xref: /titanic_51/usr/src/uts/i86pc/os/startup.c (revision 4e9cfc9a015e8ca7d41f7d018c74dc8a692305b3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/t_lock.h>
30 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/signal.h>
33 #include <sys/systm.h>
34 #include <sys/user.h>
35 #include <sys/mman.h>
36 #include <sys/vm.h>
37 #include <sys/conf.h>
38 #include <sys/avintr.h>
39 #include <sys/autoconf.h>
40 #include <sys/disp.h>
41 #include <sys/class.h>
42 #include <sys/bitmap.h>
43 
44 #include <sys/privregs.h>
45 
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/kmem.h>
49 #include <sys/mem.h>
50 #include <sys/kstat.h>
51 
52 #include <sys/reboot.h>
53 
54 #include <sys/cred.h>
55 #include <sys/vnode.h>
56 #include <sys/file.h>
57 
58 #include <sys/procfs.h>
59 
60 #include <sys/vfs.h>
61 #include <sys/cmn_err.h>
62 #include <sys/utsname.h>
63 #include <sys/debug.h>
64 #include <sys/kdi.h>
65 
66 #include <sys/dumphdr.h>
67 #include <sys/bootconf.h>
68 #include <sys/varargs.h>
69 #include <sys/promif.h>
70 #include <sys/modctl.h>
71 
72 #include <sys/sunddi.h>
73 #include <sys/sunndi.h>
74 #include <sys/ndi_impldefs.h>
75 #include <sys/ddidmareq.h>
76 #include <sys/psw.h>
77 #include <sys/regset.h>
78 #include <sys/clock.h>
79 #include <sys/pte.h>
80 #include <sys/tss.h>
81 #include <sys/stack.h>
82 #include <sys/trap.h>
83 #include <sys/fp.h>
84 #include <vm/kboot_mmu.h>
85 #include <vm/anon.h>
86 #include <vm/as.h>
87 #include <vm/page.h>
88 #include <vm/seg.h>
89 #include <vm/seg_dev.h>
90 #include <vm/seg_kmem.h>
91 #include <vm/seg_kpm.h>
92 #include <vm/seg_map.h>
93 #include <vm/seg_vn.h>
94 #include <vm/seg_kp.h>
95 #include <sys/memnode.h>
96 #include <vm/vm_dep.h>
97 #include <sys/thread.h>
98 #include <sys/sysconf.h>
99 #include <sys/vm_machparam.h>
100 #include <sys/archsystm.h>
101 #include <sys/machsystm.h>
102 #include <vm/hat.h>
103 #include <vm/hat_i86.h>
104 #include <sys/pmem.h>
105 #include <sys/smp_impldefs.h>
106 #include <sys/x86_archext.h>
107 #include <sys/segments.h>
108 #include <sys/clconf.h>
109 #include <sys/kobj.h>
110 #include <sys/kobj_lex.h>
111 #include <sys/cpc_impl.h>
112 #include <sys/x86_archext.h>
113 #include <sys/cpu_module.h>
114 #include <sys/smbios.h>
115 #include <sys/debug_info.h>
116 #include <sys/bootinfo.h>
117 #include <sys/ddi_timer.h>
118 
119 #ifdef __xpv
120 
121 #include <sys/hypervisor.h>
122 #include <sys/xen_mmu.h>
123 #include <sys/evtchn_impl.h>
124 #include <sys/gnttab.h>
125 #include <sys/xpv_panic.h>
126 #include <xen/sys/xenbus_comms.h>
127 #include <xen/public/physdev.h>
128 
129 extern void xen_late_startup(void);
130 
131 struct xen_evt_data cpu0_evt_data;
132 
133 #endif /* __xpv */
134 
135 extern void progressbar_init(void);
136 extern void progressbar_start(void);
137 extern void brand_init(void);
138 
139 extern int size_pse_array(pgcnt_t, int);
140 
141 /*
142  * XXX make declaration below "static" when drivers no longer use this
143  * interface.
144  */
145 extern caddr_t p0_va;	/* Virtual address for accessing physical page 0 */
146 
147 /*
148  * segkp
149  */
150 extern int segkp_fromheap;
151 
152 static void kvm_init(void);
153 static void startup_init(void);
154 static void startup_memlist(void);
155 static void startup_kmem(void);
156 static void startup_modules(void);
157 static void startup_vm(void);
158 static void startup_end(void);
159 static void layout_kernel_va(void);
160 
161 /*
162  * Declare these as initialized data so we can patch them.
163  */
164 #ifdef __i386
165 
166 /*
167  * Due to virtual address space limitations running in 32 bit mode, restrict
168  * the amount of physical memory configured to a max of PHYSMEM pages (16g).
169  *
170  * If the physical max memory size of 64g were allowed to be configured, the
171  * size of user virtual address space will be less than 1g. A limited user
172  * address space greatly reduces the range of applications that can run.
173  *
174  * If more physical memory than PHYSMEM is required, users should preferably
175  * run in 64 bit mode which has far looser virtual address space limitations.
176  *
177  * If 64 bit mode is not available (as in IA32) and/or more physical memory
178  * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
179  * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
180  * should also be carefully tuned to balance out the need of the user
181  * application while minimizing the risk of kernel heap exhaustion due to
182  * kernelbase being set too high.
183  */
184 #define	PHYSMEM	0x400000
185 
186 #else /* __amd64 */
187 
188 /*
189  * For now we can handle memory with physical addresses up to about
190  * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
191  * half the VA space for seg_kpm. When systems get bigger than 64TB this
192  * code will need revisiting. There is an implicit assumption that there
193  * are no *huge* holes in the physical address space too.
194  */
195 #define	TERABYTE		(1ul << 40)
196 #define	PHYSMEM_MAX64		mmu_btop(64 * TERABYTE)
197 #define	PHYSMEM			PHYSMEM_MAX64
198 #define	AMD64_VA_HOLE_END	0xFFFF800000000000ul
199 
200 #endif /* __amd64 */
201 
202 pgcnt_t physmem = PHYSMEM;
203 pgcnt_t obp_pages;	/* Memory used by PROM for its text and data */
204 
205 char *kobj_file_buf;
206 int kobj_file_bufsize;	/* set in /etc/system */
207 
208 /* Global variables for MP support. Used in mp_startup */
209 caddr_t	rm_platter_va;
210 uint32_t rm_platter_pa;
211 
212 int	auto_lpg_disable = 1;
213 
214 /*
215  * Some CPUs have holes in the middle of the 64-bit virtual address range.
216  */
217 uintptr_t hole_start, hole_end;
218 
219 /*
220  * kpm mapping window
221  */
222 caddr_t kpm_vbase;
223 size_t  kpm_size;
224 static int kpm_desired;
225 #ifdef __amd64
226 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
227 #endif
228 
229 /*
230  * Configuration parameters set at boot time.
231  */
232 
233 caddr_t econtig;		/* end of first block of contiguous kernel */
234 
235 struct bootops		*bootops = 0;	/* passed in from boot */
236 struct bootops		**bootopsp;
237 struct boot_syscalls	*sysp;		/* passed in from boot */
238 
239 char bootblock_fstype[16];
240 
241 char kern_bootargs[OBP_MAXPATHLEN];
242 
243 /*
244  * ZFS zio segment.  This allows us to exclude large portions of ZFS data that
245  * gets cached in kmem caches on the heap.  If this is set to zero, we allocate
246  * zio buffers from their own segment, otherwise they are allocated from the
247  * heap.  The optimization of allocating zio buffers from their own segment is
248  * only valid on 64-bit kernels.
249  */
250 #if defined(__amd64)
251 int segzio_fromheap = 0;
252 #else
253 int segzio_fromheap = 1;
254 #endif
255 
256 /*
257  * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
258  * depends on number of BOP_ALLOC calls made and requested size, memory size
259  * combination and whether boot.bin memory needs to be freed.
260  */
261 #define	POSS_NEW_FRAGMENTS	12
262 
263 /*
264  * VM data structures
265  */
266 long page_hashsz;		/* Size of page hash table (power of two) */
267 struct page *pp_base;		/* Base of initial system page struct array */
268 struct page **page_hash;	/* Page hash table */
269 pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
270 size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
271 int pse_shift;			/* log2(pse_table_size) */
272 struct seg ktextseg;		/* Segment used for kernel executable image */
273 struct seg kvalloc;		/* Segment used for "valloc" mapping */
274 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
275 struct seg kmapseg;		/* Segment used for generic kernel mappings */
276 struct seg kdebugseg;		/* Segment used for the kernel debugger */
277 
278 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
279 static struct seg *segmap = &kmapseg;	/* easier to use name for in here */
280 
281 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
282 
283 #if defined(__amd64)
284 struct seg kvseg_core;		/* Segment used for the core heap */
285 struct seg kpmseg;		/* Segment used for physical mapping */
286 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
287 #else
288 struct seg *segkpm = NULL;	/* Unused on IA32 */
289 #endif
290 
291 caddr_t segkp_base;		/* Base address of segkp */
292 caddr_t segzio_base;		/* Base address of segzio */
293 #if defined(__amd64)
294 pgcnt_t segkpsize = btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
295 #else
296 pgcnt_t segkpsize = 0;
297 #endif
298 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
299 
300 /*
301  * VA range available to the debugger
302  */
303 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
304 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
305 
306 struct memseg *memseg_base;
307 struct vnode unused_pages_vp;
308 
309 #define	FOURGB	0x100000000LL
310 
311 struct memlist *memlist;
312 
313 caddr_t s_text;		/* start of kernel text segment */
314 caddr_t e_text;		/* end of kernel text segment */
315 caddr_t s_data;		/* start of kernel data segment */
316 caddr_t e_data;		/* end of kernel data segment */
317 caddr_t modtext;	/* start of loadable module text reserved */
318 caddr_t e_modtext;	/* end of loadable module text reserved */
319 caddr_t moddata;	/* start of loadable module data reserved */
320 caddr_t e_moddata;	/* end of loadable module data reserved */
321 
322 struct memlist *phys_install;	/* Total installed physical memory */
323 struct memlist *phys_avail;	/* Total available physical memory */
324 
325 /*
326  * kphysm_init returns the number of pages that were processed
327  */
328 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
329 
330 #define	IO_PROP_SIZE	64	/* device property size */
331 
332 /*
333  * a couple useful roundup macros
334  */
335 #define	ROUND_UP_PAGE(x)	\
336 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
337 #define	ROUND_UP_LPAGE(x)	\
338 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
339 #define	ROUND_UP_4MEG(x)	\
340 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
341 #define	ROUND_UP_TOPLEVEL(x)	\
342 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
343 
344 /*
345  *	32-bit Kernel's Virtual memory layout.
346  *		+-----------------------+
347  *		|			|
348  * 0xFFC00000  -|-----------------------|- ARGSBASE
349  *		|	debugger	|
350  * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
351  *		|      Kernel Data	|
352  * 0xFEC00000  -|-----------------------|
353  *              |      Kernel Text	|
354  * 0xFE800000  -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
355  *		|---       GDT       ---|- GDT page (GDT_VA)
356  *		|---    debug info   ---|- debug info (DEBUG_INFO_VA)
357  *		|			|
358  * 		|   page_t structures	|
359  * 		|   memsegs, memlists, 	|
360  * 		|   page hash, etc.	|
361  * ---	       -|-----------------------|- ekernelheap, valloc_base (floating)
362  *		|			|  (segkp is just an arena in the heap)
363  *		|			|
364  *		|	kvseg		|
365  *		|			|
366  *		|			|
367  * ---         -|-----------------------|- kernelheap (floating)
368  * 		|        Segkmap	|
369  * 0xC3002000  -|-----------------------|- segmap_start (floating)
370  *		|	Red Zone	|
371  * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
372  *		|			|			||
373  *		|     Shared objects	|			\/
374  *		|			|
375  *		:			:
376  *		|	user data	|
377  *		|-----------------------|
378  *		|	user text	|
379  * 0x08048000  -|-----------------------|
380  *		|	user stack	|
381  *		:			:
382  *		|	invalid		|
383  * 0x00000000	+-----------------------+
384  *
385  *
386  *		64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
387  *			+-----------------------+
388  *			|			|
389  * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
390  *			|	debugger (?)	|
391  * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
392  *			|      unused    	|
393  *			+-----------------------+
394  *			|      Kernel Data	|
395  * 0xFFFFFFFF.FBC00000  |-----------------------|
396  *			|      Kernel Text	|
397  * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
398  *			|---       GDT       ---|- GDT page (GDT_VA)
399  *			|---    debug info   ---|- debug info (DEBUG_INFO_VA)
400  *			|			|
401  * 			|      Core heap	| (used for loadable modules)
402  * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
403  *			|	 Kernel		|
404  *			|	  heap		|
405  * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
406  *			|	 segmap		|
407  * 0xFFFFFXXX.XXX00000  |-----------------------|- segmap_start (floating)
408  *			|    device mappings	|
409  * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
410  *			|	  segzio	|
411  * 0xFFFFFXXX.XXX00000  |-----------------------|- segzio_base (floating)
412  *			|	  segkp		|
413  * ---                  |-----------------------|- segkp_base (floating)
414  * 			|   page_t structures	|  valloc_base + valloc_sz
415  * 			|   memsegs, memlists, 	|
416  * 			|   page hash, etc.	|
417  * 0xFFFFFF00.00000000  |-----------------------|- valloc_base (lower if > 1TB)
418  *			|	 segkpm		|
419  * 0xFFFFFE00.00000000  |-----------------------|
420  *			|	Red Zone	|
421  * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE (lower if > 1TB)
422  *			|     User stack	|- User space memory
423  * 			|			|
424  * 			| shared objects, etc	|	(grows downwards)
425  *			:			:
426  * 			|			|
427  * 0xFFFF8000.00000000  |-----------------------|
428  * 			|			|
429  * 			| VA Hole / unused	|
430  * 			|			|
431  * 0x00008000.00000000  |-----------------------|
432  *			|			|
433  *			|			|
434  *			:			:
435  *			|	user heap	|	(grows upwards)
436  *			|			|
437  *			|	user data	|
438  *			|-----------------------|
439  *			|	user text	|
440  * 0x00000000.04000000  |-----------------------|
441  *			|	invalid		|
442  * 0x00000000.00000000	+-----------------------+
443  *
444  * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
445  * kernel, except that userlimit is raised to 0xfe000000
446  *
447  * Floating values:
448  *
449  * valloc_base: start of the kernel's memory management/tracking data
450  * structures.  This region contains page_t structures for
451  * physical memory, memsegs, memlists, and the page hash.
452  *
453  * core_base: start of the kernel's "core" heap area on 64-bit systems.
454  * This area is intended to be used for global data as well as for module
455  * text/data that does not fit into the nucleus pages.  The core heap is
456  * restricted to a 2GB range, allowing every address within it to be
457  * accessed using rip-relative addressing
458  *
459  * ekernelheap: end of kernelheap and start of segmap.
460  *
461  * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
462  * above a red zone that separates the user's address space from the
463  * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
464  *
465  * segmap_start: start of segmap. The length of segmap can be modified
466  * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated).
467  * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems.
468  *
469  * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
470  * decreased by 2X the size required for page_t.  This allows the kernel
471  * heap to grow in size with physical memory.  With sizeof(page_t) == 80
472  * bytes, the following shows the values of kernelbase and kernel heap
473  * sizes for different memory configurations (assuming default segmap and
474  * segkp sizes).
475  *
476  *	mem	size for	kernelbase	kernel heap
477  *	size	page_t's			size
478  *	----	---------	----------	-----------
479  *	1gb	0x01400000	0xd1800000	684MB
480  *	2gb	0x02800000	0xcf000000	704MB
481  *	4gb	0x05000000	0xca000000	744MB
482  *	6gb	0x07800000	0xc5000000	784MB
483  *	8gb	0x0a000000	0xc0000000	824MB
484  *	16gb	0x14000000	0xac000000	984MB
485  *	32gb	0x28000000	0x84000000	1304MB
486  *	64gb	0x50000000	0x34000000	1944MB (*)
487  *
488  * kernelbase is less than the abi minimum of 0xc0000000 for memory
489  * configurations above 8gb.
490  *
491  * (*) support for memory configurations above 32gb will require manual tuning
492  * of kernelbase to balance out the need of user applications.
493  */
494 
495 /* real-time-clock initialization parameters */
496 extern time_t process_rtc_config_file(void);
497 
498 uintptr_t	kernelbase;
499 uintptr_t	postbootkernelbase;	/* not set till boot loader is gone */
500 uintptr_t	eprom_kernelbase;
501 size_t		segmapsize;
502 uintptr_t	segmap_start;
503 int		segmapfreelists;
504 pgcnt_t		npages;
505 pgcnt_t		orig_npages;
506 size_t		core_size;		/* size of "core" heap */
507 uintptr_t	core_base;		/* base address of "core" heap */
508 
509 /*
510  * List of bootstrap pages. We mark these as allocated in startup.
511  * release_bootstrap() will free them when we're completely done with
512  * the bootstrap.
513  */
514 static page_t *bootpages;
515 
516 /*
517  * boot time pages that have a vnode from the ramdisk will keep that forever.
518  */
519 static page_t *rd_pages;
520 
521 struct system_hardware system_hardware;
522 
523 /*
524  * Enable some debugging messages concerning memory usage...
525  */
526 static void
527 print_memlist(char *title, struct memlist *mp)
528 {
529 	prom_printf("MEMLIST: %s:\n", title);
530 	while (mp != NULL)  {
531 		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
532 		    mp->address, mp->size);
533 		mp = mp->next;
534 	}
535 }
536 
537 /*
538  * XX64 need a comment here.. are these just default values, surely
539  * we read the "cpuid" type information to figure this out.
540  */
541 int	l2cache_sz = 0x80000;
542 int	l2cache_linesz = 0x40;
543 int	l2cache_assoc = 1;
544 
545 static size_t	textrepl_min_gb = 10;
546 
547 /*
548  * on 64 bit we use a predifined VA range for mapping devices in the kernel
549  * on 32 bit the mappings are intermixed in the heap, so we use a bit map
550  */
551 #ifdef __amd64
552 
553 vmem_t		*device_arena;
554 uintptr_t	toxic_addr = (uintptr_t)NULL;
555 size_t		toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
556 
557 #else	/* __i386 */
558 
559 ulong_t		*toxic_bit_map;	/* one bit for each 4k of VA in heap_arena */
560 size_t		toxic_bit_map_len = 0;	/* in bits */
561 
562 #endif	/* __i386 */
563 
564 /*
565  * Simple boot time debug facilities
566  */
567 static char *prm_dbg_str[] = {
568 	"%s:%d: '%s' is 0x%x\n",
569 	"%s:%d: '%s' is 0x%llx\n"
570 };
571 
572 int prom_debug;
573 
574 #define	PRM_DEBUG(q)	if (prom_debug) 	\
575 	prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
576 #define	PRM_POINT(q)	if (prom_debug) 	\
577 	prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
578 
579 /*
580  * This structure is used to keep track of the intial allocations
581  * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
582  * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
583  */
584 #define	NUM_ALLOCATIONS 7
585 int num_allocations = 0;
586 struct {
587 	void **al_ptr;
588 	size_t al_size;
589 } allocations[NUM_ALLOCATIONS];
590 size_t valloc_sz = 0;
591 uintptr_t valloc_base;
592 
593 #define	ADD_TO_ALLOCATIONS(ptr, size) {					\
594 		size = ROUND_UP_PAGE(size);		 		\
595 		if (num_allocations == NUM_ALLOCATIONS)			\
596 			panic("too many ADD_TO_ALLOCATIONS()");		\
597 		allocations[num_allocations].al_ptr = (void**)&ptr;	\
598 		allocations[num_allocations].al_size = size;		\
599 		valloc_sz += size;					\
600 		++num_allocations;				 	\
601 	}
602 
603 /*
604  * Allocate all the initial memory needed by the page allocator.
605  */
606 static void
607 perform_allocations(void)
608 {
609 	caddr_t mem;
610 	int i;
611 	int valloc_align;
612 
613 	PRM_DEBUG(valloc_base);
614 	PRM_DEBUG(valloc_sz);
615 	valloc_align = mmu.level_size[mmu.max_page_level > 0];
616 	mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
617 	if (mem != (caddr_t)valloc_base)
618 		panic("BOP_ALLOC() failed");
619 	bzero(mem, valloc_sz);
620 	for (i = 0; i < num_allocations; ++i) {
621 		*allocations[i].al_ptr = (void *)mem;
622 		mem += allocations[i].al_size;
623 	}
624 }
625 
626 /*
627  * Our world looks like this at startup time.
628  *
629  * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
630  * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
631  * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
632  * addresses are fixed in the binary at link time.
633  *
634  * On the text page:
635  * unix/genunix/krtld/module text loads.
636  *
637  * On the data page:
638  * unix/genunix/krtld/module data loads.
639  *
640  * Machine-dependent startup code
641  */
642 void
643 startup(void)
644 {
645 #if !defined(__xpv)
646 	extern void startup_bios_disk(void);
647 	extern void startup_pci_bios(void);
648 #endif
649 	/*
650 	 * Make sure that nobody tries to use sekpm until we have
651 	 * initialized it properly.
652 	 */
653 #if defined(__amd64)
654 	kpm_desired = 1;
655 #endif
656 	kpm_enable = 0;
657 
658 #if defined(__xpv)	/* XXPV fix me! */
659 	{
660 		extern int segvn_use_regions;
661 		segvn_use_regions = 0;
662 	}
663 #endif
664 	progressbar_init();
665 	startup_init();
666 	startup_memlist();
667 	startup_kmem();
668 	startup_vm();
669 #if !defined(__xpv)
670 	startup_pci_bios();
671 #endif
672 	startup_modules();
673 #if !defined(__xpv)
674 	startup_bios_disk();
675 #endif
676 	startup_end();
677 	progressbar_start();
678 }
679 
680 static void
681 startup_init()
682 {
683 	PRM_POINT("startup_init() starting...");
684 
685 	/*
686 	 * Complete the extraction of cpuid data
687 	 */
688 	cpuid_pass2(CPU);
689 
690 	(void) check_boot_version(BOP_GETVERSION(bootops));
691 
692 	/*
693 	 * Check for prom_debug in boot environment
694 	 */
695 	if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
696 		++prom_debug;
697 		PRM_POINT("prom_debug found in boot enviroment");
698 	}
699 
700 	/*
701 	 * Collect node, cpu and memory configuration information.
702 	 */
703 	get_system_configuration();
704 
705 	/*
706 	 * Halt if this is an unsupported processor.
707 	 */
708 	if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
709 		printf("\n486 processor (\"%s\") detected.\n",
710 		    CPU->cpu_brandstr);
711 		halt("This processor is not supported by this release "
712 		    "of Solaris.");
713 	}
714 
715 	PRM_POINT("startup_init() done");
716 }
717 
718 /*
719  * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
720  * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
721  * also filters out physical page zero.  There is some reliance on the
722  * boot loader allocating only a few contiguous physical memory chunks.
723  */
724 static void
725 avail_filter(uint64_t *addr, uint64_t *size)
726 {
727 	uintptr_t va;
728 	uintptr_t next_va;
729 	pfn_t pfn;
730 	uint64_t pfn_addr;
731 	uint64_t pfn_eaddr;
732 	uint_t prot;
733 	size_t len;
734 	uint_t change;
735 
736 	if (prom_debug)
737 		prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
738 		    *addr, *size);
739 
740 	/*
741 	 * page zero is required for BIOS.. never make it available
742 	 */
743 	if (*addr == 0) {
744 		*addr += MMU_PAGESIZE;
745 		*size -= MMU_PAGESIZE;
746 	}
747 
748 	/*
749 	 * First we trim from the front of the range. Since kbm_probe()
750 	 * walks ranges in virtual order, but addr/size are physical, we need
751 	 * to the list until no changes are seen.  This deals with the case
752 	 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
753 	 * but w < v.
754 	 */
755 	do {
756 		change = 0;
757 		for (va = KERNEL_TEXT;
758 		    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
759 		    va = next_va) {
760 
761 			next_va = va + len;
762 			pfn_addr = pfn_to_pa(pfn);
763 			pfn_eaddr = pfn_addr + len;
764 
765 			if (pfn_addr <= *addr && pfn_eaddr > *addr) {
766 				change = 1;
767 				while (*size > 0 && len > 0) {
768 					*addr += MMU_PAGESIZE;
769 					*size -= MMU_PAGESIZE;
770 					len -= MMU_PAGESIZE;
771 				}
772 			}
773 		}
774 		if (change && prom_debug)
775 			prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
776 			    *addr, *size);
777 	} while (change);
778 
779 	/*
780 	 * Trim pages from the end of the range.
781 	 */
782 	for (va = KERNEL_TEXT;
783 	    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
784 	    va = next_va) {
785 
786 		next_va = va + len;
787 		pfn_addr = pfn_to_pa(pfn);
788 
789 		if (pfn_addr >= *addr && pfn_addr < *addr + *size)
790 			*size = pfn_addr - *addr;
791 	}
792 
793 	if (prom_debug)
794 		prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
795 		    *addr, *size);
796 }
797 
798 static void
799 kpm_init()
800 {
801 	struct segkpm_crargs b;
802 
803 	/*
804 	 * These variables were all designed for sfmmu in which segkpm is
805 	 * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
806 	 * might use 2+ page sizes on a single machine, so none of these
807 	 * variables have a single correct value.  They are set up as if we
808 	 * always use a 4KB pagesize, which should do no harm.  In the long
809 	 * run, we should get rid of KPM's assumption that only a single
810 	 * pagesize is used.
811 	 */
812 	kpm_pgshft = MMU_PAGESHIFT;
813 	kpm_pgsz =  MMU_PAGESIZE;
814 	kpm_pgoff = MMU_PAGEOFFSET;
815 	kpmp2pshft = 0;
816 	kpmpnpgs = 1;
817 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
818 
819 	PRM_POINT("about to create segkpm");
820 	rw_enter(&kas.a_lock, RW_WRITER);
821 
822 	if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
823 		panic("cannot attach segkpm");
824 
825 	b.prot = PROT_READ | PROT_WRITE;
826 	b.nvcolors = 1;
827 
828 	if (segkpm_create(segkpm, (caddr_t)&b) != 0)
829 		panic("segkpm_create segkpm");
830 
831 	rw_exit(&kas.a_lock);
832 }
833 
834 /*
835  * The debug info page provides enough information to allow external
836  * inspectors (e.g. when running under a hypervisor) to bootstrap
837  * themselves into allowing full-blown kernel debugging.
838  */
839 static void
840 init_debug_info(void)
841 {
842 	caddr_t mem;
843 	debug_info_t *di;
844 
845 #ifndef __lint
846 	ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
847 #endif
848 
849 	mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
850 	    MMU_PAGESIZE);
851 
852 	if (mem != (caddr_t)DEBUG_INFO_VA)
853 		panic("BOP_ALLOC() failed");
854 	bzero(mem, MMU_PAGESIZE);
855 
856 	di = (debug_info_t *)mem;
857 
858 	di->di_magic = DEBUG_INFO_MAGIC;
859 	di->di_version = DEBUG_INFO_VERSION;
860 	di->di_modules = (uintptr_t)&modules;
861 	di->di_s_text = (uintptr_t)s_text;
862 	di->di_e_text = (uintptr_t)e_text;
863 	di->di_s_data = (uintptr_t)s_data;
864 	di->di_e_data = (uintptr_t)e_data;
865 	di->di_hat_htable_off = offsetof(hat_t, hat_htable);
866 	di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
867 }
868 
869 /*
870  * Build the memlists and other kernel essential memory system data structures.
871  * This is everything at valloc_base.
872  */
873 static void
874 startup_memlist(void)
875 {
876 	size_t memlist_sz;
877 	size_t memseg_sz;
878 	size_t pagehash_sz;
879 	size_t pp_sz;
880 	uintptr_t va;
881 	size_t len;
882 	uint_t prot;
883 	pfn_t pfn;
884 	int memblocks;
885 	caddr_t pagecolor_mem;
886 	size_t pagecolor_memsz;
887 	caddr_t page_ctrs_mem;
888 	size_t page_ctrs_size;
889 	size_t pse_table_alloc_size;
890 	struct memlist *current;
891 	extern void startup_build_mem_nodes(struct memlist *);
892 
893 	/* XX64 fix these - they should be in include files */
894 	extern size_t page_coloring_init(uint_t, int, int);
895 	extern void page_coloring_setup(caddr_t);
896 
897 	PRM_POINT("startup_memlist() starting...");
898 
899 	/*
900 	 * Use leftover large page nucleus text/data space for loadable modules.
901 	 * Use at most MODTEXT/MODDATA.
902 	 */
903 	len = kbm_nucleus_size;
904 	ASSERT(len > MMU_PAGESIZE);
905 
906 	moddata = (caddr_t)ROUND_UP_PAGE(e_data);
907 	e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
908 	if (e_moddata - moddata > MODDATA)
909 		e_moddata = moddata + MODDATA;
910 
911 	modtext = (caddr_t)ROUND_UP_PAGE(e_text);
912 	e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
913 	if (e_modtext - modtext > MODTEXT)
914 		e_modtext = modtext + MODTEXT;
915 
916 	econtig = e_moddata;
917 
918 	PRM_DEBUG(modtext);
919 	PRM_DEBUG(e_modtext);
920 	PRM_DEBUG(moddata);
921 	PRM_DEBUG(e_moddata);
922 	PRM_DEBUG(econtig);
923 
924 	/*
925 	 * Examine the boot loader physical memory map to find out:
926 	 * - total memory in system - physinstalled
927 	 * - the max physical address - physmax
928 	 * - the number of discontiguous segments of memory.
929 	 */
930 	if (prom_debug)
931 		print_memlist("boot physinstalled",
932 		    bootops->boot_mem->physinstalled);
933 	installed_top_size(bootops->boot_mem->physinstalled, &physmax,
934 	    &physinstalled, &memblocks);
935 	PRM_DEBUG(physmax);
936 	PRM_DEBUG(physinstalled);
937 	PRM_DEBUG(memblocks);
938 
939 	/*
940 	 * Initialize hat's mmu parameters.
941 	 * Check for enforce-prot-exec in boot environment. It's used to
942 	 * enable/disable support for the page table entry NX bit.
943 	 * The default is to enforce PROT_EXEC on processors that support NX.
944 	 * Boot seems to round up the "len", but 8 seems to be big enough.
945 	 */
946 	mmu_init();
947 
948 #ifdef	__i386
949 	/*
950 	 * physmax is lowered if there is more memory than can be
951 	 * physically addressed in 32 bit (PAE/non-PAE) modes.
952 	 */
953 	if (mmu.pae_hat) {
954 		if (PFN_ABOVE64G(physmax)) {
955 			physinstalled -= (physmax - (PFN_64G - 1));
956 			physmax = PFN_64G - 1;
957 		}
958 	} else {
959 		if (PFN_ABOVE4G(physmax)) {
960 			physinstalled -= (physmax - (PFN_4G - 1));
961 			physmax = PFN_4G - 1;
962 		}
963 	}
964 #endif
965 
966 	startup_build_mem_nodes(bootops->boot_mem->physinstalled);
967 
968 	if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
969 		int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
970 		char value[8];
971 
972 		if (len < 8)
973 			(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
974 		else
975 			(void) strcpy(value, "");
976 		if (strcmp(value, "off") == 0)
977 			mmu.pt_nx = 0;
978 	}
979 	PRM_DEBUG(mmu.pt_nx);
980 
981 	/*
982 	 * We will need page_t's for every page in the system, except for
983 	 * memory mapped at or above above the start of the kernel text segment.
984 	 *
985 	 * pages above e_modtext are attributed to kernel debugger (obp_pages)
986 	 */
987 	npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
988 	obp_pages = 0;
989 	va = KERNEL_TEXT;
990 	while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
991 		npages -= len >> MMU_PAGESHIFT;
992 		if (va >= (uintptr_t)e_moddata)
993 			obp_pages += len >> MMU_PAGESHIFT;
994 		va += len;
995 	}
996 	PRM_DEBUG(npages);
997 	PRM_DEBUG(obp_pages);
998 
999 	/*
1000 	 * If physmem is patched to be non-zero, use it instead of the computed
1001 	 * value unless it is larger than the actual amount of memory on hand.
1002 	 */
1003 	if (physmem == 0 || physmem > npages) {
1004 		physmem = npages;
1005 	} else if (physmem < npages) {
1006 		orig_npages = npages;
1007 		npages = physmem;
1008 	}
1009 	PRM_DEBUG(physmem);
1010 
1011 	/*
1012 	 * We now compute the sizes of all the  initial allocations for
1013 	 * structures the kernel needs in order do kmem_alloc(). These
1014 	 * include:
1015 	 *	memsegs
1016 	 *	memlists
1017 	 *	page hash table
1018 	 *	page_t's
1019 	 *	page coloring data structs
1020 	 */
1021 	memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1022 	ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1023 	PRM_DEBUG(memseg_sz);
1024 
1025 	/*
1026 	 * Reserve space for memlists. There's no real good way to know exactly
1027 	 * how much room we'll need, but this should be a good upper bound.
1028 	 */
1029 	memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1030 	    (memblocks + POSS_NEW_FRAGMENTS));
1031 	ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1032 	PRM_DEBUG(memlist_sz);
1033 
1034 	/*
1035 	 * The page structure hash table size is a power of 2
1036 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1037 	 */
1038 	page_hashsz = npages / PAGE_HASHAVELEN;
1039 	page_hashsz = 1 << highbit(page_hashsz);
1040 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1041 	ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1042 	PRM_DEBUG(pagehash_sz);
1043 
1044 	/*
1045 	 * Set aside room for the page structures themselves.
1046 	 */
1047 	PRM_DEBUG(npages);
1048 	pp_sz = sizeof (struct page) * npages;
1049 	ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1050 	PRM_DEBUG(pp_sz);
1051 
1052 	/*
1053 	 * determine l2 cache info and memory size for page coloring
1054 	 */
1055 	(void) getl2cacheinfo(CPU,
1056 	    &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1057 	pagecolor_memsz =
1058 	    page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1059 	ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1060 	PRM_DEBUG(pagecolor_memsz);
1061 
1062 	page_ctrs_size = page_ctrs_sz();
1063 	ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1064 	PRM_DEBUG(page_ctrs_size);
1065 
1066 	/*
1067 	 * Allocate the array that protects pp->p_selock.
1068 	 */
1069 	pse_shift = size_pse_array(physmem, max_ncpus);
1070 	pse_table_size = 1 << pse_shift;
1071 	pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1072 	ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1073 
1074 #if defined(__amd64)
1075 	valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1076 	valloc_base = VALLOC_BASE;
1077 
1078 	/*
1079 	 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1080 	 * for values of physmax up to 1 Terabyte. They need adjusting when
1081 	 * memory is at addresses above 1 TB.
1082 	 */
1083 	if (physmax + 1 > mmu_btop(TERABYTE)) {
1084 		uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1085 
1086 		/* Round to largest possible pagesize for now */
1087 		kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1088 
1089 		segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */
1090 
1091 		/* make sure we leave some space for user apps above hole */
1092 		segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1093 		if (segkpm_base > SEGKPM_BASE)
1094 			segkpm_base = SEGKPM_BASE;
1095 		PRM_DEBUG(segkpm_base);
1096 
1097 		valloc_base = segkpm_base + kpm_resv_amount;
1098 		PRM_DEBUG(valloc_base);
1099 	}
1100 #else	/* __i386 */
1101 	valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1102 	valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1103 	PRM_DEBUG(valloc_base);
1104 #endif	/* __i386 */
1105 
1106 	/*
1107 	 * do all the initial allocations
1108 	 */
1109 	perform_allocations();
1110 
1111 	/*
1112 	 * Build phys_install and phys_avail in kernel memspace.
1113 	 * - phys_install should be all memory in the system.
1114 	 * - phys_avail is phys_install minus any memory mapped before this
1115 	 *    point above KERNEL_TEXT.
1116 	 */
1117 	current = phys_install = memlist;
1118 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1119 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1120 		panic("physinstalled was too big!");
1121 	if (prom_debug)
1122 		print_memlist("phys_install", phys_install);
1123 
1124 	phys_avail = current;
1125 	PRM_POINT("Building phys_avail:\n");
1126 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1127 	    avail_filter);
1128 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1129 		panic("physavail was too big!");
1130 	if (prom_debug)
1131 		print_memlist("phys_avail", phys_avail);
1132 
1133 	/*
1134 	 * setup page coloring
1135 	 */
1136 	page_coloring_setup(pagecolor_mem);
1137 	page_lock_init();	/* currently a no-op */
1138 
1139 	/*
1140 	 * free page list counters
1141 	 */
1142 	(void) page_ctrs_alloc(page_ctrs_mem);
1143 
1144 	/*
1145 	 * Initialize the page structures from the memory lists.
1146 	 */
1147 	availrmem_initial = availrmem = freemem = 0;
1148 	PRM_POINT("Calling kphysm_init()...");
1149 	npages = kphysm_init(pp_base, npages);
1150 	PRM_POINT("kphysm_init() done");
1151 	PRM_DEBUG(npages);
1152 
1153 	init_debug_info();
1154 
1155 	/*
1156 	 * Now that page_t's have been initialized, remove all the
1157 	 * initial allocation pages from the kernel free page lists.
1158 	 */
1159 	boot_mapin((caddr_t)valloc_base, valloc_sz);
1160 	boot_mapin((caddr_t)GDT_VA, MMU_PAGESIZE);
1161 	boot_mapin((caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE);
1162 	PRM_POINT("startup_memlist() done");
1163 
1164 	PRM_DEBUG(valloc_sz);
1165 
1166 #if defined(__amd64)
1167 	if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1168 	    textrepl_min_gb && l2cache_sz <= 2 << 20) {
1169 		extern size_t textrepl_size_thresh;
1170 		textrepl_size_thresh = (16 << 20) - 1;
1171 	}
1172 #endif
1173 }
1174 
1175 /*
1176  * Layout the kernel's part of address space and initialize kmem allocator.
1177  */
1178 static void
1179 startup_kmem(void)
1180 {
1181 	extern void page_set_colorequiv_arr(void);
1182 
1183 	PRM_POINT("startup_kmem() starting...");
1184 
1185 #if defined(__amd64)
1186 	if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1187 		cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1188 		    "systems.");
1189 	kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1190 	core_base = (uintptr_t)COREHEAP_BASE;
1191 	core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1192 #else	/* __i386 */
1193 	/*
1194 	 * We configure kernelbase based on:
1195 	 *
1196 	 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1197 	 *    KERNELBASE_MAX. we large page align eprom_kernelbase
1198 	 *
1199 	 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1200 	 *    On large memory systems we must lower kernelbase to allow
1201 	 *    enough room for page_t's for all of memory.
1202 	 *
1203 	 * The value set here, might be changed a little later.
1204 	 */
1205 	if (eprom_kernelbase) {
1206 		kernelbase = eprom_kernelbase & mmu.level_mask[1];
1207 		if (kernelbase > KERNELBASE_MAX)
1208 			kernelbase = KERNELBASE_MAX;
1209 	} else {
1210 		kernelbase = (uintptr_t)KERNELBASE;
1211 		kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1212 	}
1213 	ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1214 	core_base = valloc_base;
1215 	core_size = 0;
1216 #endif	/* __i386 */
1217 
1218 	PRM_DEBUG(core_base);
1219 	PRM_DEBUG(core_size);
1220 	PRM_DEBUG(kernelbase);
1221 
1222 #if defined(__i386)
1223 	segkp_fromheap = 1;
1224 #endif	/* __i386 */
1225 
1226 	ekernelheap = (char *)core_base;
1227 	PRM_DEBUG(ekernelheap);
1228 
1229 	/*
1230 	 * Now that we know the real value of kernelbase,
1231 	 * update variables that were initialized with a value of
1232 	 * KERNELBASE (in common/conf/param.c).
1233 	 *
1234 	 * XXX	The problem with this sort of hackery is that the
1235 	 *	compiler just may feel like putting the const declarations
1236 	 *	(in param.c) into the .text section.  Perhaps they should
1237 	 *	just be declared as variables there?
1238 	 */
1239 
1240 	*(uintptr_t *)&_kernelbase = kernelbase;
1241 	*(uintptr_t *)&_userlimit = kernelbase;
1242 #if defined(__amd64)
1243 	*(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1244 #else
1245 	*(uintptr_t *)&_userlimit32 = _userlimit;
1246 #endif
1247 	PRM_DEBUG(_kernelbase);
1248 	PRM_DEBUG(_userlimit);
1249 	PRM_DEBUG(_userlimit32);
1250 
1251 	layout_kernel_va();
1252 
1253 #if defined(__i386)
1254 	/*
1255 	 * If segmap is too large we can push the bottom of the kernel heap
1256 	 * higher than the base.  Or worse, it could exceed the top of the
1257 	 * VA space entirely, causing it to wrap around.
1258 	 */
1259 	if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1260 		panic("too little address space available for kernelheap,"
1261 		    " use eeprom for lower kernelbase or smaller segmapsize");
1262 #endif	/* __i386 */
1263 
1264 	/*
1265 	 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1266 	 */
1267 	kernelheap_init(kernelheap, ekernelheap,
1268 	    kernelheap + MMU_PAGESIZE,
1269 	    (void *)core_base, (void *)(core_base + core_size));
1270 
1271 #if defined(__xpv)
1272 	/*
1273 	 * Link pending events struct into cpu struct
1274 	 */
1275 	CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1276 #endif
1277 	/*
1278 	 * Initialize kernel memory allocator.
1279 	 */
1280 	kmem_init();
1281 
1282 	/*
1283 	 * Factor in colorequiv to check additional 'equivalent' bins
1284 	 */
1285 	page_set_colorequiv_arr();
1286 
1287 #if defined(__xpv)
1288 	xen_version();
1289 #endif
1290 
1291 	/*
1292 	 * print this out early so that we know what's going on
1293 	 */
1294 	cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE);
1295 
1296 	/*
1297 	 * Initialize bp_mapin().
1298 	 */
1299 	bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1300 
1301 	/*
1302 	 * orig_npages is non-zero if physmem has been configured for less
1303 	 * than the available memory.
1304 	 */
1305 	if (orig_npages) {
1306 		cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1307 		    (npages == PHYSMEM ? "Due to virtual address space " : ""),
1308 		    npages, orig_npages);
1309 	}
1310 #if defined(__i386)
1311 	if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1312 		cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1313 		    "System using 0x%lx",
1314 		    (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1315 #endif
1316 
1317 #ifdef	KERNELBASE_ABI_MIN
1318 	if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1319 		cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1320 		    "i386 ABI compliant.", (uintptr_t)kernelbase);
1321 	}
1322 #endif
1323 
1324 #ifdef __xpv
1325 	/*
1326 	 * Some of the xen start information has to be relocated up
1327 	 * into the kernel's permanent address space.
1328 	 */
1329 	PRM_POINT("calling xen_relocate_start_info()");
1330 	xen_relocate_start_info();
1331 	PRM_POINT("xen_relocate_start_info() done");
1332 
1333 	/*
1334 	 * (Update the vcpu pointer in our cpu structure to point into
1335 	 * the relocated shared info.)
1336 	 */
1337 	CPU->cpu_m.mcpu_vcpu_info =
1338 	    &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1339 #endif
1340 
1341 	PRM_POINT("startup_kmem() done");
1342 }
1343 
1344 static void
1345 startup_modules(void)
1346 {
1347 	unsigned int i;
1348 	extern void prom_setup(void);
1349 
1350 	PRM_POINT("startup_modules() starting...");
1351 
1352 #ifndef __xpv
1353 	/*
1354 	 * Initialize ten-micro second timer so that drivers will
1355 	 * not get short changed in their init phase. This was
1356 	 * not getting called until clkinit which, on fast cpu's
1357 	 * caused the drv_usecwait to be way too short.
1358 	 */
1359 	microfind();
1360 #endif
1361 
1362 	/*
1363 	 * Read the GMT lag from /etc/rtc_config.
1364 	 */
1365 	sgmtl(process_rtc_config_file());
1366 
1367 	/*
1368 	 * Calculate default settings of system parameters based upon
1369 	 * maxusers, yet allow to be overridden via the /etc/system file.
1370 	 */
1371 	param_calc(0);
1372 
1373 	mod_setup();
1374 
1375 	/*
1376 	 * Initialize system parameters.
1377 	 */
1378 	param_init();
1379 
1380 	/*
1381 	 * Initialize the default brands
1382 	 */
1383 	brand_init();
1384 
1385 	/*
1386 	 * maxmem is the amount of physical memory we're playing with.
1387 	 */
1388 	maxmem = physmem;
1389 
1390 	/*
1391 	 * Initialize segment management stuff.
1392 	 */
1393 	seg_init();
1394 
1395 	if (modload("fs", "specfs") == -1)
1396 		halt("Can't load specfs");
1397 
1398 	if (modload("fs", "devfs") == -1)
1399 		halt("Can't load devfs");
1400 
1401 	if (modload("fs", "dev") == -1)
1402 		halt("Can't load dev");
1403 
1404 	(void) modloadonly("sys", "lbl_edition");
1405 
1406 	dispinit();
1407 
1408 	/*
1409 	 * This is needed here to initialize hw_serial[] for cluster booting.
1410 	 */
1411 	if ((i = modload("misc", "sysinit")) != (unsigned int)-1)
1412 		(void) modunload(i);
1413 	else
1414 		cmn_err(CE_CONT, "sysinit load failed");
1415 
1416 	/* Read cluster configuration data. */
1417 	clconf_init();
1418 
1419 #if defined(__xpv)
1420 	ec_init();
1421 	gnttab_init();
1422 	(void) xs_early_init();
1423 #endif /* __xpv */
1424 
1425 	/*
1426 	 * Create a kernel device tree. First, create rootnex and
1427 	 * then invoke bus specific code to probe devices.
1428 	 */
1429 	setup_ddi();
1430 
1431 #ifndef __xpv
1432 	{
1433 		/*
1434 		 * Set up the CPU module subsystem.  Modifies the device tree,
1435 		 * so it must be done after setup_ddi().
1436 		 */
1437 
1438 		cmi_hdl_t hdl;
1439 
1440 		if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1441 		    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1442 			if (x86_feature & X86_MCA)
1443 				cmi_mca_init(hdl);
1444 		}
1445 	}
1446 #endif	/* __xpv */
1447 
1448 	/*
1449 	 * Fake a prom tree such that /dev/openprom continues to work
1450 	 */
1451 	PRM_POINT("startup_modules: calling prom_setup...");
1452 	prom_setup();
1453 	PRM_POINT("startup_modules: done");
1454 
1455 	/*
1456 	 * Load all platform specific modules
1457 	 */
1458 	PRM_POINT("startup_modules: calling psm_modload...");
1459 	psm_modload();
1460 
1461 	PRM_POINT("startup_modules() done");
1462 }
1463 
1464 /*
1465  * claim a "setaside" boot page for use in the kernel
1466  */
1467 page_t *
1468 boot_claim_page(pfn_t pfn)
1469 {
1470 	page_t *pp;
1471 
1472 	pp = page_numtopp_nolock(pfn);
1473 	ASSERT(pp != NULL);
1474 
1475 	if (PP_ISBOOTPAGES(pp)) {
1476 		if (pp->p_next != NULL)
1477 			pp->p_next->p_prev = pp->p_prev;
1478 		if (pp->p_prev == NULL)
1479 			bootpages = pp->p_next;
1480 		else
1481 			pp->p_prev->p_next = pp->p_next;
1482 	} else {
1483 		/*
1484 		 * htable_attach() expects a base pagesize page
1485 		 */
1486 		if (pp->p_szc != 0)
1487 			page_boot_demote(pp);
1488 		pp = page_numtopp(pfn, SE_EXCL);
1489 	}
1490 	return (pp);
1491 }
1492 
1493 /*
1494  * Walk through the pagetables looking for pages mapped in by boot.  If the
1495  * setaside flag is set the pages are expected to be returned to the
1496  * kernel later in boot, so we add them to the bootpages list.
1497  */
1498 static void
1499 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1500 {
1501 	uintptr_t va = low;
1502 	size_t len;
1503 	uint_t prot;
1504 	pfn_t pfn;
1505 	page_t *pp;
1506 	pgcnt_t boot_protect_cnt = 0;
1507 
1508 	while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1509 		if (va + len >= high)
1510 			panic("0x%lx byte mapping at 0x%p exceeds boot's "
1511 			    "legal range.", len, (void *)va);
1512 
1513 		while (len > 0) {
1514 			pp = page_numtopp_alloc(pfn);
1515 			if (pp != NULL) {
1516 				if (setaside == 0)
1517 					panic("Unexpected mapping by boot.  "
1518 					    "addr=%p pfn=%lx\n",
1519 					    (void *)va, pfn);
1520 
1521 				pp->p_next = bootpages;
1522 				pp->p_prev = NULL;
1523 				PP_SETBOOTPAGES(pp);
1524 				if (bootpages != NULL) {
1525 					bootpages->p_prev = pp;
1526 				}
1527 				bootpages = pp;
1528 				++boot_protect_cnt;
1529 			}
1530 
1531 			++pfn;
1532 			len -= MMU_PAGESIZE;
1533 			va += MMU_PAGESIZE;
1534 		}
1535 	}
1536 	PRM_DEBUG(boot_protect_cnt);
1537 }
1538 
1539 /*
1540  *
1541  */
1542 static void
1543 layout_kernel_va(void)
1544 {
1545 	PRM_POINT("layout_kernel_va() starting...");
1546 	/*
1547 	 * Establish the final size of the kernel's heap, size of segmap,
1548 	 * segkp, etc.
1549 	 */
1550 
1551 #if defined(__amd64)
1552 
1553 	kpm_vbase = (caddr_t)segkpm_base;
1554 	kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1555 	if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1556 		panic("not enough room for kpm!");
1557 	PRM_DEBUG(kpm_size);
1558 	PRM_DEBUG(kpm_vbase);
1559 
1560 	/*
1561 	 * By default we create a seg_kp in 64 bit kernels, it's a little
1562 	 * faster to access than embedding it in the heap.
1563 	 */
1564 	segkp_base = (caddr_t)valloc_base + valloc_sz;
1565 	if (!segkp_fromheap) {
1566 		size_t sz = mmu_ptob(segkpsize);
1567 
1568 		/*
1569 		 * determine size of segkp
1570 		 */
1571 		if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1572 			sz = SEGKPDEFSIZE;
1573 			cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1574 			    "segkpsize has been reset to %ld pages",
1575 			    mmu_btop(sz));
1576 		}
1577 		sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1578 
1579 		segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1580 	}
1581 	PRM_DEBUG(segkp_base);
1582 	PRM_DEBUG(segkpsize);
1583 
1584 	/*
1585 	 * segzio is used for ZFS cached data. It uses a distinct VA
1586 	 * segment (from kernel heap) so that we can easily tell not to
1587 	 * include it in kernel crash dumps on 64 bit kernels. The trick is
1588 	 * to give it lots of VA, but not constrain the kernel heap.
1589 	 * We scale the size of segzio linearly with physmem up to
1590 	 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem.
1591 	 */
1592 	segzio_base = segkp_base + mmu_ptob(segkpsize);
1593 	if (segzio_fromheap) {
1594 		segziosize = 0;
1595 	} else {
1596 		size_t physmem_size = mmu_ptob(physmem);
1597 		size_t size = (segziosize == 0) ?
1598 		    physmem_size : mmu_ptob(segziosize);
1599 
1600 		if (size < SEGZIOMINSIZE)
1601 			size = SEGZIOMINSIZE;
1602 		if (size > SEGZIOMAXSIZE) {
1603 			size = SEGZIOMAXSIZE;
1604 			if (physmem_size > size)
1605 				size += (physmem_size - size) / 2;
1606 		}
1607 		segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1608 	}
1609 	PRM_DEBUG(segziosize);
1610 	PRM_DEBUG(segzio_base);
1611 
1612 	/*
1613 	 * Put the range of VA for device mappings next, kmdb knows to not
1614 	 * grep in this range of addresses.
1615 	 */
1616 	toxic_addr =
1617 	    ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1618 	PRM_DEBUG(toxic_addr);
1619 	segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1620 #else /* __i386 */
1621 	segmap_start = ROUND_UP_LPAGE(kernelbase);
1622 #endif /* __i386 */
1623 	PRM_DEBUG(segmap_start);
1624 
1625 	/*
1626 	 * Users can change segmapsize through eeprom or /etc/system.
1627 	 * If the variable is tuned through eeprom, there is no upper
1628 	 * bound on the size of segmap.  If it is tuned through
1629 	 * /etc/system on 32-bit systems, it must be no larger than we
1630 	 * planned for in startup_memlist().
1631 	 */
1632 	segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1633 
1634 #if defined(__i386)
1635 	/*
1636 	 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1637 	 * the bottom of the kernel's address range.  Set aside space for a
1638 	 * small red zone just below the start of segmap.
1639 	 */
1640 	segmap_start += KERNEL_REDZONE_SIZE;
1641 	segmapsize -= KERNEL_REDZONE_SIZE;
1642 #endif
1643 
1644 	PRM_DEBUG(segmap_start);
1645 	PRM_DEBUG(segmapsize);
1646 	kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1647 	PRM_DEBUG(kernelheap);
1648 	PRM_POINT("layout_kernel_va() done...");
1649 }
1650 
1651 /*
1652  * Finish initializing the VM system, now that we are no longer
1653  * relying on the boot time memory allocators.
1654  */
1655 static void
1656 startup_vm(void)
1657 {
1658 	struct segmap_crargs a;
1659 
1660 	extern int use_brk_lpg, use_stk_lpg;
1661 
1662 	PRM_POINT("startup_vm() starting...");
1663 
1664 	/*
1665 	 * Initialize the hat layer.
1666 	 */
1667 	hat_init();
1668 
1669 	/*
1670 	 * Do final allocations of HAT data structures that need to
1671 	 * be allocated before quiescing the boot loader.
1672 	 */
1673 	PRM_POINT("Calling hat_kern_alloc()...");
1674 	hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1675 	PRM_POINT("hat_kern_alloc() done");
1676 
1677 #ifndef __xpv
1678 	/*
1679 	 * Setup Page Attribute Table
1680 	 */
1681 	pat_sync();
1682 #endif
1683 
1684 	/*
1685 	 * The next two loops are done in distinct steps in order
1686 	 * to be sure that any page that is doubly mapped (both above
1687 	 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1688 	 * Note this may never happen, but it might someday.
1689 	 */
1690 	bootpages = NULL;
1691 	PRM_POINT("Protecting boot pages");
1692 
1693 	/*
1694 	 * Protect any pages mapped above KERNEL_TEXT that somehow have
1695 	 * page_t's. This can only happen if something weird allocated
1696 	 * in this range (like kadb/kmdb).
1697 	 */
1698 	protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1699 
1700 	/*
1701 	 * Before we can take over memory allocation/mapping from the boot
1702 	 * loader we must remove from our free page lists any boot allocated
1703 	 * pages that stay mapped until release_bootstrap().
1704 	 */
1705 	protect_boot_range(0, kernelbase, 1);
1706 
1707 
1708 	/*
1709 	 * Switch to running on regular HAT (not boot_mmu)
1710 	 */
1711 	PRM_POINT("Calling hat_kern_setup()...");
1712 	hat_kern_setup();
1713 
1714 	/*
1715 	 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1716 	 */
1717 	bop_no_more_mem();
1718 
1719 	PRM_POINT("hat_kern_setup() done");
1720 
1721 	hat_cpu_online(CPU);
1722 
1723 	/*
1724 	 * Initialize VM system
1725 	 */
1726 	PRM_POINT("Calling kvm_init()...");
1727 	kvm_init();
1728 	PRM_POINT("kvm_init() done");
1729 
1730 	/*
1731 	 * Tell kmdb that the VM system is now working
1732 	 */
1733 	if (boothowto & RB_DEBUG)
1734 		kdi_dvec_vmready();
1735 
1736 #if defined(__xpv)
1737 	/*
1738 	 * Populate the I/O pool on domain 0
1739 	 */
1740 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1741 		extern long populate_io_pool(void);
1742 		long init_io_pool_cnt;
1743 
1744 		PRM_POINT("Populating reserve I/O page pool");
1745 		init_io_pool_cnt = populate_io_pool();
1746 		PRM_DEBUG(init_io_pool_cnt);
1747 	}
1748 #endif
1749 	/*
1750 	 * Mangle the brand string etc.
1751 	 */
1752 	cpuid_pass3(CPU);
1753 
1754 #if defined(__amd64)
1755 
1756 	/*
1757 	 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1758 	 */
1759 	device_arena = vmem_create("device", (void *)toxic_addr,
1760 	    toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1761 
1762 #else	/* __i386 */
1763 
1764 	/*
1765 	 * allocate the bit map that tracks toxic pages
1766 	 */
1767 	toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
1768 	PRM_DEBUG(toxic_bit_map_len);
1769 	toxic_bit_map =
1770 	    kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
1771 	ASSERT(toxic_bit_map != NULL);
1772 	PRM_DEBUG(toxic_bit_map);
1773 
1774 #endif	/* __i386 */
1775 
1776 
1777 	/*
1778 	 * Now that we've got more VA, as well as the ability to allocate from
1779 	 * it, tell the debugger.
1780 	 */
1781 	if (boothowto & RB_DEBUG)
1782 		kdi_dvec_memavail();
1783 
1784 	/*
1785 	 * The following code installs a special page fault handler (#pf)
1786 	 * to work around a pentium bug.
1787 	 */
1788 #if !defined(__amd64) && !defined(__xpv)
1789 	if (x86_type == X86_TYPE_P5) {
1790 		desctbr_t idtr;
1791 		gate_desc_t *newidt;
1792 		struct machcpu *mcpu = &CPU->cpu_m;
1793 
1794 		if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
1795 			panic("failed to install pentium_pftrap");
1796 
1797 		bcopy(idt0, newidt, sizeof (idt0));
1798 		set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
1799 		    KCS_SEL, SDT_SYSIGT, TRP_KPL);
1800 
1801 		(void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
1802 		    PROT_READ|PROT_EXEC);
1803 
1804 		mcpu->mcpu_idt = newidt;
1805 		idtr.dtr_base = (uintptr_t)mcpu->mcpu_idt;
1806 		idtr.dtr_limit = sizeof (idt0) - 1;
1807 		wr_idtr(&idtr);
1808 	}
1809 #endif	/* !__amd64 */
1810 
1811 #if !defined(__xpv)
1812 	/*
1813 	 * Map page pfn=0 for drivers, such as kd, that need to pick up
1814 	 * parameters left there by controllers/BIOS.
1815 	 */
1816 	PRM_POINT("setup up p0_va");
1817 	p0_va = i86devmap(0, 1, PROT_READ);
1818 	PRM_DEBUG(p0_va);
1819 #endif
1820 
1821 	cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
1822 	    physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
1823 
1824 	/*
1825 	 * disable automatic large pages for small memory systems or
1826 	 * when the disable flag is set.
1827 	 */
1828 	if (!auto_lpg_disable && mmu.max_page_level > 0) {
1829 		max_uheap_lpsize = LEVEL_SIZE(1);
1830 		max_ustack_lpsize = LEVEL_SIZE(1);
1831 		max_privmap_lpsize = LEVEL_SIZE(1);
1832 		max_uidata_lpsize = LEVEL_SIZE(1);
1833 		max_utext_lpsize = LEVEL_SIZE(1);
1834 		max_shm_lpsize = LEVEL_SIZE(1);
1835 	}
1836 	if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
1837 	    auto_lpg_disable) {
1838 		use_brk_lpg = 0;
1839 		use_stk_lpg = 0;
1840 	}
1841 	if (mmu.max_page_level > 0) {
1842 		mcntl0_lpsize = LEVEL_SIZE(1);
1843 	}
1844 
1845 	PRM_POINT("Calling hat_init_finish()...");
1846 	hat_init_finish();
1847 	PRM_POINT("hat_init_finish() done");
1848 
1849 	/*
1850 	 * Initialize the segkp segment type.
1851 	 */
1852 	rw_enter(&kas.a_lock, RW_WRITER);
1853 	PRM_POINT("Attaching segkp");
1854 	if (segkp_fromheap) {
1855 		segkp->s_as = &kas;
1856 	} else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
1857 	    segkp) < 0) {
1858 		panic("startup: cannot attach segkp");
1859 		/*NOTREACHED*/
1860 	}
1861 	PRM_POINT("Doing segkp_create()");
1862 	if (segkp_create(segkp) != 0) {
1863 		panic("startup: segkp_create failed");
1864 		/*NOTREACHED*/
1865 	}
1866 	PRM_DEBUG(segkp);
1867 	rw_exit(&kas.a_lock);
1868 
1869 	/*
1870 	 * kpm segment
1871 	 */
1872 	segmap_kpm = 0;
1873 	if (kpm_desired) {
1874 		kpm_init();
1875 		kpm_enable = 1;
1876 		vpm_enable = 1;
1877 	}
1878 
1879 	/*
1880 	 * Now create segmap segment.
1881 	 */
1882 	rw_enter(&kas.a_lock, RW_WRITER);
1883 	if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
1884 		panic("cannot attach segmap");
1885 		/*NOTREACHED*/
1886 	}
1887 	PRM_DEBUG(segmap);
1888 
1889 	a.prot = PROT_READ | PROT_WRITE;
1890 	a.shmsize = 0;
1891 	a.nfreelist = segmapfreelists;
1892 
1893 	if (segmap_create(segmap, (caddr_t)&a) != 0)
1894 		panic("segmap_create segmap");
1895 	rw_exit(&kas.a_lock);
1896 
1897 	setup_vaddr_for_ppcopy(CPU);
1898 
1899 	segdev_init();
1900 #if defined(__xpv)
1901 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1902 #endif
1903 		pmem_init();
1904 
1905 	PRM_POINT("startup_vm() done");
1906 }
1907 
1908 /*
1909  * Load a tod module for the non-standard tod part found on this system.
1910  */
1911 static void
1912 load_tod_module(char *todmod)
1913 {
1914 	if (modload("tod", todmod) == -1)
1915 		halt("Can't load TOD module");
1916 }
1917 
1918 static void
1919 startup_end(void)
1920 {
1921 	int i;
1922 	extern void setx86isalist(void);
1923 
1924 	PRM_POINT("startup_end() starting...");
1925 
1926 	/*
1927 	 * Perform tasks that get done after most of the VM
1928 	 * initialization has been done but before the clock
1929 	 * and other devices get started.
1930 	 */
1931 	kern_setup1();
1932 
1933 	/*
1934 	 * Perform CPC initialization for this CPU.
1935 	 */
1936 	kcpc_hw_init(CPU);
1937 
1938 #if defined(OPTERON_WORKAROUND_6323525)
1939 	if (opteron_workaround_6323525)
1940 		patch_workaround_6323525();
1941 #endif
1942 	/*
1943 	 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
1944 	 * (For now, "needed" is defined as set tod_module_name in /etc/system)
1945 	 */
1946 	if (tod_module_name != NULL) {
1947 		PRM_POINT("load_tod_module()");
1948 		load_tod_module(tod_module_name);
1949 	}
1950 
1951 #if defined(__xpv)
1952 	/*
1953 	 * Forceload interposing TOD module for the hypervisor.
1954 	 */
1955 	PRM_POINT("load_tod_module()");
1956 	load_tod_module("xpvtod");
1957 #endif
1958 
1959 	/*
1960 	 * Configure the system.
1961 	 */
1962 	PRM_POINT("Calling configure()...");
1963 	configure();		/* set up devices */
1964 	PRM_POINT("configure() done");
1965 
1966 	/*
1967 	 * Set the isa_list string to the defined instruction sets we
1968 	 * support.
1969 	 */
1970 	setx86isalist();
1971 	cpu_intr_alloc(CPU, NINTR_THREADS);
1972 	psm_install();
1973 
1974 	/*
1975 	 * We're done with bootops.  We don't unmap the bootstrap yet because
1976 	 * we're still using bootsvcs.
1977 	 */
1978 	PRM_POINT("NULLing out bootops");
1979 	*bootopsp = (struct bootops *)NULL;
1980 	bootops = (struct bootops *)NULL;
1981 
1982 #if defined(__xpv)
1983 	ec_init_debug_irq();
1984 	xs_domu_init();
1985 #endif
1986 	PRM_POINT("Enabling interrupts");
1987 	(*picinitf)();
1988 	sti();
1989 #if defined(__xpv)
1990 	ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
1991 	xen_late_startup();
1992 #endif
1993 
1994 	(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
1995 	    "softlevel1", NULL, NULL); /* XXX to be moved later */
1996 
1997 	/*
1998 	 * Register these software interrupts for ddi timer.
1999 	 * Software interrupts up to the level 10 are supported.
2000 	 */
2001 	for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2002 		char name[sizeof ("timer_softintr") + 2];
2003 		(void) sprintf(name, "timer_softintr%02d", i);
2004 		(void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2005 		    (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL);
2006 	}
2007 
2008 	PRM_POINT("startup_end() done");
2009 }
2010 
2011 extern char hw_serial[];
2012 char *_hs1107 = hw_serial;
2013 ulong_t  _bdhs34;
2014 
2015 void
2016 post_startup(void)
2017 {
2018 	/*
2019 	 * Set the system wide, processor-specific flags to be passed
2020 	 * to userland via the aux vector for performance hints and
2021 	 * instruction set extensions.
2022 	 */
2023 	bind_hwcap();
2024 
2025 #ifdef __xpv
2026 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2027 #endif
2028 	{
2029 		/*
2030 		 * Load the System Management BIOS into the global ksmbios
2031 		 * handle, if an SMBIOS is present on this system.
2032 		 */
2033 		ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
2034 
2035 #if defined(__xpv)
2036 		xpv_panic_init();
2037 #else
2038 		/*
2039 		 * Startup the memory scrubber.
2040 		 * XXPV	This should be running somewhere ..
2041 		 */
2042 		memscrub_init();
2043 #endif
2044 	}
2045 
2046 	/*
2047 	 * Complete CPU module initialization
2048 	 */
2049 	cmi_post_startup();
2050 
2051 	/*
2052 	 * Perform forceloading tasks for /etc/system.
2053 	 */
2054 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2055 
2056 	/*
2057 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2058 	 * ON4.0: This must be fixed or restated in /etc/systems.
2059 	 */
2060 	(void) modload("fs", "procfs");
2061 
2062 	(void) i_ddi_attach_hw_nodes("pit_beep");
2063 
2064 #if defined(__i386)
2065 	/*
2066 	 * Check for required functional Floating Point hardware,
2067 	 * unless FP hardware explicitly disabled.
2068 	 */
2069 	if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2070 		halt("No working FP hardware found");
2071 #endif
2072 
2073 	maxmem = freemem;
2074 
2075 	add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi);
2076 }
2077 
2078 static int
2079 pp_in_ramdisk(page_t *pp)
2080 {
2081 	extern uint64_t ramdisk_start, ramdisk_end;
2082 
2083 	return ((pp->p_pagenum >= btop(ramdisk_start)) &&
2084 	    (pp->p_pagenum < btopr(ramdisk_end)));
2085 }
2086 
2087 void
2088 release_bootstrap(void)
2089 {
2090 	int root_is_ramdisk;
2091 	page_t *pp;
2092 	extern void kobj_boot_unmountroot(void);
2093 	extern dev_t rootdev;
2094 
2095 	/* unmount boot ramdisk and release kmem usage */
2096 	kobj_boot_unmountroot();
2097 
2098 	/*
2099 	 * We're finished using the boot loader so free its pages.
2100 	 */
2101 	PRM_POINT("Unmapping lower boot pages");
2102 	clear_boot_mappings(0, _userlimit);
2103 	postbootkernelbase = kernelbase;
2104 
2105 	/*
2106 	 * If root isn't on ramdisk, destroy the hardcoded
2107 	 * ramdisk node now and release the memory. Else,
2108 	 * ramdisk memory is kept in rd_pages.
2109 	 */
2110 	root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2111 	if (!root_is_ramdisk) {
2112 		dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2113 		ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2114 		ndi_rele_devi(dip);	/* held from ddi_find_devinfo */
2115 		(void) ddi_remove_child(dip, 0);
2116 	}
2117 
2118 	PRM_POINT("Releasing boot pages");
2119 	while (bootpages) {
2120 		pp = bootpages;
2121 		bootpages = pp->p_next;
2122 		if (root_is_ramdisk && pp_in_ramdisk(pp)) {
2123 			pp->p_next = rd_pages;
2124 			rd_pages = pp;
2125 			continue;
2126 		}
2127 		pp->p_next = (struct page *)0;
2128 		pp->p_prev = (struct page *)0;
2129 		PP_CLRBOOTPAGES(pp);
2130 		page_free(pp, 1);
2131 	}
2132 	PRM_POINT("Boot pages released");
2133 
2134 #if !defined(__xpv)
2135 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2136 	/*
2137 	 * Find 1 page below 1 MB so that other processors can boot up.
2138 	 * Make sure it has a kernel VA as well as a 1:1 mapping.
2139 	 * We should have just free'd one up.
2140 	 */
2141 	if (use_mp) {
2142 		pfn_t pfn;
2143 
2144 		for (pfn = 1; pfn < btop(1*1024*1024); pfn++) {
2145 			if (page_numtopp_alloc(pfn) == NULL)
2146 				continue;
2147 			rm_platter_va = i86devmap(pfn, 1,
2148 			    PROT_READ | PROT_WRITE | PROT_EXEC);
2149 			rm_platter_pa = ptob(pfn);
2150 			hat_devload(kas.a_hat,
2151 			    (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
2152 			    pfn, PROT_READ | PROT_WRITE | PROT_EXEC,
2153 			    HAT_LOAD_NOCONSIST);
2154 			break;
2155 		}
2156 		if (pfn == btop(1*1024*1024))
2157 			panic("No page available for starting "
2158 			    "other processors");
2159 	}
2160 #endif	/* !__xpv */
2161 }
2162 
2163 /*
2164  * Initialize the platform-specific parts of a page_t.
2165  */
2166 void
2167 add_physmem_cb(page_t *pp, pfn_t pnum)
2168 {
2169 	pp->p_pagenum = pnum;
2170 	pp->p_mapping = NULL;
2171 	pp->p_embed = 0;
2172 	pp->p_share = 0;
2173 	pp->p_mlentry = 0;
2174 }
2175 
2176 /*
2177  * kphysm_init() initializes physical memory.
2178  */
2179 static pgcnt_t
2180 kphysm_init(
2181 	page_t *pp,
2182 	pgcnt_t npages)
2183 {
2184 	struct memlist	*pmem;
2185 	struct memseg	*cur_memseg;
2186 	pfn_t		base_pfn;
2187 	pgcnt_t		num;
2188 	pgcnt_t		pages_done = 0;
2189 	uint64_t	addr;
2190 	uint64_t	size;
2191 	extern pfn_t	ddiphysmin;
2192 
2193 	ASSERT(page_hash != NULL && page_hashsz != 0);
2194 
2195 	cur_memseg = memseg_base;
2196 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2197 		/*
2198 		 * In a 32 bit kernel can't use higher memory if we're
2199 		 * not booting in PAE mode. This check takes care of that.
2200 		 */
2201 		addr = pmem->address;
2202 		size = pmem->size;
2203 		if (btop(addr) > physmax)
2204 			continue;
2205 
2206 		/*
2207 		 * align addr and size - they may not be at page boundaries
2208 		 */
2209 		if ((addr & MMU_PAGEOFFSET) != 0) {
2210 			addr += MMU_PAGEOFFSET;
2211 			addr &= ~(uint64_t)MMU_PAGEOFFSET;
2212 			size -= addr - pmem->address;
2213 		}
2214 
2215 		/* only process pages below or equal to physmax */
2216 		if ((btop(addr + size) - 1) > physmax)
2217 			size = ptob(physmax - btop(addr) + 1);
2218 
2219 		num = btop(size);
2220 		if (num == 0)
2221 			continue;
2222 
2223 		if (num > npages)
2224 			num = npages;
2225 
2226 		npages -= num;
2227 		pages_done += num;
2228 		base_pfn = btop(addr);
2229 
2230 		if (prom_debug)
2231 			prom_printf("MEMSEG addr=0x%" PRIx64
2232 			    " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2233 			    addr, num, base_pfn, base_pfn + num);
2234 
2235 		/*
2236 		 * Ignore pages below ddiphysmin to simplify ddi memory
2237 		 * allocation with non-zero addr_lo requests.
2238 		 */
2239 		if (base_pfn < ddiphysmin) {
2240 			if (base_pfn + num <= ddiphysmin)
2241 				continue;
2242 			pp += (ddiphysmin - base_pfn);
2243 			num -= (ddiphysmin - base_pfn);
2244 			base_pfn = ddiphysmin;
2245 		}
2246 
2247 		/*
2248 		 * Build the memsegs entry
2249 		 */
2250 		cur_memseg->pages = pp;
2251 		cur_memseg->epages = pp + num;
2252 		cur_memseg->pages_base = base_pfn;
2253 		cur_memseg->pages_end = base_pfn + num;
2254 
2255 		/*
2256 		 * Insert into memseg list in decreasing pfn range order.
2257 		 * Low memory is typically more fragmented such that this
2258 		 * ordering keeps the larger ranges at the front of the list
2259 		 * for code that searches memseg.
2260 		 * This ASSERTS that the memsegs coming in from boot are in
2261 		 * increasing physical address order and not contiguous.
2262 		 */
2263 		if (memsegs != NULL) {
2264 			ASSERT(cur_memseg->pages_base >= memsegs->pages_end);
2265 			cur_memseg->next = memsegs;
2266 		}
2267 		memsegs = cur_memseg;
2268 
2269 		/*
2270 		 * add_physmem() initializes the PSM part of the page
2271 		 * struct by calling the PSM back with add_physmem_cb().
2272 		 * In addition it coalesces pages into larger pages as
2273 		 * it initializes them.
2274 		 */
2275 		add_physmem(pp, num, base_pfn);
2276 		cur_memseg++;
2277 		availrmem_initial += num;
2278 		availrmem += num;
2279 
2280 		pp += num;
2281 	}
2282 
2283 	PRM_DEBUG(availrmem_initial);
2284 	PRM_DEBUG(availrmem);
2285 	PRM_DEBUG(freemem);
2286 	build_pfn_hash();
2287 	return (pages_done);
2288 }
2289 
2290 /*
2291  * Kernel VM initialization.
2292  */
2293 static void
2294 kvm_init(void)
2295 {
2296 	ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2297 
2298 	/*
2299 	 * Put the kernel segments in kernel address space.
2300 	 */
2301 	rw_enter(&kas.a_lock, RW_WRITER);
2302 	as_avlinit(&kas);
2303 
2304 	(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2305 	(void) segkmem_create(&ktextseg);
2306 
2307 	(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2308 	(void) segkmem_create(&kvalloc);
2309 
2310 	(void) seg_attach(&kas, kernelheap,
2311 	    ekernelheap - kernelheap, &kvseg);
2312 	(void) segkmem_create(&kvseg);
2313 
2314 	if (core_size > 0) {
2315 		PRM_POINT("attaching kvseg_core");
2316 		(void) seg_attach(&kas, (caddr_t)core_base, core_size,
2317 		    &kvseg_core);
2318 		(void) segkmem_create(&kvseg_core);
2319 	}
2320 
2321 	if (segziosize > 0) {
2322 		PRM_POINT("attaching segzio");
2323 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2324 		    &kzioseg);
2325 		(void) segkmem_zio_create(&kzioseg);
2326 
2327 		/* create zio area covering new segment */
2328 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2329 	}
2330 
2331 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2332 	(void) segkmem_create(&kdebugseg);
2333 
2334 	rw_exit(&kas.a_lock);
2335 
2336 	/*
2337 	 * Ensure that the red zone at kernelbase is never accessible.
2338 	 */
2339 	PRM_POINT("protecting redzone");
2340 	(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2341 
2342 	/*
2343 	 * Make the text writable so that it can be hot patched by DTrace.
2344 	 */
2345 	(void) as_setprot(&kas, s_text, e_modtext - s_text,
2346 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2347 
2348 	/*
2349 	 * Make data writable until end.
2350 	 */
2351 	(void) as_setprot(&kas, s_data, e_moddata - s_data,
2352 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2353 }
2354 
2355 #ifndef __xpv
2356 /*
2357  * Solaris adds an entry for Write Combining caching to the PAT
2358  */
2359 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2360 
2361 void
2362 pat_sync(void)
2363 {
2364 	ulong_t	cr0, cr0_orig, cr4;
2365 
2366 	if (!(x86_feature & X86_PAT))
2367 		return;
2368 	cr0_orig = cr0 = getcr0();
2369 	cr4 = getcr4();
2370 
2371 	/* disable caching and flush all caches and TLBs */
2372 	cr0 |= CR0_CD;
2373 	cr0 &= ~CR0_NW;
2374 	setcr0(cr0);
2375 	invalidate_cache();
2376 	if (cr4 & CR4_PGE) {
2377 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2378 		setcr4(cr4);
2379 	} else {
2380 		reload_cr3();
2381 	}
2382 
2383 	/* add our entry to the PAT */
2384 	wrmsr(REG_PAT, pat_attr_reg);
2385 
2386 	/* flush TLBs and cache again, then reenable cr0 caching */
2387 	if (cr4 & CR4_PGE) {
2388 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2389 		setcr4(cr4);
2390 	} else {
2391 		reload_cr3();
2392 	}
2393 	invalidate_cache();
2394 	setcr0(cr0_orig);
2395 }
2396 
2397 #endif /* !__xpv */
2398 
2399 void
2400 get_system_configuration(void)
2401 {
2402 	char	prop[32];
2403 	u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2404 
2405 	if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2406 	    BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2407 	    kobj_getvalue(prop, &nodes_ll) == -1 ||
2408 	    nodes_ll > MAXNODES ||
2409 	    BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2410 	    BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2411 	    kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
2412 		system_hardware.hd_nodes = 1;
2413 		system_hardware.hd_cpus_per_node = 0;
2414 	} else {
2415 		system_hardware.hd_nodes = (int)nodes_ll;
2416 		system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2417 	}
2418 
2419 	if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
2420 	    BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
2421 	    kobj_getvalue(prop, &lvalue) == -1)
2422 		eprom_kernelbase = NULL;
2423 	else
2424 		eprom_kernelbase = (uintptr_t)lvalue;
2425 
2426 	if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
2427 	    BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
2428 	    kobj_getvalue(prop, &lvalue) == -1)
2429 		segmapsize = SEGMAPDEFAULT;
2430 	else
2431 		segmapsize = (uintptr_t)lvalue;
2432 
2433 	if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
2434 	    BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
2435 	    kobj_getvalue(prop, &lvalue) == -1)
2436 		segmapfreelists = 0;	/* use segmap driver default */
2437 	else
2438 		segmapfreelists = (int)lvalue;
2439 
2440 	/* physmem used to be here, but moved much earlier to fakebop.c */
2441 }
2442 
2443 /*
2444  * Add to a memory list.
2445  * start = start of new memory segment
2446  * len = length of new memory segment in bytes
2447  * new = pointer to a new struct memlist
2448  * memlistp = memory list to which to add segment.
2449  */
2450 void
2451 memlist_add(
2452 	uint64_t start,
2453 	uint64_t len,
2454 	struct memlist *new,
2455 	struct memlist **memlistp)
2456 {
2457 	struct memlist *cur;
2458 	uint64_t end = start + len;
2459 
2460 	new->address = start;
2461 	new->size = len;
2462 
2463 	cur = *memlistp;
2464 
2465 	while (cur) {
2466 		if (cur->address >= end) {
2467 			new->next = cur;
2468 			*memlistp = new;
2469 			new->prev = cur->prev;
2470 			cur->prev = new;
2471 			return;
2472 		}
2473 		ASSERT(cur->address + cur->size <= start);
2474 		if (cur->next == NULL) {
2475 			cur->next = new;
2476 			new->prev = cur;
2477 			new->next = NULL;
2478 			return;
2479 		}
2480 		memlistp = &cur->next;
2481 		cur = cur->next;
2482 	}
2483 }
2484 
2485 void
2486 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
2487 {
2488 	size_t tsize = e_modtext - modtext;
2489 	size_t dsize = e_moddata - moddata;
2490 
2491 	*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
2492 	    1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
2493 	*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
2494 	    1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
2495 }
2496 
2497 caddr_t
2498 kobj_text_alloc(vmem_t *arena, size_t size)
2499 {
2500 	return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
2501 }
2502 
2503 /*ARGSUSED*/
2504 caddr_t
2505 kobj_texthole_alloc(caddr_t addr, size_t size)
2506 {
2507 	panic("unexpected call to kobj_texthole_alloc()");
2508 	/*NOTREACHED*/
2509 	return (0);
2510 }
2511 
2512 /*ARGSUSED*/
2513 void
2514 kobj_texthole_free(caddr_t addr, size_t size)
2515 {
2516 	panic("unexpected call to kobj_texthole_free()");
2517 }
2518 
2519 /*
2520  * This is called just after configure() in startup().
2521  *
2522  * The ISALIST concept is a bit hopeless on Intel, because
2523  * there's no guarantee of an ever-more-capable processor
2524  * given that various parts of the instruction set may appear
2525  * and disappear between different implementations.
2526  *
2527  * While it would be possible to correct it and even enhance
2528  * it somewhat, the explicit hardware capability bitmask allows
2529  * more flexibility.
2530  *
2531  * So, we just leave this alone.
2532  */
2533 void
2534 setx86isalist(void)
2535 {
2536 	char *tp;
2537 	size_t len;
2538 	extern char *isa_list;
2539 
2540 #define	TBUFSIZE	1024
2541 
2542 	tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
2543 	*tp = '\0';
2544 
2545 #if defined(__amd64)
2546 	(void) strcpy(tp, "amd64 ");
2547 #endif
2548 
2549 	switch (x86_vendor) {
2550 	case X86_VENDOR_Intel:
2551 	case X86_VENDOR_AMD:
2552 	case X86_VENDOR_TM:
2553 		if (x86_feature & X86_CMOV) {
2554 			/*
2555 			 * Pentium Pro or later
2556 			 */
2557 			(void) strcat(tp, "pentium_pro");
2558 			(void) strcat(tp, x86_feature & X86_MMX ?
2559 			    "+mmx pentium_pro " : " ");
2560 		}
2561 		/*FALLTHROUGH*/
2562 	case X86_VENDOR_Cyrix:
2563 		/*
2564 		 * The Cyrix 6x86 does not have any Pentium features
2565 		 * accessible while not at privilege level 0.
2566 		 */
2567 		if (x86_feature & X86_CPUID) {
2568 			(void) strcat(tp, "pentium");
2569 			(void) strcat(tp, x86_feature & X86_MMX ?
2570 			    "+mmx pentium " : " ");
2571 		}
2572 		break;
2573 	default:
2574 		break;
2575 	}
2576 	(void) strcat(tp, "i486 i386 i86");
2577 	len = strlen(tp) + 1;   /* account for NULL at end of string */
2578 	isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
2579 	kmem_free(tp, TBUFSIZE);
2580 
2581 #undef TBUFSIZE
2582 }
2583 
2584 
2585 #ifdef __amd64
2586 
2587 void *
2588 device_arena_alloc(size_t size, int vm_flag)
2589 {
2590 	return (vmem_alloc(device_arena, size, vm_flag));
2591 }
2592 
2593 void
2594 device_arena_free(void *vaddr, size_t size)
2595 {
2596 	vmem_free(device_arena, vaddr, size);
2597 }
2598 
2599 #else /* __i386 */
2600 
2601 void *
2602 device_arena_alloc(size_t size, int vm_flag)
2603 {
2604 	caddr_t	vaddr;
2605 	uintptr_t v;
2606 	size_t	start;
2607 	size_t	end;
2608 
2609 	vaddr = vmem_alloc(heap_arena, size, vm_flag);
2610 	if (vaddr == NULL)
2611 		return (NULL);
2612 
2613 	v = (uintptr_t)vaddr;
2614 	ASSERT(v >= kernelbase);
2615 	ASSERT(v + size <= valloc_base);
2616 
2617 	start = btop(v - kernelbase);
2618 	end = btop(v + size - 1 - kernelbase);
2619 	ASSERT(start < toxic_bit_map_len);
2620 	ASSERT(end < toxic_bit_map_len);
2621 
2622 	while (start <= end) {
2623 		BT_ATOMIC_SET(toxic_bit_map, start);
2624 		++start;
2625 	}
2626 	return (vaddr);
2627 }
2628 
2629 void
2630 device_arena_free(void *vaddr, size_t size)
2631 {
2632 	uintptr_t v = (uintptr_t)vaddr;
2633 	size_t	start;
2634 	size_t	end;
2635 
2636 	ASSERT(v >= kernelbase);
2637 	ASSERT(v + size <= valloc_base);
2638 
2639 	start = btop(v - kernelbase);
2640 	end = btop(v + size - 1 - kernelbase);
2641 	ASSERT(start < toxic_bit_map_len);
2642 	ASSERT(end < toxic_bit_map_len);
2643 
2644 	while (start <= end) {
2645 		ASSERT(BT_TEST(toxic_bit_map, start) != 0);
2646 		BT_ATOMIC_CLEAR(toxic_bit_map, start);
2647 		++start;
2648 	}
2649 	vmem_free(heap_arena, vaddr, size);
2650 }
2651 
2652 /*
2653  * returns 1st address in range that is in device arena, or NULL
2654  * if len is not NULL it returns the length of the toxic range
2655  */
2656 void *
2657 device_arena_contains(void *vaddr, size_t size, size_t *len)
2658 {
2659 	uintptr_t v = (uintptr_t)vaddr;
2660 	uintptr_t eaddr = v + size;
2661 	size_t start;
2662 	size_t end;
2663 
2664 	/*
2665 	 * if called very early by kmdb, just return NULL
2666 	 */
2667 	if (toxic_bit_map == NULL)
2668 		return (NULL);
2669 
2670 	/*
2671 	 * First check if we're completely outside the bitmap range.
2672 	 */
2673 	if (v >= valloc_base || eaddr < kernelbase)
2674 		return (NULL);
2675 
2676 	/*
2677 	 * Trim ends of search to look at only what the bitmap covers.
2678 	 */
2679 	if (v < kernelbase)
2680 		v = kernelbase;
2681 	start = btop(v - kernelbase);
2682 	end = btop(eaddr - kernelbase);
2683 	if (end >= toxic_bit_map_len)
2684 		end = toxic_bit_map_len;
2685 
2686 	if (bt_range(toxic_bit_map, &start, &end, end) == 0)
2687 		return (NULL);
2688 
2689 	v = kernelbase + ptob(start);
2690 	if (len != NULL)
2691 		*len = ptob(end - start);
2692 	return ((void *)v);
2693 }
2694 
2695 #endif	/* __i386 */
2696