1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/modctl.h> 30 #include <sys/dtrace.h> 31 #include <sys/kobj.h> 32 #include <sys/stat.h> 33 #include <sys/ddi.h> 34 #include <sys/sunddi.h> 35 #include <sys/conf.h> 36 37 #define FBT_PUSHL_EBP 0x55 38 #define FBT_MOVL_ESP_EBP0_V0 0x8b 39 #define FBT_MOVL_ESP_EBP1_V0 0xec 40 #define FBT_MOVL_ESP_EBP0_V1 0x89 41 #define FBT_MOVL_ESP_EBP1_V1 0xe5 42 #define FBT_REX_RSP_RBP 0x48 43 44 #define FBT_POPL_EBP 0x5d 45 #define FBT_RET 0xc3 46 #define FBT_RET_IMM16 0xc2 47 #define FBT_LEAVE 0xc9 48 49 #ifdef __amd64 50 #define FBT_PATCHVAL 0xcc 51 #else 52 #define FBT_PATCHVAL 0xf0 53 #endif 54 55 #define FBT_ENTRY "entry" 56 #define FBT_RETURN "return" 57 #define FBT_ADDR2NDX(addr) ((((uintptr_t)(addr)) >> 4) & fbt_probetab_mask) 58 #define FBT_PROBETAB_SIZE 0x8000 /* 32k entries -- 128K total */ 59 60 typedef struct fbt_probe { 61 struct fbt_probe *fbtp_hashnext; 62 uint8_t *fbtp_patchpoint; 63 int8_t fbtp_rval; 64 uint8_t fbtp_patchval; 65 uint8_t fbtp_savedval; 66 uintptr_t fbtp_roffset; 67 dtrace_id_t fbtp_id; 68 char *fbtp_name; 69 struct modctl *fbtp_ctl; 70 int fbtp_loadcnt; 71 int fbtp_symndx; 72 int fbtp_primary; 73 struct fbt_probe *fbtp_next; 74 } fbt_probe_t; 75 76 static dev_info_t *fbt_devi; 77 static dtrace_provider_id_t fbt_id; 78 static fbt_probe_t **fbt_probetab; 79 static int fbt_probetab_size; 80 static int fbt_probetab_mask; 81 static int fbt_verbose = 0; 82 83 static int 84 fbt_invop(uintptr_t addr, uintptr_t *stack, uintptr_t rval) 85 { 86 uintptr_t stack0, stack1, stack2, stack3, stack4; 87 fbt_probe_t *fbt = fbt_probetab[FBT_ADDR2NDX(addr)]; 88 89 for (; fbt != NULL; fbt = fbt->fbtp_hashnext) { 90 if ((uintptr_t)fbt->fbtp_patchpoint == addr) { 91 if (fbt->fbtp_roffset == 0) { 92 int i = 0; 93 /* 94 * When accessing the arguments on the stack, 95 * we must protect against accessing beyond 96 * the stack. We can safely set NOFAULT here 97 * -- we know that interrupts are already 98 * disabled. 99 */ 100 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 101 CPU->cpu_dtrace_caller = stack[i++]; 102 #ifdef __amd64 103 /* 104 * On amd64, stack[0] contains the dereferenced 105 * stack pointer, stack[1] contains savfp, 106 * stack[2] contains savpc. We want to step 107 * over these entries. 108 */ 109 i += 2; 110 #endif 111 stack0 = stack[i++]; 112 stack1 = stack[i++]; 113 stack2 = stack[i++]; 114 stack3 = stack[i++]; 115 stack4 = stack[i++]; 116 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | 117 CPU_DTRACE_BADADDR); 118 119 dtrace_probe(fbt->fbtp_id, stack0, stack1, 120 stack2, stack3, stack4); 121 122 CPU->cpu_dtrace_caller = NULL; 123 } else { 124 #ifdef __amd64 125 /* 126 * On amd64, we instrument the ret, not the 127 * leave. We therefore need to set the caller 128 * to assure that the top frame of a stack() 129 * action is correct. 130 */ 131 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 132 CPU->cpu_dtrace_caller = stack[0]; 133 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | 134 CPU_DTRACE_BADADDR); 135 #endif 136 137 dtrace_probe(fbt->fbtp_id, fbt->fbtp_roffset, 138 rval, 0, 0, 0); 139 CPU->cpu_dtrace_caller = NULL; 140 } 141 142 return (fbt->fbtp_rval); 143 } 144 } 145 146 return (0); 147 } 148 149 /*ARGSUSED*/ 150 static void 151 fbt_provide_module(void *arg, struct modctl *ctl) 152 { 153 struct module *mp = ctl->mod_mp; 154 char *str = mp->strings; 155 int nsyms = mp->nsyms; 156 Shdr *symhdr = mp->symhdr; 157 char *modname = ctl->mod_modname; 158 char *name; 159 fbt_probe_t *fbt, *retfbt; 160 size_t symsize; 161 int i, size; 162 163 /* 164 * Employees of dtrace and their families are ineligible. Void 165 * where prohibited. 166 */ 167 if (strcmp(modname, "dtrace") == 0) 168 return; 169 170 if (ctl->mod_requisites != NULL) { 171 struct modctl_list *list; 172 173 list = (struct modctl_list *)ctl->mod_requisites; 174 175 for (; list != NULL; list = list->modl_next) { 176 if (strcmp(list->modl_modp->mod_modname, "dtrace") == 0) 177 return; 178 } 179 } 180 181 /* 182 * KMDB is ineligible for instrumentation -- it may execute in 183 * any context, including probe context. 184 */ 185 if (strcmp(modname, "kmdbmod") == 0) 186 return; 187 188 if (str == NULL || symhdr == NULL || symhdr->sh_addr == NULL) { 189 /* 190 * If this module doesn't (yet) have its string or symbol 191 * table allocated, clear out. 192 */ 193 return; 194 } 195 196 symsize = symhdr->sh_entsize; 197 198 if (mp->fbt_nentries) { 199 /* 200 * This module has some FBT entries allocated; we're afraid 201 * to screw with it. 202 */ 203 return; 204 } 205 206 for (i = 1; i < nsyms; i++) { 207 uint8_t *instr, *limit; 208 Sym *sym = (Sym *)(symhdr->sh_addr + i * symsize); 209 210 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC) 211 continue; 212 213 /* 214 * Weak symbols are not candidates. This could be made to 215 * work (where weak functions and their underlying function 216 * appear as two disjoint probes), but it's not simple. 217 */ 218 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) 219 continue; 220 221 name = str + sym->st_name; 222 223 if (strstr(name, "dtrace_") == name && 224 strstr(name, "dtrace_safe_") != name) { 225 /* 226 * Anything beginning with "dtrace_" may be called 227 * from probe context unless it explitly indicates 228 * that it won't be called from probe context by 229 * using the prefix "dtrace_safe_". 230 */ 231 continue; 232 } 233 234 if (strstr(name, "kdi_") == name || 235 strstr(name, "_kdi_") != NULL) { 236 /* 237 * Any function name beginning with "kdi_" or 238 * containing the string "_kdi_" is a part of the 239 * kernel debugger interface and may be called in 240 * arbitrary context -- including probe context. 241 */ 242 continue; 243 } 244 245 /* 246 * Due to 4524008, _init and _fini may have a bloated st_size. 247 * While this bug was fixed quite some time ago, old drivers 248 * may be lurking. We need to develop a better solution to 249 * this problem, such that correct _init and _fini functions 250 * (the vast majority) may be correctly traced. One solution 251 * may be to scan through the entire symbol table to see if 252 * any symbol overlaps with _init. If none does, set a bit in 253 * the module structure that this module has correct _init and 254 * _fini sizes. This will cause some pain the first time a 255 * module is scanned, but at least it would be O(N) instead of 256 * O(N log N)... 257 */ 258 if (strcmp(name, "_init") == 0) 259 continue; 260 261 if (strcmp(name, "_fini") == 0) 262 continue; 263 264 /* 265 * In order to be eligible, the function must begin with the 266 * following sequence: 267 * 268 * pushl %esp 269 * movl %esp, %ebp 270 * 271 * Note that there are two variants of encodings that generate 272 * the movl; we must check for both. For 64-bit, we would 273 * normally insist that a function begin with the following 274 * sequence: 275 * 276 * pushq %rbp 277 * movq %rsp, %rbp 278 * 279 * However, the compiler for 64-bit often splits these two 280 * instructions -- and the first instruction in the function 281 * is often not the pushq. As a result, on 64-bit we look 282 * for any "pushq %rbp" in the function and we instrument 283 * this with a breakpoint instruction. 284 */ 285 instr = (uint8_t *)sym->st_value; 286 limit = (uint8_t *)(sym->st_value + sym->st_size); 287 288 #ifdef __amd64 289 while (instr < limit) { 290 if (*instr == FBT_PUSHL_EBP) 291 break; 292 293 if ((size = dtrace_instr_size(instr)) <= 0) 294 break; 295 296 instr += size; 297 } 298 299 if (instr >= limit || *instr != FBT_PUSHL_EBP) { 300 /* 301 * We either don't save the frame pointer in this 302 * function, or we ran into some disassembly 303 * screw-up. Either way, we bail. 304 */ 305 continue; 306 } 307 #else 308 if (instr[0] != FBT_PUSHL_EBP) 309 continue; 310 311 if (!(instr[1] == FBT_MOVL_ESP_EBP0_V0 && 312 instr[2] == FBT_MOVL_ESP_EBP1_V0) && 313 !(instr[1] == FBT_MOVL_ESP_EBP0_V1 && 314 instr[2] == FBT_MOVL_ESP_EBP1_V1)) 315 continue; 316 #endif 317 318 fbt = kmem_zalloc(sizeof (fbt_probe_t), KM_SLEEP); 319 fbt->fbtp_name = name; 320 fbt->fbtp_id = dtrace_probe_create(fbt_id, modname, 321 name, FBT_ENTRY, 3, fbt); 322 fbt->fbtp_patchpoint = instr; 323 fbt->fbtp_ctl = ctl; 324 fbt->fbtp_loadcnt = ctl->mod_loadcnt; 325 fbt->fbtp_rval = DTRACE_INVOP_PUSHL_EBP; 326 fbt->fbtp_savedval = *instr; 327 fbt->fbtp_patchval = FBT_PATCHVAL; 328 329 fbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(instr)]; 330 fbt->fbtp_symndx = i; 331 fbt_probetab[FBT_ADDR2NDX(instr)] = fbt; 332 333 mp->fbt_nentries++; 334 335 retfbt = NULL; 336 again: 337 if (instr >= limit) 338 continue; 339 340 /* 341 * If this disassembly fails, then we've likely walked off into 342 * a jump table or some other unsuitable area. Bail out of the 343 * disassembly now. 344 */ 345 if ((size = dtrace_instr_size(instr)) <= 0) 346 continue; 347 348 #ifdef __amd64 349 /* 350 * We only instrument "ret" on amd64 -- we don't yet instrument 351 * ret imm16, largely because the compiler doesn't seem to 352 * (yet) emit them in the kernel... 353 */ 354 if (*instr != FBT_RET) { 355 instr += size; 356 goto again; 357 } 358 #else 359 if (!(size == 1 && 360 (*instr == FBT_POPL_EBP || *instr == FBT_LEAVE) && 361 (*(instr + 1) == FBT_RET || 362 *(instr + 1) == FBT_RET_IMM16))) { 363 instr += size; 364 goto again; 365 } 366 #endif 367 368 /* 369 * We have a winner! 370 */ 371 fbt = kmem_zalloc(sizeof (fbt_probe_t), KM_SLEEP); 372 fbt->fbtp_name = name; 373 374 if (retfbt == NULL) { 375 fbt->fbtp_id = dtrace_probe_create(fbt_id, modname, 376 name, FBT_RETURN, 3, fbt); 377 } else { 378 retfbt->fbtp_next = fbt; 379 fbt->fbtp_id = retfbt->fbtp_id; 380 } 381 382 retfbt = fbt; 383 fbt->fbtp_patchpoint = instr; 384 fbt->fbtp_ctl = ctl; 385 fbt->fbtp_loadcnt = ctl->mod_loadcnt; 386 387 #ifndef __amd64 388 if (*instr == FBT_POPL_EBP) { 389 fbt->fbtp_rval = DTRACE_INVOP_POPL_EBP; 390 } else { 391 ASSERT(*instr == FBT_LEAVE); 392 fbt->fbtp_rval = DTRACE_INVOP_LEAVE; 393 } 394 fbt->fbtp_roffset = 395 (uintptr_t)(instr - (uint8_t *)sym->st_value) + 1; 396 397 #else 398 ASSERT(*instr == FBT_RET); 399 fbt->fbtp_rval = DTRACE_INVOP_RET; 400 fbt->fbtp_roffset = 401 (uintptr_t)(instr - (uint8_t *)sym->st_value); 402 #endif 403 404 fbt->fbtp_savedval = *instr; 405 fbt->fbtp_patchval = FBT_PATCHVAL; 406 fbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(instr)]; 407 fbt->fbtp_symndx = i; 408 fbt_probetab[FBT_ADDR2NDX(instr)] = fbt; 409 410 mp->fbt_nentries++; 411 412 instr += size; 413 goto again; 414 } 415 } 416 417 /*ARGSUSED*/ 418 static void 419 fbt_destroy(void *arg, dtrace_id_t id, void *parg) 420 { 421 fbt_probe_t *fbt = parg, *next, *hash, *last; 422 struct modctl *ctl = fbt->fbtp_ctl; 423 int ndx; 424 425 do { 426 if (ctl != NULL && ctl->mod_loadcnt == fbt->fbtp_loadcnt) { 427 if ((ctl->mod_loadcnt == fbt->fbtp_loadcnt && 428 ctl->mod_loaded)) { 429 ((struct module *) 430 (ctl->mod_mp))->fbt_nentries--; 431 } 432 } 433 434 /* 435 * Now we need to remove this probe from the fbt_probetab. 436 */ 437 ndx = FBT_ADDR2NDX(fbt->fbtp_patchpoint); 438 last = NULL; 439 hash = fbt_probetab[ndx]; 440 441 while (hash != fbt) { 442 ASSERT(hash != NULL); 443 last = hash; 444 hash = hash->fbtp_hashnext; 445 } 446 447 if (last != NULL) { 448 last->fbtp_hashnext = fbt->fbtp_hashnext; 449 } else { 450 fbt_probetab[ndx] = fbt->fbtp_hashnext; 451 } 452 453 next = fbt->fbtp_next; 454 kmem_free(fbt, sizeof (fbt_probe_t)); 455 456 fbt = next; 457 } while (fbt != NULL); 458 } 459 460 /*ARGSUSED*/ 461 static void 462 fbt_enable(void *arg, dtrace_id_t id, void *parg) 463 { 464 fbt_probe_t *fbt = parg; 465 struct modctl *ctl = fbt->fbtp_ctl; 466 467 ctl->mod_nenabled++; 468 469 if (!ctl->mod_loaded) { 470 if (fbt_verbose) { 471 cmn_err(CE_NOTE, "fbt is failing for probe %s " 472 "(module %s unloaded)", 473 fbt->fbtp_name, ctl->mod_modname); 474 } 475 476 return; 477 } 478 479 /* 480 * Now check that our modctl has the expected load count. If it 481 * doesn't, this module must have been unloaded and reloaded -- and 482 * we're not going to touch it. 483 */ 484 if (ctl->mod_loadcnt != fbt->fbtp_loadcnt) { 485 if (fbt_verbose) { 486 cmn_err(CE_NOTE, "fbt is failing for probe %s " 487 "(module %s reloaded)", 488 fbt->fbtp_name, ctl->mod_modname); 489 } 490 491 return; 492 } 493 494 for (; fbt != NULL; fbt = fbt->fbtp_next) 495 *fbt->fbtp_patchpoint = fbt->fbtp_patchval; 496 } 497 498 /*ARGSUSED*/ 499 static void 500 fbt_disable(void *arg, dtrace_id_t id, void *parg) 501 { 502 fbt_probe_t *fbt = parg; 503 struct modctl *ctl = fbt->fbtp_ctl; 504 505 ASSERT(ctl->mod_nenabled > 0); 506 ctl->mod_nenabled--; 507 508 if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) 509 return; 510 511 for (; fbt != NULL; fbt = fbt->fbtp_next) 512 *fbt->fbtp_patchpoint = fbt->fbtp_savedval; 513 } 514 515 /*ARGSUSED*/ 516 static void 517 fbt_suspend(void *arg, dtrace_id_t id, void *parg) 518 { 519 fbt_probe_t *fbt = parg; 520 struct modctl *ctl = fbt->fbtp_ctl; 521 522 ASSERT(ctl->mod_nenabled > 0); 523 524 if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) 525 return; 526 527 for (; fbt != NULL; fbt = fbt->fbtp_next) 528 *fbt->fbtp_patchpoint = fbt->fbtp_savedval; 529 } 530 531 /*ARGSUSED*/ 532 static void 533 fbt_resume(void *arg, dtrace_id_t id, void *parg) 534 { 535 fbt_probe_t *fbt = parg; 536 struct modctl *ctl = fbt->fbtp_ctl; 537 538 ASSERT(ctl->mod_nenabled > 0); 539 540 if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) 541 return; 542 543 for (; fbt != NULL; fbt = fbt->fbtp_next) 544 *fbt->fbtp_patchpoint = fbt->fbtp_patchval; 545 } 546 547 /*ARGSUSED*/ 548 static void 549 fbt_getargdesc(void *arg, dtrace_id_t id, void *parg, dtrace_argdesc_t *desc) 550 { 551 fbt_probe_t *fbt = parg; 552 struct modctl *ctl = fbt->fbtp_ctl; 553 struct module *mp = ctl->mod_mp; 554 ctf_file_t *fp = NULL, *pfp; 555 ctf_funcinfo_t f; 556 int error; 557 ctf_id_t argv[32], type; 558 int argc = sizeof (argv) / sizeof (ctf_id_t); 559 const char *parent; 560 561 if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) 562 goto err; 563 564 if (fbt->fbtp_roffset != 0 && desc->dtargd_ndx == 0) { 565 (void) strcpy(desc->dtargd_native, "int"); 566 return; 567 } 568 569 if ((fp = ctf_modopen(mp, &error)) == NULL) { 570 /* 571 * We have no CTF information for this module -- and therefore 572 * no args[] information. 573 */ 574 goto err; 575 } 576 577 /* 578 * If we have a parent container, we must manually import it. 579 */ 580 if ((parent = ctf_parent_name(fp)) != NULL) { 581 struct modctl *mod; 582 583 /* 584 * We must iterate over all modules to find the module that 585 * is our parent. 586 */ 587 for (mod = &modules; mod != NULL; mod = mod->mod_next) { 588 if (strcmp(mod->mod_filename, parent) == 0) 589 break; 590 } 591 592 if (mod == NULL) 593 goto err; 594 595 if ((pfp = ctf_modopen(mod->mod_mp, &error)) == NULL) 596 goto err; 597 598 if (ctf_import(fp, pfp) != 0) { 599 ctf_close(pfp); 600 goto err; 601 } 602 603 ctf_close(pfp); 604 } 605 606 if (ctf_func_info(fp, fbt->fbtp_symndx, &f) == CTF_ERR) 607 goto err; 608 609 if (fbt->fbtp_roffset != 0) { 610 if (desc->dtargd_ndx > 1) 611 goto err; 612 613 ASSERT(desc->dtargd_ndx == 1); 614 type = f.ctc_return; 615 } else { 616 if (desc->dtargd_ndx + 1 > f.ctc_argc) 617 goto err; 618 619 if (ctf_func_args(fp, fbt->fbtp_symndx, argc, argv) == CTF_ERR) 620 goto err; 621 622 type = argv[desc->dtargd_ndx]; 623 } 624 625 if (ctf_type_name(fp, type, desc->dtargd_native, 626 DTRACE_ARGTYPELEN) != NULL) { 627 ctf_close(fp); 628 return; 629 } 630 err: 631 if (fp != NULL) 632 ctf_close(fp); 633 634 desc->dtargd_ndx = DTRACE_ARGNONE; 635 } 636 637 static dtrace_pattr_t fbt_attr = { 638 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, 639 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 640 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 641 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, 642 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA }, 643 }; 644 645 static dtrace_pops_t fbt_pops = { 646 NULL, 647 fbt_provide_module, 648 fbt_enable, 649 fbt_disable, 650 fbt_suspend, 651 fbt_resume, 652 fbt_getargdesc, 653 NULL, 654 NULL, 655 fbt_destroy 656 }; 657 658 static void 659 fbt_cleanup(dev_info_t *devi) 660 { 661 dtrace_invop_remove(fbt_invop); 662 ddi_remove_minor_node(devi, NULL); 663 kmem_free(fbt_probetab, fbt_probetab_size * sizeof (fbt_probe_t *)); 664 fbt_probetab = NULL; 665 fbt_probetab_mask = 0; 666 } 667 668 static int 669 fbt_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 670 { 671 switch (cmd) { 672 case DDI_ATTACH: 673 break; 674 case DDI_RESUME: 675 return (DDI_SUCCESS); 676 default: 677 return (DDI_FAILURE); 678 } 679 680 if (fbt_probetab_size == 0) 681 fbt_probetab_size = FBT_PROBETAB_SIZE; 682 683 fbt_probetab_mask = fbt_probetab_size - 1; 684 fbt_probetab = 685 kmem_zalloc(fbt_probetab_size * sizeof (fbt_probe_t *), KM_SLEEP); 686 687 dtrace_invop_add(fbt_invop); 688 689 if (ddi_create_minor_node(devi, "fbt", S_IFCHR, 0, 690 DDI_PSEUDO, NULL) == DDI_FAILURE || 691 dtrace_register("fbt", &fbt_attr, DTRACE_PRIV_KERNEL, 0, 692 &fbt_pops, NULL, &fbt_id) != 0) { 693 fbt_cleanup(devi); 694 return (DDI_FAILURE); 695 } 696 697 ddi_report_dev(devi); 698 fbt_devi = devi; 699 700 return (DDI_SUCCESS); 701 } 702 703 static int 704 fbt_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) 705 { 706 switch (cmd) { 707 case DDI_DETACH: 708 break; 709 case DDI_SUSPEND: 710 return (DDI_SUCCESS); 711 default: 712 return (DDI_FAILURE); 713 } 714 715 if (dtrace_unregister(fbt_id) != 0) 716 return (DDI_FAILURE); 717 718 fbt_cleanup(devi); 719 720 return (DDI_SUCCESS); 721 } 722 723 /*ARGSUSED*/ 724 static int 725 fbt_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 726 { 727 int error; 728 729 switch (infocmd) { 730 case DDI_INFO_DEVT2DEVINFO: 731 *result = (void *)fbt_devi; 732 error = DDI_SUCCESS; 733 break; 734 case DDI_INFO_DEVT2INSTANCE: 735 *result = (void *)0; 736 error = DDI_SUCCESS; 737 break; 738 default: 739 error = DDI_FAILURE; 740 } 741 return (error); 742 } 743 744 /*ARGSUSED*/ 745 static int 746 fbt_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 747 { 748 return (0); 749 } 750 751 static struct cb_ops fbt_cb_ops = { 752 fbt_open, /* open */ 753 nodev, /* close */ 754 nulldev, /* strategy */ 755 nulldev, /* print */ 756 nodev, /* dump */ 757 nodev, /* read */ 758 nodev, /* write */ 759 nodev, /* ioctl */ 760 nodev, /* devmap */ 761 nodev, /* mmap */ 762 nodev, /* segmap */ 763 nochpoll, /* poll */ 764 ddi_prop_op, /* cb_prop_op */ 765 0, /* streamtab */ 766 D_NEW | D_MP /* Driver compatibility flag */ 767 }; 768 769 static struct dev_ops fbt_ops = { 770 DEVO_REV, /* devo_rev */ 771 0, /* refcnt */ 772 fbt_info, /* get_dev_info */ 773 nulldev, /* identify */ 774 nulldev, /* probe */ 775 fbt_attach, /* attach */ 776 fbt_detach, /* detach */ 777 nodev, /* reset */ 778 &fbt_cb_ops, /* driver operations */ 779 NULL, /* bus operations */ 780 nodev /* dev power */ 781 }; 782 783 /* 784 * Module linkage information for the kernel. 785 */ 786 static struct modldrv modldrv = { 787 &mod_driverops, /* module type (this is a pseudo driver) */ 788 "Function Boundary Tracing", /* name of module */ 789 &fbt_ops, /* driver ops */ 790 }; 791 792 static struct modlinkage modlinkage = { 793 MODREV_1, 794 (void *)&modldrv, 795 NULL 796 }; 797 798 int 799 _init(void) 800 { 801 return (mod_install(&modlinkage)); 802 } 803 804 int 805 _info(struct modinfo *modinfop) 806 { 807 return (mod_info(&modlinkage, modinfop)); 808 } 809 810 int 811 _fini(void) 812 { 813 return (mod_remove(&modlinkage)); 814 } 815