xref: /titanic_51/usr/src/uts/i86pc/os/fakebop.c (revision d561bb99043ed4f82fe51b395850644c122a3867)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  *
29  * Copyright 2013 Joyent, Inc.  All rights reserved.
30  */
31 
32 /*
33  * This file contains the functionality that mimics the boot operations
34  * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35  * The x86 kernel now does everything on its own.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/bootconf.h>
40 #include <sys/bootsvcs.h>
41 #include <sys/bootinfo.h>
42 #include <sys/multiboot.h>
43 #include <sys/multiboot2.h>
44 #include <sys/multiboot2_impl.h>
45 #include <sys/bootvfs.h>
46 #include <sys/bootprops.h>
47 #include <sys/varargs.h>
48 #include <sys/param.h>
49 #include <sys/machparam.h>
50 #include <sys/machsystm.h>
51 #include <sys/archsystm.h>
52 #include <sys/boot_console.h>
53 #include <sys/cmn_err.h>
54 #include <sys/systm.h>
55 #include <sys/promif.h>
56 #include <sys/archsystm.h>
57 #include <sys/x86_archext.h>
58 #include <sys/kobj.h>
59 #include <sys/privregs.h>
60 #include <sys/sysmacros.h>
61 #include <sys/ctype.h>
62 #include <sys/fastboot.h>
63 #ifdef __xpv
64 #include <sys/hypervisor.h>
65 #include <net/if.h>
66 #endif
67 #include <vm/kboot_mmu.h>
68 #include <vm/hat_pte.h>
69 #include <sys/kobj.h>
70 #include <sys/kobj_lex.h>
71 #include <sys/pci_cfgspace_impl.h>
72 #include <sys/fastboot_impl.h>
73 #include <sys/acpi/acconfig.h>
74 #include <sys/acpi/acpi.h>
75 
76 static int have_console = 0;	/* set once primitive console is initialized */
77 static char *boot_args = "";
78 
79 /*
80  * Debugging macros
81  */
82 static uint_t kbm_debug = 0;
83 #define	DBG_MSG(s)	{ if (kbm_debug) bop_printf(NULL, "%s", s); }
84 #define	DBG(x)		{ if (kbm_debug)			\
85 	bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));	\
86 	}
87 
88 #define	PUT_STRING(s) {				\
89 	char *cp;				\
90 	for (cp = (s); *cp; ++cp)		\
91 		bcons_putchar(*cp);		\
92 	}
93 
94 bootops_t bootop;	/* simple bootops we'll pass on to kernel */
95 struct bsys_mem bm;
96 
97 /*
98  * Boot info from "glue" code in low memory. xbootp is used by:
99  *	do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
100  */
101 static struct xboot_info *xbootp;
102 static uintptr_t next_virt;	/* next available virtual address */
103 static paddr_t next_phys;	/* next available physical address from dboot */
104 static paddr_t high_phys = -(paddr_t)1;	/* last used physical address */
105 
106 /*
107  * buffer for vsnprintf for console I/O
108  */
109 #define	BUFFERSIZE	512
110 static char buffer[BUFFERSIZE];
111 
112 /*
113  * stuff to store/report/manipulate boot property settings.
114  */
115 typedef struct bootprop {
116 	struct bootprop *bp_next;
117 	char *bp_name;
118 	uint_t bp_vlen;
119 	char *bp_value;
120 } bootprop_t;
121 
122 static bootprop_t *bprops = NULL;
123 static char *curr_page = NULL;		/* ptr to avail bprop memory */
124 static int curr_space = 0;		/* amount of memory at curr_page */
125 
126 #ifdef __xpv
127 start_info_t *xen_info;
128 shared_info_t *HYPERVISOR_shared_info;
129 #endif
130 
131 /*
132  * some allocator statistics
133  */
134 static ulong_t total_bop_alloc_scratch = 0;
135 static ulong_t total_bop_alloc_kernel = 0;
136 
137 static void build_firmware_properties(struct xboot_info *);
138 
139 static int early_allocation = 1;
140 
141 int force_fastreboot = 0;
142 volatile int fastreboot_onpanic = 0;
143 int post_fastreboot = 0;
144 #ifdef	__xpv
145 volatile int fastreboot_capable = 0;
146 #else
147 volatile int fastreboot_capable = 1;
148 #endif
149 
150 /*
151  * Information saved from current boot for fast reboot.
152  * If the information size exceeds what we have allocated, fast reboot
153  * will not be supported.
154  */
155 multiboot_info_t saved_mbi;
156 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
157 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
158 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
159 int saved_cmdline_len = 0;
160 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
161 
162 /*
163  * Turn off fastreboot_onpanic to avoid panic loop.
164  */
165 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
166 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
167 
168 /*
169  * Pointers to where System Resource Affinity Table (SRAT), System Locality
170  * Information Table (SLIT) and Maximum System Capability Table (MSCT)
171  * are mapped into virtual memory
172  */
173 ACPI_TABLE_SRAT	*srat_ptr = NULL;
174 ACPI_TABLE_SLIT	*slit_ptr = NULL;
175 ACPI_TABLE_MSCT	*msct_ptr = NULL;
176 
177 /*
178  * Arbitrary limit on number of localities we handle; if
179  * this limit is raised to more than UINT16_MAX, make sure
180  * process_slit() knows how to handle it.
181  */
182 #define	SLIT_LOCALITIES_MAX	(4096)
183 
184 #define	SLIT_NUM_PROPNAME	"acpi-slit-localities"
185 #define	SLIT_PROPNAME		"acpi-slit"
186 
187 /*
188  * Allocate aligned physical memory at boot time. This allocator allocates
189  * from the highest possible addresses. This avoids exhausting memory that
190  * would be useful for DMA buffers.
191  */
192 paddr_t
193 do_bop_phys_alloc(uint64_t size, uint64_t align)
194 {
195 	paddr_t	pa = 0;
196 	paddr_t	start;
197 	paddr_t	end;
198 	struct memlist	*ml = (struct memlist *)xbootp->bi_phys_install;
199 
200 	/*
201 	 * Be careful if high memory usage is limited in startup.c
202 	 * Since there are holes in the low part of the physical address
203 	 * space we can treat physmem as a pfn (not just a pgcnt) and
204 	 * get a conservative upper limit.
205 	 */
206 	if (physmem != 0 && high_phys > pfn_to_pa(physmem))
207 		high_phys = pfn_to_pa(physmem);
208 
209 	/*
210 	 * find the lowest or highest available memory in physinstalled
211 	 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled
212 	 */
213 #if defined(__i386)
214 	if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG)
215 		high_phys = FOUR_GIG;
216 #endif
217 
218 	/*
219 	 * find the highest available memory in physinstalled
220 	 */
221 	size = P2ROUNDUP(size, align);
222 	for (; ml; ml = ml->ml_next) {
223 		start = P2ROUNDUP(ml->ml_address, align);
224 		end = P2ALIGN(ml->ml_address + ml->ml_size, align);
225 		if (start < next_phys)
226 			start = P2ROUNDUP(next_phys, align);
227 		if (end > high_phys)
228 			end = P2ALIGN(high_phys, align);
229 
230 		if (end <= start)
231 			continue;
232 		if (end - start < size)
233 			continue;
234 
235 		/*
236 		 * Early allocations need to use low memory, since
237 		 * physmem might be further limited by bootenv.rc
238 		 */
239 		if (early_allocation) {
240 			if (pa == 0 || start < pa)
241 				pa = start;
242 		} else {
243 			if (end - size > pa)
244 				pa = end - size;
245 		}
246 	}
247 	if (pa != 0) {
248 		if (early_allocation)
249 			next_phys = pa + size;
250 		else
251 			high_phys = pa;
252 		return (pa);
253 	}
254 	bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
255 	    ") Out of memory\n", size, align);
256 	/*NOTREACHED*/
257 }
258 
259 uintptr_t
260 alloc_vaddr(size_t size, paddr_t align)
261 {
262 	uintptr_t rv;
263 
264 	next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
265 	rv = (uintptr_t)next_virt;
266 	next_virt += size;
267 	return (rv);
268 }
269 
270 /*
271  * Allocate virtual memory. The size is always rounded up to a multiple
272  * of base pagesize.
273  */
274 
275 /*ARGSUSED*/
276 static caddr_t
277 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
278 {
279 	paddr_t a = align;	/* same type as pa for masking */
280 	uint_t pgsize;
281 	paddr_t pa;
282 	uintptr_t va;
283 	ssize_t s;		/* the aligned size */
284 	uint_t level;
285 	uint_t is_kernel = (virthint != 0);
286 
287 	if (a < MMU_PAGESIZE)
288 		a = MMU_PAGESIZE;
289 	else if (!ISP2(a))
290 		prom_panic("do_bsys_alloc() incorrect alignment");
291 	size = P2ROUNDUP(size, MMU_PAGESIZE);
292 
293 	/*
294 	 * Use the next aligned virtual address if we weren't given one.
295 	 */
296 	if (virthint == NULL) {
297 		virthint = (caddr_t)alloc_vaddr(size, a);
298 		total_bop_alloc_scratch += size;
299 	} else {
300 		total_bop_alloc_kernel += size;
301 	}
302 
303 	/*
304 	 * allocate the physical memory
305 	 */
306 	pa = do_bop_phys_alloc(size, a);
307 
308 	/*
309 	 * Add the mappings to the page tables, try large pages first.
310 	 */
311 	va = (uintptr_t)virthint;
312 	s = size;
313 	level = 1;
314 	pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
315 	if (xbootp->bi_use_largepage && a == pgsize) {
316 		while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
317 		    s >= pgsize) {
318 			kbm_map(va, pa, level, is_kernel);
319 			va += pgsize;
320 			pa += pgsize;
321 			s -= pgsize;
322 		}
323 	}
324 
325 	/*
326 	 * Map remaining pages use small mappings
327 	 */
328 	level = 0;
329 	pgsize = MMU_PAGESIZE;
330 	while (s > 0) {
331 		kbm_map(va, pa, level, is_kernel);
332 		va += pgsize;
333 		pa += pgsize;
334 		s -= pgsize;
335 	}
336 	return (virthint);
337 }
338 
339 /*
340  * Free virtual memory - we'll just ignore these.
341  */
342 /*ARGSUSED*/
343 static void
344 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
345 {
346 	bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
347 	    (void *)virt, size);
348 }
349 
350 /*
351  * Old interface
352  */
353 /*ARGSUSED*/
354 static caddr_t
355 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
356     int align, int flags)
357 {
358 	prom_panic("unsupported call to BOP_EALLOC()\n");
359 	return (0);
360 }
361 
362 
363 static void
364 bsetprop(char *name, int nlen, void *value, int vlen)
365 {
366 	uint_t size;
367 	uint_t need_size;
368 	bootprop_t *b;
369 
370 	/*
371 	 * align the size to 16 byte boundary
372 	 */
373 	size = sizeof (bootprop_t) + nlen + 1 + vlen;
374 	size = (size + 0xf) & ~0xf;
375 	if (size > curr_space) {
376 		need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
377 		curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
378 		curr_space = need_size;
379 	}
380 
381 	/*
382 	 * use a bootprop_t at curr_page and link into list
383 	 */
384 	b = (bootprop_t *)curr_page;
385 	curr_page += sizeof (bootprop_t);
386 	curr_space -=  sizeof (bootprop_t);
387 	b->bp_next = bprops;
388 	bprops = b;
389 
390 	/*
391 	 * follow by name and ending zero byte
392 	 */
393 	b->bp_name = curr_page;
394 	bcopy(name, curr_page, nlen);
395 	curr_page += nlen;
396 	*curr_page++ = 0;
397 	curr_space -= nlen + 1;
398 
399 	/*
400 	 * copy in value, but no ending zero byte
401 	 */
402 	b->bp_value = curr_page;
403 	b->bp_vlen = vlen;
404 	if (vlen > 0) {
405 		bcopy(value, curr_page, vlen);
406 		curr_page += vlen;
407 		curr_space -= vlen;
408 	}
409 
410 	/*
411 	 * align new values of curr_page, curr_space
412 	 */
413 	while (curr_space & 0xf) {
414 		++curr_page;
415 		--curr_space;
416 	}
417 }
418 
419 static void
420 bsetprops(char *name, char *value)
421 {
422 	bsetprop(name, strlen(name), value, strlen(value) + 1);
423 }
424 
425 static void
426 bsetprop64(char *name, uint64_t value)
427 {
428 	bsetprop(name, strlen(name), (void *)&value, sizeof (value));
429 }
430 
431 static void
432 bsetpropsi(char *name, int value)
433 {
434 	char prop_val[32];
435 
436 	(void) snprintf(prop_val, sizeof (prop_val), "%d", value);
437 	bsetprops(name, prop_val);
438 }
439 
440 /*
441  * to find the size of the buffer to allocate
442  */
443 /*ARGSUSED*/
444 int
445 do_bsys_getproplen(bootops_t *bop, const char *name)
446 {
447 	bootprop_t *b;
448 
449 	for (b = bprops; b; b = b->bp_next) {
450 		if (strcmp(name, b->bp_name) != 0)
451 			continue;
452 		return (b->bp_vlen);
453 	}
454 	return (-1);
455 }
456 
457 /*
458  * get the value associated with this name
459  */
460 /*ARGSUSED*/
461 int
462 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
463 {
464 	bootprop_t *b;
465 
466 	for (b = bprops; b; b = b->bp_next) {
467 		if (strcmp(name, b->bp_name) != 0)
468 			continue;
469 		bcopy(b->bp_value, value, b->bp_vlen);
470 		return (0);
471 	}
472 	return (-1);
473 }
474 
475 /*
476  * get the name of the next property in succession from the standalone
477  */
478 /*ARGSUSED*/
479 static char *
480 do_bsys_nextprop(bootops_t *bop, char *name)
481 {
482 	bootprop_t *b;
483 
484 	/*
485 	 * A null name is a special signal for the 1st boot property
486 	 */
487 	if (name == NULL || strlen(name) == 0) {
488 		if (bprops == NULL)
489 			return (NULL);
490 		return (bprops->bp_name);
491 	}
492 
493 	for (b = bprops; b; b = b->bp_next) {
494 		if (name != b->bp_name)
495 			continue;
496 		b = b->bp_next;
497 		if (b == NULL)
498 			return (NULL);
499 		return (b->bp_name);
500 	}
501 	return (NULL);
502 }
503 
504 /*
505  * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
506  */
507 static int
508 parse_value(char *p, uint64_t *retval)
509 {
510 	int adjust = 0;
511 	uint64_t tmp = 0;
512 	int digit;
513 	int radix = 10;
514 
515 	*retval = 0;
516 	if (*p == '-' || *p == '~')
517 		adjust = *p++;
518 
519 	if (*p == '0') {
520 		++p;
521 		if (*p == 0)
522 			return (0);
523 		if (*p == 'x' || *p == 'X') {
524 			radix = 16;
525 			++p;
526 		} else {
527 			radix = 8;
528 			++p;
529 		}
530 	}
531 	while (*p) {
532 		if ('0' <= *p && *p <= '9')
533 			digit = *p - '0';
534 		else if ('a' <= *p && *p <= 'f')
535 			digit = 10 + *p - 'a';
536 		else if ('A' <= *p && *p <= 'F')
537 			digit = 10 + *p - 'A';
538 		else
539 			return (-1);
540 		if (digit >= radix)
541 			return (-1);
542 		tmp = tmp * radix + digit;
543 		++p;
544 	}
545 	if (adjust == '-')
546 		tmp = -tmp;
547 	else if (adjust == '~')
548 		tmp = ~tmp;
549 	*retval = tmp;
550 	return (0);
551 }
552 
553 static boolean_t
554 unprintable(char *value, int size)
555 {
556 	int i;
557 
558 	if (size <= 0 || value[0] == '\0')
559 		return (B_TRUE);
560 
561 	for (i = 0; i < size; i++) {
562 		if (value[i] == '\0')
563 			return (i != (size - 1));
564 
565 		if (!isprint(value[i]))
566 			return (B_TRUE);
567 	}
568 	return (B_FALSE);
569 }
570 
571 /*
572  * Print out information about all boot properties.
573  * buffer is pointer to pre-allocated space to be used as temporary
574  * space for property values.
575  */
576 static void
577 boot_prop_display(char *buffer)
578 {
579 	char *name = "";
580 	int i, len;
581 
582 	bop_printf(NULL, "\nBoot properties:\n");
583 
584 	while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
585 		bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
586 		(void) do_bsys_getprop(NULL, name, buffer);
587 		len = do_bsys_getproplen(NULL, name);
588 		bop_printf(NULL, "len=%d ", len);
589 		if (!unprintable(buffer, len)) {
590 			buffer[len] = 0;
591 			bop_printf(NULL, "%s\n", buffer);
592 			continue;
593 		}
594 		for (i = 0; i < len; i++) {
595 			bop_printf(NULL, "%02x", buffer[i] & 0xff);
596 			if (i < len - 1)
597 				bop_printf(NULL, ".");
598 		}
599 		bop_printf(NULL, "\n");
600 	}
601 }
602 
603 /*
604  * 2nd part of building the table of boot properties. This includes:
605  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
606  *
607  * lines look like one of:
608  * ^$
609  * ^# comment till end of line
610  * setprop name 'value'
611  * setprop name value
612  * setprop name "value"
613  *
614  * we do single character I/O since this is really just looking at memory
615  */
616 void
617 boot_prop_finish(void)
618 {
619 	int fd;
620 	char *line;
621 	int c;
622 	int bytes_read;
623 	char *name;
624 	int n_len;
625 	char *value;
626 	int v_len;
627 	char *inputdev;	/* these override the command line if serial ports */
628 	char *outputdev;
629 	char *consoledev;
630 	uint64_t lvalue;
631 	int use_xencons = 0;
632 
633 #ifdef __xpv
634 	if (!DOMAIN_IS_INITDOMAIN(xen_info))
635 		use_xencons = 1;
636 #endif /* __xpv */
637 
638 	DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
639 	fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
640 	DBG(fd);
641 
642 	line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
643 	while (fd >= 0) {
644 
645 		/*
646 		 * get a line
647 		 */
648 		for (c = 0; ; ++c) {
649 			bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
650 			if (bytes_read == 0) {
651 				if (c == 0)
652 					goto done;
653 				break;
654 			}
655 			if (line[c] == '\n')
656 				break;
657 		}
658 		line[c] = 0;
659 
660 		/*
661 		 * ignore comment lines
662 		 */
663 		c = 0;
664 		while (ISSPACE(line[c]))
665 			++c;
666 		if (line[c] == '#' || line[c] == 0)
667 			continue;
668 
669 		/*
670 		 * must have "setprop " or "setprop\t"
671 		 */
672 		if (strncmp(line + c, "setprop ", 8) != 0 &&
673 		    strncmp(line + c, "setprop\t", 8) != 0)
674 			continue;
675 		c += 8;
676 		while (ISSPACE(line[c]))
677 			++c;
678 		if (line[c] == 0)
679 			continue;
680 
681 		/*
682 		 * gather up the property name
683 		 */
684 		name = line + c;
685 		n_len = 0;
686 		while (line[c] && !ISSPACE(line[c]))
687 			++n_len, ++c;
688 
689 		/*
690 		 * gather up the value, if any
691 		 */
692 		value = "";
693 		v_len = 0;
694 		while (ISSPACE(line[c]))
695 			++c;
696 		if (line[c] != 0) {
697 			value = line + c;
698 			while (line[c] && !ISSPACE(line[c]))
699 				++v_len, ++c;
700 		}
701 
702 		if (v_len >= 2 && value[0] == value[v_len - 1] &&
703 		    (value[0] == '\'' || value[0] == '"')) {
704 			++value;
705 			v_len -= 2;
706 		}
707 		name[n_len] = 0;
708 		if (v_len > 0)
709 			value[v_len] = 0;
710 		else
711 			continue;
712 
713 		/*
714 		 * ignore "boot-file" property, it's now meaningless
715 		 */
716 		if (strcmp(name, "boot-file") == 0)
717 			continue;
718 		if (strcmp(name, "boot-args") == 0 &&
719 		    strlen(boot_args) > 0)
720 			continue;
721 
722 		/*
723 		 * If a property was explicitly set on the command line
724 		 * it will override a setting in bootenv.rc
725 		 */
726 		if (do_bsys_getproplen(NULL, name) > 0)
727 			continue;
728 
729 		bsetprop(name, n_len, value, v_len + 1);
730 	}
731 done:
732 	if (fd >= 0)
733 		(void) BRD_CLOSE(bfs_ops, fd);
734 
735 	/*
736 	 * Check if we have to limit the boot time allocator
737 	 */
738 	if (do_bsys_getproplen(NULL, "physmem") != -1 &&
739 	    do_bsys_getprop(NULL, "physmem", line) >= 0 &&
740 	    parse_value(line, &lvalue) != -1) {
741 		if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
742 			physmem = (pgcnt_t)lvalue;
743 			DBG(physmem);
744 		}
745 	}
746 	early_allocation = 0;
747 
748 	/*
749 	 * check to see if we have to override the default value of the console
750 	 */
751 	if (!use_xencons) {
752 		inputdev = line;
753 		v_len = do_bsys_getproplen(NULL, "input-device");
754 		if (v_len > 0)
755 			(void) do_bsys_getprop(NULL, "input-device", inputdev);
756 		else
757 			v_len = 0;
758 		inputdev[v_len] = 0;
759 
760 		outputdev = inputdev + v_len + 1;
761 		v_len = do_bsys_getproplen(NULL, "output-device");
762 		if (v_len > 0)
763 			(void) do_bsys_getprop(NULL, "output-device",
764 			    outputdev);
765 		else
766 			v_len = 0;
767 		outputdev[v_len] = 0;
768 
769 		consoledev = outputdev + v_len + 1;
770 		v_len = do_bsys_getproplen(NULL, "console");
771 		if (v_len > 0) {
772 			(void) do_bsys_getprop(NULL, "console", consoledev);
773 			if (post_fastreboot &&
774 			    strcmp(consoledev, "graphics") == 0) {
775 				bsetprops("console", "text");
776 				v_len = strlen("text");
777 				bcopy("text", consoledev, v_len);
778 			}
779 		} else {
780 			v_len = 0;
781 		}
782 		consoledev[v_len] = 0;
783 		bcons_init2(inputdev, outputdev, consoledev);
784 	} else {
785 		/*
786 		 * Ensure console property exists
787 		 * If not create it as "hypervisor"
788 		 */
789 		v_len = do_bsys_getproplen(NULL, "console");
790 		if (v_len < 0)
791 			bsetprops("console", "hypervisor");
792 		inputdev = outputdev = consoledev = "hypervisor";
793 		bcons_init2(inputdev, outputdev, consoledev);
794 	}
795 
796 	if (find_boot_prop("prom_debug") || kbm_debug)
797 		boot_prop_display(line);
798 }
799 
800 /*
801  * print formatted output
802  */
803 /*PRINTFLIKE2*/
804 /*ARGSUSED*/
805 void
806 bop_printf(bootops_t *bop, const char *fmt, ...)
807 {
808 	va_list	ap;
809 
810 	if (have_console == 0)
811 		return;
812 
813 	va_start(ap, fmt);
814 	(void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
815 	va_end(ap);
816 	PUT_STRING(buffer);
817 }
818 
819 /*
820  * Another panic() variant; this one can be used even earlier during boot than
821  * prom_panic().
822  */
823 /*PRINTFLIKE1*/
824 void
825 bop_panic(const char *fmt, ...)
826 {
827 	va_list ap;
828 
829 	va_start(ap, fmt);
830 	bop_printf(NULL, fmt, ap);
831 	va_end(ap);
832 
833 	bop_printf(NULL, "\nPress any key to reboot.\n");
834 	(void) bcons_getchar();
835 	bop_printf(NULL, "Resetting...\n");
836 	pc_reset();
837 }
838 
839 /*
840  * Do a real mode interrupt BIOS call
841  */
842 typedef struct bios_regs {
843 	unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
844 } bios_regs_t;
845 typedef int (*bios_func_t)(int, bios_regs_t *);
846 
847 /*ARGSUSED*/
848 static void
849 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
850 {
851 #if defined(__xpv)
852 	prom_panic("unsupported call to BOP_DOINT()\n");
853 #else	/* __xpv */
854 	static int firsttime = 1;
855 	bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
856 	bios_regs_t br;
857 
858 	/*
859 	 * The first time we do this, we have to copy the pre-packaged
860 	 * low memory bios call code image into place.
861 	 */
862 	if (firsttime) {
863 		extern char bios_image[];
864 		extern uint32_t bios_size;
865 
866 		bcopy(bios_image, (void *)bios_func, bios_size);
867 		firsttime = 0;
868 	}
869 
870 	br.ax = rp->eax.word.ax;
871 	br.bx = rp->ebx.word.bx;
872 	br.cx = rp->ecx.word.cx;
873 	br.dx = rp->edx.word.dx;
874 	br.bp = rp->ebp.word.bp;
875 	br.si = rp->esi.word.si;
876 	br.di = rp->edi.word.di;
877 	br.ds = rp->ds;
878 	br.es = rp->es;
879 
880 	DBG_MSG("Doing BIOS call...");
881 	DBG(br.ax);
882 	DBG(br.bx);
883 	DBG(br.dx);
884 	rp->eflags = bios_func(intnum, &br);
885 	DBG_MSG("done\n");
886 
887 	rp->eax.word.ax = br.ax;
888 	rp->ebx.word.bx = br.bx;
889 	rp->ecx.word.cx = br.cx;
890 	rp->edx.word.dx = br.dx;
891 	rp->ebp.word.bp = br.bp;
892 	rp->esi.word.si = br.si;
893 	rp->edi.word.di = br.di;
894 	rp->ds = br.ds;
895 	rp->es = br.es;
896 #endif /* __xpv */
897 }
898 
899 static struct boot_syscalls bop_sysp = {
900 	bcons_getchar,
901 	bcons_putchar,
902 	bcons_ischar,
903 };
904 
905 static char *whoami;
906 
907 #define	BUFLEN	64
908 
909 #if defined(__xpv)
910 
911 static char namebuf[32];
912 
913 static void
914 xen_parse_props(char *s, char *prop_map[], int n_prop)
915 {
916 	char **prop_name = prop_map;
917 	char *cp = s, *scp;
918 
919 	do {
920 		scp = cp;
921 		while ((*cp != NULL) && (*cp != ':'))
922 			cp++;
923 
924 		if ((scp != cp) && (*prop_name != NULL)) {
925 			*cp = NULL;
926 			bsetprops(*prop_name, scp);
927 		}
928 
929 		cp++;
930 		prop_name++;
931 		n_prop--;
932 	} while (n_prop > 0);
933 }
934 
935 #define	VBDPATHLEN	64
936 
937 /*
938  * parse the 'xpv-root' property to create properties used by
939  * ufs_mountroot.
940  */
941 static void
942 xen_vbdroot_props(char *s)
943 {
944 	char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
945 	const char lnamefix[] = "/dev/dsk/c0d";
946 	char *pnp;
947 	char *prop_p;
948 	char mi;
949 	short minor;
950 	long addr = 0;
951 
952 	pnp = vbdpath + strlen(vbdpath);
953 	prop_p = s + strlen(lnamefix);
954 	while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
955 		addr = addr * 10 + *prop_p++ - '0';
956 	(void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
957 	pnp = vbdpath + strlen(vbdpath);
958 	if (*prop_p == 's')
959 		mi = 'a';
960 	else if (*prop_p == 'p')
961 		mi = 'q';
962 	else
963 		ASSERT(0); /* shouldn't be here */
964 	prop_p++;
965 	ASSERT(*prop_p != '\0');
966 	if (ISDIGIT(*prop_p)) {
967 		minor = *prop_p - '0';
968 		prop_p++;
969 		if (ISDIGIT(*prop_p)) {
970 			minor = minor * 10 + *prop_p - '0';
971 		}
972 	} else {
973 		/* malformed root path, use 0 as default */
974 		minor = 0;
975 	}
976 	ASSERT(minor < 16); /* at most 16 partitions */
977 	mi += minor;
978 	*pnp++ = ':';
979 	*pnp++ = mi;
980 	*pnp++ = '\0';
981 	bsetprops("fstype", "ufs");
982 	bsetprops("bootpath", vbdpath);
983 
984 	DBG_MSG("VBD bootpath set to ");
985 	DBG_MSG(vbdpath);
986 	DBG_MSG("\n");
987 }
988 
989 /*
990  * parse the xpv-nfsroot property to create properties used by
991  * nfs_mountroot.
992  */
993 static void
994 xen_nfsroot_props(char *s)
995 {
996 	char *prop_map[] = {
997 		BP_SERVER_IP,	/* server IP address */
998 		BP_SERVER_NAME,	/* server hostname */
999 		BP_SERVER_PATH,	/* root path */
1000 	};
1001 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1002 
1003 	bsetprop("fstype", 6, "nfs", 4);
1004 
1005 	xen_parse_props(s, prop_map, n_prop);
1006 
1007 	/*
1008 	 * If a server name wasn't specified, use a default.
1009 	 */
1010 	if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1011 		bsetprops(BP_SERVER_NAME, "unknown");
1012 }
1013 
1014 /*
1015  * Extract our IP address, etc. from the "xpv-ip" property.
1016  */
1017 static void
1018 xen_ip_props(char *s)
1019 {
1020 	char *prop_map[] = {
1021 		BP_HOST_IP,		/* IP address */
1022 		NULL,			/* NFS server IP address (ignored in */
1023 					/* favour of xpv-nfsroot) */
1024 		BP_ROUTER_IP,		/* IP gateway */
1025 		BP_SUBNET_MASK,		/* IP subnet mask */
1026 		"xpv-hostname",		/* hostname (ignored) */
1027 		BP_NETWORK_INTERFACE,	/* interface name */
1028 		"xpv-hcp",		/* host configuration protocol */
1029 	};
1030 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1031 	char ifname[IFNAMSIZ];
1032 
1033 	xen_parse_props(s, prop_map, n_prop);
1034 
1035 	/*
1036 	 * A Linux dom0 administrator expects all interfaces to be
1037 	 * called "ethX", which is not the case here.
1038 	 *
1039 	 * If the interface name specified is "eth0", presume that
1040 	 * this is really intended to be "xnf0" (the first domU ->
1041 	 * dom0 interface for this domain).
1042 	 */
1043 	if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1044 	    (strcmp("eth0", ifname) == 0)) {
1045 		bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1046 		bop_printf(NULL,
1047 		    "network interface name 'eth0' replaced with 'xnf0'\n");
1048 	}
1049 }
1050 
1051 #else	/* __xpv */
1052 
1053 static void
1054 setup_rarp_props(struct sol_netinfo *sip)
1055 {
1056 	char buf[BUFLEN];	/* to hold ip/mac addrs */
1057 	uint8_t *val;
1058 
1059 	val = (uint8_t *)&sip->sn_ciaddr;
1060 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1061 	    val[0], val[1], val[2], val[3]);
1062 	bsetprops(BP_HOST_IP, buf);
1063 
1064 	val = (uint8_t *)&sip->sn_siaddr;
1065 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1066 	    val[0], val[1], val[2], val[3]);
1067 	bsetprops(BP_SERVER_IP, buf);
1068 
1069 	if (sip->sn_giaddr != 0) {
1070 		val = (uint8_t *)&sip->sn_giaddr;
1071 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1072 		    val[0], val[1], val[2], val[3]);
1073 		bsetprops(BP_ROUTER_IP, buf);
1074 	}
1075 
1076 	if (sip->sn_netmask != 0) {
1077 		val = (uint8_t *)&sip->sn_netmask;
1078 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1079 		    val[0], val[1], val[2], val[3]);
1080 		bsetprops(BP_SUBNET_MASK, buf);
1081 	}
1082 
1083 	if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1084 		bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1085 		    sip->sn_mactype, sip->sn_maclen);
1086 	} else {
1087 		val = sip->sn_macaddr;
1088 		(void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1089 		    val[0], val[1], val[2], val[3], val[4], val[5]);
1090 		bsetprops(BP_BOOT_MAC, buf);
1091 	}
1092 }
1093 
1094 #endif	/* __xpv */
1095 
1096 static void
1097 build_panic_cmdline(const char *cmd, int cmdlen)
1098 {
1099 	int proplen;
1100 	size_t arglen;
1101 
1102 	arglen = sizeof (fastreboot_onpanic_args);
1103 	/*
1104 	 * If we allready have fastreboot-onpanic set to zero,
1105 	 * don't add them again.
1106 	 */
1107 	if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1108 	    proplen <=  sizeof (fastreboot_onpanic_cmdline)) {
1109 		(void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1110 		    fastreboot_onpanic_cmdline);
1111 		if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1112 			arglen = 1;
1113 	}
1114 
1115 	/*
1116 	 * construct fastreboot_onpanic_cmdline
1117 	 */
1118 	if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1119 		DBG_MSG("Command line too long: clearing "
1120 		    FASTREBOOT_ONPANIC "\n");
1121 		fastreboot_onpanic = 0;
1122 	} else {
1123 		bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1124 		if (arglen != 1)
1125 			bcopy(fastreboot_onpanic_args,
1126 			    fastreboot_onpanic_cmdline + cmdlen, arglen);
1127 		else
1128 			fastreboot_onpanic_cmdline[cmdlen] = 0;
1129 	}
1130 }
1131 
1132 
1133 #ifndef	__xpv
1134 /*
1135  * Construct boot command line for Fast Reboot. The saved_cmdline
1136  * is also reported by "eeprom bootcmd".
1137  */
1138 static void
1139 build_fastboot_cmdline(struct xboot_info *xbp)
1140 {
1141 	saved_cmdline_len =  strlen(xbp->bi_cmdline) + 1;
1142 	if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1143 		DBG(saved_cmdline_len);
1144 		DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1145 		fastreboot_capable = 0;
1146 	} else {
1147 		bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1148 		    saved_cmdline_len);
1149 		saved_cmdline[saved_cmdline_len - 1] = '\0';
1150 		build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1151 	}
1152 }
1153 
1154 /*
1155  * Save memory layout, disk drive information, unix and boot archive sizes for
1156  * Fast Reboot.
1157  */
1158 static void
1159 save_boot_info(struct xboot_info *xbi)
1160 {
1161 	multiboot_info_t *mbi = xbi->bi_mb_info;
1162 	struct boot_modules *modp;
1163 	int i;
1164 
1165 	bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1166 	if (mbi->mmap_length > sizeof (saved_mmap)) {
1167 		DBG_MSG("mbi->mmap_length too big: clearing "
1168 		    "fastreboot_capable\n");
1169 		fastreboot_capable = 0;
1170 	} else {
1171 		bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1172 		    mbi->mmap_length);
1173 	}
1174 
1175 	if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1176 		if (mbi->drives_length > sizeof (saved_drives)) {
1177 			DBG(mbi->drives_length);
1178 			DBG_MSG("mbi->drives_length too big: clearing "
1179 			    "fastreboot_capable\n");
1180 			fastreboot_capable = 0;
1181 		} else {
1182 			bcopy((void *)(uintptr_t)mbi->drives_addr,
1183 			    (void *)saved_drives, mbi->drives_length);
1184 		}
1185 	} else {
1186 		saved_mbi.drives_length = 0;
1187 		saved_mbi.drives_addr = NULL;
1188 	}
1189 
1190 	/*
1191 	 * Current file sizes.  Used by fastboot.c to figure out how much
1192 	 * memory to reserve for panic reboot.
1193 	 * Use the module list from the dboot-constructed xboot_info
1194 	 * instead of the list referenced by the multiboot structure
1195 	 * because that structure may not be addressable now.
1196 	 */
1197 	saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1198 	for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1199 	    i < xbi->bi_module_cnt; i++, modp++) {
1200 		saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1201 	}
1202 }
1203 #endif	/* __xpv */
1204 
1205 /*
1206  * Import boot environment module variables as properties, applying
1207  * blacklist filter for variables we know we will not use.
1208  *
1209  * Since the environment can be relatively large, containing many variables
1210  * used only for boot loader purposes, we will use a blacklist based filter.
1211  * To keep the blacklist from growing too large, we use prefix based filtering.
1212  * This is possible because in many cases, the loader variable names are
1213  * using a structured layout.
1214  *
1215  * We will not overwrite already set properties.
1216  */
1217 static struct bop_blacklist {
1218 	const char *bl_name;
1219 	int bl_name_len;
1220 } bop_prop_blacklist[] = {
1221 	{ "ISADIR", sizeof ("ISADIR") },
1222 	{ "acpi", sizeof ("acpi") },
1223 	{ "autoboot_delay", sizeof ("autoboot_delay") },
1224 	{ "autoboot_delay", sizeof ("autoboot_delay") },
1225 	{ "beansi_", sizeof ("beansi_") },
1226 	{ "beastie", sizeof ("beastie") },
1227 	{ "bemenu", sizeof ("bemenu") },
1228 	{ "boot.", sizeof ("boot.") },
1229 	{ "bootenv", sizeof ("bootenv") },
1230 	{ "currdev", sizeof ("currdev") },
1231 	{ "dhcp.", sizeof ("dhcp.") },
1232 	{ "interpret", sizeof ("interpret") },
1233 	{ "kernel", sizeof ("kernel") },
1234 	{ "loaddev", sizeof ("loaddev") },
1235 	{ "loader_", sizeof ("loader_") },
1236 	{ "module_path", sizeof ("module_path") },
1237 	{ "nfs.", sizeof ("nfs.") },
1238 	{ "pcibios", sizeof ("pcibios") },
1239 	{ "prompt", sizeof ("prompt") },
1240 	{ "smbios", sizeof ("smbios") },
1241 	{ "tem", sizeof ("tem") },
1242 	{ "twiddle_divisor", sizeof ("twiddle_divisor") },
1243 	{ "zfs_be", sizeof ("zfs_be") },
1244 };
1245 
1246 /*
1247  * Match the name against prefixes in above blacklist. If the match was
1248  * found, this name is blacklisted.
1249  */
1250 static boolean_t
1251 name_is_blacklisted(const char *name)
1252 {
1253 	int i, n;
1254 
1255 	n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1256 	for (i = 0; i < n; i++) {
1257 		if (strncmp(bop_prop_blacklist[i].bl_name, name,
1258 		    bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1259 			return (B_TRUE);
1260 		}
1261 	}
1262 	return (B_FALSE);
1263 }
1264 
1265 static void
1266 process_boot_environment(struct boot_modules *benv)
1267 {
1268 	char *env, *ptr, *name, *value;
1269 	uint32_t size, name_len, value_len;
1270 
1271 	if (benv == NULL || benv->bm_type != BMT_ENV)
1272 		return;
1273 	ptr = env = benv->bm_addr;
1274 	size = benv->bm_size;
1275 	do {
1276 		name = ptr;
1277 		/* find '=' */
1278 		while (*ptr != '=') {
1279 			ptr++;
1280 			if (ptr > env + size) /* Something is very wrong. */
1281 				return;
1282 		}
1283 		name_len = ptr - name;
1284 		if (sizeof (buffer) <= name_len)
1285 			continue;
1286 
1287 		(void) strncpy(buffer, name, sizeof (buffer));
1288 		buffer[name_len] = '\0';
1289 		name = buffer;
1290 
1291 		value_len = 0;
1292 		value = ++ptr;
1293 		while ((uintptr_t)ptr - (uintptr_t)env < size) {
1294 			if (*ptr == '\0') {
1295 				ptr++;
1296 				value_len = (uintptr_t)ptr - (uintptr_t)env;
1297 				break;
1298 			}
1299 			ptr++;
1300 		}
1301 
1302 		/* Did we reach the end of the module? */
1303 		if (value_len == 0)
1304 			return;
1305 
1306 		if (*value == '\0')
1307 			continue;
1308 
1309 		/* Is this property already set? */
1310 		if (do_bsys_getproplen(NULL, name) >= 0)
1311 			continue;
1312 
1313 		if (name_is_blacklisted(name) == B_TRUE)
1314 			continue;
1315 
1316 		/* Create new property. */
1317 		bsetprops(name, value);
1318 
1319 		/* Avoid reading past the module end. */
1320 		if (size <= (uintptr_t)ptr - (uintptr_t)env)
1321 			return;
1322 	} while (*ptr != '\0');
1323 }
1324 
1325 /*
1326  * 1st pass at building the table of boot properties. This includes:
1327  * - values set on the command line: -B a=x,b=y,c=z ....
1328  * - known values we just compute (ie. from xbp)
1329  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1330  *
1331  * the grub command line looked like:
1332  * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1333  *
1334  * whoami is the same as boot-file
1335  */
1336 static void
1337 build_boot_properties(struct xboot_info *xbp)
1338 {
1339 	char *name;
1340 	int name_len;
1341 	char *value;
1342 	int value_len;
1343 	struct boot_modules *bm, *rdbm, *benv = NULL;
1344 	char *propbuf;
1345 	int quoted = 0;
1346 	int boot_arg_len;
1347 	uint_t i, midx;
1348 	char modid[32];
1349 #ifndef __xpv
1350 	static int stdout_val = 0;
1351 	uchar_t boot_device;
1352 	char str[3];
1353 #endif
1354 
1355 	/*
1356 	 * These have to be done first, so that kobj_mount_root() works
1357 	 */
1358 	DBG_MSG("Building boot properties\n");
1359 	propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1360 	DBG((uintptr_t)propbuf);
1361 	if (xbp->bi_module_cnt > 0) {
1362 		bm = xbp->bi_modules;
1363 		rdbm = NULL;
1364 		for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1365 			if (bm[i].bm_type == BMT_ROOTFS) {
1366 				rdbm = &bm[i];
1367 				continue;
1368 			}
1369 			if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL)
1370 				continue;
1371 
1372 			if (bm[i].bm_type == BMT_ENV) {
1373 				if (benv == NULL)
1374 					benv = &bm[i];
1375 				else
1376 					continue;
1377 			}
1378 
1379 			(void) snprintf(modid, sizeof (modid),
1380 			    "module-name-%u", midx);
1381 			bsetprops(modid, (char *)bm[i].bm_name);
1382 			(void) snprintf(modid, sizeof (modid),
1383 			    "module-addr-%u", midx);
1384 			bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1385 			(void) snprintf(modid, sizeof (modid),
1386 			    "module-size-%u", midx);
1387 			bsetprop64(modid, (uint64_t)bm[i].bm_size);
1388 			++midx;
1389 		}
1390 		if (rdbm != NULL) {
1391 			bsetprop64("ramdisk_start",
1392 			    (uint64_t)(uintptr_t)rdbm->bm_addr);
1393 			bsetprop64("ramdisk_end",
1394 			    (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1395 		}
1396 	}
1397 
1398 	/*
1399 	 * If there are any boot time modules or hashes present, then disable
1400 	 * fast reboot.
1401 	 */
1402 	if (xbp->bi_module_cnt > 1) {
1403 		fastreboot_disable(FBNS_BOOTMOD);
1404 	}
1405 
1406 #ifndef __xpv
1407 	/*
1408 	 * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1409 	 * since we don't currently support MB2 info and module relocation.
1410 	 * Note that fast reboot will have already been disabled if multiple
1411 	 * modules are present, since the current implementation assumes that
1412 	 * we only have a single module, the boot_archive.
1413 	 */
1414 	if (xbp->bi_mb_version != 1) {
1415 		fastreboot_disable(FBNS_MULTIBOOT2);
1416 	}
1417 #endif
1418 
1419 	DBG_MSG("Parsing command line for boot properties\n");
1420 	value = xbp->bi_cmdline;
1421 
1422 	/*
1423 	 * allocate memory to collect boot_args into
1424 	 */
1425 	boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1426 	boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1427 	boot_args[0] = 0;
1428 	boot_arg_len = 0;
1429 
1430 #ifdef __xpv
1431 	/*
1432 	 * Xen puts a lot of device information in front of the kernel name
1433 	 * let's grab them and make them boot properties.  The first
1434 	 * string w/o an "=" in it will be the boot-file property.
1435 	 */
1436 	(void) strcpy(namebuf, "xpv-");
1437 	for (;;) {
1438 		/*
1439 		 * get to next property
1440 		 */
1441 		while (ISSPACE(*value))
1442 			++value;
1443 		name = value;
1444 		/*
1445 		 * look for an "="
1446 		 */
1447 		while (*value && !ISSPACE(*value) && *value != '=') {
1448 			value++;
1449 		}
1450 		if (*value != '=') { /* no "=" in the property */
1451 			value = name;
1452 			break;
1453 		}
1454 		name_len = value - name;
1455 		value_len = 0;
1456 		/*
1457 		 * skip over the "="
1458 		 */
1459 		value++;
1460 		while (value[value_len] && !ISSPACE(value[value_len])) {
1461 			++value_len;
1462 		}
1463 		/*
1464 		 * build property name with "xpv-" prefix
1465 		 */
1466 		if (name_len + 4 > 32) { /* skip if name too long */
1467 			value += value_len;
1468 			continue;
1469 		}
1470 		bcopy(name, &namebuf[4], name_len);
1471 		name_len += 4;
1472 		namebuf[name_len] = 0;
1473 		bcopy(value, propbuf, value_len);
1474 		propbuf[value_len] = 0;
1475 		bsetprops(namebuf, propbuf);
1476 
1477 		/*
1478 		 * xpv-root is set to the logical disk name of the xen
1479 		 * VBD when booting from a disk-based filesystem.
1480 		 */
1481 		if (strcmp(namebuf, "xpv-root") == 0)
1482 			xen_vbdroot_props(propbuf);
1483 		/*
1484 		 * While we're here, if we have a "xpv-nfsroot" property
1485 		 * then we need to set "fstype" to "nfs" so we mount
1486 		 * our root from the nfs server.  Also parse the xpv-nfsroot
1487 		 * property to create the properties that nfs_mountroot will
1488 		 * need to find the root and mount it.
1489 		 */
1490 		if (strcmp(namebuf, "xpv-nfsroot") == 0)
1491 			xen_nfsroot_props(propbuf);
1492 
1493 		if (strcmp(namebuf, "xpv-ip") == 0)
1494 			xen_ip_props(propbuf);
1495 		value += value_len;
1496 	}
1497 #endif
1498 
1499 	while (ISSPACE(*value))
1500 		++value;
1501 	/*
1502 	 * value now points at the boot-file
1503 	 */
1504 	value_len = 0;
1505 	while (value[value_len] && !ISSPACE(value[value_len]))
1506 		++value_len;
1507 	if (value_len > 0) {
1508 		whoami = propbuf;
1509 		bcopy(value, whoami, value_len);
1510 		whoami[value_len] = 0;
1511 		bsetprops("boot-file", whoami);
1512 		/*
1513 		 * strip leading path stuff from whoami, so running from
1514 		 * PXE/miniroot makes sense.
1515 		 */
1516 		if (strstr(whoami, "/platform/") != NULL)
1517 			whoami = strstr(whoami, "/platform/");
1518 		bsetprops("whoami", whoami);
1519 	}
1520 
1521 	/*
1522 	 * Values forcibly set boot properties on the command line via -B.
1523 	 * Allow use of quotes in values. Other stuff goes on kernel
1524 	 * command line.
1525 	 */
1526 	name = value + value_len;
1527 	while (*name != 0) {
1528 		/*
1529 		 * anything not " -B" is copied to the command line
1530 		 */
1531 		if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1532 			boot_args[boot_arg_len++] = *name;
1533 			boot_args[boot_arg_len] = 0;
1534 			++name;
1535 			continue;
1536 		}
1537 
1538 		/*
1539 		 * skip the " -B" and following white space
1540 		 */
1541 		name += 3;
1542 		while (ISSPACE(*name))
1543 			++name;
1544 		while (*name && !ISSPACE(*name)) {
1545 			value = strstr(name, "=");
1546 			if (value == NULL)
1547 				break;
1548 			name_len = value - name;
1549 			++value;
1550 			value_len = 0;
1551 			quoted = 0;
1552 			for (; ; ++value_len) {
1553 				if (!value[value_len])
1554 					break;
1555 
1556 				/*
1557 				 * is this value quoted?
1558 				 */
1559 				if (value_len == 0 &&
1560 				    (value[0] == '\'' || value[0] == '"')) {
1561 					quoted = value[0];
1562 					++value_len;
1563 				}
1564 
1565 				/*
1566 				 * In the quote accept any character,
1567 				 * but look for ending quote.
1568 				 */
1569 				if (quoted) {
1570 					if (value[value_len] == quoted)
1571 						quoted = 0;
1572 					continue;
1573 				}
1574 
1575 				/*
1576 				 * a comma or white space ends the value
1577 				 */
1578 				if (value[value_len] == ',' ||
1579 				    ISSPACE(value[value_len]))
1580 					break;
1581 			}
1582 
1583 			if (value_len == 0) {
1584 				bsetprop(name, name_len, "true", 5);
1585 			} else {
1586 				char *v = value;
1587 				int l = value_len;
1588 				if (v[0] == v[l - 1] &&
1589 				    (v[0] == '\'' || v[0] == '"')) {
1590 					++v;
1591 					l -= 2;
1592 				}
1593 				bcopy(v, propbuf, l);
1594 				propbuf[l] = '\0';
1595 				bsetprop(name, name_len, propbuf,
1596 				    l + 1);
1597 			}
1598 			name = value + value_len;
1599 			while (*name == ',')
1600 				++name;
1601 		}
1602 	}
1603 
1604 	/*
1605 	 * set boot-args property
1606 	 * 1275 name is bootargs, so set
1607 	 * that too
1608 	 */
1609 	bsetprops("boot-args", boot_args);
1610 	bsetprops("bootargs", boot_args);
1611 
1612 	process_boot_environment(benv);
1613 
1614 #ifndef __xpv
1615 	/*
1616 	 * Build boot command line for Fast Reboot
1617 	 */
1618 	build_fastboot_cmdline(xbp);
1619 
1620 	if (xbp->bi_mb_version == 1) {
1621 		multiboot_info_t *mbi = xbp->bi_mb_info;
1622 		int netboot;
1623 		struct sol_netinfo *sip;
1624 
1625 		/*
1626 		 * set the BIOS boot device from GRUB
1627 		 */
1628 		netboot = 0;
1629 
1630 		/*
1631 		 * Save various boot information for Fast Reboot
1632 		 */
1633 		save_boot_info(xbp);
1634 
1635 		if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1636 			boot_device = mbi->boot_device >> 24;
1637 			if (boot_device == 0x20)
1638 				netboot++;
1639 			str[0] = (boot_device >> 4) + '0';
1640 			str[1] = (boot_device & 0xf) + '0';
1641 			str[2] = 0;
1642 			bsetprops("bios-boot-device", str);
1643 		} else {
1644 			netboot = 1;
1645 		}
1646 
1647 		/*
1648 		 * In the netboot case, drives_info is overloaded with the
1649 		 * dhcp ack. This is not multiboot compliant and requires
1650 		 * special pxegrub!
1651 		 */
1652 		if (netboot && mbi->drives_length != 0) {
1653 			sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1654 			if (sip->sn_infotype == SN_TYPE_BOOTP)
1655 				bsetprop("bootp-response",
1656 				    sizeof ("bootp-response"),
1657 				    (void *)(uintptr_t)mbi->drives_addr,
1658 				    mbi->drives_length);
1659 			else if (sip->sn_infotype == SN_TYPE_RARP)
1660 				setup_rarp_props(sip);
1661 		}
1662 	} else {
1663 		multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1664 		multiboot_tag_bootdev_t *bootdev = NULL;
1665 		multiboot_tag_network_t *netdev = NULL;
1666 
1667 		if (mbi != NULL) {
1668 			bootdev = dboot_multiboot2_find_tag(mbi,
1669 			    MULTIBOOT_TAG_TYPE_BOOTDEV);
1670 			netdev = dboot_multiboot2_find_tag(mbi,
1671 			    MULTIBOOT_TAG_TYPE_NETWORK);
1672 		}
1673 		if (bootdev != NULL) {
1674 			DBG(bootdev->mb_biosdev);
1675 			boot_device = bootdev->mb_biosdev;
1676 			str[0] = (boot_device >> 4) + '0';
1677 			str[1] = (boot_device & 0xf) + '0';
1678 			str[2] = 0;
1679 			bsetprops("bios-boot-device", str);
1680 		}
1681 		if (netdev != NULL) {
1682 			bsetprop("bootp-response", sizeof ("bootp-response"),
1683 			    (void *)(uintptr_t)netdev->mb_dhcpack,
1684 			    netdev->mb_size -
1685 			    sizeof (multiboot_tag_network_t));
1686 		}
1687 	}
1688 
1689 	bsetprop("stdout", strlen("stdout"),
1690 	    &stdout_val, sizeof (stdout_val));
1691 #endif /* __xpv */
1692 
1693 	/*
1694 	 * more conjured up values for made up things....
1695 	 */
1696 #if defined(__xpv)
1697 	bsetprops("mfg-name", "i86xpv");
1698 	bsetprops("impl-arch-name", "i86xpv");
1699 #else
1700 	bsetprops("mfg-name", "i86pc");
1701 	bsetprops("impl-arch-name", "i86pc");
1702 #endif
1703 
1704 	/*
1705 	 * Build firmware-provided system properties
1706 	 */
1707 	build_firmware_properties(xbp);
1708 
1709 	/*
1710 	 * XXPV
1711 	 *
1712 	 * Find out what these are:
1713 	 * - cpuid_feature_ecx_include
1714 	 * - cpuid_feature_ecx_exclude
1715 	 * - cpuid_feature_edx_include
1716 	 * - cpuid_feature_edx_exclude
1717 	 *
1718 	 * Find out what these are in multiboot:
1719 	 * - netdev-path
1720 	 * - fstype
1721 	 */
1722 }
1723 
1724 #ifdef __xpv
1725 /*
1726  * Under the Hypervisor, memory usable for DMA may be scarce. One
1727  * very likely large pool of DMA friendly memory is occupied by
1728  * the boot_archive, as it was loaded by grub into low MFNs.
1729  *
1730  * Here we free up that memory by copying the boot archive to what are
1731  * likely higher MFN pages and then swapping the mfn/pfn mappings.
1732  */
1733 #define	PFN_2GIG	0x80000
1734 static void
1735 relocate_boot_archive(struct xboot_info *xbp)
1736 {
1737 	mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1738 	struct boot_modules *bm = xbp->bi_modules;
1739 	uintptr_t va;
1740 	pfn_t va_pfn;
1741 	mfn_t va_mfn;
1742 	caddr_t copy;
1743 	pfn_t copy_pfn;
1744 	mfn_t copy_mfn;
1745 	size_t	len;
1746 	int slop;
1747 	int total = 0;
1748 	int relocated = 0;
1749 	int mmu_update_return;
1750 	mmu_update_t t[2];
1751 	x86pte_t pte;
1752 
1753 	/*
1754 	 * If all MFN's are below 2Gig, don't bother doing this.
1755 	 */
1756 	if (max_mfn < PFN_2GIG)
1757 		return;
1758 	if (xbp->bi_module_cnt < 1) {
1759 		DBG_MSG("no boot_archive!");
1760 		return;
1761 	}
1762 
1763 	DBG_MSG("moving boot_archive to high MFN memory\n");
1764 	va = (uintptr_t)bm->bm_addr;
1765 	len = bm->bm_size;
1766 	slop = va & MMU_PAGEOFFSET;
1767 	if (slop) {
1768 		va += MMU_PAGESIZE - slop;
1769 		len -= MMU_PAGESIZE - slop;
1770 	}
1771 	len = P2ALIGN(len, MMU_PAGESIZE);
1772 
1773 	/*
1774 	 * Go through all boot_archive pages, swapping any low MFN pages
1775 	 * with memory at next_phys.
1776 	 */
1777 	while (len != 0) {
1778 		++total;
1779 		va_pfn = mmu_btop(va - ONE_GIG);
1780 		va_mfn = mfn_list[va_pfn];
1781 		if (mfn_list[va_pfn] < PFN_2GIG) {
1782 			copy = kbm_remap_window(next_phys, 1);
1783 			bcopy((void *)va, copy, MMU_PAGESIZE);
1784 			copy_pfn = mmu_btop(next_phys);
1785 			copy_mfn = mfn_list[copy_pfn];
1786 
1787 			pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1788 			if (HYPERVISOR_update_va_mapping(va, pte,
1789 			    UVMF_INVLPG | UVMF_LOCAL))
1790 				bop_panic("relocate_boot_archive():  "
1791 				    "HYPERVISOR_update_va_mapping() failed");
1792 
1793 			mfn_list[va_pfn] = copy_mfn;
1794 			mfn_list[copy_pfn] = va_mfn;
1795 
1796 			t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1797 			t[0].val = va_pfn;
1798 			t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1799 			t[1].val = copy_pfn;
1800 			if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1801 			    DOMID_SELF) != 0 || mmu_update_return != 2)
1802 				bop_panic("relocate_boot_archive():  "
1803 				    "HYPERVISOR_mmu_update() failed");
1804 
1805 			next_phys += MMU_PAGESIZE;
1806 			++relocated;
1807 		}
1808 		len -= MMU_PAGESIZE;
1809 		va += MMU_PAGESIZE;
1810 	}
1811 	DBG_MSG("Relocated pages:\n");
1812 	DBG(relocated);
1813 	DBG_MSG("Out of total pages:\n");
1814 	DBG(total);
1815 }
1816 #endif /* __xpv */
1817 
1818 #if !defined(__xpv)
1819 /*
1820  * Install a temporary IDT that lets us catch errors in the boot time code.
1821  * We shouldn't get any faults at all while this is installed, so we'll
1822  * just generate a traceback and exit.
1823  */
1824 #ifdef __amd64
1825 static const int bcode_sel = B64CODE_SEL;
1826 #else
1827 static const int bcode_sel = B32CODE_SEL;
1828 #endif
1829 
1830 /*
1831  * simple description of a stack frame (args are 32 bit only currently)
1832  */
1833 typedef struct bop_frame {
1834 	struct bop_frame *old_frame;
1835 	pc_t retaddr;
1836 	long arg[1];
1837 } bop_frame_t;
1838 
1839 void
1840 bop_traceback(bop_frame_t *frame)
1841 {
1842 	pc_t pc;
1843 	int cnt;
1844 	char *ksym;
1845 	ulong_t off;
1846 #if defined(__i386)
1847 	int a;
1848 #endif
1849 
1850 	bop_printf(NULL, "Stack traceback:\n");
1851 	for (cnt = 0; cnt < 30; ++cnt) {	/* up to 30 frames */
1852 		pc = frame->retaddr;
1853 		if (pc == 0)
1854 			break;
1855 		ksym = kobj_getsymname(pc, &off);
1856 		if (ksym)
1857 			bop_printf(NULL, "  %s+%lx", ksym, off);
1858 		else
1859 			bop_printf(NULL, "  0x%lx", pc);
1860 
1861 		frame = frame->old_frame;
1862 		if (frame == 0) {
1863 			bop_printf(NULL, "\n");
1864 			break;
1865 		}
1866 #if defined(__i386)
1867 		for (a = 0; a < 6; ++a) {	/* try for 6 args */
1868 			if ((void *)&frame->arg[a] == (void *)frame->old_frame)
1869 				break;
1870 			if (a == 0)
1871 				bop_printf(NULL, "(");
1872 			else
1873 				bop_printf(NULL, ",");
1874 			bop_printf(NULL, "0x%lx", frame->arg[a]);
1875 		}
1876 		bop_printf(NULL, ")");
1877 #endif
1878 		bop_printf(NULL, "\n");
1879 	}
1880 }
1881 
1882 struct trapframe {
1883 	ulong_t error_code;	/* optional */
1884 	ulong_t inst_ptr;
1885 	ulong_t code_seg;
1886 	ulong_t flags_reg;
1887 #ifdef __amd64
1888 	ulong_t stk_ptr;
1889 	ulong_t stk_seg;
1890 #endif
1891 };
1892 
1893 void
1894 bop_trap(ulong_t *tfp)
1895 {
1896 	struct trapframe *tf = (struct trapframe *)tfp;
1897 	bop_frame_t fakeframe;
1898 	static int depth = 0;
1899 
1900 	/*
1901 	 * Check for an infinite loop of traps.
1902 	 */
1903 	if (++depth > 2)
1904 		bop_panic("Nested trap");
1905 
1906 	bop_printf(NULL, "Unexpected trap\n");
1907 
1908 	/*
1909 	 * adjust the tf for optional error_code by detecting the code selector
1910 	 */
1911 	if (tf->code_seg != bcode_sel)
1912 		tf = (struct trapframe *)(tfp - 1);
1913 	else
1914 		bop_printf(NULL, "error code           0x%lx\n",
1915 		    tf->error_code & 0xffffffff);
1916 
1917 	bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
1918 	bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
1919 	bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
1920 #ifdef __amd64
1921 	bop_printf(NULL, "return %%rsp          0x%lx\n", tf->stk_ptr);
1922 	bop_printf(NULL, "return %%ss           0x%lx\n", tf->stk_seg & 0xffff);
1923 #endif
1924 
1925 	/* grab %[er]bp pushed by our code from the stack */
1926 	fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
1927 	fakeframe.retaddr = (pc_t)tf->inst_ptr;
1928 	bop_printf(NULL, "Attempting stack backtrace:\n");
1929 	bop_traceback(&fakeframe);
1930 	bop_panic("unexpected trap in early boot");
1931 }
1932 
1933 extern void bop_trap_handler(void);
1934 
1935 static gate_desc_t *bop_idt;
1936 
1937 static desctbr_t bop_idt_info;
1938 
1939 static void
1940 bop_idt_init(void)
1941 {
1942 	int t;
1943 
1944 	bop_idt = (gate_desc_t *)
1945 	    do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1946 	bzero(bop_idt, MMU_PAGESIZE);
1947 	for (t = 0; t < NIDT; ++t) {
1948 		/*
1949 		 * Note that since boot runs without a TSS, the
1950 		 * double fault handler cannot use an alternate stack
1951 		 * (64-bit) or a task gate (32-bit).
1952 		 */
1953 		set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel,
1954 		    SDT_SYSIGT, TRP_KPL, 0);
1955 	}
1956 	bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1957 	bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1958 	wr_idtr(&bop_idt_info);
1959 }
1960 #endif	/* !defined(__xpv) */
1961 
1962 /*
1963  * This is where we enter the kernel. It dummies up the boot_ops and
1964  * boot_syscalls vectors and jumps off to _kobj_boot()
1965  */
1966 void
1967 _start(struct xboot_info *xbp)
1968 {
1969 	bootops_t *bops = &bootop;
1970 	extern void _kobj_boot();
1971 
1972 	/*
1973 	 * 1st off - initialize the console for any error messages
1974 	 */
1975 	xbootp = xbp;
1976 #ifdef __xpv
1977 	HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
1978 	xen_info = xbp->bi_xen_start_info;
1979 #endif
1980 
1981 #ifndef __xpv
1982 	if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1983 	    FASTBOOT_MAGIC) {
1984 		post_fastreboot = 1;
1985 		*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1986 	}
1987 #endif
1988 
1989 	bcons_init(xbp);
1990 	have_console = 1;
1991 
1992 	/*
1993 	 * enable debugging
1994 	 */
1995 	if (find_boot_prop("kbm_debug") != NULL)
1996 		kbm_debug = 1;
1997 
1998 	DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1999 	DBG_MSG((char *)xbp->bi_cmdline);
2000 	DBG_MSG("\n\n\n");
2001 
2002 	/*
2003 	 * physavail is no longer used by startup
2004 	 */
2005 	bm.physinstalled = xbp->bi_phys_install;
2006 	bm.pcimem = xbp->bi_pcimem;
2007 	bm.rsvdmem = xbp->bi_rsvdmem;
2008 	bm.physavail = NULL;
2009 
2010 	/*
2011 	 * initialize the boot time allocator
2012 	 */
2013 	next_phys = xbp->bi_next_paddr;
2014 	DBG(next_phys);
2015 	next_virt = (uintptr_t)xbp->bi_next_vaddr;
2016 	DBG(next_virt);
2017 	DBG_MSG("Initializing boot time memory management...");
2018 #ifdef __xpv
2019 	{
2020 		xen_platform_parameters_t p;
2021 
2022 		/* This call shouldn't fail, dboot already did it once. */
2023 		(void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
2024 		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2025 		DBG(xen_virt_start);
2026 	}
2027 #endif
2028 	kbm_init(xbp);
2029 	DBG_MSG("done\n");
2030 
2031 	/*
2032 	 * Fill in the bootops vector
2033 	 */
2034 	bops->bsys_version = BO_VERSION;
2035 	bops->boot_mem = &bm;
2036 	bops->bsys_alloc = do_bsys_alloc;
2037 	bops->bsys_free = do_bsys_free;
2038 	bops->bsys_getproplen = do_bsys_getproplen;
2039 	bops->bsys_getprop = do_bsys_getprop;
2040 	bops->bsys_nextprop = do_bsys_nextprop;
2041 	bops->bsys_printf = bop_printf;
2042 	bops->bsys_doint = do_bsys_doint;
2043 
2044 	/*
2045 	 * BOP_EALLOC() is no longer needed
2046 	 */
2047 	bops->bsys_ealloc = do_bsys_ealloc;
2048 
2049 #ifdef __xpv
2050 	/*
2051 	 * On domain 0 we need to free up some physical memory that is
2052 	 * usable for DMA. Since GRUB loaded the boot_archive, it is
2053 	 * sitting in low MFN memory. We'll relocated the boot archive
2054 	 * pages to high PFN memory.
2055 	 */
2056 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2057 		relocate_boot_archive(xbp);
2058 #endif
2059 
2060 #ifndef __xpv
2061 	/*
2062 	 * Install an IDT to catch early pagefaults (shouldn't have any).
2063 	 * Also needed for kmdb.
2064 	 */
2065 	bop_idt_init();
2066 #endif
2067 
2068 	/*
2069 	 * Start building the boot properties from the command line
2070 	 */
2071 	DBG_MSG("Initializing boot properties:\n");
2072 	build_boot_properties(xbp);
2073 
2074 	if (find_boot_prop("prom_debug") || kbm_debug) {
2075 		char *value;
2076 
2077 		value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2078 		boot_prop_display(value);
2079 	}
2080 
2081 	/*
2082 	 * jump into krtld...
2083 	 */
2084 	_kobj_boot(&bop_sysp, NULL, bops, NULL);
2085 }
2086 
2087 
2088 /*ARGSUSED*/
2089 static caddr_t
2090 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2091 {
2092 	panic("Attempt to bsys_alloc() too late\n");
2093 	return (NULL);
2094 }
2095 
2096 /*ARGSUSED*/
2097 static void
2098 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2099 {
2100 	panic("Attempt to bsys_free() too late\n");
2101 }
2102 
2103 void
2104 bop_no_more_mem(void)
2105 {
2106 	DBG(total_bop_alloc_scratch);
2107 	DBG(total_bop_alloc_kernel);
2108 	bootops->bsys_alloc = no_more_alloc;
2109 	bootops->bsys_free = no_more_free;
2110 }
2111 
2112 
2113 /*
2114  * Set ACPI firmware properties
2115  */
2116 
2117 static caddr_t
2118 vmap_phys(size_t length, paddr_t pa)
2119 {
2120 	paddr_t	start, end;
2121 	caddr_t	va;
2122 	size_t	len, page;
2123 
2124 #ifdef __xpv
2125 	pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2126 #endif
2127 	start = P2ALIGN(pa, MMU_PAGESIZE);
2128 	end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2129 	len = end - start;
2130 	va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2131 	for (page = 0; page < len; page += MMU_PAGESIZE)
2132 		kbm_map((uintptr_t)va + page, start + page, 0, 0);
2133 	return (va + (pa & MMU_PAGEOFFSET));
2134 }
2135 
2136 static uint8_t
2137 checksum_table(uint8_t *tp, size_t len)
2138 {
2139 	uint8_t sum = 0;
2140 
2141 	while (len-- > 0)
2142 		sum += *tp++;
2143 
2144 	return (sum);
2145 }
2146 
2147 static int
2148 valid_rsdp(ACPI_TABLE_RSDP *rp)
2149 {
2150 
2151 	/* validate the V1.x checksum */
2152 	if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2153 		return (0);
2154 
2155 	/* If pre-ACPI 2.0, this is a valid RSDP */
2156 	if (rp->Revision < 2)
2157 		return (1);
2158 
2159 	/* validate the V2.x checksum */
2160 	if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2161 		return (0);
2162 
2163 	return (1);
2164 }
2165 
2166 /*
2167  * Scan memory range for an RSDP;
2168  * see ACPI 3.0 Spec, 5.2.5.1
2169  */
2170 static ACPI_TABLE_RSDP *
2171 scan_rsdp(paddr_t start, paddr_t end)
2172 {
2173 	ssize_t len  = end - start;
2174 	caddr_t ptr;
2175 
2176 	ptr = vmap_phys(len, start);
2177 	while (len > 0) {
2178 		if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2179 		    valid_rsdp((ACPI_TABLE_RSDP *)ptr))
2180 			return ((ACPI_TABLE_RSDP *)ptr);
2181 
2182 		ptr += ACPI_RSDP_SCAN_STEP;
2183 		len -= ACPI_RSDP_SCAN_STEP;
2184 	}
2185 
2186 	return (NULL);
2187 }
2188 
2189 /*
2190  * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
2191  */
2192 static ACPI_TABLE_RSDP *
2193 find_rsdp()
2194 {
2195 	ACPI_TABLE_RSDP *rsdp;
2196 	uint64_t rsdp_val = 0;
2197 	uint16_t *ebda_seg;
2198 	paddr_t  ebda_addr;
2199 
2200 	/* check for "acpi-root-tab" property */
2201 	if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2202 		(void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val);
2203 		if (rsdp_val != 0) {
2204 			rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp));
2205 			if (rsdp != NULL) {
2206 				if (kbm_debug) {
2207 					bop_printf(NULL,
2208 					    "Using RSDP from bootloader: "
2209 					    "0x%p\n", (void *)rsdp);
2210 				}
2211 				return (rsdp);
2212 			}
2213 		}
2214 	}
2215 
2216 	/*
2217 	 * Get the EBDA segment and scan the first 1K
2218 	 */
2219 	ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2220 	    ACPI_EBDA_PTR_LOCATION);
2221 	ebda_addr = *ebda_seg << 4;
2222 	rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
2223 	if (rsdp == NULL)
2224 		/* if EBDA doesn't contain RSDP, look in BIOS memory */
2225 		rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
2226 		    ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
2227 	return (rsdp);
2228 }
2229 
2230 static ACPI_TABLE_HEADER *
2231 map_fw_table(paddr_t table_addr)
2232 {
2233 	ACPI_TABLE_HEADER *tp;
2234 	size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2235 
2236 	/*
2237 	 * Map at least a page; if the table is larger than this, remap it
2238 	 */
2239 	tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2240 	if (tp->Length > len)
2241 		tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2242 	return (tp);
2243 }
2244 
2245 static ACPI_TABLE_HEADER *
2246 find_fw_table(char *signature)
2247 {
2248 	static int revision = 0;
2249 	static ACPI_TABLE_XSDT *xsdt;
2250 	static int len;
2251 	paddr_t xsdt_addr;
2252 	ACPI_TABLE_RSDP *rsdp;
2253 	ACPI_TABLE_HEADER *tp;
2254 	paddr_t table_addr;
2255 	int	n;
2256 
2257 	if (strlen(signature) != ACPI_NAME_SIZE)
2258 		return (NULL);
2259 
2260 	/*
2261 	 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2262 	 * understand this code.  If we haven't already found the RSDT/XSDT,
2263 	 * revision will be 0. Find the RSDP and check the revision
2264 	 * to find out whether to use the RSDT or XSDT.  If revision is
2265 	 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2266 	 * use the XSDT.  If the XSDT address is 0, though, fall back to
2267 	 * revision 1 and use the RSDT.
2268 	 */
2269 	if (revision == 0) {
2270 		if ((rsdp = find_rsdp()) != NULL) {
2271 			revision = rsdp->Revision;
2272 			/*
2273 			 * ACPI 6.0 states that current revision is 2
2274 			 * from acpi_table_rsdp definition:
2275 			 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2276 			 */
2277 			if (revision > 2)
2278 				revision = 2;
2279 			switch (revision) {
2280 			case 2:
2281 				/*
2282 				 * Use the XSDT unless BIOS is buggy and
2283 				 * claims to be rev 2 but has a null XSDT
2284 				 * address
2285 				 */
2286 				xsdt_addr = rsdp->XsdtPhysicalAddress;
2287 				if (xsdt_addr != 0)
2288 					break;
2289 				/* FALLTHROUGH */
2290 			case 0:
2291 				/* treat RSDP rev 0 as revision 1 internally */
2292 				revision = 1;
2293 				/* FALLTHROUGH */
2294 			case 1:
2295 				/* use the RSDT for rev 0/1 */
2296 				xsdt_addr = rsdp->RsdtPhysicalAddress;
2297 				break;
2298 			default:
2299 				/* unknown revision */
2300 				revision = 0;
2301 				break;
2302 			}
2303 		}
2304 		if (revision == 0)
2305 			return (NULL);
2306 
2307 		/* cache the XSDT info */
2308 		xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2309 		len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2310 		    ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2311 	}
2312 
2313 	/*
2314 	 * Scan the table headers looking for a signature match
2315 	 */
2316 	for (n = 0; n < len; n++) {
2317 		ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2318 		table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2319 		    xsdt->TableOffsetEntry[n];
2320 
2321 		if (table_addr == 0)
2322 			continue;
2323 		tp = map_fw_table(table_addr);
2324 		if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2325 			return (tp);
2326 		}
2327 	}
2328 	return (NULL);
2329 }
2330 
2331 static void
2332 process_mcfg(ACPI_TABLE_MCFG *tp)
2333 {
2334 	ACPI_MCFG_ALLOCATION *cfg_baap;
2335 	char *cfg_baa_endp;
2336 	int64_t ecfginfo[4];
2337 
2338 	cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2339 	cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2340 	while ((char *)cfg_baap < cfg_baa_endp) {
2341 		if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2342 			ecfginfo[0] = cfg_baap->Address;
2343 			ecfginfo[1] = cfg_baap->PciSegment;
2344 			ecfginfo[2] = cfg_baap->StartBusNumber;
2345 			ecfginfo[3] = cfg_baap->EndBusNumber;
2346 			bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2347 			    ecfginfo, sizeof (ecfginfo));
2348 			break;
2349 		}
2350 		cfg_baap++;
2351 	}
2352 }
2353 
2354 #ifndef __xpv
2355 static void
2356 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2357     uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2358 {
2359 	ACPI_SUBTABLE_HEADER *item, *end;
2360 	uint32_t cpu_count = 0;
2361 	uint32_t cpu_possible_count = 0;
2362 
2363 	/*
2364 	 * Determine number of CPUs and keep track of "final" APIC ID
2365 	 * for each CPU by walking through ACPI MADT processor list
2366 	 */
2367 	end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2368 	item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2369 
2370 	while (item < end) {
2371 		switch (item->Type) {
2372 		case ACPI_MADT_TYPE_LOCAL_APIC: {
2373 			ACPI_MADT_LOCAL_APIC *cpu =
2374 			    (ACPI_MADT_LOCAL_APIC *) item;
2375 
2376 			if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2377 				if (cpu_apicid_array != NULL)
2378 					cpu_apicid_array[cpu_count] = cpu->Id;
2379 				cpu_count++;
2380 			}
2381 			cpu_possible_count++;
2382 			break;
2383 		}
2384 		case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2385 			ACPI_MADT_LOCAL_X2APIC *cpu =
2386 			    (ACPI_MADT_LOCAL_X2APIC *) item;
2387 
2388 			if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2389 				if (cpu_apicid_array != NULL)
2390 					cpu_apicid_array[cpu_count] =
2391 					    cpu->LocalApicId;
2392 				cpu_count++;
2393 			}
2394 			cpu_possible_count++;
2395 			break;
2396 		}
2397 		default:
2398 			if (kbm_debug)
2399 				bop_printf(NULL, "MADT type %d\n", item->Type);
2400 			break;
2401 		}
2402 
2403 		item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2404 	}
2405 	if (cpu_countp)
2406 		*cpu_countp = cpu_count;
2407 	if (cpu_possible_countp)
2408 		*cpu_possible_countp = cpu_possible_count;
2409 }
2410 
2411 static void
2412 process_madt(ACPI_TABLE_MADT *tp)
2413 {
2414 	uint32_t cpu_count = 0;
2415 	uint32_t cpu_possible_count = 0;
2416 	uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2417 
2418 	if (tp != NULL) {
2419 		/* count cpu's */
2420 		process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2421 
2422 		cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2423 		    cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2424 		if (cpu_apicid_array == NULL)
2425 			bop_panic("Not enough memory for APIC ID array");
2426 
2427 		/* copy IDs */
2428 		process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2429 
2430 		/*
2431 		 * Make boot property for array of "final" APIC IDs for each
2432 		 * CPU
2433 		 */
2434 		bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2435 		    cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2436 	}
2437 
2438 	/*
2439 	 * Check whether property plat-max-ncpus is already set.
2440 	 */
2441 	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2442 		/*
2443 		 * Set plat-max-ncpus to number of maximum possible CPUs given
2444 		 * in MADT if it hasn't been set.
2445 		 * There's no formal way to detect max possible CPUs supported
2446 		 * by platform according to ACPI spec3.0b. So current CPU
2447 		 * hotplug implementation expects that all possible CPUs will
2448 		 * have an entry in MADT table and set plat-max-ncpus to number
2449 		 * of entries in MADT.
2450 		 * With introducing of ACPI4.0, Maximum System Capability Table
2451 		 * (MSCT) provides maximum number of CPUs supported by platform.
2452 		 * If MSCT is unavailable, fall back to old way.
2453 		 */
2454 		if (tp != NULL)
2455 			bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2456 	}
2457 
2458 	/*
2459 	 * Set boot property boot-max-ncpus to number of CPUs existing at
2460 	 * boot time. boot-max-ncpus is mainly used for optimization.
2461 	 */
2462 	if (tp != NULL)
2463 		bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2464 
2465 	/*
2466 	 * User-set boot-ncpus overrides firmware count
2467 	 */
2468 	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2469 		return;
2470 
2471 	/*
2472 	 * Set boot property boot-ncpus to number of active CPUs given in MADT
2473 	 * if it hasn't been set yet.
2474 	 */
2475 	if (tp != NULL)
2476 		bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2477 }
2478 
2479 static void
2480 process_srat(ACPI_TABLE_SRAT *tp)
2481 {
2482 	ACPI_SUBTABLE_HEADER *item, *end;
2483 	int i;
2484 	int proc_num, mem_num;
2485 #pragma pack(1)
2486 	struct {
2487 		uint32_t domain;
2488 		uint32_t apic_id;
2489 		uint32_t sapic_id;
2490 	} processor;
2491 	struct {
2492 		uint32_t domain;
2493 		uint32_t x2apic_id;
2494 	} x2apic;
2495 	struct {
2496 		uint32_t domain;
2497 		uint64_t addr;
2498 		uint64_t length;
2499 		uint32_t flags;
2500 	} memory;
2501 #pragma pack()
2502 	char prop_name[30];
2503 	uint64_t maxmem = 0;
2504 
2505 	if (tp == NULL)
2506 		return;
2507 
2508 	proc_num = mem_num = 0;
2509 	end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2510 	item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2511 	while (item < end) {
2512 		switch (item->Type) {
2513 		case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2514 			ACPI_SRAT_CPU_AFFINITY *cpu =
2515 			    (ACPI_SRAT_CPU_AFFINITY *) item;
2516 
2517 			if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2518 				break;
2519 			processor.domain = cpu->ProximityDomainLo;
2520 			for (i = 0; i < 3; i++)
2521 				processor.domain +=
2522 				    cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2523 			processor.apic_id = cpu->ApicId;
2524 			processor.sapic_id = cpu->LocalSapicEid;
2525 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2526 			    proc_num);
2527 			bsetprop(prop_name, strlen(prop_name), &processor,
2528 			    sizeof (processor));
2529 			proc_num++;
2530 			break;
2531 		}
2532 		case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2533 			ACPI_SRAT_MEM_AFFINITY *mem =
2534 			    (ACPI_SRAT_MEM_AFFINITY *)item;
2535 
2536 			if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2537 				break;
2538 			memory.domain = mem->ProximityDomain;
2539 			memory.addr = mem->BaseAddress;
2540 			memory.length = mem->Length;
2541 			memory.flags = mem->Flags;
2542 			(void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2543 			    mem_num);
2544 			bsetprop(prop_name, strlen(prop_name), &memory,
2545 			    sizeof (memory));
2546 			if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2547 			    (memory.addr + memory.length > maxmem)) {
2548 				maxmem = memory.addr + memory.length;
2549 			}
2550 			mem_num++;
2551 			break;
2552 		}
2553 		case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2554 			ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2555 			    (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2556 
2557 			if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2558 				break;
2559 			x2apic.domain = x2cpu->ProximityDomain;
2560 			x2apic.x2apic_id = x2cpu->ApicId;
2561 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2562 			    proc_num);
2563 			bsetprop(prop_name, strlen(prop_name), &x2apic,
2564 			    sizeof (x2apic));
2565 			proc_num++;
2566 			break;
2567 		}
2568 		default:
2569 			if (kbm_debug)
2570 				bop_printf(NULL, "SRAT type %d\n", item->Type);
2571 			break;
2572 		}
2573 
2574 		item = (ACPI_SUBTABLE_HEADER *)
2575 		    (item->Length + (uintptr_t)item);
2576 	}
2577 
2578 	/*
2579 	 * The maximum physical address calculated from the SRAT table is more
2580 	 * accurate than that calculated from the MSCT table.
2581 	 */
2582 	if (maxmem != 0) {
2583 		plat_dr_physmax = btop(maxmem);
2584 	}
2585 }
2586 
2587 static void
2588 process_slit(ACPI_TABLE_SLIT *tp)
2589 {
2590 
2591 	/*
2592 	 * Check the number of localities; if it's too huge, we just
2593 	 * return and locality enumeration code will handle this later,
2594 	 * if possible.
2595 	 *
2596 	 * Note that the size of the table is the square of the
2597 	 * number of localities; if the number of localities exceeds
2598 	 * UINT16_MAX, the table size may overflow an int when being
2599 	 * passed to bsetprop() below.
2600 	 */
2601 	if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2602 		return;
2603 
2604 	bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME),
2605 	    &tp->LocalityCount, sizeof (tp->LocalityCount));
2606 	bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2607 	    tp->LocalityCount * tp->LocalityCount);
2608 }
2609 
2610 static ACPI_TABLE_MSCT *
2611 process_msct(ACPI_TABLE_MSCT *tp)
2612 {
2613 	int last_seen = 0;
2614 	int proc_num = 0;
2615 	ACPI_MSCT_PROXIMITY *item, *end;
2616 	extern uint64_t plat_dr_options;
2617 
2618 	ASSERT(tp != NULL);
2619 
2620 	end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2621 	for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2622 	    item < end;
2623 	    item = (void *)(item->Length + (uintptr_t)item)) {
2624 		/*
2625 		 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2626 		 * Revision 	1
2627 		 * Length	22
2628 		 */
2629 		if (item->Revision != 1 || item->Length != 22) {
2630 			cmn_err(CE_CONT,
2631 			    "?boot: unknown proximity domain structure in MSCT "
2632 			    "with Revision(%d), Length(%d).\n",
2633 			    (int)item->Revision, (int)item->Length);
2634 			return (NULL);
2635 		} else if (item->RangeStart > item->RangeEnd) {
2636 			cmn_err(CE_CONT,
2637 			    "?boot: invalid proximity domain structure in MSCT "
2638 			    "with RangeStart(%u), RangeEnd(%u).\n",
2639 			    item->RangeStart, item->RangeEnd);
2640 			return (NULL);
2641 		} else if (item->RangeStart != last_seen) {
2642 			/*
2643 			 * Items must be organized in ascending order of the
2644 			 * proximity domain enumerations.
2645 			 */
2646 			cmn_err(CE_CONT,
2647 			    "?boot: invalid proximity domain structure in MSCT,"
2648 			    " items are not orginized in ascending order.\n");
2649 			return (NULL);
2650 		}
2651 
2652 		/*
2653 		 * If ProcessorCapacity is 0 then there would be no CPUs in this
2654 		 * domain.
2655 		 */
2656 		if (item->ProcessorCapacity != 0) {
2657 			proc_num += (item->RangeEnd - item->RangeStart + 1) *
2658 			    item->ProcessorCapacity;
2659 		}
2660 
2661 		last_seen = item->RangeEnd - item->RangeStart + 1;
2662 		/*
2663 		 * Break out if all proximity domains have been processed.
2664 		 * Some BIOSes may have unused items at the end of MSCT table.
2665 		 */
2666 		if (last_seen > tp->MaxProximityDomains) {
2667 			break;
2668 		}
2669 	}
2670 	if (last_seen != tp->MaxProximityDomains + 1) {
2671 		cmn_err(CE_CONT,
2672 		    "?boot: invalid proximity domain structure in MSCT, "
2673 		    "proximity domain count doesn't match.\n");
2674 		return (NULL);
2675 	}
2676 
2677 	/*
2678 	 * Set plat-max-ncpus property if it hasn't been set yet.
2679 	 */
2680 	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2681 		if (proc_num != 0) {
2682 			bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2683 		}
2684 	}
2685 
2686 	/*
2687 	 * Use Maximum Physical Address from the MSCT table as upper limit for
2688 	 * memory hot-adding by default. It may be overridden by value from
2689 	 * the SRAT table or the "plat-dr-physmax" boot option.
2690 	 */
2691 	plat_dr_physmax = btop(tp->MaxAddress + 1);
2692 
2693 	/*
2694 	 * Existence of MSCT implies CPU/memory hotplug-capability for the
2695 	 * platform.
2696 	 */
2697 	plat_dr_options |= PLAT_DR_FEATURE_CPU;
2698 	plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2699 
2700 	return (tp);
2701 }
2702 
2703 #else /* __xpv */
2704 static void
2705 enumerate_xen_cpus()
2706 {
2707 	processorid_t	id, max_id;
2708 
2709 	/*
2710 	 * User-set boot-ncpus overrides enumeration
2711 	 */
2712 	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2713 		return;
2714 
2715 	/*
2716 	 * Probe every possible virtual CPU id and remember the
2717 	 * highest id present; the count of CPUs is one greater
2718 	 * than this.  This tacitly assumes at least cpu 0 is present.
2719 	 */
2720 	max_id = 0;
2721 	for (id = 0; id < MAX_VIRT_CPUS; id++)
2722 		if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2723 			max_id = id;
2724 
2725 	bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2726 
2727 }
2728 #endif /* __xpv */
2729 
2730 /*ARGSUSED*/
2731 static void
2732 build_firmware_properties(struct xboot_info *xbp)
2733 {
2734 	ACPI_TABLE_HEADER *tp = NULL;
2735 
2736 #ifndef __xpv
2737 	if (xbp->bi_acpi_rsdp) {
2738 		bsetprop64("acpi-root-tab",
2739 		    (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp);
2740 	}
2741 
2742 	if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2743 		msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2744 	else
2745 		msct_ptr = NULL;
2746 
2747 	if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2748 		process_madt((ACPI_TABLE_MADT *)tp);
2749 
2750 	if ((srat_ptr = (ACPI_TABLE_SRAT *)
2751 	    find_fw_table(ACPI_SIG_SRAT)) != NULL)
2752 		process_srat(srat_ptr);
2753 
2754 	if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2755 		process_slit(slit_ptr);
2756 
2757 	tp = find_fw_table(ACPI_SIG_MCFG);
2758 #else /* __xpv */
2759 	enumerate_xen_cpus();
2760 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2761 		tp = find_fw_table(ACPI_SIG_MCFG);
2762 #endif /* __xpv */
2763 	if (tp != NULL)
2764 		process_mcfg((ACPI_TABLE_MCFG *)tp);
2765 }
2766 
2767 /*
2768  * fake up a boot property for deferred early console output
2769  * this is used by both graphical boot and the (developer only)
2770  * USB serial console
2771  */
2772 void *
2773 defcons_init(size_t size)
2774 {
2775 	static char *p = NULL;
2776 
2777 	p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2778 	*p = 0;
2779 	bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
2780 	    &p, sizeof (p));
2781 	return (p);
2782 }
2783 
2784 /*ARGSUSED*/
2785 int
2786 boot_compinfo(int fd, struct compinfo *cbp)
2787 {
2788 	cbp->iscmp = 0;
2789 	cbp->blksize = MAXBSIZE;
2790 	return (0);
2791 }
2792 
2793 #define	BP_MAX_STRLEN	32
2794 
2795 /*
2796  * Get value for given boot property
2797  */
2798 int
2799 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2800 {
2801 	int		boot_prop_len;
2802 	char		str[BP_MAX_STRLEN];
2803 	u_longlong_t	value;
2804 
2805 	boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2806 	if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2807 	    BOP_GETPROP(bootops, prop_name, str) < 0 ||
2808 	    kobj_getvalue(str, &value) == -1)
2809 		return (-1);
2810 
2811 	if (prop_value)
2812 		*prop_value = value;
2813 
2814 	return (0);
2815 }
2816