t		prev_rszc = UINT_MAX;
9430 	page_t		*rootpp;
9431 	uint_t		szc;
9432 	uint_t		rszc;
9433 	uint_t		pszc = pp->p_szc;
9434 
9435 	ASSERT(pp != NULL);
9436 
9437 again:
9438 	if (pszc == 0) {
9439 		mtx = SFMMU_MLSPL_MTX(type, pp);
9440 		mutex_enter(mtx);
9441 		return (mtx);
9442 	}
9443 
9444 	/* The lock lives in the root page */
9445 	rootpp = PP_GROUPLEADER(pp, pszc);
9446 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9447 	mutex_enter(mtx);
9448 
9449 	/*
9450 	 * Return mml in the following 3 cases:
9451 	 *
9452 	 * 1) If pp itself is root since if its p_szc decreased before we took
9453 	 * the lock pp is still the root of smaller szc page. And if its p_szc
9454 	 * increased it doesn't matter what lock we return (see comment in
9455 	 * front of this routine).
9456 	 *
9457 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
9458 	 * large page we have the right lock since any previous potential
9459 	 * hat_page_demote() is done demoting from greater than current root's
9460 	 * p_szc because hat_page_demote() changes root's p_szc last. No
9461 	 * further hat_page_demote() can start or be in progress since it
9462 	 * would need the same lock we currently hold.
9463 	 *
9464 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
9465 	 * matter what lock we return (see comment in front of this routine).
9466 	 */
9467 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
9468 	    rszc >= prev_rszc) {
9469 		return (mtx);
9470 	}
9471 
9472 	/*
9473 	 * hat_page_demote() could have decreased root's p_szc.
9474 	 * In this case pp's p_szc must also be smaller than pszc.
9475 	 * Retry.
9476 	 */
9477 	if (rszc < pszc) {
9478 		szc = pp->p_szc;
9479 		if (szc < pszc) {
9480 			mutex_exit(mtx);
9481 			pszc = szc;
9482 			goto again;
9483 		}
9484 		/*
9485 		 * pp's p_szc increased after it was decreased.
9486 		 * page cannot be mapped. Return current lock. The caller
9487 		 * will drop it right away.
9488 		 */
9489 		return (mtx);
9490 	}
9491 
9492 	/*
9493 	 * root's p_szc is greater than pp's p_szc.
9494 	 * hat_page_demote() is not done with all pages
9495 	 * yet. Wait for it to complete.
9496 	 */
9497 	mutex_exit(mtx);
9498 	rootpp = PP_GROUPLEADER(rootpp, rszc);
9499 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9500 	mutex_enter(mtx);
9501 	mutex_exit(mtx);
9502 	prev_rszc = rszc;
9503 	goto again;
9504 }
9505 
9506 static int
9507 sfmmu_mlspl_held(struct page *pp, int type)
9508 {
9509 	kmutex_t	*mtx;
9510 
9511 	ASSERT(pp != NULL);
9512 	/* The lock lives in the root page */
9513 	pp = PP_PAGEROOT(pp);
9514 	ASSERT(pp != NULL);
9515 
9516 	mtx = SFMMU_MLSPL_MTX(type, pp);
9517 	return (MUTEX_HELD(mtx));
9518 }
9519 
9520 static uint_t
9521 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
9522 {
9523 	struct  hme_blk *hblkp;
9524 
9525 	if (freehblkp != NULL) {
9526 		mutex_enter(&freehblkp_lock);
9527 		if (freehblkp != NULL) {
9528 			/*
9529 			 * If the current thread is owning hblk_reserve,
9530 			 * let it succede even if freehblkcnt is really low.
9531 			 */
9532 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
9533 				SFMMU_STAT(sf_get_free_throttle);
9534 				mutex_exit(&freehblkp_lock);
9535 				return (0);
9536 			}
9537 			freehblkcnt--;
9538 			*hmeblkpp = freehblkp;
9539 			hblkp = *hmeblkpp;
9540 			freehblkp = hblkp->hblk_next;
9541 			mutex_exit(&freehblkp_lock);
9542 			hblkp->hblk_next = NULL;
9543 			SFMMU_STAT(sf_get_free_success);
9544 			return (1);
9545 		}
9546 		mutex_exit(&freehblkp_lock);
9547 	}
9548 	SFMMU_STAT(sf_get_free_fail);
9549 	return (0);
9550 }
9551 
9552 static uint_t
9553 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
9554 {
9555 	struct  hme_blk *hblkp;
9556 
9557 	/*
9558 	 * If the current thread is mapping into kernel space,
9559 	 * let it succede even if freehblkcnt is max
9560 	 * so that it will avoid freeing it to kmem.
9561 	 * This will prevent stack overflow due to
9562 	 * possible recursion since kmem_cache_free()
9563 	 * might require creation of a slab which
9564 	 * in turn needs an hmeblk to map that slab;
9565 	 * let's break this vicious chain at the first
9566 	 * opportunity.
9567 	 */
9568 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9569 		mutex_enter(&freehblkp_lock);
9570 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9571 			SFMMU_STAT(sf_put_free_success);
9572 			freehblkcnt++;
9573 			hmeblkp->hblk_next = freehblkp;
9574 			freehblkp = hmeblkp;
9575 			mutex_exit(&freehblkp_lock);
9576 			return (1);
9577 		}
9578 		mutex_exit(&freehblkp_lock);
9579 	}
9580 
9581 	/*
9582 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
9583 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
9584 	 * we are not in the process of mapping into kernel space.
9585 	 */
9586 	ASSERT(!critical);
9587 	while (freehblkcnt > HBLK_RESERVE_CNT) {
9588 		mutex_enter(&freehblkp_lock);
9589 		if (freehblkcnt > HBLK_RESERVE_CNT) {
9590 			freehblkcnt--;
9591 			hblkp = freehblkp;
9592 			freehblkp = hblkp->hblk_next;
9593 			mutex_exit(&freehblkp_lock);
9594 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
9595 			kmem_cache_free(sfmmu8_cache, hblkp);
9596 			continue;
9597 		}
9598 		mutex_exit(&freehblkp_lock);
9599 	}
9600 	SFMMU_STAT(sf_put_free_fail);
9601 	return (0);
9602 }
9603 
9604 static void
9605 sfmmu_hblk_swap(struct hme_blk *new)
9606 {
9607 	struct hme_blk *old, *hblkp, *prev;
9608 	uint64_t hblkpa, prevpa, newpa;
9609 	caddr_t	base, vaddr, endaddr;
9610 	struct hmehash_bucket *hmebp;
9611 	struct sf_hment *osfhme, *nsfhme;
9612 	page_t *pp;
9613 	kmutex_t *pml;
9614 	tte_t tte;
9615 
9616 #ifdef	DEBUG
9617 	hmeblk_tag		hblktag;
9618 	struct hme_blk		*found;
9619 #endif
9620 	old = HBLK_RESERVE;
9621 
9622 	/*
9623 	 * save pa before bcopy clobbers it
9624 	 */
9625 	newpa = new->hblk_nextpa;
9626 
9627 	base = (caddr_t)get_hblk_base(old);
9628 	endaddr = base + get_hblk_span(old);
9629 
9630 	/*
9631 	 * acquire hash bucket lock.
9632 	 */
9633 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K);
9634 
9635 	/*
9636 	 * copy contents from old to new
9637 	 */
9638 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
9639 
9640 	/*
9641 	 * add new to hash chain
9642 	 */
9643 	sfmmu_hblk_hash_add(hmebp, new, newpa);
9644 
9645 	/*
9646 	 * search hash chain for hblk_reserve; this needs to be performed
9647 	 * after adding new, otherwise prevpa and prev won't correspond
9648 	 * to the hblk which is prior to old in hash chain when we call
9649 	 * sfmmu_hblk_hash_rm to remove old later.
9650 	 */
9651 	for (prevpa = 0, prev = NULL,
9652 	    hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
9653 	    hblkp != NULL && hblkp != old;
9654 	    prevpa = hblkpa, prev = hblkp,
9655 	    hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next);
9656 
9657 	if (hblkp != old)
9658 		panic("sfmmu_hblk_swap: hblk_reserve not found");
9659 
9660 	/*
9661 	 * p_mapping list is still pointing to hments in hblk_reserve;
9662 	 * fix up p_mapping list so that they point to hments in new.
9663 	 *
9664 	 * Since all these mappings are created by hblk_reserve_thread
9665 	 * on the way and it's using at least one of the buffers from each of
9666 	 * the newly minted slabs, there is no danger of any of these
9667 	 * mappings getting unloaded by another thread.
9668 	 *
9669 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
9670 	 * Since all of these hments hold mappings established by segkmem
9671 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
9672 	 * have no meaning for the mappings in hblk_reserve.  hments in
9673 	 * old and new are identical except for ref/mod bits.
9674 	 */
9675 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
9676 
9677 		HBLKTOHME(osfhme, old, vaddr);
9678 		sfmmu_copytte(&osfhme->hme_tte, &tte);
9679 
9680 		if (TTE_IS_VALID(&tte)) {
9681 			if ((pp = osfhme->hme_page) == NULL)
9682 				panic("sfmmu_hblk_swap: page not mapped");
9683 
9684 			pml = sfmmu_mlist_enter(pp);
9685 
9686 			if (pp != osfhme->hme_page)
9687 				panic("sfmmu_hblk_swap: mapping changed");
9688 
9689 			HBLKTOHME(nsfhme, new, vaddr);
9690 
9691 			HME_ADD(nsfhme, pp);
9692 			HME_SUB(osfhme, pp);
9693 
9694 			sfmmu_mlist_exit(pml);
9695 		}
9696 	}
9697 
9698 	/*
9699 	 * remove old from hash chain
9700 	 */
9701 	sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
9702 
9703 #ifdef	DEBUG
9704 
9705 	hblktag.htag_id = ksfmmup;
9706 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
9707 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
9708 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
9709 
9710 	if (found != new)
9711 		panic("sfmmu_hblk_swap: new hblk not found");
9712 #endif
9713 
9714 	SFMMU_HASH_UNLOCK(hmebp);
9715 
9716 	/*
9717 	 * Reset hblk_reserve
9718 	 */
9719 	bzero((void *)old, HME8BLK_SZ);
9720 	old->hblk_nextpa = va_to_pa((caddr_t)old);
9721 }
9722 
9723 /*
9724  * Grab the mlist mutex for both pages passed in.
9725  *
9726  * low and high will be returned as pointers to the mutexes for these pages.
9727  * low refers to the mutex residing in the lower bin of the mlist hash, while
9728  * high refers to the mutex residing in the higher bin of the mlist hash.  This
9729  * is due to the locking order restrictions on the same thread grabbing
9730  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
9731  *
9732  * If both pages hash to the same mutex, only grab that single mutex, and
9733  * high will be returned as NULL
9734  * If the pages hash to different bins in the hash, grab the lower addressed
9735  * lock first and then the higher addressed lock in order to follow the locking
9736  * rules involved with the same thread grabbing multiple mlist mutexes.
9737  * low and high will both have non-NULL values.
9738  */
9739 static void
9740 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
9741     kmutex_t **low, kmutex_t **high)
9742 {
9743 	kmutex_t	*mml_targ, *mml_repl;
9744 
9745 	/*
9746 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
9747 	 * because this routine is only called by hat_page_relocate() and all
9748 	 * targ and repl pages are already locked EXCL so szc can't change.
9749 	 */
9750 
9751 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
9752 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
9753 
9754 	if (mml_targ == mml_repl) {
9755 		*low = mml_targ;
9756 		*high = NULL;
9757 	} else {
9758 		if (mml_targ < mml_repl) {
9759 			*low = mml_targ;
9760 			*high = mml_repl;
9761 		} else {
9762 			*low = mml_repl;
9763 			*high = mml_targ;
9764 		}
9765 	}
9766 
9767 	mutex_enter(*low);
9768 	if (*high)
9769 		mutex_enter(*high);
9770 }
9771 
9772 static void
9773 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
9774 {
9775 	if (high)
9776 		mutex_exit(high);
9777 	mutex_exit(low);
9778 }
9779 
9780 static hatlock_t *
9781 sfmmu_hat_enter(sfmmu_t *sfmmup)
9782 {
9783 	hatlock_t	*hatlockp;
9784 
9785 	if (sfmmup != ksfmmup) {
9786 		hatlockp = TSB_HASH(sfmmup);
9787 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
9788 		return (hatlockp);
9789 	}
9790 	return (NULL);
9791 }
9792 
9793 static hatlock_t *
9794 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
9795 {
9796 	hatlock_t	*hatlockp;
9797 
9798 	if (sfmmup != ksfmmup) {
9799 		hatlockp = TSB_HASH(sfmmup);
9800 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
9801 			return (NULL);
9802 		return (hatlockp);
9803 	}
9804 	return (NULL);
9805 }
9806 
9807 static void
9808 sfmmu_hat_exit(hatlock_t *hatlockp)
9809 {
9810 	if (hatlockp != NULL)
9811 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
9812 }
9813 
9814 static void
9815 sfmmu_hat_lock_all(void)
9816 {
9817 	int i;
9818 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
9819 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
9820 }
9821 
9822 static void
9823 sfmmu_hat_unlock_all(void)
9824 {
9825 	int i;
9826 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
9827 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
9828 }
9829 
9830 int
9831 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
9832 {
9833 	ASSERT(sfmmup != ksfmmup);
9834 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
9835 }
9836 
9837 /*
9838  * Locking primitives to provide consistency between ISM unmap
9839  * and other operations.  Since ISM unmap can take a long time, we
9840  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
9841  * contention on the hatlock buckets while ISM segments are being
9842  * unmapped.  The tradeoff is that the flags don't prevent priority
9843  * inversion from occurring, so we must request kernel priority in
9844  * case we have to sleep to keep from getting buried while holding
9845  * the HAT_ISMBUSY flag set, which in turn could block other kernel
9846  * threads from running (for example, in sfmmu_uvatopfn()).
9847  */
9848 static void
9849 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
9850 {
9851 	hatlock_t *hatlockp;
9852 
9853 	THREAD_KPRI_REQUEST();
9854 	if (!hatlock_held)
9855 		hatlockp = sfmmu_hat_enter(sfmmup);
9856 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
9857 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
9858 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
9859 	if (!hatlock_held)
9860 		sfmmu_hat_exit(hatlockp);
9861 }
9862 
9863 static void
9864 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
9865 {
9866 	hatlock_t *hatlockp;
9867 
9868 	if (!hatlock_held)
9869 		hatlockp = sfmmu_hat_enter(sfmmup);
9870 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
9871 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
9872 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
9873 	if (!hatlock_held)
9874 		sfmmu_hat_exit(hatlockp);
9875 	THREAD_KPRI_RELEASE();
9876 }
9877 
9878 /*
9879  *
9880  * Algorithm:
9881  *
9882  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
9883  *	hblks.
9884  *
9885  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
9886  *
9887  * 		(a) try to return an hblk from reserve pool of free hblks;
9888  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
9889  *		    and return hblk_reserve.
9890  *
9891  * (3) call kmem_cache_alloc() to allocate hblk;
9892  *
9893  *		(a) if hblk_reserve_lock is held by the current thread,
9894  *		    atomically replace hblk_reserve by the hblk that is
9895  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
9896  *		    and call kmem_cache_alloc() again.
9897  *		(b) if reserve pool is not full, add the hblk that is
9898  *		    returned by kmem_cache_alloc to reserve pool and
9899  *		    call kmem_cache_alloc again.
9900  *
9901  */
9902 static struct hme_blk *
9903 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
9904 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
9905 	uint_t flags)
9906 {
9907 	struct hme_blk *hmeblkp = NULL;
9908 	struct hme_blk *newhblkp;
9909 	struct hme_blk *shw_hblkp = NULL;
9910 	struct kmem_cache *sfmmu_cache = NULL;
9911 	uint64_t hblkpa;
9912 	ulong_t index;
9913 	uint_t owner;		/* set to 1 if using hblk_reserve */
9914 	uint_t forcefree;
9915 	int sleep;
9916 
9917 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
9918 
9919 	/*
9920 	 * If segkmem is not created yet, allocate from static hmeblks
9921 	 * created at the end of startup_modules().  See the block comment
9922 	 * in startup_modules() describing how we estimate the number of
9923 	 * static hmeblks that will be needed during re-map.
9924 	 */
9925 	if (!hblk_alloc_dynamic) {
9926 
9927 		if (size == TTE8K) {
9928 			index = nucleus_hblk8.index;
9929 			if (index >= nucleus_hblk8.len) {
9930 				/*
9931 				 * If we panic here, see startup_modules() to
9932 				 * make sure that we are calculating the
9933 				 * number of hblk8's that we need correctly.
9934 				 */
9935 				panic("no nucleus hblk8 to allocate");
9936 			}
9937 			hmeblkp =
9938 			    (struct hme_blk *)&nucleus_hblk8.list[index];
9939 			nucleus_hblk8.index++;
9940 			SFMMU_STAT(sf_hblk8_nalloc);
9941 		} else {
9942 			index = nucleus_hblk1.index;
9943 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
9944 				/*
9945 				 * If we panic here, see startup_modules()
9946 				 * and H8TOH1; most likely you need to
9947 				 * update the calculation of the number
9948 				 * of hblk1's the kernel needs to boot.
9949 				 */
9950 				panic("no nucleus hblk1 to allocate");
9951 			}
9952 			hmeblkp =
9953 			    (struct hme_blk *)&nucleus_hblk1.list[index];
9954 			nucleus_hblk1.index++;
9955 			SFMMU_STAT(sf_hblk1_nalloc);
9956 		}
9957 
9958 		goto hblk_init;
9959 	}
9960 
9961 	SFMMU_HASH_UNLOCK(hmebp);
9962 
9963 	if (sfmmup != KHATID) {
9964 		if (mmu_page_sizes == max_mmu_page_sizes) {
9965 			if (size < TTE256M)
9966 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
9967 				    size, flags);
9968 		} else {
9969 			if (size < TTE4M)
9970 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
9971 				    size, flags);
9972 		}
9973 	}
9974 
9975 fill_hblk:
9976 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
9977 
9978 	if (owner && size == TTE8K) {
9979 
9980 		/*
9981 		 * We are really in a tight spot. We already own
9982 		 * hblk_reserve and we need another hblk.  In anticipation
9983 		 * of this kind of scenario, we specifically set aside
9984 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
9985 		 * by owner of hblk_reserve.
9986 		 */
9987 		SFMMU_STAT(sf_hblk_recurse_cnt);
9988 
9989 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
9990 			panic("sfmmu_hblk_alloc: reserve list is empty");
9991 
9992 		goto hblk_verify;
9993 	}
9994 
9995 	ASSERT(!owner);
9996 
9997 	if ((flags & HAT_NO_KALLOC) == 0) {
9998 
9999 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
10000 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
10001 
10002 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
10003 			hmeblkp = sfmmu_hblk_steal(size);
10004 		} else {
10005 			/*
10006 			 * if we are the owner of hblk_reserve,
10007 			 * swap hblk_reserve with hmeblkp and
10008 			 * start a fresh life.  Hope things go
10009 			 * better this time.
10010 			 */
10011 			if (hblk_reserve_thread == curthread) {
10012 				ASSERT(sfmmu_cache == sfmmu8_cache);
10013 				sfmmu_hblk_swap(hmeblkp);
10014 				hblk_reserve_thread = NULL;
10015 				mutex_exit(&hblk_reserve_lock);
10016 				goto fill_hblk;
10017 			}
10018 			/*
10019 			 * let's donate this hblk to our reserve list if
10020 			 * we are not mapping kernel range
10021 			 */
10022 			if (size == TTE8K && sfmmup != KHATID)
10023 				if (sfmmu_put_free_hblk(hmeblkp, 0))
10024 					goto fill_hblk;
10025 		}
10026 	} else {
10027 		/*
10028 		 * We are here to map the slab in sfmmu8_cache; let's
10029 		 * check if we could tap our reserve list; if successful,
10030 		 * this will avoid the pain of going thru sfmmu_hblk_swap
10031 		 */
10032 		SFMMU_STAT(sf_hblk_slab_cnt);
10033 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
10034 			/*
10035 			 * let's start hblk_reserve dance
10036 			 */
10037 			SFMMU_STAT(sf_hblk_reserve_cnt);
10038 			owner = 1;
10039 			mutex_enter(&hblk_reserve_lock);
10040 			hmeblkp = HBLK_RESERVE;
10041 			hblk_reserve_thread = curthread;
10042 		}
10043 	}
10044 
10045 hblk_verify:
10046 	ASSERT(hmeblkp != NULL);
10047 	set_hblk_sz(hmeblkp, size);
10048 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10049 	SFMMU_HASH_LOCK(hmebp);
10050 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10051 	if (newhblkp != NULL) {
10052 		SFMMU_HASH_UNLOCK(hmebp);
10053 		if (hmeblkp != HBLK_RESERVE) {
10054 			/*
10055 			 * This is really tricky!
10056 			 *
10057 			 * vmem_alloc(vmem_seg_arena)
10058 			 *  vmem_alloc(vmem_internal_arena)
10059 			 *   segkmem_alloc(heap_arena)
10060 			 *    vmem_alloc(heap_arena)
10061 			 *    page_create()
10062 			 *    hat_memload()
10063 			 *	kmem_cache_free()
10064 			 *	 kmem_cache_alloc()
10065 			 *	  kmem_slab_create()
10066 			 *	   vmem_alloc(kmem_internal_arena)
10067 			 *	    segkmem_alloc(heap_arena)
10068 			 *		vmem_alloc(heap_arena)
10069 			 *		page_create()
10070 			 *		hat_memload()
10071 			 *		  kmem_cache_free()
10072 			 *		...
10073 			 *
10074 			 * Thus, hat_memload() could call kmem_cache_free
10075 			 * for enough number of times that we could easily
10076 			 * hit the bottom of the stack or run out of reserve
10077 			 * list of vmem_seg structs.  So, we must donate
10078 			 * this hblk to reserve list if it's allocated
10079 			 * from sfmmu8_cache *and* mapping kernel range.
10080 			 * We don't need to worry about freeing hmeblk1's
10081 			 * to kmem since they don't map any kmem slabs.
10082 			 *
10083 			 * Note: When segkmem supports largepages, we must
10084 			 * free hmeblk1's to reserve list as well.
10085 			 */
10086 			forcefree = (sfmmup == KHATID) ? 1 : 0;
10087 			if (size == TTE8K &&
10088 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
10089 				goto re_verify;
10090 			}
10091 			ASSERT(sfmmup != KHATID);
10092 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10093 		} else {
10094 			/*
10095 			 * Hey! we don't need hblk_reserve any more.
10096 			 */
10097 			ASSERT(owner);
10098 			hblk_reserve_thread = NULL;
10099 			mutex_exit(&hblk_reserve_lock);
10100 			owner = 0;
10101 		}
10102 re_verify:
10103 		/*
10104 		 * let's check if the goodies are still present
10105 		 */
10106 		SFMMU_HASH_LOCK(hmebp);
10107 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10108 		if (newhblkp != NULL) {
10109 			/*
10110 			 * return newhblkp if it's not hblk_reserve;
10111 			 * if newhblkp is hblk_reserve, return it
10112 			 * _only if_ we are the owner of hblk_reserve.
10113 			 */
10114 			if (newhblkp != HBLK_RESERVE || owner) {
10115 				return (newhblkp);
10116 			} else {
10117 				/*
10118 				 * we just hit hblk_reserve in the hash and
10119 				 * we are not the owner of that;
10120 				 *
10121 				 * block until hblk_reserve_thread completes
10122 				 * swapping hblk_reserve and try the dance
10123 				 * once again.
10124 				 */
10125 				SFMMU_HASH_UNLOCK(hmebp);
10126 				mutex_enter(&hblk_reserve_lock);
10127 				mutex_exit(&hblk_reserve_lock);
10128 				SFMMU_STAT(sf_hblk_reserve_hit);
10129 				goto fill_hblk;
10130 			}
10131 		} else {
10132 			/*
10133 			 * it's no more! try the dance once again.
10134 			 */
10135 			SFMMU_HASH_UNLOCK(hmebp);
10136 			goto fill_hblk;
10137 		}
10138 	}
10139 
10140 hblk_init:
10141 	set_hblk_sz(hmeblkp, size);
10142 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10143 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
10144 	hmeblkp->hblk_tag = hblktag;
10145 	hmeblkp->hblk_shadow = shw_hblkp;
10146 	hblkpa = hmeblkp->hblk_nextpa;
10147 	hmeblkp->hblk_nextpa = 0;
10148 
10149 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
10150 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
10151 	ASSERT(hmeblkp->hblk_hmecnt == 0);
10152 	ASSERT(hmeblkp->hblk_vcnt == 0);
10153 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10154 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10155 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
10156 	return (hmeblkp);
10157 }
10158 
10159 /*
10160  * This function performs any cleanup required on the hme_blk
10161  * and returns it to the free list.
10162  */
10163 /* ARGSUSED */
10164 static void
10165 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10166 	uint64_t hblkpa, struct hme_blk **listp)
10167 {
10168 	int shw_size, vshift;
10169 	struct hme_blk *shw_hblkp;
10170 	uint_t		shw_mask, newshw_mask;
10171 	uintptr_t	vaddr;
10172 	int		size;
10173 	uint_t		critical;
10174 
10175 	ASSERT(hmeblkp);
10176 	ASSERT(!hmeblkp->hblk_hmecnt);
10177 	ASSERT(!hmeblkp->hblk_vcnt);
10178 	ASSERT(!hmeblkp->hblk_lckcnt);
10179 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10180 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
10181 
10182 	critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
10183 
10184 	size = get_hblk_ttesz(hmeblkp);
10185 	shw_hblkp = hmeblkp->hblk_shadow;
10186 	if (shw_hblkp) {
10187 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
10188 		if (mmu_page_sizes == max_mmu_page_sizes) {
10189 			ASSERT(size < TTE256M);
10190 		} else {
10191 			ASSERT(size < TTE4M);
10192 		}
10193 
10194 		shw_size = get_hblk_ttesz(shw_hblkp);
10195 		vaddr = get_hblk_base(hmeblkp);
10196 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10197 		ASSERT(vshift < 8);
10198 		/*
10199 		 * Atomically clear shadow mask bit
10200 		 */
10201 		do {
10202 			shw_mask = shw_hblkp->hblk_shw_mask;
10203 			ASSERT(shw_mask & (1 << vshift));
10204 			newshw_mask = shw_mask & ~(1 << vshift);
10205 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10206 				shw_mask, newshw_mask);
10207 		} while (newshw_mask != shw_mask);
10208 		hmeblkp->hblk_shadow = NULL;
10209 	}
10210 	hmeblkp->hblk_next = NULL;
10211 	hmeblkp->hblk_nextpa = hblkpa;
10212 	hmeblkp->hblk_shw_bit = 0;
10213 
10214 	if (hmeblkp->hblk_nuc_bit == 0) {
10215 
10216 		if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
10217 			return;
10218 
10219 		hmeblkp->hblk_next = *listp;
10220 		*listp = hmeblkp;
10221 	}
10222 }
10223 
10224 static void
10225 sfmmu_hblks_list_purge(struct hme_blk **listp)
10226 {
10227 	struct hme_blk	*hmeblkp;
10228 
10229 	while ((hmeblkp = *listp) != NULL) {
10230 		*listp = hmeblkp->hblk_next;
10231 		kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10232 	}
10233 }
10234 
10235 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
10236 
10237 static uint_t sfmmu_hblk_steal_twice;
10238 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
10239 
10240 /*
10241  * Steal a hmeblk
10242  * Enough hmeblks were allocated at startup (nucleus hmeblks) and also
10243  * hmeblks were added dynamically. We should never ever not be able to
10244  * find one. Look for an unused/unlocked hmeblk in user hash table.
10245  */
10246 static struct hme_blk *
10247 sfmmu_hblk_steal(int size)
10248 {
10249 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
10250 	struct hmehash_bucket *hmebp;
10251 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
10252 	uint64_t hblkpa, prevpa;
10253 	int i;
10254 
10255 	for (;;) {
10256 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
10257 			uhmehash_steal_hand;
10258 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
10259 
10260 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
10261 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
10262 			SFMMU_HASH_LOCK(hmebp);
10263 			hmeblkp = hmebp->hmeblkp;
10264 			hblkpa = hmebp->hmeh_nextpa;
10265 			prevpa = 0;
10266 			pr_hblk = NULL;
10267 			while (hmeblkp) {
10268 				/*
10269 				 * check if it is a hmeblk that is not locked
10270 				 * and not shared. skip shadow hmeblks with
10271 				 * shadow_mask set i.e valid count non zero.
10272 				 */
10273 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10274 				    (hmeblkp->hblk_shw_bit == 0 ||
10275 					hmeblkp->hblk_vcnt == 0) &&
10276 				    (hmeblkp->hblk_lckcnt == 0)) {
10277 					/*
10278 					 * there is a high probability that we
10279 					 * will find a free one. search some
10280 					 * buckets for a free hmeblk initially
10281 					 * before unloading a valid hmeblk.
10282 					 */
10283 					if ((hmeblkp->hblk_vcnt == 0 &&
10284 					    hmeblkp->hblk_hmecnt == 0) || (i >=
10285 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
10286 						if (sfmmu_steal_this_hblk(hmebp,
10287 						    hmeblkp, hblkpa, prevpa,
10288 						    pr_hblk)) {
10289 							/*
10290 							 * Hblk is unloaded
10291 							 * successfully
10292 							 */
10293 							break;
10294 						}
10295 					}
10296 				}
10297 				pr_hblk = hmeblkp;
10298 				prevpa = hblkpa;
10299 				hblkpa = hmeblkp->hblk_nextpa;
10300 				hmeblkp = hmeblkp->hblk_next;
10301 			}
10302 
10303 			SFMMU_HASH_UNLOCK(hmebp);
10304 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
10305 				hmebp = uhme_hash;
10306 		}
10307 		uhmehash_steal_hand = hmebp;
10308 
10309 		if (hmeblkp != NULL)
10310 			break;
10311 
10312 		/*
10313 		 * in the worst case, look for a free one in the kernel
10314 		 * hash table.
10315 		 */
10316 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
10317 			SFMMU_HASH_LOCK(hmebp);
10318 			hmeblkp = hmebp->hmeblkp;
10319 			hblkpa = hmebp->hmeh_nextpa;
10320 			prevpa = 0;
10321 			pr_hblk = NULL;
10322 			while (hmeblkp) {
10323 				/*
10324 				 * check if it is free hmeblk
10325 				 */
10326 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10327 				    (hmeblkp->hblk_lckcnt == 0) &&
10328 				    (hmeblkp->hblk_vcnt == 0) &&
10329 				    (hmeblkp->hblk_hmecnt == 0)) {
10330 					if (sfmmu_steal_this_hblk(hmebp,
10331 					    hmeblkp, hblkpa, prevpa, pr_hblk)) {
10332 						break;
10333 					} else {
10334 						/*
10335 						 * Cannot fail since we have
10336 						 * hash lock.
10337 						 */
10338 						panic("fail to steal?");
10339 					}
10340 				}
10341 
10342 				pr_hblk = hmeblkp;
10343 				prevpa = hblkpa;
10344 				hblkpa = hmeblkp->hblk_nextpa;
10345 				hmeblkp = hmeblkp->hblk_next;
10346 			}
10347 
10348 			SFMMU_HASH_UNLOCK(hmebp);
10349 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
10350 				hmebp = khme_hash;
10351 		}
10352 
10353 		if (hmeblkp != NULL)
10354 			break;
10355 		sfmmu_hblk_steal_twice++;
10356 	}
10357 	return (hmeblkp);
10358 }
10359 
10360 /*
10361  * This routine does real work to prepare a hblk to be "stolen" by
10362  * unloading the mappings, updating shadow counts ....
10363  * It returns 1 if the block is ready to be reused (stolen), or 0
10364  * means the block cannot be stolen yet- pageunload is still working
10365  * on this hblk.
10366  */
10367 static int
10368 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10369 	uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
10370 {
10371 	int shw_size, vshift;
10372 	struct hme_blk *shw_hblkp;
10373 	uintptr_t vaddr;
10374 	uint_t shw_mask, newshw_mask;
10375 
10376 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10377 
10378 	/*
10379 	 * check if the hmeblk is free, unload if necessary
10380 	 */
10381 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10382 		sfmmu_t *sfmmup;
10383 		demap_range_t dmr;
10384 
10385 		sfmmup = hblktosfmmu(hmeblkp);
10386 		DEMAP_RANGE_INIT(sfmmup, &dmr);
10387 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
10388 		    (caddr_t)get_hblk_base(hmeblkp),
10389 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
10390 		DEMAP_RANGE_FLUSH(&dmr);
10391 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10392 			/*
10393 			 * Pageunload is working on the same hblk.
10394 			 */
10395 			return (0);
10396 		}
10397 
10398 		sfmmu_hblk_steal_unload_count++;
10399 	}
10400 
10401 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10402 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
10403 
10404 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
10405 	hmeblkp->hblk_nextpa = hblkpa;
10406 
10407 	shw_hblkp = hmeblkp->hblk_shadow;
10408 	if (shw_hblkp) {
10409 		shw_size = get_hblk_ttesz(shw_hblkp);
10410 		vaddr = get_hblk_base(hmeblkp);
10411 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10412 		ASSERT(vshift < 8);
10413 		/*
10414 		 * Atomically clear shadow mask bit
10415 		 */
10416 		do {
10417 			shw_mask = shw_hblkp->hblk_shw_mask;
10418 			ASSERT(shw_mask & (1 << vshift));
10419 			newshw_mask = shw_mask & ~(1 << vshift);
10420 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10421 				shw_mask, newshw_mask);
10422 		} while (newshw_mask != shw_mask);
10423 		hmeblkp->hblk_shadow = NULL;
10424 	}
10425 
10426 	/*
10427 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
10428 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
10429 	 * we are indeed allocating a shadow hmeblk.
10430 	 */
10431 	hmeblkp->hblk_shw_bit = 0;
10432 
10433 	sfmmu_hblk_steal_count++;
10434 	SFMMU_STAT(sf_steal_count);
10435 
10436 	return (1);
10437 }
10438 
10439 struct hme_blk *
10440 sfmmu_hmetohblk(struct sf_hment *sfhme)
10441 {
10442 	struct hme_blk *hmeblkp;
10443 	struct sf_hment *sfhme0;
10444 	struct hme_blk *hblk_dummy = 0;
10445 
10446 	/*
10447 	 * No dummy sf_hments, please.
10448 	 */
10449 	ASSERT(sfhme->hme_tte.ll != 0);
10450 
10451 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
10452 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
10453 		(uintptr_t)&hblk_dummy->hblk_hme[0]);
10454 
10455 	return (hmeblkp);
10456 }
10457 
10458 /*
10459  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
10460  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
10461  * KM_SLEEP allocation.
10462  *
10463  * Return 0 on success, -1 otherwise.
10464  */
10465 static void
10466 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
10467 {
10468 	struct tsb_info *tsbinfop, *next;
10469 	tsb_replace_rc_t rc;
10470 	boolean_t gotfirst = B_FALSE;
10471 
10472 	ASSERT(sfmmup != ksfmmup);
10473 	ASSERT(sfmmu_hat_lock_held(sfmmup));
10474 
10475 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
10476 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10477 	}
10478 
10479 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10480 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
10481 	} else {
10482 		return;
10483 	}
10484 
10485 	ASSERT(sfmmup->sfmmu_tsb != NULL);
10486 
10487 	/*
10488 	 * Loop over all tsbinfo's replacing them with ones that actually have
10489 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
10490 	 */
10491 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
10492 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
10493 		next = tsbinfop->tsb_next;
10494 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
10495 		    hatlockp, TSB_SWAPIN);
10496 		if (rc != TSB_SUCCESS) {
10497 			break;
10498 		}
10499 		gotfirst = B_TRUE;
10500 	}
10501 
10502 	switch (rc) {
10503 	case TSB_SUCCESS:
10504 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10505 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10506 		return;
10507 	case TSB_ALLOCFAIL:
10508 		break;
10509 	default:
10510 		panic("sfmmu_replace_tsb returned unrecognized failure code "
10511 		    "%d", rc);
10512 	}
10513 
10514 	/*
10515 	 * In this case, we failed to get one of our TSBs.  If we failed to
10516 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
10517 	 * and throw away the tsbinfos, starting where the allocation failed;
10518 	 * we can get by with just one TSB as long as we don't leave the
10519 	 * SWAPPED tsbinfo structures lying around.
10520 	 */
10521 	tsbinfop = sfmmup->sfmmu_tsb;
10522 	next = tsbinfop->tsb_next;
10523 	tsbinfop->tsb_next = NULL;
10524 
10525 	sfmmu_hat_exit(hatlockp);
10526 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
10527 		next = tsbinfop->tsb_next;
10528 		sfmmu_tsbinfo_free(tsbinfop);
10529 	}
10530 	hatlockp = sfmmu_hat_enter(sfmmup);
10531 
10532 	/*
10533 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
10534 	 * pages.
10535 	 */
10536 	if (!gotfirst) {
10537 		tsbinfop = sfmmup->sfmmu_tsb;
10538 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
10539 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
10540 		ASSERT(rc == TSB_SUCCESS);
10541 	} else {
10542 		/* update machine specific tsbinfo */
10543 		sfmmu_setup_tsbinfo(sfmmup);
10544 	}
10545 
10546 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10547 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10548 }
10549 
10550 /*
10551  * Handle exceptions for low level tsb_handler.
10552  *
10553  * There are many scenarios that could land us here:
10554  *
10555  * If the context is invalid we land here. The context can be invalid
10556  * for 3 reasons: 1) we couldn't allocate a new context and now need to
10557  * perform a wrap around operation in order to allocate a new context.
10558  * 2) Context was invalidated to change pagesize programming 3) ISMs or
10559  * TSBs configuration is changeing for this process and we are forced into
10560  * here to do a syncronization operation. If the context is valid we can
10561  * be here from window trap hanlder. In this case just call trap to handle
10562  * the fault.
10563  *
10564  * Note that the process will run in INVALID_CONTEXT before
10565  * faulting into here and subsequently loading the MMU registers
10566  * (including the TSB base register) associated with this process.
10567  * For this reason, the trap handlers must all test for
10568  * INVALID_CONTEXT before attempting to access any registers other
10569  * than the context registers.
10570  */
10571 void
10572 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
10573 {
10574 	sfmmu_t *sfmmup;
10575 	uint_t ctxnum;
10576 	klwp_id_t lwp;
10577 	char lwp_save_state;
10578 	hatlock_t *hatlockp;
10579 	struct tsb_info *tsbinfop;
10580 
10581 	SFMMU_STAT(sf_tsb_exceptions);
10582 	SFMMU_MMU_STAT(mmu_tsb_exceptions);
10583 	sfmmup = astosfmmu(curthread->t_procp->p_as);
10584 	ctxnum = tagaccess & TAGACC_CTX_MASK;
10585 
10586 	ASSERT(sfmmup != ksfmmup && ctxnum != KCONTEXT);
10587 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10588 	/*
10589 	 * First, make sure we come out of here with a valid ctx,
10590 	 * since if we don't get one we'll simply loop on the
10591 	 * faulting instruction.
10592 	 *
10593 	 * If the ISM mappings are changing, the TSB is being relocated, or
10594 	 * the process is swapped out we serialize behind the controlling
10595 	 * thread with the sfmmu_flags and sfmmu_tsb_cv condition variable.
10596 	 * Otherwise we synchronize with the context stealer or the thread
10597 	 * that required us to change out our MMU registers (such
10598 	 * as a thread changing out our TSB while we were running) by
10599 	 * locking the HAT and grabbing the rwlock on the context as a
10600 	 * reader temporarily.
10601 	 */
10602 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
10603 	    ctxnum == INVALID_CONTEXT);
10604 
10605 	if (ctxnum == INVALID_CONTEXT) {
10606 		/*
10607 		 * Must set lwp state to LWP_SYS before
10608 		 * trying to acquire any adaptive lock
10609 		 */
10610 		lwp = ttolwp(curthread);
10611 		ASSERT(lwp);
10612 		lwp_save_state = lwp->lwp_state;
10613 		lwp->lwp_state = LWP_SYS;
10614 
10615 		hatlockp = sfmmu_hat_enter(sfmmup);
10616 retry:
10617 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
10618 		    tsbinfop = tsbinfop->tsb_next) {
10619 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
10620 				cv_wait(&sfmmup->sfmmu_tsb_cv,
10621 				    HATLOCK_MUTEXP(hatlockp));
10622 				goto retry;
10623 			}
10624 		}
10625 
10626 		/*
10627 		 * Wait for ISM maps to be updated.
10628 		 */
10629 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
10630 			cv_wait(&sfmmup->sfmmu_tsb_cv,
10631 			    HATLOCK_MUTEXP(hatlockp));
10632 			goto retry;
10633 		}
10634 
10635 		/*
10636 		 * If we're swapping in, get TSB(s).  Note that we must do
10637 		 * this before we get a ctx or load the MMU state.  Once
10638 		 * we swap in we have to recheck to make sure the TSB(s) and
10639 		 * ISM mappings didn't change while we slept.
10640 		 */
10641 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10642 			sfmmu_tsb_swapin(sfmmup, hatlockp);
10643 			goto retry;
10644 		}
10645 
10646 		sfmmu_get_ctx(sfmmup);
10647 
10648 		sfmmu_hat_exit(hatlockp);
10649 		/*
10650 		 * Must restore lwp_state if not calling
10651 		 * trap() for further processing. Restore
10652 		 * it anyway.
10653 		 */
10654 		lwp->lwp_state = lwp_save_state;
10655 		if (sfmmup->sfmmu_ttecnt[TTE8K] != 0 ||
10656 		    sfmmup->sfmmu_ttecnt[TTE64K] != 0 ||
10657 		    sfmmup->sfmmu_ttecnt[TTE512K] != 0 ||
10658 		    sfmmup->sfmmu_ttecnt[TTE4M] != 0 ||
10659 		    sfmmup->sfmmu_ttecnt[TTE32M] != 0 ||
10660 		    sfmmup->sfmmu_ttecnt[TTE256M] != 0) {
10661 			return;
10662 		}
10663 		if (traptype == T_DATA_PROT) {
10664 			traptype = T_DATA_MMU_MISS;
10665 		}
10666 	}
10667 	trap(rp, (caddr_t)tagaccess, traptype, 0);
10668 }
10669 
10670 /*
10671  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
10672  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
10673  * rather than spinning to avoid send mondo timeouts with
10674  * interrupts enabled. When the lock is acquired it is immediately
10675  * released and we return back to sfmmu_vatopfn just after
10676  * the GET_TTE call.
10677  */
10678 void
10679 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
10680 {
10681 	struct page	**pp;
10682 
10683 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10684 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10685 }
10686 
10687 /*
10688  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
10689  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
10690  * cross traps which cannot be handled while spinning in the
10691  * trap handlers. Simply enter and exit the kpr_suspendlock spin
10692  * mutex, which is held by the holder of the suspend bit, and then
10693  * retry the trapped instruction after unwinding.
10694  */
10695 /*ARGSUSED*/
10696 void
10697 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
10698 {
10699 	ASSERT(curthread != kreloc_thread);
10700 	mutex_enter(&kpr_suspendlock);
10701 	mutex_exit(&kpr_suspendlock);
10702 }
10703 
10704 /*
10705  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
10706  * This routine may be called with all cpu's captured. Therefore, the
10707  * caller is responsible for holding all locks and disabling kernel
10708  * preemption.
10709  */
10710 /* ARGSUSED */
10711 static void
10712 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
10713 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
10714 {
10715 	cpuset_t 	cpuset;
10716 	caddr_t 	va;
10717 	ism_ment_t	*ment;
10718 	sfmmu_t		*sfmmup;
10719 #ifdef VAC
10720 	int 		vcolor;
10721 #endif
10722 	int		ttesz;
10723 
10724 	/*
10725 	 * Walk the ism_hat's mapping list and flush the page
10726 	 * from every hat sharing this ism_hat. This routine
10727 	 * may be called while all cpu's have been captured.
10728 	 * Therefore we can't attempt to grab any locks. For now
10729 	 * this means we will protect the ism mapping list under
10730 	 * a single lock which will be grabbed by the caller.
10731 	 * If hat_share/unshare scalibility becomes a performance
10732 	 * problem then we may need to re-think ism mapping list locking.
10733 	 */
10734 	ASSERT(ism_sfmmup->sfmmu_ismhat);
10735 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
10736 	addr = addr - ISMID_STARTADDR;
10737 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
10738 
10739 		sfmmup = ment->iment_hat;
10740 
10741 		va = ment->iment_base_va;
10742 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
10743 
10744 		/*
10745 		 * Flush TSB of ISM mappings.
10746 		 */
10747 		ttesz = get_hblk_ttesz(hmeblkp);
10748 		if (ttesz == TTE8K || ttesz == TTE4M) {
10749 			sfmmu_unload_tsb(sfmmup, va, ttesz);
10750 		} else {
10751 			caddr_t sva = va;
10752 			caddr_t eva;
10753 			ASSERT(addr == (caddr_t)get_hblk_base(hmeblkp));
10754 			eva = sva + get_hblk_span(hmeblkp);
10755 			sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);
10756 		}
10757 
10758 		cpuset = sfmmup->sfmmu_cpusran;
10759 		CPUSET_AND(cpuset, cpu_ready_set);
10760 		CPUSET_DEL(cpuset, CPU->cpu_id);
10761 
10762 		SFMMU_XCALL_STATS(sfmmup);
10763 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
10764 		    (uint64_t)sfmmup);
10765 
10766 		vtag_flushpage(va, (uint64_t)sfmmup);
10767 
10768 #ifdef VAC
10769 		/*
10770 		 * Flush D$
10771 		 * When flushing D$ we must flush all
10772 		 * cpu's. See sfmmu_cache_flush().
10773 		 */
10774 		if (cache_flush_flag == CACHE_FLUSH) {
10775 			cpuset = cpu_ready_set;
10776 			CPUSET_DEL(cpuset, CPU->cpu_id);
10777 
10778 			SFMMU_XCALL_STATS(sfmmup);
10779 			vcolor = addr_to_vcolor(va);
10780 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10781 			vac_flushpage(pfnum, vcolor);
10782 		}
10783 #endif	/* VAC */
10784 	}
10785 }
10786 
10787 /*
10788  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
10789  * a particular virtual address and ctx.  If noflush is set we do not
10790  * flush the TLB/TSB.  This function may or may not be called with the
10791  * HAT lock held.
10792  */
10793 static void
10794 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10795 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
10796 	int hat_lock_held)
10797 {
10798 #ifdef VAC
10799 	int vcolor;
10800 #endif
10801 	cpuset_t cpuset;
10802 	hatlock_t *hatlockp;
10803 
10804 #if defined(lint) && !defined(VAC)
10805 	pfnum = pfnum;
10806 	cpu_flag = cpu_flag;
10807 	cache_flush_flag = cache_flush_flag;
10808 #endif
10809 	/*
10810 	 * There is no longer a need to protect against ctx being
10811 	 * stolen here since we don't store the ctx in the TSB anymore.
10812 	 */
10813 #ifdef VAC
10814 	vcolor = addr_to_vcolor(addr);
10815 #endif
10816 
10817 	/*
10818 	 * We must hold the hat lock during the flush of TLB,
10819 	 * to avoid a race with sfmmu_invalidate_ctx(), where
10820 	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
10821 	 * causing TLB demap routine to skip flush on that MMU.
10822 	 * If the context on a MMU has already been set to
10823 	 * INVALID_CONTEXT, we just get an extra flush on
10824 	 * that MMU.
10825 	 */
10826 	if (!hat_lock_held && !tlb_noflush)
10827 		hatlockp = sfmmu_hat_enter(sfmmup);
10828 
10829 	kpreempt_disable();
10830 	if (!tlb_noflush) {
10831 		/*
10832 		 * Flush the TSB and TLB.
10833 		 */
10834 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10835 
10836 		cpuset = sfmmup->sfmmu_cpusran;
10837 		CPUSET_AND(cpuset, cpu_ready_set);
10838 		CPUSET_DEL(cpuset, CPU->cpu_id);
10839 
10840 		SFMMU_XCALL_STATS(sfmmup);
10841 
10842 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
10843 		    (uint64_t)sfmmup);
10844 
10845 		vtag_flushpage(addr, (uint64_t)sfmmup);
10846 	}
10847 
10848 	if (!hat_lock_held && !tlb_noflush)
10849 		sfmmu_hat_exit(hatlockp);
10850 
10851 #ifdef VAC
10852 	/*
10853 	 * Flush the D$
10854 	 *
10855 	 * Even if the ctx is stolen, we need to flush the
10856 	 * cache. Our ctx stealer only flushes the TLBs.
10857 	 */
10858 	if (cache_flush_flag == CACHE_FLUSH) {
10859 		if (cpu_flag & FLUSH_ALL_CPUS) {
10860 			cpuset = cpu_ready_set;
10861 		} else {
10862 			cpuset = sfmmup->sfmmu_cpusran;
10863 			CPUSET_AND(cpuset, cpu_ready_set);
10864 		}
10865 		CPUSET_DEL(cpuset, CPU->cpu_id);
10866 		SFMMU_XCALL_STATS(sfmmup);
10867 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10868 		vac_flushpage(pfnum, vcolor);
10869 	}
10870 #endif	/* VAC */
10871 	kpreempt_enable();
10872 }
10873 
10874 /*
10875  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
10876  * address and ctx.  If noflush is set we do not currently do anything.
10877  * This function may or may not be called with the HAT lock held.
10878  */
10879 static void
10880 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10881 	int tlb_noflush, int hat_lock_held)
10882 {
10883 	cpuset_t cpuset;
10884 	hatlock_t *hatlockp;
10885 
10886 	/*
10887 	 * If the process is exiting we have nothing to do.
10888 	 */
10889 	if (tlb_noflush)
10890 		return;
10891 
10892 	/*
10893 	 * Flush TSB.
10894 	 */
10895 	if (!hat_lock_held)
10896 		hatlockp = sfmmu_hat_enter(sfmmup);
10897 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10898 
10899 	kpreempt_disable();
10900 
10901 	cpuset = sfmmup->sfmmu_cpusran;
10902 	CPUSET_AND(cpuset, cpu_ready_set);
10903 	CPUSET_DEL(cpuset, CPU->cpu_id);
10904 
10905 	SFMMU_XCALL_STATS(sfmmup);
10906 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
10907 
10908 	vtag_flushpage(addr, (uint64_t)sfmmup);
10909 
10910 	if (!hat_lock_held)
10911 		sfmmu_hat_exit(hatlockp);
10912 
10913 	kpreempt_enable();
10914 
10915 }
10916 
10917 /*
10918  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
10919  * call handler that can flush a range of pages to save on xcalls.
10920  */
10921 static int sfmmu_xcall_save;
10922 
10923 static void
10924 sfmmu_tlb_range_demap(demap_range_t *dmrp)
10925 {
10926 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
10927 	hatlock_t *hatlockp;
10928 	cpuset_t cpuset;
10929 	uint64_t sfmmu_pgcnt;
10930 	pgcnt_t pgcnt = 0;
10931 	int pgunload = 0;
10932 	int dirtypg = 0;
10933 	caddr_t addr = dmrp->dmr_addr;
10934 	caddr_t eaddr;
10935 	uint64_t bitvec = dmrp->dmr_bitvec;
10936 
10937 	ASSERT(bitvec & 1);
10938 
10939 	/*
10940 	 * Flush TSB and calculate number of pages to flush.
10941 	 */
10942 	while (bitvec != 0) {
10943 		dirtypg = 0;
10944 		/*
10945 		 * Find the first page to flush and then count how many
10946 		 * pages there are after it that also need to be flushed.
10947 		 * This way the number of TSB flushes is minimized.
10948 		 */
10949 		while ((bitvec & 1) == 0) {
10950 			pgcnt++;
10951 			addr += MMU_PAGESIZE;
10952 			bitvec >>= 1;
10953 		}
10954 		while (bitvec & 1) {
10955 			dirtypg++;
10956 			bitvec >>= 1;
10957 		}
10958 		eaddr = addr + ptob(dirtypg);
10959 		hatlockp = sfmmu_hat_enter(sfmmup);
10960 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
10961 		sfmmu_hat_exit(hatlockp);
10962 		pgunload += dirtypg;
10963 		addr = eaddr;
10964 		pgcnt += dirtypg;
10965 	}
10966 
10967 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
10968 	if (sfmmup->sfmmu_free == 0) {
10969 		addr = dmrp->dmr_addr;
10970 		bitvec = dmrp->dmr_bitvec;
10971 
10972 		/*
10973 		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
10974 		 * as it will be used to pack argument for xt_some
10975 		 */
10976 		ASSERT((pgcnt > 0) &&
10977 		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
10978 
10979 		/*
10980 		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
10981 		 * the low 6 bits of sfmmup. This is doable since pgcnt
10982 		 * always >= 1.
10983 		 */
10984 		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
10985 		sfmmu_pgcnt = (uint64_t)sfmmup |
10986 		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
10987 
10988 		/*
10989 		 * We must hold the hat lock during the flush of TLB,
10990 		 * to avoid a race with sfmmu_invalidate_ctx(), where
10991 		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
10992 		 * causing TLB demap routine to skip flush on that MMU.
10993 		 * If the context on a MMU has already been set to
10994 		 * INVALID_CONTEXT, we just get an extra flush on
10995 		 * that MMU.
10996 		 */
10997 		hatlockp = sfmmu_hat_enter(sfmmup);
10998 		kpreempt_disable();
10999 
11000 		cpuset = sfmmup->sfmmu_cpusran;
11001 		CPUSET_AND(cpuset, cpu_ready_set);
11002 		CPUSET_DEL(cpuset, CPU->cpu_id);
11003 
11004 		SFMMU_XCALL_STATS(sfmmup);
11005 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
11006 		    sfmmu_pgcnt);
11007 
11008 		for (; bitvec != 0; bitvec >>= 1) {
11009 			if (bitvec & 1)
11010 				vtag_flushpage(addr, (uint64_t)sfmmup);
11011 			addr += MMU_PAGESIZE;
11012 		}
11013 		kpreempt_enable();
11014 		sfmmu_hat_exit(hatlockp);
11015 
11016 		sfmmu_xcall_save += (pgunload-1);
11017 	}
11018 	dmrp->dmr_bitvec = 0;
11019 }
11020 
11021 /*
11022  * In cases where we need to synchronize with TLB/TSB miss trap
11023  * handlers, _and_ need to flush the TLB, it's a lot easier to
11024  * throw away the context from the process than to do a
11025  * special song and dance to keep things consistent for the
11026  * handlers.
11027  *
11028  * Since the process suddenly ends up without a context and our caller
11029  * holds the hat lock, threads that fault after this function is called
11030  * will pile up on the lock.  We can then do whatever we need to
11031  * atomically from the context of the caller.  The first blocked thread
11032  * to resume executing will get the process a new context, and the
11033  * process will resume executing.
11034  *
11035  * One added advantage of this approach is that on MMUs that
11036  * support a "flush all" operation, we will delay the flush until
11037  * cnum wrap-around, and then flush the TLB one time.  This
11038  * is rather rare, so it's a lot less expensive than making 8000
11039  * x-calls to flush the TLB 8000 times.
11040  *
11041  * A per-process (PP) lock is used to synchronize ctx allocations in
11042  * resume() and ctx invalidations here.
11043  */
11044 static void
11045 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
11046 {
11047 	cpuset_t cpuset;
11048 	int cnum, currcnum;
11049 	mmu_ctx_t *mmu_ctxp;
11050 	int i;
11051 	uint_t pstate_save;
11052 
11053 	SFMMU_STAT(sf_ctx_inv);
11054 
11055 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11056 	ASSERT(sfmmup != ksfmmup);
11057 
11058 	kpreempt_disable();
11059 
11060 	mmu_ctxp = CPU_MMU_CTXP(CPU);
11061 	ASSERT(mmu_ctxp);
11062 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
11063 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
11064 
11065 	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
11066 
11067 	pstate_save = sfmmu_disable_intrs();
11068 
11069 	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
11070 	/* set HAT cnum invalid across all context domains. */
11071 	for (i = 0; i < max_mmu_ctxdoms; i++) {
11072 
11073 		cnum = 	sfmmup->sfmmu_ctxs[i].cnum;
11074 		if (cnum == INVALID_CONTEXT) {
11075 			continue;
11076 		}
11077 
11078 		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
11079 	}
11080 	membar_enter();	/* make sure globally visible to all CPUs */
11081 	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
11082 
11083 	sfmmu_enable_intrs(pstate_save);
11084 
11085 	cpuset = sfmmup->sfmmu_cpusran;
11086 	CPUSET_DEL(cpuset, CPU->cpu_id);
11087 	CPUSET_AND(cpuset, cpu_ready_set);
11088 	if (!CPUSET_ISNULL(cpuset)) {
11089 		SFMMU_XCALL_STATS(sfmmup);
11090 		xt_some(cpuset, sfmmu_raise_tsb_exception,
11091 		    (uint64_t)sfmmup, INVALID_CONTEXT);
11092 		xt_sync(cpuset);
11093 		SFMMU_STAT(sf_tsb_raise_exception);
11094 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
11095 	}
11096 
11097 	/*
11098 	 * If the hat to-be-invalidated is the same as the current
11099 	 * process on local CPU we need to invalidate
11100 	 * this CPU context as well.
11101 	 */
11102 	if ((sfmmu_getctx_sec() == currcnum) &&
11103 	    (currcnum != INVALID_CONTEXT)) {
11104 		sfmmu_setctx_sec(INVALID_CONTEXT);
11105 		sfmmu_clear_utsbinfo();
11106 	}
11107 
11108 	kpreempt_enable();
11109 
11110 	/*
11111 	 * we hold the hat lock, so nobody should allocate a context
11112 	 * for us yet
11113 	 */
11114 	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
11115 }
11116 
11117 #ifdef VAC
11118 /*
11119  * We need to flush the cache in all cpus.  It is possible that
11120  * a process referenced a page as cacheable but has sinced exited
11121  * and cleared the mapping list.  We still to flush it but have no
11122  * state so all cpus is the only alternative.
11123  */
11124 void
11125 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
11126 {
11127 	cpuset_t cpuset;
11128 
11129 	kpreempt_disable();
11130 	cpuset = cpu_ready_set;
11131 	CPUSET_DEL(cpuset, CPU->cpu_id);
11132 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11133 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
11134 	xt_sync(cpuset);
11135 	vac_flushpage(pfnum, vcolor);
11136 	kpreempt_enable();
11137 }
11138 
11139 void
11140 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
11141 {
11142 	cpuset_t cpuset;
11143 
11144 	ASSERT(vcolor >= 0);
11145 
11146 	kpreempt_disable();
11147 	cpuset = cpu_ready_set;
11148 	CPUSET_DEL(cpuset, CPU->cpu_id);
11149 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11150 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
11151 	xt_sync(cpuset);
11152 	vac_flushcolor(vcolor, pfnum);
11153 	kpreempt_enable();
11154 }
11155 #endif	/* VAC */
11156 
11157 /*
11158  * We need to prevent processes from accessing the TSB using a cached physical
11159  * address.  It's alright if they try to access the TSB via virtual address
11160  * since they will just fault on that virtual address once the mapping has
11161  * been suspended.
11162  */
11163 #pragma weak sendmondo_in_recover
11164 
11165 /* ARGSUSED */
11166 static int
11167 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
11168 {
11169 	hatlock_t *hatlockp;
11170 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11171 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
11172 	extern uint32_t sendmondo_in_recover;
11173 
11174 	if (flags != HAT_PRESUSPEND)
11175 		return (0);
11176 
11177 	hatlockp = sfmmu_hat_enter(sfmmup);
11178 
11179 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
11180 
11181 	/*
11182 	 * For Cheetah+ Erratum 25:
11183 	 * Wait for any active recovery to finish.  We can't risk
11184 	 * relocating the TSB of the thread running mondo_recover_proc()
11185 	 * since, if we did that, we would deadlock.  The scenario we are
11186 	 * trying to avoid is as follows:
11187 	 *
11188 	 * THIS CPU			RECOVER CPU
11189 	 * --------			-----------
11190 	 *				Begins recovery, walking through TSB
11191 	 * hat_pagesuspend() TSB TTE
11192 	 *				TLB miss on TSB TTE, spins at TL1
11193 	 * xt_sync()
11194 	 *	send_mondo_timeout()
11195 	 *	mondo_recover_proc()
11196 	 *	((deadlocked))
11197 	 *
11198 	 * The second half of the workaround is that mondo_recover_proc()
11199 	 * checks to see if the tsb_info has the RELOC flag set, and if it
11200 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
11201 	 * and hence avoiding the TLB miss that could result in a deadlock.
11202 	 */
11203 	if (&sendmondo_in_recover) {
11204 		membar_enter();	/* make sure RELOC flag visible */
11205 		while (sendmondo_in_recover) {
11206 			drv_usecwait(1);
11207 			membar_consumer();
11208 		}
11209 	}
11210 
11211 	sfmmu_invalidate_ctx(sfmmup);
11212 	sfmmu_hat_exit(hatlockp);
11213 
11214 	return (0);
11215 }
11216 
11217 /* ARGSUSED */
11218 static int
11219 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
11220 	void *tsbinfo, pfn_t newpfn)
11221 {
11222 	hatlock_t *hatlockp;
11223 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11224 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
11225 
11226 	if (flags != HAT_POSTUNSUSPEND)
11227 		return (0);
11228 
11229 	hatlockp = sfmmu_hat_enter(sfmmup);
11230 
11231 	SFMMU_STAT(sf_tsb_reloc);
11232 
11233 	/*
11234 	 * The process may have swapped out while we were relocating one
11235 	 * of its TSBs.  If so, don't bother doing the setup since the
11236 	 * process can't be using the memory anymore.
11237 	 */
11238 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
11239 		ASSERT(va == tsbinfop->tsb_va);
11240 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
11241 		sfmmu_setup_tsbinfo(sfmmup);
11242 
11243 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
11244 			sfmmu_inv_tsb(tsbinfop->tsb_va,
11245 			    TSB_BYTES(tsbinfop->tsb_szc));
11246 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
11247 		}
11248 	}
11249 
11250 	membar_exit();
11251 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
11252 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11253 
11254 	sfmmu_hat_exit(hatlockp);
11255 
11256 	return (0);
11257 }
11258 
11259 /*
11260  * Allocate and initialize a tsb_info structure.  Note that we may or may not
11261  * allocate a TSB here, depending on the flags passed in.
11262  */
11263 static int
11264 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
11265 	uint_t flags, sfmmu_t *sfmmup)
11266 {
11267 	int err;
11268 
11269 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
11270 	    sfmmu_tsbinfo_cache, KM_SLEEP);
11271 
11272 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
11273 	    tsb_szc, flags, sfmmup)) != 0) {
11274 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
11275 		SFMMU_STAT(sf_tsb_allocfail);
11276 		*tsbinfopp = NULL;
11277 		return (err);
11278 	}
11279 	SFMMU_STAT(sf_tsb_alloc);
11280 
11281 	/*
11282 	 * Bump the TSB size counters for this TSB size.
11283 	 */
11284 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
11285 	return (0);
11286 }
11287 
11288 static void
11289 sfmmu_tsb_free(struct tsb_info *tsbinfo)
11290 {
11291 	caddr_t tsbva = tsbinfo->tsb_va;
11292 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
11293 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
11294 	vmem_t	*vmp = tsbinfo->tsb_vmp;
11295 
11296 	/*
11297 	 * If we allocated this TSB from relocatable kernel memory, then we
11298 	 * need to uninstall the callback handler.
11299 	 */
11300 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
11301 		uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11302 		caddr_t slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
11303 		page_t **ppl;
11304 		int ret;
11305 
11306 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
11307 		ASSERT(ret == 0);
11308 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
11309 		    0, NULL);
11310 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
11311 	}
11312 
11313 	if (kmem_cachep != NULL) {
11314 		kmem_cache_free(kmem_cachep, tsbva);
11315 	} else {
11316 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
11317 	}
11318 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
11319 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
11320 }
11321 
11322 static void
11323 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
11324 {
11325 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
11326 		sfmmu_tsb_free(tsbinfo);
11327 	}
11328 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
11329 
11330 }
11331 
11332 /*
11333  * Setup all the references to physical memory for this tsbinfo.
11334  * The underlying page(s) must be locked.
11335  */
11336 static void
11337 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
11338 {
11339 	ASSERT(pfn != PFN_INVALID);
11340 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
11341 
11342 #ifndef sun4v
11343 	if (tsbinfo->tsb_szc == 0) {
11344 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
11345 		    PROT_WRITE|PROT_READ, TTE8K);
11346 	} else {
11347 		/*
11348 		 * Round down PA and use a large mapping; the handlers will
11349 		 * compute the TSB pointer at the correct offset into the
11350 		 * big virtual page.  NOTE: this assumes all TSBs larger
11351 		 * than 8K must come from physically contiguous slabs of
11352 		 * size tsb_slab_size.
11353 		 */
11354 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
11355 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
11356 	}
11357 	tsbinfo->tsb_pa = ptob(pfn);
11358 
11359 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
11360 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
11361 
11362 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
11363 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
11364 #else /* sun4v */
11365 	tsbinfo->tsb_pa = ptob(pfn);
11366 #endif /* sun4v */
11367 }
11368 
11369 
11370 /*
11371  * Returns zero on success, ENOMEM if over the high water mark,
11372  * or EAGAIN if the caller needs to retry with a smaller TSB
11373  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
11374  *
11375  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
11376  * is specified and the TSB requested is PAGESIZE, though it
11377  * may sleep waiting for memory if sufficient memory is not
11378  * available.
11379  */
11380 static int
11381 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
11382     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
11383 {
11384 	caddr_t vaddr = NULL;
11385 	caddr_t slab_vaddr;
11386 	uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11387 	int tsbbytes = TSB_BYTES(tsbcode);
11388 	int lowmem = 0;
11389 	struct kmem_cache *kmem_cachep = NULL;
11390 	vmem_t *vmp = NULL;
11391 	lgrp_id_t lgrpid = LGRP_NONE;
11392 	pfn_t pfn;
11393 	uint_t cbflags = HAC_SLEEP;
11394 	page_t **pplist;
11395 	int ret;
11396 
11397 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
11398 		flags |= TSB_ALLOC;
11399 
11400 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
11401 
11402 	tsbinfo->tsb_sfmmu = sfmmup;
11403 
11404 	/*
11405 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
11406 	 * return.
11407 	 */
11408 	if ((flags & TSB_ALLOC) == 0) {
11409 		tsbinfo->tsb_szc = tsbcode;
11410 		tsbinfo->tsb_ttesz_mask = tteszmask;
11411 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
11412 		tsbinfo->tsb_pa = -1;
11413 		tsbinfo->tsb_tte.ll = 0;
11414 		tsbinfo->tsb_next = NULL;
11415 		tsbinfo->tsb_flags = TSB_SWAPPED;
11416 		tsbinfo->tsb_cache = NULL;
11417 		tsbinfo->tsb_vmp = NULL;
11418 		return (0);
11419 	}
11420 
11421 #ifdef DEBUG
11422 	/*
11423 	 * For debugging:
11424 	 * Randomly force allocation failures every tsb_alloc_mtbf
11425 	 * tries if TSB_FORCEALLOC is not specified.  This will
11426 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
11427 	 * it is even, to allow testing of both failure paths...
11428 	 */
11429 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
11430 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
11431 		tsb_alloc_count = 0;
11432 		tsb_alloc_fail_mtbf++;
11433 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
11434 	}
11435 #endif	/* DEBUG */
11436 
11437 	/*
11438 	 * Enforce high water mark if we are not doing a forced allocation
11439 	 * and are not shrinking a process' TSB.
11440 	 */
11441 	if ((flags & TSB_SHRINK) == 0 &&
11442 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
11443 		if ((flags & TSB_FORCEALLOC) == 0)
11444 			return (ENOMEM);
11445 		lowmem = 1;
11446 	}
11447 
11448 	/*
11449 	 * Allocate from the correct location based upon the size of the TSB
11450 	 * compared to the base page size, and what memory conditions dictate.
11451 	 * Note we always do nonblocking allocations from the TSB arena since
11452 	 * we don't want memory fragmentation to cause processes to block
11453 	 * indefinitely waiting for memory; until the kernel algorithms that
11454 	 * coalesce large pages are improved this is our best option.
11455 	 *
11456 	 * Algorithm:
11457 	 *	If allocating a "large" TSB (>8K), allocate from the
11458 	 *		appropriate kmem_tsb_default_arena vmem arena
11459 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
11460 	 *	tsb_forceheap is set
11461 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
11462 	 *		KM_SLEEP (never fails)
11463 	 *	else
11464 	 *		Allocate from appropriate sfmmu_tsb_cache with
11465 	 *		KM_NOSLEEP
11466 	 *	endif
11467 	 */
11468 	if (tsb_lgrp_affinity)
11469 		lgrpid = lgrp_home_id(curthread);
11470 	if (lgrpid == LGRP_NONE)
11471 		lgrpid = 0;	/* use lgrp of boot CPU */
11472 
11473 	if (tsbbytes > MMU_PAGESIZE) {
11474 		vmp = kmem_tsb_default_arena[lgrpid];
11475 		vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 0, 0,
11476 		    NULL, NULL, VM_NOSLEEP);
11477 #ifdef	DEBUG
11478 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
11479 #else	/* !DEBUG */
11480 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
11481 #endif	/* DEBUG */
11482 		kmem_cachep = sfmmu_tsb8k_cache;
11483 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
11484 		ASSERT(vaddr != NULL);
11485 	} else {
11486 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
11487 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
11488 	}
11489 
11490 	tsbinfo->tsb_cache = kmem_cachep;
11491 	tsbinfo->tsb_vmp = vmp;
11492 
11493 	if (vaddr == NULL) {
11494 		return (EAGAIN);
11495 	}
11496 
11497 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
11498 	kmem_cachep = tsbinfo->tsb_cache;
11499 
11500 	/*
11501 	 * If we are allocating from outside the cage, then we need to
11502 	 * register a relocation callback handler.  Note that for now
11503 	 * since pseudo mappings always hang off of the slab's root page,
11504 	 * we need only lock the first 8K of the TSB slab.  This is a bit
11505 	 * hacky but it is good for performance.
11506 	 */
11507 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11508 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
11509 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
11510 		ASSERT(ret == 0);
11511 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
11512 		    cbflags, (void *)tsbinfo, &pfn, NULL);
11513 
11514 		/*
11515 		 * Need to free up resources if we could not successfully
11516 		 * add the callback function and return an error condition.
11517 		 */
11518 		if (ret != 0) {
11519 			if (kmem_cachep) {
11520 				kmem_cache_free(kmem_cachep, vaddr);
11521 			} else {
11522 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
11523 			}
11524 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
11525 			    S_WRITE);
11526 			return (EAGAIN);
11527 		}
11528 	} else {
11529 		/*
11530 		 * Since allocation of 8K TSBs from heap is rare and occurs
11531 		 * during memory pressure we allocate them from permanent
11532 		 * memory rather than using callbacks to get the PFN.
11533 		 */
11534 		pfn = hat_getpfnum(kas.a_hat, vaddr);
11535 	}
11536 
11537 	tsbinfo->tsb_va = vaddr;
11538 	tsbinfo->tsb_szc = tsbcode;
11539 	tsbinfo->tsb_ttesz_mask = tteszmask;
11540 	tsbinfo->tsb_next = NULL;
11541 	tsbinfo->tsb_flags = 0;
11542 
11543 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
11544 
11545 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11546 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
11547 	}
11548 
11549 	sfmmu_inv_tsb(vaddr, tsbbytes);
11550 	return (0);
11551 }
11552 
11553 /*
11554  * Initialize per cpu tsb and per cpu tsbmiss_area
11555  */
11556 void
11557 sfmmu_init_tsbs(void)
11558 {
11559 	int i;
11560 	struct tsbmiss	*tsbmissp;
11561 	struct kpmtsbm	*kpmtsbmp;
11562 #ifndef sun4v
11563 	extern int	dcache_line_mask;
11564 #endif /* sun4v */
11565 	extern uint_t	vac_colors;
11566 
11567 	/*
11568 	 * Init. tsb miss area.
11569 	 */
11570 	tsbmissp = tsbmiss_area;
11571 
11572 	for (i = 0; i < NCPU; tsbmissp++, i++) {
11573 		/*
11574 		 * initialize the tsbmiss area.
11575 		 * Do this for all possible CPUs as some may be added
11576 		 * while the system is running. There is no cost to this.
11577 		 */
11578 		tsbmissp->ksfmmup = ksfmmup;
11579 #ifndef sun4v
11580 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
11581 #endif /* sun4v */
11582 		tsbmissp->khashstart =
11583 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
11584 		tsbmissp->uhashstart =
11585 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
11586 		tsbmissp->khashsz = khmehash_num;
11587 		tsbmissp->uhashsz = uhmehash_num;
11588 	}
11589 
11590 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
11591 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
11592 
11593 	if (kpm_enable == 0)
11594 		return;
11595 
11596 	/* -- Begin KPM specific init -- */
11597 
11598 	if (kpm_smallpages) {
11599 		/*
11600 		 * If we're using base pagesize pages for seg_kpm
11601 		 * mappings, we use the kernel TSB since we can't afford
11602 		 * to allocate a second huge TSB for these mappings.
11603 		 */
11604 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11605 		kpm_tsbsz = ktsb_szcode;
11606 		kpmsm_tsbbase = kpm_tsbbase;
11607 		kpmsm_tsbsz = kpm_tsbsz;
11608 	} else {
11609 		/*
11610 		 * In VAC conflict case, just put the entries in the
11611 		 * kernel 8K indexed TSB for now so we can find them.
11612 		 * This could really be changed in the future if we feel
11613 		 * the need...
11614 		 */
11615 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11616 		kpmsm_tsbsz = ktsb_szcode;
11617 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
11618 		kpm_tsbsz = ktsb4m_szcode;
11619 	}
11620 
11621 	kpmtsbmp = kpmtsbm_area;
11622 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
11623 		/*
11624 		 * Initialize the kpmtsbm area.
11625 		 * Do this for all possible CPUs as some may be added
11626 		 * while the system is running. There is no cost to this.
11627 		 */
11628 		kpmtsbmp->vbase = kpm_vbase;
11629 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
11630 		kpmtsbmp->sz_shift = kpm_size_shift;
11631 		kpmtsbmp->kpmp_shift = kpmp_shift;
11632 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
11633 		if (kpm_smallpages == 0) {
11634 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
11635 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
11636 		} else {
11637 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
11638 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
11639 		}
11640 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
11641 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
11642 #ifdef	DEBUG
11643 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
11644 #endif	/* DEBUG */
11645 		if (ktsb_phys)
11646 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
11647 	}
11648 
11649 	/* -- End KPM specific init -- */
11650 }
11651 
11652 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
11653 struct tsb_info ktsb_info[2];
11654 
11655 /*
11656  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
11657  */
11658 void
11659 sfmmu_init_ktsbinfo()
11660 {
11661 	ASSERT(ksfmmup != NULL);
11662 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
11663 	/*
11664 	 * Allocate tsbinfos for kernel and copy in data
11665 	 * to make debug easier and sun4v setup easier.
11666 	 */
11667 	ktsb_info[0].tsb_sfmmu = ksfmmup;
11668 	ktsb_info[0].tsb_szc = ktsb_szcode;
11669 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
11670 	ktsb_info[0].tsb_va = ktsb_base;
11671 	ktsb_info[0].tsb_pa = ktsb_pbase;
11672 	ktsb_info[0].tsb_flags = 0;
11673 	ktsb_info[0].tsb_tte.ll = 0;
11674 	ktsb_info[0].tsb_cache = NULL;
11675 
11676 	ktsb_info[1].tsb_sfmmu = ksfmmup;
11677 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
11678 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
11679 	ktsb_info[1].tsb_va = ktsb4m_base;
11680 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
11681 	ktsb_info[1].tsb_flags = 0;
11682 	ktsb_info[1].tsb_tte.ll = 0;
11683 	ktsb_info[1].tsb_cache = NULL;
11684 
11685 	/* Link them into ksfmmup. */
11686 	ktsb_info[0].tsb_next = &ktsb_info[1];
11687 	ktsb_info[1].tsb_next = NULL;
11688 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
11689 
11690 	sfmmu_setup_tsbinfo(ksfmmup);
11691 }
11692 
11693 /*
11694  * Cache the last value returned from va_to_pa().  If the VA specified
11695  * in the current call to cached_va_to_pa() maps to the same Page (as the
11696  * previous call to cached_va_to_pa()), then compute the PA using
11697  * cached info, else call va_to_pa().
11698  *
11699  * Note: this function is neither MT-safe nor consistent in the presence
11700  * of multiple, interleaved threads.  This function was created to enable
11701  * an optimization used during boot (at a point when there's only one thread
11702  * executing on the "boot CPU", and before startup_vm() has been called).
11703  */
11704 static uint64_t
11705 cached_va_to_pa(void *vaddr)
11706 {
11707 	static uint64_t prev_vaddr_base = 0;
11708 	static uint64_t prev_pfn = 0;
11709 
11710 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
11711 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
11712 	} else {
11713 		uint64_t pa = va_to_pa(vaddr);
11714 
11715 		if (pa != ((uint64_t)-1)) {
11716 			/*
11717 			 * Computed physical address is valid.  Cache its
11718 			 * related info for the next cached_va_to_pa() call.
11719 			 */
11720 			prev_pfn = pa & MMU_PAGEMASK;
11721 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
11722 		}
11723 
11724 		return (pa);
11725 	}
11726 }
11727 
11728 /*
11729  * Carve up our nucleus hblk region.  We may allocate more hblks than
11730  * asked due to rounding errors but we are guaranteed to have at least
11731  * enough space to allocate the requested number of hblk8's and hblk1's.
11732  */
11733 void
11734 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
11735 {
11736 	struct hme_blk *hmeblkp;
11737 	size_t hme8blk_sz, hme1blk_sz;
11738 	size_t i;
11739 	size_t hblk8_bound;
11740 	ulong_t j = 0, k = 0;
11741 
11742 	ASSERT(addr != NULL && size != 0);
11743 
11744 	/* Need to use proper structure alignment */
11745 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
11746 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
11747 
11748 	nucleus_hblk8.list = (void *)addr;
11749 	nucleus_hblk8.index = 0;
11750 
11751 	/*
11752 	 * Use as much memory as possible for hblk8's since we
11753 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
11754 	 * We need to hold back enough space for the hblk1's which
11755 	 * we'll allocate next.
11756 	 */
11757 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
11758 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
11759 		hmeblkp = (struct hme_blk *)addr;
11760 		addr += hme8blk_sz;
11761 		hmeblkp->hblk_nuc_bit = 1;
11762 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11763 	}
11764 	nucleus_hblk8.len = j;
11765 	ASSERT(j >= nhblk8);
11766 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
11767 
11768 	nucleus_hblk1.list = (void *)addr;
11769 	nucleus_hblk1.index = 0;
11770 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
11771 		hmeblkp = (struct hme_blk *)addr;
11772 		addr += hme1blk_sz;
11773 		hmeblkp->hblk_nuc_bit = 1;
11774 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11775 	}
11776 	ASSERT(k >= nhblk1);
11777 	nucleus_hblk1.len = k;
11778 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
11779 }
11780 
11781 /*
11782  * This function is currently not supported on this platform. For what
11783  * it's supposed to do, see hat.c and hat_srmmu.c
11784  */
11785 /* ARGSUSED */
11786 faultcode_t
11787 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
11788     uint_t flags)
11789 {
11790 	ASSERT(hat->sfmmu_xhat_provider == NULL);
11791 	return (FC_NOSUPPORT);
11792 }
11793 
11794 /*
11795  * Searchs the mapping list of the page for a mapping of the same size. If not
11796  * found the corresponding bit is cleared in the p_index field. When large
11797  * pages are more prevalent in the system, we can maintain the mapping list
11798  * in order and we don't have to traverse the list each time. Just check the
11799  * next and prev entries, and if both are of different size, we clear the bit.
11800  */
11801 static void
11802 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
11803 {
11804 	struct sf_hment *sfhmep;
11805 	struct hme_blk *hmeblkp;
11806 	int	index;
11807 	pgcnt_t	npgs;
11808 
11809 	ASSERT(ttesz > TTE8K);
11810 
11811 	ASSERT(sfmmu_mlist_held(pp));
11812 
11813 	ASSERT(PP_ISMAPPED_LARGE(pp));
11814 
11815 	/*
11816 	 * Traverse mapping list looking for another mapping of same size.
11817 	 * since we only want to clear index field if all mappings of
11818 	 * that size are gone.
11819 	 */
11820 
11821 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
11822 		hmeblkp = sfmmu_hmetohblk(sfhmep);
11823 		if (hmeblkp->hblk_xhat_bit)
11824 			continue;
11825 		if (hme_size(sfhmep) == ttesz) {
11826 			/*
11827 			 * another mapping of the same size. don't clear index.
11828 			 */
11829 			return;
11830 		}
11831 	}
11832 
11833 	/*
11834 	 * Clear the p_index bit for large page.
11835 	 */
11836 	index = PAGESZ_TO_INDEX(ttesz);
11837 	npgs = TTEPAGES(ttesz);
11838 	while (npgs-- > 0) {
11839 		ASSERT(pp->p_index & index);
11840 		pp->p_index &= ~index;
11841 		pp = PP_PAGENEXT(pp);
11842 	}
11843 }
11844 
11845 /*
11846  * return supported features
11847  */
11848 /* ARGSUSED */
11849 int
11850 hat_supported(enum hat_features feature, void *arg)
11851 {
11852 	switch (feature) {
11853 	case    HAT_SHARED_PT:
11854 	case	HAT_DYNAMIC_ISM_UNMAP:
11855 	case	HAT_VMODSORT:
11856 		return (1);
11857 	default:
11858 		return (0);
11859 	}
11860 }
11861 
11862 void
11863 hat_enter(struct hat *hat)
11864 {
11865 	hatlock_t	*hatlockp;
11866 
11867 	if (hat != ksfmmup) {
11868 		hatlockp = TSB_HASH(hat);
11869 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
11870 	}
11871 }
11872 
11873 void
11874 hat_exit(struct hat *hat)
11875 {
11876 	hatlock_t	*hatlockp;
11877 
11878 	if (hat != ksfmmup) {
11879 		hatlockp = TSB_HASH(hat);
11880 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
11881 	}
11882 }
11883 
11884 /*ARGSUSED*/
11885 void
11886 hat_reserve(struct as *as, caddr_t addr, size_t len)
11887 {
11888 }
11889 
11890 static void
11891 hat_kstat_init(void)
11892 {
11893 	kstat_t *ksp;
11894 
11895 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
11896 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
11897 		KSTAT_FLAG_VIRTUAL);
11898 	if (ksp) {
11899 		ksp->ks_data = (void *) &sfmmu_global_stat;
11900 		kstat_install(ksp);
11901 	}
11902 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
11903 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
11904 		KSTAT_FLAG_VIRTUAL);
11905 	if (ksp) {
11906 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
11907 		kstat_install(ksp);
11908 	}
11909 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
11910 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
11911 		KSTAT_FLAG_WRITABLE);
11912 	if (ksp) {
11913 		ksp->ks_update = sfmmu_kstat_percpu_update;
11914 		kstat_install(ksp);
11915 	}
11916 }
11917 
11918 /* ARGSUSED */
11919 static int
11920 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
11921 {
11922 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
11923 	struct tsbmiss *tsbm = tsbmiss_area;
11924 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
11925 	int i;
11926 
11927 	ASSERT(cpu_kstat);
11928 	if (rw == KSTAT_READ) {
11929 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
11930 			cpu_kstat->sf_itlb_misses = tsbm->itlb_misses;
11931 			cpu_kstat->sf_dtlb_misses = tsbm->dtlb_misses;
11932 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
11933 				tsbm->uprot_traps;
11934 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
11935 				kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
11936 
11937 			if (tsbm->itlb_misses > 0 && tsbm->dtlb_misses > 0) {
11938 				cpu_kstat->sf_tsb_hits =
11939 				(tsbm->itlb_misses + tsbm->dtlb_misses) -
11940 				(tsbm->utsb_misses + tsbm->ktsb_misses +
11941 				kpmtsbm->kpm_tsb_misses);
11942 			} else {
11943 				cpu_kstat->sf_tsb_hits = 0;
11944 			}
11945 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
11946 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
11947 		}
11948 	} else {
11949 		/* KSTAT_WRITE is used to clear stats */
11950 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
11951 			tsbm->itlb_misses = 0;
11952 			tsbm->dtlb_misses = 0;
11953 			tsbm->utsb_misses = 0;
11954 			tsbm->ktsb_misses = 0;
11955 			tsbm->uprot_traps = 0;
11956 			tsbm->kprot_traps = 0;
11957 			kpmtsbm->kpm_dtlb_misses = 0;
11958 			kpmtsbm->kpm_tsb_misses = 0;
11959 		}
11960 	}
11961 	return (0);
11962 }
11963 
11964 #ifdef	DEBUG
11965 
11966 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
11967 
11968 /*
11969  * A tte checker. *orig_old is the value we read before cas.
11970  *	*cur is the value returned by cas.
11971  *	*new is the desired value when we do the cas.
11972  *
11973  *	*hmeblkp is currently unused.
11974  */
11975 
11976 /* ARGSUSED */
11977 void
11978 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
11979 {
11980 	pfn_t i, j, k;
11981 	int cpuid = CPU->cpu_id;
11982 
11983 	gorig[cpuid] = orig_old;
11984 	gcur[cpuid] = cur;
11985 	gnew[cpuid] = new;
11986 
11987 #ifdef lint
11988 	hmeblkp = hmeblkp;
11989 #endif
11990 
11991 	if (TTE_IS_VALID(orig_old)) {
11992 		if (TTE_IS_VALID(cur)) {
11993 			i = TTE_TO_TTEPFN(orig_old);
11994 			j = TTE_TO_TTEPFN(cur);
11995 			k = TTE_TO_TTEPFN(new);
11996 			if (i != j) {
11997 				/* remap error? */
11998 				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
11999 			}
12000 
12001 			if (i != k) {
12002 				/* remap error? */
12003 				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
12004 			}
12005 		} else {
12006 			if (TTE_IS_VALID(new)) {
12007 				panic("chk_tte: invalid cur? ");
12008 			}
12009 
12010 			i = TTE_TO_TTEPFN(orig_old);
12011 			k = TTE_TO_TTEPFN(new);
12012 			if (i != k) {
12013 				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
12014 			}
12015 		}
12016 	} else {
12017 		if (TTE_IS_VALID(cur)) {
12018 			j = TTE_TO_TTEPFN(cur);
12019 			if (TTE_IS_VALID(new)) {
12020 				k = TTE_TO_TTEPFN(new);
12021 				if (j != k) {
12022 					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
12023 					    j, k);
12024 				}
12025 			} else {
12026 				panic("chk_tte: why here?");
12027 			}
12028 		} else {
12029 			if (!TTE_IS_VALID(new)) {
12030 				panic("chk_tte: why here2 ?");
12031 			}
12032 		}
12033 	}
12034 }
12035 
12036 #endif /* DEBUG */
12037 
12038 extern void prefetch_tsbe_read(struct tsbe *);
12039 extern void prefetch_tsbe_write(struct tsbe *);
12040 
12041 
12042 /*
12043  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
12044  * us optimal performance on Cheetah+.  You can only have 8 outstanding
12045  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
12046  * prefetch to make the most utilization of the prefetch capability.
12047  */
12048 #define	TSBE_PREFETCH_STRIDE (7)
12049 
12050 void
12051 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
12052 {
12053 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
12054 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
12055 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
12056 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
12057 	struct tsbe *old;
12058 	struct tsbe *new;
12059 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
12060 	uint64_t va;
12061 	int new_offset;
12062 	int i;
12063 	int vpshift;
12064 	int last_prefetch;
12065 
12066 	if (old_bytes == new_bytes) {
12067 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
12068 	} else {
12069 
12070 		/*
12071 		 * A TSBE is 16 bytes which means there are four TSBE's per
12072 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
12073 		 */
12074 		old = (struct tsbe *)old_tsbinfo->tsb_va;
12075 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
12076 		for (i = 0; i < old_entries; i++, old++) {
12077 			if (((i & (4-1)) == 0) && (i < last_prefetch))
12078 				prefetch_tsbe_read(old);
12079 			if (!old->tte_tag.tag_invalid) {
12080 				/*
12081 				 * We have a valid TTE to remap.  Check the
12082 				 * size.  We won't remap 64K or 512K TTEs
12083 				 * because they span more than one TSB entry
12084 				 * and are indexed using an 8K virt. page.
12085 				 * Ditto for 32M and 256M TTEs.
12086 				 */
12087 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
12088 				    TTE_CSZ(&old->tte_data) == TTE512K)
12089 					continue;
12090 				if (mmu_page_sizes == max_mmu_page_sizes) {
12091 				    if (TTE_CSZ(&old->tte_data) == TTE32M ||
12092 					TTE_CSZ(&old->tte_data) == TTE256M)
12093 					    continue;
12094 				}
12095 
12096 				/* clear the lower 22 bits of the va */
12097 				va = *(uint64_t *)old << 22;
12098 				/* turn va into a virtual pfn */
12099 				va >>= 22 - TSB_START_SIZE;
12100 				/*
12101 				 * or in bits from the offset in the tsb
12102 				 * to get the real virtual pfn. These
12103 				 * correspond to bits [21:13] in the va
12104 				 */
12105 				vpshift =
12106 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
12107 				    0x1ff;
12108 				va |= (i << vpshift);
12109 				va >>= vpshift;
12110 				new_offset = va & (new_entries - 1);
12111 				new = new_base + new_offset;
12112 				prefetch_tsbe_write(new);
12113 				*new = *old;
12114 			}
12115 		}
12116 	}
12117 }
12118 
12119 /*
12120  * unused in sfmmu
12121  */
12122 void
12123 hat_dump(void)
12124 {
12125 }
12126 
12127 /*
12128  * Called when a thread is exiting and we have switched to the kernel address
12129  * space.  Perform the same VM initialization resume() uses when switching
12130  * processes.
12131  *
12132  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
12133  * we call it anyway in case the semantics change in the future.
12134  */
12135 /*ARGSUSED*/
12136 void
12137 hat_thread_exit(kthread_t *thd)
12138 {
12139 	uint64_t pgsz_cnum;
12140 	uint_t pstate_save;
12141 
12142 	ASSERT(thd->t_procp->p_as == &kas);
12143 
12144 	pgsz_cnum = KCONTEXT;
12145 #ifdef sun4u
12146 	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
12147 #endif
12148 	/*
12149 	 * Note that sfmmu_load_mmustate() is currently a no-op for
12150 	 * kernel threads. We need to disable interrupts here,
12151 	 * simply because otherwise sfmmu_load_mmustate() would panic
12152 	 * if the caller does not disable interrupts.
12153 	 */
12154 	pstate_save = sfmmu_disable_intrs();
12155 	sfmmu_setctx_sec(pgsz_cnum);
12156 	sfmmu_load_mmustate(ksfmmup);
12157 	sfmmu_enable_intrs(pstate_save);
12158 }
12159