1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/thread.h> 29 #include <sys/cpuvar.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/proc.h> 33 #include <sys/disp.h> 34 #include <sys/class.h> 35 #include <sys/cmn_err.h> 36 #include <sys/debug.h> 37 #include <sys/asm_linkage.h> 38 #include <sys/x_call.h> 39 #include <sys/systm.h> 40 #include <sys/var.h> 41 #include <sys/vtrace.h> 42 #include <vm/hat.h> 43 #include <vm/as.h> 44 #include <vm/seg_kmem.h> 45 #include <vm/seg_kp.h> 46 #include <sys/segments.h> 47 #include <sys/kmem.h> 48 #include <sys/stack.h> 49 #include <sys/smp_impldefs.h> 50 #include <sys/x86_archext.h> 51 #include <sys/machsystm.h> 52 #include <sys/traptrace.h> 53 #include <sys/clock.h> 54 #include <sys/cpc_impl.h> 55 #include <sys/pg.h> 56 #include <sys/cmt.h> 57 #include <sys/dtrace.h> 58 #include <sys/archsystm.h> 59 #include <sys/fp.h> 60 #include <sys/reboot.h> 61 #include <sys/kdi_machimpl.h> 62 #include <vm/hat_i86.h> 63 #include <sys/memnode.h> 64 #include <sys/pci_cfgspace.h> 65 #include <sys/mach_mmu.h> 66 #include <sys/sysmacros.h> 67 #if defined(__xpv) 68 #include <sys/hypervisor.h> 69 #endif 70 #include <sys/cpu_module.h> 71 72 struct cpu cpus[1]; /* CPU data */ 73 struct cpu *cpu[NCPU] = {&cpus[0]}; /* pointers to all CPUs */ 74 cpu_core_t cpu_core[NCPU]; /* cpu_core structures */ 75 76 /* 77 * Useful for disabling MP bring-up on a MP capable system. 78 */ 79 int use_mp = 1; 80 81 /* 82 * to be set by a PSM to indicate what cpus 83 * are sitting around on the system. 84 */ 85 cpuset_t mp_cpus; 86 87 /* 88 * This variable is used by the hat layer to decide whether or not 89 * critical sections are needed to prevent race conditions. For sun4m, 90 * this variable is set once enough MP initialization has been done in 91 * order to allow cross calls. 92 */ 93 int flushes_require_xcalls; 94 95 cpuset_t cpu_ready_set; /* initialized in startup() */ 96 97 static void mp_startup(void); 98 99 static void cpu_sep_enable(void); 100 static void cpu_sep_disable(void); 101 static void cpu_asysc_enable(void); 102 static void cpu_asysc_disable(void); 103 104 /* 105 * Init CPU info - get CPU type info for processor_info system call. 106 */ 107 void 108 init_cpu_info(struct cpu *cp) 109 { 110 processor_info_t *pi = &cp->cpu_type_info; 111 char buf[CPU_IDSTRLEN]; 112 113 /* 114 * Get clock-frequency property for the CPU. 115 */ 116 pi->pi_clock = cpu_freq; 117 118 /* 119 * Current frequency in Hz. 120 */ 121 cp->cpu_curr_clock = cpu_freq_hz; 122 123 (void) strcpy(pi->pi_processor_type, "i386"); 124 if (fpu_exists) 125 (void) strcpy(pi->pi_fputypes, "i387 compatible"); 126 127 (void) cpuid_getidstr(cp, buf, sizeof (buf)); 128 129 cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP); 130 (void) strcpy(cp->cpu_idstr, buf); 131 132 (void) cpuid_getbrandstr(cp, buf, sizeof (buf)); 133 cp->cpu_brandstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP); 134 (void) strcpy(cp->cpu_brandstr, buf); 135 } 136 137 /* 138 * Configure syscall support on this CPU. 139 */ 140 /*ARGSUSED*/ 141 void 142 init_cpu_syscall(struct cpu *cp) 143 { 144 kpreempt_disable(); 145 146 #if defined(__amd64) 147 if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) { 148 149 #if !defined(__lint) 150 /* 151 * The syscall instruction imposes a certain ordering on 152 * segment selectors, so we double-check that ordering 153 * here. 154 */ 155 ASSERT(KDS_SEL == KCS_SEL + 8); 156 ASSERT(UDS_SEL == U32CS_SEL + 8); 157 ASSERT(UCS_SEL == U32CS_SEL + 16); 158 #endif 159 /* 160 * Turn syscall/sysret extensions on. 161 */ 162 cpu_asysc_enable(); 163 164 /* 165 * Program the magic registers .. 166 */ 167 wrmsr(MSR_AMD_STAR, 168 ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32); 169 wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall); 170 wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32); 171 172 /* 173 * This list of flags is masked off the incoming 174 * %rfl when we enter the kernel. 175 */ 176 wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T)); 177 } 178 #endif 179 180 /* 181 * On 32-bit kernels, we use sysenter/sysexit because it's too 182 * hard to use syscall/sysret, and it is more portable anyway. 183 * 184 * On 64-bit kernels on Nocona machines, the 32-bit syscall 185 * variant isn't available to 32-bit applications, but sysenter is. 186 */ 187 if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) { 188 189 #if !defined(__lint) 190 /* 191 * The sysenter instruction imposes a certain ordering on 192 * segment selectors, so we double-check that ordering 193 * here. See "sysenter" in Intel document 245471-012, "IA-32 194 * Intel Architecture Software Developer's Manual Volume 2: 195 * Instruction Set Reference" 196 */ 197 ASSERT(KDS_SEL == KCS_SEL + 8); 198 199 ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3)); 200 ASSERT32(UDS_SEL == UCS_SEL + 8); 201 202 ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3)); 203 ASSERT64(UDS_SEL == U32CS_SEL + 8); 204 #endif 205 206 cpu_sep_enable(); 207 208 /* 209 * resume() sets this value to the base of the threads stack 210 * via a context handler. 211 */ 212 wrmsr(MSR_INTC_SEP_ESP, 0); 213 wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter); 214 } 215 216 kpreempt_enable(); 217 } 218 219 /* 220 * Multiprocessor initialization. 221 * 222 * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the 223 * startup and idle threads for the specified CPU. 224 */ 225 struct cpu * 226 mp_startup_init(int cpun) 227 { 228 struct cpu *cp; 229 kthread_id_t tp; 230 caddr_t sp; 231 proc_t *procp; 232 #if !defined(__xpv) 233 extern int idle_cpu_prefer_mwait; 234 extern void cpu_idle_mwait(); 235 #endif 236 extern void idle(); 237 extern void cpu_idle(); 238 239 #ifdef TRAPTRACE 240 trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun]; 241 #endif 242 243 ASSERT(cpun < NCPU && cpu[cpun] == NULL); 244 245 cp = kmem_zalloc(sizeof (*cp), KM_SLEEP); 246 #if !defined(__xpv) 247 if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait) { 248 cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU); 249 cp->cpu_m.mcpu_idle_cpu = cpu_idle_mwait; 250 } else 251 #endif 252 cp->cpu_m.mcpu_idle_cpu = cpu_idle; 253 254 procp = curthread->t_procp; 255 256 mutex_enter(&cpu_lock); 257 /* 258 * Initialize the dispatcher first. 259 */ 260 disp_cpu_init(cp); 261 mutex_exit(&cpu_lock); 262 263 cpu_vm_data_init(cp); 264 265 /* 266 * Allocate and initialize the startup thread for this CPU. 267 * Interrupt and process switch stacks get allocated later 268 * when the CPU starts running. 269 */ 270 tp = thread_create(NULL, 0, NULL, NULL, 0, procp, 271 TS_STOPPED, maxclsyspri); 272 273 /* 274 * Set state to TS_ONPROC since this thread will start running 275 * as soon as the CPU comes online. 276 * 277 * All the other fields of the thread structure are setup by 278 * thread_create(). 279 */ 280 THREAD_ONPROC(tp, cp); 281 tp->t_preempt = 1; 282 tp->t_bound_cpu = cp; 283 tp->t_affinitycnt = 1; 284 tp->t_cpu = cp; 285 tp->t_disp_queue = cp->cpu_disp; 286 287 /* 288 * Setup thread to start in mp_startup. 289 */ 290 sp = tp->t_stk; 291 tp->t_pc = (uintptr_t)mp_startup; 292 tp->t_sp = (uintptr_t)(sp - MINFRAME); 293 #if defined(__amd64) 294 tp->t_sp -= STACK_ENTRY_ALIGN; /* fake a call */ 295 #endif 296 297 cp->cpu_id = cpun; 298 cp->cpu_self = cp; 299 cp->cpu_thread = tp; 300 cp->cpu_lwp = NULL; 301 cp->cpu_dispthread = tp; 302 cp->cpu_dispatch_pri = DISP_PRIO(tp); 303 304 /* 305 * cpu_base_spl must be set explicitly here to prevent any blocking 306 * operations in mp_startup from causing the spl of the cpu to drop 307 * to 0 (allowing device interrupts before we're ready) in resume(). 308 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY. 309 * As an extra bit of security on DEBUG kernels, this is enforced with 310 * an assertion in mp_startup() -- before cpu_base_spl is set to its 311 * proper value. 312 */ 313 cp->cpu_base_spl = ipltospl(LOCK_LEVEL); 314 315 /* 316 * Now, initialize per-CPU idle thread for this CPU. 317 */ 318 tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1); 319 320 cp->cpu_idle_thread = tp; 321 322 tp->t_preempt = 1; 323 tp->t_bound_cpu = cp; 324 tp->t_affinitycnt = 1; 325 tp->t_cpu = cp; 326 tp->t_disp_queue = cp->cpu_disp; 327 328 /* 329 * Bootstrap the CPU's PG data 330 */ 331 pg_cpu_bootstrap(cp); 332 333 /* 334 * Perform CPC initialization on the new CPU. 335 */ 336 kcpc_hw_init(cp); 337 338 /* 339 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2 340 * for each CPU. 341 */ 342 setup_vaddr_for_ppcopy(cp); 343 344 /* 345 * Allocate page for new GDT and initialize from current GDT. 346 */ 347 #if !defined(__lint) 348 ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE); 349 #endif 350 cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP); 351 bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT)); 352 353 #if defined(__i386) 354 /* 355 * setup kernel %gs. 356 */ 357 set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA, 358 SEL_KPL, 0, 1); 359 #endif 360 361 /* 362 * If we have more than one node, each cpu gets a copy of IDT 363 * local to its node. If this is a Pentium box, we use cpu 0's 364 * IDT. cpu 0's IDT has been made read-only to workaround the 365 * cmpxchgl register bug 366 */ 367 if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) { 368 #if !defined(__lint) 369 ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE); 370 #endif 371 cp->cpu_idt = kmem_zalloc(PAGESIZE, KM_SLEEP); 372 bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE); 373 } else { 374 cp->cpu_idt = CPU->cpu_idt; 375 } 376 377 /* 378 * Get interrupt priority data from cpu 0. 379 */ 380 cp->cpu_pri_data = CPU->cpu_pri_data; 381 382 /* 383 * alloc space for cpuid info 384 */ 385 cpuid_alloc_space(cp); 386 387 /* 388 * alloc space for ucode_info 389 */ 390 ucode_alloc_space(cp); 391 392 hat_cpu_online(cp); 393 394 #ifdef TRAPTRACE 395 /* 396 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers 397 */ 398 ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP); 399 ttc->ttc_next = ttc->ttc_first; 400 ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize; 401 #endif 402 /* 403 * Record that we have another CPU. 404 */ 405 mutex_enter(&cpu_lock); 406 /* 407 * Initialize the interrupt threads for this CPU 408 */ 409 cpu_intr_alloc(cp, NINTR_THREADS); 410 /* 411 * Add CPU to list of available CPUs. It'll be on the active list 412 * after mp_startup(). 413 */ 414 cpu_add_unit(cp); 415 mutex_exit(&cpu_lock); 416 417 return (cp); 418 } 419 420 /* 421 * Undo what was done in mp_startup_init 422 */ 423 static void 424 mp_startup_fini(struct cpu *cp, int error) 425 { 426 mutex_enter(&cpu_lock); 427 428 /* 429 * Remove the CPU from the list of available CPUs. 430 */ 431 cpu_del_unit(cp->cpu_id); 432 433 if (error == ETIMEDOUT) { 434 /* 435 * The cpu was started, but never *seemed* to run any 436 * code in the kernel; it's probably off spinning in its 437 * own private world, though with potential references to 438 * our kmem-allocated IDTs and GDTs (for example). 439 * 440 * Worse still, it may actually wake up some time later, 441 * so rather than guess what it might or might not do, we 442 * leave the fundamental data structures intact. 443 */ 444 cp->cpu_flags = 0; 445 mutex_exit(&cpu_lock); 446 return; 447 } 448 449 /* 450 * At this point, the only threads bound to this CPU should 451 * special per-cpu threads: it's idle thread, it's pause threads, 452 * and it's interrupt threads. Clean these up. 453 */ 454 cpu_destroy_bound_threads(cp); 455 cp->cpu_idle_thread = NULL; 456 457 /* 458 * Free the interrupt stack. 459 */ 460 segkp_release(segkp, 461 cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME))); 462 463 mutex_exit(&cpu_lock); 464 465 #ifdef TRAPTRACE 466 /* 467 * Discard the trap trace buffer 468 */ 469 { 470 trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id]; 471 472 kmem_free((void *)ttc->ttc_first, trap_trace_bufsize); 473 ttc->ttc_first = NULL; 474 } 475 #endif 476 477 hat_cpu_offline(cp); 478 479 cpuid_free_space(cp); 480 481 ucode_free_space(cp); 482 483 if (cp->cpu_idt != CPU->cpu_idt) 484 kmem_free(cp->cpu_idt, PAGESIZE); 485 cp->cpu_idt = NULL; 486 487 kmem_free(cp->cpu_gdt, PAGESIZE); 488 cp->cpu_gdt = NULL; 489 490 teardown_vaddr_for_ppcopy(cp); 491 492 kcpc_hw_fini(cp); 493 494 cp->cpu_dispthread = NULL; 495 cp->cpu_thread = NULL; /* discarded by cpu_destroy_bound_threads() */ 496 497 cpu_vm_data_destroy(cp); 498 499 mutex_enter(&cpu_lock); 500 disp_cpu_fini(cp); 501 mutex_exit(&cpu_lock); 502 503 #if !defined(__xpv) 504 if (cp->cpu_m.mcpu_mwait != NULL) 505 cpuid_mwait_free(cp); 506 #endif 507 kmem_free(cp, sizeof (*cp)); 508 } 509 510 /* 511 * Apply workarounds for known errata, and warn about those that are absent. 512 * 513 * System vendors occasionally create configurations which contain different 514 * revisions of the CPUs that are almost but not exactly the same. At the 515 * time of writing, this meant that their clock rates were the same, their 516 * feature sets were the same, but the required workaround were -not- 517 * necessarily the same. So, this routine is invoked on -every- CPU soon 518 * after starting to make sure that the resulting system contains the most 519 * pessimal set of workarounds needed to cope with *any* of the CPUs in the 520 * system. 521 * 522 * workaround_errata is invoked early in mlsetup() for CPU 0, and in 523 * mp_startup() for all slave CPUs. Slaves process workaround_errata prior 524 * to acknowledging their readiness to the master, so this routine will 525 * never be executed by multiple CPUs in parallel, thus making updates to 526 * global data safe. 527 * 528 * These workarounds are based on Rev 3.57 of the Revision Guide for 529 * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005. 530 */ 531 532 #if defined(OPTERON_ERRATUM_88) 533 int opteron_erratum_88; /* if non-zero -> at least one cpu has it */ 534 #endif 535 536 #if defined(OPTERON_ERRATUM_91) 537 int opteron_erratum_91; /* if non-zero -> at least one cpu has it */ 538 #endif 539 540 #if defined(OPTERON_ERRATUM_93) 541 int opteron_erratum_93; /* if non-zero -> at least one cpu has it */ 542 #endif 543 544 #if defined(OPTERON_ERRATUM_95) 545 int opteron_erratum_95; /* if non-zero -> at least one cpu has it */ 546 #endif 547 548 #if defined(OPTERON_ERRATUM_100) 549 int opteron_erratum_100; /* if non-zero -> at least one cpu has it */ 550 #endif 551 552 #if defined(OPTERON_ERRATUM_108) 553 int opteron_erratum_108; /* if non-zero -> at least one cpu has it */ 554 #endif 555 556 #if defined(OPTERON_ERRATUM_109) 557 int opteron_erratum_109; /* if non-zero -> at least one cpu has it */ 558 #endif 559 560 #if defined(OPTERON_ERRATUM_121) 561 int opteron_erratum_121; /* if non-zero -> at least one cpu has it */ 562 #endif 563 564 #if defined(OPTERON_ERRATUM_122) 565 int opteron_erratum_122; /* if non-zero -> at least one cpu has it */ 566 #endif 567 568 #if defined(OPTERON_ERRATUM_123) 569 int opteron_erratum_123; /* if non-zero -> at least one cpu has it */ 570 #endif 571 572 #if defined(OPTERON_ERRATUM_131) 573 int opteron_erratum_131; /* if non-zero -> at least one cpu has it */ 574 #endif 575 576 #if defined(OPTERON_WORKAROUND_6336786) 577 int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */ 578 int opteron_workaround_6336786_UP = 0; /* Not needed for UP */ 579 #endif 580 581 #if defined(OPTERON_WORKAROUND_6323525) 582 int opteron_workaround_6323525; /* if non-zero -> at least one cpu has it */ 583 #endif 584 585 #if defined(OPTERON_ERRATUM_298) 586 int opteron_erratum_298; 587 #endif 588 589 static void 590 workaround_warning(cpu_t *cp, uint_t erratum) 591 { 592 cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u", 593 cp->cpu_id, erratum); 594 } 595 596 static void 597 workaround_applied(uint_t erratum) 598 { 599 if (erratum > 1000000) 600 cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n", 601 erratum); 602 else 603 cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n", 604 erratum); 605 } 606 607 static void 608 msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error) 609 { 610 cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d", 611 cp->cpu_id, rw, msr, error); 612 } 613 614 /* 615 * Determine the number of nodes in a Hammer / Greyhound / Griffin family 616 * system. 617 */ 618 static uint_t 619 opteron_get_nnodes(void) 620 { 621 static uint_t nnodes = 0; 622 623 if (nnodes == 0) { 624 #ifdef DEBUG 625 uint_t family; 626 627 /* 628 * This routine uses a PCI config space based mechanism 629 * for retrieving the number of nodes in the system. 630 * Device 24, function 0, offset 0x60 as used here is not 631 * AMD processor architectural, and may not work on processor 632 * families other than those listed below. 633 * 634 * Callers of this routine must ensure that we're running on 635 * a processor which supports this mechanism. 636 * The assertion below is meant to catch calls on unsupported 637 * processors. 638 */ 639 family = cpuid_getfamily(CPU); 640 ASSERT(family == 0xf || family == 0x10 || family == 0x11); 641 #endif /* DEBUG */ 642 643 /* 644 * Obtain the number of nodes in the system from 645 * bits [6:4] of the Node ID register on node 0. 646 * 647 * The actual node count is NodeID[6:4] + 1 648 * 649 * The Node ID register is accessed via function 0, 650 * offset 0x60. Node 0 is device 24. 651 */ 652 nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1; 653 } 654 return (nnodes); 655 } 656 657 #if defined(__xpv) 658 659 /* 660 * On dom0, we can determine the number of physical cpus on the machine. 661 * This number is important when figuring out what workarounds are 662 * appropriate, so compute it now. 663 */ 664 uint_t 665 xen_get_nphyscpus(void) 666 { 667 static uint_t nphyscpus = 0; 668 669 ASSERT(DOMAIN_IS_INITDOMAIN(xen_info)); 670 671 if (nphyscpus == 0) { 672 xen_sysctl_t op; 673 xen_sysctl_physinfo_t *pi = &op.u.physinfo; 674 675 op.cmd = XEN_SYSCTL_physinfo; 676 op.interface_version = XEN_SYSCTL_INTERFACE_VERSION; 677 if (HYPERVISOR_sysctl(&op) == 0) 678 nphyscpus = pi->threads_per_core * 679 pi->cores_per_socket * pi->sockets_per_node * 680 pi->nr_nodes; 681 } 682 return (nphyscpus); 683 } 684 #endif 685 686 uint_t 687 do_erratum_298(struct cpu *cpu) 688 { 689 static int osvwrc = -3; 690 extern int osvw_opteron_erratum(cpu_t *, uint_t); 691 692 /* 693 * L2 Eviction May Occur During Processor Operation To Set 694 * Accessed or Dirty Bit. 695 */ 696 if (osvwrc == -3) { 697 osvwrc = osvw_opteron_erratum(cpu, 298); 698 } else { 699 /* osvw return codes should be consistent for all cpus */ 700 ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298)); 701 } 702 703 switch (osvwrc) { 704 case 0: /* erratum is not present: do nothing */ 705 break; 706 case 1: /* erratum is present: BIOS workaround applied */ 707 /* 708 * check if workaround is actually in place and issue warning 709 * if not. 710 */ 711 if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || 712 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) { 713 #if defined(OPTERON_ERRATUM_298) 714 opteron_erratum_298++; 715 #else 716 workaround_warning(cpu, 298); 717 return (1); 718 #endif 719 } 720 break; 721 case -1: /* cannot determine via osvw: check cpuid */ 722 if ((cpuid_opteron_erratum(cpu, 298) > 0) && 723 (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || 724 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) { 725 #if defined(OPTERON_ERRATUM_298) 726 opteron_erratum_298++; 727 #else 728 workaround_warning(cpu, 298); 729 return (1); 730 #endif 731 } 732 break; 733 } 734 return (0); 735 } 736 737 uint_t 738 workaround_errata(struct cpu *cpu) 739 { 740 uint_t missing = 0; 741 742 ASSERT(cpu == CPU); 743 744 /*LINTED*/ 745 if (cpuid_opteron_erratum(cpu, 88) > 0) { 746 /* 747 * SWAPGS May Fail To Read Correct GS Base 748 */ 749 #if defined(OPTERON_ERRATUM_88) 750 /* 751 * The workaround is an mfence in the relevant assembler code 752 */ 753 opteron_erratum_88++; 754 #else 755 workaround_warning(cpu, 88); 756 missing++; 757 #endif 758 } 759 760 if (cpuid_opteron_erratum(cpu, 91) > 0) { 761 /* 762 * Software Prefetches May Report A Page Fault 763 */ 764 #if defined(OPTERON_ERRATUM_91) 765 /* 766 * fix is in trap.c 767 */ 768 opteron_erratum_91++; 769 #else 770 workaround_warning(cpu, 91); 771 missing++; 772 #endif 773 } 774 775 if (cpuid_opteron_erratum(cpu, 93) > 0) { 776 /* 777 * RSM Auto-Halt Restart Returns to Incorrect RIP 778 */ 779 #if defined(OPTERON_ERRATUM_93) 780 /* 781 * fix is in trap.c 782 */ 783 opteron_erratum_93++; 784 #else 785 workaround_warning(cpu, 93); 786 missing++; 787 #endif 788 } 789 790 /*LINTED*/ 791 if (cpuid_opteron_erratum(cpu, 95) > 0) { 792 /* 793 * RET Instruction May Return to Incorrect EIP 794 */ 795 #if defined(OPTERON_ERRATUM_95) 796 #if defined(_LP64) 797 /* 798 * Workaround this by ensuring that 32-bit user code and 799 * 64-bit kernel code never occupy the same address 800 * range mod 4G. 801 */ 802 if (_userlimit32 > 0xc0000000ul) 803 *(uintptr_t *)&_userlimit32 = 0xc0000000ul; 804 805 /*LINTED*/ 806 ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u); 807 opteron_erratum_95++; 808 #endif /* _LP64 */ 809 #else 810 workaround_warning(cpu, 95); 811 missing++; 812 #endif 813 } 814 815 if (cpuid_opteron_erratum(cpu, 100) > 0) { 816 /* 817 * Compatibility Mode Branches Transfer to Illegal Address 818 */ 819 #if defined(OPTERON_ERRATUM_100) 820 /* 821 * fix is in trap.c 822 */ 823 opteron_erratum_100++; 824 #else 825 workaround_warning(cpu, 100); 826 missing++; 827 #endif 828 } 829 830 /*LINTED*/ 831 if (cpuid_opteron_erratum(cpu, 108) > 0) { 832 /* 833 * CPUID Instruction May Return Incorrect Model Number In 834 * Some Processors 835 */ 836 #if defined(OPTERON_ERRATUM_108) 837 /* 838 * (Our cpuid-handling code corrects the model number on 839 * those processors) 840 */ 841 #else 842 workaround_warning(cpu, 108); 843 missing++; 844 #endif 845 } 846 847 /*LINTED*/ 848 if (cpuid_opteron_erratum(cpu, 109) > 0) do { 849 /* 850 * Certain Reverse REP MOVS May Produce Unpredictable Behaviour 851 */ 852 #if defined(OPTERON_ERRATUM_109) 853 /* 854 * The "workaround" is to print a warning to upgrade the BIOS 855 */ 856 uint64_t value; 857 const uint_t msr = MSR_AMD_PATCHLEVEL; 858 int err; 859 860 if ((err = checked_rdmsr(msr, &value)) != 0) { 861 msr_warning(cpu, "rd", msr, err); 862 workaround_warning(cpu, 109); 863 missing++; 864 } 865 if (value == 0) 866 opteron_erratum_109++; 867 #else 868 workaround_warning(cpu, 109); 869 missing++; 870 #endif 871 /*CONSTANTCONDITION*/ 872 } while (0); 873 874 /*LINTED*/ 875 if (cpuid_opteron_erratum(cpu, 121) > 0) { 876 /* 877 * Sequential Execution Across Non_Canonical Boundary Caused 878 * Processor Hang 879 */ 880 #if defined(OPTERON_ERRATUM_121) 881 #if defined(_LP64) 882 /* 883 * Erratum 121 is only present in long (64 bit) mode. 884 * Workaround is to include the page immediately before the 885 * va hole to eliminate the possibility of system hangs due to 886 * sequential execution across the va hole boundary. 887 */ 888 if (opteron_erratum_121) 889 opteron_erratum_121++; 890 else { 891 if (hole_start) { 892 hole_start -= PAGESIZE; 893 } else { 894 /* 895 * hole_start not yet initialized by 896 * mmu_init. Initialize hole_start 897 * with value to be subtracted. 898 */ 899 hole_start = PAGESIZE; 900 } 901 opteron_erratum_121++; 902 } 903 #endif /* _LP64 */ 904 #else 905 workaround_warning(cpu, 121); 906 missing++; 907 #endif 908 } 909 910 /*LINTED*/ 911 if (cpuid_opteron_erratum(cpu, 122) > 0) do { 912 /* 913 * TLB Flush Filter May Cause Coherency Problem in 914 * Multiprocessor Systems 915 */ 916 #if defined(OPTERON_ERRATUM_122) 917 uint64_t value; 918 const uint_t msr = MSR_AMD_HWCR; 919 int error; 920 921 /* 922 * Erratum 122 is only present in MP configurations (multi-core 923 * or multi-processor). 924 */ 925 #if defined(__xpv) 926 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 927 break; 928 if (!opteron_erratum_122 && xen_get_nphyscpus() == 1) 929 break; 930 #else 931 if (!opteron_erratum_122 && opteron_get_nnodes() == 1 && 932 cpuid_get_ncpu_per_chip(cpu) == 1) 933 break; 934 #endif 935 /* disable TLB Flush Filter */ 936 937 if ((error = checked_rdmsr(msr, &value)) != 0) { 938 msr_warning(cpu, "rd", msr, error); 939 workaround_warning(cpu, 122); 940 missing++; 941 } else { 942 value |= (uint64_t)AMD_HWCR_FFDIS; 943 if ((error = checked_wrmsr(msr, value)) != 0) { 944 msr_warning(cpu, "wr", msr, error); 945 workaround_warning(cpu, 122); 946 missing++; 947 } 948 } 949 opteron_erratum_122++; 950 #else 951 workaround_warning(cpu, 122); 952 missing++; 953 #endif 954 /*CONSTANTCONDITION*/ 955 } while (0); 956 957 /*LINTED*/ 958 if (cpuid_opteron_erratum(cpu, 123) > 0) do { 959 /* 960 * Bypassed Reads May Cause Data Corruption of System Hang in 961 * Dual Core Processors 962 */ 963 #if defined(OPTERON_ERRATUM_123) 964 uint64_t value; 965 const uint_t msr = MSR_AMD_PATCHLEVEL; 966 int err; 967 968 /* 969 * Erratum 123 applies only to multi-core cpus. 970 */ 971 if (cpuid_get_ncpu_per_chip(cpu) < 2) 972 break; 973 #if defined(__xpv) 974 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 975 break; 976 #endif 977 /* 978 * The "workaround" is to print a warning to upgrade the BIOS 979 */ 980 if ((err = checked_rdmsr(msr, &value)) != 0) { 981 msr_warning(cpu, "rd", msr, err); 982 workaround_warning(cpu, 123); 983 missing++; 984 } 985 if (value == 0) 986 opteron_erratum_123++; 987 #else 988 workaround_warning(cpu, 123); 989 missing++; 990 991 #endif 992 /*CONSTANTCONDITION*/ 993 } while (0); 994 995 /*LINTED*/ 996 if (cpuid_opteron_erratum(cpu, 131) > 0) do { 997 /* 998 * Multiprocessor Systems with Four or More Cores May Deadlock 999 * Waiting for a Probe Response 1000 */ 1001 #if defined(OPTERON_ERRATUM_131) 1002 uint64_t nbcfg; 1003 const uint_t msr = MSR_AMD_NB_CFG; 1004 const uint64_t wabits = 1005 AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR; 1006 int error; 1007 1008 /* 1009 * Erratum 131 applies to any system with four or more cores. 1010 */ 1011 if (opteron_erratum_131) 1012 break; 1013 #if defined(__xpv) 1014 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 1015 break; 1016 if (xen_get_nphyscpus() < 4) 1017 break; 1018 #else 1019 if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4) 1020 break; 1021 #endif 1022 /* 1023 * Print a warning if neither of the workarounds for 1024 * erratum 131 is present. 1025 */ 1026 if ((error = checked_rdmsr(msr, &nbcfg)) != 0) { 1027 msr_warning(cpu, "rd", msr, error); 1028 workaround_warning(cpu, 131); 1029 missing++; 1030 } else if ((nbcfg & wabits) == 0) { 1031 opteron_erratum_131++; 1032 } else { 1033 /* cannot have both workarounds set */ 1034 ASSERT((nbcfg & wabits) != wabits); 1035 } 1036 #else 1037 workaround_warning(cpu, 131); 1038 missing++; 1039 #endif 1040 /*CONSTANTCONDITION*/ 1041 } while (0); 1042 1043 /* 1044 * This isn't really an erratum, but for convenience the 1045 * detection/workaround code lives here and in cpuid_opteron_erratum. 1046 */ 1047 if (cpuid_opteron_erratum(cpu, 6336786) > 0) { 1048 #if defined(OPTERON_WORKAROUND_6336786) 1049 /* 1050 * Disable C1-Clock ramping on multi-core/multi-processor 1051 * K8 platforms to guard against TSC drift. 1052 */ 1053 if (opteron_workaround_6336786) { 1054 opteron_workaround_6336786++; 1055 #if defined(__xpv) 1056 } else if ((DOMAIN_IS_INITDOMAIN(xen_info) && 1057 xen_get_nphyscpus() > 1) || 1058 opteron_workaround_6336786_UP) { 1059 /* 1060 * XXPV Hmm. We can't walk the Northbridges on 1061 * the hypervisor; so just complain and drive 1062 * on. This probably needs to be fixed in 1063 * the hypervisor itself. 1064 */ 1065 opteron_workaround_6336786++; 1066 workaround_warning(cpu, 6336786); 1067 #else /* __xpv */ 1068 } else if ((opteron_get_nnodes() * 1069 cpuid_get_ncpu_per_chip(cpu) > 1) || 1070 opteron_workaround_6336786_UP) { 1071 1072 uint_t node, nnodes; 1073 uint8_t data; 1074 1075 nnodes = opteron_get_nnodes(); 1076 for (node = 0; node < nnodes; node++) { 1077 /* 1078 * Clear PMM7[1:0] (function 3, offset 0x87) 1079 * Northbridge device is the node id + 24. 1080 */ 1081 data = pci_getb_func(0, node + 24, 3, 0x87); 1082 data &= 0xFC; 1083 pci_putb_func(0, node + 24, 3, 0x87, data); 1084 } 1085 opteron_workaround_6336786++; 1086 #endif /* __xpv */ 1087 } 1088 #else 1089 workaround_warning(cpu, 6336786); 1090 missing++; 1091 #endif 1092 } 1093 1094 /*LINTED*/ 1095 /* 1096 * Mutex primitives don't work as expected. 1097 */ 1098 if (cpuid_opteron_erratum(cpu, 6323525) > 0) { 1099 #if defined(OPTERON_WORKAROUND_6323525) 1100 /* 1101 * This problem only occurs with 2 or more cores. If bit in 1102 * MSR_AMD_BU_CFG set, then not applicable. The workaround 1103 * is to patch the semaphone routines with the lfence 1104 * instruction to provide necessary load memory barrier with 1105 * possible subsequent read-modify-write ops. 1106 * 1107 * It is too early in boot to call the patch routine so 1108 * set erratum variable to be done in startup_end(). 1109 */ 1110 if (opteron_workaround_6323525) { 1111 opteron_workaround_6323525++; 1112 #if defined(__xpv) 1113 } else if (x86_feature & X86_SSE2) { 1114 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1115 /* 1116 * XXPV Use dom0_msr here when extended 1117 * operations are supported? 1118 */ 1119 if (xen_get_nphyscpus() > 1) 1120 opteron_workaround_6323525++; 1121 } else { 1122 /* 1123 * We have no way to tell how many physical 1124 * cpus there are, or even if this processor 1125 * has the problem, so enable the workaround 1126 * unconditionally (at some performance cost). 1127 */ 1128 opteron_workaround_6323525++; 1129 } 1130 #else /* __xpv */ 1131 } else if ((x86_feature & X86_SSE2) && ((opteron_get_nnodes() * 1132 cpuid_get_ncpu_per_chip(cpu)) > 1)) { 1133 if ((xrdmsr(MSR_AMD_BU_CFG) & (UINT64_C(1) << 33)) == 0) 1134 opteron_workaround_6323525++; 1135 #endif /* __xpv */ 1136 } 1137 #else 1138 workaround_warning(cpu, 6323525); 1139 missing++; 1140 #endif 1141 } 1142 1143 missing += do_erratum_298(cpu); 1144 1145 #ifdef __xpv 1146 return (0); 1147 #else 1148 return (missing); 1149 #endif 1150 } 1151 1152 void 1153 workaround_errata_end() 1154 { 1155 #if defined(OPTERON_ERRATUM_88) 1156 if (opteron_erratum_88) 1157 workaround_applied(88); 1158 #endif 1159 #if defined(OPTERON_ERRATUM_91) 1160 if (opteron_erratum_91) 1161 workaround_applied(91); 1162 #endif 1163 #if defined(OPTERON_ERRATUM_93) 1164 if (opteron_erratum_93) 1165 workaround_applied(93); 1166 #endif 1167 #if defined(OPTERON_ERRATUM_95) 1168 if (opteron_erratum_95) 1169 workaround_applied(95); 1170 #endif 1171 #if defined(OPTERON_ERRATUM_100) 1172 if (opteron_erratum_100) 1173 workaround_applied(100); 1174 #endif 1175 #if defined(OPTERON_ERRATUM_108) 1176 if (opteron_erratum_108) 1177 workaround_applied(108); 1178 #endif 1179 #if defined(OPTERON_ERRATUM_109) 1180 if (opteron_erratum_109) { 1181 cmn_err(CE_WARN, 1182 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1183 " processor\nerratum 109 was not detected; updating your" 1184 " system's BIOS to a version\ncontaining this" 1185 " microcode patch is HIGHLY recommended or erroneous" 1186 " system\noperation may occur.\n"); 1187 } 1188 #endif 1189 #if defined(OPTERON_ERRATUM_121) 1190 if (opteron_erratum_121) 1191 workaround_applied(121); 1192 #endif 1193 #if defined(OPTERON_ERRATUM_122) 1194 if (opteron_erratum_122) 1195 workaround_applied(122); 1196 #endif 1197 #if defined(OPTERON_ERRATUM_123) 1198 if (opteron_erratum_123) { 1199 cmn_err(CE_WARN, 1200 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1201 " processor\nerratum 123 was not detected; updating your" 1202 " system's BIOS to a version\ncontaining this" 1203 " microcode patch is HIGHLY recommended or erroneous" 1204 " system\noperation may occur.\n"); 1205 } 1206 #endif 1207 #if defined(OPTERON_ERRATUM_131) 1208 if (opteron_erratum_131) { 1209 cmn_err(CE_WARN, 1210 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1211 " processor\nerratum 131 was not detected; updating your" 1212 " system's BIOS to a version\ncontaining this" 1213 " microcode patch is HIGHLY recommended or erroneous" 1214 " system\noperation may occur.\n"); 1215 } 1216 #endif 1217 #if defined(OPTERON_WORKAROUND_6336786) 1218 if (opteron_workaround_6336786) 1219 workaround_applied(6336786); 1220 #endif 1221 #if defined(OPTERON_WORKAROUND_6323525) 1222 if (opteron_workaround_6323525) 1223 workaround_applied(6323525); 1224 #endif 1225 #if defined(OPTERON_ERRATUM_298) 1226 if (opteron_erratum_298) { 1227 cmn_err(CE_WARN, 1228 "BIOS microcode patch for AMD 64/Opteron(tm)" 1229 " processor\nerratum 298 was not detected; updating your" 1230 " system's BIOS to a version\ncontaining this" 1231 " microcode patch is HIGHLY recommended or erroneous" 1232 " system\noperation may occur.\n"); 1233 } 1234 #endif 1235 } 1236 1237 static cpuset_t procset; 1238 1239 /* 1240 * Start a single cpu, assuming that the kernel context is available 1241 * to successfully start another cpu. 1242 * 1243 * (For example, real mode code is mapped into the right place 1244 * in memory and is ready to be run.) 1245 */ 1246 int 1247 start_cpu(processorid_t who) 1248 { 1249 void *ctx; 1250 cpu_t *cp; 1251 int delays; 1252 int error = 0; 1253 1254 ASSERT(who != 0); 1255 1256 /* 1257 * Check if there's at least a Mbyte of kmem available 1258 * before attempting to start the cpu. 1259 */ 1260 if (kmem_avail() < 1024 * 1024) { 1261 /* 1262 * Kick off a reap in case that helps us with 1263 * later attempts .. 1264 */ 1265 kmem_reap(); 1266 return (ENOMEM); 1267 } 1268 1269 cp = mp_startup_init(who); 1270 if ((ctx = mach_cpucontext_alloc(cp)) == NULL || 1271 (error = mach_cpu_start(cp, ctx)) != 0) { 1272 1273 /* 1274 * Something went wrong before we even started it 1275 */ 1276 if (ctx) 1277 cmn_err(CE_WARN, 1278 "cpu%d: failed to start error %d", 1279 cp->cpu_id, error); 1280 else 1281 cmn_err(CE_WARN, 1282 "cpu%d: failed to allocate context", cp->cpu_id); 1283 1284 if (ctx) 1285 mach_cpucontext_free(cp, ctx, error); 1286 else 1287 error = EAGAIN; /* hmm. */ 1288 mp_startup_fini(cp, error); 1289 return (error); 1290 } 1291 1292 for (delays = 0; !CPU_IN_SET(procset, who); delays++) { 1293 if (delays == 500) { 1294 /* 1295 * After five seconds, things are probably looking 1296 * a bit bleak - explain the hang. 1297 */ 1298 cmn_err(CE_NOTE, "cpu%d: started, " 1299 "but not running in the kernel yet", who); 1300 } else if (delays > 2000) { 1301 /* 1302 * We waited at least 20 seconds, bail .. 1303 */ 1304 error = ETIMEDOUT; 1305 cmn_err(CE_WARN, "cpu%d: timed out", who); 1306 mach_cpucontext_free(cp, ctx, error); 1307 mp_startup_fini(cp, error); 1308 return (error); 1309 } 1310 1311 /* 1312 * wait at least 10ms, then check again.. 1313 */ 1314 delay(USEC_TO_TICK_ROUNDUP(10000)); 1315 } 1316 1317 mach_cpucontext_free(cp, ctx, 0); 1318 1319 #ifndef __xpv 1320 if (tsc_gethrtime_enable) 1321 tsc_sync_master(who); 1322 #endif 1323 1324 if (dtrace_cpu_init != NULL) { 1325 /* 1326 * DTrace CPU initialization expects cpu_lock to be held. 1327 */ 1328 mutex_enter(&cpu_lock); 1329 (*dtrace_cpu_init)(who); 1330 mutex_exit(&cpu_lock); 1331 } 1332 1333 while (!CPU_IN_SET(cpu_ready_set, who)) 1334 delay(1); 1335 1336 return (0); 1337 } 1338 1339 1340 /*ARGSUSED*/ 1341 void 1342 start_other_cpus(int cprboot) 1343 { 1344 uint_t who; 1345 uint_t skipped = 0; 1346 uint_t bootcpuid = 0; 1347 1348 /* 1349 * Initialize our own cpu_info. 1350 */ 1351 init_cpu_info(CPU); 1352 1353 cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr); 1354 cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr); 1355 1356 /* 1357 * Initialize our syscall handlers 1358 */ 1359 init_cpu_syscall(CPU); 1360 1361 /* 1362 * Take the boot cpu out of the mp_cpus set because we know 1363 * it's already running. Add it to the cpu_ready_set for 1364 * precisely the same reason. 1365 */ 1366 CPUSET_DEL(mp_cpus, bootcpuid); 1367 CPUSET_ADD(cpu_ready_set, bootcpuid); 1368 1369 /* 1370 * if only 1 cpu or not using MP, skip the rest of this 1371 */ 1372 if (CPUSET_ISNULL(mp_cpus) || use_mp == 0) { 1373 if (use_mp == 0) 1374 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 1375 goto done; 1376 } 1377 1378 /* 1379 * perform such initialization as is needed 1380 * to be able to take CPUs on- and off-line. 1381 */ 1382 cpu_pause_init(); 1383 1384 xc_init(); /* initialize processor crosscalls */ 1385 1386 if (mach_cpucontext_init() != 0) 1387 goto done; 1388 1389 flushes_require_xcalls = 1; 1390 1391 /* 1392 * We lock our affinity to the master CPU to ensure that all slave CPUs 1393 * do their TSC syncs with the same CPU. 1394 */ 1395 affinity_set(CPU_CURRENT); 1396 1397 for (who = 0; who < NCPU; who++) { 1398 1399 if (!CPU_IN_SET(mp_cpus, who)) 1400 continue; 1401 ASSERT(who != bootcpuid); 1402 if (ncpus >= max_ncpus) { 1403 skipped = who; 1404 continue; 1405 } 1406 if (start_cpu(who) != 0) 1407 CPUSET_DEL(mp_cpus, who); 1408 1409 mutex_enter(&cpu_lock); 1410 cpu_state_change_notify(who, CPU_SETUP); 1411 mutex_exit(&cpu_lock); 1412 } 1413 1414 /* Free the space allocated to hold the microcode file */ 1415 ucode_cleanup(); 1416 1417 affinity_clear(); 1418 1419 if (skipped) { 1420 cmn_err(CE_NOTE, 1421 "System detected %d cpus, but " 1422 "only %d cpu(s) were enabled during boot.", 1423 skipped + 1, ncpus); 1424 cmn_err(CE_NOTE, 1425 "Use \"boot-ncpus\" parameter to enable more CPU(s). " 1426 "See eeprom(1M)."); 1427 } 1428 1429 done: 1430 workaround_errata_end(); 1431 mach_cpucontext_fini(); 1432 1433 cmi_post_mpstartup(); 1434 } 1435 1436 /* 1437 * Dummy functions - no i86pc platforms support dynamic cpu allocation. 1438 */ 1439 /*ARGSUSED*/ 1440 int 1441 mp_cpu_configure(int cpuid) 1442 { 1443 return (ENOTSUP); /* not supported */ 1444 } 1445 1446 /*ARGSUSED*/ 1447 int 1448 mp_cpu_unconfigure(int cpuid) 1449 { 1450 return (ENOTSUP); /* not supported */ 1451 } 1452 1453 /* 1454 * Startup function for 'other' CPUs (besides boot cpu). 1455 * Called from real_mode_start. 1456 * 1457 * WARNING: until CPU_READY is set, mp_startup and routines called by 1458 * mp_startup should not call routines (e.g. kmem_free) that could call 1459 * hat_unload which requires CPU_READY to be set. 1460 */ 1461 void 1462 mp_startup(void) 1463 { 1464 struct cpu *cp = CPU; 1465 uint_t new_x86_feature; 1466 #ifndef __xpv 1467 extern void cpupm_init(cpu_t *); 1468 #endif 1469 1470 /* 1471 * We need to get TSC on this proc synced (i.e., any delta 1472 * from cpu0 accounted for) as soon as we can, because many 1473 * many things use gethrtime/pc_gethrestime, including 1474 * interrupts, cmn_err, etc. 1475 */ 1476 1477 /* Let cpu0 continue into tsc_sync_master() */ 1478 CPUSET_ATOMIC_ADD(procset, cp->cpu_id); 1479 1480 #ifndef __xpv 1481 if (tsc_gethrtime_enable) 1482 tsc_sync_slave(); 1483 #endif 1484 1485 /* 1486 * Once this was done from assembly, but it's safer here; if 1487 * it blocks, we need to be able to swtch() to and from, and 1488 * since we get here by calling t_pc, we need to do that call 1489 * before swtch() overwrites it. 1490 */ 1491 (void) (*ap_mlsetup)(); 1492 1493 new_x86_feature = cpuid_pass1(cp); 1494 1495 #ifndef __xpv 1496 /* 1497 * Program this cpu's PAT 1498 */ 1499 if (x86_feature & X86_PAT) 1500 pat_sync(); 1501 #endif 1502 1503 /* 1504 * Set up TSC_AUX to contain the cpuid for this processor 1505 * for the rdtscp instruction. 1506 */ 1507 if (x86_feature & X86_TSCP) 1508 (void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id); 1509 1510 /* 1511 * Initialize this CPU's syscall handlers 1512 */ 1513 init_cpu_syscall(cp); 1514 1515 /* 1516 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the 1517 * highest level at which a routine is permitted to block on 1518 * an adaptive mutex (allows for cpu poke interrupt in case 1519 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks 1520 * device interrupts that may end up in the hat layer issuing cross 1521 * calls before CPU_READY is set. 1522 */ 1523 splx(ipltospl(LOCK_LEVEL)); 1524 sti(); 1525 1526 /* 1527 * Do a sanity check to make sure this new CPU is a sane thing 1528 * to add to the collection of processors running this system. 1529 * 1530 * XXX Clearly this needs to get more sophisticated, if x86 1531 * systems start to get built out of heterogenous CPUs; as is 1532 * likely to happen once the number of processors in a configuration 1533 * gets large enough. 1534 */ 1535 if ((x86_feature & new_x86_feature) != x86_feature) { 1536 cmn_err(CE_CONT, "?cpu%d: %b\n", 1537 cp->cpu_id, new_x86_feature, FMT_X86_FEATURE); 1538 cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id); 1539 } 1540 1541 /* 1542 * We do not support cpus with mixed monitor/mwait support if the 1543 * boot cpu supports monitor/mwait. 1544 */ 1545 if ((x86_feature & ~new_x86_feature) & X86_MWAIT) 1546 panic("unsupported mixed cpu monitor/mwait support detected"); 1547 1548 /* 1549 * We could be more sophisticated here, and just mark the CPU 1550 * as "faulted" but at this point we'll opt for the easier 1551 * answer of dieing horribly. Provided the boot cpu is ok, 1552 * the system can be recovered by booting with use_mp set to zero. 1553 */ 1554 if (workaround_errata(cp) != 0) 1555 panic("critical workaround(s) missing for cpu%d", cp->cpu_id); 1556 1557 cpuid_pass2(cp); 1558 cpuid_pass3(cp); 1559 (void) cpuid_pass4(cp); 1560 1561 init_cpu_info(cp); 1562 1563 mutex_enter(&cpu_lock); 1564 1565 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS; 1566 1567 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr); 1568 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr); 1569 1570 if (dtrace_cpu_init != NULL) { 1571 (*dtrace_cpu_init)(cp->cpu_id); 1572 } 1573 1574 /* 1575 * Fill out cpu_ucode_info. Update microcode if necessary. 1576 */ 1577 ucode_check(cp); 1578 1579 mutex_exit(&cpu_lock); 1580 1581 post_startup_cpu_fixups(); 1582 1583 /* 1584 * Enable preemption here so that contention for any locks acquired 1585 * later in mp_startup may be preempted if the thread owning those 1586 * locks is continously executing on other CPUs (for example, this 1587 * CPU must be preemptible to allow other CPUs to pause it during their 1588 * startup phases). It's safe to enable preemption here because the 1589 * CPU state is pretty-much fully constructed. 1590 */ 1591 curthread->t_preempt = 0; 1592 1593 /* The base spl should still be at LOCK LEVEL here */ 1594 ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL)); 1595 set_base_spl(); /* Restore the spl to its proper value */ 1596 1597 #ifndef __xpv 1598 cpupm_init(cp); 1599 #endif 1600 add_cpunode2devtree(cp->cpu_id, cp->cpu_m.mcpu_cpi); 1601 1602 /* 1603 * Processor group initialization for this CPU is dependent on the 1604 * cpuid probing, which must be done in the context of the current 1605 * CPU, as well as the CPU's device node initialization (for ACPI). 1606 */ 1607 mutex_enter(&cpu_lock); 1608 pghw_physid_create(cp); 1609 pg_cpu_init(cp); 1610 pg_cmt_cpu_startup(cp); 1611 mutex_exit(&cpu_lock); 1612 1613 /* Enable interrupts */ 1614 (void) spl0(); 1615 1616 mutex_enter(&cpu_lock); 1617 cpu_enable_intr(cp); 1618 cpu_add_active(cp); 1619 mutex_exit(&cpu_lock); 1620 1621 #ifndef __xpv 1622 { 1623 /* 1624 * Set up the CPU module for this CPU. This can't be done 1625 * before this CPU is made CPU_READY, because we may (in 1626 * heterogeneous systems) need to go load another CPU module. 1627 * The act of attempting to load a module may trigger a 1628 * cross-call, which will ASSERT unless this cpu is CPU_READY. 1629 */ 1630 cmi_hdl_t hdl; 1631 1632 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1633 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { 1634 if (x86_feature & X86_MCA) 1635 cmi_mca_init(hdl); 1636 } 1637 } 1638 #endif /* __xpv */ 1639 1640 if (boothowto & RB_DEBUG) 1641 kdi_cpu_init(); 1642 1643 /* 1644 * Setting the bit in cpu_ready_set must be the last operation in 1645 * processor initialization; the boot CPU will continue to boot once 1646 * it sees this bit set for all active CPUs. 1647 */ 1648 CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id); 1649 1650 /* 1651 * Because mp_startup() gets fired off after init() starts, we 1652 * can't use the '?' trick to do 'boot -v' printing - so we 1653 * always direct the 'cpu .. online' messages to the log. 1654 */ 1655 cmn_err(CE_CONT, "!cpu%d initialization complete - online\n", 1656 cp->cpu_id); 1657 1658 /* 1659 * Now we are done with the startup thread, so free it up. 1660 */ 1661 thread_exit(); 1662 panic("mp_startup: cannot return"); 1663 /*NOTREACHED*/ 1664 } 1665 1666 1667 /* 1668 * Start CPU on user request. 1669 */ 1670 /* ARGSUSED */ 1671 int 1672 mp_cpu_start(struct cpu *cp) 1673 { 1674 ASSERT(MUTEX_HELD(&cpu_lock)); 1675 return (0); 1676 } 1677 1678 /* 1679 * Stop CPU on user request. 1680 */ 1681 /* ARGSUSED */ 1682 int 1683 mp_cpu_stop(struct cpu *cp) 1684 { 1685 extern int cbe_psm_timer_mode; 1686 ASSERT(MUTEX_HELD(&cpu_lock)); 1687 1688 #ifdef __xpv 1689 /* 1690 * We can't offline vcpu0. 1691 */ 1692 if (cp->cpu_id == 0) 1693 return (EBUSY); 1694 #endif 1695 1696 /* 1697 * If TIMER_PERIODIC mode is used, CPU0 is the one running it; 1698 * can't stop it. (This is true only for machines with no TSC.) 1699 */ 1700 1701 if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0)) 1702 return (EBUSY); 1703 1704 return (0); 1705 } 1706 1707 /* 1708 * Take the specified CPU out of participation in interrupts. 1709 */ 1710 int 1711 cpu_disable_intr(struct cpu *cp) 1712 { 1713 if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS) 1714 return (EBUSY); 1715 1716 cp->cpu_flags &= ~CPU_ENABLE; 1717 return (0); 1718 } 1719 1720 /* 1721 * Allow the specified CPU to participate in interrupts. 1722 */ 1723 void 1724 cpu_enable_intr(struct cpu *cp) 1725 { 1726 ASSERT(MUTEX_HELD(&cpu_lock)); 1727 cp->cpu_flags |= CPU_ENABLE; 1728 psm_enable_intr(cp->cpu_id); 1729 } 1730 1731 1732 /*ARGSUSED*/ 1733 void 1734 mp_cpu_faulted_enter(struct cpu *cp) 1735 { 1736 #ifndef __xpv 1737 cmi_hdl_t hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), 1738 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); 1739 1740 if (hdl != NULL) { 1741 cmi_faulted_enter(hdl); 1742 cmi_hdl_rele(hdl); 1743 } 1744 #endif 1745 } 1746 1747 /*ARGSUSED*/ 1748 void 1749 mp_cpu_faulted_exit(struct cpu *cp) 1750 { 1751 #ifndef __xpv 1752 cmi_hdl_t hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), 1753 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); 1754 1755 if (hdl != NULL) { 1756 cmi_faulted_exit(hdl); 1757 cmi_hdl_rele(hdl); 1758 } 1759 #endif 1760 } 1761 1762 /* 1763 * The following two routines are used as context operators on threads belonging 1764 * to processes with a private LDT (see sysi86). Due to the rarity of such 1765 * processes, these routines are currently written for best code readability and 1766 * organization rather than speed. We could avoid checking x86_feature at every 1767 * context switch by installing different context ops, depending on the 1768 * x86_feature flags, at LDT creation time -- one for each combination of fast 1769 * syscall feature flags. 1770 */ 1771 1772 /*ARGSUSED*/ 1773 void 1774 cpu_fast_syscall_disable(void *arg) 1775 { 1776 if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) 1777 cpu_sep_disable(); 1778 if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) 1779 cpu_asysc_disable(); 1780 } 1781 1782 /*ARGSUSED*/ 1783 void 1784 cpu_fast_syscall_enable(void *arg) 1785 { 1786 if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) 1787 cpu_sep_enable(); 1788 if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) 1789 cpu_asysc_enable(); 1790 } 1791 1792 static void 1793 cpu_sep_enable(void) 1794 { 1795 ASSERT(x86_feature & X86_SEP); 1796 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1797 1798 wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL); 1799 } 1800 1801 static void 1802 cpu_sep_disable(void) 1803 { 1804 ASSERT(x86_feature & X86_SEP); 1805 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1806 1807 /* 1808 * Setting the SYSENTER_CS_MSR register to 0 causes software executing 1809 * the sysenter or sysexit instruction to trigger a #gp fault. 1810 */ 1811 wrmsr(MSR_INTC_SEP_CS, 0); 1812 } 1813 1814 static void 1815 cpu_asysc_enable(void) 1816 { 1817 ASSERT(x86_feature & X86_ASYSC); 1818 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1819 1820 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) | 1821 (uint64_t)(uintptr_t)AMD_EFER_SCE); 1822 } 1823 1824 static void 1825 cpu_asysc_disable(void) 1826 { 1827 ASSERT(x86_feature & X86_ASYSC); 1828 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1829 1830 /* 1831 * Turn off the SCE (syscall enable) bit in the EFER register. Software 1832 * executing syscall or sysret with this bit off will incur a #ud trap. 1833 */ 1834 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) & 1835 ~((uint64_t)(uintptr_t)AMD_EFER_SCE)); 1836 } 1837