1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/clock.h> 31 #include <sys/psm.h> 32 #include <sys/archsystm.h> 33 #include <sys/machsystm.h> 34 #include <sys/compress.h> 35 #include <sys/modctl.h> 36 #include <sys/trap.h> 37 #include <sys/panic.h> 38 #include <sys/regset.h> 39 #include <sys/frame.h> 40 #include <sys/kobj.h> 41 #include <sys/apic.h> 42 #include <sys/dumphdr.h> 43 #include <sys/mem.h> 44 #include <sys/x86_archext.h> 45 #include <sys/xpv_panic.h> 46 #include <sys/boot_console.h> 47 #include <sys/bootsvcs.h> 48 #include <sys/consdev.h> 49 #include <vm/hat_pte.h> 50 #include <vm/hat_i86.h> 51 52 /* XXX: need to add a PAE version too, if we ever support both PAE and non */ 53 #if defined(__i386) 54 #define XPV_FILENAME "/boot/xen-syms" 55 #else 56 #define XPV_FILENAME "/boot/amd64/xen-syms" 57 #endif 58 #define XPV_MODNAME "xpv" 59 60 int xpv_panicking = 0; 61 62 struct module *xpv_module; 63 struct modctl *xpv_modctl; 64 65 #define ALIGN(x, a) ((a) == 0 ? (uintptr_t)(x) : \ 66 (((uintptr_t)(x) + (uintptr_t)(a) - 1l) & ~((uintptr_t)(a) - 1l))) 67 68 /* Pointer to the xpv_panic_info structure handed to us by Xen. */ 69 static struct panic_info *xpv_panic_info = NULL; 70 71 /* Timer support */ 72 #define NSEC_SHIFT 5 73 #define T_XPV_TIMER 0xd1 74 #define XPV_TIMER_INTERVAL 1000 /* 1000 microseconds */ 75 static uint32_t *xpv_apicadr = NULL; 76 static uint_t nsec_scale; 77 78 /* IDT support */ 79 #pragma align 16(xpv_panic_idt) 80 static gate_desc_t xpv_panic_idt[NIDT]; /* interrupt descriptor table */ 81 82 /* Xen pagetables mapped into our HAT's ptable windows */ 83 static pfn_t ptable_pfn[MAX_NUM_LEVEL]; 84 85 /* Number of MMU_PAGESIZE pages we're adding to the Solaris dump */ 86 static int xpv_dump_pages; 87 88 /* 89 * There are up to two large swathes of RAM that we don't want to include 90 * in the dump: those that comprise the Xen version of segkpm. On 32-bit 91 * systems there is no such region of memory. On 64-bit systems, there 92 * should be just a single contiguous region that corresponds to all of 93 * physical memory. The tricky bit is that Xen's heap sometimes lives in 94 * the middle of their segkpm, and is mapped using only kpm-like addresses. 95 * In that case, we need to skip the swathes before and after Xen's heap. 96 */ 97 uintptr_t kpm1_low = 0; 98 uintptr_t kpm1_high = 0; 99 uintptr_t kpm2_low = 0; 100 uintptr_t kpm2_high = 0; 101 102 /* 103 * Some commonly used values that we don't want to recompute over and over. 104 */ 105 static int xpv_panic_nptes[MAX_NUM_LEVEL]; 106 static ulong_t xpv_panic_cr3; 107 static uintptr_t xpv_end; 108 109 static void xpv_panic_console_print(const char *fmt, ...); 110 static void (*xpv_panic_printf)(const char *, ...) = xpv_panic_console_print; 111 112 #define CONSOLE_BUF_SIZE 256 113 static char console_buffer[CONSOLE_BUF_SIZE]; 114 static boolean_t use_polledio; 115 116 static void 117 xpv_panic_putc(int m) 118 { 119 struct cons_polledio *c = cons_polledio; 120 121 /* This really shouldn't happen */ 122 if (console == CONS_HYPERVISOR) 123 return; 124 125 if (use_polledio == B_TRUE) 126 c->cons_polledio_putchar(c->cons_polledio_argument, m); 127 else 128 bcons_putchar(m); 129 } 130 131 static void 132 xpv_panic_puts(char *msg) 133 { 134 char *m; 135 136 dump_timeleft = dump_timeout; 137 for (m = msg; *m; m++) 138 xpv_panic_putc((int)*m); 139 } 140 141 static void 142 xpv_panic_console_print(const char *fmt, ...) 143 { 144 va_list ap; 145 146 va_start(ap, fmt); 147 (void) vsnprintf(console_buffer, sizeof (console_buffer), fmt, ap); 148 va_end(ap); 149 150 xpv_panic_puts(console_buffer); 151 } 152 153 static void 154 xpv_panic_map(int level, pfn_t pfn) 155 { 156 x86pte_t pte, *pteptr; 157 158 /* 159 * The provided pfn represents a level 'level' page table. Map it 160 * into the 'level' slot in the list of page table windows. 161 */ 162 pteptr = (x86pte_t *)PWIN_PTE_VA(level); 163 pte = pfn_to_pa(pfn) | PT_VALID; 164 165 XPV_ALLOW_PAGETABLE_UPDATES(); 166 if (mmu.pae_hat) 167 *pteptr = pte; 168 else 169 *(x86pte32_t *)pteptr = pte; 170 XPV_DISALLOW_PAGETABLE_UPDATES(); 171 172 mmu_tlbflush_entry(PWIN_VA(level)); 173 } 174 175 /* 176 * Walk the page tables to find the pfn mapped by the given va. 177 */ 178 static pfn_t 179 xpv_va_walk(uintptr_t *vaddr) 180 { 181 int l, idx; 182 pfn_t pfn; 183 x86pte_t pte; 184 x86pte_t *ptep; 185 uintptr_t va = *vaddr; 186 uintptr_t scan_va; 187 caddr_t ptable_window; 188 static pfn_t toplevel_pfn; 189 static uintptr_t lastva; 190 191 /* 192 * If we do anything other than a simple scan through memory, don't 193 * trust the mapped page tables. 194 */ 195 if (va != lastva + MMU_PAGESIZE) 196 for (l = mmu.max_level; l >= 0; l--) 197 ptable_pfn[l] = PFN_INVALID; 198 199 toplevel_pfn = mmu_btop(xpv_panic_cr3); 200 201 while (va < xpv_end && va >= *vaddr) { 202 /* Find the lowest table with any entry for va */ 203 pfn = toplevel_pfn; 204 for (l = mmu.max_level; l >= 0; l--) { 205 if (ptable_pfn[l] != pfn) { 206 xpv_panic_map(l, pfn); 207 ptable_pfn[l] = pfn; 208 } 209 210 /* 211 * Search this pagetable for any mapping to an 212 * address >= va. 213 */ 214 ptable_window = PWIN_VA(l); 215 if (l == mmu.max_level && mmu.pae_hat) 216 ptable_window += 217 (xpv_panic_cr3 & MMU_PAGEOFFSET); 218 219 idx = (va >> LEVEL_SHIFT(l)) & (xpv_panic_nptes[l] - 1); 220 scan_va = va; 221 while (idx < xpv_panic_nptes[l] && scan_va < xpv_end && 222 scan_va >= *vaddr) { 223 ptep = (x86pte_t *)(ptable_window + 224 (idx << mmu.pte_size_shift)); 225 pte = GET_PTE(ptep); 226 if (pte & PTE_VALID) 227 break; 228 idx++; 229 scan_va += mmu.level_size[l]; 230 } 231 232 /* 233 * If there are no valid mappings in this table, we 234 * can skip to the end of the VA range it covers. 235 */ 236 if (idx == xpv_panic_nptes[l]) { 237 va = NEXT_ENTRY_VA(va, l + 1); 238 break; 239 } 240 241 va = scan_va; 242 /* 243 * See if we've hit the end of the range. 244 */ 245 if (va >= xpv_end || va < *vaddr) 246 break; 247 248 /* 249 * If this mapping is for a pagetable, we drop down 250 * to the next level in the hierarchy and look for 251 * a mapping in it. 252 */ 253 pfn = PTE2MFN(pte, l); 254 if (!PTE_ISPAGE(pte, l)) 255 continue; 256 257 /* 258 * The APIC page is magic. Nothing to see here; 259 * move along. 260 */ 261 if (((uintptr_t)xpv_apicadr & MMU_PAGEMASK) == 262 (va & MMU_PAGEMASK)) { 263 va += MMU_PAGESIZE; 264 break; 265 } 266 267 /* 268 * See if the address is within one of the two 269 * kpm-like regions we want to skip. 270 */ 271 if (va >= kpm1_low && va < kpm1_high) { 272 va = kpm1_high; 273 break; 274 } 275 if (va >= kpm2_low && va < kpm2_high) { 276 va = kpm2_high; 277 break; 278 } 279 280 /* 281 * The Xen panic code only handles small pages. If 282 * this mapping is for a large page, we need to 283 * identify the consituent page that covers the 284 * specific VA we were looking for. 285 */ 286 if (l > 0) { 287 if (l > 1) 288 panic("Xen panic can't cope with " 289 "giant pages."); 290 idx = (va >> LEVEL_SHIFT(0)) & 291 (xpv_panic_nptes[0] - 1); 292 pfn += idx; 293 } 294 295 *vaddr = va; 296 lastva = va; 297 return (pfn | PFN_IS_FOREIGN_MFN); 298 } 299 } 300 return (PFN_INVALID); 301 } 302 303 /* 304 * Walk through the Xen VA space, finding pages that are mapped in. 305 * 306 * These pages all have MFNs rather than PFNs, meaning they may be outside 307 * the physical address space the kernel knows about, or they may collide 308 * with PFNs the kernel is using. 309 * 310 * The obvious trick of just adding the PFN_IS_FOREIGN_MFN bit to the MFNs 311 * to avoid collisions doesn't work. The pages need to be written to disk 312 * in PFN-order or savecore gets confused. We can't allocate memory to 313 * contruct a sorted pfn->VA reverse mapping, so we have to write the pages 314 * to disk in VA order. 315 * 316 * To square this circle, we simply make up PFNs for each of Xen's pages. 317 * We assign each mapped page a fake PFN in ascending order. These fake 318 * PFNs each have the FOREIGN bit set, ensuring that they fall outside the 319 * range of Solaris PFNs written by the kernel. 320 */ 321 int 322 dump_xpv_addr() 323 { 324 uintptr_t va; 325 mem_vtop_t mem_vtop; 326 327 xpv_dump_pages = 0; 328 va = xen_virt_start; 329 330 while (xpv_va_walk(&va) != PFN_INVALID) { 331 mem_vtop.m_as = &kas; 332 mem_vtop.m_va = (void *)va; 333 mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN; 334 335 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 336 xpv_dump_pages++; 337 338 va += MMU_PAGESIZE; 339 } 340 341 /* 342 * Add the shared_info page. This page actually ends up in the 343 * dump twice: once for the Xen va and once for the Solaris va. 344 * This isn't ideal, but we don't know the address Xen is using for 345 * the page, so we can't share it. 346 */ 347 mem_vtop.m_as = &kas; 348 mem_vtop.m_va = HYPERVISOR_shared_info; 349 mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN; 350 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 351 xpv_dump_pages++; 352 353 return (xpv_dump_pages); 354 } 355 356 void 357 dump_xpv_pfn() 358 { 359 pfn_t pfn; 360 int cnt; 361 362 for (cnt = 0; cnt < xpv_dump_pages; cnt++) { 363 pfn = (pfn_t)cnt | PFN_IS_FOREIGN_MFN; 364 dumpvp_write(&pfn, sizeof (pfn)); 365 } 366 } 367 368 int 369 dump_xpv_data(void *dump_cbuf) 370 { 371 uintptr_t va; 372 uint32_t csize; 373 int cnt = 0; 374 375 /* 376 * XXX: we should probably run this data through a UE check. The 377 * catch is that the UE code relies on on_trap() and getpfnum() 378 * working. 379 */ 380 va = xen_virt_start; 381 382 while (xpv_va_walk(&va) != PFN_INVALID) { 383 csize = (uint32_t)compress((void *)va, dump_cbuf, PAGESIZE); 384 dumpvp_write(&csize, sizeof (uint32_t)); 385 dumpvp_write(dump_cbuf, csize); 386 if (dump_ioerr) { 387 dumphdr->dump_flags &= ~DF_COMPLETE; 388 return (cnt); 389 } 390 cnt++; 391 va += MMU_PAGESIZE; 392 } 393 394 /* 395 * Finally, dump the shared_info page 396 */ 397 csize = (uint32_t)compress((void *)HYPERVISOR_shared_info, dump_cbuf, 398 PAGESIZE); 399 dumpvp_write(&csize, sizeof (uint32_t)); 400 dumpvp_write(dump_cbuf, csize); 401 if (dump_ioerr) 402 dumphdr->dump_flags &= ~DF_COMPLETE; 403 cnt++; 404 405 return (cnt); 406 } 407 408 static void * 409 showstack(void *fpreg, int xpv_only) 410 { 411 struct frame *fpp; 412 ulong_t off; 413 char *sym; 414 uintptr_t pc, fp, lastfp; 415 uintptr_t minaddr = min(KERNELBASE, xen_virt_start); 416 417 fp = (uintptr_t)fpreg; 418 if (fp < minaddr) { 419 xpv_panic_printf("Bad frame ptr: 0x%p\n", fpreg); 420 return (fpreg); 421 } 422 423 do { 424 fpp = (struct frame *)fp; 425 pc = fpp->fr_savpc; 426 427 if ((xpv_only != 0) && 428 (fp > xpv_end || fp < xen_virt_start)) 429 break; 430 if ((sym = kobj_getsymname(pc, &off)) != NULL) 431 xpv_panic_printf("%08lx %s:%s+%lx\n", fp, 432 mod_containing_pc((caddr_t)pc), sym, off); 433 else if ((pc >= xen_virt_start) && (pc <= xpv_end)) 434 xpv_panic_printf("%08lx 0x%lx (in Xen)\n", fp, pc); 435 else 436 xpv_panic_printf("%08lx %lx\n", fp, pc); 437 438 lastfp = fp; 439 fp = fpp->fr_savfp; 440 441 /* 442 * Xen marks an exception frame by inverting the frame 443 * pointer. 444 */ 445 if (fp < lastfp) { 446 if ((~fp > minaddr) && ((~fp) ^ lastfp) < 0xfff) 447 fp = ~fp; 448 } 449 } while (fp > lastfp); 450 return ((void *)fp); 451 } 452 453 void * 454 xpv_traceback(void *fpreg) 455 { 456 return (showstack(fpreg, 1)); 457 } 458 459 #if defined(__amd64) 460 static void 461 xpv_panic_hypercall(ulong_t call) 462 { 463 panic("Illegally issued hypercall %d during panic!\n", (int)call); 464 } 465 #endif 466 467 void 468 xpv_die(struct regs *rp) 469 { 470 struct panic_trap_info ti; 471 struct cregs creg; 472 473 ti.trap_regs = rp; 474 ti.trap_type = rp->r_trapno; 475 476 curthread->t_panic_trap = &ti; 477 if (ti.trap_type == T_PGFLT) { 478 getcregs(&creg); 479 ti.trap_addr = (caddr_t)creg.cr_cr2; 480 panic("Fatal pagefault at 0x%lx. fault addr=0x%p rp=0x%p", 481 rp->r_pc, (void *)ti.trap_addr, (void *)rp); 482 } else { 483 ti.trap_addr = (caddr_t)rp->r_pc; 484 panic("Fatal trap %ld at 0x%lx. rp=0x%p", rp->r_trapno, 485 rp->r_pc, (void *)rp); 486 } 487 } 488 489 /* 490 * Build IDT to handle a Xen panic 491 */ 492 static void 493 switch_to_xpv_panic_idt() 494 { 495 int i; 496 desctbr_t idtr; 497 gate_desc_t *idt = xpv_panic_idt; 498 selector_t cs = get_cs_register(); 499 500 for (i = 0; i < 32; i++) 501 set_gatesegd(&idt[i], &xpv_invaltrap, cs, SDT_SYSIGT, TRP_XPL); 502 503 set_gatesegd(&idt[T_ZERODIV], &xpv_div0trap, cs, SDT_SYSIGT, TRP_XPL); 504 set_gatesegd(&idt[T_SGLSTP], &xpv_dbgtrap, cs, SDT_SYSIGT, TRP_XPL); 505 set_gatesegd(&idt[T_NMIFLT], &xpv_nmiint, cs, SDT_SYSIGT, TRP_XPL); 506 set_gatesegd(&idt[T_BOUNDFLT], &xpv_boundstrap, cs, SDT_SYSIGT, 507 TRP_XPL); 508 set_gatesegd(&idt[T_ILLINST], &xpv_invoptrap, cs, SDT_SYSIGT, TRP_XPL); 509 set_gatesegd(&idt[T_NOEXTFLT], &xpv_ndptrap, cs, SDT_SYSIGT, TRP_XPL); 510 set_gatesegd(&idt[T_TSSFLT], &xpv_invtsstrap, cs, SDT_SYSIGT, TRP_XPL); 511 set_gatesegd(&idt[T_SEGFLT], &xpv_segnptrap, cs, SDT_SYSIGT, TRP_XPL); 512 set_gatesegd(&idt[T_STKFLT], &xpv_stktrap, cs, SDT_SYSIGT, TRP_XPL); 513 set_gatesegd(&idt[T_GPFLT], &xpv_gptrap, cs, SDT_SYSIGT, TRP_XPL); 514 set_gatesegd(&idt[T_PGFLT], &xpv_pftrap, cs, SDT_SYSIGT, TRP_XPL); 515 set_gatesegd(&idt[T_EXTERRFLT], &xpv_ndperr, cs, SDT_SYSIGT, TRP_XPL); 516 set_gatesegd(&idt[T_ALIGNMENT], &xpv_achktrap, cs, SDT_SYSIGT, TRP_XPL); 517 set_gatesegd(&idt[T_MCE], &xpv_mcetrap, cs, SDT_SYSIGT, TRP_XPL); 518 set_gatesegd(&idt[T_SIMDFPE], &xpv_xmtrap, cs, SDT_SYSIGT, TRP_XPL); 519 520 /* 521 * We have no double fault handler. Any single fault represents a 522 * catastrophic failure for us, so there is no attempt to handle 523 * them cleanly: we just print a message and reboot. If we 524 * encounter a second fault while doing that, there is nothing 525 * else we can do. 526 */ 527 528 /* 529 * Be prepared to absorb any stray device interrupts received 530 * while writing the core to disk. 531 */ 532 for (i = 33; i < NIDT; i++) 533 set_gatesegd(&idt[i], &xpv_surprise_intr, cs, SDT_SYSIGT, 534 TRP_XPL); 535 536 /* The one interrupt we expect to get is from the APIC timer. */ 537 set_gatesegd(&idt[T_XPV_TIMER], &xpv_timer_trap, cs, SDT_SYSIGT, 538 TRP_XPL); 539 540 idtr.dtr_base = (uintptr_t)xpv_panic_idt; 541 idtr.dtr_limit = sizeof (xpv_panic_idt) - 1; 542 wr_idtr(&idtr); 543 544 #if defined(__amd64) 545 /* Catch any hypercalls. */ 546 wrmsr(MSR_AMD_LSTAR, (uintptr_t)xpv_panic_hypercall); 547 wrmsr(MSR_AMD_CSTAR, (uintptr_t)xpv_panic_hypercall); 548 #endif 549 } 550 551 static void 552 xpv_apic_clkinit() 553 { 554 uint_t apic_ticks = 0; 555 556 /* 557 * Measure how many APIC ticks there are within a fixed time 558 * period. We're going to be fairly coarse here. This timer is 559 * just being used to detect a stalled panic, so as long as we have 560 * the right order of magnitude, everything should be fine. 561 */ 562 xpv_apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR; 563 xpv_apicadr[APIC_LOCAL_TIMER] = AV_MASK; 564 xpv_apicadr[APIC_INT_VECT0] = AV_MASK; /* local intr reg 0 */ 565 566 xpv_apicadr[APIC_DIVIDE_REG] = 0; 567 xpv_apicadr[APIC_INIT_COUNT] = APIC_MAXVAL; 568 drv_usecwait(XPV_TIMER_INTERVAL); 569 apic_ticks = APIC_MAXVAL - xpv_apicadr[APIC_CURR_COUNT]; 570 571 /* 572 * apic_ticks now represents roughly how many apic ticks comprise 573 * one timeout interval. Program the timer to send us an interrupt 574 * every time that interval expires. 575 */ 576 xpv_apicadr[APIC_LOCAL_TIMER] = T_XPV_TIMER | AV_TIME; 577 xpv_apicadr[APIC_INIT_COUNT] = apic_ticks; 578 xpv_apicadr[APIC_EOI_REG] = 0; 579 } 580 581 void 582 xpv_timer_tick(void) 583 { 584 static int ticks = 0; 585 586 if (ticks++ >= MICROSEC / XPV_TIMER_INTERVAL) { 587 ticks = 0; 588 if (dump_timeleft && (--dump_timeleft == 0)) 589 panic("Xen panic timeout\n"); 590 } 591 xpv_apicadr[APIC_EOI_REG] = 0; 592 } 593 594 void 595 xpv_interrupt(void) 596 { 597 #ifdef DEBUG 598 static int cnt = 0; 599 600 if (cnt++ < 10) 601 xpv_panic_printf("Unexpected interrupt received.\n"); 602 if ((cnt < 1000) && ((cnt % 100) == 0)) 603 xpv_panic_printf("%d unexpected interrupts received.\n", cnt); 604 #endif 605 606 xpv_apicadr[APIC_EOI_REG] = 0; 607 } 608 609 /* 610 * Managing time in panic context is trivial. We only have a single CPU, 611 * we never get rescheduled, we never get suspended. We just need to 612 * convert clock ticks into nanoseconds. 613 */ 614 static hrtime_t 615 xpv_panic_gethrtime(void) 616 { 617 hrtime_t tsc, hrt; 618 unsigned int *l = (unsigned int *)&(tsc); 619 620 tsc = __rdtsc_insn(); 621 hrt = (mul32(l[1], nsec_scale) << NSEC_SHIFT) + 622 (mul32(l[0], nsec_scale) >> (32 - NSEC_SHIFT)); 623 624 return (hrt); 625 } 626 627 static void 628 xpv_panic_time_init() 629 { 630 nsec_scale = 631 CPU->cpu_m.mcpu_vcpu_info->time.tsc_to_system_mul >> NSEC_SHIFT; 632 633 gethrtimef = xpv_panic_gethrtime; 634 } 635 636 static void 637 xpv_panicsys(struct regs *rp, char *fmt, ...) 638 { 639 extern void panicsys(const char *, va_list, struct regs *, int); 640 va_list alist; 641 642 va_start(alist, fmt); 643 panicsys(fmt, alist, rp, 1); 644 va_end(alist); 645 } 646 647 void 648 xpv_do_panic(void *arg) 649 { 650 struct panic_info *pip = (struct panic_info *)arg; 651 int l; 652 struct cregs creg; 653 #if defined(__amd64) 654 extern uintptr_t postbootkernelbase; 655 #endif 656 657 if (xpv_panicking++ > 0) 658 panic("multiple calls to xpv_do_panic()"); 659 660 /* 661 * Indicate to the underlying panic framework that a panic has been 662 * initiated. This is ordinarily done as part of vpanic(). Since 663 * we already have all the register state saved by the hypervisor, 664 * we skip that and jump straight into the panic processing code. 665 */ 666 (void) panic_trigger(&panic_quiesce); 667 668 #if defined(__amd64) 669 /* 670 * bzero() and bcopy() get unhappy when asked to operate on 671 * addresses outside of the kernel. At this point Xen is really a 672 * part of the kernel, so we update the routines' notion of where 673 * the kernel starts. 674 */ 675 postbootkernelbase = xen_virt_start; 676 #endif 677 678 #if defined(HYPERVISOR_VIRT_END) 679 xpv_end = HYPERVISOR_VIRT_END; 680 #else 681 xpv_end = (uintptr_t)UINTPTR_MAX - sizeof (uintptr_t); 682 #endif 683 684 /* 685 * If we were redirecting console output to the hypervisor, we have 686 * to stop. 687 */ 688 use_polledio = B_FALSE; 689 if (console == CONS_HYPERVISOR) { 690 bcons_device_change(CONS_HYPERVISOR); 691 } else if (cons_polledio != NULL && 692 cons_polledio->cons_polledio_putchar != NULL) { 693 if (cons_polledio->cons_polledio_enter != NULL) 694 cons_polledio->cons_polledio_enter( 695 cons_polledio->cons_polledio_argument); 696 use_polledio = 1; 697 } 698 699 /* Make sure we handle all console output from here on. */ 700 sysp->bsvc_putchar = xpv_panic_putc; 701 702 /* 703 * If we find an unsupported panic_info structure, there's not much 704 * we can do other than complain, plow on, and hope for the best. 705 */ 706 if (pip->pi_version != PANIC_INFO_VERSION) 707 xpv_panic_printf("Warning: Xen is using an unsupported " 708 "version of the panic_info structure.\n"); 709 710 xpv_panic_info = pip; 711 712 #if defined(__amd64) 713 kpm1_low = (uintptr_t)xpv_panic_info->pi_ram_start; 714 if (xpv_panic_info->pi_xen_start == NULL) { 715 kpm1_high = (uintptr_t)xpv_panic_info->pi_ram_end; 716 } else { 717 kpm1_high = (uintptr_t)xpv_panic_info->pi_xen_start; 718 kpm2_low = (uintptr_t)xpv_panic_info->pi_xen_end; 719 kpm2_high = (uintptr_t)xpv_panic_info->pi_ram_end; 720 } 721 #endif 722 723 /* 724 * Make sure we are running on the Solaris %gs. The Xen panic code 725 * should already have set up the GDT properly. 726 */ 727 xpv_panic_resetgs(); 728 #if defined(__amd64) 729 wrmsr(MSR_AMD_GSBASE, (uint64_t)&cpus[0]); 730 #endif 731 732 xpv_panic_time_init(); 733 734 /* 735 * Switch to our own IDT, avoiding any accidental returns to Xen 736 * world. 737 */ 738 switch_to_xpv_panic_idt(); 739 740 /* 741 * Initialize the APIC timer, which is used to detect a hung dump 742 * attempt. 743 */ 744 xpv_apicadr = pip->pi_apic; 745 xpv_apic_clkinit(); 746 747 /* 748 * Set up a few values that we'll need repeatedly. 749 */ 750 getcregs(&creg); 751 xpv_panic_cr3 = creg.cr_cr3; 752 for (l = mmu.max_level; l >= 0; l--) 753 xpv_panic_nptes[l] = mmu.ptes_per_table; 754 #ifdef __i386 755 if (mmu.pae_hat) 756 xpv_panic_nptes[mmu.max_level] = 4; 757 #endif 758 759 /* Add the fake Xen module to the module list */ 760 if (xpv_module != NULL) { 761 extern int last_module_id; 762 763 xpv_modctl->mod_id = last_module_id++; 764 xpv_modctl->mod_next = &modules; 765 xpv_modctl->mod_prev = modules.mod_prev; 766 modules.mod_prev->mod_next = xpv_modctl; 767 modules.mod_prev = xpv_modctl; 768 } 769 xpv_panic_printf = printf; 770 xpv_panicsys((struct regs *)pip->pi_regs, pip->pi_panicstr); 771 xpv_panic_printf("Failed to reboot following panic.\n"); 772 for (;;) 773 ; 774 } 775 776 /* 777 * Set up the necessary data structures to pretend that the Xen hypervisor 778 * is a loadable module, allowing mdb to find the Xen symbols in a crash 779 * dump. Since these symbols all map to VA space Solaris doesn't normally 780 * have access to, we don't link these structures into the kernel's lists 781 * until/unless we hit a Xen panic. 782 * 783 * The observant reader will note a striking amount of overlap between this 784 * code and that found in krtld. While it would be handy if we could just 785 * ask krtld to do this work for us, it's not that simple. Among the 786 * complications: we're not actually loading the text here (grub did it at 787 * boot), the .text section is writable, there are no relocations to do, 788 * none of the module text/data is in readable memory, etc. Training krtld 789 * to deal with this weird module is as complicated, and more risky, than 790 * reimplementing the necessary subset of it here. 791 */ 792 static void 793 init_xen_module() 794 { 795 struct _buf *file = NULL; 796 struct module *mp; 797 struct modctl *mcp; 798 int i, shn; 799 Shdr *shp, *ctf_shp; 800 char *names = NULL; 801 size_t n, namesize, text_align, data_align; 802 #if defined(__amd64) 803 const char machine = EM_AMD64; 804 #else 805 const char machine = EM_386; 806 #endif 807 808 /* Allocate and init the module structure */ 809 mp = kmem_zalloc(sizeof (*mp), KM_SLEEP); 810 mp->filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP); 811 (void) strcpy(mp->filename, XPV_FILENAME); 812 813 /* Allocate and init the modctl structure */ 814 mcp = kmem_zalloc(sizeof (*mcp), KM_SLEEP); 815 mcp->mod_modname = kobj_zalloc(strlen(XPV_MODNAME) + 1, KM_SLEEP); 816 (void) strcpy(mcp->mod_modname, XPV_MODNAME); 817 mcp->mod_filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP); 818 (void) strcpy(mcp->mod_filename, XPV_FILENAME); 819 mcp->mod_inprogress_thread = (kthread_id_t)-1; 820 mcp->mod_ref = 1; 821 mcp->mod_loaded = 1; 822 mcp->mod_loadcnt = 1; 823 mcp->mod_mp = mp; 824 825 /* 826 * Try to open a Xen image that hasn't had its symbol and CTF 827 * information stripped off. 828 */ 829 file = kobj_open_file(XPV_FILENAME); 830 if (file == (struct _buf *)-1) { 831 file = NULL; 832 goto err; 833 } 834 835 /* 836 * Read the header and ensure that this is an ELF file for the 837 * proper ISA. If it's not, somebody has done something very 838 * stupid. Why bother? See Mencken. 839 */ 840 if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) 841 goto err; 842 for (i = 0; i < SELFMAG; i++) 843 if (mp->hdr.e_ident[i] != ELFMAG[i]) 844 goto err; 845 if ((mp->hdr.e_ident[EI_DATA] != ELFDATA2LSB) || 846 (mp->hdr.e_machine != machine)) 847 goto err; 848 849 /* Read in the section headers */ 850 n = mp->hdr.e_shentsize * mp->hdr.e_shnum; 851 mp->shdrs = kmem_zalloc(n, KM_SLEEP); 852 if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) 853 goto err; 854 855 /* Read the section names */ 856 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); 857 namesize = shp->sh_size; 858 names = kmem_zalloc(shp->sh_size, KM_SLEEP); 859 if (kobj_read_file(file, names, shp->sh_size, shp->sh_offset) < 0) 860 goto err; 861 862 /* 863 * Fill in the text and data size fields. 864 */ 865 ctf_shp = NULL; 866 text_align = data_align = 0; 867 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 868 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 869 870 /* Sanity check the offset of the section name */ 871 if (shp->sh_name >= namesize) 872 continue; 873 874 /* If we find the symtab section, remember it for later. */ 875 if (shp->sh_type == SHT_SYMTAB) { 876 mp->symtbl_section = shn; 877 mp->symhdr = shp; 878 continue; 879 } 880 881 /* If we find the CTF section, remember it for later. */ 882 if ((shp->sh_size != 0) && 883 (strcmp(names + shp->sh_name, ".SUNW_ctf") == 0)) { 884 ctf_shp = shp; 885 continue; 886 } 887 888 if (!(shp->sh_flags & SHF_ALLOC)) 889 continue; 890 891 /* 892 * Xen marks its text section as writable, so we need to 893 * look for the name - not just the flag. 894 */ 895 if ((strcmp(&names[shp->sh_name], ".text") != NULL) && 896 (shp->sh_flags & SHF_WRITE) != 0) { 897 if (shp->sh_addralign > data_align) 898 data_align = shp->sh_addralign; 899 mp->data_size = ALIGN(mp->data_size, data_align); 900 mp->data_size += ALIGN(shp->sh_size, 8); 901 if (mp->data == NULL || mp->data > (char *)shp->sh_addr) 902 mp->data = (char *)shp->sh_addr; 903 } else { 904 if (shp->sh_addralign > text_align) 905 text_align = shp->sh_addralign; 906 mp->text_size = ALIGN(mp->text_size, text_align); 907 mp->text_size += ALIGN(shp->sh_size, 8); 908 if (mp->text == NULL || mp->text > (char *)shp->sh_addr) 909 mp->text = (char *)shp->sh_addr; 910 } 911 } 912 kmem_free(names, namesize); 913 names = NULL; 914 shp = NULL; 915 mcp->mod_text = mp->text; 916 mcp->mod_text_size = mp->text_size; 917 918 /* 919 * If we have symbol table and string table sections, read them in 920 * now. If we don't, we just plow on. We'll still get a valid 921 * core dump, but finding anything useful will be just a bit 922 * harder. 923 * 924 * Note: we don't bother with a hash table. We'll never do a 925 * symbol lookup unless we crash, and then mdb creates its own. We 926 * also don't try to perform any relocations. Xen should be loaded 927 * exactly where the ELF file indicates, and the symbol information 928 * in the file should be complete and correct already. Static 929 * linking ain't all bad. 930 */ 931 if ((mp->symhdr != NULL) && (mp->symhdr->sh_link < mp->hdr.e_shnum)) { 932 mp->strhdr = (Shdr *) 933 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 934 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 935 936 /* Allocate space for the symbol table and strings. */ 937 mp->symsize = mp->symhdr->sh_size + 938 mp->nsyms * sizeof (symid_t) + mp->strhdr->sh_size; 939 mp->symspace = kmem_zalloc(mp->symsize, KM_SLEEP); 940 mp->symtbl = mp->symspace; 941 mp->strings = (char *)(mp->symtbl + mp->symhdr->sh_size); 942 943 if ((kobj_read_file(file, mp->symtbl, 944 mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0) || 945 (kobj_read_file(file, mp->strings, 946 mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)) 947 goto err; 948 } 949 950 /* 951 * Read in the CTF section 952 */ 953 if ((ctf_shp != NULL) && ((moddebug & MODDEBUG_NOCTF) == 0)) { 954 mp->ctfdata = kmem_zalloc(ctf_shp->sh_size, KM_SLEEP); 955 mp->ctfsize = ctf_shp->sh_size; 956 if (kobj_read_file(file, mp->ctfdata, mp->ctfsize, 957 ctf_shp->sh_offset) < 0) 958 goto err; 959 } 960 961 kobj_close_file(file); 962 963 xpv_module = mp; 964 xpv_modctl = mcp; 965 return; 966 967 err: 968 cmn_err(CE_WARN, "Failed to initialize xpv module."); 969 if (file != NULL) 970 kobj_close_file(file); 971 972 kmem_free(mp->filename, strlen(XPV_FILENAME) + 1); 973 if (mp->shdrs != NULL) 974 kmem_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum); 975 if (mp->symspace != NULL) 976 kmem_free(mp->symspace, mp->symsize); 977 if (mp->ctfdata != NULL) 978 kmem_free(mp->ctfdata, mp->ctfsize); 979 kmem_free(mp, sizeof (*mp)); 980 kmem_free(mcp->mod_filename, strlen(XPV_FILENAME) + 1); 981 kmem_free(mcp->mod_modname, strlen(XPV_MODNAME) + 1); 982 kmem_free(mcp, sizeof (*mcp)); 983 if (names != NULL) 984 kmem_free(names, namesize); 985 } 986 987 void 988 xpv_panic_init() 989 { 990 xen_platform_op_t op; 991 int i; 992 993 ASSERT(DOMAIN_IS_INITDOMAIN(xen_info)); 994 995 for (i = 0; i < mmu.num_level; i++) 996 ptable_pfn[i] = PFN_INVALID; 997 998 /* Let Xen know where to jump if/when it panics. */ 999 op.cmd = XENPF_panic_init; 1000 op.interface_version = XENPF_INTERFACE_VERSION; 1001 op.u.panic_init.panic_addr = (unsigned long)xpv_panic_hdlr; 1002 1003 (void) HYPERVISOR_platform_op(&op); 1004 1005 init_xen_module(); 1006 } 1007