1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/systm.h> 32 #include <sys/user.h> 33 #include <sys/mman.h> 34 #include <sys/vm.h> 35 #include <sys/conf.h> 36 #include <sys/avintr.h> 37 #include <sys/autoconf.h> 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 #include <sys/bitmap.h> 41 42 #include <sys/privregs.h> 43 44 #include <sys/proc.h> 45 #include <sys/buf.h> 46 #include <sys/kmem.h> 47 #include <sys/mem.h> 48 #include <sys/kstat.h> 49 50 #include <sys/reboot.h> 51 52 #include <sys/cred.h> 53 #include <sys/vnode.h> 54 #include <sys/file.h> 55 56 #include <sys/procfs.h> 57 58 #include <sys/vfs.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 #include <sys/kdi.h> 63 64 #include <sys/dumphdr.h> 65 #include <sys/bootconf.h> 66 #include <sys/varargs.h> 67 #include <sys/promif.h> 68 #include <sys/modctl.h> 69 70 #include <sys/sunddi.h> 71 #include <sys/sunndi.h> 72 #include <sys/ndi_impldefs.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/clock.h> 77 #include <sys/pte.h> 78 #include <sys/tss.h> 79 #include <sys/stack.h> 80 #include <sys/trap.h> 81 #include <sys/fp.h> 82 #include <vm/kboot_mmu.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/cpuvar.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/x86_archext.h> 112 #include <sys/cpu_module.h> 113 #include <sys/smbios.h> 114 #include <sys/debug_info.h> 115 #include <sys/bootinfo.h> 116 #include <sys/ddi_timer.h> 117 #include <sys/multiboot.h> 118 119 #ifdef __xpv 120 121 #include <sys/hypervisor.h> 122 #include <sys/xen_mmu.h> 123 #include <sys/evtchn_impl.h> 124 #include <sys/gnttab.h> 125 #include <sys/xpv_panic.h> 126 #include <xen/sys/xenbus_comms.h> 127 #include <xen/public/physdev.h> 128 129 extern void xen_late_startup(void); 130 131 struct xen_evt_data cpu0_evt_data; 132 133 #endif /* __xpv */ 134 135 extern void progressbar_init(void); 136 extern void progressbar_start(void); 137 extern void brand_init(void); 138 extern void pcf_init(void); 139 140 extern int size_pse_array(pgcnt_t, int); 141 142 #if defined(_SOFT_HOSTID) 143 144 #include <sys/rtc.h> 145 146 static int32_t set_soft_hostid(void); 147 extern char hw_serial[]; 148 static char hostid_file[] = "/etc/hostid"; 149 150 #endif 151 152 void *gfx_devinfo_list; 153 int startup_amd_iommu_disable; 154 char *startup_amd_iommu_disable_list; 155 156 /* 157 * XXX make declaration below "static" when drivers no longer use this 158 * interface. 159 */ 160 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 161 162 /* 163 * segkp 164 */ 165 extern int segkp_fromheap; 166 167 static void kvm_init(void); 168 static void startup_init(void); 169 static void startup_memlist(void); 170 static void startup_kmem(void); 171 static void startup_modules(void); 172 static void startup_vm(void); 173 static void startup_end(void); 174 static void layout_kernel_va(void); 175 176 /* 177 * Declare these as initialized data so we can patch them. 178 */ 179 #ifdef __i386 180 181 /* 182 * Due to virtual address space limitations running in 32 bit mode, restrict 183 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 184 * 185 * If the physical max memory size of 64g were allowed to be configured, the 186 * size of user virtual address space will be less than 1g. A limited user 187 * address space greatly reduces the range of applications that can run. 188 * 189 * If more physical memory than PHYSMEM is required, users should preferably 190 * run in 64 bit mode which has far looser virtual address space limitations. 191 * 192 * If 64 bit mode is not available (as in IA32) and/or more physical memory 193 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 194 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 195 * should also be carefully tuned to balance out the need of the user 196 * application while minimizing the risk of kernel heap exhaustion due to 197 * kernelbase being set too high. 198 */ 199 #define PHYSMEM 0x400000 200 201 #else /* __amd64 */ 202 203 /* 204 * For now we can handle memory with physical addresses up to about 205 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 206 * half the VA space for seg_kpm. When systems get bigger than 64TB this 207 * code will need revisiting. There is an implicit assumption that there 208 * are no *huge* holes in the physical address space too. 209 */ 210 #define TERABYTE (1ul << 40) 211 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 212 #define PHYSMEM PHYSMEM_MAX64 213 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 214 215 #endif /* __amd64 */ 216 217 pgcnt_t physmem = PHYSMEM; 218 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 219 220 char *kobj_file_buf; 221 int kobj_file_bufsize; /* set in /etc/system */ 222 223 /* Global variables for MP support. Used in mp_startup */ 224 caddr_t rm_platter_va = 0; 225 uint32_t rm_platter_pa; 226 227 int auto_lpg_disable = 1; 228 229 /* 230 * Some CPUs have holes in the middle of the 64-bit virtual address range. 231 */ 232 uintptr_t hole_start, hole_end; 233 234 /* 235 * kpm mapping window 236 */ 237 caddr_t kpm_vbase; 238 size_t kpm_size; 239 static int kpm_desired; 240 #ifdef __amd64 241 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 242 #endif 243 244 /* 245 * Configuration parameters set at boot time. 246 */ 247 248 caddr_t econtig; /* end of first block of contiguous kernel */ 249 250 struct bootops *bootops = 0; /* passed in from boot */ 251 struct bootops **bootopsp; 252 struct boot_syscalls *sysp; /* passed in from boot */ 253 254 char bootblock_fstype[16]; 255 256 char kern_bootargs[OBP_MAXPATHLEN]; 257 char kern_bootfile[OBP_MAXPATHLEN]; 258 259 /* 260 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 261 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 262 * zio buffers from their own segment, otherwise they are allocated from the 263 * heap. The optimization of allocating zio buffers from their own segment is 264 * only valid on 64-bit kernels. 265 */ 266 #if defined(__amd64) 267 int segzio_fromheap = 0; 268 #else 269 int segzio_fromheap = 1; 270 #endif 271 272 /* 273 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 274 * depends on number of BOP_ALLOC calls made and requested size, memory size 275 * combination and whether boot.bin memory needs to be freed. 276 */ 277 #define POSS_NEW_FRAGMENTS 12 278 279 /* 280 * VM data structures 281 */ 282 long page_hashsz; /* Size of page hash table (power of two) */ 283 struct page *pp_base; /* Base of initial system page struct array */ 284 struct page **page_hash; /* Page hash table */ 285 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 286 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 287 int pse_shift; /* log2(pse_table_size) */ 288 struct seg ktextseg; /* Segment used for kernel executable image */ 289 struct seg kvalloc; /* Segment used for "valloc" mapping */ 290 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 291 struct seg kmapseg; /* Segment used for generic kernel mappings */ 292 struct seg kdebugseg; /* Segment used for the kernel debugger */ 293 294 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 295 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 296 297 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 298 299 #if defined(__amd64) 300 struct seg kvseg_core; /* Segment used for the core heap */ 301 struct seg kpmseg; /* Segment used for physical mapping */ 302 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 303 #else 304 struct seg *segkpm = NULL; /* Unused on IA32 */ 305 #endif 306 307 caddr_t segkp_base; /* Base address of segkp */ 308 caddr_t segzio_base; /* Base address of segzio */ 309 #if defined(__amd64) 310 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 311 #else 312 pgcnt_t segkpsize = 0; 313 #endif 314 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 315 316 /* 317 * VA range available to the debugger 318 */ 319 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 320 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 321 322 struct memseg *memseg_base; 323 struct vnode unused_pages_vp; 324 325 #define FOURGB 0x100000000LL 326 327 struct memlist *memlist; 328 329 caddr_t s_text; /* start of kernel text segment */ 330 caddr_t e_text; /* end of kernel text segment */ 331 caddr_t s_data; /* start of kernel data segment */ 332 caddr_t e_data; /* end of kernel data segment */ 333 caddr_t modtext; /* start of loadable module text reserved */ 334 caddr_t e_modtext; /* end of loadable module text reserved */ 335 caddr_t moddata; /* start of loadable module data reserved */ 336 caddr_t e_moddata; /* end of loadable module data reserved */ 337 338 struct memlist *phys_install; /* Total installed physical memory */ 339 struct memlist *phys_avail; /* Total available physical memory */ 340 341 /* 342 * kphysm_init returns the number of pages that were processed 343 */ 344 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 345 346 #define IO_PROP_SIZE 64 /* device property size */ 347 348 /* 349 * a couple useful roundup macros 350 */ 351 #define ROUND_UP_PAGE(x) \ 352 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 353 #define ROUND_UP_LPAGE(x) \ 354 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 355 #define ROUND_UP_4MEG(x) \ 356 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 357 #define ROUND_UP_TOPLEVEL(x) \ 358 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 359 360 /* 361 * 32-bit Kernel's Virtual memory layout. 362 * +-----------------------+ 363 * | | 364 * 0xFFC00000 -|-----------------------|- ARGSBASE 365 * | debugger | 366 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 367 * | Kernel Data | 368 * 0xFEC00000 -|-----------------------| 369 * | Kernel Text | 370 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 371 * |--- GDT ---|- GDT page (GDT_VA) 372 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 373 * | | 374 * | page_t structures | 375 * | memsegs, memlists, | 376 * | page hash, etc. | 377 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 378 * | | (segkp is just an arena in the heap) 379 * | | 380 * | kvseg | 381 * | | 382 * | | 383 * --- -|-----------------------|- kernelheap (floating) 384 * | Segkmap | 385 * 0xC3002000 -|-----------------------|- segmap_start (floating) 386 * | Red Zone | 387 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 388 * | | || 389 * | Shared objects | \/ 390 * | | 391 * : : 392 * | user data | 393 * |-----------------------| 394 * | user text | 395 * 0x08048000 -|-----------------------| 396 * | user stack | 397 * : : 398 * | invalid | 399 * 0x00000000 +-----------------------+ 400 * 401 * 402 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 403 * +-----------------------+ 404 * | | 405 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 406 * | debugger (?) | 407 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 408 * | unused | 409 * +-----------------------+ 410 * | Kernel Data | 411 * 0xFFFFFFFF.FBC00000 |-----------------------| 412 * | Kernel Text | 413 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 414 * |--- GDT ---|- GDT page (GDT_VA) 415 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 416 * | | 417 * | Core heap | (used for loadable modules) 418 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 419 * | Kernel | 420 * | heap | 421 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 422 * | segmap | 423 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 424 * | device mappings | 425 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 426 * | segzio | 427 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 428 * | segkp | 429 * --- |-----------------------|- segkp_base (floating) 430 * | page_t structures | valloc_base + valloc_sz 431 * | memsegs, memlists, | 432 * | page hash, etc. | 433 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 434 * | segkpm | 435 * 0xFFFFFE00.00000000 |-----------------------| 436 * | Red Zone | 437 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 438 * | User stack |- User space memory 439 * | | 440 * | shared objects, etc | (grows downwards) 441 * : : 442 * | | 443 * 0xFFFF8000.00000000 |-----------------------| 444 * | | 445 * | VA Hole / unused | 446 * | | 447 * 0x00008000.00000000 |-----------------------| 448 * | | 449 * | | 450 * : : 451 * | user heap | (grows upwards) 452 * | | 453 * | user data | 454 * |-----------------------| 455 * | user text | 456 * 0x00000000.04000000 |-----------------------| 457 * | invalid | 458 * 0x00000000.00000000 +-----------------------+ 459 * 460 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 461 * kernel, except that userlimit is raised to 0xfe000000 462 * 463 * Floating values: 464 * 465 * valloc_base: start of the kernel's memory management/tracking data 466 * structures. This region contains page_t structures for 467 * physical memory, memsegs, memlists, and the page hash. 468 * 469 * core_base: start of the kernel's "core" heap area on 64-bit systems. 470 * This area is intended to be used for global data as well as for module 471 * text/data that does not fit into the nucleus pages. The core heap is 472 * restricted to a 2GB range, allowing every address within it to be 473 * accessed using rip-relative addressing 474 * 475 * ekernelheap: end of kernelheap and start of segmap. 476 * 477 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 478 * above a red zone that separates the user's address space from the 479 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 480 * 481 * segmap_start: start of segmap. The length of segmap can be modified 482 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 483 * on 64-bit systems. 484 * 485 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 486 * decreased by 2X the size required for page_t. This allows the kernel 487 * heap to grow in size with physical memory. With sizeof(page_t) == 80 488 * bytes, the following shows the values of kernelbase and kernel heap 489 * sizes for different memory configurations (assuming default segmap and 490 * segkp sizes). 491 * 492 * mem size for kernelbase kernel heap 493 * size page_t's size 494 * ---- --------- ---------- ----------- 495 * 1gb 0x01400000 0xd1800000 684MB 496 * 2gb 0x02800000 0xcf000000 704MB 497 * 4gb 0x05000000 0xca000000 744MB 498 * 6gb 0x07800000 0xc5000000 784MB 499 * 8gb 0x0a000000 0xc0000000 824MB 500 * 16gb 0x14000000 0xac000000 984MB 501 * 32gb 0x28000000 0x84000000 1304MB 502 * 64gb 0x50000000 0x34000000 1944MB (*) 503 * 504 * kernelbase is less than the abi minimum of 0xc0000000 for memory 505 * configurations above 8gb. 506 * 507 * (*) support for memory configurations above 32gb will require manual tuning 508 * of kernelbase to balance out the need of user applications. 509 */ 510 511 /* real-time-clock initialization parameters */ 512 extern time_t process_rtc_config_file(void); 513 514 uintptr_t kernelbase; 515 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 516 uintptr_t eprom_kernelbase; 517 size_t segmapsize; 518 uintptr_t segmap_start; 519 int segmapfreelists; 520 pgcnt_t npages; 521 pgcnt_t orig_npages; 522 size_t core_size; /* size of "core" heap */ 523 uintptr_t core_base; /* base address of "core" heap */ 524 525 /* 526 * List of bootstrap pages. We mark these as allocated in startup. 527 * release_bootstrap() will free them when we're completely done with 528 * the bootstrap. 529 */ 530 static page_t *bootpages; 531 532 /* 533 * boot time pages that have a vnode from the ramdisk will keep that forever. 534 */ 535 static page_t *rd_pages; 536 537 /* 538 * Lower 64K 539 */ 540 static page_t *lower_pages = NULL; 541 static int lower_pages_count = 0; 542 543 struct system_hardware system_hardware; 544 545 /* 546 * Is this Solaris instance running in a fully virtualized xVM domain? 547 */ 548 int xpv_is_hvm = 0; 549 550 /* 551 * Enable some debugging messages concerning memory usage... 552 */ 553 static void 554 print_memlist(char *title, struct memlist *mp) 555 { 556 prom_printf("MEMLIST: %s:\n", title); 557 while (mp != NULL) { 558 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 559 mp->address, mp->size); 560 mp = mp->next; 561 } 562 } 563 564 /* 565 * XX64 need a comment here.. are these just default values, surely 566 * we read the "cpuid" type information to figure this out. 567 */ 568 int l2cache_sz = 0x80000; 569 int l2cache_linesz = 0x40; 570 int l2cache_assoc = 1; 571 572 static size_t textrepl_min_gb = 10; 573 574 /* 575 * on 64 bit we use a predifined VA range for mapping devices in the kernel 576 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 577 */ 578 #ifdef __amd64 579 580 vmem_t *device_arena; 581 uintptr_t toxic_addr = (uintptr_t)NULL; 582 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 583 584 #else /* __i386 */ 585 586 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 587 size_t toxic_bit_map_len = 0; /* in bits */ 588 589 #endif /* __i386 */ 590 591 /* 592 * Simple boot time debug facilities 593 */ 594 static char *prm_dbg_str[] = { 595 "%s:%d: '%s' is 0x%x\n", 596 "%s:%d: '%s' is 0x%llx\n" 597 }; 598 599 int prom_debug; 600 601 #define PRM_DEBUG(q) if (prom_debug) \ 602 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 603 #define PRM_POINT(q) if (prom_debug) \ 604 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 605 606 /* 607 * This structure is used to keep track of the intial allocations 608 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 609 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 610 */ 611 #define NUM_ALLOCATIONS 7 612 int num_allocations = 0; 613 struct { 614 void **al_ptr; 615 size_t al_size; 616 } allocations[NUM_ALLOCATIONS]; 617 size_t valloc_sz = 0; 618 uintptr_t valloc_base; 619 620 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 621 size = ROUND_UP_PAGE(size); \ 622 if (num_allocations == NUM_ALLOCATIONS) \ 623 panic("too many ADD_TO_ALLOCATIONS()"); \ 624 allocations[num_allocations].al_ptr = (void**)&ptr; \ 625 allocations[num_allocations].al_size = size; \ 626 valloc_sz += size; \ 627 ++num_allocations; \ 628 } 629 630 /* 631 * Allocate all the initial memory needed by the page allocator. 632 */ 633 static void 634 perform_allocations(void) 635 { 636 caddr_t mem; 637 int i; 638 int valloc_align; 639 640 PRM_DEBUG(valloc_base); 641 PRM_DEBUG(valloc_sz); 642 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 643 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 644 if (mem != (caddr_t)valloc_base) 645 panic("BOP_ALLOC() failed"); 646 bzero(mem, valloc_sz); 647 for (i = 0; i < num_allocations; ++i) { 648 *allocations[i].al_ptr = (void *)mem; 649 mem += allocations[i].al_size; 650 } 651 } 652 653 /* 654 * Our world looks like this at startup time. 655 * 656 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 657 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 658 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 659 * addresses are fixed in the binary at link time. 660 * 661 * On the text page: 662 * unix/genunix/krtld/module text loads. 663 * 664 * On the data page: 665 * unix/genunix/krtld/module data loads. 666 * 667 * Machine-dependent startup code 668 */ 669 void 670 startup(void) 671 { 672 #if !defined(__xpv) 673 extern void startup_bios_disk(void); 674 extern void startup_pci_bios(void); 675 extern int post_fastreboot; 676 #endif 677 extern cpuset_t cpu_ready_set; 678 679 /* 680 * Make sure that nobody tries to use sekpm until we have 681 * initialized it properly. 682 */ 683 #if defined(__amd64) 684 kpm_desired = 1; 685 #endif 686 kpm_enable = 0; 687 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 688 689 #if defined(__xpv) /* XXPV fix me! */ 690 { 691 extern int segvn_use_regions; 692 segvn_use_regions = 0; 693 } 694 #endif 695 progressbar_init(); 696 startup_init(); 697 #if defined(__xpv) 698 startup_xen_version(); 699 #endif 700 startup_memlist(); 701 startup_kmem(); 702 startup_vm(); 703 #if !defined(__xpv) 704 if (!post_fastreboot) 705 startup_pci_bios(); 706 #endif 707 #if defined(__xpv) 708 startup_xen_mca(); 709 #endif 710 startup_modules(); 711 #if !defined(__xpv) 712 if (!post_fastreboot) 713 startup_bios_disk(); 714 #endif 715 startup_end(); 716 progressbar_start(); 717 } 718 719 static void 720 startup_init() 721 { 722 PRM_POINT("startup_init() starting..."); 723 724 /* 725 * Complete the extraction of cpuid data 726 */ 727 cpuid_pass2(CPU); 728 729 (void) check_boot_version(BOP_GETVERSION(bootops)); 730 731 /* 732 * Check for prom_debug in boot environment 733 */ 734 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 735 ++prom_debug; 736 PRM_POINT("prom_debug found in boot enviroment"); 737 } 738 739 /* 740 * Collect node, cpu and memory configuration information. 741 */ 742 get_system_configuration(); 743 744 /* 745 * Halt if this is an unsupported processor. 746 */ 747 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 748 printf("\n486 processor (\"%s\") detected.\n", 749 CPU->cpu_brandstr); 750 halt("This processor is not supported by this release " 751 "of Solaris."); 752 } 753 754 PRM_POINT("startup_init() done"); 755 } 756 757 /* 758 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 759 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 760 * also filters out physical page zero. There is some reliance on the 761 * boot loader allocating only a few contiguous physical memory chunks. 762 */ 763 static void 764 avail_filter(uint64_t *addr, uint64_t *size) 765 { 766 uintptr_t va; 767 uintptr_t next_va; 768 pfn_t pfn; 769 uint64_t pfn_addr; 770 uint64_t pfn_eaddr; 771 uint_t prot; 772 size_t len; 773 uint_t change; 774 775 if (prom_debug) 776 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 777 *addr, *size); 778 779 /* 780 * page zero is required for BIOS.. never make it available 781 */ 782 if (*addr == 0) { 783 *addr += MMU_PAGESIZE; 784 *size -= MMU_PAGESIZE; 785 } 786 787 /* 788 * First we trim from the front of the range. Since kbm_probe() 789 * walks ranges in virtual order, but addr/size are physical, we need 790 * to the list until no changes are seen. This deals with the case 791 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 792 * but w < v. 793 */ 794 do { 795 change = 0; 796 for (va = KERNEL_TEXT; 797 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 798 va = next_va) { 799 800 next_va = va + len; 801 pfn_addr = pfn_to_pa(pfn); 802 pfn_eaddr = pfn_addr + len; 803 804 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 805 change = 1; 806 while (*size > 0 && len > 0) { 807 *addr += MMU_PAGESIZE; 808 *size -= MMU_PAGESIZE; 809 len -= MMU_PAGESIZE; 810 } 811 } 812 } 813 if (change && prom_debug) 814 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 815 *addr, *size); 816 } while (change); 817 818 /* 819 * Trim pages from the end of the range. 820 */ 821 for (va = KERNEL_TEXT; 822 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 823 va = next_va) { 824 825 next_va = va + len; 826 pfn_addr = pfn_to_pa(pfn); 827 828 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 829 *size = pfn_addr - *addr; 830 } 831 832 if (prom_debug) 833 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 834 *addr, *size); 835 } 836 837 static void 838 kpm_init() 839 { 840 struct segkpm_crargs b; 841 842 /* 843 * These variables were all designed for sfmmu in which segkpm is 844 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 845 * might use 2+ page sizes on a single machine, so none of these 846 * variables have a single correct value. They are set up as if we 847 * always use a 4KB pagesize, which should do no harm. In the long 848 * run, we should get rid of KPM's assumption that only a single 849 * pagesize is used. 850 */ 851 kpm_pgshft = MMU_PAGESHIFT; 852 kpm_pgsz = MMU_PAGESIZE; 853 kpm_pgoff = MMU_PAGEOFFSET; 854 kpmp2pshft = 0; 855 kpmpnpgs = 1; 856 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 857 858 PRM_POINT("about to create segkpm"); 859 rw_enter(&kas.a_lock, RW_WRITER); 860 861 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 862 panic("cannot attach segkpm"); 863 864 b.prot = PROT_READ | PROT_WRITE; 865 b.nvcolors = 1; 866 867 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 868 panic("segkpm_create segkpm"); 869 870 rw_exit(&kas.a_lock); 871 } 872 873 /* 874 * The debug info page provides enough information to allow external 875 * inspectors (e.g. when running under a hypervisor) to bootstrap 876 * themselves into allowing full-blown kernel debugging. 877 */ 878 static void 879 init_debug_info(void) 880 { 881 caddr_t mem; 882 debug_info_t *di; 883 884 #ifndef __lint 885 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 886 #endif 887 888 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 889 MMU_PAGESIZE); 890 891 if (mem != (caddr_t)DEBUG_INFO_VA) 892 panic("BOP_ALLOC() failed"); 893 bzero(mem, MMU_PAGESIZE); 894 895 di = (debug_info_t *)mem; 896 897 di->di_magic = DEBUG_INFO_MAGIC; 898 di->di_version = DEBUG_INFO_VERSION; 899 di->di_modules = (uintptr_t)&modules; 900 di->di_s_text = (uintptr_t)s_text; 901 di->di_e_text = (uintptr_t)e_text; 902 di->di_s_data = (uintptr_t)s_data; 903 di->di_e_data = (uintptr_t)e_data; 904 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 905 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 906 } 907 908 /* 909 * Build the memlists and other kernel essential memory system data structures. 910 * This is everything at valloc_base. 911 */ 912 static void 913 startup_memlist(void) 914 { 915 size_t memlist_sz; 916 size_t memseg_sz; 917 size_t pagehash_sz; 918 size_t pp_sz; 919 uintptr_t va; 920 size_t len; 921 uint_t prot; 922 pfn_t pfn; 923 int memblocks; 924 caddr_t pagecolor_mem; 925 size_t pagecolor_memsz; 926 caddr_t page_ctrs_mem; 927 size_t page_ctrs_size; 928 size_t pse_table_alloc_size; 929 struct memlist *current; 930 extern void startup_build_mem_nodes(struct memlist *); 931 932 /* XX64 fix these - they should be in include files */ 933 extern size_t page_coloring_init(uint_t, int, int); 934 extern void page_coloring_setup(caddr_t); 935 936 PRM_POINT("startup_memlist() starting..."); 937 938 /* 939 * Use leftover large page nucleus text/data space for loadable modules. 940 * Use at most MODTEXT/MODDATA. 941 */ 942 len = kbm_nucleus_size; 943 ASSERT(len > MMU_PAGESIZE); 944 945 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 946 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 947 if (e_moddata - moddata > MODDATA) 948 e_moddata = moddata + MODDATA; 949 950 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 951 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 952 if (e_modtext - modtext > MODTEXT) 953 e_modtext = modtext + MODTEXT; 954 955 econtig = e_moddata; 956 957 PRM_DEBUG(modtext); 958 PRM_DEBUG(e_modtext); 959 PRM_DEBUG(moddata); 960 PRM_DEBUG(e_moddata); 961 PRM_DEBUG(econtig); 962 963 /* 964 * Examine the boot loader physical memory map to find out: 965 * - total memory in system - physinstalled 966 * - the max physical address - physmax 967 * - the number of discontiguous segments of memory. 968 */ 969 if (prom_debug) 970 print_memlist("boot physinstalled", 971 bootops->boot_mem->physinstalled); 972 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 973 &physinstalled, &memblocks); 974 PRM_DEBUG(physmax); 975 PRM_DEBUG(physinstalled); 976 PRM_DEBUG(memblocks); 977 978 /* 979 * Initialize hat's mmu parameters. 980 * Check for enforce-prot-exec in boot environment. It's used to 981 * enable/disable support for the page table entry NX bit. 982 * The default is to enforce PROT_EXEC on processors that support NX. 983 * Boot seems to round up the "len", but 8 seems to be big enough. 984 */ 985 mmu_init(); 986 987 #ifdef __i386 988 /* 989 * physmax is lowered if there is more memory than can be 990 * physically addressed in 32 bit (PAE/non-PAE) modes. 991 */ 992 if (mmu.pae_hat) { 993 if (PFN_ABOVE64G(physmax)) { 994 physinstalled -= (physmax - (PFN_64G - 1)); 995 physmax = PFN_64G - 1; 996 } 997 } else { 998 if (PFN_ABOVE4G(physmax)) { 999 physinstalled -= (physmax - (PFN_4G - 1)); 1000 physmax = PFN_4G - 1; 1001 } 1002 } 1003 #endif 1004 1005 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1006 1007 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1008 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1009 char value[8]; 1010 1011 if (len < 8) 1012 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1013 else 1014 (void) strcpy(value, ""); 1015 if (strcmp(value, "off") == 0) 1016 mmu.pt_nx = 0; 1017 } 1018 PRM_DEBUG(mmu.pt_nx); 1019 1020 /* 1021 * We will need page_t's for every page in the system, except for 1022 * memory mapped at or above above the start of the kernel text segment. 1023 * 1024 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1025 */ 1026 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1027 obp_pages = 0; 1028 va = KERNEL_TEXT; 1029 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1030 npages -= len >> MMU_PAGESHIFT; 1031 if (va >= (uintptr_t)e_moddata) 1032 obp_pages += len >> MMU_PAGESHIFT; 1033 va += len; 1034 } 1035 PRM_DEBUG(npages); 1036 PRM_DEBUG(obp_pages); 1037 1038 /* 1039 * If physmem is patched to be non-zero, use it instead of the computed 1040 * value unless it is larger than the actual amount of memory on hand. 1041 */ 1042 if (physmem == 0 || physmem > npages) { 1043 physmem = npages; 1044 } else if (physmem < npages) { 1045 orig_npages = npages; 1046 npages = physmem; 1047 } 1048 PRM_DEBUG(physmem); 1049 1050 /* 1051 * We now compute the sizes of all the initial allocations for 1052 * structures the kernel needs in order do kmem_alloc(). These 1053 * include: 1054 * memsegs 1055 * memlists 1056 * page hash table 1057 * page_t's 1058 * page coloring data structs 1059 */ 1060 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1061 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1062 PRM_DEBUG(memseg_sz); 1063 1064 /* 1065 * Reserve space for memlists. There's no real good way to know exactly 1066 * how much room we'll need, but this should be a good upper bound. 1067 */ 1068 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1069 (memblocks + POSS_NEW_FRAGMENTS)); 1070 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1071 PRM_DEBUG(memlist_sz); 1072 1073 /* 1074 * The page structure hash table size is a power of 2 1075 * such that the average hash chain length is PAGE_HASHAVELEN. 1076 */ 1077 page_hashsz = npages / PAGE_HASHAVELEN; 1078 page_hashsz = 1 << highbit(page_hashsz); 1079 pagehash_sz = sizeof (struct page *) * page_hashsz; 1080 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1081 PRM_DEBUG(pagehash_sz); 1082 1083 /* 1084 * Set aside room for the page structures themselves. 1085 */ 1086 PRM_DEBUG(npages); 1087 pp_sz = sizeof (struct page) * npages; 1088 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1089 PRM_DEBUG(pp_sz); 1090 1091 /* 1092 * determine l2 cache info and memory size for page coloring 1093 */ 1094 (void) getl2cacheinfo(CPU, 1095 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1096 pagecolor_memsz = 1097 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1098 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1099 PRM_DEBUG(pagecolor_memsz); 1100 1101 page_ctrs_size = page_ctrs_sz(); 1102 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1103 PRM_DEBUG(page_ctrs_size); 1104 1105 /* 1106 * Allocate the array that protects pp->p_selock. 1107 */ 1108 pse_shift = size_pse_array(physmem, max_ncpus); 1109 pse_table_size = 1 << pse_shift; 1110 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1111 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1112 1113 #if defined(__amd64) 1114 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1115 valloc_base = VALLOC_BASE; 1116 1117 /* 1118 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1119 * for values of physmax up to 1 Terabyte. They need adjusting when 1120 * memory is at addresses above 1 TB. 1121 */ 1122 if (physmax + 1 > mmu_btop(TERABYTE)) { 1123 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1124 1125 /* Round to largest possible pagesize for now */ 1126 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1127 1128 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1129 1130 /* make sure we leave some space for user apps above hole */ 1131 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1132 if (segkpm_base > SEGKPM_BASE) 1133 segkpm_base = SEGKPM_BASE; 1134 PRM_DEBUG(segkpm_base); 1135 1136 valloc_base = segkpm_base + kpm_resv_amount; 1137 PRM_DEBUG(valloc_base); 1138 } 1139 #else /* __i386 */ 1140 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1141 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1142 PRM_DEBUG(valloc_base); 1143 #endif /* __i386 */ 1144 1145 /* 1146 * do all the initial allocations 1147 */ 1148 perform_allocations(); 1149 1150 /* 1151 * Build phys_install and phys_avail in kernel memspace. 1152 * - phys_install should be all memory in the system. 1153 * - phys_avail is phys_install minus any memory mapped before this 1154 * point above KERNEL_TEXT. 1155 */ 1156 current = phys_install = memlist; 1157 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1158 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1159 panic("physinstalled was too big!"); 1160 if (prom_debug) 1161 print_memlist("phys_install", phys_install); 1162 1163 phys_avail = current; 1164 PRM_POINT("Building phys_avail:\n"); 1165 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1166 avail_filter); 1167 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1168 panic("physavail was too big!"); 1169 if (prom_debug) 1170 print_memlist("phys_avail", phys_avail); 1171 1172 /* 1173 * setup page coloring 1174 */ 1175 page_coloring_setup(pagecolor_mem); 1176 page_lock_init(); /* currently a no-op */ 1177 1178 /* 1179 * free page list counters 1180 */ 1181 (void) page_ctrs_alloc(page_ctrs_mem); 1182 1183 /* 1184 * Size the pcf array based on the number of cpus in the box at 1185 * boot time. 1186 */ 1187 1188 pcf_init(); 1189 1190 /* 1191 * Initialize the page structures from the memory lists. 1192 */ 1193 availrmem_initial = availrmem = freemem = 0; 1194 PRM_POINT("Calling kphysm_init()..."); 1195 npages = kphysm_init(pp_base, npages); 1196 PRM_POINT("kphysm_init() done"); 1197 PRM_DEBUG(npages); 1198 1199 init_debug_info(); 1200 1201 /* 1202 * Now that page_t's have been initialized, remove all the 1203 * initial allocation pages from the kernel free page lists. 1204 */ 1205 boot_mapin((caddr_t)valloc_base, valloc_sz); 1206 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1207 PRM_POINT("startup_memlist() done"); 1208 1209 PRM_DEBUG(valloc_sz); 1210 1211 #if defined(__amd64) 1212 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1213 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1214 extern size_t textrepl_size_thresh; 1215 textrepl_size_thresh = (16 << 20) - 1; 1216 } 1217 #endif 1218 } 1219 1220 /* 1221 * Layout the kernel's part of address space and initialize kmem allocator. 1222 */ 1223 static void 1224 startup_kmem(void) 1225 { 1226 extern void page_set_colorequiv_arr(void); 1227 1228 PRM_POINT("startup_kmem() starting..."); 1229 1230 #if defined(__amd64) 1231 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1232 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1233 "systems."); 1234 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1235 core_base = (uintptr_t)COREHEAP_BASE; 1236 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1237 #else /* __i386 */ 1238 /* 1239 * We configure kernelbase based on: 1240 * 1241 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1242 * KERNELBASE_MAX. we large page align eprom_kernelbase 1243 * 1244 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1245 * On large memory systems we must lower kernelbase to allow 1246 * enough room for page_t's for all of memory. 1247 * 1248 * The value set here, might be changed a little later. 1249 */ 1250 if (eprom_kernelbase) { 1251 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1252 if (kernelbase > KERNELBASE_MAX) 1253 kernelbase = KERNELBASE_MAX; 1254 } else { 1255 kernelbase = (uintptr_t)KERNELBASE; 1256 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1257 } 1258 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1259 core_base = valloc_base; 1260 core_size = 0; 1261 #endif /* __i386 */ 1262 1263 PRM_DEBUG(core_base); 1264 PRM_DEBUG(core_size); 1265 PRM_DEBUG(kernelbase); 1266 1267 #if defined(__i386) 1268 segkp_fromheap = 1; 1269 #endif /* __i386 */ 1270 1271 ekernelheap = (char *)core_base; 1272 PRM_DEBUG(ekernelheap); 1273 1274 /* 1275 * Now that we know the real value of kernelbase, 1276 * update variables that were initialized with a value of 1277 * KERNELBASE (in common/conf/param.c). 1278 * 1279 * XXX The problem with this sort of hackery is that the 1280 * compiler just may feel like putting the const declarations 1281 * (in param.c) into the .text section. Perhaps they should 1282 * just be declared as variables there? 1283 */ 1284 1285 *(uintptr_t *)&_kernelbase = kernelbase; 1286 *(uintptr_t *)&_userlimit = kernelbase; 1287 #if defined(__amd64) 1288 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1289 #else 1290 *(uintptr_t *)&_userlimit32 = _userlimit; 1291 #endif 1292 PRM_DEBUG(_kernelbase); 1293 PRM_DEBUG(_userlimit); 1294 PRM_DEBUG(_userlimit32); 1295 1296 layout_kernel_va(); 1297 1298 #if defined(__i386) 1299 /* 1300 * If segmap is too large we can push the bottom of the kernel heap 1301 * higher than the base. Or worse, it could exceed the top of the 1302 * VA space entirely, causing it to wrap around. 1303 */ 1304 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1305 panic("too little address space available for kernelheap," 1306 " use eeprom for lower kernelbase or smaller segmapsize"); 1307 #endif /* __i386 */ 1308 1309 /* 1310 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1311 */ 1312 kernelheap_init(kernelheap, ekernelheap, 1313 kernelheap + MMU_PAGESIZE, 1314 (void *)core_base, (void *)(core_base + core_size)); 1315 1316 #if defined(__xpv) 1317 /* 1318 * Link pending events struct into cpu struct 1319 */ 1320 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1321 #endif 1322 /* 1323 * Initialize kernel memory allocator. 1324 */ 1325 kmem_init(); 1326 1327 /* 1328 * Factor in colorequiv to check additional 'equivalent' bins 1329 */ 1330 page_set_colorequiv_arr(); 1331 1332 /* 1333 * print this out early so that we know what's going on 1334 */ 1335 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1336 1337 /* 1338 * Initialize bp_mapin(). 1339 */ 1340 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1341 1342 /* 1343 * orig_npages is non-zero if physmem has been configured for less 1344 * than the available memory. 1345 */ 1346 if (orig_npages) { 1347 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1348 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1349 npages, orig_npages); 1350 } 1351 #if defined(__i386) 1352 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1353 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1354 "System using 0x%lx", 1355 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1356 #endif 1357 1358 #ifdef KERNELBASE_ABI_MIN 1359 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1360 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1361 "i386 ABI compliant.", (uintptr_t)kernelbase); 1362 } 1363 #endif 1364 1365 #ifdef __xpv 1366 /* 1367 * Some of the xen start information has to be relocated up 1368 * into the kernel's permanent address space. 1369 */ 1370 PRM_POINT("calling xen_relocate_start_info()"); 1371 xen_relocate_start_info(); 1372 PRM_POINT("xen_relocate_start_info() done"); 1373 1374 /* 1375 * (Update the vcpu pointer in our cpu structure to point into 1376 * the relocated shared info.) 1377 */ 1378 CPU->cpu_m.mcpu_vcpu_info = 1379 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1380 #endif 1381 1382 PRM_POINT("startup_kmem() done"); 1383 } 1384 1385 #ifndef __xpv 1386 /* 1387 * If we have detected that we are running in an HVM environment, we need 1388 * to prepend the PV driver directory to the module search path. 1389 */ 1390 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1391 static void 1392 update_default_path() 1393 { 1394 char *current, *newpath; 1395 int newlen; 1396 1397 /* 1398 * We are about to resync with krtld. krtld will reset its 1399 * internal module search path iff Solaris has set default_path. 1400 * We want to be sure we're prepending this new directory to the 1401 * right search path. 1402 */ 1403 current = (default_path == NULL) ? kobj_module_path : default_path; 1404 1405 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1; 1406 newpath = kmem_alloc(newlen, KM_SLEEP); 1407 (void) strcpy(newpath, HVM_MOD_DIR); 1408 (void) strcat(newpath, " "); 1409 (void) strcat(newpath, current); 1410 1411 default_path = newpath; 1412 } 1413 #endif 1414 1415 static void 1416 startup_modules(void) 1417 { 1418 int cnt; 1419 extern void prom_setup(void); 1420 int32_t v, h; 1421 char d[11]; 1422 char *cp; 1423 cmi_hdl_t hdl; 1424 1425 PRM_POINT("startup_modules() starting..."); 1426 1427 #ifndef __xpv 1428 /* 1429 * Initialize ten-micro second timer so that drivers will 1430 * not get short changed in their init phase. This was 1431 * not getting called until clkinit which, on fast cpu's 1432 * caused the drv_usecwait to be way too short. 1433 */ 1434 microfind(); 1435 1436 if (xpv_is_hvm) 1437 update_default_path(); 1438 #endif 1439 1440 /* 1441 * Read the GMT lag from /etc/rtc_config. 1442 */ 1443 sgmtl(process_rtc_config_file()); 1444 1445 /* 1446 * Calculate default settings of system parameters based upon 1447 * maxusers, yet allow to be overridden via the /etc/system file. 1448 */ 1449 param_calc(0); 1450 1451 mod_setup(); 1452 1453 /* 1454 * Initialize system parameters. 1455 */ 1456 param_init(); 1457 1458 /* 1459 * Initialize the default brands 1460 */ 1461 brand_init(); 1462 1463 /* 1464 * maxmem is the amount of physical memory we're playing with. 1465 */ 1466 maxmem = physmem; 1467 1468 /* 1469 * Initialize segment management stuff. 1470 */ 1471 seg_init(); 1472 1473 if (modload("fs", "specfs") == -1) 1474 halt("Can't load specfs"); 1475 1476 if (modload("fs", "devfs") == -1) 1477 halt("Can't load devfs"); 1478 1479 if (modload("fs", "dev") == -1) 1480 halt("Can't load dev"); 1481 1482 (void) modloadonly("sys", "lbl_edition"); 1483 1484 dispinit(); 1485 1486 /* 1487 * This is needed here to initialize hw_serial[] for cluster booting. 1488 */ 1489 if ((h = set_soft_hostid()) == -1) 1490 cmn_err(CE_WARN, "Unable to set hostid"); 1491 else { 1492 for (v = h, cnt = 0; cnt < 10; cnt++) { 1493 d[cnt] = v % 10; 1494 v /= 10; 1495 if (v == 0) 1496 break; 1497 } 1498 for (cp = hw_serial; cnt >= 0; cnt--) 1499 *cp++ = d[cnt] + '0'; 1500 *cp = 0; 1501 } 1502 1503 /* Read cluster configuration data. */ 1504 clconf_init(); 1505 1506 #if defined(__xpv) 1507 ec_init(); 1508 gnttab_init(); 1509 (void) xs_early_init(); 1510 #endif /* __xpv */ 1511 1512 /* 1513 * Create a kernel device tree. First, create rootnex and 1514 * then invoke bus specific code to probe devices. 1515 */ 1516 setup_ddi(); 1517 1518 /* 1519 * Set up the CPU module subsystem for the boot cpu in the native 1520 * case, and all physical cpu resource in the xpv dom0 case. 1521 * Modifies the device tree, so this must be done after 1522 * setup_ddi(). 1523 */ 1524 #ifdef __xpv 1525 /* 1526 * If paravirtualized and on dom0 then we initialize all physical 1527 * cpu handles now; if paravirtualized on a domU then do not 1528 * initialize. 1529 */ 1530 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1531 xen_mc_lcpu_cookie_t cpi; 1532 1533 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1534 cpi = xen_physcpu_next(cpi)) { 1535 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1536 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1537 xen_physcpu_strandid(cpi))) != NULL && 1538 (x86_feature & X86_MCA)) 1539 cmi_mca_init(hdl); 1540 } 1541 } 1542 #else 1543 /* 1544 * Initialize a handle for the boot cpu - others will initialize 1545 * as they startup. Do not do this if we know we are in an HVM domU. 1546 */ 1547 if (!xpv_is_hvm && 1548 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1549 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1550 (x86_feature & X86_MCA)) 1551 cmi_mca_init(hdl); 1552 #endif /* __xpv */ 1553 1554 /* 1555 * Fake a prom tree such that /dev/openprom continues to work 1556 */ 1557 PRM_POINT("startup_modules: calling prom_setup..."); 1558 prom_setup(); 1559 PRM_POINT("startup_modules: done"); 1560 1561 /* 1562 * Load all platform specific modules 1563 */ 1564 PRM_POINT("startup_modules: calling psm_modload..."); 1565 psm_modload(); 1566 1567 PRM_POINT("startup_modules() done"); 1568 } 1569 1570 /* 1571 * claim a "setaside" boot page for use in the kernel 1572 */ 1573 page_t * 1574 boot_claim_page(pfn_t pfn) 1575 { 1576 page_t *pp; 1577 1578 pp = page_numtopp_nolock(pfn); 1579 ASSERT(pp != NULL); 1580 1581 if (PP_ISBOOTPAGES(pp)) { 1582 if (pp->p_next != NULL) 1583 pp->p_next->p_prev = pp->p_prev; 1584 if (pp->p_prev == NULL) 1585 bootpages = pp->p_next; 1586 else 1587 pp->p_prev->p_next = pp->p_next; 1588 } else { 1589 /* 1590 * htable_attach() expects a base pagesize page 1591 */ 1592 if (pp->p_szc != 0) 1593 page_boot_demote(pp); 1594 pp = page_numtopp(pfn, SE_EXCL); 1595 } 1596 return (pp); 1597 } 1598 1599 /* 1600 * Walk through the pagetables looking for pages mapped in by boot. If the 1601 * setaside flag is set the pages are expected to be returned to the 1602 * kernel later in boot, so we add them to the bootpages list. 1603 */ 1604 static void 1605 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1606 { 1607 uintptr_t va = low; 1608 size_t len; 1609 uint_t prot; 1610 pfn_t pfn; 1611 page_t *pp; 1612 pgcnt_t boot_protect_cnt = 0; 1613 1614 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1615 if (va + len >= high) 1616 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1617 "legal range.", len, (void *)va); 1618 1619 while (len > 0) { 1620 pp = page_numtopp_alloc(pfn); 1621 if (pp != NULL) { 1622 if (setaside == 0) 1623 panic("Unexpected mapping by boot. " 1624 "addr=%p pfn=%lx\n", 1625 (void *)va, pfn); 1626 1627 pp->p_next = bootpages; 1628 pp->p_prev = NULL; 1629 PP_SETBOOTPAGES(pp); 1630 if (bootpages != NULL) { 1631 bootpages->p_prev = pp; 1632 } 1633 bootpages = pp; 1634 ++boot_protect_cnt; 1635 } 1636 1637 ++pfn; 1638 len -= MMU_PAGESIZE; 1639 va += MMU_PAGESIZE; 1640 } 1641 } 1642 PRM_DEBUG(boot_protect_cnt); 1643 } 1644 1645 /* 1646 * 1647 */ 1648 static void 1649 layout_kernel_va(void) 1650 { 1651 PRM_POINT("layout_kernel_va() starting..."); 1652 /* 1653 * Establish the final size of the kernel's heap, size of segmap, 1654 * segkp, etc. 1655 */ 1656 1657 #if defined(__amd64) 1658 1659 kpm_vbase = (caddr_t)segkpm_base; 1660 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1661 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1662 panic("not enough room for kpm!"); 1663 PRM_DEBUG(kpm_size); 1664 PRM_DEBUG(kpm_vbase); 1665 1666 /* 1667 * By default we create a seg_kp in 64 bit kernels, it's a little 1668 * faster to access than embedding it in the heap. 1669 */ 1670 segkp_base = (caddr_t)valloc_base + valloc_sz; 1671 if (!segkp_fromheap) { 1672 size_t sz = mmu_ptob(segkpsize); 1673 1674 /* 1675 * determine size of segkp 1676 */ 1677 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1678 sz = SEGKPDEFSIZE; 1679 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1680 "segkpsize has been reset to %ld pages", 1681 mmu_btop(sz)); 1682 } 1683 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1684 1685 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1686 } 1687 PRM_DEBUG(segkp_base); 1688 PRM_DEBUG(segkpsize); 1689 1690 /* 1691 * segzio is used for ZFS cached data. It uses a distinct VA 1692 * segment (from kernel heap) so that we can easily tell not to 1693 * include it in kernel crash dumps on 64 bit kernels. The trick is 1694 * to give it lots of VA, but not constrain the kernel heap. 1695 * We scale the size of segzio linearly with physmem up to 1696 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1697 */ 1698 segzio_base = segkp_base + mmu_ptob(segkpsize); 1699 if (segzio_fromheap) { 1700 segziosize = 0; 1701 } else { 1702 size_t physmem_size = mmu_ptob(physmem); 1703 size_t size = (segziosize == 0) ? 1704 physmem_size : mmu_ptob(segziosize); 1705 1706 if (size < SEGZIOMINSIZE) 1707 size = SEGZIOMINSIZE; 1708 if (size > SEGZIOMAXSIZE) { 1709 size = SEGZIOMAXSIZE; 1710 if (physmem_size > size) 1711 size += (physmem_size - size) / 2; 1712 } 1713 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1714 } 1715 PRM_DEBUG(segziosize); 1716 PRM_DEBUG(segzio_base); 1717 1718 /* 1719 * Put the range of VA for device mappings next, kmdb knows to not 1720 * grep in this range of addresses. 1721 */ 1722 toxic_addr = 1723 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1724 PRM_DEBUG(toxic_addr); 1725 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1726 #else /* __i386 */ 1727 segmap_start = ROUND_UP_LPAGE(kernelbase); 1728 #endif /* __i386 */ 1729 PRM_DEBUG(segmap_start); 1730 1731 /* 1732 * Users can change segmapsize through eeprom. If the variable 1733 * is tuned through eeprom, there is no upper bound on the 1734 * size of segmap. 1735 */ 1736 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1737 1738 #if defined(__i386) 1739 /* 1740 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1741 * the bottom of the kernel's address range. Set aside space for a 1742 * small red zone just below the start of segmap. 1743 */ 1744 segmap_start += KERNEL_REDZONE_SIZE; 1745 segmapsize -= KERNEL_REDZONE_SIZE; 1746 #endif 1747 1748 PRM_DEBUG(segmap_start); 1749 PRM_DEBUG(segmapsize); 1750 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1751 PRM_DEBUG(kernelheap); 1752 PRM_POINT("layout_kernel_va() done..."); 1753 } 1754 1755 /* 1756 * Finish initializing the VM system, now that we are no longer 1757 * relying on the boot time memory allocators. 1758 */ 1759 static void 1760 startup_vm(void) 1761 { 1762 struct segmap_crargs a; 1763 1764 extern int use_brk_lpg, use_stk_lpg; 1765 1766 PRM_POINT("startup_vm() starting..."); 1767 1768 /* 1769 * Initialize the hat layer. 1770 */ 1771 hat_init(); 1772 1773 /* 1774 * Do final allocations of HAT data structures that need to 1775 * be allocated before quiescing the boot loader. 1776 */ 1777 PRM_POINT("Calling hat_kern_alloc()..."); 1778 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1779 PRM_POINT("hat_kern_alloc() done"); 1780 1781 #ifndef __xpv 1782 /* 1783 * Setup Page Attribute Table 1784 */ 1785 pat_sync(); 1786 #endif 1787 1788 /* 1789 * The next two loops are done in distinct steps in order 1790 * to be sure that any page that is doubly mapped (both above 1791 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1792 * Note this may never happen, but it might someday. 1793 */ 1794 bootpages = NULL; 1795 PRM_POINT("Protecting boot pages"); 1796 1797 /* 1798 * Protect any pages mapped above KERNEL_TEXT that somehow have 1799 * page_t's. This can only happen if something weird allocated 1800 * in this range (like kadb/kmdb). 1801 */ 1802 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1803 1804 /* 1805 * Before we can take over memory allocation/mapping from the boot 1806 * loader we must remove from our free page lists any boot allocated 1807 * pages that stay mapped until release_bootstrap(). 1808 */ 1809 protect_boot_range(0, kernelbase, 1); 1810 1811 1812 /* 1813 * Switch to running on regular HAT (not boot_mmu) 1814 */ 1815 PRM_POINT("Calling hat_kern_setup()..."); 1816 hat_kern_setup(); 1817 1818 /* 1819 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1820 */ 1821 bop_no_more_mem(); 1822 1823 PRM_POINT("hat_kern_setup() done"); 1824 1825 hat_cpu_online(CPU); 1826 1827 /* 1828 * Initialize VM system 1829 */ 1830 PRM_POINT("Calling kvm_init()..."); 1831 kvm_init(); 1832 PRM_POINT("kvm_init() done"); 1833 1834 /* 1835 * Tell kmdb that the VM system is now working 1836 */ 1837 if (boothowto & RB_DEBUG) 1838 kdi_dvec_vmready(); 1839 1840 #if defined(__xpv) 1841 /* 1842 * Populate the I/O pool on domain 0 1843 */ 1844 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1845 extern long populate_io_pool(void); 1846 long init_io_pool_cnt; 1847 1848 PRM_POINT("Populating reserve I/O page pool"); 1849 init_io_pool_cnt = populate_io_pool(); 1850 PRM_DEBUG(init_io_pool_cnt); 1851 } 1852 #endif 1853 /* 1854 * Mangle the brand string etc. 1855 */ 1856 cpuid_pass3(CPU); 1857 1858 #if defined(__amd64) 1859 1860 /* 1861 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1862 */ 1863 device_arena = vmem_create("device", (void *)toxic_addr, 1864 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1865 1866 #else /* __i386 */ 1867 1868 /* 1869 * allocate the bit map that tracks toxic pages 1870 */ 1871 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1872 PRM_DEBUG(toxic_bit_map_len); 1873 toxic_bit_map = 1874 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1875 ASSERT(toxic_bit_map != NULL); 1876 PRM_DEBUG(toxic_bit_map); 1877 1878 #endif /* __i386 */ 1879 1880 1881 /* 1882 * Now that we've got more VA, as well as the ability to allocate from 1883 * it, tell the debugger. 1884 */ 1885 if (boothowto & RB_DEBUG) 1886 kdi_dvec_memavail(); 1887 1888 /* 1889 * The following code installs a special page fault handler (#pf) 1890 * to work around a pentium bug. 1891 */ 1892 #if !defined(__amd64) && !defined(__xpv) 1893 if (x86_type == X86_TYPE_P5) { 1894 desctbr_t idtr; 1895 gate_desc_t *newidt; 1896 1897 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1898 panic("failed to install pentium_pftrap"); 1899 1900 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 1901 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1902 KCS_SEL, SDT_SYSIGT, TRP_KPL); 1903 1904 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1905 PROT_READ | PROT_EXEC); 1906 1907 CPU->cpu_idt = newidt; 1908 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 1909 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 1910 wr_idtr(&idtr); 1911 } 1912 #endif /* !__amd64 */ 1913 1914 #if !defined(__xpv) 1915 /* 1916 * Map page pfn=0 for drivers, such as kd, that need to pick up 1917 * parameters left there by controllers/BIOS. 1918 */ 1919 PRM_POINT("setup up p0_va"); 1920 p0_va = i86devmap(0, 1, PROT_READ); 1921 PRM_DEBUG(p0_va); 1922 #endif 1923 1924 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1925 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1926 1927 /* 1928 * disable automatic large pages for small memory systems or 1929 * when the disable flag is set. 1930 * 1931 * Do not yet consider page sizes larger than 2m/4m. 1932 */ 1933 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1934 max_uheap_lpsize = LEVEL_SIZE(1); 1935 max_ustack_lpsize = LEVEL_SIZE(1); 1936 max_privmap_lpsize = LEVEL_SIZE(1); 1937 max_uidata_lpsize = LEVEL_SIZE(1); 1938 max_utext_lpsize = LEVEL_SIZE(1); 1939 max_shm_lpsize = LEVEL_SIZE(1); 1940 } 1941 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1942 auto_lpg_disable) { 1943 use_brk_lpg = 0; 1944 use_stk_lpg = 0; 1945 } 1946 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 1947 1948 PRM_POINT("Calling hat_init_finish()..."); 1949 hat_init_finish(); 1950 PRM_POINT("hat_init_finish() done"); 1951 1952 /* 1953 * Initialize the segkp segment type. 1954 */ 1955 rw_enter(&kas.a_lock, RW_WRITER); 1956 PRM_POINT("Attaching segkp"); 1957 if (segkp_fromheap) { 1958 segkp->s_as = &kas; 1959 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1960 segkp) < 0) { 1961 panic("startup: cannot attach segkp"); 1962 /*NOTREACHED*/ 1963 } 1964 PRM_POINT("Doing segkp_create()"); 1965 if (segkp_create(segkp) != 0) { 1966 panic("startup: segkp_create failed"); 1967 /*NOTREACHED*/ 1968 } 1969 PRM_DEBUG(segkp); 1970 rw_exit(&kas.a_lock); 1971 1972 /* 1973 * kpm segment 1974 */ 1975 segmap_kpm = 0; 1976 if (kpm_desired) { 1977 kpm_init(); 1978 kpm_enable = 1; 1979 vpm_enable = 1; 1980 } 1981 1982 /* 1983 * Now create segmap segment. 1984 */ 1985 rw_enter(&kas.a_lock, RW_WRITER); 1986 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 1987 panic("cannot attach segmap"); 1988 /*NOTREACHED*/ 1989 } 1990 PRM_DEBUG(segmap); 1991 1992 a.prot = PROT_READ | PROT_WRITE; 1993 a.shmsize = 0; 1994 a.nfreelist = segmapfreelists; 1995 1996 if (segmap_create(segmap, (caddr_t)&a) != 0) 1997 panic("segmap_create segmap"); 1998 rw_exit(&kas.a_lock); 1999 2000 setup_vaddr_for_ppcopy(CPU); 2001 2002 segdev_init(); 2003 #if defined(__xpv) 2004 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2005 #endif 2006 pmem_init(); 2007 2008 PRM_POINT("startup_vm() done"); 2009 } 2010 2011 /* 2012 * Load a tod module for the non-standard tod part found on this system. 2013 */ 2014 static void 2015 load_tod_module(char *todmod) 2016 { 2017 if (modload("tod", todmod) == -1) 2018 halt("Can't load TOD module"); 2019 } 2020 2021 #if !defined(__xpv) 2022 static void 2023 get_amd_iommu_boot_props(void) 2024 { 2025 int len; 2026 char *disable; 2027 2028 if ((len = do_bsys_getproplen(NULL, "amd-iommu")) > 0) { 2029 disable = kmem_zalloc(len, KM_SLEEP); 2030 (void) do_bsys_getprop(NULL, "amd-iommu", disable); 2031 if (strcmp(disable, "no") == 0) { 2032 startup_amd_iommu_disable = 1; 2033 } 2034 kmem_free(disable, len); 2035 } 2036 2037 if ((len = do_bsys_getproplen(NULL, "amd-iommu-disable-list")) > 0) { 2038 startup_amd_iommu_disable_list = kmem_zalloc(len, KM_SLEEP); 2039 (void) do_bsys_getprop(NULL, "amd-iommu-disable-list", 2040 startup_amd_iommu_disable_list); 2041 } 2042 } 2043 #endif 2044 2045 static void 2046 startup_end(void) 2047 { 2048 int i; 2049 extern void setx86isalist(void); 2050 2051 PRM_POINT("startup_end() starting..."); 2052 2053 /* 2054 * Perform tasks that get done after most of the VM 2055 * initialization has been done but before the clock 2056 * and other devices get started. 2057 */ 2058 kern_setup1(); 2059 2060 /* 2061 * Perform CPC initialization for this CPU. 2062 */ 2063 kcpc_hw_init(CPU); 2064 2065 #if defined(OPTERON_WORKAROUND_6323525) 2066 if (opteron_workaround_6323525) 2067 patch_workaround_6323525(); 2068 #endif 2069 /* 2070 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2071 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2072 */ 2073 if (tod_module_name != NULL) { 2074 PRM_POINT("load_tod_module()"); 2075 load_tod_module(tod_module_name); 2076 } 2077 2078 #if defined(__xpv) 2079 /* 2080 * Forceload interposing TOD module for the hypervisor. 2081 */ 2082 PRM_POINT("load_tod_module()"); 2083 load_tod_module("xpvtod"); 2084 #endif 2085 2086 /* 2087 * Configure the system. 2088 */ 2089 PRM_POINT("Calling configure()..."); 2090 configure(); /* set up devices */ 2091 PRM_POINT("configure() done"); 2092 2093 /* 2094 * Set the isa_list string to the defined instruction sets we 2095 * support. 2096 */ 2097 setx86isalist(); 2098 cpu_intr_alloc(CPU, NINTR_THREADS); 2099 psm_install(); 2100 2101 /* 2102 * We're done with bootops. We don't unmap the bootstrap yet because 2103 * we're still using bootsvcs. 2104 */ 2105 PRM_POINT("NULLing out bootops"); 2106 *bootopsp = (struct bootops *)NULL; 2107 bootops = (struct bootops *)NULL; 2108 2109 #if defined(__xpv) 2110 ec_init_debug_irq(); 2111 xs_domu_init(); 2112 #endif 2113 PRM_POINT("Enabling interrupts"); 2114 (*picinitf)(); 2115 sti(); 2116 #if defined(__xpv) 2117 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2118 xen_late_startup(); 2119 #endif 2120 2121 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2122 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2123 2124 /* 2125 * Register these software interrupts for ddi timer. 2126 * Software interrupts up to the level 10 are supported. 2127 */ 2128 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2129 char name[sizeof ("timer_softintr") + 2]; 2130 (void) sprintf(name, "timer_softintr%02d", i); 2131 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2132 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2133 } 2134 2135 #if !defined(__xpv) 2136 get_amd_iommu_boot_props(); 2137 2138 if (modload("drv", "amd_iommu") < 0) { 2139 PRM_POINT("No AMD IOMMU present\n"); 2140 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2141 "amd_iommu")) == NULL) { 2142 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2143 } 2144 #endif 2145 2146 PRM_POINT("startup_end() done"); 2147 } 2148 2149 extern char hw_serial[]; 2150 /* 2151 * Don't remove the following 2 variables. They are necessary 2152 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2153 */ 2154 char *_hs1107 = hw_serial; 2155 ulong_t _bdhs34; 2156 2157 void 2158 post_startup(void) 2159 { 2160 /* 2161 * Set the system wide, processor-specific flags to be passed 2162 * to userland via the aux vector for performance hints and 2163 * instruction set extensions. 2164 */ 2165 bind_hwcap(); 2166 2167 #ifdef __xpv 2168 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2169 #endif 2170 { 2171 /* 2172 * Load the System Management BIOS into the global ksmbios 2173 * handle, if an SMBIOS is present on this system. 2174 */ 2175 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 2176 2177 #if defined(__xpv) 2178 xpv_panic_init(); 2179 #else 2180 /* 2181 * Startup the memory scrubber. 2182 * XXPV This should be running somewhere .. 2183 */ 2184 if (!xpv_is_hvm) 2185 memscrub_init(); 2186 #endif 2187 } 2188 2189 /* 2190 * Complete CPU module initialization 2191 */ 2192 cmi_post_startup(); 2193 2194 /* 2195 * Perform forceloading tasks for /etc/system. 2196 */ 2197 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2198 2199 /* 2200 * ON4.0: Force /proc module in until clock interrupt handle fixed 2201 * ON4.0: This must be fixed or restated in /etc/systems. 2202 */ 2203 (void) modload("fs", "procfs"); 2204 2205 (void) i_ddi_attach_hw_nodes("pit_beep"); 2206 2207 #if defined(__i386) 2208 /* 2209 * Check for required functional Floating Point hardware, 2210 * unless FP hardware explicitly disabled. 2211 */ 2212 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2213 halt("No working FP hardware found"); 2214 #endif 2215 2216 maxmem = freemem; 2217 2218 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 2219 } 2220 2221 static int 2222 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2223 { 2224 return ((pp->p_pagenum >= btop(low_addr)) && 2225 (pp->p_pagenum < btopr(high_addr))); 2226 } 2227 2228 void 2229 release_bootstrap(void) 2230 { 2231 int root_is_ramdisk; 2232 page_t *pp; 2233 extern void kobj_boot_unmountroot(void); 2234 extern dev_t rootdev; 2235 #if !defined(__xpv) 2236 pfn_t pfn; 2237 #endif 2238 2239 /* unmount boot ramdisk and release kmem usage */ 2240 kobj_boot_unmountroot(); 2241 2242 /* 2243 * We're finished using the boot loader so free its pages. 2244 */ 2245 PRM_POINT("Unmapping lower boot pages"); 2246 2247 clear_boot_mappings(0, _userlimit); 2248 2249 postbootkernelbase = kernelbase; 2250 2251 /* 2252 * If root isn't on ramdisk, destroy the hardcoded 2253 * ramdisk node now and release the memory. Else, 2254 * ramdisk memory is kept in rd_pages. 2255 */ 2256 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2257 if (!root_is_ramdisk) { 2258 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2259 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2260 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2261 (void) ddi_remove_child(dip, 0); 2262 } 2263 2264 PRM_POINT("Releasing boot pages"); 2265 while (bootpages) { 2266 extern uint64_t ramdisk_start, ramdisk_end; 2267 pp = bootpages; 2268 bootpages = pp->p_next; 2269 2270 2271 /* Keep pages for the lower 64K */ 2272 if (pp_in_range(pp, 0, 0x40000)) { 2273 pp->p_next = lower_pages; 2274 lower_pages = pp; 2275 lower_pages_count++; 2276 continue; 2277 } 2278 2279 2280 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2281 ramdisk_end)) { 2282 pp->p_next = rd_pages; 2283 rd_pages = pp; 2284 continue; 2285 } 2286 pp->p_next = (struct page *)0; 2287 pp->p_prev = (struct page *)0; 2288 PP_CLRBOOTPAGES(pp); 2289 page_free(pp, 1); 2290 } 2291 PRM_POINT("Boot pages released"); 2292 2293 #if !defined(__xpv) 2294 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2295 /* 2296 * Find 1 page below 1 MB so that other processors can boot up or 2297 * so that any processor can resume. 2298 * Make sure it has a kernel VA as well as a 1:1 mapping. 2299 * We should have just free'd one up. 2300 */ 2301 2302 /* 2303 * 0x10 pages is 64K. Leave the bottom 64K alone 2304 * for BIOS. 2305 */ 2306 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2307 if (page_numtopp_alloc(pfn) == NULL) 2308 continue; 2309 rm_platter_va = i86devmap(pfn, 1, 2310 PROT_READ | PROT_WRITE | PROT_EXEC); 2311 rm_platter_pa = ptob(pfn); 2312 hat_devload(kas.a_hat, 2313 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2314 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2315 HAT_LOAD_NOCONSIST); 2316 break; 2317 } 2318 if (pfn == btop(1*1024*1024) && use_mp) 2319 panic("No page below 1M available for starting " 2320 "other processors or for resuming from system-suspend"); 2321 #endif /* !__xpv */ 2322 } 2323 2324 /* 2325 * Initialize the platform-specific parts of a page_t. 2326 */ 2327 void 2328 add_physmem_cb(page_t *pp, pfn_t pnum) 2329 { 2330 pp->p_pagenum = pnum; 2331 pp->p_mapping = NULL; 2332 pp->p_embed = 0; 2333 pp->p_share = 0; 2334 pp->p_mlentry = 0; 2335 } 2336 2337 /* 2338 * kphysm_init() initializes physical memory. 2339 */ 2340 static pgcnt_t 2341 kphysm_init( 2342 page_t *pp, 2343 pgcnt_t npages) 2344 { 2345 struct memlist *pmem; 2346 struct memseg *cur_memseg; 2347 pfn_t base_pfn; 2348 pgcnt_t num; 2349 pgcnt_t pages_done = 0; 2350 uint64_t addr; 2351 uint64_t size; 2352 extern pfn_t ddiphysmin; 2353 2354 ASSERT(page_hash != NULL && page_hashsz != 0); 2355 2356 cur_memseg = memseg_base; 2357 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2358 /* 2359 * In a 32 bit kernel can't use higher memory if we're 2360 * not booting in PAE mode. This check takes care of that. 2361 */ 2362 addr = pmem->address; 2363 size = pmem->size; 2364 if (btop(addr) > physmax) 2365 continue; 2366 2367 /* 2368 * align addr and size - they may not be at page boundaries 2369 */ 2370 if ((addr & MMU_PAGEOFFSET) != 0) { 2371 addr += MMU_PAGEOFFSET; 2372 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2373 size -= addr - pmem->address; 2374 } 2375 2376 /* only process pages below or equal to physmax */ 2377 if ((btop(addr + size) - 1) > physmax) 2378 size = ptob(physmax - btop(addr) + 1); 2379 2380 num = btop(size); 2381 if (num == 0) 2382 continue; 2383 2384 if (num > npages) 2385 num = npages; 2386 2387 npages -= num; 2388 pages_done += num; 2389 base_pfn = btop(addr); 2390 2391 if (prom_debug) 2392 prom_printf("MEMSEG addr=0x%" PRIx64 2393 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2394 addr, num, base_pfn, base_pfn + num); 2395 2396 /* 2397 * Ignore pages below ddiphysmin to simplify ddi memory 2398 * allocation with non-zero addr_lo requests. 2399 */ 2400 if (base_pfn < ddiphysmin) { 2401 if (base_pfn + num <= ddiphysmin) 2402 continue; 2403 pp += (ddiphysmin - base_pfn); 2404 num -= (ddiphysmin - base_pfn); 2405 base_pfn = ddiphysmin; 2406 } 2407 2408 /* 2409 * Build the memsegs entry 2410 */ 2411 cur_memseg->pages = pp; 2412 cur_memseg->epages = pp + num; 2413 cur_memseg->pages_base = base_pfn; 2414 cur_memseg->pages_end = base_pfn + num; 2415 2416 /* 2417 * Insert into memseg list in decreasing pfn range order. 2418 * Low memory is typically more fragmented such that this 2419 * ordering keeps the larger ranges at the front of the list 2420 * for code that searches memseg. 2421 * This ASSERTS that the memsegs coming in from boot are in 2422 * increasing physical address order and not contiguous. 2423 */ 2424 if (memsegs != NULL) { 2425 ASSERT(cur_memseg->pages_base >= memsegs->pages_end); 2426 cur_memseg->next = memsegs; 2427 } 2428 memsegs = cur_memseg; 2429 2430 /* 2431 * add_physmem() initializes the PSM part of the page 2432 * struct by calling the PSM back with add_physmem_cb(). 2433 * In addition it coalesces pages into larger pages as 2434 * it initializes them. 2435 */ 2436 add_physmem(pp, num, base_pfn); 2437 cur_memseg++; 2438 availrmem_initial += num; 2439 availrmem += num; 2440 2441 pp += num; 2442 } 2443 2444 PRM_DEBUG(availrmem_initial); 2445 PRM_DEBUG(availrmem); 2446 PRM_DEBUG(freemem); 2447 build_pfn_hash(); 2448 return (pages_done); 2449 } 2450 2451 /* 2452 * Kernel VM initialization. 2453 */ 2454 static void 2455 kvm_init(void) 2456 { 2457 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2458 2459 /* 2460 * Put the kernel segments in kernel address space. 2461 */ 2462 rw_enter(&kas.a_lock, RW_WRITER); 2463 as_avlinit(&kas); 2464 2465 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2466 (void) segkmem_create(&ktextseg); 2467 2468 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2469 (void) segkmem_create(&kvalloc); 2470 2471 (void) seg_attach(&kas, kernelheap, 2472 ekernelheap - kernelheap, &kvseg); 2473 (void) segkmem_create(&kvseg); 2474 2475 if (core_size > 0) { 2476 PRM_POINT("attaching kvseg_core"); 2477 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2478 &kvseg_core); 2479 (void) segkmem_create(&kvseg_core); 2480 } 2481 2482 if (segziosize > 0) { 2483 PRM_POINT("attaching segzio"); 2484 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2485 &kzioseg); 2486 (void) segkmem_zio_create(&kzioseg); 2487 2488 /* create zio area covering new segment */ 2489 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2490 } 2491 2492 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2493 (void) segkmem_create(&kdebugseg); 2494 2495 rw_exit(&kas.a_lock); 2496 2497 /* 2498 * Ensure that the red zone at kernelbase is never accessible. 2499 */ 2500 PRM_POINT("protecting redzone"); 2501 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2502 2503 /* 2504 * Make the text writable so that it can be hot patched by DTrace. 2505 */ 2506 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2507 PROT_READ | PROT_WRITE | PROT_EXEC); 2508 2509 /* 2510 * Make data writable until end. 2511 */ 2512 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2513 PROT_READ | PROT_WRITE | PROT_EXEC); 2514 } 2515 2516 #ifndef __xpv 2517 /* 2518 * Solaris adds an entry for Write Combining caching to the PAT 2519 */ 2520 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2521 2522 void 2523 pat_sync(void) 2524 { 2525 ulong_t cr0, cr0_orig, cr4; 2526 2527 if (!(x86_feature & X86_PAT)) 2528 return; 2529 cr0_orig = cr0 = getcr0(); 2530 cr4 = getcr4(); 2531 2532 /* disable caching and flush all caches and TLBs */ 2533 cr0 |= CR0_CD; 2534 cr0 &= ~CR0_NW; 2535 setcr0(cr0); 2536 invalidate_cache(); 2537 if (cr4 & CR4_PGE) { 2538 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2539 setcr4(cr4); 2540 } else { 2541 reload_cr3(); 2542 } 2543 2544 /* add our entry to the PAT */ 2545 wrmsr(REG_PAT, pat_attr_reg); 2546 2547 /* flush TLBs and cache again, then reenable cr0 caching */ 2548 if (cr4 & CR4_PGE) { 2549 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2550 setcr4(cr4); 2551 } else { 2552 reload_cr3(); 2553 } 2554 invalidate_cache(); 2555 setcr0(cr0_orig); 2556 } 2557 2558 #endif /* !__xpv */ 2559 2560 #if defined(_SOFT_HOSTID) 2561 /* 2562 * On platforms that do not have a hardware serial number, attempt 2563 * to set one based on the contents of /etc/hostid. If this file does 2564 * not exist, assume that we are to generate a new hostid and set 2565 * it in the kernel, for subsequent saving by a userland process 2566 * once the system is up and the root filesystem is mounted r/w. 2567 * 2568 * In order to gracefully support upgrade on OpenSolaris, if 2569 * /etc/hostid does not exist, we will attempt to get a serial number 2570 * using the legacy method (/kernel/misc/sysinit). 2571 * 2572 * In an attempt to make the hostid less prone to abuse 2573 * (for license circumvention, etc), we store it in /etc/hostid 2574 * in rot47 format. 2575 */ 2576 extern volatile unsigned long tenmicrodata; 2577 static int atoi(char *); 2578 2579 static int32_t 2580 set_soft_hostid(void) 2581 { 2582 struct _buf *file; 2583 char tokbuf[MAXNAMELEN]; 2584 token_t token; 2585 int done = 0; 2586 u_longlong_t tmp; 2587 int i; 2588 int32_t hostid = -1; 2589 unsigned char *c; 2590 hrtime_t tsc; 2591 2592 /* 2593 * If /etc/hostid file not found, we'd like to get a pseudo 2594 * random number to use at the hostid. A nice way to do this 2595 * is to read the real time clock. To remain xen-compatible, 2596 * we can't poke the real hardware, so we use tsc_read() to 2597 * read the real time clock. However, there is an ominous 2598 * warning in tsc_read that says it can return zero, so we 2599 * deal with that possibility by falling back to using the 2600 * (hopefully random enough) value in tenmicrodata. 2601 */ 2602 2603 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2604 /* 2605 * hostid file not found - try to load sysinit module 2606 * and see if it has a nonzero hostid value...use that 2607 * instead of generating a new hostid here if so. 2608 */ 2609 if ((i = modload("misc", "sysinit")) != -1) { 2610 if (strlen(hw_serial) > 0) 2611 hostid = (int32_t)atoi(hw_serial); 2612 (void) modunload(i); 2613 } 2614 if (hostid == -1) { 2615 tsc = tsc_read(); 2616 if (tsc == 0) /* tsc_read can return zero sometimes */ 2617 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2618 else 2619 hostid = (int32_t)tsc & 0x0CFFFFF; 2620 } 2621 } else { 2622 /* hostid file found */ 2623 while (!done) { 2624 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2625 2626 switch (token) { 2627 case POUND: 2628 /* 2629 * skip comments 2630 */ 2631 kobj_find_eol(file); 2632 break; 2633 case STRING: 2634 /* 2635 * un-rot47 - obviously this 2636 * nonsense is ascii-specific 2637 */ 2638 for (c = (unsigned char *)tokbuf; 2639 *c != '\0'; c++) { 2640 *c += 47; 2641 if (*c > '~') 2642 *c -= 94; 2643 else if (*c < '!') 2644 *c += 94; 2645 } 2646 /* 2647 * now we should have a real number 2648 */ 2649 2650 if (kobj_getvalue(tokbuf, &tmp) != 0) 2651 kobj_file_err(CE_WARN, file, 2652 "Bad value %s for hostid", 2653 tokbuf); 2654 else 2655 hostid = (int32_t)tmp; 2656 2657 break; 2658 case EOF: 2659 done = 1; 2660 /* FALLTHROUGH */ 2661 case NEWLINE: 2662 kobj_newline(file); 2663 break; 2664 default: 2665 break; 2666 2667 } 2668 } 2669 if (hostid == -1) /* didn't find a hostid string */ 2670 kobj_file_err(CE_WARN, file, 2671 "hostid missing or corrupt"); 2672 2673 kobj_close_file(file); 2674 } 2675 /* 2676 * hostid is now the value read from /etc/hostid, or the 2677 * new hostid we generated in this routine or -1 if not set. 2678 */ 2679 return (hostid); 2680 } 2681 2682 static int 2683 atoi(char *p) 2684 { 2685 int i = 0; 2686 2687 while (*p != '\0') 2688 i = 10 * i + (*p++ - '0'); 2689 2690 return (i); 2691 } 2692 2693 #endif /* _SOFT_HOSTID */ 2694 2695 void 2696 get_system_configuration(void) 2697 { 2698 char prop[32]; 2699 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2700 2701 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2702 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2703 kobj_getvalue(prop, &nodes_ll) == -1 || 2704 nodes_ll > MAXNODES || 2705 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2706 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2707 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2708 system_hardware.hd_nodes = 1; 2709 system_hardware.hd_cpus_per_node = 0; 2710 } else { 2711 system_hardware.hd_nodes = (int)nodes_ll; 2712 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2713 } 2714 2715 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2716 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2717 kobj_getvalue(prop, &lvalue) == -1) 2718 eprom_kernelbase = NULL; 2719 else 2720 eprom_kernelbase = (uintptr_t)lvalue; 2721 2722 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2723 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2724 kobj_getvalue(prop, &lvalue) == -1) 2725 segmapsize = SEGMAPDEFAULT; 2726 else 2727 segmapsize = (uintptr_t)lvalue; 2728 2729 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2730 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2731 kobj_getvalue(prop, &lvalue) == -1) 2732 segmapfreelists = 0; /* use segmap driver default */ 2733 else 2734 segmapfreelists = (int)lvalue; 2735 2736 /* physmem used to be here, but moved much earlier to fakebop.c */ 2737 } 2738 2739 /* 2740 * Add to a memory list. 2741 * start = start of new memory segment 2742 * len = length of new memory segment in bytes 2743 * new = pointer to a new struct memlist 2744 * memlistp = memory list to which to add segment. 2745 */ 2746 void 2747 memlist_add( 2748 uint64_t start, 2749 uint64_t len, 2750 struct memlist *new, 2751 struct memlist **memlistp) 2752 { 2753 struct memlist *cur; 2754 uint64_t end = start + len; 2755 2756 new->address = start; 2757 new->size = len; 2758 2759 cur = *memlistp; 2760 2761 while (cur) { 2762 if (cur->address >= end) { 2763 new->next = cur; 2764 *memlistp = new; 2765 new->prev = cur->prev; 2766 cur->prev = new; 2767 return; 2768 } 2769 ASSERT(cur->address + cur->size <= start); 2770 if (cur->next == NULL) { 2771 cur->next = new; 2772 new->prev = cur; 2773 new->next = NULL; 2774 return; 2775 } 2776 memlistp = &cur->next; 2777 cur = cur->next; 2778 } 2779 } 2780 2781 void 2782 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2783 { 2784 size_t tsize = e_modtext - modtext; 2785 size_t dsize = e_moddata - moddata; 2786 2787 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2788 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2789 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2790 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2791 } 2792 2793 caddr_t 2794 kobj_text_alloc(vmem_t *arena, size_t size) 2795 { 2796 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2797 } 2798 2799 /*ARGSUSED*/ 2800 caddr_t 2801 kobj_texthole_alloc(caddr_t addr, size_t size) 2802 { 2803 panic("unexpected call to kobj_texthole_alloc()"); 2804 /*NOTREACHED*/ 2805 return (0); 2806 } 2807 2808 /*ARGSUSED*/ 2809 void 2810 kobj_texthole_free(caddr_t addr, size_t size) 2811 { 2812 panic("unexpected call to kobj_texthole_free()"); 2813 } 2814 2815 /* 2816 * This is called just after configure() in startup(). 2817 * 2818 * The ISALIST concept is a bit hopeless on Intel, because 2819 * there's no guarantee of an ever-more-capable processor 2820 * given that various parts of the instruction set may appear 2821 * and disappear between different implementations. 2822 * 2823 * While it would be possible to correct it and even enhance 2824 * it somewhat, the explicit hardware capability bitmask allows 2825 * more flexibility. 2826 * 2827 * So, we just leave this alone. 2828 */ 2829 void 2830 setx86isalist(void) 2831 { 2832 char *tp; 2833 size_t len; 2834 extern char *isa_list; 2835 2836 #define TBUFSIZE 1024 2837 2838 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2839 *tp = '\0'; 2840 2841 #if defined(__amd64) 2842 (void) strcpy(tp, "amd64 "); 2843 #endif 2844 2845 switch (x86_vendor) { 2846 case X86_VENDOR_Intel: 2847 case X86_VENDOR_AMD: 2848 case X86_VENDOR_TM: 2849 if (x86_feature & X86_CMOV) { 2850 /* 2851 * Pentium Pro or later 2852 */ 2853 (void) strcat(tp, "pentium_pro"); 2854 (void) strcat(tp, x86_feature & X86_MMX ? 2855 "+mmx pentium_pro " : " "); 2856 } 2857 /*FALLTHROUGH*/ 2858 case X86_VENDOR_Cyrix: 2859 /* 2860 * The Cyrix 6x86 does not have any Pentium features 2861 * accessible while not at privilege level 0. 2862 */ 2863 if (x86_feature & X86_CPUID) { 2864 (void) strcat(tp, "pentium"); 2865 (void) strcat(tp, x86_feature & X86_MMX ? 2866 "+mmx pentium " : " "); 2867 } 2868 break; 2869 default: 2870 break; 2871 } 2872 (void) strcat(tp, "i486 i386 i86"); 2873 len = strlen(tp) + 1; /* account for NULL at end of string */ 2874 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2875 kmem_free(tp, TBUFSIZE); 2876 2877 #undef TBUFSIZE 2878 } 2879 2880 2881 #ifdef __amd64 2882 2883 void * 2884 device_arena_alloc(size_t size, int vm_flag) 2885 { 2886 return (vmem_alloc(device_arena, size, vm_flag)); 2887 } 2888 2889 void 2890 device_arena_free(void *vaddr, size_t size) 2891 { 2892 vmem_free(device_arena, vaddr, size); 2893 } 2894 2895 #else /* __i386 */ 2896 2897 void * 2898 device_arena_alloc(size_t size, int vm_flag) 2899 { 2900 caddr_t vaddr; 2901 uintptr_t v; 2902 size_t start; 2903 size_t end; 2904 2905 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2906 if (vaddr == NULL) 2907 return (NULL); 2908 2909 v = (uintptr_t)vaddr; 2910 ASSERT(v >= kernelbase); 2911 ASSERT(v + size <= valloc_base); 2912 2913 start = btop(v - kernelbase); 2914 end = btop(v + size - 1 - kernelbase); 2915 ASSERT(start < toxic_bit_map_len); 2916 ASSERT(end < toxic_bit_map_len); 2917 2918 while (start <= end) { 2919 BT_ATOMIC_SET(toxic_bit_map, start); 2920 ++start; 2921 } 2922 return (vaddr); 2923 } 2924 2925 void 2926 device_arena_free(void *vaddr, size_t size) 2927 { 2928 uintptr_t v = (uintptr_t)vaddr; 2929 size_t start; 2930 size_t end; 2931 2932 ASSERT(v >= kernelbase); 2933 ASSERT(v + size <= valloc_base); 2934 2935 start = btop(v - kernelbase); 2936 end = btop(v + size - 1 - kernelbase); 2937 ASSERT(start < toxic_bit_map_len); 2938 ASSERT(end < toxic_bit_map_len); 2939 2940 while (start <= end) { 2941 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2942 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2943 ++start; 2944 } 2945 vmem_free(heap_arena, vaddr, size); 2946 } 2947 2948 /* 2949 * returns 1st address in range that is in device arena, or NULL 2950 * if len is not NULL it returns the length of the toxic range 2951 */ 2952 void * 2953 device_arena_contains(void *vaddr, size_t size, size_t *len) 2954 { 2955 uintptr_t v = (uintptr_t)vaddr; 2956 uintptr_t eaddr = v + size; 2957 size_t start; 2958 size_t end; 2959 2960 /* 2961 * if called very early by kmdb, just return NULL 2962 */ 2963 if (toxic_bit_map == NULL) 2964 return (NULL); 2965 2966 /* 2967 * First check if we're completely outside the bitmap range. 2968 */ 2969 if (v >= valloc_base || eaddr < kernelbase) 2970 return (NULL); 2971 2972 /* 2973 * Trim ends of search to look at only what the bitmap covers. 2974 */ 2975 if (v < kernelbase) 2976 v = kernelbase; 2977 start = btop(v - kernelbase); 2978 end = btop(eaddr - kernelbase); 2979 if (end >= toxic_bit_map_len) 2980 end = toxic_bit_map_len; 2981 2982 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2983 return (NULL); 2984 2985 v = kernelbase + ptob(start); 2986 if (len != NULL) 2987 *len = ptob(end - start); 2988 return ((void *)v); 2989 } 2990 2991 #endif /* __i386 */ 2992