xref: /titanic_51/usr/src/uts/i86pc/vm/hat_i86.c (revision 72b4c2cd5756cbce91ec4b298168685490456787)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * VM - Hardware Address Translation management for i386 and amd64
30  *
31  * Implementation of the interfaces described in <common/vm/hat.h>
32  *
33  * Nearly all the details of how the hardware is managed should not be
34  * visible outside this layer except for misc. machine specific functions
35  * that work in conjunction with this code.
36  *
37  * Routines used only inside of i86pc/vm start with hati_ for HAT Internal.
38  */
39 
40 #include <sys/machparam.h>
41 #include <sys/machsystm.h>
42 #include <sys/mman.h>
43 #include <sys/types.h>
44 #include <sys/systm.h>
45 #include <sys/cpuvar.h>
46 #include <sys/thread.h>
47 #include <sys/proc.h>
48 #include <sys/cpu.h>
49 #include <sys/kmem.h>
50 #include <sys/disp.h>
51 #include <sys/shm.h>
52 #include <sys/sysmacros.h>
53 #include <sys/machparam.h>
54 #include <sys/vmem.h>
55 #include <sys/vmsystm.h>
56 #include <sys/promif.h>
57 #include <sys/var.h>
58 #include <sys/x86_archext.h>
59 #include <sys/atomic.h>
60 #include <sys/bitmap.h>
61 #include <sys/controlregs.h>
62 #include <sys/bootconf.h>
63 #include <sys/bootsvcs.h>
64 #include <sys/bootinfo.h>
65 #include <sys/archsystm.h>
66 
67 #include <vm/seg_kmem.h>
68 #include <vm/hat_i86.h>
69 #include <vm/as.h>
70 #include <vm/seg.h>
71 #include <vm/page.h>
72 #include <vm/seg_kp.h>
73 #include <vm/seg_kpm.h>
74 #include <vm/vm_dep.h>
75 #ifdef __xpv
76 #include <sys/hypervisor.h>
77 #endif
78 #include <vm/kboot_mmu.h>
79 #include <vm/seg_spt.h>
80 
81 #include <sys/cmn_err.h>
82 
83 /*
84  * Basic parameters for hat operation.
85  */
86 struct hat_mmu_info mmu;
87 
88 /*
89  * The page that is the kernel's top level pagetable.
90  *
91  * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries
92  * on this 4K page for its top level page table. The remaining groups of
93  * 4 entries are used for per processor copies of user VLP pagetables for
94  * running threads.  See hat_switch() and reload_pae32() for details.
95  *
96  * vlp_page[0..3] - level==2 PTEs for kernel HAT
97  * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0
98  * vlp_page[8..11]  - level==2 PTE for user thread on cpu 1
99  * etc...
100  */
101 static x86pte_t *vlp_page;
102 
103 /*
104  * forward declaration of internal utility routines
105  */
106 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected,
107 	x86pte_t new);
108 
109 /*
110  * The kernel address space exists in all HATs. To implement this the
111  * kernel reserves a fixed number of entries in the topmost level(s) of page
112  * tables. The values are setup during startup and then copied to every user
113  * hat created by hat_alloc(). This means that kernelbase must be:
114  *
115  *	  4Meg aligned for 32 bit kernels
116  *	512Gig aligned for x86_64 64 bit kernel
117  *
118  * The hat_kernel_range_ts describe what needs to be copied from kernel hat
119  * to each user hat.
120  */
121 typedef struct hat_kernel_range {
122 	level_t		hkr_level;
123 	uintptr_t	hkr_start_va;
124 	uintptr_t	hkr_end_va;	/* zero means to end of memory */
125 } hat_kernel_range_t;
126 #define	NUM_KERNEL_RANGE 2
127 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE];
128 static int num_kernel_ranges;
129 
130 uint_t use_boot_reserve = 1;	/* cleared after early boot process */
131 uint_t can_steal_post_boot = 0;	/* set late in boot to enable stealing */
132 
133 /*
134  * enable_1gpg: controls 1g page support for user applications.
135  * By default, 1g pages are exported to user applications. enable_1gpg can
136  * be set to 0 to not export.
137  */
138 int	enable_1gpg = 1;
139 
140 /*
141  * AMD shanghai processors provide better management of 1gb ptes in its tlb.
142  * By default, 1g page suppport will be disabled for pre-shanghai AMD
143  * processors that don't have optimal tlb support for the 1g page size.
144  * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal
145  * processors.
146  */
147 int	chk_optimal_1gtlb = 1;
148 
149 
150 #ifdef DEBUG
151 uint_t	map1gcnt;
152 #endif
153 
154 
155 /*
156  * A cpuset for all cpus. This is used for kernel address cross calls, since
157  * the kernel addresses apply to all cpus.
158  */
159 cpuset_t khat_cpuset;
160 
161 /*
162  * management stuff for hat structures
163  */
164 kmutex_t	hat_list_lock;
165 kcondvar_t	hat_list_cv;
166 kmem_cache_t	*hat_cache;
167 kmem_cache_t	*hat_hash_cache;
168 kmem_cache_t	*vlp_hash_cache;
169 
170 /*
171  * Simple statistics
172  */
173 struct hatstats hatstat;
174 
175 /*
176  * Some earlier hypervisor versions do not emulate cmpxchg of PTEs
177  * correctly.  For such hypervisors we must set PT_USER for kernel
178  * entries ourselves (normally the emulation would set PT_USER for
179  * kernel entries and PT_USER|PT_GLOBAL for user entries).  pt_kern is
180  * thus set appropriately.  Note that dboot/kbm is OK, as only the full
181  * HAT uses cmpxchg() and the other paths (hypercall etc.) were never
182  * incorrect.
183  */
184 int pt_kern;
185 
186 /*
187  * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's.
188  */
189 extern void atomic_orb(uchar_t *addr, uchar_t val);
190 extern void atomic_andb(uchar_t *addr, uchar_t val);
191 
192 #define	PP_GETRM(pp, rmmask)    (pp->p_nrm & rmmask)
193 #define	PP_ISMOD(pp)		PP_GETRM(pp, P_MOD)
194 #define	PP_ISREF(pp)		PP_GETRM(pp, P_REF)
195 #define	PP_ISRO(pp)		PP_GETRM(pp, P_RO)
196 
197 #define	PP_SETRM(pp, rm)	atomic_orb(&(pp->p_nrm), rm)
198 #define	PP_SETMOD(pp)		PP_SETRM(pp, P_MOD)
199 #define	PP_SETREF(pp)		PP_SETRM(pp, P_REF)
200 #define	PP_SETRO(pp)		PP_SETRM(pp, P_RO)
201 
202 #define	PP_CLRRM(pp, rm)	atomic_andb(&(pp->p_nrm), ~(rm))
203 #define	PP_CLRMOD(pp)   	PP_CLRRM(pp, P_MOD)
204 #define	PP_CLRREF(pp)   	PP_CLRRM(pp, P_REF)
205 #define	PP_CLRRO(pp)    	PP_CLRRM(pp, P_RO)
206 #define	PP_CLRALL(pp)		PP_CLRRM(pp, P_MOD | P_REF | P_RO)
207 
208 /*
209  * kmem cache constructor for struct hat
210  */
211 /*ARGSUSED*/
212 static int
213 hati_constructor(void *buf, void *handle, int kmflags)
214 {
215 	hat_t	*hat = buf;
216 
217 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
218 	bzero(hat->hat_pages_mapped,
219 	    sizeof (pgcnt_t) * (mmu.max_page_level + 1));
220 	hat->hat_ism_pgcnt = 0;
221 	hat->hat_stats = 0;
222 	hat->hat_flags = 0;
223 	CPUSET_ZERO(hat->hat_cpus);
224 	hat->hat_htable = NULL;
225 	hat->hat_ht_hash = NULL;
226 	return (0);
227 }
228 
229 /*
230  * Allocate a hat structure for as. We also create the top level
231  * htable and initialize it to contain the kernel hat entries.
232  */
233 hat_t *
234 hat_alloc(struct as *as)
235 {
236 	hat_t			*hat;
237 	htable_t		*ht;	/* top level htable */
238 	uint_t			use_vlp;
239 	uint_t			r;
240 	hat_kernel_range_t	*rp;
241 	uintptr_t		va;
242 	uintptr_t		eva;
243 	uint_t			start;
244 	uint_t			cnt;
245 	htable_t		*src;
246 
247 	/*
248 	 * Once we start creating user process HATs we can enable
249 	 * the htable_steal() code.
250 	 */
251 	if (can_steal_post_boot == 0)
252 		can_steal_post_boot = 1;
253 
254 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
255 	hat = kmem_cache_alloc(hat_cache, KM_SLEEP);
256 	hat->hat_as = as;
257 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
258 	ASSERT(hat->hat_flags == 0);
259 
260 #if defined(__xpv)
261 	/*
262 	 * No VLP stuff on the hypervisor due to the 64-bit split top level
263 	 * page tables.  On 32-bit it's not needed as the hypervisor takes
264 	 * care of copying the top level PTEs to a below 4Gig page.
265 	 */
266 	use_vlp = 0;
267 #else	/* __xpv */
268 	/* 32 bit processes uses a VLP style hat when running with PAE */
269 #if defined(__amd64)
270 	use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32);
271 #elif defined(__i386)
272 	use_vlp = mmu.pae_hat;
273 #endif
274 #endif	/* __xpv */
275 	if (use_vlp) {
276 		hat->hat_flags = HAT_VLP;
277 		bzero(hat->hat_vlp_ptes, VLP_SIZE);
278 	}
279 
280 	/*
281 	 * Allocate the htable hash
282 	 */
283 	if ((hat->hat_flags & HAT_VLP)) {
284 		hat->hat_num_hash = mmu.vlp_hash_cnt;
285 		hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP);
286 	} else {
287 		hat->hat_num_hash = mmu.hash_cnt;
288 		hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP);
289 	}
290 	bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *));
291 
292 	/*
293 	 * Initialize Kernel HAT entries at the top of the top level page
294 	 * tables for the new hat.
295 	 */
296 	hat->hat_htable = NULL;
297 	hat->hat_ht_cached = NULL;
298 	XPV_DISALLOW_MIGRATE();
299 	ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL);
300 	hat->hat_htable = ht;
301 
302 #if defined(__amd64)
303 	if (hat->hat_flags & HAT_VLP)
304 		goto init_done;
305 #endif
306 
307 	for (r = 0; r < num_kernel_ranges; ++r) {
308 		rp = &kernel_ranges[r];
309 		for (va = rp->hkr_start_va; va != rp->hkr_end_va;
310 		    va += cnt * LEVEL_SIZE(rp->hkr_level)) {
311 
312 			if (rp->hkr_level == TOP_LEVEL(hat))
313 				ht = hat->hat_htable;
314 			else
315 				ht = htable_create(hat, va, rp->hkr_level,
316 				    NULL);
317 
318 			start = htable_va2entry(va, ht);
319 			cnt = HTABLE_NUM_PTES(ht) - start;
320 			eva = va +
321 			    ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level));
322 			if (rp->hkr_end_va != 0 &&
323 			    (eva > rp->hkr_end_va || eva == 0))
324 				cnt = htable_va2entry(rp->hkr_end_va, ht) -
325 				    start;
326 
327 #if defined(__i386) && !defined(__xpv)
328 			if (ht->ht_flags & HTABLE_VLP) {
329 				bcopy(&vlp_page[start],
330 				    &hat->hat_vlp_ptes[start],
331 				    cnt * sizeof (x86pte_t));
332 				continue;
333 			}
334 #endif
335 			src = htable_lookup(kas.a_hat, va, rp->hkr_level);
336 			ASSERT(src != NULL);
337 			x86pte_copy(src, ht, start, cnt);
338 			htable_release(src);
339 		}
340 	}
341 
342 init_done:
343 
344 #if defined(__xpv)
345 	/*
346 	 * Pin top level page tables after initializing them
347 	 */
348 	xen_pin(hat->hat_htable->ht_pfn, mmu.max_level);
349 #if defined(__amd64)
350 	xen_pin(hat->hat_user_ptable, mmu.max_level);
351 #endif
352 #endif
353 	XPV_ALLOW_MIGRATE();
354 
355 	/*
356 	 * Put it at the start of the global list of all hats (used by stealing)
357 	 *
358 	 * kas.a_hat is not in the list but is instead used to find the
359 	 * first and last items in the list.
360 	 *
361 	 * - kas.a_hat->hat_next points to the start of the user hats.
362 	 *   The list ends where hat->hat_next == NULL
363 	 *
364 	 * - kas.a_hat->hat_prev points to the last of the user hats.
365 	 *   The list begins where hat->hat_prev == NULL
366 	 */
367 	mutex_enter(&hat_list_lock);
368 	hat->hat_prev = NULL;
369 	hat->hat_next = kas.a_hat->hat_next;
370 	if (hat->hat_next)
371 		hat->hat_next->hat_prev = hat;
372 	else
373 		kas.a_hat->hat_prev = hat;
374 	kas.a_hat->hat_next = hat;
375 	mutex_exit(&hat_list_lock);
376 
377 	return (hat);
378 }
379 
380 /*
381  * process has finished executing but as has not been cleaned up yet.
382  */
383 /*ARGSUSED*/
384 void
385 hat_free_start(hat_t *hat)
386 {
387 	ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock));
388 
389 	/*
390 	 * If the hat is currently a stealing victim, wait for the stealing
391 	 * to finish.  Once we mark it as HAT_FREEING, htable_steal()
392 	 * won't look at its pagetables anymore.
393 	 */
394 	mutex_enter(&hat_list_lock);
395 	while (hat->hat_flags & HAT_VICTIM)
396 		cv_wait(&hat_list_cv, &hat_list_lock);
397 	hat->hat_flags |= HAT_FREEING;
398 	mutex_exit(&hat_list_lock);
399 }
400 
401 /*
402  * An address space is being destroyed, so we destroy the associated hat.
403  */
404 void
405 hat_free_end(hat_t *hat)
406 {
407 	kmem_cache_t *cache;
408 
409 	ASSERT(hat->hat_flags & HAT_FREEING);
410 
411 	/*
412 	 * must not be running on the given hat
413 	 */
414 	ASSERT(CPU->cpu_current_hat != hat);
415 
416 	/*
417 	 * Remove it from the list of HATs
418 	 */
419 	mutex_enter(&hat_list_lock);
420 	if (hat->hat_prev)
421 		hat->hat_prev->hat_next = hat->hat_next;
422 	else
423 		kas.a_hat->hat_next = hat->hat_next;
424 	if (hat->hat_next)
425 		hat->hat_next->hat_prev = hat->hat_prev;
426 	else
427 		kas.a_hat->hat_prev = hat->hat_prev;
428 	mutex_exit(&hat_list_lock);
429 	hat->hat_next = hat->hat_prev = NULL;
430 
431 #if defined(__xpv)
432 	/*
433 	 * On the hypervisor, unpin top level page table(s)
434 	 */
435 	xen_unpin(hat->hat_htable->ht_pfn);
436 #if defined(__amd64)
437 	xen_unpin(hat->hat_user_ptable);
438 #endif
439 #endif
440 
441 	/*
442 	 * Make a pass through the htables freeing them all up.
443 	 */
444 	htable_purge_hat(hat);
445 
446 	/*
447 	 * Decide which kmem cache the hash table came from, then free it.
448 	 */
449 	if (hat->hat_flags & HAT_VLP)
450 		cache = vlp_hash_cache;
451 	else
452 		cache = hat_hash_cache;
453 	kmem_cache_free(cache, hat->hat_ht_hash);
454 	hat->hat_ht_hash = NULL;
455 
456 	hat->hat_flags = 0;
457 	kmem_cache_free(hat_cache, hat);
458 }
459 
460 /*
461  * round kernelbase down to a supported value to use for _userlimit
462  *
463  * userlimit must be aligned down to an entry in the top level htable.
464  * The one exception is for 32 bit HAT's running PAE.
465  */
466 uintptr_t
467 hat_kernelbase(uintptr_t va)
468 {
469 #if defined(__i386)
470 	va &= LEVEL_MASK(1);
471 #endif
472 	if (IN_VA_HOLE(va))
473 		panic("_userlimit %p will fall in VA hole\n", (void *)va);
474 	return (va);
475 }
476 
477 /*
478  *
479  */
480 static void
481 set_max_page_level()
482 {
483 	level_t lvl;
484 
485 	if (!kbm_largepage_support) {
486 		lvl = 0;
487 	}
488 	if (x86_feature & X86_1GPG) {
489 		lvl = 2;
490 		if (chk_optimal_1gtlb && cpuid_opteron_erratum(CPU, 6671130)) {
491 			lvl = 1;
492 		}
493 		if (plat_mnode_xcheck(LEVEL_SIZE(2) >> LEVEL_SHIFT(0))) {
494 			lvl = 1;
495 		}
496 	} else {
497 		lvl = 1;
498 	}
499 	mmu.max_page_level = lvl;
500 
501 	if ((lvl == 2) && (enable_1gpg == 0))
502 		mmu.umax_page_level = 1;
503 	else
504 		mmu.umax_page_level = lvl;
505 }
506 
507 /*
508  * Initialize hat data structures based on processor MMU information.
509  */
510 void
511 mmu_init(void)
512 {
513 	uint_t max_htables;
514 	uint_t pa_bits;
515 	uint_t va_bits;
516 	int i;
517 
518 	/*
519 	 * If CPU enabled the page table global bit, use it for the kernel
520 	 * This is bit 7 in CR4 (PGE - Page Global Enable).
521 	 */
522 	if ((x86_feature & X86_PGE) != 0 && (getcr4() & CR4_PGE) != 0)
523 		mmu.pt_global = PT_GLOBAL;
524 
525 	/*
526 	 * Detect NX and PAE usage.
527 	 */
528 	mmu.pae_hat = kbm_pae_support;
529 	if (kbm_nx_support)
530 		mmu.pt_nx = PT_NX;
531 	else
532 		mmu.pt_nx = 0;
533 
534 	/*
535 	 * Use CPU info to set various MMU parameters
536 	 */
537 	cpuid_get_addrsize(CPU, &pa_bits, &va_bits);
538 
539 	if (va_bits < sizeof (void *) * NBBY) {
540 		mmu.hole_start = (1ul << (va_bits - 1));
541 		mmu.hole_end = 0ul - mmu.hole_start - 1;
542 	} else {
543 		mmu.hole_end = 0;
544 		mmu.hole_start = mmu.hole_end - 1;
545 	}
546 #if defined(OPTERON_ERRATUM_121)
547 	/*
548 	 * If erratum 121 has already been detected at this time, hole_start
549 	 * contains the value to be subtracted from mmu.hole_start.
550 	 */
551 	ASSERT(hole_start == 0 || opteron_erratum_121 != 0);
552 	hole_start = mmu.hole_start - hole_start;
553 #else
554 	hole_start = mmu.hole_start;
555 #endif
556 	hole_end = mmu.hole_end;
557 
558 	mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1);
559 	if (mmu.pae_hat == 0 && pa_bits > 32)
560 		mmu.highest_pfn = PFN_4G - 1;
561 
562 	if (mmu.pae_hat) {
563 		mmu.pte_size = 8;	/* 8 byte PTEs */
564 		mmu.pte_size_shift = 3;
565 	} else {
566 		mmu.pte_size = 4;	/* 4 byte PTEs */
567 		mmu.pte_size_shift = 2;
568 	}
569 
570 	if (mmu.pae_hat && (x86_feature & X86_PAE) == 0)
571 		panic("Processor does not support PAE");
572 
573 	if ((x86_feature & X86_CX8) == 0)
574 		panic("Processor does not support cmpxchg8b instruction");
575 
576 #if defined(__amd64)
577 
578 	mmu.num_level = 4;
579 	mmu.max_level = 3;
580 	mmu.ptes_per_table = 512;
581 	mmu.top_level_count = 512;
582 
583 	mmu.level_shift[0] = 12;
584 	mmu.level_shift[1] = 21;
585 	mmu.level_shift[2] = 30;
586 	mmu.level_shift[3] = 39;
587 
588 #elif defined(__i386)
589 
590 	if (mmu.pae_hat) {
591 		mmu.num_level = 3;
592 		mmu.max_level = 2;
593 		mmu.ptes_per_table = 512;
594 		mmu.top_level_count = 4;
595 
596 		mmu.level_shift[0] = 12;
597 		mmu.level_shift[1] = 21;
598 		mmu.level_shift[2] = 30;
599 
600 	} else {
601 		mmu.num_level = 2;
602 		mmu.max_level = 1;
603 		mmu.ptes_per_table = 1024;
604 		mmu.top_level_count = 1024;
605 
606 		mmu.level_shift[0] = 12;
607 		mmu.level_shift[1] = 22;
608 	}
609 
610 #endif	/* __i386 */
611 
612 	for (i = 0; i < mmu.num_level; ++i) {
613 		mmu.level_size[i] = 1UL << mmu.level_shift[i];
614 		mmu.level_offset[i] = mmu.level_size[i] - 1;
615 		mmu.level_mask[i] = ~mmu.level_offset[i];
616 	}
617 
618 	set_max_page_level();
619 
620 	mmu_page_sizes = mmu.max_page_level + 1;
621 	mmu_exported_page_sizes = mmu.umax_page_level + 1;
622 
623 	/* restrict legacy applications from using pagesizes 1g and above */
624 	mmu_legacy_page_sizes =
625 	    (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes;
626 
627 
628 	for (i = 0; i <= mmu.max_page_level; ++i) {
629 		mmu.pte_bits[i] = PT_VALID | pt_kern;
630 		if (i > 0)
631 			mmu.pte_bits[i] |= PT_PAGESIZE;
632 	}
633 
634 	/*
635 	 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level.
636 	 */
637 	for (i = 1; i < mmu.num_level; ++i)
638 		mmu.ptp_bits[i] = PT_PTPBITS;
639 
640 #if defined(__i386)
641 	mmu.ptp_bits[2] = PT_VALID;
642 #endif
643 
644 	/*
645 	 * Compute how many hash table entries to have per process for htables.
646 	 * We start with 1 page's worth of entries.
647 	 *
648 	 * If physical memory is small, reduce the amount need to cover it.
649 	 */
650 	max_htables = physmax / mmu.ptes_per_table;
651 	mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *);
652 	while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables)
653 		mmu.hash_cnt >>= 1;
654 	mmu.vlp_hash_cnt = mmu.hash_cnt;
655 
656 #if defined(__amd64)
657 	/*
658 	 * If running in 64 bits and physical memory is large,
659 	 * increase the size of the cache to cover all of memory for
660 	 * a 64 bit process.
661 	 */
662 #define	HASH_MAX_LENGTH 4
663 	while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables)
664 		mmu.hash_cnt <<= 1;
665 #endif
666 }
667 
668 
669 /*
670  * initialize hat data structures
671  */
672 void
673 hat_init()
674 {
675 #if defined(__i386)
676 	/*
677 	 * _userlimit must be aligned correctly
678 	 */
679 	if ((_userlimit & LEVEL_MASK(1)) != _userlimit) {
680 		prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n",
681 		    (void *)_userlimit, (void *)LEVEL_SIZE(1));
682 		halt("hat_init(): Unable to continue");
683 	}
684 #endif
685 
686 	cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL);
687 
688 	/*
689 	 * initialize kmem caches
690 	 */
691 	htable_init();
692 	hment_init();
693 
694 	hat_cache = kmem_cache_create("hat_t",
695 	    sizeof (hat_t), 0, hati_constructor, NULL, NULL,
696 	    NULL, 0, 0);
697 
698 	hat_hash_cache = kmem_cache_create("HatHash",
699 	    mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
700 	    NULL, 0, 0);
701 
702 	/*
703 	 * VLP hats can use a smaller hash table size on large memroy machines
704 	 */
705 	if (mmu.hash_cnt == mmu.vlp_hash_cnt) {
706 		vlp_hash_cache = hat_hash_cache;
707 	} else {
708 		vlp_hash_cache = kmem_cache_create("HatVlpHash",
709 		    mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
710 		    NULL, 0, 0);
711 	}
712 
713 	/*
714 	 * Set up the kernel's hat
715 	 */
716 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
717 	kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP);
718 	mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
719 	kas.a_hat->hat_as = &kas;
720 	kas.a_hat->hat_flags = 0;
721 	AS_LOCK_EXIT(&kas, &kas.a_lock);
722 
723 	CPUSET_ZERO(khat_cpuset);
724 	CPUSET_ADD(khat_cpuset, CPU->cpu_id);
725 
726 	/*
727 	 * The kernel hat's next pointer serves as the head of the hat list .
728 	 * The kernel hat's prev pointer tracks the last hat on the list for
729 	 * htable_steal() to use.
730 	 */
731 	kas.a_hat->hat_next = NULL;
732 	kas.a_hat->hat_prev = NULL;
733 
734 	/*
735 	 * Allocate an htable hash bucket for the kernel
736 	 * XX64 - tune for 64 bit procs
737 	 */
738 	kas.a_hat->hat_num_hash = mmu.hash_cnt;
739 	kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP);
740 	bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *));
741 
742 	/*
743 	 * zero out the top level and cached htable pointers
744 	 */
745 	kas.a_hat->hat_ht_cached = NULL;
746 	kas.a_hat->hat_htable = NULL;
747 
748 	/*
749 	 * Pre-allocate hrm_hashtab before enabling the collection of
750 	 * refmod statistics.  Allocating on the fly would mean us
751 	 * running the risk of suffering recursive mutex enters or
752 	 * deadlocks.
753 	 */
754 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
755 	    KM_SLEEP);
756 }
757 
758 /*
759  * Prepare CPU specific pagetables for VLP processes on 64 bit kernels.
760  *
761  * Each CPU has a set of 2 pagetables that are reused for any 32 bit
762  * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and
763  * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes.
764  */
765 /*ARGSUSED*/
766 static void
767 hat_vlp_setup(struct cpu *cpu)
768 {
769 #if defined(__amd64) && !defined(__xpv)
770 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
771 	pfn_t pfn;
772 
773 	/*
774 	 * allocate the level==2 page table for the bottom most
775 	 * 512Gig of address space (this is where 32 bit apps live)
776 	 */
777 	ASSERT(hci != NULL);
778 	hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
779 
780 	/*
781 	 * Allocate a top level pagetable and copy the kernel's
782 	 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry.
783 	 */
784 	hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
785 	hci->hci_vlp_pfn =
786 	    hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes);
787 	ASSERT(hci->hci_vlp_pfn != PFN_INVALID);
788 	bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE);
789 
790 	pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes);
791 	ASSERT(pfn != PFN_INVALID);
792 	hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2);
793 #endif /* __amd64 && !__xpv */
794 }
795 
796 /*ARGSUSED*/
797 static void
798 hat_vlp_teardown(cpu_t *cpu)
799 {
800 #if defined(__amd64) && !defined(__xpv)
801 	struct hat_cpu_info *hci;
802 
803 	if ((hci = cpu->cpu_hat_info) == NULL)
804 		return;
805 	if (hci->hci_vlp_l2ptes)
806 		kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE);
807 	if (hci->hci_vlp_l3ptes)
808 		kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE);
809 #endif
810 }
811 
812 #define	NEXT_HKR(r, l, s, e) {			\
813 	kernel_ranges[r].hkr_level = l;		\
814 	kernel_ranges[r].hkr_start_va = s;	\
815 	kernel_ranges[r].hkr_end_va = e;	\
816 	++r;					\
817 }
818 
819 /*
820  * Finish filling in the kernel hat.
821  * Pre fill in all top level kernel page table entries for the kernel's
822  * part of the address range.  From this point on we can't use any new
823  * kernel large pages if they need PTE's at max_level
824  *
825  * create the kmap mappings.
826  */
827 void
828 hat_init_finish(void)
829 {
830 	size_t		size;
831 	uint_t		r = 0;
832 	uintptr_t	va;
833 	hat_kernel_range_t *rp;
834 
835 
836 	/*
837 	 * We are now effectively running on the kernel hat.
838 	 * Clearing use_boot_reserve shuts off using the pre-allocated boot
839 	 * reserve for all HAT allocations.  From here on, the reserves are
840 	 * only used when avoiding recursion in kmem_alloc().
841 	 */
842 	use_boot_reserve = 0;
843 	htable_adjust_reserve();
844 
845 	/*
846 	 * User HATs are initialized with copies of all kernel mappings in
847 	 * higher level page tables. Ensure that those entries exist.
848 	 */
849 #if defined(__amd64)
850 
851 	NEXT_HKR(r, 3, kernelbase, 0);
852 #if defined(__xpv)
853 	NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END);
854 #endif
855 
856 #elif defined(__i386)
857 
858 #if !defined(__xpv)
859 	if (mmu.pae_hat) {
860 		va = kernelbase;
861 		if ((va & LEVEL_MASK(2)) != va) {
862 			va = P2ROUNDUP(va, LEVEL_SIZE(2));
863 			NEXT_HKR(r, 1, kernelbase, va);
864 		}
865 		if (va != 0)
866 			NEXT_HKR(r, 2, va, 0);
867 	} else
868 #endif /* __xpv */
869 		NEXT_HKR(r, 1, kernelbase, 0);
870 
871 #endif /* __i386 */
872 
873 	num_kernel_ranges = r;
874 
875 	/*
876 	 * Create all the kernel pagetables that will have entries
877 	 * shared to user HATs.
878 	 */
879 	for (r = 0; r < num_kernel_ranges; ++r) {
880 		rp = &kernel_ranges[r];
881 		for (va = rp->hkr_start_va; va != rp->hkr_end_va;
882 		    va += LEVEL_SIZE(rp->hkr_level)) {
883 			htable_t *ht;
884 
885 			if (IN_HYPERVISOR_VA(va))
886 				continue;
887 
888 			/* can/must skip if a page mapping already exists */
889 			if (rp->hkr_level <= mmu.max_page_level &&
890 			    (ht = htable_getpage(kas.a_hat, va, NULL)) !=
891 			    NULL) {
892 				htable_release(ht);
893 				continue;
894 			}
895 
896 			(void) htable_create(kas.a_hat, va, rp->hkr_level - 1,
897 			    NULL);
898 		}
899 	}
900 
901 	/*
902 	 * 32 bit PAE metal kernels use only 4 of the 512 entries in the
903 	 * page holding the top level pagetable. We use the remainder for
904 	 * the "per CPU" page tables for VLP processes.
905 	 * Map the top level kernel pagetable into the kernel to make
906 	 * it easy to use bcopy access these tables.
907 	 */
908 	if (mmu.pae_hat) {
909 		vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP);
910 		hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE,
911 		    kas.a_hat->hat_htable->ht_pfn,
912 #if !defined(__xpv)
913 		    PROT_WRITE |
914 #endif
915 		    PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK,
916 		    HAT_LOAD | HAT_LOAD_NOCONSIST);
917 	}
918 	hat_vlp_setup(CPU);
919 
920 	/*
921 	 * Create kmap (cached mappings of kernel PTEs)
922 	 * for 32 bit we map from segmap_start .. ekernelheap
923 	 * for 64 bit we map from segmap_start .. segmap_start + segmapsize;
924 	 */
925 #if defined(__i386)
926 	size = (uintptr_t)ekernelheap - segmap_start;
927 #elif defined(__amd64)
928 	size = segmapsize;
929 #endif
930 	hat_kmap_init((uintptr_t)segmap_start, size);
931 }
932 
933 /*
934  * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references
935  * are 32 bit, so for safety we must use cas64() to install these.
936  */
937 #ifdef __i386
938 static void
939 reload_pae32(hat_t *hat, cpu_t *cpu)
940 {
941 	x86pte_t *src;
942 	x86pte_t *dest;
943 	x86pte_t pte;
944 	int i;
945 
946 	/*
947 	 * Load the 4 entries of the level 2 page table into this
948 	 * cpu's range of the vlp_page and point cr3 at them.
949 	 */
950 	ASSERT(mmu.pae_hat);
951 	src = hat->hat_vlp_ptes;
952 	dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES;
953 	for (i = 0; i < VLP_NUM_PTES; ++i) {
954 		for (;;) {
955 			pte = dest[i];
956 			if (pte == src[i])
957 				break;
958 			if (cas64(dest + i, pte, src[i]) != src[i])
959 				break;
960 		}
961 	}
962 }
963 #endif
964 
965 /*
966  * Switch to a new active hat, maintaining bit masks to track active CPUs.
967  *
968  * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it
969  * remains a 32-bit value.
970  */
971 void
972 hat_switch(hat_t *hat)
973 {
974 	uint64_t	newcr3;
975 	cpu_t		*cpu = CPU;
976 	hat_t		*old = cpu->cpu_current_hat;
977 
978 	/*
979 	 * set up this information first, so we don't miss any cross calls
980 	 */
981 	if (old != NULL) {
982 		if (old == hat)
983 			return;
984 		if (old != kas.a_hat)
985 			CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id);
986 	}
987 
988 	/*
989 	 * Add this CPU to the active set for this HAT.
990 	 */
991 	if (hat != kas.a_hat) {
992 		CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id);
993 	}
994 	cpu->cpu_current_hat = hat;
995 
996 	/*
997 	 * now go ahead and load cr3
998 	 */
999 	if (hat->hat_flags & HAT_VLP) {
1000 #if defined(__amd64)
1001 		x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1002 
1003 		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1004 		newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn);
1005 #elif defined(__i386)
1006 		reload_pae32(hat, cpu);
1007 		newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) +
1008 		    (cpu->cpu_id + 1) * VLP_SIZE;
1009 #endif
1010 	} else {
1011 		newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn);
1012 	}
1013 #ifdef __xpv
1014 	{
1015 		struct mmuext_op t[2];
1016 		uint_t retcnt;
1017 		uint_t opcnt = 1;
1018 
1019 		t[0].cmd = MMUEXT_NEW_BASEPTR;
1020 		t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1021 #if defined(__amd64)
1022 		/*
1023 		 * There's an interesting problem here, as to what to
1024 		 * actually specify when switching to the kernel hat.
1025 		 * For now we'll reuse the kernel hat again.
1026 		 */
1027 		t[1].cmd = MMUEXT_NEW_USER_BASEPTR;
1028 		if (hat == kas.a_hat)
1029 			t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1030 		else
1031 			t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable);
1032 		++opcnt;
1033 #endif	/* __amd64 */
1034 		if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0)
1035 			panic("HYPERVISOR_mmu_update() failed");
1036 		ASSERT(retcnt == opcnt);
1037 
1038 	}
1039 #else
1040 	setcr3(newcr3);
1041 #endif
1042 	ASSERT(cpu == CPU);
1043 }
1044 
1045 /*
1046  * Utility to return a valid x86pte_t from protections, pfn, and level number
1047  */
1048 static x86pte_t
1049 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags)
1050 {
1051 	x86pte_t	pte;
1052 	uint_t		cache_attr = attr & HAT_ORDER_MASK;
1053 
1054 	pte = MAKEPTE(pfn, level);
1055 
1056 	if (attr & PROT_WRITE)
1057 		PTE_SET(pte, PT_WRITABLE);
1058 
1059 	if (attr & PROT_USER)
1060 		PTE_SET(pte, PT_USER);
1061 
1062 	if (!(attr & PROT_EXEC))
1063 		PTE_SET(pte, mmu.pt_nx);
1064 
1065 	/*
1066 	 * Set the software bits used track ref/mod sync's and hments.
1067 	 * If not using REF/MOD, set them to avoid h/w rewriting PTEs.
1068 	 */
1069 	if (flags & HAT_LOAD_NOCONSIST)
1070 		PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD);
1071 	else if (attr & HAT_NOSYNC)
1072 		PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD);
1073 
1074 	/*
1075 	 * Set the caching attributes in the PTE. The combination
1076 	 * of attributes are poorly defined, so we pay attention
1077 	 * to them in the given order.
1078 	 *
1079 	 * The test for HAT_STRICTORDER is different because it's defined
1080 	 * as "0" - which was a stupid thing to do, but is too late to change!
1081 	 */
1082 	if (cache_attr == HAT_STRICTORDER) {
1083 		PTE_SET(pte, PT_NOCACHE);
1084 	/*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */
1085 	} else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) {
1086 		/* nothing to set */;
1087 	} else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) {
1088 		PTE_SET(pte, PT_NOCACHE);
1089 		if (x86_feature & X86_PAT)
1090 			PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE);
1091 		else
1092 			PTE_SET(pte, PT_WRITETHRU);
1093 	} else {
1094 		panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr);
1095 	}
1096 
1097 	return (pte);
1098 }
1099 
1100 /*
1101  * Duplicate address translations of the parent to the child.
1102  * This function really isn't used anymore.
1103  */
1104 /*ARGSUSED*/
1105 int
1106 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag)
1107 {
1108 	ASSERT((uintptr_t)addr < kernelbase);
1109 	ASSERT(new != kas.a_hat);
1110 	ASSERT(old != kas.a_hat);
1111 	return (0);
1112 }
1113 
1114 /*
1115  * Allocate any hat resources required for a process being swapped in.
1116  */
1117 /*ARGSUSED*/
1118 void
1119 hat_swapin(hat_t *hat)
1120 {
1121 	/* do nothing - we let everything fault back in */
1122 }
1123 
1124 /*
1125  * Unload all translations associated with an address space of a process
1126  * that is being swapped out.
1127  */
1128 void
1129 hat_swapout(hat_t *hat)
1130 {
1131 	uintptr_t	vaddr = (uintptr_t)0;
1132 	uintptr_t	eaddr = _userlimit;
1133 	htable_t	*ht = NULL;
1134 	level_t		l;
1135 
1136 	XPV_DISALLOW_MIGRATE();
1137 	/*
1138 	 * We can't just call hat_unload(hat, 0, _userlimit...)  here, because
1139 	 * seg_spt and shared pagetables can't be swapped out.
1140 	 * Take a look at segspt_shmswapout() - it's a big no-op.
1141 	 *
1142 	 * Instead we'll walk through all the address space and unload
1143 	 * any mappings which we are sure are not shared, not locked.
1144 	 */
1145 	ASSERT(IS_PAGEALIGNED(vaddr));
1146 	ASSERT(IS_PAGEALIGNED(eaddr));
1147 	ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1148 	if ((uintptr_t)hat->hat_as->a_userlimit < eaddr)
1149 		eaddr = (uintptr_t)hat->hat_as->a_userlimit;
1150 
1151 	while (vaddr < eaddr) {
1152 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1153 		if (ht == NULL)
1154 			break;
1155 
1156 		ASSERT(!IN_VA_HOLE(vaddr));
1157 
1158 		/*
1159 		 * If the page table is shared skip its entire range.
1160 		 */
1161 		l = ht->ht_level;
1162 		if (ht->ht_flags & HTABLE_SHARED_PFN) {
1163 			vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1);
1164 			htable_release(ht);
1165 			ht = NULL;
1166 			continue;
1167 		}
1168 
1169 		/*
1170 		 * If the page table has no locked entries, unload this one.
1171 		 */
1172 		if (ht->ht_lock_cnt == 0)
1173 			hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l),
1174 			    HAT_UNLOAD_UNMAP);
1175 
1176 		/*
1177 		 * If we have a level 0 page table with locked entries,
1178 		 * skip the entire page table, otherwise skip just one entry.
1179 		 */
1180 		if (ht->ht_lock_cnt > 0 && l == 0)
1181 			vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1182 		else
1183 			vaddr += LEVEL_SIZE(l);
1184 	}
1185 	if (ht)
1186 		htable_release(ht);
1187 
1188 	/*
1189 	 * We're in swapout because the system is low on memory, so
1190 	 * go back and flush all the htables off the cached list.
1191 	 */
1192 	htable_purge_hat(hat);
1193 	XPV_ALLOW_MIGRATE();
1194 }
1195 
1196 /*
1197  * returns number of bytes that have valid mappings in hat.
1198  */
1199 size_t
1200 hat_get_mapped_size(hat_t *hat)
1201 {
1202 	size_t total = 0;
1203 	int l;
1204 
1205 	for (l = 0; l <= mmu.max_page_level; l++)
1206 		total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l));
1207 	total += hat->hat_ism_pgcnt;
1208 
1209 	return (total);
1210 }
1211 
1212 /*
1213  * enable/disable collection of stats for hat.
1214  */
1215 int
1216 hat_stats_enable(hat_t *hat)
1217 {
1218 	atomic_add_32(&hat->hat_stats, 1);
1219 	return (1);
1220 }
1221 
1222 void
1223 hat_stats_disable(hat_t *hat)
1224 {
1225 	atomic_add_32(&hat->hat_stats, -1);
1226 }
1227 
1228 /*
1229  * Utility to sync the ref/mod bits from a page table entry to the page_t
1230  * We must be holding the mapping list lock when this is called.
1231  */
1232 static void
1233 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level)
1234 {
1235 	uint_t	rm = 0;
1236 	pgcnt_t	pgcnt;
1237 
1238 	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
1239 		return;
1240 
1241 	if (PTE_GET(pte, PT_REF))
1242 		rm |= P_REF;
1243 
1244 	if (PTE_GET(pte, PT_MOD))
1245 		rm |= P_MOD;
1246 
1247 	if (rm == 0)
1248 		return;
1249 
1250 	/*
1251 	 * sync to all constituent pages of a large page
1252 	 */
1253 	ASSERT(x86_hm_held(pp));
1254 	pgcnt = page_get_pagecnt(level);
1255 	ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
1256 	for (; pgcnt > 0; --pgcnt) {
1257 		/*
1258 		 * hat_page_demote() can't decrease
1259 		 * pszc below this mapping size
1260 		 * since this large mapping existed after we
1261 		 * took mlist lock.
1262 		 */
1263 		ASSERT(pp->p_szc >= level);
1264 		hat_page_setattr(pp, rm);
1265 		++pp;
1266 	}
1267 }
1268 
1269 /*
1270  * This the set of PTE bits for PFN, permissions and caching
1271  * that are allowed to change on a HAT_LOAD_REMAP
1272  */
1273 #define	PT_REMAP_BITS							\
1274 	(PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU |		\
1275 	PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD)
1276 
1277 #define	REMAPASSERT(EX)	if (!(EX)) panic("hati_pte_map: " #EX)
1278 /*
1279  * Do the low-level work to get a mapping entered into a HAT's pagetables
1280  * and in the mapping list of the associated page_t.
1281  */
1282 static int
1283 hati_pte_map(
1284 	htable_t	*ht,
1285 	uint_t		entry,
1286 	page_t		*pp,
1287 	x86pte_t	pte,
1288 	int		flags,
1289 	void		*pte_ptr)
1290 {
1291 	hat_t		*hat = ht->ht_hat;
1292 	x86pte_t	old_pte;
1293 	level_t		l = ht->ht_level;
1294 	hment_t		*hm;
1295 	uint_t		is_consist;
1296 	int		rv = 0;
1297 
1298 	/*
1299 	 * Is this a consistant (ie. need mapping list lock) mapping?
1300 	 */
1301 	is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0);
1302 
1303 	/*
1304 	 * Track locked mapping count in the htable.  Do this first,
1305 	 * as we track locking even if there already is a mapping present.
1306 	 */
1307 	if ((flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat)
1308 		HTABLE_LOCK_INC(ht);
1309 
1310 	/*
1311 	 * Acquire the page's mapping list lock and get an hment to use.
1312 	 * Note that hment_prepare() might return NULL.
1313 	 */
1314 	if (is_consist) {
1315 		x86_hm_enter(pp);
1316 		hm = hment_prepare(ht, entry, pp);
1317 	}
1318 
1319 	/*
1320 	 * Set the new pte, retrieving the old one at the same time.
1321 	 */
1322 	old_pte = x86pte_set(ht, entry, pte, pte_ptr);
1323 
1324 	/*
1325 	 * did we get a large page / page table collision?
1326 	 */
1327 	if (old_pte == LPAGE_ERROR) {
1328 		rv = -1;
1329 		goto done;
1330 	}
1331 
1332 	/*
1333 	 * If the mapping didn't change there is nothing more to do.
1334 	 */
1335 	if (PTE_EQUIV(pte, old_pte))
1336 		goto done;
1337 
1338 	/*
1339 	 * Install a new mapping in the page's mapping list
1340 	 */
1341 	if (!PTE_ISVALID(old_pte)) {
1342 		if (is_consist) {
1343 			hment_assign(ht, entry, pp, hm);
1344 			x86_hm_exit(pp);
1345 		} else {
1346 			ASSERT(flags & HAT_LOAD_NOCONSIST);
1347 		}
1348 #if defined(__amd64)
1349 		if (ht->ht_flags & HTABLE_VLP) {
1350 			cpu_t *cpu = CPU;
1351 			x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1352 			VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1353 		}
1354 #endif
1355 		HTABLE_INC(ht->ht_valid_cnt);
1356 		PGCNT_INC(hat, l);
1357 		return (rv);
1358 	}
1359 
1360 	/*
1361 	 * Remap's are more complicated:
1362 	 *  - HAT_LOAD_REMAP must be specified if changing the pfn.
1363 	 *    We also require that NOCONSIST be specified.
1364 	 *  - Otherwise only permission or caching bits may change.
1365 	 */
1366 	if (!PTE_ISPAGE(old_pte, l))
1367 		panic("non-null/page mapping pte=" FMT_PTE, old_pte);
1368 
1369 	if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) {
1370 		REMAPASSERT(flags & HAT_LOAD_REMAP);
1371 		REMAPASSERT(flags & HAT_LOAD_NOCONSIST);
1372 		REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
1373 		REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) ==
1374 		    pf_is_memory(PTE2PFN(pte, l)));
1375 		REMAPASSERT(!is_consist);
1376 	}
1377 
1378 	/*
1379 	 * We only let remaps change the certain bits in the PTE.
1380 	 */
1381 	if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS))
1382 		panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n",
1383 		    old_pte, pte);
1384 
1385 	/*
1386 	 * We don't create any mapping list entries on a remap, so release
1387 	 * any allocated hment after we drop the mapping list lock.
1388 	 */
1389 done:
1390 	if (is_consist) {
1391 		x86_hm_exit(pp);
1392 		if (hm != NULL)
1393 			hment_free(hm);
1394 	}
1395 	return (rv);
1396 }
1397 
1398 /*
1399  * Internal routine to load a single page table entry. This only fails if
1400  * we attempt to overwrite a page table link with a large page.
1401  */
1402 static int
1403 hati_load_common(
1404 	hat_t		*hat,
1405 	uintptr_t	va,
1406 	page_t		*pp,
1407 	uint_t		attr,
1408 	uint_t		flags,
1409 	level_t		level,
1410 	pfn_t		pfn)
1411 {
1412 	htable_t	*ht;
1413 	uint_t		entry;
1414 	x86pte_t	pte;
1415 	int		rv = 0;
1416 
1417 	/*
1418 	 * The number 16 is arbitrary and here to catch a recursion problem
1419 	 * early before we blow out the kernel stack.
1420 	 */
1421 	++curthread->t_hatdepth;
1422 	ASSERT(curthread->t_hatdepth < 16);
1423 
1424 	ASSERT(hat == kas.a_hat ||
1425 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1426 
1427 	if (flags & HAT_LOAD_SHARE)
1428 		hat->hat_flags |= HAT_SHARED;
1429 
1430 	/*
1431 	 * Find the page table that maps this page if it already exists.
1432 	 */
1433 	ht = htable_lookup(hat, va, level);
1434 
1435 	/*
1436 	 * We must have HAT_LOAD_NOCONSIST if page_t is NULL.
1437 	 */
1438 	if (pp == NULL)
1439 		flags |= HAT_LOAD_NOCONSIST;
1440 
1441 	if (ht == NULL) {
1442 		ht = htable_create(hat, va, level, NULL);
1443 		ASSERT(ht != NULL);
1444 	}
1445 	entry = htable_va2entry(va, ht);
1446 
1447 	/*
1448 	 * a bunch of paranoid error checking
1449 	 */
1450 	ASSERT(ht->ht_busy > 0);
1451 	if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht))
1452 		panic("hati_load_common: bad htable %p, va %p", ht, (void *)va);
1453 	ASSERT(ht->ht_level == level);
1454 
1455 	/*
1456 	 * construct the new PTE
1457 	 */
1458 	if (hat == kas.a_hat)
1459 		attr &= ~PROT_USER;
1460 	pte = hati_mkpte(pfn, attr, level, flags);
1461 	if (hat == kas.a_hat && va >= kernelbase)
1462 		PTE_SET(pte, mmu.pt_global);
1463 
1464 	/*
1465 	 * establish the mapping
1466 	 */
1467 	rv = hati_pte_map(ht, entry, pp, pte, flags, NULL);
1468 
1469 	/*
1470 	 * release the htable and any reserves
1471 	 */
1472 	htable_release(ht);
1473 	--curthread->t_hatdepth;
1474 	return (rv);
1475 }
1476 
1477 /*
1478  * special case of hat_memload to deal with some kernel addrs for performance
1479  */
1480 static void
1481 hat_kmap_load(
1482 	caddr_t		addr,
1483 	page_t		*pp,
1484 	uint_t		attr,
1485 	uint_t		flags)
1486 {
1487 	uintptr_t	va = (uintptr_t)addr;
1488 	x86pte_t	pte;
1489 	pfn_t		pfn = page_pptonum(pp);
1490 	pgcnt_t		pg_off = mmu_btop(va - mmu.kmap_addr);
1491 	htable_t	*ht;
1492 	uint_t		entry;
1493 	void		*pte_ptr;
1494 
1495 	/*
1496 	 * construct the requested PTE
1497 	 */
1498 	attr &= ~PROT_USER;
1499 	attr |= HAT_STORECACHING_OK;
1500 	pte = hati_mkpte(pfn, attr, 0, flags);
1501 	PTE_SET(pte, mmu.pt_global);
1502 
1503 	/*
1504 	 * Figure out the pte_ptr and htable and use common code to finish up
1505 	 */
1506 	if (mmu.pae_hat)
1507 		pte_ptr = mmu.kmap_ptes + pg_off;
1508 	else
1509 		pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off;
1510 	ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >>
1511 	    LEVEL_SHIFT(1)];
1512 	entry = htable_va2entry(va, ht);
1513 	++curthread->t_hatdepth;
1514 	ASSERT(curthread->t_hatdepth < 16);
1515 	(void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr);
1516 	--curthread->t_hatdepth;
1517 }
1518 
1519 /*
1520  * hat_memload() - load a translation to the given page struct
1521  *
1522  * Flags for hat_memload/hat_devload/hat_*attr.
1523  *
1524  * 	HAT_LOAD	Default flags to load a translation to the page.
1525  *
1526  * 	HAT_LOAD_LOCK	Lock down mapping resources; hat_map(), hat_memload(),
1527  *			and hat_devload().
1528  *
1529  *	HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list.
1530  *			sets PT_NOCONSIST
1531  *
1532  *	HAT_LOAD_SHARE	A flag to hat_memload() to indicate h/w page tables
1533  *			that map some user pages (not kas) is shared by more
1534  *			than one process (eg. ISM).
1535  *
1536  *	HAT_LOAD_REMAP	Reload a valid pte with a different page frame.
1537  *
1538  *	HAT_NO_KALLOC	Do not kmem_alloc while creating the mapping; at this
1539  *			point, it's setting up mapping to allocate internal
1540  *			hat layer data structures.  This flag forces hat layer
1541  *			to tap its reserves in order to prevent infinite
1542  *			recursion.
1543  *
1544  * The following is a protection attribute (like PROT_READ, etc.)
1545  *
1546  *	HAT_NOSYNC	set PT_NOSYNC - this mapping's ref/mod bits
1547  *			are never cleared.
1548  *
1549  * Installing new valid PTE's and creation of the mapping list
1550  * entry are controlled under the same lock. It's derived from the
1551  * page_t being mapped.
1552  */
1553 static uint_t supported_memload_flags =
1554 	HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST |
1555 	HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT;
1556 
1557 void
1558 hat_memload(
1559 	hat_t		*hat,
1560 	caddr_t		addr,
1561 	page_t		*pp,
1562 	uint_t		attr,
1563 	uint_t		flags)
1564 {
1565 	uintptr_t	va = (uintptr_t)addr;
1566 	level_t		level = 0;
1567 	pfn_t		pfn = page_pptonum(pp);
1568 
1569 	XPV_DISALLOW_MIGRATE();
1570 	ASSERT(IS_PAGEALIGNED(va));
1571 	ASSERT(hat == kas.a_hat || va < _userlimit);
1572 	ASSERT(hat == kas.a_hat ||
1573 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1574 	ASSERT((flags & supported_memload_flags) == flags);
1575 
1576 	ASSERT(!IN_VA_HOLE(va));
1577 	ASSERT(!PP_ISFREE(pp));
1578 
1579 	/*
1580 	 * kernel address special case for performance.
1581 	 */
1582 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
1583 		ASSERT(hat == kas.a_hat);
1584 		hat_kmap_load(addr, pp, attr, flags);
1585 		XPV_ALLOW_MIGRATE();
1586 		return;
1587 	}
1588 
1589 	/*
1590 	 * This is used for memory with normal caching enabled, so
1591 	 * always set HAT_STORECACHING_OK.
1592 	 */
1593 	attr |= HAT_STORECACHING_OK;
1594 	if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0)
1595 		panic("unexpected hati_load_common() failure");
1596 	XPV_ALLOW_MIGRATE();
1597 }
1598 
1599 /* ARGSUSED */
1600 void
1601 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
1602     uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
1603 {
1604 	hat_memload(hat, addr, pp, attr, flags);
1605 }
1606 
1607 /*
1608  * Load the given array of page structs using large pages when possible
1609  */
1610 void
1611 hat_memload_array(
1612 	hat_t		*hat,
1613 	caddr_t		addr,
1614 	size_t		len,
1615 	page_t		**pages,
1616 	uint_t		attr,
1617 	uint_t		flags)
1618 {
1619 	uintptr_t	va = (uintptr_t)addr;
1620 	uintptr_t	eaddr = va + len;
1621 	level_t		level;
1622 	size_t		pgsize;
1623 	pgcnt_t		pgindx = 0;
1624 	pfn_t		pfn;
1625 	pgcnt_t		i;
1626 
1627 	XPV_DISALLOW_MIGRATE();
1628 	ASSERT(IS_PAGEALIGNED(va));
1629 	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
1630 	ASSERT(hat == kas.a_hat ||
1631 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1632 	ASSERT((flags & supported_memload_flags) == flags);
1633 
1634 	/*
1635 	 * memload is used for memory with full caching enabled, so
1636 	 * set HAT_STORECACHING_OK.
1637 	 */
1638 	attr |= HAT_STORECACHING_OK;
1639 
1640 	/*
1641 	 * handle all pages using largest possible pagesize
1642 	 */
1643 	while (va < eaddr) {
1644 		/*
1645 		 * decide what level mapping to use (ie. pagesize)
1646 		 */
1647 		pfn = page_pptonum(pages[pgindx]);
1648 		for (level = mmu.max_page_level; ; --level) {
1649 			pgsize = LEVEL_SIZE(level);
1650 			if (level == 0)
1651 				break;
1652 
1653 			if (!IS_P2ALIGNED(va, pgsize) ||
1654 			    (eaddr - va) < pgsize ||
1655 			    !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize))
1656 				continue;
1657 
1658 			/*
1659 			 * To use a large mapping of this size, all the
1660 			 * pages we are passed must be sequential subpages
1661 			 * of the large page.
1662 			 * hat_page_demote() can't change p_szc because
1663 			 * all pages are locked.
1664 			 */
1665 			if (pages[pgindx]->p_szc >= level) {
1666 				for (i = 0; i < mmu_btop(pgsize); ++i) {
1667 					if (pfn + i !=
1668 					    page_pptonum(pages[pgindx + i]))
1669 						break;
1670 					ASSERT(pages[pgindx + i]->p_szc >=
1671 					    level);
1672 					ASSERT(pages[pgindx] + i ==
1673 					    pages[pgindx + i]);
1674 				}
1675 				if (i == mmu_btop(pgsize)) {
1676 #ifdef DEBUG
1677 					if (level == 2)
1678 						map1gcnt++;
1679 #endif
1680 					break;
1681 				}
1682 			}
1683 		}
1684 
1685 		/*
1686 		 * Load this page mapping. If the load fails, try a smaller
1687 		 * pagesize.
1688 		 */
1689 		ASSERT(!IN_VA_HOLE(va));
1690 		while (hati_load_common(hat, va, pages[pgindx], attr,
1691 		    flags, level, pfn) != 0) {
1692 			if (level == 0)
1693 				panic("unexpected hati_load_common() failure");
1694 			--level;
1695 			pgsize = LEVEL_SIZE(level);
1696 		}
1697 
1698 		/*
1699 		 * move to next page
1700 		 */
1701 		va += pgsize;
1702 		pgindx += mmu_btop(pgsize);
1703 	}
1704 	XPV_ALLOW_MIGRATE();
1705 }
1706 
1707 /* ARGSUSED */
1708 void
1709 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
1710     struct page **pps, uint_t attr, uint_t flags,
1711     hat_region_cookie_t rcookie)
1712 {
1713 	hat_memload_array(hat, addr, len, pps, attr, flags);
1714 }
1715 
1716 /*
1717  * void hat_devload(hat, addr, len, pf, attr, flags)
1718  *	load/lock the given page frame number
1719  *
1720  * Advisory ordering attributes. Apply only to device mappings.
1721  *
1722  * HAT_STRICTORDER: the CPU must issue the references in order, as the
1723  *	programmer specified.  This is the default.
1724  * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds
1725  *	of reordering; store or load with store or load).
1726  * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores
1727  *	to consecutive locations (for example, turn two consecutive byte
1728  *	stores into one halfword store), and it may batch individual loads
1729  *	(for example, turn two consecutive byte loads into one halfword load).
1730  *	This also implies re-ordering.
1731  * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it
1732  *	until another store occurs.  The default is to fetch new data
1733  *	on every load.  This also implies merging.
1734  * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to
1735  *	the device (perhaps with other data) at a later time.  The default is
1736  *	to push the data right away.  This also implies load caching.
1737  *
1738  * Equivalent of hat_memload(), but can be used for device memory where
1739  * there are no page_t's and we support additional flags (write merging, etc).
1740  * Note that we can have large page mappings with this interface.
1741  */
1742 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK |
1743 	HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK |
1744 	HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
1745 
1746 void
1747 hat_devload(
1748 	hat_t		*hat,
1749 	caddr_t		addr,
1750 	size_t		len,
1751 	pfn_t		pfn,
1752 	uint_t		attr,
1753 	int		flags)
1754 {
1755 	uintptr_t	va = ALIGN2PAGE(addr);
1756 	uintptr_t	eva = va + len;
1757 	level_t		level;
1758 	size_t		pgsize;
1759 	page_t		*pp;
1760 	int		f;	/* per PTE copy of flags  - maybe modified */
1761 	uint_t		a;	/* per PTE copy of attr */
1762 
1763 	XPV_DISALLOW_MIGRATE();
1764 	ASSERT(IS_PAGEALIGNED(va));
1765 	ASSERT(hat == kas.a_hat || eva <= _userlimit);
1766 	ASSERT(hat == kas.a_hat ||
1767 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1768 	ASSERT((flags & supported_devload_flags) == flags);
1769 
1770 	/*
1771 	 * handle all pages
1772 	 */
1773 	while (va < eva) {
1774 
1775 		/*
1776 		 * decide what level mapping to use (ie. pagesize)
1777 		 */
1778 		for (level = mmu.max_page_level; ; --level) {
1779 			pgsize = LEVEL_SIZE(level);
1780 			if (level == 0)
1781 				break;
1782 			if (IS_P2ALIGNED(va, pgsize) &&
1783 			    (eva - va) >= pgsize &&
1784 			    IS_P2ALIGNED(pfn, mmu_btop(pgsize))) {
1785 #ifdef DEBUG
1786 				if (level == 2)
1787 					map1gcnt++;
1788 #endif
1789 				break;
1790 			}
1791 		}
1792 
1793 		/*
1794 		 * If this is just memory then allow caching (this happens
1795 		 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used
1796 		 * to override that. If we don't have a page_t then make sure
1797 		 * NOCONSIST is set.
1798 		 */
1799 		a = attr;
1800 		f = flags;
1801 		if (!pf_is_memory(pfn))
1802 			f |= HAT_LOAD_NOCONSIST;
1803 		else if (!(a & HAT_PLAT_NOCACHE))
1804 			a |= HAT_STORECACHING_OK;
1805 
1806 		if (f & HAT_LOAD_NOCONSIST)
1807 			pp = NULL;
1808 		else
1809 			pp = page_numtopp_nolock(pfn);
1810 
1811 		/*
1812 		 * load this page mapping
1813 		 */
1814 		ASSERT(!IN_VA_HOLE(va));
1815 		while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) {
1816 			if (level == 0)
1817 				panic("unexpected hati_load_common() failure");
1818 			--level;
1819 			pgsize = LEVEL_SIZE(level);
1820 		}
1821 
1822 		/*
1823 		 * move to next page
1824 		 */
1825 		va += pgsize;
1826 		pfn += mmu_btop(pgsize);
1827 	}
1828 	XPV_ALLOW_MIGRATE();
1829 }
1830 
1831 /*
1832  * void hat_unlock(hat, addr, len)
1833  *	unlock the mappings to a given range of addresses
1834  *
1835  * Locks are tracked by ht_lock_cnt in the htable.
1836  */
1837 void
1838 hat_unlock(hat_t *hat, caddr_t addr, size_t len)
1839 {
1840 	uintptr_t	vaddr = (uintptr_t)addr;
1841 	uintptr_t	eaddr = vaddr + len;
1842 	htable_t	*ht = NULL;
1843 
1844 	/*
1845 	 * kernel entries are always locked, we don't track lock counts
1846 	 */
1847 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
1848 	ASSERT(IS_PAGEALIGNED(vaddr));
1849 	ASSERT(IS_PAGEALIGNED(eaddr));
1850 	if (hat == kas.a_hat)
1851 		return;
1852 	if (eaddr > _userlimit)
1853 		panic("hat_unlock() address out of range - above _userlimit");
1854 
1855 	XPV_DISALLOW_MIGRATE();
1856 	ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1857 	while (vaddr < eaddr) {
1858 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1859 		if (ht == NULL)
1860 			break;
1861 
1862 		ASSERT(!IN_VA_HOLE(vaddr));
1863 
1864 		if (ht->ht_lock_cnt < 1)
1865 			panic("hat_unlock(): lock_cnt < 1, "
1866 			    "htable=%p, vaddr=%p\n", ht, (caddr_t)vaddr);
1867 		HTABLE_LOCK_DEC(ht);
1868 
1869 		vaddr += LEVEL_SIZE(ht->ht_level);
1870 	}
1871 	if (ht)
1872 		htable_release(ht);
1873 	XPV_ALLOW_MIGRATE();
1874 }
1875 
1876 /* ARGSUSED */
1877 void
1878 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len,
1879     hat_region_cookie_t rcookie)
1880 {
1881 	panic("No shared region support on x86");
1882 }
1883 
1884 #if !defined(__xpv)
1885 /*
1886  * Cross call service routine to demap a virtual page on
1887  * the current CPU or flush all mappings in TLB.
1888  */
1889 /*ARGSUSED*/
1890 static int
1891 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
1892 {
1893 	hat_t	*hat = (hat_t *)a1;
1894 	caddr_t	addr = (caddr_t)a2;
1895 
1896 	/*
1897 	 * If the target hat isn't the kernel and this CPU isn't operating
1898 	 * in the target hat, we can ignore the cross call.
1899 	 */
1900 	if (hat != kas.a_hat && hat != CPU->cpu_current_hat)
1901 		return (0);
1902 
1903 	/*
1904 	 * For a normal address, we just flush one page mapping
1905 	 */
1906 	if ((uintptr_t)addr != DEMAP_ALL_ADDR) {
1907 		mmu_tlbflush_entry(addr);
1908 		return (0);
1909 	}
1910 
1911 	/*
1912 	 * Otherwise we reload cr3 to effect a complete TLB flush.
1913 	 *
1914 	 * A reload of cr3 on a VLP process also means we must also recopy in
1915 	 * the pte values from the struct hat
1916 	 */
1917 	if (hat->hat_flags & HAT_VLP) {
1918 #if defined(__amd64)
1919 		x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes;
1920 
1921 		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1922 #elif defined(__i386)
1923 		reload_pae32(hat, CPU);
1924 #endif
1925 	}
1926 	reload_cr3();
1927 	return (0);
1928 }
1929 
1930 /*
1931  * Flush all TLB entries, including global (ie. kernel) ones.
1932  */
1933 static void
1934 flush_all_tlb_entries(void)
1935 {
1936 	ulong_t cr4 = getcr4();
1937 
1938 	if (cr4 & CR4_PGE) {
1939 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
1940 		setcr4(cr4);
1941 
1942 		/*
1943 		 * 32 bit PAE also needs to always reload_cr3()
1944 		 */
1945 		if (mmu.max_level == 2)
1946 			reload_cr3();
1947 	} else {
1948 		reload_cr3();
1949 	}
1950 }
1951 
1952 #define	TLB_CPU_HALTED	(01ul)
1953 #define	TLB_INVAL_ALL	(02ul)
1954 #define	CAS_TLB_INFO(cpu, old, new)	\
1955 	caslong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new))
1956 
1957 /*
1958  * Record that a CPU is going idle
1959  */
1960 void
1961 tlb_going_idle(void)
1962 {
1963 	atomic_or_long((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED);
1964 }
1965 
1966 /*
1967  * Service a delayed TLB flush if coming out of being idle.
1968  */
1969 void
1970 tlb_service(void)
1971 {
1972 	ulong_t flags = getflags();
1973 	ulong_t tlb_info;
1974 	ulong_t found;
1975 
1976 	/*
1977 	 * Be sure interrupts are off while doing this so that
1978 	 * higher level interrupts correctly wait for flushes to finish.
1979 	 */
1980 	if (flags & PS_IE)
1981 		flags = intr_clear();
1982 
1983 	/*
1984 	 * We only have to do something if coming out of being idle.
1985 	 */
1986 	tlb_info = CPU->cpu_m.mcpu_tlb_info;
1987 	if (tlb_info & TLB_CPU_HALTED) {
1988 		ASSERT(CPU->cpu_current_hat == kas.a_hat);
1989 
1990 		/*
1991 		 * Atomic clear and fetch of old state.
1992 		 */
1993 		while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) {
1994 			ASSERT(found & TLB_CPU_HALTED);
1995 			tlb_info = found;
1996 			SMT_PAUSE();
1997 		}
1998 		if (tlb_info & TLB_INVAL_ALL)
1999 			flush_all_tlb_entries();
2000 	}
2001 
2002 	/*
2003 	 * Restore interrupt enable control bit.
2004 	 */
2005 	if (flags & PS_IE)
2006 		sti();
2007 }
2008 #endif /* !__xpv */
2009 
2010 /*
2011  * Internal routine to do cross calls to invalidate a range of pages on
2012  * all CPUs using a given hat.
2013  */
2014 void
2015 hat_tlb_inval(hat_t *hat, uintptr_t va)
2016 {
2017 	extern int	flushes_require_xcalls;	/* from mp_startup.c */
2018 	cpuset_t	justme;
2019 	cpuset_t	cpus_to_shootdown;
2020 #ifndef __xpv
2021 	cpuset_t	check_cpus;
2022 	cpu_t		*cpup;
2023 	int		c;
2024 #endif
2025 
2026 	/*
2027 	 * If the hat is being destroyed, there are no more users, so
2028 	 * demap need not do anything.
2029 	 */
2030 	if (hat->hat_flags & HAT_FREEING)
2031 		return;
2032 
2033 	/*
2034 	 * If demapping from a shared pagetable, we best demap the
2035 	 * entire set of user TLBs, since we don't know what addresses
2036 	 * these were shared at.
2037 	 */
2038 	if (hat->hat_flags & HAT_SHARED) {
2039 		hat = kas.a_hat;
2040 		va = DEMAP_ALL_ADDR;
2041 	}
2042 
2043 	/*
2044 	 * if not running with multiple CPUs, don't use cross calls
2045 	 */
2046 	if (panicstr || !flushes_require_xcalls) {
2047 #ifdef __xpv
2048 		if (va == DEMAP_ALL_ADDR)
2049 			xen_flush_tlb();
2050 		else
2051 			xen_flush_va((caddr_t)va);
2052 #else
2053 		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
2054 #endif
2055 		return;
2056 	}
2057 
2058 
2059 	/*
2060 	 * Determine CPUs to shootdown. Kernel changes always do all CPUs.
2061 	 * Otherwise it's just CPUs currently executing in this hat.
2062 	 */
2063 	kpreempt_disable();
2064 	CPUSET_ONLY(justme, CPU->cpu_id);
2065 	if (hat == kas.a_hat)
2066 		cpus_to_shootdown = khat_cpuset;
2067 	else
2068 		cpus_to_shootdown = hat->hat_cpus;
2069 
2070 #ifndef __xpv
2071 	/*
2072 	 * If any CPUs in the set are idle, just request a delayed flush
2073 	 * and avoid waking them up.
2074 	 */
2075 	check_cpus = cpus_to_shootdown;
2076 	for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) {
2077 		ulong_t tlb_info;
2078 
2079 		if (!CPU_IN_SET(check_cpus, c))
2080 			continue;
2081 		CPUSET_DEL(check_cpus, c);
2082 		cpup = cpu[c];
2083 		if (cpup == NULL)
2084 			continue;
2085 
2086 		tlb_info = cpup->cpu_m.mcpu_tlb_info;
2087 		while (tlb_info == TLB_CPU_HALTED) {
2088 			(void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED,
2089 			    TLB_CPU_HALTED | TLB_INVAL_ALL);
2090 			SMT_PAUSE();
2091 			tlb_info = cpup->cpu_m.mcpu_tlb_info;
2092 		}
2093 		if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) {
2094 			HATSTAT_INC(hs_tlb_inval_delayed);
2095 			CPUSET_DEL(cpus_to_shootdown, c);
2096 		}
2097 	}
2098 #endif
2099 
2100 	if (CPUSET_ISNULL(cpus_to_shootdown) ||
2101 	    CPUSET_ISEQUAL(cpus_to_shootdown, justme)) {
2102 
2103 #ifdef __xpv
2104 		if (va == DEMAP_ALL_ADDR)
2105 			xen_flush_tlb();
2106 		else
2107 			xen_flush_va((caddr_t)va);
2108 #else
2109 		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
2110 #endif
2111 
2112 	} else {
2113 
2114 		CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id);
2115 #ifdef __xpv
2116 		if (va == DEMAP_ALL_ADDR)
2117 			xen_gflush_tlb(cpus_to_shootdown);
2118 		else
2119 			xen_gflush_va((caddr_t)va, cpus_to_shootdown);
2120 #else
2121 		xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, X_CALL_HIPRI,
2122 		    cpus_to_shootdown, hati_demap_func);
2123 #endif
2124 
2125 	}
2126 	kpreempt_enable();
2127 }
2128 
2129 /*
2130  * Interior routine for HAT_UNLOADs from hat_unload_callback(),
2131  * hat_kmap_unload() OR from hat_steal() code.  This routine doesn't
2132  * handle releasing of the htables.
2133  */
2134 void
2135 hat_pte_unmap(
2136 	htable_t	*ht,
2137 	uint_t		entry,
2138 	uint_t		flags,
2139 	x86pte_t	old_pte,
2140 	void		*pte_ptr)
2141 {
2142 	hat_t		*hat = ht->ht_hat;
2143 	hment_t		*hm = NULL;
2144 	page_t		*pp = NULL;
2145 	level_t		l = ht->ht_level;
2146 	pfn_t		pfn;
2147 
2148 	/*
2149 	 * We always track the locking counts, even if nothing is unmapped
2150 	 */
2151 	if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) {
2152 		ASSERT(ht->ht_lock_cnt > 0);
2153 		HTABLE_LOCK_DEC(ht);
2154 	}
2155 
2156 	/*
2157 	 * Figure out which page's mapping list lock to acquire using the PFN
2158 	 * passed in "old" PTE. We then attempt to invalidate the PTE.
2159 	 * If another thread, probably a hat_pageunload, has asynchronously
2160 	 * unmapped/remapped this address we'll loop here.
2161 	 */
2162 	ASSERT(ht->ht_busy > 0);
2163 	while (PTE_ISVALID(old_pte)) {
2164 		pfn = PTE2PFN(old_pte, l);
2165 		if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) {
2166 			pp = NULL;
2167 		} else {
2168 #ifdef __xpv
2169 			if (pfn == PFN_INVALID)
2170 				panic("Invalid PFN, but not PT_NOCONSIST");
2171 #endif
2172 			pp = page_numtopp_nolock(pfn);
2173 			if (pp == NULL) {
2174 				panic("no page_t, not NOCONSIST: old_pte="
2175 				    FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx",
2176 				    old_pte, (uintptr_t)ht, entry,
2177 				    (uintptr_t)pte_ptr);
2178 			}
2179 			x86_hm_enter(pp);
2180 		}
2181 
2182 		/*
2183 		 * If freeing the address space, check that the PTE
2184 		 * hasn't changed, as the mappings are no longer in use by
2185 		 * any thread, invalidation is unnecessary.
2186 		 * If not freeing, do a full invalidate.
2187 		 *
2188 		 * On the hypervisor we must always remove mappings, as a
2189 		 * writable mapping left behind could cause a page table
2190 		 * allocation to fail.
2191 		 */
2192 #if !defined(__xpv)
2193 		if (hat->hat_flags & HAT_FREEING)
2194 			old_pte = x86pte_get(ht, entry);
2195 		else
2196 #endif
2197 			old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr);
2198 
2199 		/*
2200 		 * If the page hadn't changed we've unmapped it and can proceed
2201 		 */
2202 		if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn)
2203 			break;
2204 
2205 		/*
2206 		 * Otherwise, we'll have to retry with the current old_pte.
2207 		 * Drop the hment lock, since the pfn may have changed.
2208 		 */
2209 		if (pp != NULL) {
2210 			x86_hm_exit(pp);
2211 			pp = NULL;
2212 		} else {
2213 			ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
2214 		}
2215 	}
2216 
2217 	/*
2218 	 * If the old mapping wasn't valid, there's nothing more to do
2219 	 */
2220 	if (!PTE_ISVALID(old_pte)) {
2221 		if (pp != NULL)
2222 			x86_hm_exit(pp);
2223 		return;
2224 	}
2225 
2226 	/*
2227 	 * Take care of syncing any MOD/REF bits and removing the hment.
2228 	 */
2229 	if (pp != NULL) {
2230 		if (!(flags & HAT_UNLOAD_NOSYNC))
2231 			hati_sync_pte_to_page(pp, old_pte, l);
2232 		hm = hment_remove(pp, ht, entry);
2233 		x86_hm_exit(pp);
2234 		if (hm != NULL)
2235 			hment_free(hm);
2236 	}
2237 
2238 	/*
2239 	 * Handle book keeping in the htable and hat
2240 	 */
2241 	ASSERT(ht->ht_valid_cnt > 0);
2242 	HTABLE_DEC(ht->ht_valid_cnt);
2243 	PGCNT_DEC(hat, l);
2244 }
2245 
2246 /*
2247  * very cheap unload implementation to special case some kernel addresses
2248  */
2249 static void
2250 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags)
2251 {
2252 	uintptr_t	va = (uintptr_t)addr;
2253 	uintptr_t	eva = va + len;
2254 	pgcnt_t		pg_index;
2255 	htable_t	*ht;
2256 	uint_t		entry;
2257 	x86pte_t	*pte_ptr;
2258 	x86pte_t	old_pte;
2259 
2260 	for (; va < eva; va += MMU_PAGESIZE) {
2261 		/*
2262 		 * Get the PTE
2263 		 */
2264 		pg_index = mmu_btop(va - mmu.kmap_addr);
2265 		pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index);
2266 		old_pte = GET_PTE(pte_ptr);
2267 
2268 		/*
2269 		 * get the htable / entry
2270 		 */
2271 		ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr)
2272 		    >> LEVEL_SHIFT(1)];
2273 		entry = htable_va2entry(va, ht);
2274 
2275 		/*
2276 		 * use mostly common code to unmap it.
2277 		 */
2278 		hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr);
2279 	}
2280 }
2281 
2282 
2283 /*
2284  * unload a range of virtual address space (no callback)
2285  */
2286 void
2287 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2288 {
2289 	uintptr_t va = (uintptr_t)addr;
2290 
2291 	XPV_DISALLOW_MIGRATE();
2292 	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
2293 
2294 	/*
2295 	 * special case for performance.
2296 	 */
2297 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
2298 		ASSERT(hat == kas.a_hat);
2299 		hat_kmap_unload(addr, len, flags);
2300 	} else {
2301 		hat_unload_callback(hat, addr, len, flags, NULL);
2302 	}
2303 	XPV_ALLOW_MIGRATE();
2304 }
2305 
2306 /*
2307  * Do the callbacks for ranges being unloaded.
2308  */
2309 typedef struct range_info {
2310 	uintptr_t	rng_va;
2311 	ulong_t		rng_cnt;
2312 	level_t		rng_level;
2313 } range_info_t;
2314 
2315 static void
2316 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range)
2317 {
2318 	/*
2319 	 * do callbacks to upper level VM system
2320 	 */
2321 	while (cb != NULL && cnt > 0) {
2322 		--cnt;
2323 		cb->hcb_start_addr = (caddr_t)range[cnt].rng_va;
2324 		cb->hcb_end_addr = cb->hcb_start_addr;
2325 		cb->hcb_end_addr +=
2326 		    range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level);
2327 		cb->hcb_function(cb);
2328 	}
2329 }
2330 
2331 /*
2332  * Unload a given range of addresses (has optional callback)
2333  *
2334  * Flags:
2335  * define	HAT_UNLOAD		0x00
2336  * define	HAT_UNLOAD_NOSYNC	0x02
2337  * define	HAT_UNLOAD_UNLOCK	0x04
2338  * define	HAT_UNLOAD_OTHER	0x08 - not used
2339  * define	HAT_UNLOAD_UNMAP	0x10 - same as HAT_UNLOAD
2340  */
2341 #define	MAX_UNLOAD_CNT (8)
2342 void
2343 hat_unload_callback(
2344 	hat_t		*hat,
2345 	caddr_t		addr,
2346 	size_t		len,
2347 	uint_t		flags,
2348 	hat_callback_t	*cb)
2349 {
2350 	uintptr_t	vaddr = (uintptr_t)addr;
2351 	uintptr_t	eaddr = vaddr + len;
2352 	htable_t	*ht = NULL;
2353 	uint_t		entry;
2354 	uintptr_t	contig_va = (uintptr_t)-1L;
2355 	range_info_t	r[MAX_UNLOAD_CNT];
2356 	uint_t		r_cnt = 0;
2357 	x86pte_t	old_pte;
2358 
2359 	XPV_DISALLOW_MIGRATE();
2360 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2361 	ASSERT(IS_PAGEALIGNED(vaddr));
2362 	ASSERT(IS_PAGEALIGNED(eaddr));
2363 
2364 	/*
2365 	 * Special case a single page being unloaded for speed. This happens
2366 	 * quite frequently, COW faults after a fork() for example.
2367 	 */
2368 	if (cb == NULL && len == MMU_PAGESIZE) {
2369 		ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0);
2370 		if (ht != NULL) {
2371 			if (PTE_ISVALID(old_pte))
2372 				hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2373 			htable_release(ht);
2374 		}
2375 		XPV_ALLOW_MIGRATE();
2376 		return;
2377 	}
2378 
2379 	while (vaddr < eaddr) {
2380 		old_pte = htable_walk(hat, &ht, &vaddr, eaddr);
2381 		if (ht == NULL)
2382 			break;
2383 
2384 		ASSERT(!IN_VA_HOLE(vaddr));
2385 
2386 		if (vaddr < (uintptr_t)addr)
2387 			panic("hat_unload_callback(): unmap inside large page");
2388 
2389 		/*
2390 		 * We'll do the call backs for contiguous ranges
2391 		 */
2392 		if (vaddr != contig_va ||
2393 		    (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) {
2394 			if (r_cnt == MAX_UNLOAD_CNT) {
2395 				handle_ranges(cb, r_cnt, r);
2396 				r_cnt = 0;
2397 			}
2398 			r[r_cnt].rng_va = vaddr;
2399 			r[r_cnt].rng_cnt = 0;
2400 			r[r_cnt].rng_level = ht->ht_level;
2401 			++r_cnt;
2402 		}
2403 
2404 		/*
2405 		 * Unload one mapping from the page tables.
2406 		 */
2407 		entry = htable_va2entry(vaddr, ht);
2408 		hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2409 		ASSERT(ht->ht_level <= mmu.max_page_level);
2410 		vaddr += LEVEL_SIZE(ht->ht_level);
2411 		contig_va = vaddr;
2412 		++r[r_cnt - 1].rng_cnt;
2413 	}
2414 	if (ht)
2415 		htable_release(ht);
2416 
2417 	/*
2418 	 * handle last range for callbacks
2419 	 */
2420 	if (r_cnt > 0)
2421 		handle_ranges(cb, r_cnt, r);
2422 	XPV_ALLOW_MIGRATE();
2423 }
2424 
2425 /*
2426  * synchronize mapping with software data structures
2427  *
2428  * This interface is currently only used by the working set monitor
2429  * driver.
2430  */
2431 /*ARGSUSED*/
2432 void
2433 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2434 {
2435 	uintptr_t	vaddr = (uintptr_t)addr;
2436 	uintptr_t	eaddr = vaddr + len;
2437 	htable_t	*ht = NULL;
2438 	uint_t		entry;
2439 	x86pte_t	pte;
2440 	x86pte_t	save_pte;
2441 	x86pte_t	new;
2442 	page_t		*pp;
2443 
2444 	ASSERT(!IN_VA_HOLE(vaddr));
2445 	ASSERT(IS_PAGEALIGNED(vaddr));
2446 	ASSERT(IS_PAGEALIGNED(eaddr));
2447 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2448 
2449 	XPV_DISALLOW_MIGRATE();
2450 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2451 try_again:
2452 		pte = htable_walk(hat, &ht, &vaddr, eaddr);
2453 		if (ht == NULL)
2454 			break;
2455 		entry = htable_va2entry(vaddr, ht);
2456 
2457 		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2458 		    PTE_GET(pte, PT_REF | PT_MOD) == 0)
2459 			continue;
2460 
2461 		/*
2462 		 * We need to acquire the mapping list lock to protect
2463 		 * against hat_pageunload(), hat_unload(), etc.
2464 		 */
2465 		pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level));
2466 		if (pp == NULL)
2467 			break;
2468 		x86_hm_enter(pp);
2469 		save_pte = pte;
2470 		pte = x86pte_get(ht, entry);
2471 		if (pte != save_pte) {
2472 			x86_hm_exit(pp);
2473 			goto try_again;
2474 		}
2475 		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2476 		    PTE_GET(pte, PT_REF | PT_MOD) == 0) {
2477 			x86_hm_exit(pp);
2478 			continue;
2479 		}
2480 
2481 		/*
2482 		 * Need to clear ref or mod bits. We may compete with
2483 		 * hardware updating the R/M bits and have to try again.
2484 		 */
2485 		if (flags == HAT_SYNC_ZERORM) {
2486 			new = pte;
2487 			PTE_CLR(new, PT_REF | PT_MOD);
2488 			pte = hati_update_pte(ht, entry, pte, new);
2489 			if (pte != 0) {
2490 				x86_hm_exit(pp);
2491 				goto try_again;
2492 			}
2493 		} else {
2494 			/*
2495 			 * sync the PTE to the page_t
2496 			 */
2497 			hati_sync_pte_to_page(pp, save_pte, ht->ht_level);
2498 		}
2499 		x86_hm_exit(pp);
2500 	}
2501 	if (ht)
2502 		htable_release(ht);
2503 	XPV_ALLOW_MIGRATE();
2504 }
2505 
2506 /*
2507  * void	hat_map(hat, addr, len, flags)
2508  */
2509 /*ARGSUSED*/
2510 void
2511 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2512 {
2513 	/* does nothing */
2514 }
2515 
2516 /*
2517  * uint_t hat_getattr(hat, addr, *attr)
2518  *	returns attr for <hat,addr> in *attr.  returns 0 if there was a
2519  *	mapping and *attr is valid, nonzero if there was no mapping and
2520  *	*attr is not valid.
2521  */
2522 uint_t
2523 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr)
2524 {
2525 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2526 	htable_t	*ht = NULL;
2527 	x86pte_t	pte;
2528 
2529 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2530 
2531 	if (IN_VA_HOLE(vaddr))
2532 		return ((uint_t)-1);
2533 
2534 	ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level);
2535 	if (ht == NULL)
2536 		return ((uint_t)-1);
2537 
2538 	if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) {
2539 		htable_release(ht);
2540 		return ((uint_t)-1);
2541 	}
2542 
2543 	*attr = PROT_READ;
2544 	if (PTE_GET(pte, PT_WRITABLE))
2545 		*attr |= PROT_WRITE;
2546 	if (PTE_GET(pte, PT_USER))
2547 		*attr |= PROT_USER;
2548 	if (!PTE_GET(pte, mmu.pt_nx))
2549 		*attr |= PROT_EXEC;
2550 	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
2551 		*attr |= HAT_NOSYNC;
2552 	htable_release(ht);
2553 	return (0);
2554 }
2555 
2556 /*
2557  * hat_updateattr() applies the given attribute change to an existing mapping
2558  */
2559 #define	HAT_LOAD_ATTR		1
2560 #define	HAT_SET_ATTR		2
2561 #define	HAT_CLR_ATTR		3
2562 
2563 static void
2564 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what)
2565 {
2566 	uintptr_t	vaddr = (uintptr_t)addr;
2567 	uintptr_t	eaddr = (uintptr_t)addr + len;
2568 	htable_t	*ht = NULL;
2569 	uint_t		entry;
2570 	x86pte_t	oldpte, newpte;
2571 	page_t		*pp;
2572 
2573 	XPV_DISALLOW_MIGRATE();
2574 	ASSERT(IS_PAGEALIGNED(vaddr));
2575 	ASSERT(IS_PAGEALIGNED(eaddr));
2576 	ASSERT(hat == kas.a_hat ||
2577 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2578 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2579 try_again:
2580 		oldpte = htable_walk(hat, &ht, &vaddr, eaddr);
2581 		if (ht == NULL)
2582 			break;
2583 		if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST)
2584 			continue;
2585 
2586 		pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level));
2587 		if (pp == NULL)
2588 			continue;
2589 		x86_hm_enter(pp);
2590 
2591 		newpte = oldpte;
2592 		/*
2593 		 * We found a page table entry in the desired range,
2594 		 * figure out the new attributes.
2595 		 */
2596 		if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) {
2597 			if ((attr & PROT_WRITE) &&
2598 			    !PTE_GET(oldpte, PT_WRITABLE))
2599 				newpte |= PT_WRITABLE;
2600 
2601 			if ((attr & HAT_NOSYNC) &&
2602 			    PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC)
2603 				newpte |= PT_NOSYNC;
2604 
2605 			if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx))
2606 				newpte &= ~mmu.pt_nx;
2607 		}
2608 
2609 		if (what == HAT_LOAD_ATTR) {
2610 			if (!(attr & PROT_WRITE) &&
2611 			    PTE_GET(oldpte, PT_WRITABLE))
2612 				newpte &= ~PT_WRITABLE;
2613 
2614 			if (!(attr & HAT_NOSYNC) &&
2615 			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2616 				newpte &= ~PT_SOFTWARE;
2617 
2618 			if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2619 				newpte |= mmu.pt_nx;
2620 		}
2621 
2622 		if (what == HAT_CLR_ATTR) {
2623 			if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE))
2624 				newpte &= ~PT_WRITABLE;
2625 
2626 			if ((attr & HAT_NOSYNC) &&
2627 			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2628 				newpte &= ~PT_SOFTWARE;
2629 
2630 			if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2631 				newpte |= mmu.pt_nx;
2632 		}
2633 
2634 		/*
2635 		 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set.
2636 		 * x86pte_set() depends on this.
2637 		 */
2638 		if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC)
2639 			newpte |= PT_REF | PT_MOD;
2640 
2641 		/*
2642 		 * what about PROT_READ or others? this code only handles:
2643 		 * EXEC, WRITE, NOSYNC
2644 		 */
2645 
2646 		/*
2647 		 * If new PTE really changed, update the table.
2648 		 */
2649 		if (newpte != oldpte) {
2650 			entry = htable_va2entry(vaddr, ht);
2651 			oldpte = hati_update_pte(ht, entry, oldpte, newpte);
2652 			if (oldpte != 0) {
2653 				x86_hm_exit(pp);
2654 				goto try_again;
2655 			}
2656 		}
2657 		x86_hm_exit(pp);
2658 	}
2659 	if (ht)
2660 		htable_release(ht);
2661 	XPV_ALLOW_MIGRATE();
2662 }
2663 
2664 /*
2665  * Various wrappers for hat_updateattr()
2666  */
2667 void
2668 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2669 {
2670 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2671 	hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR);
2672 }
2673 
2674 void
2675 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2676 {
2677 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2678 	hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR);
2679 }
2680 
2681 void
2682 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2683 {
2684 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2685 	hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR);
2686 }
2687 
2688 void
2689 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot)
2690 {
2691 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2692 	hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR);
2693 }
2694 
2695 /*
2696  * size_t hat_getpagesize(hat, addr)
2697  *	returns pagesize in bytes for <hat, addr>. returns -1 of there is
2698  *	no mapping. This is an advisory call.
2699  */
2700 ssize_t
2701 hat_getpagesize(hat_t *hat, caddr_t addr)
2702 {
2703 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2704 	htable_t	*ht;
2705 	size_t		pagesize;
2706 
2707 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2708 	if (IN_VA_HOLE(vaddr))
2709 		return (-1);
2710 	ht = htable_getpage(hat, vaddr, NULL);
2711 	if (ht == NULL)
2712 		return (-1);
2713 	pagesize = LEVEL_SIZE(ht->ht_level);
2714 	htable_release(ht);
2715 	return (pagesize);
2716 }
2717 
2718 
2719 
2720 /*
2721  * pfn_t hat_getpfnum(hat, addr)
2722  *	returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid.
2723  */
2724 pfn_t
2725 hat_getpfnum(hat_t *hat, caddr_t addr)
2726 {
2727 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2728 	htable_t	*ht;
2729 	uint_t		entry;
2730 	pfn_t		pfn = PFN_INVALID;
2731 
2732 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2733 	if (khat_running == 0)
2734 		return (PFN_INVALID);
2735 
2736 	if (IN_VA_HOLE(vaddr))
2737 		return (PFN_INVALID);
2738 
2739 	XPV_DISALLOW_MIGRATE();
2740 	/*
2741 	 * A very common use of hat_getpfnum() is from the DDI for kernel pages.
2742 	 * Use the kmap_ptes (which also covers the 32 bit heap) to speed
2743 	 * this up.
2744 	 */
2745 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2746 		x86pte_t pte;
2747 		pgcnt_t pg_index;
2748 
2749 		pg_index = mmu_btop(vaddr - mmu.kmap_addr);
2750 		pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index));
2751 		if (PTE_ISVALID(pte))
2752 			/*LINTED [use of constant 0 causes a lint warning] */
2753 			pfn = PTE2PFN(pte, 0);
2754 		XPV_ALLOW_MIGRATE();
2755 		return (pfn);
2756 	}
2757 
2758 	ht = htable_getpage(hat, vaddr, &entry);
2759 	if (ht == NULL) {
2760 		XPV_ALLOW_MIGRATE();
2761 		return (PFN_INVALID);
2762 	}
2763 	ASSERT(vaddr >= ht->ht_vaddr);
2764 	ASSERT(vaddr <= HTABLE_LAST_PAGE(ht));
2765 	pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level);
2766 	if (ht->ht_level > 0)
2767 		pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level));
2768 	htable_release(ht);
2769 	XPV_ALLOW_MIGRATE();
2770 	return (pfn);
2771 }
2772 
2773 /*
2774  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
2775  * Use hat_getpfnum(kas.a_hat, ...) instead.
2776  *
2777  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
2778  * but can't right now due to the fact that some software has grown to use
2779  * this interface incorrectly. So for now when the interface is misused,
2780  * return a warning to the user that in the future it won't work in the
2781  * way they're abusing it, and carry on.
2782  *
2783  * Note that hat_getkpfnum() is never supported on amd64.
2784  */
2785 #if !defined(__amd64)
2786 pfn_t
2787 hat_getkpfnum(caddr_t addr)
2788 {
2789 	pfn_t	pfn;
2790 	int badcaller = 0;
2791 
2792 	if (khat_running == 0)
2793 		panic("hat_getkpfnum(): called too early\n");
2794 	if ((uintptr_t)addr < kernelbase)
2795 		return (PFN_INVALID);
2796 
2797 	XPV_DISALLOW_MIGRATE();
2798 	if (segkpm && IS_KPM_ADDR(addr)) {
2799 		badcaller = 1;
2800 		pfn = hat_kpm_va2pfn(addr);
2801 	} else {
2802 		pfn = hat_getpfnum(kas.a_hat, addr);
2803 		badcaller = pf_is_memory(pfn);
2804 	}
2805 
2806 	if (badcaller)
2807 		hat_getkpfnum_badcall(caller());
2808 	XPV_ALLOW_MIGRATE();
2809 	return (pfn);
2810 }
2811 #endif /* __amd64 */
2812 
2813 /*
2814  * int hat_probe(hat, addr)
2815  *	return 0 if no valid mapping is present.  Faster version
2816  *	of hat_getattr in certain architectures.
2817  */
2818 int
2819 hat_probe(hat_t *hat, caddr_t addr)
2820 {
2821 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2822 	uint_t		entry;
2823 	htable_t	*ht;
2824 	pgcnt_t		pg_off;
2825 
2826 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2827 	ASSERT(hat == kas.a_hat ||
2828 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2829 	if (IN_VA_HOLE(vaddr))
2830 		return (0);
2831 
2832 	/*
2833 	 * Most common use of hat_probe is from segmap. We special case it
2834 	 * for performance.
2835 	 */
2836 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2837 		pg_off = mmu_btop(vaddr - mmu.kmap_addr);
2838 		if (mmu.pae_hat)
2839 			return (PTE_ISVALID(mmu.kmap_ptes[pg_off]));
2840 		else
2841 			return (PTE_ISVALID(
2842 			    ((x86pte32_t *)mmu.kmap_ptes)[pg_off]));
2843 	}
2844 
2845 	ht = htable_getpage(hat, vaddr, &entry);
2846 	htable_release(ht);
2847 	return (ht != NULL);
2848 }
2849 
2850 /*
2851  * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM.
2852  */
2853 static int
2854 is_it_dism(hat_t *hat, caddr_t va)
2855 {
2856 	struct seg *seg;
2857 	struct shm_data *shmd;
2858 	struct spt_data *sptd;
2859 
2860 	seg = as_findseg(hat->hat_as, va, 0);
2861 	ASSERT(seg != NULL);
2862 	ASSERT(seg->s_base <= va);
2863 	shmd = (struct shm_data *)seg->s_data;
2864 	ASSERT(shmd != NULL);
2865 	sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2866 	ASSERT(sptd != NULL);
2867 	if (sptd->spt_flags & SHM_PAGEABLE)
2868 		return (1);
2869 	return (0);
2870 }
2871 
2872 /*
2873  * Simple implementation of ISM. hat_share() is similar to hat_memload_array(),
2874  * except that we use the ism_hat's existing mappings to determine the pages
2875  * and protections to use for this hat. If we find a full properly aligned
2876  * and sized pagetable, we will attempt to share the pagetable itself.
2877  */
2878 /*ARGSUSED*/
2879 int
2880 hat_share(
2881 	hat_t		*hat,
2882 	caddr_t		addr,
2883 	hat_t		*ism_hat,
2884 	caddr_t		src_addr,
2885 	size_t		len,	/* almost useless value, see below.. */
2886 	uint_t		ismszc)
2887 {
2888 	uintptr_t	vaddr_start = (uintptr_t)addr;
2889 	uintptr_t	vaddr;
2890 	uintptr_t	eaddr = vaddr_start + len;
2891 	uintptr_t	ism_addr_start = (uintptr_t)src_addr;
2892 	uintptr_t	ism_addr = ism_addr_start;
2893 	uintptr_t	e_ism_addr = ism_addr + len;
2894 	htable_t	*ism_ht = NULL;
2895 	htable_t	*ht;
2896 	x86pte_t	pte;
2897 	page_t		*pp;
2898 	pfn_t		pfn;
2899 	level_t		l;
2900 	pgcnt_t		pgcnt;
2901 	uint_t		prot;
2902 	int		is_dism;
2903 	int		flags;
2904 
2905 	/*
2906 	 * We might be asked to share an empty DISM hat by as_dup()
2907 	 */
2908 	ASSERT(hat != kas.a_hat);
2909 	ASSERT(eaddr <= _userlimit);
2910 	if (!(ism_hat->hat_flags & HAT_SHARED)) {
2911 		ASSERT(hat_get_mapped_size(ism_hat) == 0);
2912 		return (0);
2913 	}
2914 	XPV_DISALLOW_MIGRATE();
2915 
2916 	/*
2917 	 * The SPT segment driver often passes us a size larger than there are
2918 	 * valid mappings. That's because it rounds the segment size up to a
2919 	 * large pagesize, even if the actual memory mapped by ism_hat is less.
2920 	 */
2921 	ASSERT(IS_PAGEALIGNED(vaddr_start));
2922 	ASSERT(IS_PAGEALIGNED(ism_addr_start));
2923 	ASSERT(ism_hat->hat_flags & HAT_SHARED);
2924 	is_dism = is_it_dism(hat, addr);
2925 	while (ism_addr < e_ism_addr) {
2926 		/*
2927 		 * use htable_walk to get the next valid ISM mapping
2928 		 */
2929 		pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr);
2930 		if (ism_ht == NULL)
2931 			break;
2932 
2933 		/*
2934 		 * First check to see if we already share the page table.
2935 		 */
2936 		l = ism_ht->ht_level;
2937 		vaddr = vaddr_start + (ism_addr - ism_addr_start);
2938 		ht = htable_lookup(hat, vaddr, l);
2939 		if (ht != NULL) {
2940 			if (ht->ht_flags & HTABLE_SHARED_PFN)
2941 				goto shared;
2942 			htable_release(ht);
2943 			goto not_shared;
2944 		}
2945 
2946 		/*
2947 		 * Can't ever share top table.
2948 		 */
2949 		if (l == mmu.max_level)
2950 			goto not_shared;
2951 
2952 		/*
2953 		 * Avoid level mismatches later due to DISM faults.
2954 		 */
2955 		if (is_dism && l > 0)
2956 			goto not_shared;
2957 
2958 		/*
2959 		 * addresses and lengths must align
2960 		 * table must be fully populated
2961 		 * no lower level page tables
2962 		 */
2963 		if (ism_addr != ism_ht->ht_vaddr ||
2964 		    (vaddr & LEVEL_OFFSET(l + 1)) != 0)
2965 			goto not_shared;
2966 
2967 		/*
2968 		 * The range of address space must cover a full table.
2969 		 */
2970 		if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1))
2971 			goto not_shared;
2972 
2973 		/*
2974 		 * All entries in the ISM page table must be leaf PTEs.
2975 		 */
2976 		if (l > 0) {
2977 			int e;
2978 
2979 			/*
2980 			 * We know the 0th is from htable_walk() above.
2981 			 */
2982 			for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) {
2983 				x86pte_t pte;
2984 				pte = x86pte_get(ism_ht, e);
2985 				if (!PTE_ISPAGE(pte, l))
2986 					goto not_shared;
2987 			}
2988 		}
2989 
2990 		/*
2991 		 * share the page table
2992 		 */
2993 		ht = htable_create(hat, vaddr, l, ism_ht);
2994 shared:
2995 		ASSERT(ht->ht_flags & HTABLE_SHARED_PFN);
2996 		ASSERT(ht->ht_shares == ism_ht);
2997 		hat->hat_ism_pgcnt +=
2998 		    (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) <<
2999 		    (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3000 		ht->ht_valid_cnt = ism_ht->ht_valid_cnt;
3001 		htable_release(ht);
3002 		ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1);
3003 		htable_release(ism_ht);
3004 		ism_ht = NULL;
3005 		continue;
3006 
3007 not_shared:
3008 		/*
3009 		 * Unable to share the page table. Instead we will
3010 		 * create new mappings from the values in the ISM mappings.
3011 		 * Figure out what level size mappings to use;
3012 		 */
3013 		for (l = ism_ht->ht_level; l > 0; --l) {
3014 			if (LEVEL_SIZE(l) <= eaddr - vaddr &&
3015 			    (vaddr & LEVEL_OFFSET(l)) == 0)
3016 				break;
3017 		}
3018 
3019 		/*
3020 		 * The ISM mapping might be larger than the share area,
3021 		 * be careful to truncate it if needed.
3022 		 */
3023 		if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) {
3024 			pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level));
3025 		} else {
3026 			pgcnt = mmu_btop(eaddr - vaddr);
3027 			l = 0;
3028 		}
3029 
3030 		pfn = PTE2PFN(pte, ism_ht->ht_level);
3031 		ASSERT(pfn != PFN_INVALID);
3032 		while (pgcnt > 0) {
3033 			/*
3034 			 * Make a new pte for the PFN for this level.
3035 			 * Copy protections for the pte from the ISM pte.
3036 			 */
3037 			pp = page_numtopp_nolock(pfn);
3038 			ASSERT(pp != NULL);
3039 
3040 			prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK;
3041 			if (PTE_GET(pte, PT_WRITABLE))
3042 				prot |= PROT_WRITE;
3043 			if (!PTE_GET(pte, PT_NX))
3044 				prot |= PROT_EXEC;
3045 
3046 			flags = HAT_LOAD;
3047 			if (!is_dism)
3048 				flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST;
3049 			while (hati_load_common(hat, vaddr, pp, prot, flags,
3050 			    l, pfn) != 0) {
3051 				if (l == 0)
3052 					panic("hati_load_common() failure");
3053 				--l;
3054 			}
3055 
3056 			vaddr += LEVEL_SIZE(l);
3057 			ism_addr += LEVEL_SIZE(l);
3058 			pfn += mmu_btop(LEVEL_SIZE(l));
3059 			pgcnt -= mmu_btop(LEVEL_SIZE(l));
3060 		}
3061 	}
3062 	if (ism_ht != NULL)
3063 		htable_release(ism_ht);
3064 	XPV_ALLOW_MIGRATE();
3065 	return (0);
3066 }
3067 
3068 
3069 /*
3070  * hat_unshare() is similar to hat_unload_callback(), but
3071  * we have to look for empty shared pagetables. Note that
3072  * hat_unshare() is always invoked against an entire segment.
3073  */
3074 /*ARGSUSED*/
3075 void
3076 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc)
3077 {
3078 	uint64_t	vaddr = (uintptr_t)addr;
3079 	uintptr_t	eaddr = vaddr + len;
3080 	htable_t	*ht = NULL;
3081 	uint_t		need_demaps = 0;
3082 	int		flags = HAT_UNLOAD_UNMAP;
3083 	level_t		l;
3084 
3085 	ASSERT(hat != kas.a_hat);
3086 	ASSERT(eaddr <= _userlimit);
3087 	ASSERT(IS_PAGEALIGNED(vaddr));
3088 	ASSERT(IS_PAGEALIGNED(eaddr));
3089 	XPV_DISALLOW_MIGRATE();
3090 
3091 	/*
3092 	 * First go through and remove any shared pagetables.
3093 	 *
3094 	 * Note that it's ok to delay the TLB shootdown till the entire range is
3095 	 * finished, because if hat_pageunload() were to unload a shared
3096 	 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate.
3097 	 */
3098 	l = mmu.max_page_level;
3099 	if (l == mmu.max_level)
3100 		--l;
3101 	for (; l >= 0; --l) {
3102 		for (vaddr = (uintptr_t)addr; vaddr < eaddr;
3103 		    vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) {
3104 			ASSERT(!IN_VA_HOLE(vaddr));
3105 			/*
3106 			 * find a pagetable that maps the current address
3107 			 */
3108 			ht = htable_lookup(hat, vaddr, l);
3109 			if (ht == NULL)
3110 				continue;
3111 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
3112 				/*
3113 				 * clear page count, set valid_cnt to 0,
3114 				 * let htable_release() finish the job
3115 				 */
3116 				hat->hat_ism_pgcnt -= ht->ht_valid_cnt <<
3117 				    (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3118 				ht->ht_valid_cnt = 0;
3119 				need_demaps = 1;
3120 			}
3121 			htable_release(ht);
3122 		}
3123 	}
3124 
3125 	/*
3126 	 * flush the TLBs - since we're probably dealing with MANY mappings
3127 	 * we do just one CR3 reload.
3128 	 */
3129 	if (!(hat->hat_flags & HAT_FREEING) && need_demaps)
3130 		hat_tlb_inval(hat, DEMAP_ALL_ADDR);
3131 
3132 	/*
3133 	 * Now go back and clean up any unaligned mappings that
3134 	 * couldn't share pagetables.
3135 	 */
3136 	if (!is_it_dism(hat, addr))
3137 		flags |= HAT_UNLOAD_UNLOCK;
3138 	hat_unload(hat, addr, len, flags);
3139 	XPV_ALLOW_MIGRATE();
3140 }
3141 
3142 
3143 /*
3144  * hat_reserve() does nothing
3145  */
3146 /*ARGSUSED*/
3147 void
3148 hat_reserve(struct as *as, caddr_t addr, size_t len)
3149 {
3150 }
3151 
3152 
3153 /*
3154  * Called when all mappings to a page should have write permission removed.
3155  * Mostly stolem from hat_pagesync()
3156  */
3157 static void
3158 hati_page_clrwrt(struct page *pp)
3159 {
3160 	hment_t		*hm = NULL;
3161 	htable_t	*ht;
3162 	uint_t		entry;
3163 	x86pte_t	old;
3164 	x86pte_t	new;
3165 	uint_t		pszc = 0;
3166 
3167 	XPV_DISALLOW_MIGRATE();
3168 next_size:
3169 	/*
3170 	 * walk thru the mapping list clearing write permission
3171 	 */
3172 	x86_hm_enter(pp);
3173 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3174 		if (ht->ht_level < pszc)
3175 			continue;
3176 		old = x86pte_get(ht, entry);
3177 
3178 		for (;;) {
3179 			/*
3180 			 * Is this mapping of interest?
3181 			 */
3182 			if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum ||
3183 			    PTE_GET(old, PT_WRITABLE) == 0)
3184 				break;
3185 
3186 			/*
3187 			 * Clear ref/mod writable bits. This requires cross
3188 			 * calls to ensure any executing TLBs see cleared bits.
3189 			 */
3190 			new = old;
3191 			PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE);
3192 			old = hati_update_pte(ht, entry, old, new);
3193 			if (old != 0)
3194 				continue;
3195 
3196 			break;
3197 		}
3198 	}
3199 	x86_hm_exit(pp);
3200 	while (pszc < pp->p_szc) {
3201 		page_t *tpp;
3202 		pszc++;
3203 		tpp = PP_GROUPLEADER(pp, pszc);
3204 		if (pp != tpp) {
3205 			pp = tpp;
3206 			goto next_size;
3207 		}
3208 	}
3209 	XPV_ALLOW_MIGRATE();
3210 }
3211 
3212 /*
3213  * void hat_page_setattr(pp, flag)
3214  * void hat_page_clrattr(pp, flag)
3215  *	used to set/clr ref/mod bits.
3216  */
3217 void
3218 hat_page_setattr(struct page *pp, uint_t flag)
3219 {
3220 	vnode_t		*vp = pp->p_vnode;
3221 	kmutex_t	*vphm = NULL;
3222 	page_t		**listp;
3223 	int		noshuffle;
3224 
3225 	noshuffle = flag & P_NSH;
3226 	flag &= ~P_NSH;
3227 
3228 	if (PP_GETRM(pp, flag) == flag)
3229 		return;
3230 
3231 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
3232 	    !noshuffle) {
3233 		vphm = page_vnode_mutex(vp);
3234 		mutex_enter(vphm);
3235 	}
3236 
3237 	PP_SETRM(pp, flag);
3238 
3239 	if (vphm != NULL) {
3240 
3241 		/*
3242 		 * Some File Systems examine v_pages for NULL w/o
3243 		 * grabbing the vphm mutex. Must not let it become NULL when
3244 		 * pp is the only page on the list.
3245 		 */
3246 		if (pp->p_vpnext != pp) {
3247 			page_vpsub(&vp->v_pages, pp);
3248 			if (vp->v_pages != NULL)
3249 				listp = &vp->v_pages->p_vpprev->p_vpnext;
3250 			else
3251 				listp = &vp->v_pages;
3252 			page_vpadd(listp, pp);
3253 		}
3254 		mutex_exit(vphm);
3255 	}
3256 }
3257 
3258 void
3259 hat_page_clrattr(struct page *pp, uint_t flag)
3260 {
3261 	vnode_t		*vp = pp->p_vnode;
3262 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
3263 
3264 	/*
3265 	 * Caller is expected to hold page's io lock for VMODSORT to work
3266 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
3267 	 * bit is cleared.
3268 	 * We don't have assert to avoid tripping some existing third party
3269 	 * code. The dirty page is moved back to top of the v_page list
3270 	 * after IO is done in pvn_write_done().
3271 	 */
3272 	PP_CLRRM(pp, flag);
3273 
3274 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
3275 
3276 		/*
3277 		 * VMODSORT works by removing write permissions and getting
3278 		 * a fault when a page is made dirty. At this point
3279 		 * we need to remove write permission from all mappings
3280 		 * to this page.
3281 		 */
3282 		hati_page_clrwrt(pp);
3283 	}
3284 }
3285 
3286 /*
3287  *	If flag is specified, returns 0 if attribute is disabled
3288  *	and non zero if enabled.  If flag specifes multiple attributs
3289  *	then returns 0 if ALL atriibutes are disabled.  This is an advisory
3290  *	call.
3291  */
3292 uint_t
3293 hat_page_getattr(struct page *pp, uint_t flag)
3294 {
3295 	return (PP_GETRM(pp, flag));
3296 }
3297 
3298 
3299 /*
3300  * common code used by hat_pageunload() and hment_steal()
3301  */
3302 hment_t *
3303 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry)
3304 {
3305 	x86pte_t old_pte;
3306 	pfn_t pfn = pp->p_pagenum;
3307 	hment_t *hm;
3308 
3309 	/*
3310 	 * We need to acquire a hold on the htable in order to
3311 	 * do the invalidate. We know the htable must exist, since
3312 	 * unmap's don't release the htable until after removing any
3313 	 * hment. Having x86_hm_enter() keeps that from proceeding.
3314 	 */
3315 	htable_acquire(ht);
3316 
3317 	/*
3318 	 * Invalidate the PTE and remove the hment.
3319 	 */
3320 	old_pte = x86pte_inval(ht, entry, 0, NULL);
3321 	if (PTE2PFN(old_pte, ht->ht_level) != pfn) {
3322 		panic("x86pte_inval() failure found PTE = " FMT_PTE
3323 		    " pfn being unmapped is %lx ht=0x%lx entry=0x%x",
3324 		    old_pte, pfn, (uintptr_t)ht, entry);
3325 	}
3326 
3327 	/*
3328 	 * Clean up all the htable information for this mapping
3329 	 */
3330 	ASSERT(ht->ht_valid_cnt > 0);
3331 	HTABLE_DEC(ht->ht_valid_cnt);
3332 	PGCNT_DEC(ht->ht_hat, ht->ht_level);
3333 
3334 	/*
3335 	 * sync ref/mod bits to the page_t
3336 	 */
3337 	if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC)
3338 		hati_sync_pte_to_page(pp, old_pte, ht->ht_level);
3339 
3340 	/*
3341 	 * Remove the mapping list entry for this page.
3342 	 */
3343 	hm = hment_remove(pp, ht, entry);
3344 
3345 	/*
3346 	 * drop the mapping list lock so that we might free the
3347 	 * hment and htable.
3348 	 */
3349 	x86_hm_exit(pp);
3350 	htable_release(ht);
3351 	return (hm);
3352 }
3353 
3354 extern int	vpm_enable;
3355 /*
3356  * Unload all translations to a page. If the page is a subpage of a large
3357  * page, the large page mappings are also removed.
3358  *
3359  * The forceflags are unused.
3360  */
3361 
3362 /*ARGSUSED*/
3363 static int
3364 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag)
3365 {
3366 	page_t		*cur_pp = pp;
3367 	hment_t		*hm;
3368 	hment_t		*prev;
3369 	htable_t	*ht;
3370 	uint_t		entry;
3371 	level_t		level;
3372 
3373 	XPV_DISALLOW_MIGRATE();
3374 #if defined(__amd64)
3375 	/*
3376 	 * clear the vpm ref.
3377 	 */
3378 	if (vpm_enable) {
3379 		pp->p_vpmref = 0;
3380 	}
3381 #endif
3382 	/*
3383 	 * The loop with next_size handles pages with multiple pagesize mappings
3384 	 */
3385 next_size:
3386 	for (;;) {
3387 
3388 		/*
3389 		 * Get a mapping list entry
3390 		 */
3391 		x86_hm_enter(cur_pp);
3392 		for (prev = NULL; ; prev = hm) {
3393 			hm = hment_walk(cur_pp, &ht, &entry, prev);
3394 			if (hm == NULL) {
3395 				x86_hm_exit(cur_pp);
3396 
3397 				/*
3398 				 * If not part of a larger page, we're done.
3399 				 */
3400 				if (cur_pp->p_szc <= pg_szcd) {
3401 					XPV_ALLOW_MIGRATE();
3402 					return (0);
3403 				}
3404 
3405 				/*
3406 				 * Else check the next larger page size.
3407 				 * hat_page_demote() may decrease p_szc
3408 				 * but that's ok we'll just take an extra
3409 				 * trip discover there're no larger mappings
3410 				 * and return.
3411 				 */
3412 				++pg_szcd;
3413 				cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd);
3414 				goto next_size;
3415 			}
3416 
3417 			/*
3418 			 * If this mapping size matches, remove it.
3419 			 */
3420 			level = ht->ht_level;
3421 			if (level == pg_szcd)
3422 				break;
3423 		}
3424 
3425 		/*
3426 		 * Remove the mapping list entry for this page.
3427 		 * Note this does the x86_hm_exit() for us.
3428 		 */
3429 		hm = hati_page_unmap(cur_pp, ht, entry);
3430 		if (hm != NULL)
3431 			hment_free(hm);
3432 	}
3433 }
3434 
3435 int
3436 hat_pageunload(struct page *pp, uint_t forceflag)
3437 {
3438 	ASSERT(PAGE_EXCL(pp));
3439 	return (hati_pageunload(pp, 0, forceflag));
3440 }
3441 
3442 /*
3443  * Unload all large mappings to pp and reduce by 1 p_szc field of every large
3444  * page level that included pp.
3445  *
3446  * pp must be locked EXCL. Even though no other constituent pages are locked
3447  * it's legal to unload large mappings to pp because all constituent pages of
3448  * large locked mappings have to be locked SHARED.  therefore if we have EXCL
3449  * lock on one of constituent pages none of the large mappings to pp are
3450  * locked.
3451  *
3452  * Change (always decrease) p_szc field starting from the last constituent
3453  * page and ending with root constituent page so that root's pszc always shows
3454  * the area where hat_page_demote() may be active.
3455  *
3456  * This mechanism is only used for file system pages where it's not always
3457  * possible to get EXCL locks on all constituent pages to demote the size code
3458  * (as is done for anonymous or kernel large pages).
3459  */
3460 void
3461 hat_page_demote(page_t *pp)
3462 {
3463 	uint_t		pszc;
3464 	uint_t		rszc;
3465 	uint_t		szc;
3466 	page_t		*rootpp;
3467 	page_t		*firstpp;
3468 	page_t		*lastpp;
3469 	pgcnt_t		pgcnt;
3470 
3471 	ASSERT(PAGE_EXCL(pp));
3472 	ASSERT(!PP_ISFREE(pp));
3473 	ASSERT(page_szc_lock_assert(pp));
3474 
3475 	if (pp->p_szc == 0)
3476 		return;
3477 
3478 	rootpp = PP_GROUPLEADER(pp, 1);
3479 	(void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD);
3480 
3481 	/*
3482 	 * all large mappings to pp are gone
3483 	 * and no new can be setup since pp is locked exclusively.
3484 	 *
3485 	 * Lock the root to make sure there's only one hat_page_demote()
3486 	 * outstanding within the area of this root's pszc.
3487 	 *
3488 	 * Second potential hat_page_demote() is already eliminated by upper
3489 	 * VM layer via page_szc_lock() but we don't rely on it and use our
3490 	 * own locking (so that upper layer locking can be changed without
3491 	 * assumptions that hat depends on upper layer VM to prevent multiple
3492 	 * hat_page_demote() to be issued simultaneously to the same large
3493 	 * page).
3494 	 */
3495 again:
3496 	pszc = pp->p_szc;
3497 	if (pszc == 0)
3498 		return;
3499 	rootpp = PP_GROUPLEADER(pp, pszc);
3500 	x86_hm_enter(rootpp);
3501 	/*
3502 	 * If root's p_szc is different from pszc we raced with another
3503 	 * hat_page_demote().  Drop the lock and try to find the root again.
3504 	 * If root's p_szc is greater than pszc previous hat_page_demote() is
3505 	 * not done yet.  Take and release mlist lock of root's root to wait
3506 	 * for previous hat_page_demote() to complete.
3507 	 */
3508 	if ((rszc = rootpp->p_szc) != pszc) {
3509 		x86_hm_exit(rootpp);
3510 		if (rszc > pszc) {
3511 			/* p_szc of a locked non free page can't increase */
3512 			ASSERT(pp != rootpp);
3513 
3514 			rootpp = PP_GROUPLEADER(rootpp, rszc);
3515 			x86_hm_enter(rootpp);
3516 			x86_hm_exit(rootpp);
3517 		}
3518 		goto again;
3519 	}
3520 	ASSERT(pp->p_szc == pszc);
3521 
3522 	/*
3523 	 * Decrement by 1 p_szc of every constituent page of a region that
3524 	 * covered pp. For example if original szc is 3 it gets changed to 2
3525 	 * everywhere except in region 2 that covered pp. Region 2 that
3526 	 * covered pp gets demoted to 1 everywhere except in region 1 that
3527 	 * covered pp. The region 1 that covered pp is demoted to region
3528 	 * 0. It's done this way because from region 3 we removed level 3
3529 	 * mappings, from region 2 that covered pp we removed level 2 mappings
3530 	 * and from region 1 that covered pp we removed level 1 mappings.  All
3531 	 * changes are done from from high pfn's to low pfn's so that roots
3532 	 * are changed last allowing one to know the largest region where
3533 	 * hat_page_demote() is stil active by only looking at the root page.
3534 	 *
3535 	 * This algorithm is implemented in 2 while loops. First loop changes
3536 	 * p_szc of pages to the right of pp's level 1 region and second
3537 	 * loop changes p_szc of pages of level 1 region that covers pp
3538 	 * and all pages to the left of level 1 region that covers pp.
3539 	 * In the first loop p_szc keeps dropping with every iteration
3540 	 * and in the second loop it keeps increasing with every iteration.
3541 	 *
3542 	 * First loop description: Demote pages to the right of pp outside of
3543 	 * level 1 region that covers pp.  In every iteration of the while
3544 	 * loop below find the last page of szc region and the first page of
3545 	 * (szc - 1) region that is immediately to the right of (szc - 1)
3546 	 * region that covers pp.  From last such page to first such page
3547 	 * change every page's szc to szc - 1. Decrement szc and continue
3548 	 * looping until szc is 1. If pp belongs to the last (szc - 1) region
3549 	 * of szc region skip to the next iteration.
3550 	 */
3551 	szc = pszc;
3552 	while (szc > 1) {
3553 		lastpp = PP_GROUPLEADER(pp, szc);
3554 		pgcnt = page_get_pagecnt(szc);
3555 		lastpp += pgcnt - 1;
3556 		firstpp = PP_GROUPLEADER(pp, (szc - 1));
3557 		pgcnt = page_get_pagecnt(szc - 1);
3558 		if (lastpp - firstpp < pgcnt) {
3559 			szc--;
3560 			continue;
3561 		}
3562 		firstpp += pgcnt;
3563 		while (lastpp != firstpp) {
3564 			ASSERT(lastpp->p_szc == pszc);
3565 			lastpp->p_szc = szc - 1;
3566 			lastpp--;
3567 		}
3568 		firstpp->p_szc = szc - 1;
3569 		szc--;
3570 	}
3571 
3572 	/*
3573 	 * Second loop description:
3574 	 * First iteration changes p_szc to 0 of every
3575 	 * page of level 1 region that covers pp.
3576 	 * Subsequent iterations find last page of szc region
3577 	 * immediately to the left of szc region that covered pp
3578 	 * and first page of (szc + 1) region that covers pp.
3579 	 * From last to first page change p_szc of every page to szc.
3580 	 * Increment szc and continue looping until szc is pszc.
3581 	 * If pp belongs to the fist szc region of (szc + 1) region
3582 	 * skip to the next iteration.
3583 	 *
3584 	 */
3585 	szc = 0;
3586 	while (szc < pszc) {
3587 		firstpp = PP_GROUPLEADER(pp, (szc + 1));
3588 		if (szc == 0) {
3589 			pgcnt = page_get_pagecnt(1);
3590 			lastpp = firstpp + (pgcnt - 1);
3591 		} else {
3592 			lastpp = PP_GROUPLEADER(pp, szc);
3593 			if (firstpp == lastpp) {
3594 				szc++;
3595 				continue;
3596 			}
3597 			lastpp--;
3598 			pgcnt = page_get_pagecnt(szc);
3599 		}
3600 		while (lastpp != firstpp) {
3601 			ASSERT(lastpp->p_szc == pszc);
3602 			lastpp->p_szc = szc;
3603 			lastpp--;
3604 		}
3605 		firstpp->p_szc = szc;
3606 		if (firstpp == rootpp)
3607 			break;
3608 		szc++;
3609 	}
3610 	x86_hm_exit(rootpp);
3611 }
3612 
3613 /*
3614  * get hw stats from hardware into page struct and reset hw stats
3615  * returns attributes of page
3616  * Flags for hat_pagesync, hat_getstat, hat_sync
3617  *
3618  * define	HAT_SYNC_ZERORM		0x01
3619  *
3620  * Additional flags for hat_pagesync
3621  *
3622  * define	HAT_SYNC_STOPON_REF	0x02
3623  * define	HAT_SYNC_STOPON_MOD	0x04
3624  * define	HAT_SYNC_STOPON_RM	0x06
3625  * define	HAT_SYNC_STOPON_SHARED	0x08
3626  */
3627 uint_t
3628 hat_pagesync(struct page *pp, uint_t flags)
3629 {
3630 	hment_t		*hm = NULL;
3631 	htable_t	*ht;
3632 	uint_t		entry;
3633 	x86pte_t	old, save_old;
3634 	x86pte_t	new;
3635 	uchar_t		nrmbits = P_REF|P_MOD|P_RO;
3636 	extern ulong_t	po_share;
3637 	page_t		*save_pp = pp;
3638 	uint_t		pszc = 0;
3639 
3640 	ASSERT(PAGE_LOCKED(pp) || panicstr);
3641 
3642 	if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD))
3643 		return (pp->p_nrm & nrmbits);
3644 
3645 	if ((flags & HAT_SYNC_ZERORM) == 0) {
3646 
3647 		if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp))
3648 			return (pp->p_nrm & nrmbits);
3649 
3650 		if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp))
3651 			return (pp->p_nrm & nrmbits);
3652 
3653 		if ((flags & HAT_SYNC_STOPON_SHARED) != 0 &&
3654 		    hat_page_getshare(pp) > po_share) {
3655 			if (PP_ISRO(pp))
3656 				PP_SETREF(pp);
3657 			return (pp->p_nrm & nrmbits);
3658 		}
3659 	}
3660 
3661 	XPV_DISALLOW_MIGRATE();
3662 next_size:
3663 	/*
3664 	 * walk thru the mapping list syncing (and clearing) ref/mod bits.
3665 	 */
3666 	x86_hm_enter(pp);
3667 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3668 		if (ht->ht_level < pszc)
3669 			continue;
3670 		old = x86pte_get(ht, entry);
3671 try_again:
3672 
3673 		ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum);
3674 
3675 		if (PTE_GET(old, PT_REF | PT_MOD) == 0)
3676 			continue;
3677 
3678 		save_old = old;
3679 		if ((flags & HAT_SYNC_ZERORM) != 0) {
3680 
3681 			/*
3682 			 * Need to clear ref or mod bits. Need to demap
3683 			 * to make sure any executing TLBs see cleared bits.
3684 			 */
3685 			new = old;
3686 			PTE_CLR(new, PT_REF | PT_MOD);
3687 			old = hati_update_pte(ht, entry, old, new);
3688 			if (old != 0)
3689 				goto try_again;
3690 
3691 			old = save_old;
3692 		}
3693 
3694 		/*
3695 		 * Sync the PTE
3696 		 */
3697 		if (!(flags & HAT_SYNC_ZERORM) &&
3698 		    PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC)
3699 			hati_sync_pte_to_page(pp, old, ht->ht_level);
3700 
3701 		/*
3702 		 * can stop short if we found a ref'd or mod'd page
3703 		 */
3704 		if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) ||
3705 		    (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) {
3706 			x86_hm_exit(pp);
3707 			goto done;
3708 		}
3709 	}
3710 	x86_hm_exit(pp);
3711 	while (pszc < pp->p_szc) {
3712 		page_t *tpp;
3713 		pszc++;
3714 		tpp = PP_GROUPLEADER(pp, pszc);
3715 		if (pp != tpp) {
3716 			pp = tpp;
3717 			goto next_size;
3718 		}
3719 	}
3720 done:
3721 	XPV_ALLOW_MIGRATE();
3722 	return (save_pp->p_nrm & nrmbits);
3723 }
3724 
3725 /*
3726  * returns approx number of mappings to this pp.  A return of 0 implies
3727  * there are no mappings to the page.
3728  */
3729 ulong_t
3730 hat_page_getshare(page_t *pp)
3731 {
3732 	uint_t cnt;
3733 	cnt = hment_mapcnt(pp);
3734 #if defined(__amd64)
3735 	if (vpm_enable && pp->p_vpmref) {
3736 		cnt += 1;
3737 	}
3738 #endif
3739 	return (cnt);
3740 }
3741 
3742 /*
3743  * Return 1 the number of mappings exceeds sh_thresh. Return 0
3744  * otherwise.
3745  */
3746 int
3747 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
3748 {
3749 	return (hat_page_getshare(pp) > sh_thresh);
3750 }
3751 
3752 /*
3753  * hat_softlock isn't supported anymore
3754  */
3755 /*ARGSUSED*/
3756 faultcode_t
3757 hat_softlock(
3758 	hat_t *hat,
3759 	caddr_t addr,
3760 	size_t *len,
3761 	struct page **page_array,
3762 	uint_t flags)
3763 {
3764 	return (FC_NOSUPPORT);
3765 }
3766 
3767 
3768 
3769 /*
3770  * Routine to expose supported HAT features to platform independent code.
3771  */
3772 /*ARGSUSED*/
3773 int
3774 hat_supported(enum hat_features feature, void *arg)
3775 {
3776 	switch (feature) {
3777 
3778 	case HAT_SHARED_PT:	/* this is really ISM */
3779 		return (1);
3780 
3781 	case HAT_DYNAMIC_ISM_UNMAP:
3782 		return (0);
3783 
3784 	case HAT_VMODSORT:
3785 		return (1);
3786 
3787 	case HAT_SHARED_REGIONS:
3788 		return (0);
3789 
3790 	default:
3791 		panic("hat_supported() - unknown feature");
3792 	}
3793 	return (0);
3794 }
3795 
3796 /*
3797  * Called when a thread is exiting and has been switched to the kernel AS
3798  */
3799 void
3800 hat_thread_exit(kthread_t *thd)
3801 {
3802 	ASSERT(thd->t_procp->p_as == &kas);
3803 	XPV_DISALLOW_MIGRATE();
3804 	hat_switch(thd->t_procp->p_as->a_hat);
3805 	XPV_ALLOW_MIGRATE();
3806 }
3807 
3808 /*
3809  * Setup the given brand new hat structure as the new HAT on this cpu's mmu.
3810  */
3811 /*ARGSUSED*/
3812 void
3813 hat_setup(hat_t *hat, int flags)
3814 {
3815 	XPV_DISALLOW_MIGRATE();
3816 	kpreempt_disable();
3817 
3818 	hat_switch(hat);
3819 
3820 	kpreempt_enable();
3821 	XPV_ALLOW_MIGRATE();
3822 }
3823 
3824 /*
3825  * Prepare for a CPU private mapping for the given address.
3826  *
3827  * The address can only be used from a single CPU and can be remapped
3828  * using hat_mempte_remap().  Return the address of the PTE.
3829  *
3830  * We do the htable_create() if necessary and increment the valid count so
3831  * the htable can't disappear.  We also hat_devload() the page table into
3832  * kernel so that the PTE is quickly accessed.
3833  */
3834 hat_mempte_t
3835 hat_mempte_setup(caddr_t addr)
3836 {
3837 	uintptr_t	va = (uintptr_t)addr;
3838 	htable_t	*ht;
3839 	uint_t		entry;
3840 	x86pte_t	oldpte;
3841 	hat_mempte_t	p;
3842 
3843 	ASSERT(IS_PAGEALIGNED(va));
3844 	ASSERT(!IN_VA_HOLE(va));
3845 	++curthread->t_hatdepth;
3846 	XPV_DISALLOW_MIGRATE();
3847 	ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0);
3848 	if (ht == NULL) {
3849 		ht = htable_create(kas.a_hat, va, 0, NULL);
3850 		entry = htable_va2entry(va, ht);
3851 		ASSERT(ht->ht_level == 0);
3852 		oldpte = x86pte_get(ht, entry);
3853 	}
3854 	if (PTE_ISVALID(oldpte))
3855 		panic("hat_mempte_setup(): address already mapped"
3856 		    "ht=%p, entry=%d, pte=" FMT_PTE, ht, entry, oldpte);
3857 
3858 	/*
3859 	 * increment ht_valid_cnt so that the pagetable can't disappear
3860 	 */
3861 	HTABLE_INC(ht->ht_valid_cnt);
3862 
3863 	/*
3864 	 * return the PTE physical address to the caller.
3865 	 */
3866 	htable_release(ht);
3867 	XPV_ALLOW_MIGRATE();
3868 	p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry);
3869 	--curthread->t_hatdepth;
3870 	return (p);
3871 }
3872 
3873 /*
3874  * Release a CPU private mapping for the given address.
3875  * We decrement the htable valid count so it might be destroyed.
3876  */
3877 /*ARGSUSED1*/
3878 void
3879 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa)
3880 {
3881 	htable_t	*ht;
3882 
3883 	XPV_DISALLOW_MIGRATE();
3884 	/*
3885 	 * invalidate any left over mapping and decrement the htable valid count
3886 	 */
3887 #ifdef __xpv
3888 	if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0,
3889 	    UVMF_INVLPG | UVMF_LOCAL))
3890 		panic("HYPERVISOR_update_va_mapping() failed");
3891 #else
3892 	{
3893 		x86pte_t *pteptr;
3894 
3895 		pteptr = x86pte_mapin(mmu_btop(pte_pa),
3896 		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3897 		if (mmu.pae_hat)
3898 			*pteptr = 0;
3899 		else
3900 			*(x86pte32_t *)pteptr = 0;
3901 		mmu_tlbflush_entry(addr);
3902 		x86pte_mapout();
3903 	}
3904 #endif
3905 
3906 	ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0);
3907 	if (ht == NULL)
3908 		panic("hat_mempte_release(): invalid address");
3909 	ASSERT(ht->ht_level == 0);
3910 	HTABLE_DEC(ht->ht_valid_cnt);
3911 	htable_release(ht);
3912 	XPV_ALLOW_MIGRATE();
3913 }
3914 
3915 /*
3916  * Apply a temporary CPU private mapping to a page. We flush the TLB only
3917  * on this CPU, so this ought to have been called with preemption disabled.
3918  */
3919 void
3920 hat_mempte_remap(
3921 	pfn_t		pfn,
3922 	caddr_t		addr,
3923 	hat_mempte_t	pte_pa,
3924 	uint_t		attr,
3925 	uint_t		flags)
3926 {
3927 	uintptr_t	va = (uintptr_t)addr;
3928 	x86pte_t	pte;
3929 
3930 	/*
3931 	 * Remap the given PTE to the new page's PFN. Invalidate only
3932 	 * on this CPU.
3933 	 */
3934 #ifdef DEBUG
3935 	htable_t	*ht;
3936 	uint_t		entry;
3937 
3938 	ASSERT(IS_PAGEALIGNED(va));
3939 	ASSERT(!IN_VA_HOLE(va));
3940 	ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0);
3941 	ASSERT(ht != NULL);
3942 	ASSERT(ht->ht_level == 0);
3943 	ASSERT(ht->ht_valid_cnt > 0);
3944 	ASSERT(ht->ht_pfn == mmu_btop(pte_pa));
3945 	htable_release(ht);
3946 #endif
3947 	XPV_DISALLOW_MIGRATE();
3948 	pte = hati_mkpte(pfn, attr, 0, flags);
3949 #ifdef __xpv
3950 	if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL))
3951 		panic("HYPERVISOR_update_va_mapping() failed");
3952 #else
3953 	{
3954 		x86pte_t *pteptr;
3955 
3956 		pteptr = x86pte_mapin(mmu_btop(pte_pa),
3957 		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3958 		if (mmu.pae_hat)
3959 			*(x86pte_t *)pteptr = pte;
3960 		else
3961 			*(x86pte32_t *)pteptr = (x86pte32_t)pte;
3962 		mmu_tlbflush_entry(addr);
3963 		x86pte_mapout();
3964 	}
3965 #endif
3966 	XPV_ALLOW_MIGRATE();
3967 }
3968 
3969 
3970 
3971 /*
3972  * Hat locking functions
3973  * XXX - these two functions are currently being used by hatstats
3974  * 	they can be removed by using a per-as mutex for hatstats.
3975  */
3976 void
3977 hat_enter(hat_t *hat)
3978 {
3979 	mutex_enter(&hat->hat_mutex);
3980 }
3981 
3982 void
3983 hat_exit(hat_t *hat)
3984 {
3985 	mutex_exit(&hat->hat_mutex);
3986 }
3987 
3988 /*
3989  * HAT part of cpu initialization.
3990  */
3991 void
3992 hat_cpu_online(struct cpu *cpup)
3993 {
3994 	if (cpup != CPU) {
3995 		x86pte_cpu_init(cpup);
3996 		hat_vlp_setup(cpup);
3997 	}
3998 	CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id);
3999 }
4000 
4001 /*
4002  * HAT part of cpu deletion.
4003  * (currently, we only call this after the cpu is safely passivated.)
4004  */
4005 void
4006 hat_cpu_offline(struct cpu *cpup)
4007 {
4008 	ASSERT(cpup != CPU);
4009 
4010 	CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id);
4011 	x86pte_cpu_fini(cpup);
4012 	hat_vlp_teardown(cpup);
4013 }
4014 
4015 /*
4016  * Function called after all CPUs are brought online.
4017  * Used to remove low address boot mappings.
4018  */
4019 void
4020 clear_boot_mappings(uintptr_t low, uintptr_t high)
4021 {
4022 	uintptr_t vaddr = low;
4023 	htable_t *ht = NULL;
4024 	level_t level;
4025 	uint_t entry;
4026 	x86pte_t pte;
4027 
4028 	/*
4029 	 * On 1st CPU we can unload the prom mappings, basically we blow away
4030 	 * all virtual mappings under _userlimit.
4031 	 */
4032 	while (vaddr < high) {
4033 		pte = htable_walk(kas.a_hat, &ht, &vaddr, high);
4034 		if (ht == NULL)
4035 			break;
4036 
4037 		level = ht->ht_level;
4038 		entry = htable_va2entry(vaddr, ht);
4039 		ASSERT(level <= mmu.max_page_level);
4040 		ASSERT(PTE_ISPAGE(pte, level));
4041 
4042 		/*
4043 		 * Unload the mapping from the page tables.
4044 		 */
4045 		(void) x86pte_inval(ht, entry, 0, NULL);
4046 		ASSERT(ht->ht_valid_cnt > 0);
4047 		HTABLE_DEC(ht->ht_valid_cnt);
4048 		PGCNT_DEC(ht->ht_hat, ht->ht_level);
4049 
4050 		vaddr += LEVEL_SIZE(ht->ht_level);
4051 	}
4052 	if (ht)
4053 		htable_release(ht);
4054 }
4055 
4056 /*
4057  * Atomically update a new translation for a single page.  If the
4058  * currently installed PTE doesn't match the value we expect to find,
4059  * it's not updated and we return the PTE we found.
4060  *
4061  * If activating nosync or NOWRITE and the page was modified we need to sync
4062  * with the page_t. Also sync with page_t if clearing ref/mod bits.
4063  */
4064 static x86pte_t
4065 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new)
4066 {
4067 	page_t		*pp;
4068 	uint_t		rm = 0;
4069 	x86pte_t	replaced;
4070 
4071 	if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC &&
4072 	    PTE_GET(expected, PT_MOD | PT_REF) &&
4073 	    (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) ||
4074 	    !PTE_GET(new, PT_MOD | PT_REF))) {
4075 
4076 		ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level)));
4077 		pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level));
4078 		ASSERT(pp != NULL);
4079 		if (PTE_GET(expected, PT_MOD))
4080 			rm |= P_MOD;
4081 		if (PTE_GET(expected, PT_REF))
4082 			rm |= P_REF;
4083 		PTE_CLR(new, PT_MOD | PT_REF);
4084 	}
4085 
4086 	replaced = x86pte_update(ht, entry, expected, new);
4087 	if (replaced != expected)
4088 		return (replaced);
4089 
4090 	if (rm) {
4091 		/*
4092 		 * sync to all constituent pages of a large page
4093 		 */
4094 		pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level);
4095 		ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
4096 		while (pgcnt-- > 0) {
4097 			/*
4098 			 * hat_page_demote() can't decrease
4099 			 * pszc below this mapping size
4100 			 * since large mapping existed after we
4101 			 * took mlist lock.
4102 			 */
4103 			ASSERT(pp->p_szc >= ht->ht_level);
4104 			hat_page_setattr(pp, rm);
4105 			++pp;
4106 		}
4107 	}
4108 
4109 	return (0);
4110 }
4111 
4112 /* ARGSUSED */
4113 void
4114 hat_join_srd(struct hat *hat, vnode_t *evp)
4115 {
4116 }
4117 
4118 /* ARGSUSED */
4119 hat_region_cookie_t
4120 hat_join_region(struct hat *hat,
4121     caddr_t r_saddr,
4122     size_t r_size,
4123     void *r_obj,
4124     u_offset_t r_objoff,
4125     uchar_t r_perm,
4126     uchar_t r_pgszc,
4127     hat_rgn_cb_func_t r_cb_function,
4128     uint_t flags)
4129 {
4130 	panic("No shared region support on x86");
4131 	return (HAT_INVALID_REGION_COOKIE);
4132 }
4133 
4134 /* ARGSUSED */
4135 void
4136 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags)
4137 {
4138 	panic("No shared region support on x86");
4139 }
4140 
4141 /* ARGSUSED */
4142 void
4143 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie)
4144 {
4145 	panic("No shared region support on x86");
4146 }
4147 
4148 
4149 /*
4150  * Kernel Physical Mapping (kpm) facility
4151  *
4152  * Most of the routines needed to support segkpm are almost no-ops on the
4153  * x86 platform.  We map in the entire segment when it is created and leave
4154  * it mapped in, so there is no additional work required to set up and tear
4155  * down individual mappings.  All of these routines were created to support
4156  * SPARC platforms that have to avoid aliasing in their virtually indexed
4157  * caches.
4158  *
4159  * Most of the routines have sanity checks in them (e.g. verifying that the
4160  * passed-in page is locked).  We don't actually care about most of these
4161  * checks on x86, but we leave them in place to identify problems in the
4162  * upper levels.
4163  */
4164 
4165 /*
4166  * Map in a locked page and return the vaddr.
4167  */
4168 /*ARGSUSED*/
4169 caddr_t
4170 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
4171 {
4172 	caddr_t		vaddr;
4173 
4174 #ifdef DEBUG
4175 	if (kpm_enable == 0) {
4176 		cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n");
4177 		return ((caddr_t)NULL);
4178 	}
4179 
4180 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4181 		cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n");
4182 		return ((caddr_t)NULL);
4183 	}
4184 #endif
4185 
4186 	vaddr = hat_kpm_page2va(pp, 1);
4187 
4188 	return (vaddr);
4189 }
4190 
4191 /*
4192  * Mapout a locked page.
4193  */
4194 /*ARGSUSED*/
4195 void
4196 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
4197 {
4198 #ifdef DEBUG
4199 	if (kpm_enable == 0) {
4200 		cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n");
4201 		return;
4202 	}
4203 
4204 	if (IS_KPM_ADDR(vaddr) == 0) {
4205 		cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n");
4206 		return;
4207 	}
4208 
4209 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4210 		cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n");
4211 		return;
4212 	}
4213 #endif
4214 }
4215 
4216 /*
4217  * Return the kpm virtual address for a specific pfn
4218  */
4219 caddr_t
4220 hat_kpm_pfn2va(pfn_t pfn)
4221 {
4222 	uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn);
4223 
4224 	ASSERT(!pfn_is_foreign(pfn));
4225 	return ((caddr_t)vaddr);
4226 }
4227 
4228 /*
4229  * Return the kpm virtual address for the page at pp.
4230  */
4231 /*ARGSUSED*/
4232 caddr_t
4233 hat_kpm_page2va(struct page *pp, int checkswap)
4234 {
4235 	return (hat_kpm_pfn2va(pp->p_pagenum));
4236 }
4237 
4238 /*
4239  * Return the page frame number for the kpm virtual address vaddr.
4240  */
4241 pfn_t
4242 hat_kpm_va2pfn(caddr_t vaddr)
4243 {
4244 	pfn_t		pfn;
4245 
4246 	ASSERT(IS_KPM_ADDR(vaddr));
4247 
4248 	pfn = (pfn_t)btop(vaddr - kpm_vbase);
4249 
4250 	return (pfn);
4251 }
4252 
4253 
4254 /*
4255  * Return the page for the kpm virtual address vaddr.
4256  */
4257 page_t *
4258 hat_kpm_vaddr2page(caddr_t vaddr)
4259 {
4260 	pfn_t		pfn;
4261 
4262 	ASSERT(IS_KPM_ADDR(vaddr));
4263 
4264 	pfn = hat_kpm_va2pfn(vaddr);
4265 
4266 	return (page_numtopp_nolock(pfn));
4267 }
4268 
4269 /*
4270  * hat_kpm_fault is called from segkpm_fault when we take a page fault on a
4271  * KPM page.  This should never happen on x86
4272  */
4273 int
4274 hat_kpm_fault(hat_t *hat, caddr_t vaddr)
4275 {
4276 	panic("pagefault in seg_kpm.  hat: 0x%p  vaddr: 0x%p", hat, vaddr);
4277 
4278 	return (0);
4279 }
4280 
4281 /*ARGSUSED*/
4282 void
4283 hat_kpm_mseghash_clear(int nentries)
4284 {}
4285 
4286 /*ARGSUSED*/
4287 void
4288 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
4289 {}
4290 
4291 #ifdef __xpv
4292 /*
4293  * There are specific Hypervisor calls to establish and remove mappings
4294  * to grant table references and the privcmd driver. We have to ensure
4295  * that a page table actually exists.
4296  */
4297 void
4298 hat_prepare_mapping(hat_t *hat, caddr_t addr)
4299 {
4300 	ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4301 	XPV_DISALLOW_MIGRATE();
4302 	(void) htable_create(hat, (uintptr_t)addr, 0, NULL);
4303 	XPV_ALLOW_MIGRATE();
4304 }
4305 
4306 void
4307 hat_release_mapping(hat_t *hat, caddr_t addr)
4308 {
4309 	htable_t *ht;
4310 
4311 	ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4312 	XPV_DISALLOW_MIGRATE();
4313 	ht = htable_lookup(hat, (uintptr_t)addr, 0);
4314 	ASSERT(ht != NULL);
4315 	ASSERT(ht->ht_busy >= 2);
4316 	htable_release(ht);
4317 	htable_release(ht);
4318 	XPV_ALLOW_MIGRATE();
4319 									}
4320 #endif
4321